blob: d1b73e35c49edf61fdbc102fd9a07bcfe28dbeff [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Hal Finkel60db0582014-09-07 18:57:58 +000066#include "llvm/Analysis/AssumptionTracker.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000071#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000072#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000073#include "llvm/IR/Constants.h"
74#include "llvm/IR/DataLayout.h"
75#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000076#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000077#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000078#include "llvm/IR/GlobalAlias.h"
79#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000080#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000081#include "llvm/IR/Instructions.h"
82#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000083#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000084#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000085#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000086#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000087#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000088#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000089#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000090#include "llvm/Target/TargetLibraryInfo.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000091#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000092using namespace llvm;
93
Chandler Carruthf1221bd2014-04-22 02:48:03 +000094#define DEBUG_TYPE "scalar-evolution"
95
Chris Lattner57ef9422006-12-19 22:30:33 +000096STATISTIC(NumArrayLenItCounts,
97 "Number of trip counts computed with array length");
98STATISTIC(NumTripCountsComputed,
99 "Number of loops with predictable loop counts");
100STATISTIC(NumTripCountsNotComputed,
101 "Number of loops without predictable loop counts");
102STATISTIC(NumBruteForceTripCountsComputed,
103 "Number of loops with trip counts computed by force");
104
Dan Gohmand78c4002008-05-13 00:00:25 +0000105static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000106MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
107 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000108 "symbolically execute a constant "
109 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000110 cl::init(100));
111
Benjamin Kramer214935e2012-10-26 17:31:32 +0000112// FIXME: Enable this with XDEBUG when the test suite is clean.
113static cl::opt<bool>
114VerifySCEV("verify-scev",
115 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
116
Owen Anderson8ac477f2010-10-12 19:48:12 +0000117INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
118 "Scalar Evolution Analysis", false, true)
Hal Finkel60db0582014-09-07 18:57:58 +0000119INITIALIZE_PASS_DEPENDENCY(AssumptionTracker)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000120INITIALIZE_PASS_DEPENDENCY(LoopInfo)
Chandler Carruth73523022014-01-13 13:07:17 +0000121INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chad Rosierc24b86f2011-12-01 03:08:23 +0000122INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000123INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000124 "Scalar Evolution Analysis", false, true)
Devang Patel8c78a0b2007-05-03 01:11:54 +0000125char ScalarEvolution::ID = 0;
Chris Lattnerd934c702004-04-02 20:23:17 +0000126
127//===----------------------------------------------------------------------===//
128// SCEV class definitions
129//===----------------------------------------------------------------------===//
130
131//===----------------------------------------------------------------------===//
132// Implementation of the SCEV class.
133//
Dan Gohman3423e722009-06-30 20:13:32 +0000134
Manman Ren49d684e2012-09-12 05:06:18 +0000135#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000136void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000137 print(dbgs());
138 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000139}
Manman Renc3366cc2012-09-06 19:55:56 +0000140#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000141
Dan Gohman534749b2010-11-17 22:27:42 +0000142void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000143 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000144 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000145 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000146 return;
147 case scTruncate: {
148 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
149 const SCEV *Op = Trunc->getOperand();
150 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
151 << *Trunc->getType() << ")";
152 return;
153 }
154 case scZeroExtend: {
155 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
156 const SCEV *Op = ZExt->getOperand();
157 OS << "(zext " << *Op->getType() << " " << *Op << " to "
158 << *ZExt->getType() << ")";
159 return;
160 }
161 case scSignExtend: {
162 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
163 const SCEV *Op = SExt->getOperand();
164 OS << "(sext " << *Op->getType() << " " << *Op << " to "
165 << *SExt->getType() << ")";
166 return;
167 }
168 case scAddRecExpr: {
169 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
170 OS << "{" << *AR->getOperand(0);
171 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
172 OS << ",+," << *AR->getOperand(i);
173 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000174 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000175 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000176 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000177 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000178 if (AR->getNoWrapFlags(FlagNW) &&
179 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
180 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000181 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000182 OS << ">";
183 return;
184 }
185 case scAddExpr:
186 case scMulExpr:
187 case scUMaxExpr:
188 case scSMaxExpr: {
189 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000190 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000191 switch (NAry->getSCEVType()) {
192 case scAddExpr: OpStr = " + "; break;
193 case scMulExpr: OpStr = " * "; break;
194 case scUMaxExpr: OpStr = " umax "; break;
195 case scSMaxExpr: OpStr = " smax "; break;
196 }
197 OS << "(";
198 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
199 I != E; ++I) {
200 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000201 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000202 OS << OpStr;
203 }
204 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000205 switch (NAry->getSCEVType()) {
206 case scAddExpr:
207 case scMulExpr:
208 if (NAry->getNoWrapFlags(FlagNUW))
209 OS << "<nuw>";
210 if (NAry->getNoWrapFlags(FlagNSW))
211 OS << "<nsw>";
212 }
Dan Gohman534749b2010-11-17 22:27:42 +0000213 return;
214 }
215 case scUDivExpr: {
216 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
217 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
218 return;
219 }
220 case scUnknown: {
221 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000222 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000223 if (U->isSizeOf(AllocTy)) {
224 OS << "sizeof(" << *AllocTy << ")";
225 return;
226 }
227 if (U->isAlignOf(AllocTy)) {
228 OS << "alignof(" << *AllocTy << ")";
229 return;
230 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000231
Chris Lattner229907c2011-07-18 04:54:35 +0000232 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000233 Constant *FieldNo;
234 if (U->isOffsetOf(CTy, FieldNo)) {
235 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000236 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000237 OS << ")";
238 return;
239 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000240
Dan Gohman534749b2010-11-17 22:27:42 +0000241 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000242 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000243 return;
244 }
245 case scCouldNotCompute:
246 OS << "***COULDNOTCOMPUTE***";
247 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000248 }
249 llvm_unreachable("Unknown SCEV kind!");
250}
251
Chris Lattner229907c2011-07-18 04:54:35 +0000252Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000253 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000254 case scConstant:
255 return cast<SCEVConstant>(this)->getType();
256 case scTruncate:
257 case scZeroExtend:
258 case scSignExtend:
259 return cast<SCEVCastExpr>(this)->getType();
260 case scAddRecExpr:
261 case scMulExpr:
262 case scUMaxExpr:
263 case scSMaxExpr:
264 return cast<SCEVNAryExpr>(this)->getType();
265 case scAddExpr:
266 return cast<SCEVAddExpr>(this)->getType();
267 case scUDivExpr:
268 return cast<SCEVUDivExpr>(this)->getType();
269 case scUnknown:
270 return cast<SCEVUnknown>(this)->getType();
271 case scCouldNotCompute:
272 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000273 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000274 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000275}
276
Dan Gohmanbe928e32008-06-18 16:23:07 +0000277bool SCEV::isZero() const {
278 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
279 return SC->getValue()->isZero();
280 return false;
281}
282
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000283bool SCEV::isOne() const {
284 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
285 return SC->getValue()->isOne();
286 return false;
287}
Chris Lattnerd934c702004-04-02 20:23:17 +0000288
Dan Gohman18a96bb2009-06-24 00:30:26 +0000289bool SCEV::isAllOnesValue() const {
290 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
291 return SC->getValue()->isAllOnesValue();
292 return false;
293}
294
Andrew Trick881a7762012-01-07 00:27:31 +0000295/// isNonConstantNegative - Return true if the specified scev is negated, but
296/// not a constant.
297bool SCEV::isNonConstantNegative() const {
298 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
299 if (!Mul) return false;
300
301 // If there is a constant factor, it will be first.
302 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
303 if (!SC) return false;
304
305 // Return true if the value is negative, this matches things like (-42 * V).
306 return SC->getValue()->getValue().isNegative();
307}
308
Owen Anderson04052ec2009-06-22 21:57:23 +0000309SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000310 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000311
Chris Lattnerd934c702004-04-02 20:23:17 +0000312bool SCEVCouldNotCompute::classof(const SCEV *S) {
313 return S->getSCEVType() == scCouldNotCompute;
314}
315
Dan Gohmanaf752342009-07-07 17:06:11 +0000316const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000317 FoldingSetNodeID ID;
318 ID.AddInteger(scConstant);
319 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000320 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000321 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000322 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000323 UniqueSCEVs.InsertNode(S, IP);
324 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000325}
Chris Lattnerd934c702004-04-02 20:23:17 +0000326
Nick Lewycky31eaca52014-01-27 10:04:03 +0000327const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000328 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000329}
330
Dan Gohmanaf752342009-07-07 17:06:11 +0000331const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000332ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
333 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000334 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000335}
336
Dan Gohman24ceda82010-06-18 19:54:20 +0000337SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000338 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000339 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000340
Dan Gohman24ceda82010-06-18 19:54:20 +0000341SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000342 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000343 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000344 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000346 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000347}
Chris Lattnerd934c702004-04-02 20:23:17 +0000348
Dan Gohman24ceda82010-06-18 19:54:20 +0000349SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000350 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000351 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000352 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000354 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000355}
356
Dan Gohman24ceda82010-06-18 19:54:20 +0000357SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000358 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000359 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000360 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
361 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000362 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000363}
364
Dan Gohman7cac9572010-08-02 23:49:30 +0000365void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000366 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000367 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000368
369 // Remove this SCEVUnknown from the uniquing map.
370 SE->UniqueSCEVs.RemoveNode(this);
371
372 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000373 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000374}
375
376void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000377 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000378 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000379
380 // Remove this SCEVUnknown from the uniquing map.
381 SE->UniqueSCEVs.RemoveNode(this);
382
383 // Update this SCEVUnknown to point to the new value. This is needed
384 // because there may still be outstanding SCEVs which still point to
385 // this SCEVUnknown.
386 setValPtr(New);
387}
388
Chris Lattner229907c2011-07-18 04:54:35 +0000389bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000390 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000391 if (VCE->getOpcode() == Instruction::PtrToInt)
392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000393 if (CE->getOpcode() == Instruction::GetElementPtr &&
394 CE->getOperand(0)->isNullValue() &&
395 CE->getNumOperands() == 2)
396 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
397 if (CI->isOne()) {
398 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
399 ->getElementType();
400 return true;
401 }
Dan Gohmancf913832010-01-28 02:15:55 +0000402
403 return false;
404}
405
Chris Lattner229907c2011-07-18 04:54:35 +0000406bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000407 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000408 if (VCE->getOpcode() == Instruction::PtrToInt)
409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000410 if (CE->getOpcode() == Instruction::GetElementPtr &&
411 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000412 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000413 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000414 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000415 if (!STy->isPacked() &&
416 CE->getNumOperands() == 3 &&
417 CE->getOperand(1)->isNullValue()) {
418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
419 if (CI->isOne() &&
420 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000421 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000422 AllocTy = STy->getElementType(1);
423 return true;
424 }
425 }
426 }
Dan Gohmancf913832010-01-28 02:15:55 +0000427
428 return false;
429}
430
Chris Lattner229907c2011-07-18 04:54:35 +0000431bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000432 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000433 if (VCE->getOpcode() == Instruction::PtrToInt)
434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
435 if (CE->getOpcode() == Instruction::GetElementPtr &&
436 CE->getNumOperands() == 3 &&
437 CE->getOperand(0)->isNullValue() &&
438 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000439 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000440 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
441 // Ignore vector types here so that ScalarEvolutionExpander doesn't
442 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000443 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000444 CTy = Ty;
445 FieldNo = CE->getOperand(2);
446 return true;
447 }
448 }
449
450 return false;
451}
452
Chris Lattnereb3e8402004-06-20 06:23:15 +0000453//===----------------------------------------------------------------------===//
454// SCEV Utilities
455//===----------------------------------------------------------------------===//
456
457namespace {
458 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
459 /// than the complexity of the RHS. This comparator is used to canonicalize
460 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000461 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000462 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000463 public:
Dan Gohman992db002010-07-23 21:18:55 +0000464 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000465
Dan Gohman27065672010-08-27 15:26:01 +0000466 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000467 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000468 return compare(LHS, RHS) < 0;
469 }
470
471 // Return negative, zero, or positive, if LHS is less than, equal to, or
472 // greater than RHS, respectively. A three-way result allows recursive
473 // comparisons to be more efficient.
474 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000475 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
476 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000477 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000478
Dan Gohman9ba542c2009-05-07 14:39:04 +0000479 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000480 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
481 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000482 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000483
Dan Gohman24ceda82010-06-18 19:54:20 +0000484 // Aside from the getSCEVType() ordering, the particular ordering
485 // isn't very important except that it's beneficial to be consistent,
486 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000487 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000488 case scUnknown: {
489 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000490 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000491
492 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
493 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000494 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000495
496 // Order pointer values after integer values. This helps SCEVExpander
497 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000498 bool LIsPointer = LV->getType()->isPointerTy(),
499 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000500 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000501 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000502
503 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000504 unsigned LID = LV->getValueID(),
505 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000506 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000507 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000508
509 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000510 if (const Argument *LA = dyn_cast<Argument>(LV)) {
511 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000512 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
513 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000514 }
515
Dan Gohman27065672010-08-27 15:26:01 +0000516 // For instructions, compare their loop depth, and their operand
517 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000518 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
519 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000520
521 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000522 const BasicBlock *LParent = LInst->getParent(),
523 *RParent = RInst->getParent();
524 if (LParent != RParent) {
525 unsigned LDepth = LI->getLoopDepth(LParent),
526 RDepth = LI->getLoopDepth(RParent);
527 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000528 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000529 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000530
531 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000532 unsigned LNumOps = LInst->getNumOperands(),
533 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000534 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000535 }
536
Dan Gohman27065672010-08-27 15:26:01 +0000537 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000538 }
539
Dan Gohman27065672010-08-27 15:26:01 +0000540 case scConstant: {
541 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000542 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000543
544 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000545 const APInt &LA = LC->getValue()->getValue();
546 const APInt &RA = RC->getValue()->getValue();
547 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000548 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000549 return (int)LBitWidth - (int)RBitWidth;
550 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000551 }
552
Dan Gohman27065672010-08-27 15:26:01 +0000553 case scAddRecExpr: {
554 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000555 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000556
557 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000558 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
559 if (LLoop != RLoop) {
560 unsigned LDepth = LLoop->getLoopDepth(),
561 RDepth = RLoop->getLoopDepth();
562 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000563 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000564 }
Dan Gohman27065672010-08-27 15:26:01 +0000565
566 // Addrec complexity grows with operand count.
567 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
568 if (LNumOps != RNumOps)
569 return (int)LNumOps - (int)RNumOps;
570
571 // Lexicographically compare.
572 for (unsigned i = 0; i != LNumOps; ++i) {
573 long X = compare(LA->getOperand(i), RA->getOperand(i));
574 if (X != 0)
575 return X;
576 }
577
578 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000579 }
580
Dan Gohman27065672010-08-27 15:26:01 +0000581 case scAddExpr:
582 case scMulExpr:
583 case scSMaxExpr:
584 case scUMaxExpr: {
585 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000586 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000587
588 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000589 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000590 if (LNumOps != RNumOps)
591 return (int)LNumOps - (int)RNumOps;
592
Dan Gohman5ae31022010-07-23 21:20:52 +0000593 for (unsigned i = 0; i != LNumOps; ++i) {
594 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000595 return 1;
596 long X = compare(LC->getOperand(i), RC->getOperand(i));
597 if (X != 0)
598 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000599 }
Dan Gohman27065672010-08-27 15:26:01 +0000600 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000601 }
602
Dan Gohman27065672010-08-27 15:26:01 +0000603 case scUDivExpr: {
604 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000605 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000606
607 // Lexicographically compare udiv expressions.
608 long X = compare(LC->getLHS(), RC->getLHS());
609 if (X != 0)
610 return X;
611 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000612 }
613
Dan Gohman27065672010-08-27 15:26:01 +0000614 case scTruncate:
615 case scZeroExtend:
616 case scSignExtend: {
617 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000618 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000619
620 // Compare cast expressions by operand.
621 return compare(LC->getOperand(), RC->getOperand());
622 }
623
Benjamin Kramer987b8502014-02-11 19:02:55 +0000624 case scCouldNotCompute:
625 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000626 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000627 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000628 }
629 };
630}
631
632/// GroupByComplexity - Given a list of SCEV objects, order them by their
633/// complexity, and group objects of the same complexity together by value.
634/// When this routine is finished, we know that any duplicates in the vector are
635/// consecutive and that complexity is monotonically increasing.
636///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000637/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000638/// results from this routine. In other words, we don't want the results of
639/// this to depend on where the addresses of various SCEV objects happened to
640/// land in memory.
641///
Dan Gohmanaf752342009-07-07 17:06:11 +0000642static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000643 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000644 if (Ops.size() < 2) return; // Noop
645 if (Ops.size() == 2) {
646 // This is the common case, which also happens to be trivially simple.
647 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000648 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
649 if (SCEVComplexityCompare(LI)(RHS, LHS))
650 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000651 return;
652 }
653
Dan Gohman24ceda82010-06-18 19:54:20 +0000654 // Do the rough sort by complexity.
655 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
656
657 // Now that we are sorted by complexity, group elements of the same
658 // complexity. Note that this is, at worst, N^2, but the vector is likely to
659 // be extremely short in practice. Note that we take this approach because we
660 // do not want to depend on the addresses of the objects we are grouping.
661 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
662 const SCEV *S = Ops[i];
663 unsigned Complexity = S->getSCEVType();
664
665 // If there are any objects of the same complexity and same value as this
666 // one, group them.
667 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
668 if (Ops[j] == S) { // Found a duplicate.
669 // Move it to immediately after i'th element.
670 std::swap(Ops[i+1], Ops[j]);
671 ++i; // no need to rescan it.
672 if (i == e-2) return; // Done!
673 }
674 }
675 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000676}
677
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000678namespace {
679struct FindSCEVSize {
680 int Size;
681 FindSCEVSize() : Size(0) {}
682
683 bool follow(const SCEV *S) {
684 ++Size;
685 // Keep looking at all operands of S.
686 return true;
687 }
688 bool isDone() const {
689 return false;
690 }
691};
692}
693
694// Returns the size of the SCEV S.
695static inline int sizeOfSCEV(const SCEV *S) {
696 FindSCEVSize F;
697 SCEVTraversal<FindSCEVSize> ST(F);
698 ST.visitAll(S);
699 return F.Size;
700}
701
702namespace {
703
David Majnemer4e879362014-12-14 09:12:33 +0000704struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000705public:
706 // Computes the Quotient and Remainder of the division of Numerator by
707 // Denominator.
708 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
709 const SCEV *Denominator, const SCEV **Quotient,
710 const SCEV **Remainder) {
711 assert(Numerator && Denominator && "Uninitialized SCEV");
712
David Majnemer4e879362014-12-14 09:12:33 +0000713 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000714
715 // Check for the trivial case here to avoid having to check for it in the
716 // rest of the code.
717 if (Numerator == Denominator) {
718 *Quotient = D.One;
719 *Remainder = D.Zero;
720 return;
721 }
722
723 if (Numerator->isZero()) {
724 *Quotient = D.Zero;
725 *Remainder = D.Zero;
726 return;
727 }
728
729 // Split the Denominator when it is a product.
730 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
731 const SCEV *Q, *R;
732 *Quotient = Numerator;
733 for (const SCEV *Op : T->operands()) {
734 divide(SE, *Quotient, Op, &Q, &R);
735 *Quotient = Q;
736
737 // Bail out when the Numerator is not divisible by one of the terms of
738 // the Denominator.
739 if (!R->isZero()) {
740 *Quotient = D.Zero;
741 *Remainder = Numerator;
742 return;
743 }
744 }
745 *Remainder = D.Zero;
746 return;
747 }
748
749 D.visit(Numerator);
750 *Quotient = D.Quotient;
751 *Remainder = D.Remainder;
752 }
753
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000754 // Except in the trivial case described above, we do not know how to divide
755 // Expr by Denominator for the following functions with empty implementation.
756 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
757 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
758 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
759 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
760 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
761 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
762 void visitUnknown(const SCEVUnknown *Numerator) {}
763 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
764
David Majnemer4e879362014-12-14 09:12:33 +0000765 void visitConstant(const SCEVConstant *Numerator) {
766 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
767 APInt NumeratorVal = Numerator->getValue()->getValue();
768 APInt DenominatorVal = D->getValue()->getValue();
769 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
770 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
771
772 if (NumeratorBW > DenominatorBW)
773 DenominatorVal = DenominatorVal.sext(NumeratorBW);
774 else if (NumeratorBW < DenominatorBW)
775 NumeratorVal = NumeratorVal.sext(DenominatorBW);
776
777 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
778 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
779 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
780 Quotient = SE.getConstant(QuotientVal);
781 Remainder = SE.getConstant(RemainderVal);
782 return;
783 }
784 }
785
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000786 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
787 const SCEV *StartQ, *StartR, *StepQ, *StepR;
788 assert(Numerator->isAffine() && "Numerator should be affine");
789 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
790 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
791 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
792 Numerator->getNoWrapFlags());
793 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
794 Numerator->getNoWrapFlags());
795 }
796
797 void visitAddExpr(const SCEVAddExpr *Numerator) {
798 SmallVector<const SCEV *, 2> Qs, Rs;
799 Type *Ty = Denominator->getType();
800
801 for (const SCEV *Op : Numerator->operands()) {
802 const SCEV *Q, *R;
803 divide(SE, Op, Denominator, &Q, &R);
804
805 // Bail out if types do not match.
806 if (Ty != Q->getType() || Ty != R->getType()) {
807 Quotient = Zero;
808 Remainder = Numerator;
809 return;
810 }
811
812 Qs.push_back(Q);
813 Rs.push_back(R);
814 }
815
816 if (Qs.size() == 1) {
817 Quotient = Qs[0];
818 Remainder = Rs[0];
819 return;
820 }
821
822 Quotient = SE.getAddExpr(Qs);
823 Remainder = SE.getAddExpr(Rs);
824 }
825
826 void visitMulExpr(const SCEVMulExpr *Numerator) {
827 SmallVector<const SCEV *, 2> Qs;
828 Type *Ty = Denominator->getType();
829
830 bool FoundDenominatorTerm = false;
831 for (const SCEV *Op : Numerator->operands()) {
832 // Bail out if types do not match.
833 if (Ty != Op->getType()) {
834 Quotient = Zero;
835 Remainder = Numerator;
836 return;
837 }
838
839 if (FoundDenominatorTerm) {
840 Qs.push_back(Op);
841 continue;
842 }
843
844 // Check whether Denominator divides one of the product operands.
845 const SCEV *Q, *R;
846 divide(SE, Op, Denominator, &Q, &R);
847 if (!R->isZero()) {
848 Qs.push_back(Op);
849 continue;
850 }
851
852 // Bail out if types do not match.
853 if (Ty != Q->getType()) {
854 Quotient = Zero;
855 Remainder = Numerator;
856 return;
857 }
858
859 FoundDenominatorTerm = true;
860 Qs.push_back(Q);
861 }
862
863 if (FoundDenominatorTerm) {
864 Remainder = Zero;
865 if (Qs.size() == 1)
866 Quotient = Qs[0];
867 else
868 Quotient = SE.getMulExpr(Qs);
869 return;
870 }
871
872 if (!isa<SCEVUnknown>(Denominator)) {
873 Quotient = Zero;
874 Remainder = Numerator;
875 return;
876 }
877
878 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
879 ValueToValueMap RewriteMap;
880 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
881 cast<SCEVConstant>(Zero)->getValue();
882 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
883
884 if (Remainder->isZero()) {
885 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
886 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
887 cast<SCEVConstant>(One)->getValue();
888 Quotient =
889 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
890 return;
891 }
892
893 // Quotient is (Numerator - Remainder) divided by Denominator.
894 const SCEV *Q, *R;
895 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
896 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
897 // This SCEV does not seem to simplify: fail the division here.
898 Quotient = Zero;
899 Remainder = Numerator;
900 return;
901 }
902 divide(SE, Diff, Denominator, &Q, &R);
903 assert(R == Zero &&
904 "(Numerator - Remainder) should evenly divide Denominator");
905 Quotient = Q;
906 }
907
908private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000909 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
910 const SCEV *Denominator)
911 : SE(S), Denominator(Denominator) {
912 Zero = SE.getConstant(Denominator->getType(), 0);
913 One = SE.getConstant(Denominator->getType(), 1);
914
915 // By default, we don't know how to divide Expr by Denominator.
916 // Providing the default here simplifies the rest of the code.
917 Quotient = Zero;
918 Remainder = Numerator;
919 }
920
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000921 ScalarEvolution &SE;
922 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000923};
924
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000925}
926
Chris Lattnerd934c702004-04-02 20:23:17 +0000927//===----------------------------------------------------------------------===//
928// Simple SCEV method implementations
929//===----------------------------------------------------------------------===//
930
Eli Friedman61f67622008-08-04 23:49:06 +0000931/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000932/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000933static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000934 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000935 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000936 // Handle the simplest case efficiently.
937 if (K == 1)
938 return SE.getTruncateOrZeroExtend(It, ResultTy);
939
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000940 // We are using the following formula for BC(It, K):
941 //
942 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
943 //
Eli Friedman61f67622008-08-04 23:49:06 +0000944 // Suppose, W is the bitwidth of the return value. We must be prepared for
945 // overflow. Hence, we must assure that the result of our computation is
946 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
947 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000948 //
Eli Friedman61f67622008-08-04 23:49:06 +0000949 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000950 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000951 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
952 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000953 //
Eli Friedman61f67622008-08-04 23:49:06 +0000954 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000955 //
Eli Friedman61f67622008-08-04 23:49:06 +0000956 // This formula is trivially equivalent to the previous formula. However,
957 // this formula can be implemented much more efficiently. The trick is that
958 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
959 // arithmetic. To do exact division in modular arithmetic, all we have
960 // to do is multiply by the inverse. Therefore, this step can be done at
961 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000962 //
Eli Friedman61f67622008-08-04 23:49:06 +0000963 // The next issue is how to safely do the division by 2^T. The way this
964 // is done is by doing the multiplication step at a width of at least W + T
965 // bits. This way, the bottom W+T bits of the product are accurate. Then,
966 // when we perform the division by 2^T (which is equivalent to a right shift
967 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
968 // truncated out after the division by 2^T.
969 //
970 // In comparison to just directly using the first formula, this technique
971 // is much more efficient; using the first formula requires W * K bits,
972 // but this formula less than W + K bits. Also, the first formula requires
973 // a division step, whereas this formula only requires multiplies and shifts.
974 //
975 // It doesn't matter whether the subtraction step is done in the calculation
976 // width or the input iteration count's width; if the subtraction overflows,
977 // the result must be zero anyway. We prefer here to do it in the width of
978 // the induction variable because it helps a lot for certain cases; CodeGen
979 // isn't smart enough to ignore the overflow, which leads to much less
980 // efficient code if the width of the subtraction is wider than the native
981 // register width.
982 //
983 // (It's possible to not widen at all by pulling out factors of 2 before
984 // the multiplication; for example, K=2 can be calculated as
985 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
986 // extra arithmetic, so it's not an obvious win, and it gets
987 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000988
Eli Friedman61f67622008-08-04 23:49:06 +0000989 // Protection from insane SCEVs; this bound is conservative,
990 // but it probably doesn't matter.
991 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000992 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000993
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000994 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000995
Eli Friedman61f67622008-08-04 23:49:06 +0000996 // Calculate K! / 2^T and T; we divide out the factors of two before
997 // multiplying for calculating K! / 2^T to avoid overflow.
998 // Other overflow doesn't matter because we only care about the bottom
999 // W bits of the result.
1000 APInt OddFactorial(W, 1);
1001 unsigned T = 1;
1002 for (unsigned i = 3; i <= K; ++i) {
1003 APInt Mult(W, i);
1004 unsigned TwoFactors = Mult.countTrailingZeros();
1005 T += TwoFactors;
1006 Mult = Mult.lshr(TwoFactors);
1007 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001008 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001009
Eli Friedman61f67622008-08-04 23:49:06 +00001010 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001011 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001012
Dan Gohman8b0a4192010-03-01 17:49:51 +00001013 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001014 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001015
1016 // Calculate the multiplicative inverse of K! / 2^T;
1017 // this multiplication factor will perform the exact division by
1018 // K! / 2^T.
1019 APInt Mod = APInt::getSignedMinValue(W+1);
1020 APInt MultiplyFactor = OddFactorial.zext(W+1);
1021 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1022 MultiplyFactor = MultiplyFactor.trunc(W);
1023
1024 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001025 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001026 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001027 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001028 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001029 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001030 Dividend = SE.getMulExpr(Dividend,
1031 SE.getTruncateOrZeroExtend(S, CalculationTy));
1032 }
1033
1034 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001035 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001036
1037 // Truncate the result, and divide by K! / 2^T.
1038
1039 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1040 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001041}
1042
Chris Lattnerd934c702004-04-02 20:23:17 +00001043/// evaluateAtIteration - Return the value of this chain of recurrences at
1044/// the specified iteration number. We can evaluate this recurrence by
1045/// multiplying each element in the chain by the binomial coefficient
1046/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1047///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001048/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001049///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001050/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001051///
Dan Gohmanaf752342009-07-07 17:06:11 +00001052const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001053 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001054 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001055 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001056 // The computation is correct in the face of overflow provided that the
1057 // multiplication is performed _after_ the evaluation of the binomial
1058 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001059 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001060 if (isa<SCEVCouldNotCompute>(Coeff))
1061 return Coeff;
1062
1063 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001064 }
1065 return Result;
1066}
1067
Chris Lattnerd934c702004-04-02 20:23:17 +00001068//===----------------------------------------------------------------------===//
1069// SCEV Expression folder implementations
1070//===----------------------------------------------------------------------===//
1071
Dan Gohmanaf752342009-07-07 17:06:11 +00001072const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001073 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001074 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001075 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001076 assert(isSCEVable(Ty) &&
1077 "This is not a conversion to a SCEVable type!");
1078 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001079
Dan Gohman3a302cb2009-07-13 20:50:19 +00001080 FoldingSetNodeID ID;
1081 ID.AddInteger(scTruncate);
1082 ID.AddPointer(Op);
1083 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001084 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001085 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1086
Dan Gohman3423e722009-06-30 20:13:32 +00001087 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001088 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001089 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001090 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001091
Dan Gohman79af8542009-04-22 16:20:48 +00001092 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001093 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001094 return getTruncateExpr(ST->getOperand(), Ty);
1095
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001096 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001097 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001098 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1099
1100 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001101 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001102 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1103
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001104 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1105 // eliminate all the truncates.
1106 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1107 SmallVector<const SCEV *, 4> Operands;
1108 bool hasTrunc = false;
1109 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1110 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1111 hasTrunc = isa<SCEVTruncateExpr>(S);
1112 Operands.push_back(S);
1113 }
1114 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001115 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001116 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001117 }
1118
Nick Lewycky5c901f32011-01-19 18:56:00 +00001119 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1120 // eliminate all the truncates.
1121 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1122 SmallVector<const SCEV *, 4> Operands;
1123 bool hasTrunc = false;
1124 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1125 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1126 hasTrunc = isa<SCEVTruncateExpr>(S);
1127 Operands.push_back(S);
1128 }
1129 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001130 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001131 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001132 }
1133
Dan Gohman5a728c92009-06-18 16:24:47 +00001134 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001135 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001136 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00001137 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman2e55cc52009-05-08 21:03:19 +00001138 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001139 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001140 }
1141
Dan Gohman89dd42a2010-06-25 18:47:08 +00001142 // The cast wasn't folded; create an explicit cast node. We can reuse
1143 // the existing insert position since if we get here, we won't have
1144 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001145 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1146 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001147 UniqueSCEVs.InsertNode(S, IP);
1148 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001149}
1150
Dan Gohmanaf752342009-07-07 17:06:11 +00001151const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001152 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001153 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001154 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001155 assert(isSCEVable(Ty) &&
1156 "This is not a conversion to a SCEVable type!");
1157 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001158
Dan Gohman3423e722009-06-30 20:13:32 +00001159 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001160 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1161 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001162 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001163
Dan Gohman79af8542009-04-22 16:20:48 +00001164 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001165 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001166 return getZeroExtendExpr(SZ->getOperand(), Ty);
1167
Dan Gohman74a0ba12009-07-13 20:55:53 +00001168 // Before doing any expensive analysis, check to see if we've already
1169 // computed a SCEV for this Op and Ty.
1170 FoldingSetNodeID ID;
1171 ID.AddInteger(scZeroExtend);
1172 ID.AddPointer(Op);
1173 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001174 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001175 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1176
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001177 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1178 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1179 // It's possible the bits taken off by the truncate were all zero bits. If
1180 // so, we should be able to simplify this further.
1181 const SCEV *X = ST->getOperand();
1182 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001183 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1184 unsigned NewBits = getTypeSizeInBits(Ty);
1185 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001186 CR.zextOrTrunc(NewBits)))
1187 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001188 }
1189
Dan Gohman76466372009-04-27 20:16:15 +00001190 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001191 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001192 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001193 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001194 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001195 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001196 const SCEV *Start = AR->getStart();
1197 const SCEV *Step = AR->getStepRecurrence(*this);
1198 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1199 const Loop *L = AR->getLoop();
1200
Dan Gohman62ef6a72009-07-25 01:22:26 +00001201 // If we have special knowledge that this addrec won't overflow,
1202 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001203 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman62ef6a72009-07-25 01:22:26 +00001204 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1205 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001206 L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001207
Dan Gohman76466372009-04-27 20:16:15 +00001208 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1209 // Note that this serves two purposes: It filters out loops that are
1210 // simply not analyzable, and it covers the case where this code is
1211 // being called from within backedge-taken count analysis, such that
1212 // attempting to ask for the backedge-taken count would likely result
1213 // in infinite recursion. In the later case, the analysis code will
1214 // cope with a conservative value, and it will take care to purge
1215 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001216 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001217 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001218 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001219 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001220
1221 // Check whether the backedge-taken count can be losslessly casted to
1222 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001223 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001224 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001225 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001226 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1227 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001228 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001229 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001230 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001231 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1232 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1233 const SCEV *WideMaxBECount =
1234 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001235 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001236 getAddExpr(WideStart,
1237 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001238 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001239 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001240 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1241 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001242 // Return the expression with the addrec on the outside.
1243 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1244 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001245 L, AR->getNoWrapFlags());
1246 }
Dan Gohman76466372009-04-27 20:16:15 +00001247 // Similar to above, only this time treat the step value as signed.
1248 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001249 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001250 getAddExpr(WideStart,
1251 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001252 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001253 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001254 // Cache knowledge of AR NW, which is propagated to this AddRec.
1255 // Negative step causes unsigned wrap, but it still can't self-wrap.
1256 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001257 // Return the expression with the addrec on the outside.
1258 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1259 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001260 L, AR->getNoWrapFlags());
1261 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001262 }
1263
1264 // If the backedge is guarded by a comparison with the pre-inc value
1265 // the addrec is safe. Also, if the entry is guarded by a comparison
1266 // with the start value and the backedge is guarded by a comparison
1267 // with the post-inc value, the addrec is safe.
1268 if (isKnownPositive(Step)) {
1269 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1270 getUnsignedRange(Step).getUnsignedMax());
1271 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001272 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001273 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001274 AR->getPostIncExpr(*this), N))) {
1275 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1276 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001277 // Return the expression with the addrec on the outside.
1278 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1279 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001280 L, AR->getNoWrapFlags());
1281 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001282 } else if (isKnownNegative(Step)) {
1283 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1284 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001285 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1286 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001287 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001288 AR->getPostIncExpr(*this), N))) {
1289 // Cache knowledge of AR NW, which is propagated to this AddRec.
1290 // Negative step causes unsigned wrap, but it still can't self-wrap.
1291 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1292 // Return the expression with the addrec on the outside.
Dan Gohmane65c9172009-07-13 21:35:55 +00001293 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1294 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001295 L, AR->getNoWrapFlags());
1296 }
Dan Gohman76466372009-04-27 20:16:15 +00001297 }
1298 }
1299 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001300
Dan Gohman74a0ba12009-07-13 20:55:53 +00001301 // The cast wasn't folded; create an explicit cast node.
1302 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001303 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001304 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1305 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001306 UniqueSCEVs.InsertNode(S, IP);
1307 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001308}
1309
Andrew Trick812276e2011-05-31 21:17:47 +00001310// Get the limit of a recurrence such that incrementing by Step cannot cause
1311// signed overflow as long as the value of the recurrence within the loop does
1312// not exceed this limit before incrementing.
1313static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1314 ICmpInst::Predicate *Pred,
1315 ScalarEvolution *SE) {
1316 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1317 if (SE->isKnownPositive(Step)) {
1318 *Pred = ICmpInst::ICMP_SLT;
1319 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1320 SE->getSignedRange(Step).getSignedMax());
1321 }
1322 if (SE->isKnownNegative(Step)) {
1323 *Pred = ICmpInst::ICMP_SGT;
1324 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1325 SE->getSignedRange(Step).getSignedMin());
1326 }
Craig Topper9f008862014-04-15 04:59:12 +00001327 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001328}
1329
1330// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1331// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1332// or postincrement sibling. This allows normalizing a sign extended AddRec as
1333// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1334// result, the expression "Step + sext(PreIncAR)" is congruent with
1335// "sext(PostIncAR)"
1336static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001337 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001338 ScalarEvolution *SE) {
1339 const Loop *L = AR->getLoop();
1340 const SCEV *Start = AR->getStart();
1341 const SCEV *Step = AR->getStepRecurrence(*SE);
1342
1343 // Check for a simple looking step prior to loop entry.
1344 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001345 if (!SA)
Craig Topper9f008862014-04-15 04:59:12 +00001346 return nullptr;
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001347
1348 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1349 // subtraction is expensive. For this purpose, perform a quick and dirty
1350 // difference, by checking for Step in the operand list.
1351 SmallVector<const SCEV *, 4> DiffOps;
Tobias Grosser924221c2014-05-07 06:07:47 +00001352 for (const SCEV *Op : SA->operands())
1353 if (Op != Step)
1354 DiffOps.push_back(Op);
1355
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001356 if (DiffOps.size() == SA->getNumOperands())
Craig Topper9f008862014-04-15 04:59:12 +00001357 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001358
1359 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1360 // same three conditions that getSignExtendedExpr checks.
1361
1362 // 1. NSW flags on the step increment.
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001363 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trick812276e2011-05-31 21:17:47 +00001364 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1365 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1366
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001367 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001368 return PreStart;
Andrew Trick812276e2011-05-31 21:17:47 +00001369
1370 // 2. Direct overflow check on the step operation's expression.
1371 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattner229907c2011-07-18 04:54:35 +00001372 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trick812276e2011-05-31 21:17:47 +00001373 const SCEV *OperandExtendedStart =
1374 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1375 SE->getSignExtendExpr(Step, WideTy));
1376 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1377 // Cache knowledge of PreAR NSW.
1378 if (PreAR)
1379 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1380 // FIXME: this optimization needs a unit test
1381 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1382 return PreStart;
1383 }
1384
1385 // 3. Loop precondition.
1386 ICmpInst::Predicate Pred;
1387 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1388
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001389 if (OverflowLimit &&
1390 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trick812276e2011-05-31 21:17:47 +00001391 return PreStart;
1392 }
Craig Topper9f008862014-04-15 04:59:12 +00001393 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001394}
1395
1396// Get the normalized sign-extended expression for this AddRec's Start.
1397static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001398 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001399 ScalarEvolution *SE) {
1400 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1401 if (!PreStart)
1402 return SE->getSignExtendExpr(AR->getStart(), Ty);
1403
1404 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1405 SE->getSignExtendExpr(PreStart, Ty));
1406}
1407
Dan Gohmanaf752342009-07-07 17:06:11 +00001408const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001409 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001410 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001411 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001412 assert(isSCEVable(Ty) &&
1413 "This is not a conversion to a SCEVable type!");
1414 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001415
Dan Gohman3423e722009-06-30 20:13:32 +00001416 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001417 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1418 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001419 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001420
Dan Gohman79af8542009-04-22 16:20:48 +00001421 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001422 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001423 return getSignExtendExpr(SS->getOperand(), Ty);
1424
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001425 // sext(zext(x)) --> zext(x)
1426 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1427 return getZeroExtendExpr(SZ->getOperand(), Ty);
1428
Dan Gohman74a0ba12009-07-13 20:55:53 +00001429 // Before doing any expensive analysis, check to see if we've already
1430 // computed a SCEV for this Op and Ty.
1431 FoldingSetNodeID ID;
1432 ID.AddInteger(scSignExtend);
1433 ID.AddPointer(Op);
1434 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001435 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001436 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1437
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001438 // If the input value is provably positive, build a zext instead.
1439 if (isKnownNonNegative(Op))
1440 return getZeroExtendExpr(Op, Ty);
1441
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001442 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1443 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1444 // It's possible the bits taken off by the truncate were all sign bits. If
1445 // so, we should be able to simplify this further.
1446 const SCEV *X = ST->getOperand();
1447 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001448 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1449 unsigned NewBits = getTypeSizeInBits(Ty);
1450 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001451 CR.sextOrTrunc(NewBits)))
1452 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001453 }
1454
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001455 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1456 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1457 if (SA->getNumOperands() == 2) {
1458 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1459 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1460 if (SMul && SC1) {
1461 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001462 const APInt &C1 = SC1->getValue()->getValue();
1463 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001464 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001465 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001466 return getAddExpr(getSignExtendExpr(SC1, Ty),
1467 getSignExtendExpr(SMul, Ty));
1468 }
1469 }
1470 }
1471 }
Dan Gohman76466372009-04-27 20:16:15 +00001472 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001473 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001474 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001475 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001476 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001477 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001478 const SCEV *Start = AR->getStart();
1479 const SCEV *Step = AR->getStepRecurrence(*this);
1480 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1481 const Loop *L = AR->getLoop();
1482
Dan Gohman62ef6a72009-07-25 01:22:26 +00001483 // If we have special knowledge that this addrec won't overflow,
1484 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001485 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001486 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman62ef6a72009-07-25 01:22:26 +00001487 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001488 L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001489
Dan Gohman76466372009-04-27 20:16:15 +00001490 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1491 // Note that this serves two purposes: It filters out loops that are
1492 // simply not analyzable, and it covers the case where this code is
1493 // being called from within backedge-taken count analysis, such that
1494 // attempting to ask for the backedge-taken count would likely result
1495 // in infinite recursion. In the later case, the analysis code will
1496 // cope with a conservative value, and it will take care to purge
1497 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001498 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001499 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001500 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001501 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001502
1503 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001504 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001505 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001506 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001507 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001508 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1509 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001510 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001511 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001512 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001513 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1514 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1515 const SCEV *WideMaxBECount =
1516 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001517 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001518 getAddExpr(WideStart,
1519 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001520 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001521 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001522 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1523 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001524 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001525 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman494dac32009-04-29 22:28:28 +00001526 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001527 L, AR->getNoWrapFlags());
1528 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001529 // Similar to above, only this time treat the step value as unsigned.
1530 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001531 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001532 getAddExpr(WideStart,
1533 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001534 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001535 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001536 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1537 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman8c129d72009-07-16 17:34:36 +00001538 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001539 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman8c129d72009-07-16 17:34:36 +00001540 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001541 L, AR->getNoWrapFlags());
1542 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001543 }
1544
1545 // If the backedge is guarded by a comparison with the pre-inc value
1546 // the addrec is safe. Also, if the entry is guarded by a comparison
1547 // with the start value and the backedge is guarded by a comparison
1548 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001549 ICmpInst::Predicate Pred;
1550 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1551 if (OverflowLimit &&
1552 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1553 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1554 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1555 OverflowLimit)))) {
1556 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1557 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1558 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1559 getSignExtendExpr(Step, Ty),
1560 L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001561 }
1562 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001563 // If Start and Step are constants, check if we can apply this
1564 // transformation:
1565 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1566 auto SC1 = dyn_cast<SCEVConstant>(Start);
1567 auto SC2 = dyn_cast<SCEVConstant>(Step);
1568 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001569 const APInt &C1 = SC1->getValue()->getValue();
1570 const APInt &C2 = SC2->getValue()->getValue();
1571 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1572 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001573 Start = getSignExtendExpr(Start, Ty);
1574 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1575 L, AR->getNoWrapFlags());
1576 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1577 }
1578 }
Dan Gohman76466372009-04-27 20:16:15 +00001579 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001580
Dan Gohman74a0ba12009-07-13 20:55:53 +00001581 // The cast wasn't folded; create an explicit cast node.
1582 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001583 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001584 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1585 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001586 UniqueSCEVs.InsertNode(S, IP);
1587 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001588}
1589
Dan Gohman8db2edc2009-06-13 15:56:47 +00001590/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1591/// unspecified bits out to the given type.
1592///
Dan Gohmanaf752342009-07-07 17:06:11 +00001593const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001594 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001595 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1596 "This is not an extending conversion!");
1597 assert(isSCEVable(Ty) &&
1598 "This is not a conversion to a SCEVable type!");
1599 Ty = getEffectiveSCEVType(Ty);
1600
1601 // Sign-extend negative constants.
1602 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1603 if (SC->getValue()->getValue().isNegative())
1604 return getSignExtendExpr(Op, Ty);
1605
1606 // Peel off a truncate cast.
1607 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001608 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001609 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1610 return getAnyExtendExpr(NewOp, Ty);
1611 return getTruncateOrNoop(NewOp, Ty);
1612 }
1613
1614 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001615 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001616 if (!isa<SCEVZeroExtendExpr>(ZExt))
1617 return ZExt;
1618
1619 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001620 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001621 if (!isa<SCEVSignExtendExpr>(SExt))
1622 return SExt;
1623
Dan Gohman51ad99d2010-01-21 02:09:26 +00001624 // Force the cast to be folded into the operands of an addrec.
1625 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1626 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001627 for (const SCEV *Op : AR->operands())
1628 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001629 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001630 }
1631
Dan Gohman8db2edc2009-06-13 15:56:47 +00001632 // If the expression is obviously signed, use the sext cast value.
1633 if (isa<SCEVSMaxExpr>(Op))
1634 return SExt;
1635
1636 // Absent any other information, use the zext cast value.
1637 return ZExt;
1638}
1639
Dan Gohman038d02e2009-06-14 22:58:51 +00001640/// CollectAddOperandsWithScales - Process the given Ops list, which is
1641/// a list of operands to be added under the given scale, update the given
1642/// map. This is a helper function for getAddRecExpr. As an example of
1643/// what it does, given a sequence of operands that would form an add
1644/// expression like this:
1645///
Tobias Grosserba49e422014-03-05 10:37:17 +00001646/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001647///
1648/// where A and B are constants, update the map with these values:
1649///
1650/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1651///
1652/// and add 13 + A*B*29 to AccumulatedConstant.
1653/// This will allow getAddRecExpr to produce this:
1654///
1655/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1656///
1657/// This form often exposes folding opportunities that are hidden in
1658/// the original operand list.
1659///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001660/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001661/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1662/// the common case where no interesting opportunities are present, and
1663/// is also used as a check to avoid infinite recursion.
1664///
1665static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001666CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001667 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001668 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001669 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001670 const APInt &Scale,
1671 ScalarEvolution &SE) {
1672 bool Interesting = false;
1673
Dan Gohman45073042010-06-18 19:12:32 +00001674 // Iterate over the add operands. They are sorted, with constants first.
1675 unsigned i = 0;
1676 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1677 ++i;
1678 // Pull a buried constant out to the outside.
1679 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1680 Interesting = true;
1681 AccumulatedConstant += Scale * C->getValue()->getValue();
1682 }
1683
1684 // Next comes everything else. We're especially interested in multiplies
1685 // here, but they're in the middle, so just visit the rest with one loop.
1686 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001687 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1688 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1689 APInt NewScale =
1690 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1691 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1692 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001693 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001694 Interesting |=
1695 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001696 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001697 NewScale, SE);
1698 } else {
1699 // A multiplication of a constant with some other value. Update
1700 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001701 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1702 const SCEV *Key = SE.getMulExpr(MulOps);
1703 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001704 M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001705 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001706 NewOps.push_back(Pair.first->first);
1707 } else {
1708 Pair.first->second += NewScale;
1709 // The map already had an entry for this value, which may indicate
1710 // a folding opportunity.
1711 Interesting = true;
1712 }
1713 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001714 } else {
1715 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001716 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001717 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001718 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001719 NewOps.push_back(Pair.first->first);
1720 } else {
1721 Pair.first->second += Scale;
1722 // The map already had an entry for this value, which may indicate
1723 // a folding opportunity.
1724 Interesting = true;
1725 }
1726 }
1727 }
1728
1729 return Interesting;
1730}
1731
1732namespace {
1733 struct APIntCompare {
1734 bool operator()(const APInt &LHS, const APInt &RHS) const {
1735 return LHS.ult(RHS);
1736 }
1737 };
1738}
1739
Dan Gohman4d5435d2009-05-24 23:45:28 +00001740/// getAddExpr - Get a canonical add expression, or something simpler if
1741/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001742const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001743 SCEV::NoWrapFlags Flags) {
1744 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1745 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001746 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001747 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001748#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001749 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001750 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001751 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001752 "SCEVAddExpr operand types don't match!");
1753#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001754
Andrew Trick8b55b732011-03-14 16:50:06 +00001755 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001756 // And vice-versa.
1757 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1758 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1759 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001760 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00001761 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1762 E = Ops.end(); I != E; ++I)
1763 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001764 All = false;
1765 break;
1766 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001767 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001768 }
1769
Chris Lattnerd934c702004-04-02 20:23:17 +00001770 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001771 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001772
1773 // If there are any constants, fold them together.
1774 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001775 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001776 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00001777 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00001778 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001779 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00001780 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1781 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00001782 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001783 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001784 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001785 }
1786
1787 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001788 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001789 Ops.erase(Ops.begin());
1790 --Idx;
1791 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001792
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001793 if (Ops.size() == 1) return Ops[0];
1794 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001795
Dan Gohman15871f22010-08-27 21:39:59 +00001796 // Okay, check to see if the same value occurs in the operand list more than
1797 // once. If so, merge them together into an multiply expression. Since we
1798 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00001799 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00001800 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00001801 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00001802 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00001803 // Scan ahead to count how many equal operands there are.
1804 unsigned Count = 2;
1805 while (i+Count != e && Ops[i+Count] == Ops[i])
1806 ++Count;
1807 // Merge the values into a multiply.
1808 const SCEV *Scale = getConstant(Ty, Count);
1809 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1810 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00001811 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00001812 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00001813 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00001814 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00001815 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00001816 }
Dan Gohmane67b2872010-08-12 14:46:54 +00001817 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00001818 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00001819
Dan Gohman2e55cc52009-05-08 21:03:19 +00001820 // Check for truncates. If all the operands are truncated from the same
1821 // type, see if factoring out the truncate would permit the result to be
1822 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1823 // if the contents of the resulting outer trunc fold to something simple.
1824 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1825 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00001826 Type *DstType = Trunc->getType();
1827 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00001828 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001829 bool Ok = true;
1830 // Check all the operands to see if they can be represented in the
1831 // source type of the truncate.
1832 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1833 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1834 if (T->getOperand()->getType() != SrcType) {
1835 Ok = false;
1836 break;
1837 }
1838 LargeOps.push_back(T->getOperand());
1839 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001840 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001841 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001842 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001843 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1844 if (const SCEVTruncateExpr *T =
1845 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1846 if (T->getOperand()->getType() != SrcType) {
1847 Ok = false;
1848 break;
1849 }
1850 LargeMulOps.push_back(T->getOperand());
1851 } else if (const SCEVConstant *C =
1852 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001853 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001854 } else {
1855 Ok = false;
1856 break;
1857 }
1858 }
1859 if (Ok)
1860 LargeOps.push_back(getMulExpr(LargeMulOps));
1861 } else {
1862 Ok = false;
1863 break;
1864 }
1865 }
1866 if (Ok) {
1867 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00001868 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00001869 // If it folds to something simple, use it. Otherwise, don't.
1870 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1871 return getTruncateExpr(Fold, DstType);
1872 }
1873 }
1874
1875 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00001876 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1877 ++Idx;
1878
1879 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00001880 if (Idx < Ops.size()) {
1881 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00001882 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001883 // If we have an add, expand the add operands onto the end of the operands
1884 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00001885 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00001886 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00001887 DeletedAdd = true;
1888 }
1889
1890 // If we deleted at least one add, we added operands to the end of the list,
1891 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00001892 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00001893 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00001894 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001895 }
1896
1897 // Skip over the add expression until we get to a multiply.
1898 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1899 ++Idx;
1900
Dan Gohman038d02e2009-06-14 22:58:51 +00001901 // Check to see if there are any folding opportunities present with
1902 // operands multiplied by constant values.
1903 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1904 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00001905 DenseMap<const SCEV *, APInt> M;
1906 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00001907 APInt AccumulatedConstant(BitWidth, 0);
1908 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001909 Ops.data(), Ops.size(),
1910 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001911 // Some interesting folding opportunity is present, so its worthwhile to
1912 // re-generate the operands list. Group the operands by constant scale,
1913 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00001914 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00001915 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001916 E = NewOps.end(); I != E; ++I)
1917 MulOpLists[M.find(*I)->second].push_back(*I);
1918 // Re-generate the operands list.
1919 Ops.clear();
1920 if (AccumulatedConstant != 0)
1921 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00001922 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1923 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00001924 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00001925 Ops.push_back(getMulExpr(getConstant(I->first),
1926 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00001927 if (Ops.empty())
Dan Gohman1d2ded72010-05-03 22:09:21 +00001928 return getConstant(Ty, 0);
Dan Gohman038d02e2009-06-14 22:58:51 +00001929 if (Ops.size() == 1)
1930 return Ops[0];
1931 return getAddExpr(Ops);
1932 }
1933 }
1934
Chris Lattnerd934c702004-04-02 20:23:17 +00001935 // If we are adding something to a multiply expression, make sure the
1936 // something is not already an operand of the multiply. If so, merge it into
1937 // the multiply.
1938 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00001939 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001940 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00001941 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00001942 if (isa<SCEVConstant>(MulOpSCEV))
1943 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00001944 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00001945 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001946 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00001947 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001948 if (Mul->getNumOperands() != 2) {
1949 // If the multiply has more than two operands, we must get the
1950 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00001951 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1952 Mul->op_begin()+MulOp);
1953 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001954 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001955 }
Dan Gohman1d2ded72010-05-03 22:09:21 +00001956 const SCEV *One = getConstant(Ty, 1);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00001957 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00001958 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00001959 if (Ops.size() == 2) return OuterMul;
1960 if (AddOp < Idx) {
1961 Ops.erase(Ops.begin()+AddOp);
1962 Ops.erase(Ops.begin()+Idx-1);
1963 } else {
1964 Ops.erase(Ops.begin()+Idx);
1965 Ops.erase(Ops.begin()+AddOp-1);
1966 }
1967 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00001968 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001969 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001970
Chris Lattnerd934c702004-04-02 20:23:17 +00001971 // Check this multiply against other multiplies being added together.
1972 for (unsigned OtherMulIdx = Idx+1;
1973 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1974 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00001975 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001976 // If MulOp occurs in OtherMul, we can fold the two multiplies
1977 // together.
1978 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1979 OMulOp != e; ++OMulOp)
1980 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1981 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00001982 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001983 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00001984 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00001985 Mul->op_begin()+MulOp);
1986 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001987 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001988 }
Dan Gohmanaf752342009-07-07 17:06:11 +00001989 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001990 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00001991 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00001992 OtherMul->op_begin()+OMulOp);
1993 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001994 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001995 }
Dan Gohmanaf752342009-07-07 17:06:11 +00001996 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1997 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00001998 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00001999 Ops.erase(Ops.begin()+Idx);
2000 Ops.erase(Ops.begin()+OtherMulIdx-1);
2001 Ops.push_back(OuterMul);
2002 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002003 }
2004 }
2005 }
2006 }
2007
2008 // If there are any add recurrences in the operands list, see if any other
2009 // added values are loop invariant. If so, we can fold them into the
2010 // recurrence.
2011 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2012 ++Idx;
2013
2014 // Scan over all recurrences, trying to fold loop invariants into them.
2015 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2016 // Scan all of the other operands to this add and add them to the vector if
2017 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002018 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002019 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002020 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002021 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002022 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002023 LIOps.push_back(Ops[i]);
2024 Ops.erase(Ops.begin()+i);
2025 --i; --e;
2026 }
2027
2028 // If we found some loop invariants, fold them into the recurrence.
2029 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002030 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002031 LIOps.push_back(AddRec->getStart());
2032
Dan Gohmanaf752342009-07-07 17:06:11 +00002033 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002034 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002035 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002036
Dan Gohman16206132010-06-30 07:16:37 +00002037 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002038 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002039 // Always propagate NW.
2040 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002041 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002042
Chris Lattnerd934c702004-04-02 20:23:17 +00002043 // If all of the other operands were loop invariant, we are done.
2044 if (Ops.size() == 1) return NewRec;
2045
Nick Lewyckydb66b822011-09-06 05:08:09 +00002046 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002047 for (unsigned i = 0;; ++i)
2048 if (Ops[i] == AddRec) {
2049 Ops[i] = NewRec;
2050 break;
2051 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002052 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002053 }
2054
2055 // Okay, if there weren't any loop invariants to be folded, check to see if
2056 // there are multiple AddRec's with the same loop induction variable being
2057 // added together. If so, we can fold them.
2058 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002059 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2060 ++OtherIdx)
2061 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2062 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2063 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2064 AddRec->op_end());
2065 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2066 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00002067 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00002068 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002069 if (OtherAddRec->getLoop() == AddRecLoop) {
2070 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2071 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002072 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002073 AddRecOps.append(OtherAddRec->op_begin()+i,
2074 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002075 break;
2076 }
Dan Gohman028c1812010-08-29 14:53:34 +00002077 AddRecOps[i] = getAddExpr(AddRecOps[i],
2078 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002079 }
2080 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002081 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002082 // Step size has changed, so we cannot guarantee no self-wraparound.
2083 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002084 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002085 }
2086
2087 // Otherwise couldn't fold anything into this recurrence. Move onto the
2088 // next one.
2089 }
2090
2091 // Okay, it looks like we really DO need an add expr. Check to see if we
2092 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002093 FoldingSetNodeID ID;
2094 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002095 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2096 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002097 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002098 SCEVAddExpr *S =
2099 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2100 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002101 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2102 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002103 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2104 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002105 UniqueSCEVs.InsertNode(S, IP);
2106 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002107 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002108 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002109}
2110
Nick Lewycky287682e2011-10-04 06:51:26 +00002111static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2112 uint64_t k = i*j;
2113 if (j > 1 && k / j != i) Overflow = true;
2114 return k;
2115}
2116
2117/// Compute the result of "n choose k", the binomial coefficient. If an
2118/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002119/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002120static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2121 // We use the multiplicative formula:
2122 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2123 // At each iteration, we take the n-th term of the numeral and divide by the
2124 // (k-n)th term of the denominator. This division will always produce an
2125 // integral result, and helps reduce the chance of overflow in the
2126 // intermediate computations. However, we can still overflow even when the
2127 // final result would fit.
2128
2129 if (n == 0 || n == k) return 1;
2130 if (k > n) return 0;
2131
2132 if (k > n/2)
2133 k = n-k;
2134
2135 uint64_t r = 1;
2136 for (uint64_t i = 1; i <= k; ++i) {
2137 r = umul_ov(r, n-(i-1), Overflow);
2138 r /= i;
2139 }
2140 return r;
2141}
2142
Nick Lewycky05044c22014-12-06 00:45:50 +00002143/// Determine if any of the operands in this SCEV are a constant or if
2144/// any of the add or multiply expressions in this SCEV contain a constant.
2145static bool containsConstantSomewhere(const SCEV *StartExpr) {
2146 SmallVector<const SCEV *, 4> Ops;
2147 Ops.push_back(StartExpr);
2148 while (!Ops.empty()) {
2149 const SCEV *CurrentExpr = Ops.pop_back_val();
2150 if (isa<SCEVConstant>(*CurrentExpr))
2151 return true;
2152
2153 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2154 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2155 for (const SCEV *Operand : CurrentNAry->operands())
2156 Ops.push_back(Operand);
2157 }
2158 }
2159 return false;
2160}
2161
Dan Gohman4d5435d2009-05-24 23:45:28 +00002162/// getMulExpr - Get a canonical multiply expression, or something simpler if
2163/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002164const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002165 SCEV::NoWrapFlags Flags) {
2166 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2167 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002168 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002169 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002170#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002171 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002172 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002173 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002174 "SCEVMulExpr operand types don't match!");
2175#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002176
Andrew Trick8b55b732011-03-14 16:50:06 +00002177 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002178 // And vice-versa.
2179 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2180 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2181 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002182 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00002183 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
2184 E = Ops.end(); I != E; ++I)
2185 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002186 All = false;
2187 break;
2188 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002189 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002190 }
2191
Chris Lattnerd934c702004-04-02 20:23:17 +00002192 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002193 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002194
2195 // If there are any constants, fold them together.
2196 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002197 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002198
2199 // C1*(C2+V) -> C1*C2 + C1*V
2200 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002201 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2202 // If any of Add's ops are Adds or Muls with a constant,
2203 // apply this transformation as well.
2204 if (Add->getNumOperands() == 2)
2205 if (containsConstantSomewhere(Add))
2206 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2207 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002208
Chris Lattnerd934c702004-04-02 20:23:17 +00002209 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002210 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002211 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002212 ConstantInt *Fold = ConstantInt::get(getContext(),
2213 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002214 RHSC->getValue()->getValue());
2215 Ops[0] = getConstant(Fold);
2216 Ops.erase(Ops.begin()+1); // Erase the folded element
2217 if (Ops.size() == 1) return Ops[0];
2218 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002219 }
2220
2221 // If we are left with a constant one being multiplied, strip it off.
2222 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2223 Ops.erase(Ops.begin());
2224 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002225 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002226 // If we have a multiply of zero, it will always be zero.
2227 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002228 } else if (Ops[0]->isAllOnesValue()) {
2229 // If we have a mul by -1 of an add, try distributing the -1 among the
2230 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002231 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002232 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2233 SmallVector<const SCEV *, 4> NewOps;
2234 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00002235 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2236 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002237 const SCEV *Mul = getMulExpr(Ops[0], *I);
2238 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2239 NewOps.push_back(Mul);
2240 }
2241 if (AnyFolded)
2242 return getAddExpr(NewOps);
2243 }
Andrew Tricke92dcce2011-03-14 17:38:54 +00002244 else if (const SCEVAddRecExpr *
2245 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2246 // Negation preserves a recurrence's no self-wrap property.
2247 SmallVector<const SCEV *, 4> Operands;
2248 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2249 E = AddRec->op_end(); I != E; ++I) {
2250 Operands.push_back(getMulExpr(Ops[0], *I));
2251 }
2252 return getAddRecExpr(Operands, AddRec->getLoop(),
2253 AddRec->getNoWrapFlags(SCEV::FlagNW));
2254 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002255 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002256 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002257
2258 if (Ops.size() == 1)
2259 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002260 }
2261
2262 // Skip over the add expression until we get to a multiply.
2263 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2264 ++Idx;
2265
Chris Lattnerd934c702004-04-02 20:23:17 +00002266 // If there are mul operands inline them all into this expression.
2267 if (Idx < Ops.size()) {
2268 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002269 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002270 // If we have an mul, expand the mul operands onto the end of the operands
2271 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002272 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002273 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002274 DeletedMul = true;
2275 }
2276
2277 // If we deleted at least one mul, we added operands to the end of the list,
2278 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002279 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002280 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002281 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002282 }
2283
2284 // If there are any add recurrences in the operands list, see if any other
2285 // added values are loop invariant. If so, we can fold them into the
2286 // recurrence.
2287 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2288 ++Idx;
2289
2290 // Scan over all recurrences, trying to fold loop invariants into them.
2291 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2292 // Scan all of the other operands to this mul and add them to the vector if
2293 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002294 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002295 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002296 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002297 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002298 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002299 LIOps.push_back(Ops[i]);
2300 Ops.erase(Ops.begin()+i);
2301 --i; --e;
2302 }
2303
2304 // If we found some loop invariants, fold them into the recurrence.
2305 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002306 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002307 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002308 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002309 const SCEV *Scale = getMulExpr(LIOps);
2310 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2311 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002312
Dan Gohman16206132010-06-30 07:16:37 +00002313 // Build the new addrec. Propagate the NUW and NSW flags if both the
2314 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002315 //
2316 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002317 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002318 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2319 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002320
2321 // If all of the other operands were loop invariant, we are done.
2322 if (Ops.size() == 1) return NewRec;
2323
Nick Lewyckydb66b822011-09-06 05:08:09 +00002324 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002325 for (unsigned i = 0;; ++i)
2326 if (Ops[i] == AddRec) {
2327 Ops[i] = NewRec;
2328 break;
2329 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002330 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002331 }
2332
2333 // Okay, if there weren't any loop invariants to be folded, check to see if
2334 // there are multiple AddRec's with the same loop induction variable being
2335 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002336
2337 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2338 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2339 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2340 // ]]],+,...up to x=2n}.
2341 // Note that the arguments to choose() are always integers with values
2342 // known at compile time, never SCEV objects.
2343 //
2344 // The implementation avoids pointless extra computations when the two
2345 // addrec's are of different length (mathematically, it's equivalent to
2346 // an infinite stream of zeros on the right).
2347 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002348 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002349 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002350 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002351 const SCEVAddRecExpr *OtherAddRec =
2352 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2353 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002354 continue;
2355
Nick Lewycky97756402014-09-01 05:17:15 +00002356 bool Overflow = false;
2357 Type *Ty = AddRec->getType();
2358 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2359 SmallVector<const SCEV*, 7> AddRecOps;
2360 for (int x = 0, xe = AddRec->getNumOperands() +
2361 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2362 const SCEV *Term = getConstant(Ty, 0);
2363 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2364 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2365 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2366 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2367 z < ze && !Overflow; ++z) {
2368 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2369 uint64_t Coeff;
2370 if (LargerThan64Bits)
2371 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2372 else
2373 Coeff = Coeff1*Coeff2;
2374 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2375 const SCEV *Term1 = AddRec->getOperand(y-z);
2376 const SCEV *Term2 = OtherAddRec->getOperand(z);
2377 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002378 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002379 }
Nick Lewycky97756402014-09-01 05:17:15 +00002380 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002381 }
Nick Lewycky97756402014-09-01 05:17:15 +00002382 if (!Overflow) {
2383 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2384 SCEV::FlagAnyWrap);
2385 if (Ops.size() == 2) return NewAddRec;
2386 Ops[Idx] = NewAddRec;
2387 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2388 OpsModified = true;
2389 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2390 if (!AddRec)
2391 break;
2392 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002393 }
Nick Lewycky97756402014-09-01 05:17:15 +00002394 if (OpsModified)
2395 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002396
2397 // Otherwise couldn't fold anything into this recurrence. Move onto the
2398 // next one.
2399 }
2400
2401 // Okay, it looks like we really DO need an mul expr. Check to see if we
2402 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002403 FoldingSetNodeID ID;
2404 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002405 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2406 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002407 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002408 SCEVMulExpr *S =
2409 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2410 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002411 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2412 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002413 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2414 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002415 UniqueSCEVs.InsertNode(S, IP);
2416 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002417 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002418 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002419}
2420
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002421/// getUDivExpr - Get a canonical unsigned division expression, or something
2422/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002423const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2424 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002425 assert(getEffectiveSCEVType(LHS->getType()) ==
2426 getEffectiveSCEVType(RHS->getType()) &&
2427 "SCEVUDivExpr operand types don't match!");
2428
Dan Gohmana30370b2009-05-04 22:02:23 +00002429 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002430 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002431 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002432 // If the denominator is zero, the result of the udiv is undefined. Don't
2433 // try to analyze it, because the resolution chosen here may differ from
2434 // the resolution chosen in other parts of the compiler.
2435 if (!RHSC->getValue()->isZero()) {
2436 // Determine if the division can be folded into the operands of
2437 // its operands.
2438 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002439 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002440 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002441 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002442 // For non-power-of-two values, effectively round the value up to the
2443 // nearest power of two.
2444 if (!RHSC->getValue()->getValue().isPowerOf2())
2445 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002446 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002447 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002448 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2449 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002450 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2451 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2452 const APInt &StepInt = Step->getValue()->getValue();
2453 const APInt &DivInt = RHSC->getValue()->getValue();
2454 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002455 getZeroExtendExpr(AR, ExtTy) ==
2456 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2457 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002458 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002459 SmallVector<const SCEV *, 4> Operands;
2460 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2461 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick8b55b732011-03-14 16:50:06 +00002462 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002463 SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002464 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002465 /// Get a canonical UDivExpr for a recurrence.
2466 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2467 // We can currently only fold X%N if X is constant.
2468 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2469 if (StartC && !DivInt.urem(StepInt) &&
2470 getZeroExtendExpr(AR, ExtTy) ==
2471 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2472 getZeroExtendExpr(Step, ExtTy),
2473 AR->getLoop(), SCEV::FlagAnyWrap)) {
2474 const APInt &StartInt = StartC->getValue()->getValue();
2475 const APInt &StartRem = StartInt.urem(StepInt);
2476 if (StartRem != 0)
2477 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2478 AR->getLoop(), SCEV::FlagNW);
2479 }
2480 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002481 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2482 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2483 SmallVector<const SCEV *, 4> Operands;
2484 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2485 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2486 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2487 // Find an operand that's safely divisible.
2488 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2489 const SCEV *Op = M->getOperand(i);
2490 const SCEV *Div = getUDivExpr(Op, RHSC);
2491 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2492 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2493 M->op_end());
2494 Operands[i] = Div;
2495 return getMulExpr(Operands);
2496 }
2497 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002498 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002499 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002500 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002501 SmallVector<const SCEV *, 4> Operands;
2502 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2503 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2504 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2505 Operands.clear();
2506 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2507 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2508 if (isa<SCEVUDivExpr>(Op) ||
2509 getMulExpr(Op, RHS) != A->getOperand(i))
2510 break;
2511 Operands.push_back(Op);
2512 }
2513 if (Operands.size() == A->getNumOperands())
2514 return getAddExpr(Operands);
2515 }
2516 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002517
Dan Gohmanacd700a2010-04-22 01:35:11 +00002518 // Fold if both operands are constant.
2519 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2520 Constant *LHSCV = LHSC->getValue();
2521 Constant *RHSCV = RHSC->getValue();
2522 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2523 RHSCV)));
2524 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002525 }
2526 }
2527
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002528 FoldingSetNodeID ID;
2529 ID.AddInteger(scUDivExpr);
2530 ID.AddPointer(LHS);
2531 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002532 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002533 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002534 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2535 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002536 UniqueSCEVs.InsertNode(S, IP);
2537 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002538}
2539
Nick Lewycky31eaca52014-01-27 10:04:03 +00002540static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2541 APInt A = C1->getValue()->getValue().abs();
2542 APInt B = C2->getValue()->getValue().abs();
2543 uint32_t ABW = A.getBitWidth();
2544 uint32_t BBW = B.getBitWidth();
2545
2546 if (ABW > BBW)
2547 B = B.zext(ABW);
2548 else if (ABW < BBW)
2549 A = A.zext(BBW);
2550
2551 return APIntOps::GreatestCommonDivisor(A, B);
2552}
2553
2554/// getUDivExactExpr - Get a canonical unsigned division expression, or
2555/// something simpler if possible. There is no representation for an exact udiv
2556/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2557/// We can't do this when it's not exact because the udiv may be clearing bits.
2558const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2559 const SCEV *RHS) {
2560 // TODO: we could try to find factors in all sorts of things, but for now we
2561 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2562 // end of this file for inspiration.
2563
2564 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2565 if (!Mul)
2566 return getUDivExpr(LHS, RHS);
2567
2568 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2569 // If the mulexpr multiplies by a constant, then that constant must be the
2570 // first element of the mulexpr.
2571 if (const SCEVConstant *LHSCst =
2572 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2573 if (LHSCst == RHSCst) {
2574 SmallVector<const SCEV *, 2> Operands;
2575 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2576 return getMulExpr(Operands);
2577 }
2578
2579 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2580 // that there's a factor provided by one of the other terms. We need to
2581 // check.
2582 APInt Factor = gcd(LHSCst, RHSCst);
2583 if (!Factor.isIntN(1)) {
2584 LHSCst = cast<SCEVConstant>(
2585 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2586 RHSCst = cast<SCEVConstant>(
2587 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2588 SmallVector<const SCEV *, 2> Operands;
2589 Operands.push_back(LHSCst);
2590 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2591 LHS = getMulExpr(Operands);
2592 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002593 Mul = dyn_cast<SCEVMulExpr>(LHS);
2594 if (!Mul)
2595 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002596 }
2597 }
2598 }
2599
2600 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2601 if (Mul->getOperand(i) == RHS) {
2602 SmallVector<const SCEV *, 2> Operands;
2603 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2604 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2605 return getMulExpr(Operands);
2606 }
2607 }
2608
2609 return getUDivExpr(LHS, RHS);
2610}
Chris Lattnerd934c702004-04-02 20:23:17 +00002611
Dan Gohman4d5435d2009-05-24 23:45:28 +00002612/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2613/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002614const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2615 const Loop *L,
2616 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002617 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002618 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002619 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002620 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002621 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002622 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002623 }
2624
2625 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002626 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002627}
2628
Dan Gohman4d5435d2009-05-24 23:45:28 +00002629/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2630/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002631const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002632ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002633 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002634 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002635#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002636 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002637 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002638 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002639 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002640 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002641 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002642 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002643#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002644
Dan Gohmanbe928e32008-06-18 16:23:07 +00002645 if (Operands.back()->isZero()) {
2646 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002647 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002648 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002649
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002650 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2651 // use that information to infer NUW and NSW flags. However, computing a
2652 // BE count requires calling getAddRecExpr, so we may not yet have a
2653 // meaningful BE count at this point (and if we don't, we'd be stuck
2654 // with a SCEVCouldNotCompute as the cached BE count).
2655
Andrew Trick8b55b732011-03-14 16:50:06 +00002656 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002657 // And vice-versa.
2658 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2659 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2660 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002661 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00002662 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2663 E = Operands.end(); I != E; ++I)
2664 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002665 All = false;
2666 break;
2667 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002668 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002669 }
2670
Dan Gohman223a5d22008-08-08 18:33:12 +00002671 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002672 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002673 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman63c020a2010-08-13 20:23:25 +00002674 if (L->contains(NestedLoop) ?
Dan Gohman51ad99d2010-01-21 02:09:26 +00002675 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman63c020a2010-08-13 20:23:25 +00002676 (!NestedLoop->contains(L) &&
Dan Gohman51ad99d2010-01-21 02:09:26 +00002677 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002678 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002679 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002680 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002681 // AddRecs require their operands be loop-invariant with respect to their
2682 // loops. Don't perform this transformation if it would break this
2683 // requirement.
2684 bool AllInvariant = true;
2685 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002686 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002687 AllInvariant = false;
2688 break;
2689 }
2690 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002691 // Create a recurrence for the outer loop with the same step size.
2692 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002693 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2694 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002695 SCEV::NoWrapFlags OuterFlags =
2696 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002697
2698 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohmancc030b72009-06-26 22:36:20 +00002699 AllInvariant = true;
2700 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002701 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002702 AllInvariant = false;
2703 break;
2704 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002705 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002706 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002707 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002708 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2709 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002710 SCEV::NoWrapFlags InnerFlags =
2711 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002712 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2713 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002714 }
2715 // Reset Operands to its original state.
2716 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002717 }
2718 }
2719
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002720 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2721 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002722 FoldingSetNodeID ID;
2723 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002724 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2725 ID.AddPointer(Operands[i]);
2726 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002727 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002728 SCEVAddRecExpr *S =
2729 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2730 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002731 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2732 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002733 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2734 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002735 UniqueSCEVs.InsertNode(S, IP);
2736 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002737 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002738 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002739}
2740
Dan Gohmanabd17092009-06-24 14:49:00 +00002741const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2742 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002743 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002744 Ops.push_back(LHS);
2745 Ops.push_back(RHS);
2746 return getSMaxExpr(Ops);
2747}
2748
Dan Gohmanaf752342009-07-07 17:06:11 +00002749const SCEV *
2750ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002751 assert(!Ops.empty() && "Cannot get empty smax!");
2752 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002753#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002754 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002755 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002756 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002757 "SCEVSMaxExpr operand types don't match!");
2758#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002759
2760 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002761 GroupByComplexity(Ops, LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002762
2763 // If there are any constants, fold them together.
2764 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002765 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002766 ++Idx;
2767 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002768 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002769 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002770 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002771 APIntOps::smax(LHSC->getValue()->getValue(),
2772 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002773 Ops[0] = getConstant(Fold);
2774 Ops.erase(Ops.begin()+1); // Erase the folded element
2775 if (Ops.size() == 1) return Ops[0];
2776 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002777 }
2778
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002779 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002780 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2781 Ops.erase(Ops.begin());
2782 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002783 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2784 // If we have an smax with a constant maximum-int, it will always be
2785 // maximum-int.
2786 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002787 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002788
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002789 if (Ops.size() == 1) return Ops[0];
2790 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002791
2792 // Find the first SMax
2793 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2794 ++Idx;
2795
2796 // Check to see if one of the operands is an SMax. If so, expand its operands
2797 // onto our operand list, and recurse to simplify.
2798 if (Idx < Ops.size()) {
2799 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002800 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002801 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002802 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002803 DeletedSMax = true;
2804 }
2805
2806 if (DeletedSMax)
2807 return getSMaxExpr(Ops);
2808 }
2809
2810 // Okay, check to see if the same value occurs in the operand list twice. If
2811 // so, delete one. Since we sorted the list, these values are required to
2812 // be adjacent.
2813 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002814 // X smax Y smax Y --> X smax Y
2815 // X smax Y --> X, if X is always greater than Y
2816 if (Ops[i] == Ops[i+1] ||
2817 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2818 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2819 --i; --e;
2820 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002821 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2822 --i; --e;
2823 }
2824
2825 if (Ops.size() == 1) return Ops[0];
2826
2827 assert(!Ops.empty() && "Reduced smax down to nothing!");
2828
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002829 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002830 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002831 FoldingSetNodeID ID;
2832 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002833 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2834 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002835 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002836 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002837 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2838 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002839 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2840 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002841 UniqueSCEVs.InsertNode(S, IP);
2842 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002843}
2844
Dan Gohmanabd17092009-06-24 14:49:00 +00002845const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2846 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002847 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002848 Ops.push_back(LHS);
2849 Ops.push_back(RHS);
2850 return getUMaxExpr(Ops);
2851}
2852
Dan Gohmanaf752342009-07-07 17:06:11 +00002853const SCEV *
2854ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002855 assert(!Ops.empty() && "Cannot get empty umax!");
2856 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002857#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002858 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002859 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002860 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002861 "SCEVUMaxExpr operand types don't match!");
2862#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002863
2864 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002865 GroupByComplexity(Ops, LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002866
2867 // If there are any constants, fold them together.
2868 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002869 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002870 ++Idx;
2871 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002872 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002873 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002874 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002875 APIntOps::umax(LHSC->getValue()->getValue(),
2876 RHSC->getValue()->getValue()));
2877 Ops[0] = getConstant(Fold);
2878 Ops.erase(Ops.begin()+1); // Erase the folded element
2879 if (Ops.size() == 1) return Ops[0];
2880 LHSC = cast<SCEVConstant>(Ops[0]);
2881 }
2882
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002883 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002884 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2885 Ops.erase(Ops.begin());
2886 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002887 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2888 // If we have an umax with a constant maximum-int, it will always be
2889 // maximum-int.
2890 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002891 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002892
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002893 if (Ops.size() == 1) return Ops[0];
2894 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002895
2896 // Find the first UMax
2897 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2898 ++Idx;
2899
2900 // Check to see if one of the operands is a UMax. If so, expand its operands
2901 // onto our operand list, and recurse to simplify.
2902 if (Idx < Ops.size()) {
2903 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002904 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002905 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002906 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002907 DeletedUMax = true;
2908 }
2909
2910 if (DeletedUMax)
2911 return getUMaxExpr(Ops);
2912 }
2913
2914 // Okay, check to see if the same value occurs in the operand list twice. If
2915 // so, delete one. Since we sorted the list, these values are required to
2916 // be adjacent.
2917 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002918 // X umax Y umax Y --> X umax Y
2919 // X umax Y --> X, if X is always greater than Y
2920 if (Ops[i] == Ops[i+1] ||
2921 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2922 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2923 --i; --e;
2924 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002925 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2926 --i; --e;
2927 }
2928
2929 if (Ops.size() == 1) return Ops[0];
2930
2931 assert(!Ops.empty() && "Reduced umax down to nothing!");
2932
2933 // Okay, it looks like we really DO need a umax expr. Check to see if we
2934 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002935 FoldingSetNodeID ID;
2936 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002937 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2938 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002939 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002940 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002941 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2942 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002943 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2944 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002945 UniqueSCEVs.InsertNode(S, IP);
2946 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002947}
2948
Dan Gohmanabd17092009-06-24 14:49:00 +00002949const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2950 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002951 // ~smax(~x, ~y) == smin(x, y).
2952 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2953}
2954
Dan Gohmanabd17092009-06-24 14:49:00 +00002955const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2956 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002957 // ~umax(~x, ~y) == umin(x, y)
2958 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2959}
2960
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002961const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002962 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002963 // constant expression and then folding it back into a ConstantInt.
2964 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002965 if (DL)
2966 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
Dan Gohman11862a62010-04-12 23:03:26 +00002967
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002968 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2969 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002970 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00002971 C = Folded;
Chris Lattner229907c2011-07-18 04:54:35 +00002972 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002973 assert(Ty == IntTy && "Effective SCEV type doesn't match");
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002974 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2975}
2976
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002977const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
2978 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002979 unsigned FieldNo) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002980 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002981 // constant expression and then folding it back into a ConstantInt.
2982 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002983 if (DL) {
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002984 return getConstant(IntTy,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002985 DL->getStructLayout(STy)->getElementOffset(FieldNo));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002986 }
Dan Gohman11862a62010-04-12 23:03:26 +00002987
Dan Gohmancf913832010-01-28 02:15:55 +00002988 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2989 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002990 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00002991 C = Folded;
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002992
Matt Arsenault4ed49b52013-10-21 18:08:09 +00002993 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohmancf913832010-01-28 02:15:55 +00002994 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002995}
2996
Dan Gohmanaf752342009-07-07 17:06:11 +00002997const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00002998 // Don't attempt to do anything other than create a SCEVUnknown object
2999 // here. createSCEV only calls getUnknown after checking for all other
3000 // interesting possibilities, and any other code that calls getUnknown
3001 // is doing so in order to hide a value from SCEV canonicalization.
3002
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003003 FoldingSetNodeID ID;
3004 ID.AddInteger(scUnknown);
3005 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003006 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003007 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3008 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3009 "Stale SCEVUnknown in uniquing map!");
3010 return S;
3011 }
3012 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3013 FirstUnknown);
3014 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003015 UniqueSCEVs.InsertNode(S, IP);
3016 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003017}
3018
Chris Lattnerd934c702004-04-02 20:23:17 +00003019//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003020// Basic SCEV Analysis and PHI Idiom Recognition Code
3021//
3022
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003023/// isSCEVable - Test if values of the given type are analyzable within
3024/// the SCEV framework. This primarily includes integer types, and it
3025/// can optionally include pointer types if the ScalarEvolution class
3026/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003027bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003028 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003029 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003030}
3031
3032/// getTypeSizeInBits - Return the size in bits of the specified type,
3033/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003034uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003035 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3036
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003037 // If we have a DataLayout, use it!
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003038 if (DL)
3039 return DL->getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003040
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003041 // Integer types have fixed sizes.
Duncan Sands9dff9be2010-02-15 16:12:20 +00003042 if (Ty->isIntegerTy())
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003043 return Ty->getPrimitiveSizeInBits();
3044
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003045 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003046 // assume pointers are 64-bit.
Duncan Sands19d0b472010-02-16 11:11:14 +00003047 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003048 return 64;
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003049}
3050
3051/// getEffectiveSCEVType - Return a type with the same bitwidth as
3052/// the given type and which represents how SCEV will treat the given
3053/// type, for which isSCEVable must return true. For pointer types,
3054/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003055Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003056 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3057
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003058 if (Ty->isIntegerTy()) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003059 return Ty;
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003060 }
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003061
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003062 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003063 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003064
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003065 if (DL)
3066 return DL->getIntPtrType(Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003067
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003068 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003069 return Type::getInt64Ty(getContext());
Dan Gohman0a40ad92009-04-16 03:18:22 +00003070}
Chris Lattnerd934c702004-04-02 20:23:17 +00003071
Dan Gohmanaf752342009-07-07 17:06:11 +00003072const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003073 return &CouldNotCompute;
Dan Gohman31efa302009-04-18 17:58:19 +00003074}
3075
Shuxin Yangefc4c012013-07-08 17:33:13 +00003076namespace {
3077 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3078 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3079 // is set iff if find such SCEVUnknown.
3080 //
3081 struct FindInvalidSCEVUnknown {
3082 bool FindOne;
3083 FindInvalidSCEVUnknown() { FindOne = false; }
3084 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003085 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003086 case scConstant:
3087 return false;
3088 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003089 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003090 FindOne = true;
3091 return false;
3092 default:
3093 return true;
3094 }
3095 }
3096 bool isDone() const { return FindOne; }
3097 };
3098}
3099
3100bool ScalarEvolution::checkValidity(const SCEV *S) const {
3101 FindInvalidSCEVUnknown F;
3102 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3103 ST.visitAll(S);
3104
3105 return !F.FindOne;
3106}
3107
Chris Lattnerd934c702004-04-02 20:23:17 +00003108/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3109/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003110const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003111 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003112
Shuxin Yangefc4c012013-07-08 17:33:13 +00003113 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3114 if (I != ValueExprMap.end()) {
3115 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003116 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003117 return S;
3118 else
3119 ValueExprMap.erase(I);
3120 }
Dan Gohmanaf752342009-07-07 17:06:11 +00003121 const SCEV *S = createSCEV(V);
Dan Gohmanc29eeae2010-08-16 16:31:39 +00003122
3123 // The process of creating a SCEV for V may have caused other SCEVs
3124 // to have been created, so it's necessary to insert the new entry
3125 // from scratch, rather than trying to remember the insert position
3126 // above.
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003127 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattnerd934c702004-04-02 20:23:17 +00003128 return S;
3129}
3130
Dan Gohman0a40ad92009-04-16 03:18:22 +00003131/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3132///
Dan Gohmanaf752342009-07-07 17:06:11 +00003133const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003134 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003135 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003136 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003137
Chris Lattner229907c2011-07-18 04:54:35 +00003138 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003139 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003140 return getMulExpr(V,
Owen Anderson5a1acd92009-07-31 20:28:14 +00003141 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003142}
3143
3144/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003145const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003146 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003147 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003148 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003149
Chris Lattner229907c2011-07-18 04:54:35 +00003150 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003151 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003152 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003153 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003154 return getMinusSCEV(AllOnes, V);
3155}
3156
Andrew Trick8b55b732011-03-14 16:50:06 +00003157/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003158const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003159 SCEV::NoWrapFlags Flags) {
Andrew Tricka34f1b12011-03-15 01:16:14 +00003160 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
3161
Dan Gohman46f00a22010-07-20 16:53:00 +00003162 // Fast path: X - X --> 0.
3163 if (LHS == RHS)
3164 return getConstant(LHS->getType(), 0);
3165
Dan Gohman0a40ad92009-04-16 03:18:22 +00003166 // X - Y --> X + -Y
Andrew Trick8b55b732011-03-14 16:50:06 +00003167 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003168}
3169
3170/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3171/// input value to the specified type. If the type must be extended, it is zero
3172/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003173const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003174ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3175 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003176 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3177 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003178 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003179 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003180 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003181 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003182 return getTruncateExpr(V, Ty);
3183 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003184}
3185
3186/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3187/// input value to the specified type. If the type must be extended, it is sign
3188/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003189const SCEV *
3190ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003191 Type *Ty) {
3192 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003193 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3194 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003195 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003196 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003197 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003198 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003199 return getTruncateExpr(V, Ty);
3200 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003201}
3202
Dan Gohmane712a2f2009-05-13 03:46:30 +00003203/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3204/// input value to the specified type. If the type must be extended, it is zero
3205/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003206const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003207ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3208 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003209 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3210 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003211 "Cannot noop or zero extend with non-integer arguments!");
3212 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3213 "getNoopOrZeroExtend cannot truncate!");
3214 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3215 return V; // No conversion
3216 return getZeroExtendExpr(V, Ty);
3217}
3218
3219/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3220/// input value to the specified type. If the type must be extended, it is sign
3221/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003222const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003223ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3224 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003225 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3226 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003227 "Cannot noop or sign extend with non-integer arguments!");
3228 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3229 "getNoopOrSignExtend cannot truncate!");
3230 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3231 return V; // No conversion
3232 return getSignExtendExpr(V, Ty);
3233}
3234
Dan Gohman8db2edc2009-06-13 15:56:47 +00003235/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3236/// the input value to the specified type. If the type must be extended,
3237/// it is extended with unspecified bits. The conversion must not be
3238/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003239const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003240ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3241 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003242 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3243 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003244 "Cannot noop or any extend with non-integer arguments!");
3245 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3246 "getNoopOrAnyExtend cannot truncate!");
3247 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3248 return V; // No conversion
3249 return getAnyExtendExpr(V, Ty);
3250}
3251
Dan Gohmane712a2f2009-05-13 03:46:30 +00003252/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3253/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003254const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003255ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3256 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003257 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3258 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003259 "Cannot truncate or noop with non-integer arguments!");
3260 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3261 "getTruncateOrNoop cannot extend!");
3262 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3263 return V; // No conversion
3264 return getTruncateExpr(V, Ty);
3265}
3266
Dan Gohman96212b62009-06-22 00:31:57 +00003267/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3268/// the types using zero-extension, and then perform a umax operation
3269/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003270const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3271 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003272 const SCEV *PromotedLHS = LHS;
3273 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003274
3275 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3276 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3277 else
3278 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3279
3280 return getUMaxExpr(PromotedLHS, PromotedRHS);
3281}
3282
Dan Gohman2bc22302009-06-22 15:03:27 +00003283/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3284/// the types using zero-extension, and then perform a umin operation
3285/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003286const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3287 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003288 const SCEV *PromotedLHS = LHS;
3289 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003290
3291 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3292 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3293 else
3294 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3295
3296 return getUMinExpr(PromotedLHS, PromotedRHS);
3297}
3298
Andrew Trick87716c92011-03-17 23:51:11 +00003299/// getPointerBase - Transitively follow the chain of pointer-type operands
3300/// until reaching a SCEV that does not have a single pointer operand. This
3301/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3302/// but corner cases do exist.
3303const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3304 // A pointer operand may evaluate to a nonpointer expression, such as null.
3305 if (!V->getType()->isPointerTy())
3306 return V;
3307
3308 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3309 return getPointerBase(Cast->getOperand());
3310 }
3311 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003312 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003313 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3314 I != E; ++I) {
3315 if ((*I)->getType()->isPointerTy()) {
3316 // Cannot find the base of an expression with multiple pointer operands.
3317 if (PtrOp)
3318 return V;
3319 PtrOp = *I;
3320 }
3321 }
3322 if (!PtrOp)
3323 return V;
3324 return getPointerBase(PtrOp);
3325 }
3326 return V;
3327}
3328
Dan Gohman0b89dff2009-07-25 01:13:03 +00003329/// PushDefUseChildren - Push users of the given Instruction
3330/// onto the given Worklist.
3331static void
3332PushDefUseChildren(Instruction *I,
3333 SmallVectorImpl<Instruction *> &Worklist) {
3334 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003335 for (User *U : I->users())
3336 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003337}
3338
3339/// ForgetSymbolicValue - This looks up computed SCEV values for all
3340/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003341/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003342/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003343void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003344ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003345 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003346 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003347
Dan Gohman0b89dff2009-07-25 01:13:03 +00003348 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003349 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003350 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003351 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003352 if (!Visited.insert(I).second)
3353 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003354
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003355 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003356 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003357 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003358 const SCEV *Old = It->second;
3359
Dan Gohman0b89dff2009-07-25 01:13:03 +00003360 // Short-circuit the def-use traversal if the symbolic name
3361 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003362 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003363 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003364
Dan Gohman0b89dff2009-07-25 01:13:03 +00003365 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003366 // structure, it's a PHI that's in the progress of being computed
3367 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3368 // additional loop trip count information isn't going to change anything.
3369 // In the second case, createNodeForPHI will perform the necessary
3370 // updates on its own when it gets to that point. In the third, we do
3371 // want to forget the SCEVUnknown.
3372 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003373 !isa<SCEVUnknown>(Old) ||
3374 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003375 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003376 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003377 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003378 }
3379
3380 PushDefUseChildren(I, Worklist);
3381 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003382}
Chris Lattnerd934c702004-04-02 20:23:17 +00003383
3384/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3385/// a loop header, making it a potential recurrence, or it doesn't.
3386///
Dan Gohmanaf752342009-07-07 17:06:11 +00003387const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003388 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3389 if (L->getHeader() == PN->getParent()) {
3390 // The loop may have multiple entrances or multiple exits; we can analyze
3391 // this phi as an addrec if it has a unique entry value and a unique
3392 // backedge value.
Craig Topper9f008862014-04-15 04:59:12 +00003393 Value *BEValueV = nullptr, *StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003394 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3395 Value *V = PN->getIncomingValue(i);
3396 if (L->contains(PN->getIncomingBlock(i))) {
3397 if (!BEValueV) {
3398 BEValueV = V;
3399 } else if (BEValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003400 BEValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003401 break;
3402 }
3403 } else if (!StartValueV) {
3404 StartValueV = V;
3405 } else if (StartValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003406 StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003407 break;
3408 }
3409 }
3410 if (BEValueV && StartValueV) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003411 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanaf752342009-07-07 17:06:11 +00003412 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003413 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattnerd934c702004-04-02 20:23:17 +00003414 "PHI node already processed?");
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003415 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattnerd934c702004-04-02 20:23:17 +00003416
3417 // Using this symbolic name for the PHI, analyze the value coming around
3418 // the back-edge.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003419 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003420
3421 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3422 // has a special value for the first iteration of the loop.
3423
3424 // If the value coming around the backedge is an add with the symbolic
3425 // value we just inserted, then we found a simple induction variable!
Dan Gohmana30370b2009-05-04 22:02:23 +00003426 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003427 // If there is a single occurrence of the symbolic value, replace it
3428 // with a recurrence.
3429 unsigned FoundIndex = Add->getNumOperands();
3430 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3431 if (Add->getOperand(i) == SymbolicName)
3432 if (FoundIndex == e) {
3433 FoundIndex = i;
3434 break;
3435 }
3436
3437 if (FoundIndex != Add->getNumOperands()) {
3438 // Create an add with everything but the specified operand.
Dan Gohmanaf752342009-07-07 17:06:11 +00003439 SmallVector<const SCEV *, 8> Ops;
Chris Lattnerd934c702004-04-02 20:23:17 +00003440 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3441 if (i != FoundIndex)
3442 Ops.push_back(Add->getOperand(i));
Dan Gohmanaf752342009-07-07 17:06:11 +00003443 const SCEV *Accum = getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00003444
3445 // This is not a valid addrec if the step amount is varying each
3446 // loop iteration, but is not itself an addrec in this loop.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003447 if (isLoopInvariant(Accum, L) ||
Chris Lattnerd934c702004-04-02 20:23:17 +00003448 (isa<SCEVAddRecExpr>(Accum) &&
3449 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003450 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohman51ad99d2010-01-21 02:09:26 +00003451
3452 // If the increment doesn't overflow, then neither the addrec nor
3453 // the post-increment will overflow.
3454 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3455 if (OBO->hasNoUnsignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003456 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003457 if (OBO->hasNoSignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003458 Flags = setFlags(Flags, SCEV::FlagNSW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003459 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003460 // If the increment is an inbounds GEP, then we know the address
3461 // space cannot be wrapped around. We cannot make any guarantee
3462 // about signed or unsigned overflow because pointers are
3463 // unsigned but we may have a negative index from the base
Benjamin Kramer6094f302013-10-28 07:30:06 +00003464 // pointer. We can guarantee that no unsigned wrap occurs if the
3465 // indices form a positive value.
3466 if (GEP->isInBounds()) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003467 Flags = setFlags(Flags, SCEV::FlagNW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003468
3469 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3470 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3471 Flags = setFlags(Flags, SCEV::FlagNUW);
3472 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00003473 } else if (const SubOperator *OBO =
3474 dyn_cast<SubOperator>(BEValueV)) {
3475 if (OBO->hasNoUnsignedWrap())
3476 Flags = setFlags(Flags, SCEV::FlagNUW);
3477 if (OBO->hasNoSignedWrap())
3478 Flags = setFlags(Flags, SCEV::FlagNSW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003479 }
3480
Dan Gohman6635bb22010-04-12 07:49:36 +00003481 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick8b55b732011-03-14 16:50:06 +00003482 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohman62ef6a72009-07-25 01:22:26 +00003483
Dan Gohman51ad99d2010-01-21 02:09:26 +00003484 // Since the no-wrap flags are on the increment, they apply to the
3485 // post-incremented value as well.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003486 if (isLoopInvariant(Accum, L))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003487 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick8b55b732011-03-14 16:50:06 +00003488 Accum, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00003489
3490 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003491 // to be symbolic. We now need to go back and purge all of the
3492 // entries for the scalars that use the symbolic expression.
3493 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003494 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003495 return PHISCEV;
3496 }
3497 }
Dan Gohmana30370b2009-05-04 22:02:23 +00003498 } else if (const SCEVAddRecExpr *AddRec =
3499 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003500 // Otherwise, this could be a loop like this:
3501 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3502 // In this case, j = {1,+,1} and BEValue is j.
3503 // Because the other in-value of i (0) fits the evolution of BEValue
3504 // i really is an addrec evolution.
3505 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003506 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003507
3508 // If StartVal = j.start - j.stride, we can use StartVal as the
3509 // initial step of the addrec evolution.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003510 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman068b7932010-04-11 23:44:58 +00003511 AddRec->getOperand(1))) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003512 // FIXME: For constant StartVal, we should be able to infer
3513 // no-wrap flags.
Dan Gohmanaf752342009-07-07 17:06:11 +00003514 const SCEV *PHISCEV =
Andrew Trick8b55b732011-03-14 16:50:06 +00003515 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3516 SCEV::FlagAnyWrap);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003517
3518 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003519 // to be symbolic. We now need to go back and purge all of the
3520 // entries for the scalars that use the symbolic expression.
3521 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003522 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003523 return PHISCEV;
3524 }
3525 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003526 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003527 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003528 }
Misha Brukman01808ca2005-04-21 21:13:18 +00003529
Dan Gohmana9c205c2010-02-25 06:57:05 +00003530 // If the PHI has a single incoming value, follow that value, unless the
3531 // PHI's incoming blocks are in a different loop, in which case doing so
3532 // risks breaking LCSSA form. Instcombine would normally zap these, but
3533 // it doesn't have DominatorTree information, so it may miss cases.
Hal Finkel60db0582014-09-07 18:57:58 +00003534 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT, AT))
Duncan Sandsaef146b2010-11-18 19:59:41 +00003535 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003536 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003537
Chris Lattnerd934c702004-04-02 20:23:17 +00003538 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003539 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003540}
3541
Dan Gohmanee750d12009-05-08 20:26:55 +00003542/// createNodeForGEP - Expand GEP instructions into add and multiply
3543/// operations. This allows them to be analyzed by regular SCEV code.
3544///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003545const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Chris Lattner229907c2011-07-18 04:54:35 +00003546 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohman2173bd32009-05-08 20:36:47 +00003547 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00003548 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00003549 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00003550 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00003551
3552 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3553 // Add expression, because the Instruction may be guarded by control flow
3554 // and the no-overflow bits may not be valid for the expression in any
3555 // context.
3556 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3557
Dan Gohman1d2ded72010-05-03 22:09:21 +00003558 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohman2173bd32009-05-08 20:36:47 +00003559 gep_type_iterator GTI = gep_type_begin(GEP);
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00003560 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
Dan Gohman2173bd32009-05-08 20:36:47 +00003561 E = GEP->op_end();
Dan Gohmanee750d12009-05-08 20:26:55 +00003562 I != E; ++I) {
3563 Value *Index = *I;
3564 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattner229907c2011-07-18 04:54:35 +00003565 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohmanee750d12009-05-08 20:26:55 +00003566 // For a struct, add the member offset.
Dan Gohmanee750d12009-05-08 20:26:55 +00003567 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003568 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
Dan Gohman16206132010-06-30 07:16:37 +00003569
Dan Gohman16206132010-06-30 07:16:37 +00003570 // Add the field offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003571 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003572 } else {
3573 // For an array, add the element offset, explicitly scaled.
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003574 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
Dan Gohman16206132010-06-30 07:16:37 +00003575 const SCEV *IndexS = getSCEV(Index);
Dan Gohman8b0a4192010-03-01 17:49:51 +00003576 // Getelementptr indices are signed.
Dan Gohman16206132010-06-30 07:16:37 +00003577 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3578
Dan Gohman16206132010-06-30 07:16:37 +00003579 // Multiply the index by the element size to compute the element offset.
Matt Arsenault4c265902013-09-27 22:38:23 +00003580 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
Dan Gohman16206132010-06-30 07:16:37 +00003581
3582 // Add the element offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003583 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003584 }
3585 }
Dan Gohman16206132010-06-30 07:16:37 +00003586
3587 // Get the SCEV for the GEP base.
3588 const SCEV *BaseS = getSCEV(Base);
3589
Dan Gohman16206132010-06-30 07:16:37 +00003590 // Add the total offset from all the GEP indices to the base.
Matt Arsenault4c265902013-09-27 22:38:23 +00003591 return getAddExpr(BaseS, TotalOffset, Wrap);
Dan Gohmanee750d12009-05-08 20:26:55 +00003592}
3593
Nick Lewycky3783b462007-11-22 07:59:40 +00003594/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3595/// guaranteed to end in (at every loop iteration). It is, at the same time,
3596/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3597/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003598uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00003599ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003600 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00003601 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00003602
Dan Gohmana30370b2009-05-04 22:02:23 +00003603 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00003604 return std::min(GetMinTrailingZeros(T->getOperand()),
3605 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00003606
Dan Gohmana30370b2009-05-04 22:02:23 +00003607 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003608 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3609 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3610 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003611 }
3612
Dan Gohmana30370b2009-05-04 22:02:23 +00003613 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003614 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3615 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3616 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003617 }
3618
Dan Gohmana30370b2009-05-04 22:02:23 +00003619 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003620 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003621 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003622 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003623 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003624 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003625 }
3626
Dan Gohmana30370b2009-05-04 22:02:23 +00003627 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003628 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003629 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3630 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00003631 for (unsigned i = 1, e = M->getNumOperands();
3632 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003633 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00003634 BitWidth);
3635 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003636 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003637
Dan Gohmana30370b2009-05-04 22:02:23 +00003638 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003639 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003640 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003641 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003642 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003643 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003644 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003645
Dan Gohmana30370b2009-05-04 22:02:23 +00003646 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003647 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003648 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003649 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003650 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003651 return MinOpRes;
3652 }
3653
Dan Gohmana30370b2009-05-04 22:02:23 +00003654 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003655 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003656 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003657 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003658 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003659 return MinOpRes;
3660 }
3661
Dan Gohmanc702fc02009-06-19 23:29:04 +00003662 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3663 // For a SCEVUnknown, ask ValueTracking.
3664 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00003665 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00003666 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AT, nullptr, DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003667 return Zeros.countTrailingOnes();
3668 }
3669
3670 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00003671 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00003672}
Chris Lattnerd934c702004-04-02 20:23:17 +00003673
Sanjoy Das1f05c512014-10-10 21:22:34 +00003674/// GetRangeFromMetadata - Helper method to assign a range to V from
3675/// metadata present in the IR.
3676static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
3677 if (Instruction *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00003678 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003679 ConstantRange TotalRange(
3680 cast<IntegerType>(I->getType())->getBitWidth(), false);
3681
3682 unsigned NumRanges = MD->getNumOperands() / 2;
3683 assert(NumRanges >= 1);
3684
3685 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00003686 ConstantInt *Lower =
3687 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0));
3688 ConstantInt *Upper =
3689 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1));
Sanjoy Das1f05c512014-10-10 21:22:34 +00003690 ConstantRange Range(Lower->getValue(), Upper->getValue());
3691 TotalRange = TotalRange.unionWith(Range);
3692 }
3693
3694 return TotalRange;
3695 }
3696 }
3697
3698 return None;
3699}
3700
Dan Gohmane65c9172009-07-13 21:35:55 +00003701/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3702///
3703ConstantRange
3704ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman761065e2010-11-17 02:44:44 +00003705 // See if we've computed this range already.
3706 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3707 if (I != UnsignedRanges.end())
3708 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003709
3710 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003711 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003712
Dan Gohman85be4332010-01-26 19:19:05 +00003713 unsigned BitWidth = getTypeSizeInBits(S->getType());
3714 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3715
3716 // If the value has known zeros, the maximum unsigned value will have those
3717 // known zeros as well.
3718 uint32_t TZ = GetMinTrailingZeros(S);
3719 if (TZ != 0)
3720 ConservativeResult =
3721 ConstantRange(APInt::getMinValue(BitWidth),
3722 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3723
Dan Gohmane65c9172009-07-13 21:35:55 +00003724 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3725 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3726 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3727 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003728 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003729 }
3730
3731 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3732 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3733 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3734 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003735 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003736 }
3737
3738 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3739 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3740 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3741 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003742 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003743 }
3744
3745 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3746 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3747 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3748 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003749 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003750 }
3751
3752 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3753 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3754 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003755 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003756 }
3757
3758 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3759 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003760 return setUnsignedRange(ZExt,
3761 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003762 }
3763
3764 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3765 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003766 return setUnsignedRange(SExt,
3767 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003768 }
3769
3770 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3771 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003772 return setUnsignedRange(Trunc,
3773 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003774 }
3775
Dan Gohmane65c9172009-07-13 21:35:55 +00003776 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003777 // If there's no unsigned wrap, the value will never be less than its
3778 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00003779 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003780 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00003781 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00003782 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00003783 ConservativeResult.intersectWith(
3784 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003785
3786 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003787 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003788 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003789 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003790 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3791 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003792 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3793
3794 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003795 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003796
3797 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003798 ConstantRange StepRange = getSignedRange(Step);
3799 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3800 ConstantRange EndRange =
3801 StartRange.add(MaxBECountRange.multiply(StepRange));
3802
3803 // Check for overflow. This must be done with ConstantRange arithmetic
3804 // because we could be called from within the ScalarEvolution overflow
3805 // checking code.
3806 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3807 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3808 ConstantRange ExtMaxBECountRange =
3809 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3810 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3811 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3812 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003813 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003814
Dan Gohmane65c9172009-07-13 21:35:55 +00003815 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3816 EndRange.getUnsignedMin());
3817 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3818 EndRange.getUnsignedMax());
3819 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003820 return setUnsignedRange(AddRec, ConservativeResult);
3821 return setUnsignedRange(AddRec,
3822 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003823 }
3824 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003825
Dan Gohmaned756312010-11-17 20:23:08 +00003826 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003827 }
3828
3829 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003830 // Check if the IR explicitly contains !range metadata.
3831 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
3832 if (MDRange.hasValue())
3833 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
3834
Dan Gohmanc702fc02009-06-19 23:29:04 +00003835 // For a SCEVUnknown, ask ValueTracking.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003836 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00003837 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AT, nullptr, DT);
Dan Gohman1a7ab942009-07-20 22:34:18 +00003838 if (Ones == ~Zeros + 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003839 return setUnsignedRange(U, ConservativeResult);
3840 return setUnsignedRange(U,
3841 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003842 }
3843
Dan Gohmaned756312010-11-17 20:23:08 +00003844 return setUnsignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003845}
3846
Dan Gohmane65c9172009-07-13 21:35:55 +00003847/// getSignedRange - Determine the signed range for a particular SCEV.
3848///
3849ConstantRange
3850ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman3ac8cd62011-01-24 17:54:18 +00003851 // See if we've computed this range already.
Dan Gohman761065e2010-11-17 02:44:44 +00003852 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3853 if (I != SignedRanges.end())
3854 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003855
Dan Gohmane65c9172009-07-13 21:35:55 +00003856 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003857 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmane65c9172009-07-13 21:35:55 +00003858
Dan Gohman51aaf022010-01-26 04:40:18 +00003859 unsigned BitWidth = getTypeSizeInBits(S->getType());
3860 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3861
3862 // If the value has known zeros, the maximum signed value will have those
3863 // known zeros as well.
3864 uint32_t TZ = GetMinTrailingZeros(S);
3865 if (TZ != 0)
3866 ConservativeResult =
3867 ConstantRange(APInt::getSignedMinValue(BitWidth),
3868 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3869
Dan Gohmane65c9172009-07-13 21:35:55 +00003870 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3871 ConstantRange X = getSignedRange(Add->getOperand(0));
3872 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3873 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003874 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003875 }
3876
Dan Gohmane65c9172009-07-13 21:35:55 +00003877 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3878 ConstantRange X = getSignedRange(Mul->getOperand(0));
3879 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3880 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003881 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003882 }
3883
Dan Gohmane65c9172009-07-13 21:35:55 +00003884 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3885 ConstantRange X = getSignedRange(SMax->getOperand(0));
3886 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3887 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003888 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003889 }
Dan Gohmand261d272009-06-24 01:05:09 +00003890
Dan Gohmane65c9172009-07-13 21:35:55 +00003891 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3892 ConstantRange X = getSignedRange(UMax->getOperand(0));
3893 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3894 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003895 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003896 }
Dan Gohmand261d272009-06-24 01:05:09 +00003897
Dan Gohmane65c9172009-07-13 21:35:55 +00003898 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3899 ConstantRange X = getSignedRange(UDiv->getLHS());
3900 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003901 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003902 }
Dan Gohmand261d272009-06-24 01:05:09 +00003903
Dan Gohmane65c9172009-07-13 21:35:55 +00003904 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3905 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003906 return setSignedRange(ZExt,
3907 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003908 }
3909
3910 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3911 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003912 return setSignedRange(SExt,
3913 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003914 }
3915
3916 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3917 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003918 return setSignedRange(Trunc,
3919 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003920 }
3921
Dan Gohmane65c9172009-07-13 21:35:55 +00003922 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003923 // If there's no signed wrap, and all the operands have the same sign or
3924 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00003925 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003926 bool AllNonNeg = true;
3927 bool AllNonPos = true;
3928 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3929 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3930 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3931 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003932 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00003933 ConservativeResult = ConservativeResult.intersectWith(
3934 ConstantRange(APInt(BitWidth, 0),
3935 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003936 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00003937 ConservativeResult = ConservativeResult.intersectWith(
3938 ConstantRange(APInt::getSignedMinValue(BitWidth),
3939 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003940 }
Dan Gohmane65c9172009-07-13 21:35:55 +00003941
3942 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003943 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003944 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003945 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003946 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3947 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003948 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3949
3950 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003951 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003952
3953 ConstantRange StartRange = getSignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003954 ConstantRange StepRange = getSignedRange(Step);
3955 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3956 ConstantRange EndRange =
3957 StartRange.add(MaxBECountRange.multiply(StepRange));
3958
3959 // Check for overflow. This must be done with ConstantRange arithmetic
3960 // because we could be called from within the ScalarEvolution overflow
3961 // checking code.
3962 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3963 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3964 ConstantRange ExtMaxBECountRange =
3965 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3966 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3967 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3968 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003969 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003970
Dan Gohmane65c9172009-07-13 21:35:55 +00003971 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3972 EndRange.getSignedMin());
3973 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3974 EndRange.getSignedMax());
3975 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003976 return setSignedRange(AddRec, ConservativeResult);
3977 return setSignedRange(AddRec,
3978 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmand261d272009-06-24 01:05:09 +00003979 }
Dan Gohmand261d272009-06-24 01:05:09 +00003980 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003981
Dan Gohmaned756312010-11-17 20:23:08 +00003982 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00003983 }
3984
Dan Gohmanc702fc02009-06-19 23:29:04 +00003985 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003986 // Check if the IR explicitly contains !range metadata.
3987 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
3988 if (MDRange.hasValue())
3989 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
3990
Dan Gohmanc702fc02009-06-19 23:29:04 +00003991 // For a SCEVUnknown, ask ValueTracking.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003992 if (!U->getValue()->getType()->isIntegerTy() && !DL)
Dan Gohmaned756312010-11-17 20:23:08 +00003993 return setSignedRange(U, ConservativeResult);
Hal Finkel60db0582014-09-07 18:57:58 +00003994 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AT, nullptr, DT);
Hal Finkelff666bd2013-07-09 18:16:16 +00003995 if (NS <= 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003996 return setSignedRange(U, ConservativeResult);
3997 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohmane65c9172009-07-13 21:35:55 +00003998 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohmaned756312010-11-17 20:23:08 +00003999 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004000 }
4001
Dan Gohmaned756312010-11-17 20:23:08 +00004002 return setSignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004003}
4004
Chris Lattnerd934c702004-04-02 20:23:17 +00004005/// createSCEV - We know that there is no SCEV for the specified value.
4006/// Analyze the expression.
4007///
Dan Gohmanaf752342009-07-07 17:06:11 +00004008const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004009 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004010 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004011
Dan Gohman05e89732008-06-22 19:56:46 +00004012 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004013 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004014 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004015
4016 // Don't attempt to analyze instructions in blocks that aren't
4017 // reachable. Such instructions don't matter, and they aren't required
4018 // to obey basic rules for definitions dominating uses which this
4019 // analysis depends on.
4020 if (!DT->isReachableFromEntry(I->getParent()))
4021 return getUnknown(V);
4022 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004023 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004024 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4025 return getConstant(CI);
4026 else if (isa<ConstantPointerNull>(V))
Dan Gohman1d2ded72010-05-03 22:09:21 +00004027 return getConstant(V->getType(), 0);
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004028 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4029 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004030 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004031 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004032
Dan Gohman80ca01c2009-07-17 20:47:02 +00004033 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004034 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004035 case Instruction::Add: {
4036 // The simple thing to do would be to just call getSCEV on both operands
4037 // and call getAddExpr with the result. However if we're looking at a
4038 // bunch of things all added together, this can be quite inefficient,
4039 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4040 // Instead, gather up all the operands and make a single getAddExpr call.
4041 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickd25089f2011-11-29 02:16:38 +00004042 //
4043 // Don't apply this instruction's NSW or NUW flags to the new
4044 // expression. The instruction may be guarded by control flow that the
4045 // no-wrap behavior depends on. Non-control-equivalent instructions can be
4046 // mapped to the same SCEV expression, and it would be incorrect to transfer
4047 // NSW/NUW semantics to those operations.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004048 SmallVector<const SCEV *, 4> AddOps;
4049 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman47308d52010-08-31 22:53:17 +00004050 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
4051 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
4052 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
4053 break;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004054 U = cast<Operator>(Op);
Dan Gohman47308d52010-08-31 22:53:17 +00004055 const SCEV *Op1 = getSCEV(U->getOperand(1));
4056 if (Opcode == Instruction::Sub)
4057 AddOps.push_back(getNegativeSCEV(Op1));
4058 else
4059 AddOps.push_back(Op1);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004060 }
4061 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickd25089f2011-11-29 02:16:38 +00004062 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004063 }
4064 case Instruction::Mul: {
Andrew Trickd25089f2011-11-29 02:16:38 +00004065 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004066 SmallVector<const SCEV *, 4> MulOps;
4067 MulOps.push_back(getSCEV(U->getOperand(1)));
4068 for (Value *Op = U->getOperand(0);
Andrew Trick2a3b7162011-03-09 17:23:39 +00004069 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004070 Op = U->getOperand(0)) {
4071 U = cast<Operator>(Op);
4072 MulOps.push_back(getSCEV(U->getOperand(1)));
4073 }
4074 MulOps.push_back(getSCEV(U->getOperand(0)));
4075 return getMulExpr(MulOps);
4076 }
Dan Gohman05e89732008-06-22 19:56:46 +00004077 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004078 return getUDivExpr(getSCEV(U->getOperand(0)),
4079 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004080 case Instruction::Sub:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004081 return getMinusSCEV(getSCEV(U->getOperand(0)),
4082 getSCEV(U->getOperand(1)));
Dan Gohman0ec05372009-04-21 02:26:00 +00004083 case Instruction::And:
4084 // For an expression like x&255 that merely masks off the high bits,
4085 // use zext(trunc(x)) as the SCEV expression.
4086 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004087 if (CI->isNullValue())
4088 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004089 if (CI->isAllOnesValue())
4090 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004091 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004092
4093 // Instcombine's ShrinkDemandedConstant may strip bits out of
4094 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004095 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004096 // knew about to reconstruct a low-bits mask value.
4097 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004098 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004099 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004100 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00004101 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL,
4102 0, AT, nullptr, DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004103
Nick Lewycky31eaca52014-01-27 10:04:03 +00004104 APInt EffectiveMask =
4105 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4106 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4107 const SCEV *MulCount = getConstant(
4108 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4109 return getMulExpr(
4110 getZeroExtendExpr(
4111 getTruncateExpr(
4112 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4113 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4114 U->getType()),
4115 MulCount);
4116 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004117 }
4118 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004119
Dan Gohman05e89732008-06-22 19:56:46 +00004120 case Instruction::Or:
4121 // If the RHS of the Or is a constant, we may have something like:
4122 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4123 // optimizations will transparently handle this case.
4124 //
4125 // In order for this transformation to be safe, the LHS must be of the
4126 // form X*(2^n) and the Or constant must be less than 2^n.
4127 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004128 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004129 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004130 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004131 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4132 // Build a plain add SCEV.
4133 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4134 // If the LHS of the add was an addrec and it has no-wrap flags,
4135 // transfer the no-wrap flags, since an or won't introduce a wrap.
4136 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4137 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004138 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4139 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004140 }
4141 return S;
4142 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004143 }
Dan Gohman05e89732008-06-22 19:56:46 +00004144 break;
4145 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004146 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004147 // If the RHS of the xor is a signbit, then this is just an add.
4148 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004149 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004150 return getAddExpr(getSCEV(U->getOperand(0)),
4151 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004152
4153 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004154 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004155 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004156
4157 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4158 // This is a variant of the check for xor with -1, and it handles
4159 // the case where instcombine has trimmed non-demanded bits out
4160 // of an xor with -1.
4161 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4162 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4163 if (BO->getOpcode() == Instruction::And &&
4164 LCI->getValue() == CI->getValue())
4165 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004166 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004167 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004168 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004169 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004170 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4171
Dan Gohman8b0a4192010-03-01 17:49:51 +00004172 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004173 // mask off the high bits. Complement the operand and
4174 // re-apply the zext.
4175 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4176 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4177
4178 // If C is a single bit, it may be in the sign-bit position
4179 // before the zero-extend. In this case, represent the xor
4180 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004181 APInt Trunc = CI->getValue().trunc(Z0TySize);
4182 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004183 Trunc.isSignBit())
4184 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4185 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004186 }
Dan Gohman05e89732008-06-22 19:56:46 +00004187 }
4188 break;
4189
4190 case Instruction::Shl:
4191 // Turn shift left of a constant amount into a multiply.
4192 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004193 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004194
4195 // If the shift count is not less than the bitwidth, the result of
4196 // the shift is undefined. Don't try to analyze it, because the
4197 // resolution chosen here may differ from the resolution chosen in
4198 // other parts of the compiler.
4199 if (SA->getValue().uge(BitWidth))
4200 break;
4201
Owen Andersonedb4a702009-07-24 23:12:02 +00004202 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004203 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004204 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman05e89732008-06-22 19:56:46 +00004205 }
4206 break;
4207
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004208 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004209 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004210 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004211 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004212
4213 // If the shift count is not less than the bitwidth, the result of
4214 // the shift is undefined. Don't try to analyze it, because the
4215 // resolution chosen here may differ from the resolution chosen in
4216 // other parts of the compiler.
4217 if (SA->getValue().uge(BitWidth))
4218 break;
4219
Owen Andersonedb4a702009-07-24 23:12:02 +00004220 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004221 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004222 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004223 }
4224 break;
4225
Dan Gohman0ec05372009-04-21 02:26:00 +00004226 case Instruction::AShr:
4227 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4228 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004229 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004230 if (L->getOpcode() == Instruction::Shl &&
4231 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004232 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4233
4234 // If the shift count is not less than the bitwidth, the result of
4235 // the shift is undefined. Don't try to analyze it, because the
4236 // resolution chosen here may differ from the resolution chosen in
4237 // other parts of the compiler.
4238 if (CI->getValue().uge(BitWidth))
4239 break;
4240
Dan Gohmandf199482009-04-25 17:05:40 +00004241 uint64_t Amt = BitWidth - CI->getZExtValue();
4242 if (Amt == BitWidth)
4243 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004244 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004245 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004246 IntegerType::get(getContext(),
4247 Amt)),
4248 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004249 }
4250 break;
4251
Dan Gohman05e89732008-06-22 19:56:46 +00004252 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004253 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004254
4255 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004256 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004257
4258 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004259 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004260
4261 case Instruction::BitCast:
4262 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004263 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004264 return getSCEV(U->getOperand(0));
4265 break;
4266
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004267 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4268 // lead to pointer expressions which cannot safely be expanded to GEPs,
4269 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4270 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004271
Dan Gohmanee750d12009-05-08 20:26:55 +00004272 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004273 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004274
Dan Gohman05e89732008-06-22 19:56:46 +00004275 case Instruction::PHI:
4276 return createNodeForPHI(cast<PHINode>(U));
4277
4278 case Instruction::Select:
4279 // This could be a smax or umax that was lowered earlier.
4280 // Try to recover it.
4281 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
4282 Value *LHS = ICI->getOperand(0);
4283 Value *RHS = ICI->getOperand(1);
4284 switch (ICI->getPredicate()) {
4285 case ICmpInst::ICMP_SLT:
4286 case ICmpInst::ICMP_SLE:
4287 std::swap(LHS, RHS);
4288 // fall through
4289 case ICmpInst::ICMP_SGT:
4290 case ICmpInst::ICMP_SGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004291 // a >s b ? a+x : b+x -> smax(a, b)+x
4292 // a >s b ? b+x : a+x -> smin(a, b)+x
4293 if (LHS->getType() == U->getType()) {
4294 const SCEV *LS = getSCEV(LHS);
4295 const SCEV *RS = getSCEV(RHS);
4296 const SCEV *LA = getSCEV(U->getOperand(1));
4297 const SCEV *RA = getSCEV(U->getOperand(2));
4298 const SCEV *LDiff = getMinusSCEV(LA, LS);
4299 const SCEV *RDiff = getMinusSCEV(RA, RS);
4300 if (LDiff == RDiff)
4301 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4302 LDiff = getMinusSCEV(LA, RS);
4303 RDiff = getMinusSCEV(RA, LS);
4304 if (LDiff == RDiff)
4305 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4306 }
Dan Gohman05e89732008-06-22 19:56:46 +00004307 break;
4308 case ICmpInst::ICMP_ULT:
4309 case ICmpInst::ICMP_ULE:
4310 std::swap(LHS, RHS);
4311 // fall through
4312 case ICmpInst::ICMP_UGT:
4313 case ICmpInst::ICMP_UGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004314 // a >u b ? a+x : b+x -> umax(a, b)+x
4315 // a >u b ? b+x : a+x -> umin(a, b)+x
4316 if (LHS->getType() == U->getType()) {
4317 const SCEV *LS = getSCEV(LHS);
4318 const SCEV *RS = getSCEV(RHS);
4319 const SCEV *LA = getSCEV(U->getOperand(1));
4320 const SCEV *RA = getSCEV(U->getOperand(2));
4321 const SCEV *LDiff = getMinusSCEV(LA, LS);
4322 const SCEV *RDiff = getMinusSCEV(RA, RS);
4323 if (LDiff == RDiff)
4324 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4325 LDiff = getMinusSCEV(LA, RS);
4326 RDiff = getMinusSCEV(RA, LS);
4327 if (LDiff == RDiff)
4328 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4329 }
Dan Gohman05e89732008-06-22 19:56:46 +00004330 break;
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004331 case ICmpInst::ICMP_NE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004332 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4333 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004334 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00004335 cast<ConstantInt>(RHS)->isZero()) {
4336 const SCEV *One = getConstant(LHS->getType(), 1);
4337 const SCEV *LS = getSCEV(LHS);
4338 const SCEV *LA = getSCEV(U->getOperand(1));
4339 const SCEV *RA = getSCEV(U->getOperand(2));
4340 const SCEV *LDiff = getMinusSCEV(LA, LS);
4341 const SCEV *RDiff = getMinusSCEV(RA, One);
4342 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004343 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004344 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004345 break;
4346 case ICmpInst::ICMP_EQ:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004347 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4348 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004349 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00004350 cast<ConstantInt>(RHS)->isZero()) {
4351 const SCEV *One = getConstant(LHS->getType(), 1);
4352 const SCEV *LS = getSCEV(LHS);
4353 const SCEV *LA = getSCEV(U->getOperand(1));
4354 const SCEV *RA = getSCEV(U->getOperand(2));
4355 const SCEV *LDiff = getMinusSCEV(LA, One);
4356 const SCEV *RDiff = getMinusSCEV(RA, LS);
4357 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004358 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004359 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004360 break;
Dan Gohman05e89732008-06-22 19:56:46 +00004361 default:
4362 break;
4363 }
4364 }
4365
4366 default: // We cannot analyze this expression.
4367 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004368 }
4369
Dan Gohmanc8e23622009-04-21 23:15:49 +00004370 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004371}
4372
4373
4374
4375//===----------------------------------------------------------------------===//
4376// Iteration Count Computation Code
4377//
4378
Chandler Carruth6666c272014-10-11 00:12:11 +00004379unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4380 if (BasicBlock *ExitingBB = L->getExitingBlock())
4381 return getSmallConstantTripCount(L, ExitingBB);
4382
4383 // No trip count information for multiple exits.
4384 return 0;
4385}
4386
Andrew Trick2b6860f2011-08-11 23:36:16 +00004387/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004388/// normal unsigned value. Returns 0 if the trip count is unknown or not
4389/// constant. Will also return 0 if the maximum trip count is very large (>=
4390/// 2^32).
4391///
4392/// This "trip count" assumes that control exits via ExitingBlock. More
4393/// precisely, it is the number of times that control may reach ExitingBlock
4394/// before taking the branch. For loops with multiple exits, it may not be the
4395/// number times that the loop header executes because the loop may exit
4396/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004397unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4398 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004399 assert(ExitingBlock && "Must pass a non-null exiting block!");
4400 assert(L->isLoopExiting(ExitingBlock) &&
4401 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004402 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004403 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004404 if (!ExitCount)
4405 return 0;
4406
4407 ConstantInt *ExitConst = ExitCount->getValue();
4408
4409 // Guard against huge trip counts.
4410 if (ExitConst->getValue().getActiveBits() > 32)
4411 return 0;
4412
4413 // In case of integer overflow, this returns 0, which is correct.
4414 return ((unsigned)ExitConst->getZExtValue()) + 1;
4415}
4416
Chandler Carruth6666c272014-10-11 00:12:11 +00004417unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4418 if (BasicBlock *ExitingBB = L->getExitingBlock())
4419 return getSmallConstantTripMultiple(L, ExitingBB);
4420
4421 // No trip multiple information for multiple exits.
4422 return 0;
4423}
4424
Andrew Trick2b6860f2011-08-11 23:36:16 +00004425/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4426/// trip count of this loop as a normal unsigned value, if possible. This
4427/// means that the actual trip count is always a multiple of the returned
4428/// value (don't forget the trip count could very well be zero as well!).
4429///
4430/// Returns 1 if the trip count is unknown or not guaranteed to be the
4431/// multiple of a constant (which is also the case if the trip count is simply
4432/// constant, use getSmallConstantTripCount for that case), Will also return 1
4433/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004434///
4435/// As explained in the comments for getSmallConstantTripCount, this assumes
4436/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004437unsigned
4438ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4439 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004440 assert(ExitingBlock && "Must pass a non-null exiting block!");
4441 assert(L->isLoopExiting(ExitingBlock) &&
4442 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004443 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004444 if (ExitCount == getCouldNotCompute())
4445 return 1;
4446
4447 // Get the trip count from the BE count by adding 1.
4448 const SCEV *TCMul = getAddExpr(ExitCount,
4449 getConstant(ExitCount->getType(), 1));
4450 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4451 // to factor simple cases.
4452 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4453 TCMul = Mul->getOperand(0);
4454
4455 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4456 if (!MulC)
4457 return 1;
4458
4459 ConstantInt *Result = MulC->getValue();
4460
Hal Finkel30bd9342012-10-24 19:46:44 +00004461 // Guard against huge trip counts (this requires checking
4462 // for zero to handle the case where the trip count == -1 and the
4463 // addition wraps).
4464 if (!Result || Result->getValue().getActiveBits() > 32 ||
4465 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004466 return 1;
4467
4468 return (unsigned)Result->getZExtValue();
4469}
4470
Andrew Trick3ca3f982011-07-26 17:19:55 +00004471// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004472// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004473// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004474const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4475 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004476}
4477
Dan Gohman0bddac12009-02-24 18:55:53 +00004478/// getBackedgeTakenCount - If the specified loop has a predictable
4479/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4480/// object. The backedge-taken count is the number of times the loop header
4481/// will be branched to from within the loop. This is one less than the
4482/// trip count of the loop, since it doesn't count the first iteration,
4483/// when the header is branched to from outside the loop.
4484///
4485/// Note that it is not valid to call this method on a loop without a
4486/// loop-invariant backedge-taken count (see
4487/// hasLoopInvariantBackedgeTakenCount).
4488///
Dan Gohmanaf752342009-07-07 17:06:11 +00004489const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004490 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004491}
4492
4493/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4494/// return the least SCEV value that is known never to be less than the
4495/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004496const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004497 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004498}
4499
Dan Gohmandc191042009-07-08 19:23:34 +00004500/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4501/// onto the given Worklist.
4502static void
4503PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4504 BasicBlock *Header = L->getHeader();
4505
4506 // Push all Loop-header PHIs onto the Worklist stack.
4507 for (BasicBlock::iterator I = Header->begin();
4508 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4509 Worklist.push_back(PN);
4510}
4511
Dan Gohman2b8da352009-04-30 20:47:05 +00004512const ScalarEvolution::BackedgeTakenInfo &
4513ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004514 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004515 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004516 // update the value. The temporary CouldNotCompute value tells SCEV
4517 // code elsewhere that it shouldn't attempt to request a new
4518 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004519 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004520 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004521 if (!Pair.second)
4522 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004523
Andrew Trick3ca3f982011-07-26 17:19:55 +00004524 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4525 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4526 // must be cleared in this scope.
4527 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4528
4529 if (Result.getExact(this) != getCouldNotCompute()) {
4530 assert(isLoopInvariant(Result.getExact(this), L) &&
4531 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004532 "Computed backedge-taken count isn't loop invariant for loop!");
4533 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004534 }
4535 else if (Result.getMax(this) == getCouldNotCompute() &&
4536 isa<PHINode>(L->getHeader()->begin())) {
4537 // Only count loops that have phi nodes as not being computable.
4538 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004539 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004540
Chris Lattnera337f5e2011-01-09 02:16:18 +00004541 // Now that we know more about the trip count for this loop, forget any
4542 // existing SCEV values for PHI nodes in this loop since they are only
4543 // conservative estimates made without the benefit of trip count
4544 // information. This is similar to the code in forgetLoop, except that
4545 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004546 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004547 SmallVector<Instruction *, 16> Worklist;
4548 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004549
Chris Lattnera337f5e2011-01-09 02:16:18 +00004550 SmallPtrSet<Instruction *, 8> Visited;
4551 while (!Worklist.empty()) {
4552 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004553 if (!Visited.insert(I).second)
4554 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004555
Chris Lattnera337f5e2011-01-09 02:16:18 +00004556 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004557 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004558 if (It != ValueExprMap.end()) {
4559 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004560
Chris Lattnera337f5e2011-01-09 02:16:18 +00004561 // SCEVUnknown for a PHI either means that it has an unrecognized
4562 // structure, or it's a PHI that's in the progress of being computed
4563 // by createNodeForPHI. In the former case, additional loop trip
4564 // count information isn't going to change anything. In the later
4565 // case, createNodeForPHI will perform the necessary updates on its
4566 // own when it gets to that point.
4567 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4568 forgetMemoizedResults(Old);
4569 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004570 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004571 if (PHINode *PN = dyn_cast<PHINode>(I))
4572 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004573 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004574
4575 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004576 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004577 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004578
4579 // Re-lookup the insert position, since the call to
4580 // ComputeBackedgeTakenCount above could result in a
4581 // recusive call to getBackedgeTakenInfo (on a different
4582 // loop), which would invalidate the iterator computed
4583 // earlier.
4584 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004585}
4586
Dan Gohman880c92a2009-10-31 15:04:55 +00004587/// forgetLoop - This method should be called by the client when it has
4588/// changed a loop in a way that may effect ScalarEvolution's ability to
4589/// compute a trip count, or if the loop is deleted.
4590void ScalarEvolution::forgetLoop(const Loop *L) {
4591 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004592 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4593 BackedgeTakenCounts.find(L);
4594 if (BTCPos != BackedgeTakenCounts.end()) {
4595 BTCPos->second.clear();
4596 BackedgeTakenCounts.erase(BTCPos);
4597 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004598
Dan Gohman880c92a2009-10-31 15:04:55 +00004599 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004600 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004601 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004602
Dan Gohmandc191042009-07-08 19:23:34 +00004603 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004604 while (!Worklist.empty()) {
4605 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004606 if (!Visited.insert(I).second)
4607 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004608
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004609 ValueExprMapType::iterator It =
4610 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004611 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004612 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004613 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004614 if (PHINode *PN = dyn_cast<PHINode>(I))
4615 ConstantEvolutionLoopExitValue.erase(PN);
4616 }
4617
4618 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004619 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004620
4621 // Forget all contained loops too, to avoid dangling entries in the
4622 // ValuesAtScopes map.
4623 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4624 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004625}
4626
Eric Christopheref6d5932010-07-29 01:25:38 +00004627/// forgetValue - This method should be called by the client when it has
4628/// changed a value in a way that may effect its value, or which may
4629/// disconnect it from a def-use chain linking it to a loop.
4630void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004631 Instruction *I = dyn_cast<Instruction>(V);
4632 if (!I) return;
4633
4634 // Drop information about expressions based on loop-header PHIs.
4635 SmallVector<Instruction *, 16> Worklist;
4636 Worklist.push_back(I);
4637
4638 SmallPtrSet<Instruction *, 8> Visited;
4639 while (!Worklist.empty()) {
4640 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004641 if (!Visited.insert(I).second)
4642 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004643
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004644 ValueExprMapType::iterator It =
4645 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004646 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004647 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004648 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004649 if (PHINode *PN = dyn_cast<PHINode>(I))
4650 ConstantEvolutionLoopExitValue.erase(PN);
4651 }
4652
4653 PushDefUseChildren(I, Worklist);
4654 }
4655}
4656
Andrew Trick3ca3f982011-07-26 17:19:55 +00004657/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick90c7a102011-11-16 00:52:40 +00004658/// exits. A computable result can only be return for loops with a single exit.
4659/// Returning the minimum taken count among all exits is incorrect because one
4660/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4661/// the limit of each loop test is never skipped. This is a valid assumption as
4662/// long as the loop exits via that test. For precise results, it is the
4663/// caller's responsibility to specify the relevant loop exit using
4664/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00004665const SCEV *
4666ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4667 // If any exits were not computable, the loop is not computable.
4668 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4669
Andrew Trick90c7a102011-11-16 00:52:40 +00004670 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00004671 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004672 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4673
Craig Topper9f008862014-04-15 04:59:12 +00004674 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004675 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004676 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004677
4678 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4679
4680 if (!BECount)
4681 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00004682 else if (BECount != ENT->ExactNotTaken)
4683 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004684 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00004685 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004686 return BECount;
4687}
4688
4689/// getExact - Get the exact not taken count for this loop exit.
4690const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00004691ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00004692 ScalarEvolution *SE) const {
4693 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004694 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004695
Andrew Trick77c55422011-08-02 04:23:35 +00004696 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004697 return ENT->ExactNotTaken;
4698 }
4699 return SE->getCouldNotCompute();
4700}
4701
4702/// getMax - Get the max backedge taken count for the loop.
4703const SCEV *
4704ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4705 return Max ? Max : SE->getCouldNotCompute();
4706}
4707
Andrew Trick9093e152013-03-26 03:14:53 +00004708bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4709 ScalarEvolution *SE) const {
4710 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4711 return true;
4712
4713 if (!ExitNotTaken.ExitingBlock)
4714 return false;
4715
4716 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004717 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00004718
4719 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4720 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4721 return true;
4722 }
4723 }
4724 return false;
4725}
4726
Andrew Trick3ca3f982011-07-26 17:19:55 +00004727/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4728/// computable exit into a persistent ExitNotTakenInfo array.
4729ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4730 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4731 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4732
4733 if (!Complete)
4734 ExitNotTaken.setIncomplete();
4735
4736 unsigned NumExits = ExitCounts.size();
4737 if (NumExits == 0) return;
4738
Andrew Trick77c55422011-08-02 04:23:35 +00004739 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004740 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4741 if (NumExits == 1) return;
4742
4743 // Handle the rare case of multiple computable exits.
4744 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4745
4746 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4747 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4748 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00004749 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004750 ENT->ExactNotTaken = ExitCounts[i].second;
4751 }
4752}
4753
4754/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4755void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00004756 ExitNotTaken.ExitingBlock = nullptr;
4757 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004758 delete[] ExitNotTaken.getNextExit();
4759}
4760
Dan Gohman0bddac12009-02-24 18:55:53 +00004761/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4762/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00004763ScalarEvolution::BackedgeTakenInfo
4764ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00004765 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00004766 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00004767
Andrew Trick839e30b2014-05-23 19:47:13 +00004768 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004769 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004770 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00004771 const SCEV *MustExitMaxBECount = nullptr;
4772 const SCEV *MayExitMaxBECount = nullptr;
4773
4774 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4775 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00004776 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00004777 BasicBlock *ExitBB = ExitingBlocks[i];
4778 ExitLimit EL = ComputeExitLimit(L, ExitBB);
4779
4780 // 1. For each exit that can be computed, add an entry to ExitCounts.
4781 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004782 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00004783 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00004784 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004785 CouldComputeBECount = false;
4786 else
Andrew Trick839e30b2014-05-23 19:47:13 +00004787 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00004788
Andrew Trick839e30b2014-05-23 19:47:13 +00004789 // 2. Derive the loop's MaxBECount from each exit's max number of
4790 // non-exiting iterations. Partition the loop exits into two kinds:
4791 // LoopMustExits and LoopMayExits.
4792 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004793 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
4794 // is a LoopMayExit. If any computable LoopMustExit is found, then
4795 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
4796 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
4797 // considered greater than any computable EL.Max.
4798 if (EL.Max != getCouldNotCompute() && Latch &&
Andrew Trick839e30b2014-05-23 19:47:13 +00004799 DT->dominates(ExitBB, Latch)) {
4800 if (!MustExitMaxBECount)
4801 MustExitMaxBECount = EL.Max;
4802 else {
4803 MustExitMaxBECount =
4804 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00004805 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004806 } else if (MayExitMaxBECount != getCouldNotCompute()) {
4807 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4808 MayExitMaxBECount = EL.Max;
4809 else {
4810 MayExitMaxBECount =
4811 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4812 }
Andrew Trick90c7a102011-11-16 00:52:40 +00004813 }
Dan Gohman96212b62009-06-22 00:31:57 +00004814 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004815 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4816 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00004817 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004818}
4819
Andrew Trick3ca3f982011-07-26 17:19:55 +00004820/// ComputeExitLimit - Compute the number of times the backedge of the specified
4821/// loop will execute if it exits via the specified block.
4822ScalarEvolution::ExitLimit
4823ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00004824
4825 // Okay, we've chosen an exiting block. See what condition causes us to
Benjamin Kramer5a188542014-02-11 15:44:32 +00004826 // exit at this block and remember the exit block and whether all other targets
4827 // lead to the loop header.
4828 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00004829 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004830 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4831 SI != SE; ++SI)
4832 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004833 if (Exit) // Multiple exit successors.
4834 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004835 Exit = *SI;
4836 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004837 MustExecuteLoopHeader = false;
4838 }
Dan Gohmance973df2009-06-24 04:48:43 +00004839
Chris Lattner18954852007-01-07 02:24:26 +00004840 // At this point, we know we have a conditional branch that determines whether
4841 // the loop is exited. However, we don't know if the branch is executed each
4842 // time through the loop. If not, then the execution count of the branch will
4843 // not be equal to the trip count of the loop.
4844 //
4845 // Currently we check for this by checking to see if the Exit branch goes to
4846 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00004847 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00004848 // loop header. This is common for un-rotated loops.
4849 //
4850 // If both of those tests fail, walk up the unique predecessor chain to the
4851 // header, stopping if there is an edge that doesn't exit the loop. If the
4852 // header is reached, the execution count of the branch will be equal to the
4853 // trip count of the loop.
4854 //
4855 // More extensive analysis could be done to handle more cases here.
4856 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00004857 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00004858 // The simple checks failed, try climbing the unique predecessor chain
4859 // up to the header.
4860 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00004861 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00004862 BasicBlock *Pred = BB->getUniquePredecessor();
4863 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004864 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004865 TerminatorInst *PredTerm = Pred->getTerminator();
4866 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4867 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4868 if (PredSucc == BB)
4869 continue;
4870 // If the predecessor has a successor that isn't BB and isn't
4871 // outside the loop, assume the worst.
4872 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004873 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004874 }
4875 if (Pred == L->getHeader()) {
4876 Ok = true;
4877 break;
4878 }
4879 BB = Pred;
4880 }
4881 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004882 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004883 }
4884
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004885 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004886 TerminatorInst *Term = ExitingBlock->getTerminator();
4887 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4888 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4889 // Proceed to the next level to examine the exit condition expression.
4890 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4891 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004892 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004893 }
4894
4895 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4896 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004897 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004898
4899 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004900}
4901
Andrew Trick3ca3f982011-07-26 17:19:55 +00004902/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004903/// backedge of the specified loop will execute if its exit condition
4904/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00004905///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004906/// @param ControlsExit is true if ExitCond directly controls the exit
4907/// branch. In this case, we can assume that the loop exits only if the
4908/// condition is true and can infer that failing to meet the condition prior to
4909/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004910ScalarEvolution::ExitLimit
4911ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4912 Value *ExitCond,
4913 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004914 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004915 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00004916 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00004917 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4918 if (BO->getOpcode() == Instruction::And) {
4919 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00004920 bool EitherMayExit = L->contains(TBB);
4921 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004922 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00004923 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004924 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004925 const SCEV *BECount = getCouldNotCompute();
4926 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00004927 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004928 // Both conditions must be true for the loop to continue executing.
4929 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004930 if (EL0.Exact == getCouldNotCompute() ||
4931 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004932 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004933 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004934 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4935 if (EL0.Max == getCouldNotCompute())
4936 MaxBECount = EL1.Max;
4937 else if (EL1.Max == getCouldNotCompute())
4938 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004939 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004940 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00004941 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004942 // Both conditions must be true at the same time for the loop to exit.
4943 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004944 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004945 if (EL0.Max == EL1.Max)
4946 MaxBECount = EL0.Max;
4947 if (EL0.Exact == EL1.Exact)
4948 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00004949 }
4950
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004951 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004952 }
4953 if (BO->getOpcode() == Instruction::Or) {
4954 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00004955 bool EitherMayExit = L->contains(FBB);
4956 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004957 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00004958 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004959 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004960 const SCEV *BECount = getCouldNotCompute();
4961 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00004962 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004963 // Both conditions must be false for the loop to continue executing.
4964 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004965 if (EL0.Exact == getCouldNotCompute() ||
4966 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004967 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004968 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004969 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4970 if (EL0.Max == getCouldNotCompute())
4971 MaxBECount = EL1.Max;
4972 else if (EL1.Max == getCouldNotCompute())
4973 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004974 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004975 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00004976 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004977 // Both conditions must be false at the same time for the loop to exit.
4978 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004979 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004980 if (EL0.Max == EL1.Max)
4981 MaxBECount = EL0.Max;
4982 if (EL0.Exact == EL1.Exact)
4983 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00004984 }
4985
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004986 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004987 }
4988 }
4989
4990 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00004991 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00004992 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004993 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00004994
Dan Gohman6b1e2a82010-02-19 18:12:07 +00004995 // Check for a constant condition. These are normally stripped out by
4996 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4997 // preserve the CFG and is temporarily leaving constant conditions
4998 // in place.
4999 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5000 if (L->contains(FBB) == !CI->getZExtValue())
5001 // The backedge is always taken.
5002 return getCouldNotCompute();
5003 else
5004 // The backedge is never taken.
Dan Gohman1d2ded72010-05-03 22:09:21 +00005005 return getConstant(CI->getType(), 0);
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005006 }
5007
Eli Friedmanebf98b02009-05-09 12:32:42 +00005008 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005009 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005010}
5011
Andrew Trick3ca3f982011-07-26 17:19:55 +00005012/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005013/// backedge of the specified loop will execute if its exit condition
5014/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005015ScalarEvolution::ExitLimit
5016ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
5017 ICmpInst *ExitCond,
5018 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005019 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005020 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005021
Reid Spencer266e42b2006-12-23 06:05:41 +00005022 // If the condition was exit on true, convert the condition to exit on false
5023 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005024 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005025 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005026 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005027 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005028
5029 // Handle common loops like: for (X = "string"; *X; ++X)
5030 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5031 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005032 ExitLimit ItCnt =
5033 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005034 if (ItCnt.hasAnyInfo())
5035 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005036 }
5037
Dan Gohmanaf752342009-07-07 17:06:11 +00005038 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5039 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005040
5041 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005042 LHS = getSCEVAtScope(LHS, L);
5043 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005044
Dan Gohmance973df2009-06-24 04:48:43 +00005045 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005046 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005047 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005048 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005049 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005050 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005051 }
5052
Dan Gohman81585c12010-05-03 16:35:17 +00005053 // Simplify the operands before analyzing them.
5054 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5055
Chris Lattnerd934c702004-04-02 20:23:17 +00005056 // If we have a comparison of a chrec against a constant, try to use value
5057 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005058 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5059 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005060 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005061 // Form the constant range.
5062 ConstantRange CompRange(
5063 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005064
Dan Gohmanaf752342009-07-07 17:06:11 +00005065 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005066 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005067 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005068
Chris Lattnerd934c702004-04-02 20:23:17 +00005069 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005070 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005071 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005072 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005073 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005074 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005075 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005076 case ICmpInst::ICMP_EQ: { // while (X == Y)
5077 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005078 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5079 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005080 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005081 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005082 case ICmpInst::ICMP_SLT:
5083 case ICmpInst::ICMP_ULT: { // while (X < Y)
5084 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005085 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005086 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005087 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005088 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005089 case ICmpInst::ICMP_SGT:
5090 case ICmpInst::ICMP_UGT: { // while (X > Y)
5091 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005092 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005093 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005094 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005095 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005096 default:
Chris Lattner09169212004-04-02 20:26:46 +00005097#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005098 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00005099 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00005100 dbgs() << "[unsigned] ";
5101 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00005102 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00005103 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005104#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00005105 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005106 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00005107 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005108}
5109
Benjamin Kramer5a188542014-02-11 15:44:32 +00005110ScalarEvolution::ExitLimit
5111ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
5112 SwitchInst *Switch,
5113 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005114 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005115 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5116
5117 // Give up if the exit is the default dest of a switch.
5118 if (Switch->getDefaultDest() == ExitingBlock)
5119 return getCouldNotCompute();
5120
5121 assert(L->contains(Switch->getDefaultDest()) &&
5122 "Default case must not exit the loop!");
5123 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5124 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5125
5126 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005127 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005128 if (EL.hasAnyInfo())
5129 return EL;
5130
5131 return getCouldNotCompute();
5132}
5133
Chris Lattnerec901cc2004-10-12 01:49:27 +00005134static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005135EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5136 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005137 const SCEV *InVal = SE.getConstant(C);
5138 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005139 assert(isa<SCEVConstant>(Val) &&
5140 "Evaluation of SCEV at constant didn't fold correctly?");
5141 return cast<SCEVConstant>(Val)->getValue();
5142}
5143
Andrew Trick3ca3f982011-07-26 17:19:55 +00005144/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005145/// 'icmp op load X, cst', try to see if we can compute the backedge
5146/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005147ScalarEvolution::ExitLimit
5148ScalarEvolution::ComputeLoadConstantCompareExitLimit(
5149 LoadInst *LI,
5150 Constant *RHS,
5151 const Loop *L,
5152 ICmpInst::Predicate predicate) {
5153
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005154 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005155
5156 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005157 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005158 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005159 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005160
5161 // Make sure that it is really a constant global we are gepping, with an
5162 // initializer, and make sure the first IDX is really 0.
5163 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005164 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005165 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5166 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005167 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005168
5169 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005170 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005171 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005172 unsigned VarIdxNum = 0;
5173 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5174 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5175 Indexes.push_back(CI);
5176 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005177 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005178 VarIdx = GEP->getOperand(i);
5179 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005180 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005181 }
5182
Andrew Trick7004e4b2012-03-26 22:33:59 +00005183 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5184 if (!VarIdx)
5185 return getCouldNotCompute();
5186
Chris Lattnerec901cc2004-10-12 01:49:27 +00005187 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5188 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005189 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005190 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005191
5192 // We can only recognize very limited forms of loop index expressions, in
5193 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005194 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005195 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005196 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5197 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005198 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005199
5200 unsigned MaxSteps = MaxBruteForceIterations;
5201 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005202 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005203 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005204 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005205
5206 // Form the GEP offset.
5207 Indexes[VarIdxNum] = Val;
5208
Chris Lattnere166a852012-01-24 05:49:24 +00005209 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5210 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005211 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005212
5213 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005214 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005215 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005216 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005217#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005218 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00005219 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5220 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00005221#endif
5222 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005223 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005224 }
5225 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005226 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005227}
5228
5229
Chris Lattnerdd730472004-04-17 22:58:41 +00005230/// CanConstantFold - Return true if we can constant fold an instruction of the
5231/// specified type, assuming that all operands were constants.
5232static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005233 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005234 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5235 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005236 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005237
Chris Lattnerdd730472004-04-17 22:58:41 +00005238 if (const CallInst *CI = dyn_cast<CallInst>(I))
5239 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005240 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005241 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005242}
5243
Andrew Trick3a86ba72011-10-05 03:25:31 +00005244/// Determine whether this instruction can constant evolve within this loop
5245/// assuming its operands can all constant evolve.
5246static bool canConstantEvolve(Instruction *I, const Loop *L) {
5247 // An instruction outside of the loop can't be derived from a loop PHI.
5248 if (!L->contains(I)) return false;
5249
5250 if (isa<PHINode>(I)) {
5251 if (L->getHeader() == I->getParent())
5252 return true;
5253 else
5254 // We don't currently keep track of the control flow needed to evaluate
5255 // PHIs, so we cannot handle PHIs inside of loops.
5256 return false;
5257 }
5258
5259 // If we won't be able to constant fold this expression even if the operands
5260 // are constants, bail early.
5261 return CanConstantFold(I);
5262}
5263
5264/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5265/// recursing through each instruction operand until reaching a loop header phi.
5266static PHINode *
5267getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005268 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005269
5270 // Otherwise, we can evaluate this instruction if all of its operands are
5271 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005272 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005273 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5274 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5275
5276 if (isa<Constant>(*OpI)) continue;
5277
5278 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00005279 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005280
5281 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005282 if (!P)
5283 // If this operand is already visited, reuse the prior result.
5284 // We may have P != PHI if this is the deepest point at which the
5285 // inconsistent paths meet.
5286 P = PHIMap.lookup(OpInst);
5287 if (!P) {
5288 // Recurse and memoize the results, whether a phi is found or not.
5289 // This recursive call invalidates pointers into PHIMap.
5290 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5291 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005292 }
Craig Topper9f008862014-04-15 04:59:12 +00005293 if (!P)
5294 return nullptr; // Not evolving from PHI
5295 if (PHI && PHI != P)
5296 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005297 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005298 }
5299 // This is a expression evolving from a constant PHI!
5300 return PHI;
5301}
5302
Chris Lattnerdd730472004-04-17 22:58:41 +00005303/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5304/// in the loop that V is derived from. We allow arbitrary operations along the
5305/// way, but the operands of an operation must either be constants or a value
5306/// derived from a constant PHI. If this expression does not fit with these
5307/// constraints, return null.
5308static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005309 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005310 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005311
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005312 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005313 return PN;
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005314 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005315
Andrew Trick3a86ba72011-10-05 03:25:31 +00005316 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005317 DenseMap<Instruction *, PHINode *> PHIMap;
5318 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005319}
5320
5321/// EvaluateExpression - Given an expression that passes the
5322/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5323/// in the loop has the value PHIVal. If we can't fold this expression for some
5324/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005325static Constant *EvaluateExpression(Value *V, const Loop *L,
5326 DenseMap<Instruction *, Constant *> &Vals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005327 const DataLayout *DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005328 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005329 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005330 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005331 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005332 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005333
Andrew Trick3a86ba72011-10-05 03:25:31 +00005334 if (Constant *C = Vals.lookup(I)) return C;
5335
Nick Lewyckya6674c72011-10-22 19:58:20 +00005336 // An instruction inside the loop depends on a value outside the loop that we
5337 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005338 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005339
5340 // An unmapped PHI can be due to a branch or another loop inside this loop,
5341 // or due to this not being the initial iteration through a loop where we
5342 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005343 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005344
Dan Gohmanf820bd32010-06-22 13:15:46 +00005345 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005346
5347 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005348 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5349 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005350 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005351 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005352 continue;
5353 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005354 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005355 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005356 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005357 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005358 }
5359
Nick Lewyckya6674c72011-10-22 19:58:20 +00005360 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005361 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005362 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005363 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5364 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005365 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005366 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005367 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005368 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005369}
5370
5371/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5372/// in the header of its containing loop, we know the loop executes a
5373/// constant number of times, and the PHI node is just a recurrence
5374/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005375Constant *
5376ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005377 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005378 const Loop *L) {
Dan Gohman0daf6872011-05-09 18:44:09 +00005379 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattnerdd730472004-04-17 22:58:41 +00005380 ConstantEvolutionLoopExitValue.find(PN);
5381 if (I != ConstantEvolutionLoopExitValue.end())
5382 return I->second;
5383
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005384 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005385 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005386
5387 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5388
Andrew Trick3a86ba72011-10-05 03:25:31 +00005389 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005390 BasicBlock *Header = L->getHeader();
5391 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005392
Chris Lattnerdd730472004-04-17 22:58:41 +00005393 // Since the loop is canonicalized, the PHI node must have two entries. One
5394 // entry must be a constant (coming in from outside of the loop), and the
5395 // second must be derived from the same PHI.
5396 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005397 PHINode *PHI = nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005398 for (BasicBlock::iterator I = Header->begin();
5399 (PHI = dyn_cast<PHINode>(I)); ++I) {
5400 Constant *StartCST =
5401 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005402 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005403 CurrentIterVals[PHI] = StartCST;
5404 }
5405 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005406 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005407
5408 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattnerdd730472004-04-17 22:58:41 +00005409
5410 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005411 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005412 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005413
Dan Gohman0bddac12009-02-24 18:55:53 +00005414 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005415 unsigned IterationNum = 0;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005416 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005417 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005418 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005419
Nick Lewyckya6674c72011-10-22 19:58:20 +00005420 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005421 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005422 DenseMap<Instruction *, Constant *> NextIterVals;
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005423 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005424 TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005425 if (!NextPHI)
5426 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005427 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005428
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005429 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5430
Nick Lewyckya6674c72011-10-22 19:58:20 +00005431 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5432 // cease to be able to evaluate one of them or if they stop evolving,
5433 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005434 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005435 for (DenseMap<Instruction *, Constant *>::const_iterator
5436 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5437 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005438 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005439 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5440 }
5441 // We use two distinct loops because EvaluateExpression may invalidate any
5442 // iterators into CurrentIterVals.
5443 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5444 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5445 PHINode *PHI = I->first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005446 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005447 if (!NextPHI) { // Not already computed.
5448 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005449 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005450 }
5451 if (NextPHI != I->second)
5452 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005453 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005454
5455 // If all entries in CurrentIterVals == NextIterVals then we can stop
5456 // iterating, the loop can't continue to change.
5457 if (StoppedEvolving)
5458 return RetVal = CurrentIterVals[PN];
5459
Andrew Trick3a86ba72011-10-05 03:25:31 +00005460 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005461 }
5462}
5463
Andrew Trick3ca3f982011-07-26 17:19:55 +00005464/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner4021d1a2004-04-17 18:36:24 +00005465/// constant number of times (the condition evolves only from constants),
5466/// try to evaluate a few iterations of the loop until we get the exit
5467/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005468/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewyckya6674c72011-10-22 19:58:20 +00005469const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5470 Value *Cond,
5471 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005472 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005473 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005474
Dan Gohman866971e2010-06-19 14:17:24 +00005475 // If the loop is canonicalized, the PHI will have exactly two entries.
5476 // That's the only form we support here.
5477 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5478
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005479 DenseMap<Instruction *, Constant *> CurrentIterVals;
5480 BasicBlock *Header = L->getHeader();
5481 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5482
Dan Gohman866971e2010-06-19 14:17:24 +00005483 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner4021d1a2004-04-17 18:36:24 +00005484 // second must be derived from the same PHI.
5485 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005486 PHINode *PHI = nullptr;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005487 for (BasicBlock::iterator I = Header->begin();
5488 (PHI = dyn_cast<PHINode>(I)); ++I) {
5489 Constant *StartCST =
5490 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005491 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005492 CurrentIterVals[PHI] = StartCST;
5493 }
5494 if (!CurrentIterVals.count(PN))
5495 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005496
5497 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5498 // the loop symbolically to determine when the condition gets a value of
5499 // "ExitWhen".
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005500
Andrew Trick90c7a102011-11-16 00:52:40 +00005501 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005502 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng75b871f2007-01-11 12:24:14 +00005503 ConstantInt *CondVal =
Chad Rosiere6de63d2011-12-01 21:29:16 +00005504 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005505 DL, TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005506
Zhou Sheng75b871f2007-01-11 12:24:14 +00005507 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005508 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005509
Reid Spencer983e3b32007-03-01 07:25:48 +00005510 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005511 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005512 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005513 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005514
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005515 // Update all the PHI nodes for the next iteration.
5516 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005517
5518 // Create a list of which PHIs we need to compute. We want to do this before
5519 // calling EvaluateExpression on them because that may invalidate iterators
5520 // into CurrentIterVals.
5521 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005522 for (DenseMap<Instruction *, Constant *>::const_iterator
5523 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5524 PHINode *PHI = dyn_cast<PHINode>(I->first);
5525 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005526 PHIsToCompute.push_back(PHI);
5527 }
5528 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5529 E = PHIsToCompute.end(); I != E; ++I) {
5530 PHINode *PHI = *I;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005531 Constant *&NextPHI = NextIterVals[PHI];
5532 if (NextPHI) continue; // Already computed!
5533
5534 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005535 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005536 }
5537 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005538 }
5539
5540 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005541 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005542}
5543
Dan Gohman237d9e52009-09-03 15:00:26 +00005544/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005545/// at the specified scope in the program. The L value specifies a loop
5546/// nest to evaluate the expression at, where null is the top-level or a
5547/// specified loop is immediately inside of the loop.
5548///
5549/// This method can be used to compute the exit value for a variable defined
5550/// in a loop by querying what the value will hold in the parent loop.
5551///
Dan Gohman8ca08852009-05-24 23:25:42 +00005552/// In the case that a relevant loop exit value cannot be computed, the
5553/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005554const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005555 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005556 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5557 for (unsigned u = 0; u < Values.size(); u++) {
5558 if (Values[u].first == L)
5559 return Values[u].second ? Values[u].second : V;
5560 }
Craig Topper9f008862014-04-15 04:59:12 +00005561 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005562 // Otherwise compute it.
5563 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005564 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5565 for (unsigned u = Values2.size(); u > 0; u--) {
5566 if (Values2[u - 1].first == L) {
5567 Values2[u - 1].second = C;
5568 break;
5569 }
5570 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005571 return C;
5572}
5573
Nick Lewyckya6674c72011-10-22 19:58:20 +00005574/// This builds up a Constant using the ConstantExpr interface. That way, we
5575/// will return Constants for objects which aren't represented by a
5576/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5577/// Returns NULL if the SCEV isn't representable as a Constant.
5578static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005579 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005580 case scCouldNotCompute:
5581 case scAddRecExpr:
5582 break;
5583 case scConstant:
5584 return cast<SCEVConstant>(V)->getValue();
5585 case scUnknown:
5586 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5587 case scSignExtend: {
5588 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5589 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5590 return ConstantExpr::getSExt(CastOp, SS->getType());
5591 break;
5592 }
5593 case scZeroExtend: {
5594 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5595 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5596 return ConstantExpr::getZExt(CastOp, SZ->getType());
5597 break;
5598 }
5599 case scTruncate: {
5600 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5601 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5602 return ConstantExpr::getTrunc(CastOp, ST->getType());
5603 break;
5604 }
5605 case scAddExpr: {
5606 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5607 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005608 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5609 unsigned AS = PTy->getAddressSpace();
5610 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5611 C = ConstantExpr::getBitCast(C, DestPtrTy);
5612 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005613 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5614 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005615 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005616
5617 // First pointer!
5618 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005619 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005620 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005621 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005622 // The offsets have been converted to bytes. We can add bytes to an
5623 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005624 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005625 }
5626
5627 // Don't bother trying to sum two pointers. We probably can't
5628 // statically compute a load that results from it anyway.
5629 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00005630 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005631
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005632 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5633 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00005634 C2 = ConstantExpr::getIntegerCast(
5635 C2, Type::getInt32Ty(C->getContext()), true);
5636 C = ConstantExpr::getGetElementPtr(C, C2);
5637 } else
5638 C = ConstantExpr::getAdd(C, C2);
5639 }
5640 return C;
5641 }
5642 break;
5643 }
5644 case scMulExpr: {
5645 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5646 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5647 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00005648 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005649 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5650 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005651 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005652 C = ConstantExpr::getMul(C, C2);
5653 }
5654 return C;
5655 }
5656 break;
5657 }
5658 case scUDivExpr: {
5659 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5660 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5661 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5662 if (LHS->getType() == RHS->getType())
5663 return ConstantExpr::getUDiv(LHS, RHS);
5664 break;
5665 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00005666 case scSMaxExpr:
5667 case scUMaxExpr:
5668 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005669 }
Craig Topper9f008862014-04-15 04:59:12 +00005670 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005671}
5672
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005673const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005674 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00005675
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005676 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00005677 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00005678 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005679 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005680 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00005681 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5682 if (PHINode *PN = dyn_cast<PHINode>(I))
5683 if (PN->getParent() == LI->getHeader()) {
5684 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00005685 // to see if the loop that contains it has a known backedge-taken
5686 // count. If so, we may be able to force computation of the exit
5687 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00005688 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00005689 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00005690 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005691 // Okay, we know how many times the containing loop executes. If
5692 // this is a constant evolving PHI node, get the final value at
5693 // the specified iteration number.
5694 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00005695 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00005696 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00005697 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00005698 }
5699 }
5700
Reid Spencere6328ca2006-12-04 21:33:23 +00005701 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00005702 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00005703 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00005704 // result. This is particularly useful for computing loop exit values.
5705 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005706 SmallVector<Constant *, 4> Operands;
5707 bool MadeImprovement = false;
Chris Lattnerdd730472004-04-17 22:58:41 +00005708 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5709 Value *Op = I->getOperand(i);
5710 if (Constant *C = dyn_cast<Constant>(Op)) {
5711 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005712 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00005713 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005714
5715 // If any of the operands is non-constant and if they are
5716 // non-integer and non-pointer, don't even try to analyze them
5717 // with scev techniques.
5718 if (!isSCEVable(Op->getType()))
5719 return V;
5720
5721 const SCEV *OrigV = getSCEV(Op);
5722 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5723 MadeImprovement |= OrigV != OpV;
5724
Nick Lewyckya6674c72011-10-22 19:58:20 +00005725 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005726 if (!C) return V;
5727 if (C->getType() != Op->getType())
5728 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5729 Op->getType(),
5730 false),
5731 C, Op->getType());
5732 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00005733 }
Dan Gohmance973df2009-06-24 04:48:43 +00005734
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005735 // Check to see if getSCEVAtScope actually made an improvement.
5736 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00005737 Constant *C = nullptr;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005738 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5739 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005740 Operands[0], Operands[1], DL,
Chad Rosier43a33062011-12-02 01:26:24 +00005741 TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005742 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5743 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005744 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005745 } else
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005746 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005747 Operands, DL, TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005748 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00005749 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005750 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005751 }
5752 }
5753
5754 // This is some other type of SCEVUnknown, just return it.
5755 return V;
5756 }
5757
Dan Gohmana30370b2009-05-04 22:02:23 +00005758 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005759 // Avoid performing the look-up in the common case where the specified
5760 // expression has no loop-variant portions.
5761 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005762 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005763 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005764 // Okay, at least one of these operands is loop variant but might be
5765 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00005766 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5767 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00005768 NewOps.push_back(OpAtScope);
5769
5770 for (++i; i != e; ++i) {
5771 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005772 NewOps.push_back(OpAtScope);
5773 }
5774 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005775 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005776 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005777 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005778 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005779 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005780 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005781 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00005782 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005783 }
5784 }
5785 // If we got here, all operands are loop invariant.
5786 return Comm;
5787 }
5788
Dan Gohmana30370b2009-05-04 22:02:23 +00005789 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005790 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5791 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00005792 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5793 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00005794 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00005795 }
5796
5797 // If this is a loop recurrence for a loop that does not contain L, then we
5798 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00005799 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005800 // First, attempt to evaluate each operand.
5801 // Avoid performing the look-up in the common case where the specified
5802 // expression has no loop-variant portions.
5803 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5804 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5805 if (OpAtScope == AddRec->getOperand(i))
5806 continue;
5807
5808 // Okay, at least one of these operands is loop variant but might be
5809 // foldable. Build a new instance of the folded commutative expression.
5810 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5811 AddRec->op_begin()+i);
5812 NewOps.push_back(OpAtScope);
5813 for (++i; i != e; ++i)
5814 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5815
Andrew Trick759ba082011-04-27 01:21:25 +00005816 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00005817 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00005818 AddRec->getNoWrapFlags(SCEV::FlagNW));
5819 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00005820 // The addrec may be folded to a nonrecurrence, for example, if the
5821 // induction variable is multiplied by zero after constant folding. Go
5822 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00005823 if (!AddRec)
5824 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005825 break;
5826 }
5827
5828 // If the scope is outside the addrec's loop, evaluate it by using the
5829 // loop exit value of the addrec.
5830 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005831 // To evaluate this recurrence, we need to know how many times the AddRec
5832 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005833 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005834 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00005835
Eli Friedman61f67622008-08-04 23:49:06 +00005836 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005837 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00005838 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005839
Dan Gohman8ca08852009-05-24 23:25:42 +00005840 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00005841 }
5842
Dan Gohmana30370b2009-05-04 22:02:23 +00005843 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005844 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005845 if (Op == Cast->getOperand())
5846 return Cast; // must be loop invariant
5847 return getZeroExtendExpr(Op, Cast->getType());
5848 }
5849
Dan Gohmana30370b2009-05-04 22:02:23 +00005850 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005851 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005852 if (Op == Cast->getOperand())
5853 return Cast; // must be loop invariant
5854 return getSignExtendExpr(Op, Cast->getType());
5855 }
5856
Dan Gohmana30370b2009-05-04 22:02:23 +00005857 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005858 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005859 if (Op == Cast->getOperand())
5860 return Cast; // must be loop invariant
5861 return getTruncateExpr(Op, Cast->getType());
5862 }
5863
Torok Edwinfbcc6632009-07-14 16:55:14 +00005864 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005865}
5866
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005867/// getSCEVAtScope - This is a convenience function which does
5868/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00005869const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005870 return getSCEVAtScope(getSCEV(V), L);
5871}
5872
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005873/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5874/// following equation:
5875///
5876/// A * X = B (mod N)
5877///
5878/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5879/// A and B isn't important.
5880///
5881/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005882static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005883 ScalarEvolution &SE) {
5884 uint32_t BW = A.getBitWidth();
5885 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5886 assert(A != 0 && "A must be non-zero.");
5887
5888 // 1. D = gcd(A, N)
5889 //
5890 // The gcd of A and N may have only one prime factor: 2. The number of
5891 // trailing zeros in A is its multiplicity
5892 uint32_t Mult2 = A.countTrailingZeros();
5893 // D = 2^Mult2
5894
5895 // 2. Check if B is divisible by D.
5896 //
5897 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5898 // is not less than multiplicity of this prime factor for D.
5899 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00005900 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005901
5902 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5903 // modulo (N / D).
5904 //
5905 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5906 // bit width during computations.
5907 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5908 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00005909 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005910 APInt I = AD.multiplicativeInverse(Mod);
5911
5912 // 4. Compute the minimum unsigned root of the equation:
5913 // I * (B / D) mod (N / D)
5914 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5915
5916 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5917 // bits.
5918 return SE.getConstant(Result.trunc(BW));
5919}
Chris Lattnerd934c702004-04-02 20:23:17 +00005920
5921/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5922/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5923/// might be the same) or two SCEVCouldNotCompute objects.
5924///
Dan Gohmanaf752342009-07-07 17:06:11 +00005925static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00005926SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005927 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00005928 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5929 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5930 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00005931
Chris Lattnerd934c702004-04-02 20:23:17 +00005932 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00005933 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00005934 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005935 return std::make_pair(CNC, CNC);
5936 }
5937
Reid Spencer983e3b32007-03-01 07:25:48 +00005938 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00005939 const APInt &L = LC->getValue()->getValue();
5940 const APInt &M = MC->getValue()->getValue();
5941 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00005942 APInt Two(BitWidth, 2);
5943 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00005944
Dan Gohmance973df2009-06-24 04:48:43 +00005945 {
Reid Spencer983e3b32007-03-01 07:25:48 +00005946 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00005947 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00005948 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5949 // The B coefficient is M-N/2
5950 APInt B(M);
5951 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00005952
Reid Spencer983e3b32007-03-01 07:25:48 +00005953 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00005954 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00005955
Reid Spencer983e3b32007-03-01 07:25:48 +00005956 // Compute the B^2-4ac term.
5957 APInt SqrtTerm(B);
5958 SqrtTerm *= B;
5959 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00005960
Nick Lewyckyfb780832012-08-01 09:14:36 +00005961 if (SqrtTerm.isNegative()) {
5962 // The loop is provably infinite.
5963 const SCEV *CNC = SE.getCouldNotCompute();
5964 return std::make_pair(CNC, CNC);
5965 }
5966
Reid Spencer983e3b32007-03-01 07:25:48 +00005967 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5968 // integer value or else APInt::sqrt() will assert.
5969 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00005970
Dan Gohmance973df2009-06-24 04:48:43 +00005971 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00005972 // The divisions must be performed as signed divisions.
5973 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00005974 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00005975 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00005976 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00005977 return std::make_pair(CNC, CNC);
5978 }
5979
Owen Anderson47db9412009-07-22 00:24:57 +00005980 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00005981
5982 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00005983 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00005984 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00005985 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00005986
Dan Gohmance973df2009-06-24 04:48:43 +00005987 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00005988 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00005989 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00005990}
5991
5992/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00005993/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00005994///
5995/// This is only used for loops with a "x != y" exit test. The exit condition is
5996/// now expressed as a single expression, V = x-y. So the exit test is
5997/// effectively V != 0. We know and take advantage of the fact that this
5998/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005999ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006000ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006001 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006002 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006003 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006004 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006005 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006006 }
6007
Dan Gohman48f82222009-05-04 22:30:44 +00006008 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006009 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006010 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006011
Chris Lattnerdff679f2011-01-09 22:39:48 +00006012 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6013 // the quadratic equation to solve it.
6014 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6015 std::pair<const SCEV *,const SCEV *> Roots =
6016 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006017 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6018 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006019 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00006020#if 0
David Greenedf1c4972009-12-23 22:18:14 +00006021 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00006022 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00006023#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00006024 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006025 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006026 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6027 R1->getValue(),
6028 R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00006029 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00006030 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006031
Chris Lattnerd934c702004-04-02 20:23:17 +00006032 // We can only use this value if the chrec ends up with an exact zero
6033 // value at this index. When solving for "X*X != 5", for example, we
6034 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006035 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006036 if (Val->isZero())
6037 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006038 }
6039 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006040 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006041 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006042
Chris Lattnerdff679f2011-01-09 22:39:48 +00006043 // Otherwise we can only handle this if it is affine.
6044 if (!AddRec->isAffine())
6045 return getCouldNotCompute();
6046
6047 // If this is an affine expression, the execution count of this branch is
6048 // the minimum unsigned root of the following equation:
6049 //
6050 // Start + Step*N = 0 (mod 2^BW)
6051 //
6052 // equivalent to:
6053 //
6054 // Step*N = -Start (mod 2^BW)
6055 //
6056 // where BW is the common bit width of Start and Step.
6057
6058 // Get the initial value for the loop.
6059 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6060 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6061
6062 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006063 //
6064 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6065 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6066 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6067 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006068 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006069 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006070 return getCouldNotCompute();
6071
Andrew Trick8b55b732011-03-14 16:50:06 +00006072 // For positive steps (counting up until unsigned overflow):
6073 // N = -Start/Step (as unsigned)
6074 // For negative steps (counting down to zero):
6075 // N = Start/-Step
6076 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00006077 bool CountDown = StepC->getValue()->getValue().isNegative();
6078 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006079
6080 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006081 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6082 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006083 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6084 ConstantRange CR = getUnsignedRange(Start);
6085 const SCEV *MaxBECount;
6086 if (!CountDown && CR.getUnsignedMin().isMinValue())
6087 // When counting up, the worst starting value is 1, not 0.
6088 MaxBECount = CR.getUnsignedMax().isMinValue()
6089 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6090 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6091 else
6092 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6093 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006094 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006095 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006096
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006097 // As a special case, handle the instance where Step is a positive power of
6098 // two. In this case, determining whether Step divides Distance evenly can be
6099 // done by counting and comparing the number of trailing zeros of Step and
6100 // Distance.
6101 if (!CountDown) {
6102 const APInt &StepV = StepC->getValue()->getValue();
6103 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
6104 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6105 // case is not handled as this code is guarded by !CountDown.
6106 if (StepV.isPowerOf2() &&
6107 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros())
6108 return getUDivExactExpr(Distance, Step);
6109 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006110
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006111 // If the condition controls loop exit (the loop exits only if the expression
6112 // is true) and the addition is no-wrap we can use unsigned divide to
6113 // compute the backedge count. In this case, the step may not divide the
6114 // distance, but we don't care because if the condition is "missed" the loop
6115 // will have undefined behavior due to wrapping.
6116 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6117 const SCEV *Exact =
6118 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6119 return ExitLimit(Exact, Exact);
6120 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006121
Chris Lattnerdff679f2011-01-09 22:39:48 +00006122 // Then, try to solve the above equation provided that Start is constant.
6123 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6124 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6125 -StartC->getValue()->getValue(),
6126 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006127 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006128}
6129
6130/// HowFarToNonZero - Return the number of times a backedge checking the
6131/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006132/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006133ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006134ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006135 // Loops that look like: while (X == 0) are very strange indeed. We don't
6136 // handle them yet except for the trivial case. This could be expanded in the
6137 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006138
Chris Lattnerd934c702004-04-02 20:23:17 +00006139 // If the value is a constant, check to see if it is known to be non-zero
6140 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006141 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006142 if (!C->getValue()->isNullValue())
Dan Gohman1d2ded72010-05-03 22:09:21 +00006143 return getConstant(C->getType(), 0);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006144 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006145 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006146
Chris Lattnerd934c702004-04-02 20:23:17 +00006147 // We could implement others, but I really doubt anyone writes loops like
6148 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006149 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006150}
6151
Dan Gohmanf9081a22008-09-15 22:18:04 +00006152/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6153/// (which may not be an immediate predecessor) which has exactly one
6154/// successor from which BB is reachable, or null if no such block is
6155/// found.
6156///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006157std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006158ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006159 // If the block has a unique predecessor, then there is no path from the
6160 // predecessor to the block that does not go through the direct edge
6161 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006162 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006163 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006164
6165 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006166 // If the header has a unique predecessor outside the loop, it must be
6167 // a block that has exactly one successor that can reach the loop.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006168 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006169 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006170
Dan Gohman4e3c1132010-04-15 16:19:08 +00006171 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006172}
6173
Dan Gohman450f4e02009-06-20 00:35:32 +00006174/// HasSameValue - SCEV structural equivalence is usually sufficient for
6175/// testing whether two expressions are equal, however for the purposes of
6176/// looking for a condition guarding a loop, it can be useful to be a little
6177/// more general, since a front-end may have replicated the controlling
6178/// expression.
6179///
Dan Gohmanaf752342009-07-07 17:06:11 +00006180static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006181 // Quick check to see if they are the same SCEV.
6182 if (A == B) return true;
6183
6184 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6185 // two different instructions with the same value. Check for this case.
6186 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6187 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6188 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6189 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman2d085562009-08-25 17:56:57 +00006190 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman450f4e02009-06-20 00:35:32 +00006191 return true;
6192
6193 // Otherwise assume they may have a different value.
6194 return false;
6195}
6196
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006197/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006198/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006199///
6200bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006201 const SCEV *&LHS, const SCEV *&RHS,
6202 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006203 bool Changed = false;
6204
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006205 // If we hit the max recursion limit bail out.
6206 if (Depth >= 3)
6207 return false;
6208
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006209 // Canonicalize a constant to the right side.
6210 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6211 // Check for both operands constant.
6212 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6213 if (ConstantExpr::getICmp(Pred,
6214 LHSC->getValue(),
6215 RHSC->getValue())->isNullValue())
6216 goto trivially_false;
6217 else
6218 goto trivially_true;
6219 }
6220 // Otherwise swap the operands to put the constant on the right.
6221 std::swap(LHS, RHS);
6222 Pred = ICmpInst::getSwappedPredicate(Pred);
6223 Changed = true;
6224 }
6225
6226 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006227 // addrec's loop, put the addrec on the left. Also make a dominance check,
6228 // as both operands could be addrecs loop-invariant in each other's loop.
6229 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6230 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006231 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006232 std::swap(LHS, RHS);
6233 Pred = ICmpInst::getSwappedPredicate(Pred);
6234 Changed = true;
6235 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006236 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006237
6238 // If there's a constant operand, canonicalize comparisons with boundary
6239 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6240 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6241 const APInt &RA = RC->getValue()->getValue();
6242 switch (Pred) {
6243 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6244 case ICmpInst::ICMP_EQ:
6245 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006246 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6247 if (!RA)
6248 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6249 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006250 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6251 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006252 RHS = AE->getOperand(1);
6253 LHS = ME->getOperand(1);
6254 Changed = true;
6255 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006256 break;
6257 case ICmpInst::ICMP_UGE:
6258 if ((RA - 1).isMinValue()) {
6259 Pred = ICmpInst::ICMP_NE;
6260 RHS = getConstant(RA - 1);
6261 Changed = true;
6262 break;
6263 }
6264 if (RA.isMaxValue()) {
6265 Pred = ICmpInst::ICMP_EQ;
6266 Changed = true;
6267 break;
6268 }
6269 if (RA.isMinValue()) goto trivially_true;
6270
6271 Pred = ICmpInst::ICMP_UGT;
6272 RHS = getConstant(RA - 1);
6273 Changed = true;
6274 break;
6275 case ICmpInst::ICMP_ULE:
6276 if ((RA + 1).isMaxValue()) {
6277 Pred = ICmpInst::ICMP_NE;
6278 RHS = getConstant(RA + 1);
6279 Changed = true;
6280 break;
6281 }
6282 if (RA.isMinValue()) {
6283 Pred = ICmpInst::ICMP_EQ;
6284 Changed = true;
6285 break;
6286 }
6287 if (RA.isMaxValue()) goto trivially_true;
6288
6289 Pred = ICmpInst::ICMP_ULT;
6290 RHS = getConstant(RA + 1);
6291 Changed = true;
6292 break;
6293 case ICmpInst::ICMP_SGE:
6294 if ((RA - 1).isMinSignedValue()) {
6295 Pred = ICmpInst::ICMP_NE;
6296 RHS = getConstant(RA - 1);
6297 Changed = true;
6298 break;
6299 }
6300 if (RA.isMaxSignedValue()) {
6301 Pred = ICmpInst::ICMP_EQ;
6302 Changed = true;
6303 break;
6304 }
6305 if (RA.isMinSignedValue()) goto trivially_true;
6306
6307 Pred = ICmpInst::ICMP_SGT;
6308 RHS = getConstant(RA - 1);
6309 Changed = true;
6310 break;
6311 case ICmpInst::ICMP_SLE:
6312 if ((RA + 1).isMaxSignedValue()) {
6313 Pred = ICmpInst::ICMP_NE;
6314 RHS = getConstant(RA + 1);
6315 Changed = true;
6316 break;
6317 }
6318 if (RA.isMinSignedValue()) {
6319 Pred = ICmpInst::ICMP_EQ;
6320 Changed = true;
6321 break;
6322 }
6323 if (RA.isMaxSignedValue()) goto trivially_true;
6324
6325 Pred = ICmpInst::ICMP_SLT;
6326 RHS = getConstant(RA + 1);
6327 Changed = true;
6328 break;
6329 case ICmpInst::ICMP_UGT:
6330 if (RA.isMinValue()) {
6331 Pred = ICmpInst::ICMP_NE;
6332 Changed = true;
6333 break;
6334 }
6335 if ((RA + 1).isMaxValue()) {
6336 Pred = ICmpInst::ICMP_EQ;
6337 RHS = getConstant(RA + 1);
6338 Changed = true;
6339 break;
6340 }
6341 if (RA.isMaxValue()) goto trivially_false;
6342 break;
6343 case ICmpInst::ICMP_ULT:
6344 if (RA.isMaxValue()) {
6345 Pred = ICmpInst::ICMP_NE;
6346 Changed = true;
6347 break;
6348 }
6349 if ((RA - 1).isMinValue()) {
6350 Pred = ICmpInst::ICMP_EQ;
6351 RHS = getConstant(RA - 1);
6352 Changed = true;
6353 break;
6354 }
6355 if (RA.isMinValue()) goto trivially_false;
6356 break;
6357 case ICmpInst::ICMP_SGT:
6358 if (RA.isMinSignedValue()) {
6359 Pred = ICmpInst::ICMP_NE;
6360 Changed = true;
6361 break;
6362 }
6363 if ((RA + 1).isMaxSignedValue()) {
6364 Pred = ICmpInst::ICMP_EQ;
6365 RHS = getConstant(RA + 1);
6366 Changed = true;
6367 break;
6368 }
6369 if (RA.isMaxSignedValue()) goto trivially_false;
6370 break;
6371 case ICmpInst::ICMP_SLT:
6372 if (RA.isMaxSignedValue()) {
6373 Pred = ICmpInst::ICMP_NE;
6374 Changed = true;
6375 break;
6376 }
6377 if ((RA - 1).isMinSignedValue()) {
6378 Pred = ICmpInst::ICMP_EQ;
6379 RHS = getConstant(RA - 1);
6380 Changed = true;
6381 break;
6382 }
6383 if (RA.isMinSignedValue()) goto trivially_false;
6384 break;
6385 }
6386 }
6387
6388 // Check for obvious equality.
6389 if (HasSameValue(LHS, RHS)) {
6390 if (ICmpInst::isTrueWhenEqual(Pred))
6391 goto trivially_true;
6392 if (ICmpInst::isFalseWhenEqual(Pred))
6393 goto trivially_false;
6394 }
6395
Dan Gohman81585c12010-05-03 16:35:17 +00006396 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6397 // adding or subtracting 1 from one of the operands.
6398 switch (Pred) {
6399 case ICmpInst::ICMP_SLE:
6400 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6401 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006402 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006403 Pred = ICmpInst::ICMP_SLT;
6404 Changed = true;
6405 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006406 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006407 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006408 Pred = ICmpInst::ICMP_SLT;
6409 Changed = true;
6410 }
6411 break;
6412 case ICmpInst::ICMP_SGE:
6413 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006414 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006415 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006416 Pred = ICmpInst::ICMP_SGT;
6417 Changed = true;
6418 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6419 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006420 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006421 Pred = ICmpInst::ICMP_SGT;
6422 Changed = true;
6423 }
6424 break;
6425 case ICmpInst::ICMP_ULE:
6426 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006427 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006428 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006429 Pred = ICmpInst::ICMP_ULT;
6430 Changed = true;
6431 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006432 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006433 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006434 Pred = ICmpInst::ICMP_ULT;
6435 Changed = true;
6436 }
6437 break;
6438 case ICmpInst::ICMP_UGE:
6439 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006440 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006441 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006442 Pred = ICmpInst::ICMP_UGT;
6443 Changed = true;
6444 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006445 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006446 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006447 Pred = ICmpInst::ICMP_UGT;
6448 Changed = true;
6449 }
6450 break;
6451 default:
6452 break;
6453 }
6454
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006455 // TODO: More simplifications are possible here.
6456
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006457 // Recursively simplify until we either hit a recursion limit or nothing
6458 // changes.
6459 if (Changed)
6460 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6461
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006462 return Changed;
6463
6464trivially_true:
6465 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006466 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006467 Pred = ICmpInst::ICMP_EQ;
6468 return true;
6469
6470trivially_false:
6471 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006472 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006473 Pred = ICmpInst::ICMP_NE;
6474 return true;
6475}
6476
Dan Gohmane65c9172009-07-13 21:35:55 +00006477bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6478 return getSignedRange(S).getSignedMax().isNegative();
6479}
6480
6481bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6482 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6483}
6484
6485bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6486 return !getSignedRange(S).getSignedMin().isNegative();
6487}
6488
6489bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6490 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6491}
6492
6493bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6494 return isKnownNegative(S) || isKnownPositive(S);
6495}
6496
6497bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6498 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006499 // Canonicalize the inputs first.
6500 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6501
Dan Gohman07591692010-04-11 22:16:48 +00006502 // If LHS or RHS is an addrec, check to see if the condition is true in
6503 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00006504 // If LHS and RHS are both addrec, both conditions must be true in
6505 // every iteration of the loop.
6506 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6507 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6508 bool LeftGuarded = false;
6509 bool RightGuarded = false;
6510 if (LAR) {
6511 const Loop *L = LAR->getLoop();
6512 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6513 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6514 if (!RAR) return true;
6515 LeftGuarded = true;
6516 }
6517 }
6518 if (RAR) {
6519 const Loop *L = RAR->getLoop();
6520 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6521 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6522 if (!LAR) return true;
6523 RightGuarded = true;
6524 }
6525 }
6526 if (LeftGuarded && RightGuarded)
6527 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006528
Dan Gohman07591692010-04-11 22:16:48 +00006529 // Otherwise see what can be done with known constant ranges.
6530 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6531}
6532
6533bool
6534ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6535 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006536 if (HasSameValue(LHS, RHS))
6537 return ICmpInst::isTrueWhenEqual(Pred);
6538
Dan Gohman07591692010-04-11 22:16:48 +00006539 // This code is split out from isKnownPredicate because it is called from
6540 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00006541 switch (Pred) {
6542 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00006543 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00006544 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006545 std::swap(LHS, RHS);
6546 case ICmpInst::ICMP_SLT: {
6547 ConstantRange LHSRange = getSignedRange(LHS);
6548 ConstantRange RHSRange = getSignedRange(RHS);
6549 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6550 return true;
6551 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6552 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006553 break;
6554 }
6555 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006556 std::swap(LHS, RHS);
6557 case ICmpInst::ICMP_SLE: {
6558 ConstantRange LHSRange = getSignedRange(LHS);
6559 ConstantRange RHSRange = getSignedRange(RHS);
6560 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6561 return true;
6562 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6563 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006564 break;
6565 }
6566 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006567 std::swap(LHS, RHS);
6568 case ICmpInst::ICMP_ULT: {
6569 ConstantRange LHSRange = getUnsignedRange(LHS);
6570 ConstantRange RHSRange = getUnsignedRange(RHS);
6571 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6572 return true;
6573 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6574 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006575 break;
6576 }
6577 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006578 std::swap(LHS, RHS);
6579 case ICmpInst::ICMP_ULE: {
6580 ConstantRange LHSRange = getUnsignedRange(LHS);
6581 ConstantRange RHSRange = getUnsignedRange(RHS);
6582 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6583 return true;
6584 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6585 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006586 break;
6587 }
6588 case ICmpInst::ICMP_NE: {
6589 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6590 return true;
6591 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6592 return true;
6593
6594 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6595 if (isKnownNonZero(Diff))
6596 return true;
6597 break;
6598 }
6599 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00006600 // The check at the top of the function catches the case where
6601 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00006602 break;
6603 }
6604 return false;
6605}
6606
6607/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6608/// protected by a conditional between LHS and RHS. This is used to
6609/// to eliminate casts.
6610bool
6611ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6612 ICmpInst::Predicate Pred,
6613 const SCEV *LHS, const SCEV *RHS) {
6614 // Interpret a null as meaning no loop, where there is obviously no guard
6615 // (interprocedural conditions notwithstanding).
6616 if (!L) return true;
6617
Sanjoy Das1f05c512014-10-10 21:22:34 +00006618 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6619
Dan Gohmane65c9172009-07-13 21:35:55 +00006620 BasicBlock *Latch = L->getLoopLatch();
6621 if (!Latch)
6622 return false;
6623
6624 BranchInst *LoopContinuePredicate =
6625 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006626 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
6627 isImpliedCond(Pred, LHS, RHS,
6628 LoopContinuePredicate->getCondition(),
6629 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
6630 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006631
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006632 // Check conditions due to any @llvm.assume intrinsics.
6633 for (auto &CI : AT->assumptions(F)) {
6634 if (!DT->dominates(CI, Latch->getTerminator()))
6635 continue;
6636
6637 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6638 return true;
6639 }
6640
6641 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006642}
6643
Dan Gohmanb50349a2010-04-11 19:27:13 +00006644/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00006645/// by a conditional between LHS and RHS. This is used to help avoid max
6646/// expressions in loop trip counts, and to eliminate casts.
6647bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00006648ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6649 ICmpInst::Predicate Pred,
6650 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00006651 // Interpret a null as meaning no loop, where there is obviously no guard
6652 // (interprocedural conditions notwithstanding).
6653 if (!L) return false;
6654
Sanjoy Das1f05c512014-10-10 21:22:34 +00006655 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6656
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006657 // Starting at the loop predecessor, climb up the predecessor chain, as long
6658 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00006659 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00006660 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006661 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00006662 Pair.first;
6663 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00006664
6665 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00006666 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00006667 if (!LoopEntryPredicate ||
6668 LoopEntryPredicate->isUnconditional())
6669 continue;
6670
Dan Gohmane18c2d62010-08-10 23:46:30 +00006671 if (isImpliedCond(Pred, LHS, RHS,
6672 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00006673 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00006674 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006675 }
6676
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006677 // Check conditions due to any @llvm.assume intrinsics.
6678 for (auto &CI : AT->assumptions(F)) {
6679 if (!DT->dominates(CI, L->getHeader()))
6680 continue;
6681
6682 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6683 return true;
6684 }
6685
Dan Gohman2a62fd92008-08-12 20:17:31 +00006686 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006687}
6688
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006689/// RAII wrapper to prevent recursive application of isImpliedCond.
6690/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6691/// currently evaluating isImpliedCond.
6692struct MarkPendingLoopPredicate {
6693 Value *Cond;
6694 DenseSet<Value*> &LoopPreds;
6695 bool Pending;
6696
6697 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6698 : Cond(C), LoopPreds(LP) {
6699 Pending = !LoopPreds.insert(Cond).second;
6700 }
6701 ~MarkPendingLoopPredicate() {
6702 if (!Pending)
6703 LoopPreds.erase(Cond);
6704 }
6705};
6706
Dan Gohman430f0cc2009-07-21 23:03:19 +00006707/// isImpliedCond - Test whether the condition described by Pred, LHS,
6708/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006709bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006710 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00006711 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006712 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006713 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6714 if (Mark.Pending)
6715 return false;
6716
Dan Gohman8b0a4192010-03-01 17:49:51 +00006717 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006718 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006719 if (BO->getOpcode() == Instruction::And) {
6720 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006721 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6722 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006723 } else if (BO->getOpcode() == Instruction::Or) {
6724 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006725 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6726 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006727 }
6728 }
6729
Dan Gohmane18c2d62010-08-10 23:46:30 +00006730 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006731 if (!ICI) return false;
6732
Dan Gohmane65c9172009-07-13 21:35:55 +00006733 // Bail if the ICmp's operands' types are wider than the needed type
6734 // before attempting to call getSCEV on them. This avoids infinite
6735 // recursion, since the analysis of widening casts can require loop
6736 // exit condition information for overflow checking, which would
6737 // lead back here.
6738 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman430f0cc2009-07-21 23:03:19 +00006739 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohmane65c9172009-07-13 21:35:55 +00006740 return false;
6741
Andrew Trickfa594032012-11-29 18:35:13 +00006742 // Now that we found a conditional branch that dominates the loop or controls
6743 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00006744 ICmpInst::Predicate FoundPred;
6745 if (Inverse)
6746 FoundPred = ICI->getInversePredicate();
6747 else
6748 FoundPred = ICI->getPredicate();
6749
6750 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6751 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00006752
6753 // Balance the types. The case where FoundLHS' type is wider than
6754 // LHS' type is checked for above.
6755 if (getTypeSizeInBits(LHS->getType()) >
6756 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00006757 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006758 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6759 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6760 } else {
6761 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6762 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6763 }
6764 }
6765
Dan Gohman430f0cc2009-07-21 23:03:19 +00006766 // Canonicalize the query to match the way instcombine will have
6767 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00006768 if (SimplifyICmpOperands(Pred, LHS, RHS))
6769 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00006770 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00006771 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6772 if (FoundLHS == FoundRHS)
6773 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00006774
6775 // Check to see if we can make the LHS or RHS match.
6776 if (LHS == FoundRHS || RHS == FoundLHS) {
6777 if (isa<SCEVConstant>(RHS)) {
6778 std::swap(FoundLHS, FoundRHS);
6779 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6780 } else {
6781 std::swap(LHS, RHS);
6782 Pred = ICmpInst::getSwappedPredicate(Pred);
6783 }
6784 }
6785
6786 // Check whether the found predicate is the same as the desired predicate.
6787 if (FoundPred == Pred)
6788 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6789
6790 // Check whether swapping the found predicate makes it the same as the
6791 // desired predicate.
6792 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6793 if (isa<SCEVConstant>(RHS))
6794 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6795 else
6796 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6797 RHS, LHS, FoundLHS, FoundRHS);
6798 }
6799
Sanjoy Dasc5676df2014-11-13 00:00:58 +00006800 // Check if we can make progress by sharpening ranges.
6801 if (FoundPred == ICmpInst::ICMP_NE &&
6802 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
6803
6804 const SCEVConstant *C = nullptr;
6805 const SCEV *V = nullptr;
6806
6807 if (isa<SCEVConstant>(FoundLHS)) {
6808 C = cast<SCEVConstant>(FoundLHS);
6809 V = FoundRHS;
6810 } else {
6811 C = cast<SCEVConstant>(FoundRHS);
6812 V = FoundLHS;
6813 }
6814
6815 // The guarding predicate tells us that C != V. If the known range
6816 // of V is [C, t), we can sharpen the range to [C + 1, t). The
6817 // range we consider has to correspond to same signedness as the
6818 // predicate we're interested in folding.
6819
6820 APInt Min = ICmpInst::isSigned(Pred) ?
6821 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
6822
6823 if (Min == C->getValue()->getValue()) {
6824 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
6825 // This is true even if (Min + 1) wraps around -- in case of
6826 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
6827
6828 APInt SharperMin = Min + 1;
6829
6830 switch (Pred) {
6831 case ICmpInst::ICMP_SGE:
6832 case ICmpInst::ICMP_UGE:
6833 // We know V `Pred` SharperMin. If this implies LHS `Pred`
6834 // RHS, we're done.
6835 if (isImpliedCondOperands(Pred, LHS, RHS, V,
6836 getConstant(SharperMin)))
6837 return true;
6838
6839 case ICmpInst::ICMP_SGT:
6840 case ICmpInst::ICMP_UGT:
6841 // We know from the range information that (V `Pred` Min ||
6842 // V == Min). We know from the guarding condition that !(V
6843 // == Min). This gives us
6844 //
6845 // V `Pred` Min || V == Min && !(V == Min)
6846 // => V `Pred` Min
6847 //
6848 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
6849
6850 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
6851 return true;
6852
6853 default:
6854 // No change
6855 break;
6856 }
6857 }
6858 }
6859
Dan Gohman430f0cc2009-07-21 23:03:19 +00006860 // Check whether the actual condition is beyond sufficient.
6861 if (FoundPred == ICmpInst::ICMP_EQ)
6862 if (ICmpInst::isTrueWhenEqual(Pred))
6863 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6864 return true;
6865 if (Pred == ICmpInst::ICMP_NE)
6866 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6867 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6868 return true;
6869
6870 // Otherwise assume the worst.
6871 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006872}
6873
Dan Gohman430f0cc2009-07-21 23:03:19 +00006874/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00006875/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006876/// and FoundRHS is true.
6877bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6878 const SCEV *LHS, const SCEV *RHS,
6879 const SCEV *FoundLHS,
6880 const SCEV *FoundRHS) {
6881 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6882 FoundLHS, FoundRHS) ||
6883 // ~x < ~y --> x > y
6884 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6885 getNotSCEV(FoundRHS),
6886 getNotSCEV(FoundLHS));
6887}
6888
Sanjoy Das4555b6d2014-12-15 22:50:15 +00006889
6890/// If Expr computes ~A, return A else return nullptr
6891static const SCEV *MatchNotExpr(const SCEV *Expr) {
6892 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
6893 if (!Add || Add->getNumOperands() != 2) return nullptr;
6894
6895 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0));
6896 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue()))
6897 return nullptr;
6898
6899 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
6900 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr;
6901
6902 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0));
6903 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue()))
6904 return nullptr;
6905
6906 return AddRHS->getOperand(1);
6907}
6908
6909
6910/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
6911template<typename MaxExprType>
6912static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
6913 const SCEV *Candidate) {
6914 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
6915 if (!MaxExpr) return false;
6916
6917 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
6918 return It != MaxExpr->op_end();
6919}
6920
6921
6922/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
6923template<typename MaxExprType>
6924static bool IsMinConsistingOf(ScalarEvolution &SE,
6925 const SCEV *MaybeMinExpr,
6926 const SCEV *Candidate) {
6927 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
6928 if (!MaybeMaxExpr)
6929 return false;
6930
6931 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
6932}
6933
6934
6935/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
6936/// expression?
6937static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
6938 ICmpInst::Predicate Pred,
6939 const SCEV *LHS, const SCEV *RHS) {
6940 switch (Pred) {
6941 default:
6942 return false;
6943
6944 case ICmpInst::ICMP_SGE:
6945 std::swap(LHS, RHS);
6946 // fall through
6947 case ICmpInst::ICMP_SLE:
6948 return
6949 // min(A, ...) <= A
6950 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
6951 // A <= max(A, ...)
6952 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
6953
6954 case ICmpInst::ICMP_UGE:
6955 std::swap(LHS, RHS);
6956 // fall through
6957 case ICmpInst::ICMP_ULE:
6958 return
6959 // min(A, ...) <= A
6960 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
6961 // A <= max(A, ...)
6962 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
6963 }
6964
6965 llvm_unreachable("covered switch fell through?!");
6966}
6967
Dan Gohman430f0cc2009-07-21 23:03:19 +00006968/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00006969/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006970/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00006971bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00006972ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6973 const SCEV *LHS, const SCEV *RHS,
6974 const SCEV *FoundLHS,
6975 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00006976 auto IsKnownPredicateFull =
6977 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
6978 return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
6979 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS);
6980 };
6981
Dan Gohmane65c9172009-07-13 21:35:55 +00006982 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00006983 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6984 case ICmpInst::ICMP_EQ:
6985 case ICmpInst::ICMP_NE:
6986 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6987 return true;
6988 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00006989 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006990 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00006991 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6992 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006993 return true;
6994 break;
6995 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006996 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00006997 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6998 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006999 return true;
7000 break;
7001 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007002 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007003 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
7004 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007005 return true;
7006 break;
7007 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007008 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007009 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
7010 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007011 return true;
7012 break;
7013 }
7014
7015 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007016}
7017
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007018// Verify if an linear IV with positive stride can overflow when in a
7019// less-than comparison, knowing the invariant term of the comparison, the
7020// stride and the knowledge of NSW/NUW flags on the recurrence.
7021bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
7022 bool IsSigned, bool NoWrap) {
7023 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00007024
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007025 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7026 const SCEV *One = getConstant(Stride->getType(), 1);
Andrew Trick2afa3252011-03-09 17:29:58 +00007027
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007028 if (IsSigned) {
7029 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
7030 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
7031 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7032 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00007033
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007034 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
7035 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00007036 }
Dan Gohman01048422009-06-21 23:46:38 +00007037
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007038 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
7039 APInt MaxValue = APInt::getMaxValue(BitWidth);
7040 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7041 .getUnsignedMax();
7042
7043 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
7044 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
7045}
7046
7047// Verify if an linear IV with negative stride can overflow when in a
7048// greater-than comparison, knowing the invariant term of the comparison,
7049// the stride and the knowledge of NSW/NUW flags on the recurrence.
7050bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
7051 bool IsSigned, bool NoWrap) {
7052 if (NoWrap) return false;
7053
7054 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7055 const SCEV *One = getConstant(Stride->getType(), 1);
7056
7057 if (IsSigned) {
7058 APInt MinRHS = getSignedRange(RHS).getSignedMin();
7059 APInt MinValue = APInt::getSignedMinValue(BitWidth);
7060 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7061 .getSignedMax();
7062
7063 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
7064 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
7065 }
7066
7067 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
7068 APInt MinValue = APInt::getMinValue(BitWidth);
7069 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7070 .getUnsignedMax();
7071
7072 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
7073 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
7074}
7075
7076// Compute the backedge taken count knowing the interval difference, the
7077// stride and presence of the equality in the comparison.
7078const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
7079 bool Equality) {
7080 const SCEV *One = getConstant(Step->getType(), 1);
7081 Delta = Equality ? getAddExpr(Delta, Step)
7082 : getAddExpr(Delta, getMinusSCEV(Step, One));
7083 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00007084}
7085
Chris Lattner587a75b2005-08-15 23:33:51 +00007086/// HowManyLessThans - Return the number of times a backedge containing the
7087/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00007088/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00007089///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007090/// @param ControlsExit is true when the LHS < RHS condition directly controls
7091/// the branch (loops exits only if condition is true). In this case, we can use
7092/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00007093ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00007094ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007095 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007096 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007097 // We handle only IV < Invariant
7098 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007099 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007100
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007101 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00007102
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007103 // Avoid weird loops
7104 if (!IV || IV->getLoop() != L || !IV->isAffine())
7105 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007106
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007107 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007108 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007109
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007110 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007111
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007112 // Avoid negative or zero stride values
7113 if (!isKnownPositive(Stride))
7114 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007115
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007116 // Avoid proven overflow cases: this will ensure that the backedge taken count
7117 // will not generate any unsigned overflow. Relaxed no-overflow conditions
7118 // exploit NoWrapFlags, allowing to optimize in presence of undefined
7119 // behaviors like the case of C language.
7120 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
7121 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007122
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007123 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
7124 : ICmpInst::ICMP_ULT;
7125 const SCEV *Start = IV->getStart();
7126 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007127 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
7128 const SCEV *Diff = getMinusSCEV(RHS, Start);
7129 // If we have NoWrap set, then we can assume that the increment won't
7130 // overflow, in which case if RHS - Start is a constant, we don't need to
7131 // do a max operation since we can just figure it out statically
7132 if (NoWrap && isa<SCEVConstant>(Diff)) {
7133 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7134 if (D.isNegative())
7135 End = Start;
7136 } else
7137 End = IsSigned ? getSMaxExpr(RHS, Start)
7138 : getUMaxExpr(RHS, Start);
7139 }
Dan Gohman51aaf022010-01-26 04:40:18 +00007140
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007141 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00007142
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007143 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
7144 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00007145
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007146 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7147 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00007148
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007149 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7150 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
7151 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00007152
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007153 // Although End can be a MAX expression we estimate MaxEnd considering only
7154 // the case End = RHS. This is safe because in the other case (End - Start)
7155 // is zero, leading to a zero maximum backedge taken count.
7156 APInt MaxEnd =
7157 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
7158 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
7159
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00007160 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007161 if (isa<SCEVConstant>(BECount))
7162 MaxBECount = BECount;
7163 else
7164 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
7165 getConstant(MinStride), false);
7166
7167 if (isa<SCEVCouldNotCompute>(MaxBECount))
7168 MaxBECount = BECount;
7169
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007170 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007171}
7172
7173ScalarEvolution::ExitLimit
7174ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
7175 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007176 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007177 // We handle only IV > Invariant
7178 if (!isLoopInvariant(RHS, L))
7179 return getCouldNotCompute();
7180
7181 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
7182
7183 // Avoid weird loops
7184 if (!IV || IV->getLoop() != L || !IV->isAffine())
7185 return getCouldNotCompute();
7186
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007187 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007188 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
7189
7190 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
7191
7192 // Avoid negative or zero stride values
7193 if (!isKnownPositive(Stride))
7194 return getCouldNotCompute();
7195
7196 // Avoid proven overflow cases: this will ensure that the backedge taken count
7197 // will not generate any unsigned overflow. Relaxed no-overflow conditions
7198 // exploit NoWrapFlags, allowing to optimize in presence of undefined
7199 // behaviors like the case of C language.
7200 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
7201 return getCouldNotCompute();
7202
7203 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
7204 : ICmpInst::ICMP_UGT;
7205
7206 const SCEV *Start = IV->getStart();
7207 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007208 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
7209 const SCEV *Diff = getMinusSCEV(RHS, Start);
7210 // If we have NoWrap set, then we can assume that the increment won't
7211 // overflow, in which case if RHS - Start is a constant, we don't need to
7212 // do a max operation since we can just figure it out statically
7213 if (NoWrap && isa<SCEVConstant>(Diff)) {
7214 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7215 if (!D.isNegative())
7216 End = Start;
7217 } else
7218 End = IsSigned ? getSMinExpr(RHS, Start)
7219 : getUMinExpr(RHS, Start);
7220 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007221
7222 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
7223
7224 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
7225 : getUnsignedRange(Start).getUnsignedMax();
7226
7227 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7228 : getUnsignedRange(Stride).getUnsignedMin();
7229
7230 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7231 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
7232 : APInt::getMinValue(BitWidth) + (MinStride - 1);
7233
7234 // Although End can be a MIN expression we estimate MinEnd considering only
7235 // the case End = RHS. This is safe because in the other case (Start - End)
7236 // is zero, leading to a zero maximum backedge taken count.
7237 APInt MinEnd =
7238 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
7239 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
7240
7241
7242 const SCEV *MaxBECount = getCouldNotCompute();
7243 if (isa<SCEVConstant>(BECount))
7244 MaxBECount = BECount;
7245 else
7246 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
7247 getConstant(MinStride), false);
7248
7249 if (isa<SCEVCouldNotCompute>(MaxBECount))
7250 MaxBECount = BECount;
7251
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007252 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00007253}
7254
Chris Lattnerd934c702004-04-02 20:23:17 +00007255/// getNumIterationsInRange - Return the number of iterations of this loop that
7256/// produce values in the specified constant range. Another way of looking at
7257/// this is that it returns the first iteration number where the value is not in
7258/// the condition, thus computing the exit count. If the iteration count can't
7259/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00007260const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00007261 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00007262 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00007263 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007264
7265 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00007266 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00007267 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00007268 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman1d2ded72010-05-03 22:09:21 +00007269 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick8b55b732011-03-14 16:50:06 +00007270 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00007271 getNoWrapFlags(FlagNW));
Dan Gohmana30370b2009-05-04 22:02:23 +00007272 if (const SCEVAddRecExpr *ShiftedAddRec =
7273 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00007274 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00007275 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00007276 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00007277 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007278 }
7279
7280 // The only time we can solve this is when we have all constant indices.
7281 // Otherwise, we cannot determine the overflow conditions.
7282 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7283 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman31efa302009-04-18 17:58:19 +00007284 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007285
7286
7287 // Okay at this point we know that all elements of the chrec are constants and
7288 // that the start element is zero.
7289
7290 // First check to see if the range contains zero. If not, the first
7291 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00007292 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00007293 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman1d2ded72010-05-03 22:09:21 +00007294 return SE.getConstant(getType(), 0);
Misha Brukman01808ca2005-04-21 21:13:18 +00007295
Chris Lattnerd934c702004-04-02 20:23:17 +00007296 if (isAffine()) {
7297 // If this is an affine expression then we have this situation:
7298 // Solve {0,+,A} in Range === Ax in Range
7299
Nick Lewycky52460262007-07-16 02:08:00 +00007300 // We know that zero is in the range. If A is positive then we know that
7301 // the upper value of the range must be the first possible exit value.
7302 // If A is negative then the lower of the range is the last possible loop
7303 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00007304 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00007305 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
7306 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00007307
Nick Lewycky52460262007-07-16 02:08:00 +00007308 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00007309 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00007310 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00007311
7312 // Evaluate at the exit value. If we really did fall out of the valid
7313 // range, then we computed our trip count, otherwise wrap around or other
7314 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00007315 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007316 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00007317 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007318
7319 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00007320 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00007321 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00007322 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00007323 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00007324 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00007325 } else if (isQuadratic()) {
7326 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
7327 // quadratic equation to solve it. To do this, we must frame our problem in
7328 // terms of figuring out when zero is crossed, instead of when
7329 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00007330 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00007331 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00007332 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
7333 // getNoWrapFlags(FlagNW)
7334 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00007335
7336 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00007337 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00007338 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00007339 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7340 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00007341 if (R1) {
7342 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00007343 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00007344 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00007345 R1->getValue(), R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00007346 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00007347 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00007348
Chris Lattnerd934c702004-04-02 20:23:17 +00007349 // Make sure the root is not off by one. The returned iteration should
7350 // not be in the range, but the previous one should be. When solving
7351 // for "X*X < 5", for example, we should not return a root of 2.
7352 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00007353 R1->getValue(),
7354 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007355 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007356 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00007357 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007358 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00007359
Dan Gohmana37eaf22007-10-22 18:31:58 +00007360 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007361 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00007362 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00007363 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007364 }
Misha Brukman01808ca2005-04-21 21:13:18 +00007365
Chris Lattnerd934c702004-04-02 20:23:17 +00007366 // If R1 was not in the range, then it is a good return value. Make
7367 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00007368 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007369 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00007370 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007371 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00007372 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00007373 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007374 }
7375 }
7376 }
7377
Dan Gohman31efa302009-04-18 17:58:19 +00007378 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007379}
7380
Sebastian Pop448712b2014-05-07 18:01:20 +00007381namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007382struct FindUndefs {
7383 bool Found;
7384 FindUndefs() : Found(false) {}
7385
7386 bool follow(const SCEV *S) {
7387 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
7388 if (isa<UndefValue>(C->getValue()))
7389 Found = true;
7390 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
7391 if (isa<UndefValue>(C->getValue()))
7392 Found = true;
7393 }
7394
7395 // Keep looking if we haven't found it yet.
7396 return !Found;
7397 }
7398 bool isDone() const {
7399 // Stop recursion if we have found an undef.
7400 return Found;
7401 }
7402};
7403}
7404
7405// Return true when S contains at least an undef value.
7406static inline bool
7407containsUndefs(const SCEV *S) {
7408 FindUndefs F;
7409 SCEVTraversal<FindUndefs> ST(F);
7410 ST.visitAll(S);
7411
7412 return F.Found;
7413}
7414
7415namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00007416// Collect all steps of SCEV expressions.
7417struct SCEVCollectStrides {
7418 ScalarEvolution &SE;
7419 SmallVectorImpl<const SCEV *> &Strides;
7420
7421 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
7422 : SE(SE), Strides(S) {}
7423
7424 bool follow(const SCEV *S) {
7425 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
7426 Strides.push_back(AR->getStepRecurrence(SE));
7427 return true;
7428 }
7429 bool isDone() const { return false; }
7430};
7431
7432// Collect all SCEVUnknown and SCEVMulExpr expressions.
7433struct SCEVCollectTerms {
7434 SmallVectorImpl<const SCEV *> &Terms;
7435
7436 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
7437 : Terms(T) {}
7438
7439 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007440 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007441 if (!containsUndefs(S))
7442 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00007443
7444 // Stop recursion: once we collected a term, do not walk its operands.
7445 return false;
7446 }
7447
7448 // Keep looking.
7449 return true;
7450 }
7451 bool isDone() const { return false; }
7452};
7453}
7454
7455/// Find parametric terms in this SCEVAddRecExpr.
7456void SCEVAddRecExpr::collectParametricTerms(
7457 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
7458 SmallVector<const SCEV *, 4> Strides;
7459 SCEVCollectStrides StrideCollector(SE, Strides);
7460 visitAll(this, StrideCollector);
7461
7462 DEBUG({
7463 dbgs() << "Strides:\n";
7464 for (const SCEV *S : Strides)
7465 dbgs() << *S << "\n";
7466 });
7467
7468 for (const SCEV *S : Strides) {
7469 SCEVCollectTerms TermCollector(Terms);
7470 visitAll(S, TermCollector);
7471 }
7472
7473 DEBUG({
7474 dbgs() << "Terms:\n";
7475 for (const SCEV *T : Terms)
7476 dbgs() << *T << "\n";
7477 });
7478}
7479
Sebastian Popb1a548f2014-05-12 19:01:53 +00007480static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00007481 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00007482 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00007483 int Last = Terms.size() - 1;
7484 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00007485
Sebastian Pop448712b2014-05-07 18:01:20 +00007486 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00007487 if (Last == 0) {
7488 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007489 SmallVector<const SCEV *, 2> Qs;
7490 for (const SCEV *Op : M->operands())
7491 if (!isa<SCEVConstant>(Op))
7492 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00007493
Sebastian Pope30bd352014-05-27 22:41:56 +00007494 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00007495 }
7496
Sebastian Pope30bd352014-05-27 22:41:56 +00007497 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007498 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007499 }
7500
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007501 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007502 // Normalize the terms before the next call to findArrayDimensionsRec.
7503 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007504 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007505
7506 // Bail out when GCD does not evenly divide one of the terms.
7507 if (!R->isZero())
7508 return false;
7509
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007510 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007511 }
7512
Tobias Grosser3080cf12014-05-08 07:55:34 +00007513 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00007514 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7515 return isa<SCEVConstant>(E);
7516 }),
7517 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00007518
Sebastian Pop448712b2014-05-07 18:01:20 +00007519 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00007520 if (!findArrayDimensionsRec(SE, Terms, Sizes))
7521 return false;
7522
Sebastian Pope30bd352014-05-27 22:41:56 +00007523 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007524 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00007525}
Sebastian Popc62c6792013-11-12 22:47:20 +00007526
Sebastian Pop448712b2014-05-07 18:01:20 +00007527namespace {
7528struct FindParameter {
7529 bool FoundParameter;
7530 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00007531
Sebastian Pop448712b2014-05-07 18:01:20 +00007532 bool follow(const SCEV *S) {
7533 if (isa<SCEVUnknown>(S)) {
7534 FoundParameter = true;
7535 // Stop recursion: we found a parameter.
7536 return false;
7537 }
7538 // Keep looking.
7539 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007540 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007541 bool isDone() const {
7542 // Stop recursion if we have found a parameter.
7543 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00007544 }
Sebastian Popc62c6792013-11-12 22:47:20 +00007545};
7546}
7547
Sebastian Pop448712b2014-05-07 18:01:20 +00007548// Returns true when S contains at least a SCEVUnknown parameter.
7549static inline bool
7550containsParameters(const SCEV *S) {
7551 FindParameter F;
7552 SCEVTraversal<FindParameter> ST(F);
7553 ST.visitAll(S);
7554
7555 return F.FoundParameter;
7556}
7557
7558// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7559static inline bool
7560containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7561 for (const SCEV *T : Terms)
7562 if (containsParameters(T))
7563 return true;
7564 return false;
7565}
7566
7567// Return the number of product terms in S.
7568static inline int numberOfTerms(const SCEV *S) {
7569 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7570 return Expr->getNumOperands();
7571 return 1;
7572}
7573
Sebastian Popa6e58602014-05-27 22:41:45 +00007574static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
7575 if (isa<SCEVConstant>(T))
7576 return nullptr;
7577
7578 if (isa<SCEVUnknown>(T))
7579 return T;
7580
7581 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
7582 SmallVector<const SCEV *, 2> Factors;
7583 for (const SCEV *Op : M->operands())
7584 if (!isa<SCEVConstant>(Op))
7585 Factors.push_back(Op);
7586
7587 return SE.getMulExpr(Factors);
7588 }
7589
7590 return T;
7591}
7592
7593/// Return the size of an element read or written by Inst.
7594const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
7595 Type *Ty;
7596 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
7597 Ty = Store->getValueOperand()->getType();
7598 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00007599 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00007600 else
7601 return nullptr;
7602
7603 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
7604 return getSizeOfExpr(ETy, Ty);
7605}
7606
Sebastian Pop448712b2014-05-07 18:01:20 +00007607/// Second step of delinearization: compute the array dimensions Sizes from the
7608/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00007609void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
7610 SmallVectorImpl<const SCEV *> &Sizes,
7611 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007612
Sebastian Pop53524082014-05-29 19:44:05 +00007613 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00007614 return;
7615
7616 // Early return when Terms do not contain parameters: we do not delinearize
7617 // non parametric SCEVs.
7618 if (!containsParameters(Terms))
7619 return;
7620
7621 DEBUG({
7622 dbgs() << "Terms:\n";
7623 for (const SCEV *T : Terms)
7624 dbgs() << *T << "\n";
7625 });
7626
7627 // Remove duplicates.
7628 std::sort(Terms.begin(), Terms.end());
7629 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7630
7631 // Put larger terms first.
7632 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7633 return numberOfTerms(LHS) > numberOfTerms(RHS);
7634 });
7635
Sebastian Popa6e58602014-05-27 22:41:45 +00007636 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7637
7638 // Divide all terms by the element size.
7639 for (const SCEV *&Term : Terms) {
7640 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007641 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Sebastian Popa6e58602014-05-27 22:41:45 +00007642 Term = Q;
7643 }
7644
7645 SmallVector<const SCEV *, 4> NewTerms;
7646
7647 // Remove constant factors.
7648 for (const SCEV *T : Terms)
7649 if (const SCEV *NewT = removeConstantFactors(SE, T))
7650 NewTerms.push_back(NewT);
7651
Sebastian Pop448712b2014-05-07 18:01:20 +00007652 DEBUG({
7653 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00007654 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00007655 dbgs() << *T << "\n";
7656 });
7657
Sebastian Popa6e58602014-05-27 22:41:45 +00007658 if (NewTerms.empty() ||
7659 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00007660 Sizes.clear();
7661 return;
7662 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007663
Sebastian Popa6e58602014-05-27 22:41:45 +00007664 // The last element to be pushed into Sizes is the size of an element.
7665 Sizes.push_back(ElementSize);
7666
Sebastian Pop448712b2014-05-07 18:01:20 +00007667 DEBUG({
7668 dbgs() << "Sizes:\n";
7669 for (const SCEV *S : Sizes)
7670 dbgs() << *S << "\n";
7671 });
7672}
7673
7674/// Third step of delinearization: compute the access functions for the
7675/// Subscripts based on the dimensions in Sizes.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007676void SCEVAddRecExpr::computeAccessFunctions(
Sebastian Pop448712b2014-05-07 18:01:20 +00007677 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7678 SmallVectorImpl<const SCEV *> &Sizes) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007679
Sebastian Popb1a548f2014-05-12 19:01:53 +00007680 // Early exit in case this SCEV is not an affine multivariate function.
7681 if (Sizes.empty() || !this->isAffine())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007682 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007683
Sebastian Pop28e6b972014-05-27 22:41:51 +00007684 const SCEV *Res = this;
Sebastian Pop448712b2014-05-07 18:01:20 +00007685 int Last = Sizes.size() - 1;
7686 for (int i = Last; i >= 0; i--) {
7687 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007688 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00007689
7690 DEBUG({
7691 dbgs() << "Res: " << *Res << "\n";
7692 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7693 dbgs() << "Res divided by Sizes[i]:\n";
7694 dbgs() << "Quotient: " << *Q << "\n";
7695 dbgs() << "Remainder: " << *R << "\n";
7696 });
7697
7698 Res = Q;
7699
Sebastian Popa6e58602014-05-27 22:41:45 +00007700 // Do not record the last subscript corresponding to the size of elements in
7701 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00007702 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007703
7704 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007705 if (isa<SCEVAddRecExpr>(R)) {
7706 Subscripts.clear();
7707 Sizes.clear();
7708 return;
7709 }
Sebastian Popa6e58602014-05-27 22:41:45 +00007710
Sebastian Pop448712b2014-05-07 18:01:20 +00007711 continue;
7712 }
7713
7714 // Record the access function for the current subscript.
7715 Subscripts.push_back(R);
7716 }
7717
7718 // Also push in last position the remainder of the last division: it will be
7719 // the access function of the innermost dimension.
7720 Subscripts.push_back(Res);
7721
7722 std::reverse(Subscripts.begin(), Subscripts.end());
7723
7724 DEBUG({
7725 dbgs() << "Subscripts:\n";
7726 for (const SCEV *S : Subscripts)
7727 dbgs() << *S << "\n";
7728 });
Sebastian Pop448712b2014-05-07 18:01:20 +00007729}
7730
Sebastian Popc62c6792013-11-12 22:47:20 +00007731/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7732/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00007733/// is the offset start of the array. The SCEV->delinearize algorithm computes
7734/// the multiples of SCEV coefficients: that is a pattern matching of sub
7735/// expressions in the stride and base of a SCEV corresponding to the
7736/// computation of a GCD (greatest common divisor) of base and stride. When
7737/// SCEV->delinearize fails, it returns the SCEV unchanged.
7738///
7739/// For example: when analyzing the memory access A[i][j][k] in this loop nest
7740///
7741/// void foo(long n, long m, long o, double A[n][m][o]) {
7742///
7743/// for (long i = 0; i < n; i++)
7744/// for (long j = 0; j < m; j++)
7745/// for (long k = 0; k < o; k++)
7746/// A[i][j][k] = 1.0;
7747/// }
7748///
7749/// the delinearization input is the following AddRec SCEV:
7750///
7751/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7752///
7753/// From this SCEV, we are able to say that the base offset of the access is %A
7754/// because it appears as an offset that does not divide any of the strides in
7755/// the loops:
7756///
7757/// CHECK: Base offset: %A
7758///
7759/// and then SCEV->delinearize determines the size of some of the dimensions of
7760/// the array as these are the multiples by which the strides are happening:
7761///
7762/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7763///
7764/// Note that the outermost dimension remains of UnknownSize because there are
7765/// no strides that would help identifying the size of the last dimension: when
7766/// the array has been statically allocated, one could compute the size of that
7767/// dimension by dividing the overall size of the array by the size of the known
7768/// dimensions: %m * %o * 8.
7769///
7770/// Finally delinearize provides the access functions for the array reference
7771/// that does correspond to A[i][j][k] of the above C testcase:
7772///
7773/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7774///
7775/// The testcases are checking the output of a function pass:
7776/// DelinearizationPass that walks through all loads and stores of a function
7777/// asking for the SCEV of the memory access with respect to all enclosing
7778/// loops, calling SCEV->delinearize on that and printing the results.
7779
Sebastian Pop28e6b972014-05-27 22:41:51 +00007780void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7781 SmallVectorImpl<const SCEV *> &Subscripts,
7782 SmallVectorImpl<const SCEV *> &Sizes,
7783 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007784 // First step: collect parametric terms.
7785 SmallVector<const SCEV *, 4> Terms;
7786 collectParametricTerms(SE, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00007787
Sebastian Popb1a548f2014-05-12 19:01:53 +00007788 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007789 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007790
Sebastian Pop448712b2014-05-07 18:01:20 +00007791 // Second step: find subscript sizes.
Sebastian Popa6e58602014-05-27 22:41:45 +00007792 SE.findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00007793
Sebastian Popb1a548f2014-05-12 19:01:53 +00007794 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007795 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007796
Sebastian Pop448712b2014-05-07 18:01:20 +00007797 // Third step: compute the access functions for each subscript.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007798 computeAccessFunctions(SE, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00007799
Sebastian Pop28e6b972014-05-27 22:41:51 +00007800 if (Subscripts.empty())
7801 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007802
Sebastian Pop448712b2014-05-07 18:01:20 +00007803 DEBUG({
7804 dbgs() << "succeeded to delinearize " << *this << "\n";
7805 dbgs() << "ArrayDecl[UnknownSize]";
7806 for (const SCEV *S : Sizes)
7807 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00007808
Sebastian Pop444621a2014-05-09 22:45:02 +00007809 dbgs() << "\nArrayRef";
7810 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00007811 dbgs() << "[" << *S << "]";
7812 dbgs() << "\n";
7813 });
Sebastian Popc62c6792013-11-12 22:47:20 +00007814}
Chris Lattnerd934c702004-04-02 20:23:17 +00007815
7816//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00007817// SCEVCallbackVH Class Implementation
7818//===----------------------------------------------------------------------===//
7819
Dan Gohmand33a0902009-05-19 19:22:47 +00007820void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00007821 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00007822 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7823 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007824 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00007825 // this now dangles!
7826}
7827
Dan Gohman7a066722010-07-28 01:09:07 +00007828void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00007829 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00007830
Dan Gohman48f82222009-05-04 22:30:44 +00007831 // Forget all the expressions associated with users of the old value,
7832 // so that future queries will recompute the expressions using the new
7833 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00007834 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00007835 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00007836 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00007837 while (!Worklist.empty()) {
7838 User *U = Worklist.pop_back_val();
7839 // Deleting the Old value will cause this to dangle. Postpone
7840 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007841 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00007842 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00007843 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00007844 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00007845 if (PHINode *PN = dyn_cast<PHINode>(U))
7846 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007847 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00007848 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00007849 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007850 // Delete the Old value.
7851 if (PHINode *PN = dyn_cast<PHINode>(Old))
7852 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007853 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007854 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00007855}
7856
Dan Gohmand33a0902009-05-19 19:22:47 +00007857ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00007858 : CallbackVH(V), SE(se) {}
7859
7860//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00007861// ScalarEvolution Class Implementation
7862//===----------------------------------------------------------------------===//
7863
Dan Gohmanc8e23622009-04-21 23:15:49 +00007864ScalarEvolution::ScalarEvolution()
Craig Topper9f008862014-04-15 04:59:12 +00007865 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
7866 BlockDispositions(64), FirstUnknown(nullptr) {
Owen Anderson6c18d1a2010-10-19 17:21:58 +00007867 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanc8e23622009-04-21 23:15:49 +00007868}
7869
Chris Lattnerd934c702004-04-02 20:23:17 +00007870bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00007871 this->F = &F;
Hal Finkel60db0582014-09-07 18:57:58 +00007872 AT = &getAnalysis<AssumptionTracker>();
Dan Gohmanc8e23622009-04-21 23:15:49 +00007873 LI = &getAnalysis<LoopInfo>();
Rafael Espindola93512512014-02-25 17:30:31 +00007874 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
Craig Topper9f008862014-04-15 04:59:12 +00007875 DL = DLP ? &DLP->getDataLayout() : nullptr;
Chad Rosierc24b86f2011-12-01 03:08:23 +00007876 TLI = &getAnalysis<TargetLibraryInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007877 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chris Lattnerd934c702004-04-02 20:23:17 +00007878 return false;
7879}
7880
7881void ScalarEvolution::releaseMemory() {
Dan Gohman7cac9572010-08-02 23:49:30 +00007882 // Iterate through all the SCEVUnknown instances and call their
7883 // destructors, so that they release their references to their values.
7884 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7885 U->~SCEVUnknown();
Craig Topper9f008862014-04-15 04:59:12 +00007886 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00007887
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007888 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00007889
7890 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7891 // that a loop had multiple computable exits.
7892 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7893 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7894 I != E; ++I) {
7895 I->second.clear();
7896 }
7897
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007898 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7899
Dan Gohmanc8e23622009-04-21 23:15:49 +00007900 BackedgeTakenCounts.clear();
7901 ConstantEvolutionLoopExitValue.clear();
Dan Gohman5122d612009-05-08 20:47:27 +00007902 ValuesAtScopes.clear();
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007903 LoopDispositions.clear();
Dan Gohman8ea83d82010-11-18 00:34:22 +00007904 BlockDispositions.clear();
Dan Gohman761065e2010-11-17 02:44:44 +00007905 UnsignedRanges.clear();
7906 SignedRanges.clear();
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007907 UniqueSCEVs.clear();
7908 SCEVAllocator.Reset();
Chris Lattnerd934c702004-04-02 20:23:17 +00007909}
7910
7911void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
7912 AU.setPreservesAll();
Hal Finkel60db0582014-09-07 18:57:58 +00007913 AU.addRequired<AssumptionTracker>();
Chris Lattnerd934c702004-04-02 20:23:17 +00007914 AU.addRequiredTransitive<LoopInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007915 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
Chad Rosierc24b86f2011-12-01 03:08:23 +00007916 AU.addRequired<TargetLibraryInfo>();
Dan Gohman0a40ad92009-04-16 03:18:22 +00007917}
7918
Dan Gohmanc8e23622009-04-21 23:15:49 +00007919bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00007920 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00007921}
7922
Dan Gohmanc8e23622009-04-21 23:15:49 +00007923static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00007924 const Loop *L) {
7925 // Print all inner loops first
7926 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
7927 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00007928
Dan Gohmanbc694912010-01-09 18:17:45 +00007929 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007930 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007931 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007932
Dan Gohmancb0efec2009-12-18 01:14:11 +00007933 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007934 L->getExitBlocks(ExitBlocks);
7935 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00007936 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007937
Dan Gohman0bddac12009-02-24 18:55:53 +00007938 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
7939 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00007940 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00007941 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007942 }
7943
Dan Gohmanbc694912010-01-09 18:17:45 +00007944 OS << "\n"
7945 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007946 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007947 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00007948
7949 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
7950 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
7951 } else {
7952 OS << "Unpredictable max backedge-taken count. ";
7953 }
7954
7955 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007956}
7957
Dan Gohmancb0efec2009-12-18 01:14:11 +00007958void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00007959 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00007960 // out SCEV values of all instructions that are interesting. Doing
7961 // this potentially causes it to create new SCEV objects though,
7962 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00007963 // observable from outside the class though, so casting away the
7964 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00007965 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00007966
Dan Gohmanbc694912010-01-09 18:17:45 +00007967 OS << "Classifying expressions for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007968 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007969 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007970 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand18dc2c2010-05-03 17:03:23 +00007971 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanfda3c4a2009-07-13 23:03:05 +00007972 OS << *I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00007973 OS << " --> ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007974 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007975 SV->print(OS);
Misha Brukman01808ca2005-04-21 21:13:18 +00007976
Dan Gohmanb9063a82009-06-19 17:49:54 +00007977 const Loop *L = LI->getLoopFor((*I).getParent());
7978
Dan Gohmanaf752342009-07-07 17:06:11 +00007979 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00007980 if (AtUse != SV) {
7981 OS << " --> ";
7982 AtUse->print(OS);
7983 }
7984
7985 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00007986 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007987 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00007988 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007989 OS << "<<Unknown>>";
7990 } else {
7991 OS << *ExitValue;
7992 }
7993 }
7994
Chris Lattnerd934c702004-04-02 20:23:17 +00007995 OS << "\n";
7996 }
7997
Dan Gohmanbc694912010-01-09 18:17:45 +00007998 OS << "Determining loop execution counts for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007999 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008000 OS << "\n";
Dan Gohmanc8e23622009-04-21 23:15:49 +00008001 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
8002 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00008003}
Dan Gohmane20f8242009-04-21 00:47:46 +00008004
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008005ScalarEvolution::LoopDisposition
8006ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008007 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S];
8008 for (unsigned u = 0; u < Values.size(); u++) {
8009 if (Values[u].first == L)
8010 return Values[u].second;
8011 }
8012 Values.push_back(std::make_pair(L, LoopVariant));
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008013 LoopDisposition D = computeLoopDisposition(S, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008014 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S];
8015 for (unsigned u = Values2.size(); u > 0; u--) {
8016 if (Values2[u - 1].first == L) {
8017 Values2[u - 1].second = D;
8018 break;
8019 }
8020 }
8021 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008022}
8023
8024ScalarEvolution::LoopDisposition
8025ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008026 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00008027 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008028 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008029 case scTruncate:
8030 case scZeroExtend:
8031 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008032 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008033 case scAddRecExpr: {
8034 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8035
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008036 // If L is the addrec's loop, it's computable.
8037 if (AR->getLoop() == L)
8038 return LoopComputable;
8039
Dan Gohmanafd6db92010-11-17 21:23:15 +00008040 // Add recurrences are never invariant in the function-body (null loop).
8041 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008042 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008043
8044 // This recurrence is variant w.r.t. L if L contains AR's loop.
8045 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008046 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008047
8048 // This recurrence is invariant w.r.t. L if AR's loop contains L.
8049 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008050 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008051
8052 // This recurrence is variant w.r.t. L if any of its operands
8053 // are variant.
8054 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
8055 I != E; ++I)
8056 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008057 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008058
8059 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008060 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008061 }
8062 case scAddExpr:
8063 case scMulExpr:
8064 case scUMaxExpr:
8065 case scSMaxExpr: {
8066 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008067 bool HasVarying = false;
8068 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8069 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008070 LoopDisposition D = getLoopDisposition(*I, L);
8071 if (D == LoopVariant)
8072 return LoopVariant;
8073 if (D == LoopComputable)
8074 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008075 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008076 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008077 }
8078 case scUDivExpr: {
8079 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008080 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
8081 if (LD == LoopVariant)
8082 return LoopVariant;
8083 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
8084 if (RD == LoopVariant)
8085 return LoopVariant;
8086 return (LD == LoopInvariant && RD == LoopInvariant) ?
8087 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008088 }
8089 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008090 // All non-instruction values are loop invariant. All instructions are loop
8091 // invariant if they are not contained in the specified loop.
8092 // Instructions are never considered invariant in the function body
8093 // (null loop) because they are defined within the "loop".
8094 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
8095 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
8096 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008097 case scCouldNotCompute:
8098 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00008099 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008100 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008101}
8102
8103bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
8104 return getLoopDisposition(S, L) == LoopInvariant;
8105}
8106
8107bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
8108 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008109}
Dan Gohman20d9ce22010-11-17 21:41:58 +00008110
Dan Gohman8ea83d82010-11-18 00:34:22 +00008111ScalarEvolution::BlockDisposition
8112ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008113 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S];
8114 for (unsigned u = 0; u < Values.size(); u++) {
8115 if (Values[u].first == BB)
8116 return Values[u].second;
8117 }
8118 Values.push_back(std::make_pair(BB, DoesNotDominateBlock));
Dan Gohman8ea83d82010-11-18 00:34:22 +00008119 BlockDisposition D = computeBlockDisposition(S, BB);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008120 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S];
8121 for (unsigned u = Values2.size(); u > 0; u--) {
8122 if (Values2[u - 1].first == BB) {
8123 Values2[u - 1].second = D;
8124 break;
8125 }
8126 }
8127 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008128}
8129
Dan Gohman8ea83d82010-11-18 00:34:22 +00008130ScalarEvolution::BlockDisposition
8131ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008132 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00008133 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008134 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008135 case scTruncate:
8136 case scZeroExtend:
8137 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008138 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00008139 case scAddRecExpr: {
8140 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00008141 // to test for proper dominance too, because the instruction which
8142 // produces the addrec's value is a PHI, and a PHI effectively properly
8143 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00008144 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8145 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00008146 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008147 }
8148 // FALL THROUGH into SCEVNAryExpr handling.
8149 case scAddExpr:
8150 case scMulExpr:
8151 case scUMaxExpr:
8152 case scSMaxExpr: {
8153 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008154 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008155 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00008156 I != E; ++I) {
8157 BlockDisposition D = getBlockDisposition(*I, BB);
8158 if (D == DoesNotDominateBlock)
8159 return DoesNotDominateBlock;
8160 if (D == DominatesBlock)
8161 Proper = false;
8162 }
8163 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008164 }
8165 case scUDivExpr: {
8166 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008167 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
8168 BlockDisposition LD = getBlockDisposition(LHS, BB);
8169 if (LD == DoesNotDominateBlock)
8170 return DoesNotDominateBlock;
8171 BlockDisposition RD = getBlockDisposition(RHS, BB);
8172 if (RD == DoesNotDominateBlock)
8173 return DoesNotDominateBlock;
8174 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
8175 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008176 }
8177 case scUnknown:
8178 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00008179 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
8180 if (I->getParent() == BB)
8181 return DominatesBlock;
8182 if (DT->properlyDominates(I->getParent(), BB))
8183 return ProperlyDominatesBlock;
8184 return DoesNotDominateBlock;
8185 }
8186 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008187 case scCouldNotCompute:
8188 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00008189 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008190 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00008191}
8192
8193bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
8194 return getBlockDisposition(S, BB) >= DominatesBlock;
8195}
8196
8197bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
8198 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008199}
Dan Gohman534749b2010-11-17 22:27:42 +00008200
Andrew Trick365e31c2012-07-13 23:33:03 +00008201namespace {
8202// Search for a SCEV expression node within an expression tree.
8203// Implements SCEVTraversal::Visitor.
8204struct SCEVSearch {
8205 const SCEV *Node;
8206 bool IsFound;
8207
8208 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
8209
8210 bool follow(const SCEV *S) {
8211 IsFound |= (S == Node);
8212 return !IsFound;
8213 }
8214 bool isDone() const { return IsFound; }
8215};
8216}
8217
Dan Gohman534749b2010-11-17 22:27:42 +00008218bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00008219 SCEVSearch Search(Op);
8220 visitAll(S, Search);
8221 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00008222}
Dan Gohman7e6b3932010-11-17 23:28:48 +00008223
8224void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
8225 ValuesAtScopes.erase(S);
8226 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008227 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00008228 UnsignedRanges.erase(S);
8229 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00008230
8231 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8232 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
8233 BackedgeTakenInfo &BEInfo = I->second;
8234 if (BEInfo.hasOperand(S, this)) {
8235 BEInfo.clear();
8236 BackedgeTakenCounts.erase(I++);
8237 }
8238 else
8239 ++I;
8240 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00008241}
Benjamin Kramer214935e2012-10-26 17:31:32 +00008242
8243typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008244
Alp Tokercb402912014-01-24 17:20:08 +00008245/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008246static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8247 size_t Pos = 0;
8248 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8249 Str.replace(Pos, From.size(), To.data(), To.size());
8250 Pos += To.size();
8251 }
8252}
8253
Benjamin Kramer214935e2012-10-26 17:31:32 +00008254/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8255static void
8256getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8257 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8258 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8259
8260 std::string &S = Map[L];
8261 if (S.empty()) {
8262 raw_string_ostream OS(S);
8263 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008264
8265 // false and 0 are semantically equivalent. This can happen in dead loops.
8266 replaceSubString(OS.str(), "false", "0");
8267 // Remove wrap flags, their use in SCEV is highly fragile.
8268 // FIXME: Remove this when SCEV gets smarter about them.
8269 replaceSubString(OS.str(), "<nw>", "");
8270 replaceSubString(OS.str(), "<nsw>", "");
8271 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00008272 }
8273 }
8274}
8275
8276void ScalarEvolution::verifyAnalysis() const {
8277 if (!VerifySCEV)
8278 return;
8279
8280 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8281
8282 // Gather stringified backedge taken counts for all loops using SCEV's caches.
8283 // FIXME: It would be much better to store actual values instead of strings,
8284 // but SCEV pointers will change if we drop the caches.
8285 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8286 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8287 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8288
8289 // Gather stringified backedge taken counts for all loops without using
8290 // SCEV's caches.
8291 SE.releaseMemory();
8292 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8293 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8294
8295 // Now compare whether they're the same with and without caches. This allows
8296 // verifying that no pass changed the cache.
8297 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8298 "New loops suddenly appeared!");
8299
8300 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8301 OldE = BackedgeDumpsOld.end(),
8302 NewI = BackedgeDumpsNew.begin();
8303 OldI != OldE; ++OldI, ++NewI) {
8304 assert(OldI->first == NewI->first && "Loop order changed!");
8305
8306 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8307 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008308 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00008309 // means that a pass is buggy or SCEV has to learn a new pattern but is
8310 // usually not harmful.
8311 if (OldI->second != NewI->second &&
8312 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008313 NewI->second.find("undef") == std::string::npos &&
8314 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00008315 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008316 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00008317 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008318 << "' changed from '" << OldI->second
8319 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00008320 std::abort();
8321 }
8322 }
8323
8324 // TODO: Verify more things.
8325}