blob: a3ed412b7380e09700934f7670500bf6b88179dc [file] [log] [blame]
Adam Nemet04563272015-02-01 16:56:15 +00001//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The implementation for the loop memory dependence that was originally
11// developed for the loop vectorizer.
12//
13//===----------------------------------------------------------------------===//
14
Chandler Carruth3bab7e12017-01-11 09:43:56 +000015#include "llvm/Analysis/LoopAccessAnalysis.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000016#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/EquivalenceClasses.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000020#include "llvm/ADT/PointerIntPair.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000021#include "llvm/ADT/STLExtras.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000022#include "llvm/ADT/SetVector.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/SmallSet.h"
25#include "llvm/ADT/SmallVector.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000026#include "llvm/ADT/iterator_range.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000027#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Analysis/AliasSetTracker.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000029#include "llvm/Analysis/LoopAnalysisManager.h"
Adam Nemet04563272015-02-01 16:56:15 +000030#include "llvm/Analysis/LoopInfo.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000031#include "llvm/Analysis/MemoryLocation.h"
Adam Nemet5b3a5cf2016-07-20 21:44:26 +000032#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000033#include "llvm/Analysis/ScalarEvolution.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000034#include "llvm/Analysis/ScalarEvolutionExpander.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000035#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000036#include "llvm/Analysis/TargetLibraryInfo.h"
Adam Nemet04563272015-02-01 16:56:15 +000037#include "llvm/Analysis/ValueTracking.h"
Adam Nemetf45594c2016-07-01 00:09:02 +000038#include "llvm/Analysis/VectorUtils.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000039#include "llvm/IR/BasicBlock.h"
40#include "llvm/IR/Constants.h"
41#include "llvm/IR/DataLayout.h"
42#include "llvm/IR/DebugLoc.h"
43#include "llvm/IR/DerivedTypes.h"
44#include "llvm/IR/DiagnosticInfo.h"
Adam Nemet04563272015-02-01 16:56:15 +000045#include "llvm/IR/Dominators.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000046#include "llvm/IR/Function.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000047#include "llvm/IR/IRBuilder.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000048#include "llvm/IR/InstrTypes.h"
49#include "llvm/IR/Instruction.h"
50#include "llvm/IR/Instructions.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000051#include "llvm/IR/Operator.h"
Xinliang David Li8a021312016-07-02 21:18:40 +000052#include "llvm/IR/PassManager.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000053#include "llvm/IR/Type.h"
54#include "llvm/IR/Value.h"
55#include "llvm/IR/ValueHandle.h"
56#include "llvm/Pass.h"
57#include "llvm/Support/Casting.h"
58#include "llvm/Support/CommandLine.h"
Adam Nemet04563272015-02-01 16:56:15 +000059#include "llvm/Support/Debug.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000060#include "llvm/Support/ErrorHandling.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000061#include "llvm/Support/raw_ostream.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000062#include <algorithm>
63#include <cassert>
64#include <cstdint>
65#include <cstdlib>
66#include <iterator>
67#include <utility>
68#include <vector>
69
Adam Nemet04563272015-02-01 16:56:15 +000070using namespace llvm;
71
Adam Nemet339f42b2015-02-19 19:15:07 +000072#define DEBUG_TYPE "loop-accesses"
Adam Nemet04563272015-02-01 16:56:15 +000073
Adam Nemetf219c642015-02-19 19:14:52 +000074static cl::opt<unsigned, true>
75VectorizationFactor("force-vector-width", cl::Hidden,
76 cl::desc("Sets the SIMD width. Zero is autoselect."),
77 cl::location(VectorizerParams::VectorizationFactor));
Adam Nemet1d862af2015-02-26 04:39:09 +000078unsigned VectorizerParams::VectorizationFactor;
Adam Nemetf219c642015-02-19 19:14:52 +000079
80static cl::opt<unsigned, true>
81VectorizationInterleave("force-vector-interleave", cl::Hidden,
82 cl::desc("Sets the vectorization interleave count. "
83 "Zero is autoselect."),
84 cl::location(
85 VectorizerParams::VectorizationInterleave));
Adam Nemet1d862af2015-02-26 04:39:09 +000086unsigned VectorizerParams::VectorizationInterleave;
Adam Nemetf219c642015-02-19 19:14:52 +000087
Adam Nemet1d862af2015-02-26 04:39:09 +000088static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
89 "runtime-memory-check-threshold", cl::Hidden,
90 cl::desc("When performing memory disambiguation checks at runtime do not "
91 "generate more than this number of comparisons (default = 8)."),
92 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
93unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
Adam Nemetf219c642015-02-19 19:14:52 +000094
Silviu Baranga1b6b50a2015-07-08 09:16:33 +000095/// \brief The maximum iterations used to merge memory checks
96static cl::opt<unsigned> MemoryCheckMergeThreshold(
97 "memory-check-merge-threshold", cl::Hidden,
98 cl::desc("Maximum number of comparisons done when trying to merge "
99 "runtime memory checks. (default = 100)"),
100 cl::init(100));
101
Adam Nemetf219c642015-02-19 19:14:52 +0000102/// Maximum SIMD width.
103const unsigned VectorizerParams::MaxVectorWidth = 64;
104
Adam Nemeta2df7502015-11-03 21:39:52 +0000105/// \brief We collect dependences up to this threshold.
106static cl::opt<unsigned>
107 MaxDependences("max-dependences", cl::Hidden,
108 cl::desc("Maximum number of dependences collected by "
109 "loop-access analysis (default = 100)"),
110 cl::init(100));
Adam Nemet9c926572015-03-10 17:40:37 +0000111
Adam Nemeta9f09c62016-06-17 22:35:41 +0000112/// This enables versioning on the strides of symbolically striding memory
113/// accesses in code like the following.
114/// for (i = 0; i < N; ++i)
115/// A[i * Stride1] += B[i * Stride2] ...
116///
117/// Will be roughly translated to
118/// if (Stride1 == 1 && Stride2 == 1) {
119/// for (i = 0; i < N; i+=4)
120/// A[i:i+3] += ...
121/// } else
122/// ...
123static cl::opt<bool> EnableMemAccessVersioning(
124 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
125 cl::desc("Enable symbolic stride memory access versioning"));
126
Matthew Simpson37ec5f92016-05-16 17:00:56 +0000127/// \brief Enable store-to-load forwarding conflict detection. This option can
128/// be disabled for correctness testing.
129static cl::opt<bool> EnableForwardingConflictDetection(
130 "store-to-load-forwarding-conflict-detection", cl::Hidden,
Matthew Simpsona250dc92016-05-16 14:14:49 +0000131 cl::desc("Enable conflict detection in loop-access analysis"),
132 cl::init(true));
133
Adam Nemetf219c642015-02-19 19:14:52 +0000134bool VectorizerParams::isInterleaveForced() {
135 return ::VectorizationInterleave.getNumOccurrences() > 0;
136}
137
Adam Nemet04563272015-02-01 16:56:15 +0000138Value *llvm::stripIntegerCast(Value *V) {
David Majnemer8b401012016-07-12 20:31:46 +0000139 if (auto *CI = dyn_cast<CastInst>(V))
Adam Nemet04563272015-02-01 16:56:15 +0000140 if (CI->getOperand(0)->getType()->isIntegerTy())
141 return CI->getOperand(0);
142 return V;
143}
144
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000145const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
Adam Nemet8bc61df2015-02-24 00:41:59 +0000146 const ValueToValueMap &PtrToStride,
Adam Nemet04563272015-02-01 16:56:15 +0000147 Value *Ptr, Value *OrigPtr) {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000148 const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000149
150 // If there is an entry in the map return the SCEV of the pointer with the
151 // symbolic stride replaced by one.
Adam Nemet8bc61df2015-02-24 00:41:59 +0000152 ValueToValueMap::const_iterator SI =
153 PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000154 if (SI != PtrToStride.end()) {
155 Value *StrideVal = SI->second;
156
157 // Strip casts.
158 StrideVal = stripIntegerCast(StrideVal);
159
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000160 ScalarEvolution *SE = PSE.getSE();
Silviu Barangae3c05342015-11-02 14:41:02 +0000161 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
162 const auto *CT =
163 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
164
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000165 PSE.addPredicate(*SE->getEqualPredicate(U, CT));
166 auto *Expr = PSE.getSCEV(Ptr);
Silviu Barangae3c05342015-11-02 14:41:02 +0000167
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000168 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
Adam Nemet04563272015-02-01 16:56:15 +0000169 << "\n");
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000170 return Expr;
Adam Nemet04563272015-02-01 16:56:15 +0000171 }
172
173 // Otherwise, just return the SCEV of the original pointer.
Silviu Barangae3c05342015-11-02 14:41:02 +0000174 return OrigSCEV;
Adam Nemet04563272015-02-01 16:56:15 +0000175}
176
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000177/// Calculate Start and End points of memory access.
178/// Let's assume A is the first access and B is a memory access on N-th loop
179/// iteration. Then B is calculated as:
180/// B = A + Step*N .
181/// Step value may be positive or negative.
182/// N is a calculated back-edge taken count:
183/// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
184/// Start and End points are calculated in the following way:
185/// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
186/// where SizeOfElt is the size of single memory access in bytes.
187///
188/// There is no conflict when the intervals are disjoint:
189/// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
Adam Nemet7cdebac2015-07-14 22:32:44 +0000190void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
191 unsigned DepSetId, unsigned ASId,
Silviu Barangae3c05342015-11-02 14:41:02 +0000192 const ValueToValueMap &Strides,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000193 PredicatedScalarEvolution &PSE) {
Adam Nemet04563272015-02-01 16:56:15 +0000194 // Get the stride replaced scev.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000195 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000196 ScalarEvolution *SE = PSE.getSE();
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000197
Adam Nemet279784f2016-03-24 04:28:47 +0000198 const SCEV *ScStart;
199 const SCEV *ScEnd;
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000200
Adam Nemet59a65502016-03-24 05:15:24 +0000201 if (SE->isLoopInvariant(Sc, Lp))
Adam Nemet279784f2016-03-24 04:28:47 +0000202 ScStart = ScEnd = Sc;
Adam Nemet279784f2016-03-24 04:28:47 +0000203 else {
204 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
205 assert(AR && "Invalid addrec expression");
Silviu Baranga6f444df2016-04-08 14:29:09 +0000206 const SCEV *Ex = PSE.getBackedgeTakenCount();
Adam Nemet279784f2016-03-24 04:28:47 +0000207
208 ScStart = AR->getStart();
209 ScEnd = AR->evaluateAtIteration(Ex, *SE);
210 const SCEV *Step = AR->getStepRecurrence(*SE);
211
212 // For expressions with negative step, the upper bound is ScStart and the
213 // lower bound is ScEnd.
David Majnemer8b401012016-07-12 20:31:46 +0000214 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
Adam Nemet279784f2016-03-24 04:28:47 +0000215 if (CStep->getValue()->isNegative())
216 std::swap(ScStart, ScEnd);
217 } else {
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000218 // Fallback case: the step is not constant, but we can still
Adam Nemet279784f2016-03-24 04:28:47 +0000219 // get the upper and lower bounds of the interval by using min/max
220 // expressions.
221 ScStart = SE->getUMinExpr(ScStart, ScEnd);
222 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
223 }
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000224 // Add the size of the pointed element to ScEnd.
225 unsigned EltSize =
226 Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8;
227 const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize);
228 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000229 }
230
231 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000232}
233
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000234SmallVector<RuntimePointerChecking::PointerCheck, 4>
Adam Nemet38530882015-08-09 20:06:06 +0000235RuntimePointerChecking::generateChecks() const {
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000236 SmallVector<PointerCheck, 4> Checks;
237
Adam Nemet7c52e052015-07-27 19:38:50 +0000238 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
239 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
240 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
241 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000242
Adam Nemet38530882015-08-09 20:06:06 +0000243 if (needsChecking(CGI, CGJ))
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000244 Checks.push_back(std::make_pair(&CGI, &CGJ));
245 }
246 }
247 return Checks;
248}
249
Adam Nemet15840392015-08-07 22:44:15 +0000250void RuntimePointerChecking::generateChecks(
251 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
252 assert(Checks.empty() && "Checks is not empty");
253 groupChecks(DepCands, UseDependencies);
254 Checks = generateChecks();
255}
256
Adam Nemet651a5a22015-08-09 20:06:08 +0000257bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
258 const CheckingPtrGroup &N) const {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000259 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
260 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
Adam Nemet651a5a22015-08-09 20:06:08 +0000261 if (needsChecking(M.Members[I], N.Members[J]))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000262 return true;
263 return false;
264}
265
266/// Compare \p I and \p J and return the minimum.
267/// Return nullptr in case we couldn't find an answer.
268static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
269 ScalarEvolution *SE) {
270 const SCEV *Diff = SE->getMinusSCEV(J, I);
271 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
272
273 if (!C)
274 return nullptr;
275 if (C->getValue()->isNegative())
276 return J;
277 return I;
278}
279
Adam Nemet7cdebac2015-07-14 22:32:44 +0000280bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000281 const SCEV *Start = RtCheck.Pointers[Index].Start;
282 const SCEV *End = RtCheck.Pointers[Index].End;
283
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000284 // Compare the starts and ends with the known minimum and maximum
285 // of this set. We need to know how we compare against the min/max
286 // of the set in order to be able to emit memchecks.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000287 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000288 if (!Min0)
289 return false;
290
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000291 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000292 if (!Min1)
293 return false;
294
295 // Update the low bound expression if we've found a new min value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000296 if (Min0 == Start)
297 Low = Start;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000298
299 // Update the high bound expression if we've found a new max value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000300 if (Min1 != End)
301 High = End;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000302
303 Members.push_back(Index);
304 return true;
305}
306
Adam Nemet7cdebac2015-07-14 22:32:44 +0000307void RuntimePointerChecking::groupChecks(
308 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000309 // We build the groups from dependency candidates equivalence classes
310 // because:
311 // - We know that pointers in the same equivalence class share
312 // the same underlying object and therefore there is a chance
313 // that we can compare pointers
314 // - We wouldn't be able to merge two pointers for which we need
315 // to emit a memcheck. The classes in DepCands are already
316 // conveniently built such that no two pointers in the same
317 // class need checking against each other.
318
319 // We use the following (greedy) algorithm to construct the groups
320 // For every pointer in the equivalence class:
321 // For each existing group:
322 // - if the difference between this pointer and the min/max bounds
323 // of the group is a constant, then make the pointer part of the
324 // group and update the min/max bounds of that group as required.
325
326 CheckingGroups.clear();
327
Silviu Baranga48250602015-07-28 13:44:08 +0000328 // If we need to check two pointers to the same underlying object
329 // with a non-constant difference, we shouldn't perform any pointer
330 // grouping with those pointers. This is because we can easily get
331 // into cases where the resulting check would return false, even when
332 // the accesses are safe.
333 //
334 // The following example shows this:
335 // for (i = 0; i < 1000; ++i)
336 // a[5000 + i * m] = a[i] + a[i + 9000]
337 //
338 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
339 // (0, 10000) which is always false. However, if m is 1, there is no
340 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
341 // us to perform an accurate check in this case.
342 //
343 // The above case requires that we have an UnknownDependence between
344 // accesses to the same underlying object. This cannot happen unless
345 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
346 // is also false. In this case we will use the fallback path and create
347 // separate checking groups for all pointers.
Mehdi Aminiafd13512015-11-05 05:49:43 +0000348
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000349 // If we don't have the dependency partitions, construct a new
Silviu Baranga48250602015-07-28 13:44:08 +0000350 // checking pointer group for each pointer. This is also required
351 // for correctness, because in this case we can have checking between
352 // pointers to the same underlying object.
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000353 if (!UseDependencies) {
354 for (unsigned I = 0; I < Pointers.size(); ++I)
355 CheckingGroups.push_back(CheckingPtrGroup(I, *this));
356 return;
357 }
358
359 unsigned TotalComparisons = 0;
360
361 DenseMap<Value *, unsigned> PositionMap;
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000362 for (unsigned Index = 0; Index < Pointers.size(); ++Index)
363 PositionMap[Pointers[Index].PointerValue] = Index;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000364
Silviu Barangace3877f2015-07-09 15:18:25 +0000365 // We need to keep track of what pointers we've already seen so we
366 // don't process them twice.
367 SmallSet<unsigned, 2> Seen;
368
Sanjay Patele4b9f502015-12-07 19:21:39 +0000369 // Go through all equivalence classes, get the "pointer check groups"
Silviu Barangace3877f2015-07-09 15:18:25 +0000370 // and add them to the overall solution. We use the order in which accesses
371 // appear in 'Pointers' to enforce determinism.
372 for (unsigned I = 0; I < Pointers.size(); ++I) {
373 // We've seen this pointer before, and therefore already processed
374 // its equivalence class.
375 if (Seen.count(I))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000376 continue;
377
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000378 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
379 Pointers[I].IsWritePtr);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000380
Silviu Barangace3877f2015-07-09 15:18:25 +0000381 SmallVector<CheckingPtrGroup, 2> Groups;
382 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
383
Silviu Barangaa647c302015-07-13 14:48:24 +0000384 // Because DepCands is constructed by visiting accesses in the order in
385 // which they appear in alias sets (which is deterministic) and the
386 // iteration order within an equivalence class member is only dependent on
387 // the order in which unions and insertions are performed on the
388 // equivalence class, the iteration order is deterministic.
Silviu Barangace3877f2015-07-09 15:18:25 +0000389 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000390 MI != ME; ++MI) {
391 unsigned Pointer = PositionMap[MI->getPointer()];
392 bool Merged = false;
Silviu Barangace3877f2015-07-09 15:18:25 +0000393 // Mark this pointer as seen.
394 Seen.insert(Pointer);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000395
396 // Go through all the existing sets and see if we can find one
397 // which can include this pointer.
398 for (CheckingPtrGroup &Group : Groups) {
399 // Don't perform more than a certain amount of comparisons.
400 // This should limit the cost of grouping the pointers to something
401 // reasonable. If we do end up hitting this threshold, the algorithm
402 // will create separate groups for all remaining pointers.
403 if (TotalComparisons > MemoryCheckMergeThreshold)
404 break;
405
406 TotalComparisons++;
407
408 if (Group.addPointer(Pointer)) {
409 Merged = true;
410 break;
411 }
412 }
413
414 if (!Merged)
415 // We couldn't add this pointer to any existing set or the threshold
416 // for the number of comparisons has been reached. Create a new group
417 // to hold the current pointer.
418 Groups.push_back(CheckingPtrGroup(Pointer, *this));
419 }
420
421 // We've computed the grouped checks for this partition.
422 // Save the results and continue with the next one.
423 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
424 }
Adam Nemet04563272015-02-01 16:56:15 +0000425}
426
Adam Nemet041e6de2015-07-16 02:48:05 +0000427bool RuntimePointerChecking::arePointersInSamePartition(
428 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
429 unsigned PtrIdx2) {
430 return (PtrToPartition[PtrIdx1] != -1 &&
431 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
432}
433
Adam Nemet651a5a22015-08-09 20:06:08 +0000434bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000435 const PointerInfo &PointerI = Pointers[I];
436 const PointerInfo &PointerJ = Pointers[J];
437
Adam Nemeta8945b72015-02-18 03:43:58 +0000438 // No need to check if two readonly pointers intersect.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000439 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
Adam Nemeta8945b72015-02-18 03:43:58 +0000440 return false;
441
442 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000443 if (PointerI.DependencySetId == PointerJ.DependencySetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000444 return false;
445
446 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000447 if (PointerI.AliasSetId != PointerJ.AliasSetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000448 return false;
449
450 return true;
451}
452
Adam Nemet54f0b832015-07-27 23:54:41 +0000453void RuntimePointerChecking::printChecks(
454 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
455 unsigned Depth) const {
456 unsigned N = 0;
457 for (const auto &Check : Checks) {
458 const auto &First = Check.first->Members, &Second = Check.second->Members;
459
460 OS.indent(Depth) << "Check " << N++ << ":\n";
461
462 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
463 for (unsigned K = 0; K < First.size(); ++K)
464 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
465
466 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
467 for (unsigned K = 0; K < Second.size(); ++K)
468 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
469 }
470}
471
Adam Nemet3a91e942015-08-07 19:44:48 +0000472void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
Adam Nemete91cc6e2015-02-19 19:15:19 +0000473
474 OS.indent(Depth) << "Run-time memory checks:\n";
Adam Nemet15840392015-08-07 22:44:15 +0000475 printChecks(OS, Checks, Depth);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000476
477 OS.indent(Depth) << "Grouped accesses:\n";
478 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
Adam Nemet54f0b832015-07-27 23:54:41 +0000479 const auto &CG = CheckingGroups[I];
480
481 OS.indent(Depth + 2) << "Group " << &CG << ":\n";
482 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
483 << ")\n";
484 for (unsigned J = 0; J < CG.Members.size(); ++J) {
485 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000486 << "\n";
487 }
488 }
Adam Nemete91cc6e2015-02-19 19:15:19 +0000489}
490
Adam Nemet04563272015-02-01 16:56:15 +0000491namespace {
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +0000492
Adam Nemet04563272015-02-01 16:56:15 +0000493/// \brief Analyses memory accesses in a loop.
494///
495/// Checks whether run time pointer checks are needed and builds sets for data
496/// dependence checking.
497class AccessAnalysis {
498public:
499 /// \brief Read or write access location.
500 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
501 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
502
Adam Nemete2b885c2015-04-23 20:09:20 +0000503 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000504 MemoryDepChecker::DepCandidates &DA,
505 PredicatedScalarEvolution &PSE)
Silviu Barangae3c05342015-11-02 14:41:02 +0000506 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000507 PSE(PSE) {}
Adam Nemet04563272015-02-01 16:56:15 +0000508
509 /// \brief Register a load and whether it is only read from.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000510 void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
Adam Nemet04563272015-02-01 16:56:15 +0000511 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000512 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000513 Accesses.insert(MemAccessInfo(Ptr, false));
514 if (IsReadOnly)
515 ReadOnlyPtr.insert(Ptr);
516 }
517
518 /// \brief Register a store.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000519 void addStore(MemoryLocation &Loc) {
Adam Nemet04563272015-02-01 16:56:15 +0000520 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000521 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000522 Accesses.insert(MemAccessInfo(Ptr, true));
523 }
524
525 /// \brief Check whether we can check the pointers at runtime for
Adam Nemetee614742015-07-09 22:17:38 +0000526 /// non-intersection.
527 ///
528 /// Returns true if we need no check or if we do and we can generate them
529 /// (i.e. the pointers have computable bounds).
Adam Nemet7cdebac2015-07-14 22:32:44 +0000530 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
531 Loop *TheLoop, const ValueToValueMap &Strides,
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000532 bool ShouldCheckWrap = false);
Adam Nemet04563272015-02-01 16:56:15 +0000533
534 /// \brief Goes over all memory accesses, checks whether a RT check is needed
535 /// and builds sets of dependent accesses.
536 void buildDependenceSets() {
537 processMemAccesses();
538 }
539
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000540 /// \brief Initial processing of memory accesses determined that we need to
541 /// perform dependency checking.
542 ///
543 /// Note that this can later be cleared if we retry memcheck analysis without
544 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
Adam Nemet04563272015-02-01 16:56:15 +0000545 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000546
547 /// We decided that no dependence analysis would be used. Reset the state.
548 void resetDepChecks(MemoryDepChecker &DepChecker) {
549 CheckDeps.clear();
Adam Nemeta2df7502015-11-03 21:39:52 +0000550 DepChecker.clearDependences();
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000551 }
Adam Nemet04563272015-02-01 16:56:15 +0000552
553 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
554
555private:
556 typedef SetVector<MemAccessInfo> PtrAccessSet;
557
558 /// \brief Go over all memory access and check whether runtime pointer checks
Adam Nemetb41d2d32015-07-09 06:47:21 +0000559 /// are needed and build sets of dependency check candidates.
Adam Nemet04563272015-02-01 16:56:15 +0000560 void processMemAccesses();
561
562 /// Set of all accesses.
563 PtrAccessSet Accesses;
564
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000565 const DataLayout &DL;
566
Adam Nemet04563272015-02-01 16:56:15 +0000567 /// Set of accesses that need a further dependence check.
568 MemAccessInfoSet CheckDeps;
569
570 /// Set of pointers that are read only.
571 SmallPtrSet<Value*, 16> ReadOnlyPtr;
572
Adam Nemet04563272015-02-01 16:56:15 +0000573 /// An alias set tracker to partition the access set by underlying object and
574 //intrinsic property (such as TBAA metadata).
575 AliasSetTracker AST;
576
Adam Nemete2b885c2015-04-23 20:09:20 +0000577 LoopInfo *LI;
578
Adam Nemet04563272015-02-01 16:56:15 +0000579 /// Sets of potentially dependent accesses - members of one set share an
580 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
581 /// dependence check.
Adam Nemetdee666b2015-03-10 17:40:34 +0000582 MemoryDepChecker::DepCandidates &DepCands;
Adam Nemet04563272015-02-01 16:56:15 +0000583
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000584 /// \brief Initial processing of memory accesses determined that we may need
585 /// to add memchecks. Perform the analysis to determine the necessary checks.
586 ///
587 /// Note that, this is different from isDependencyCheckNeeded. When we retry
588 /// memcheck analysis without dependency checking
589 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
590 /// while this remains set if we have potentially dependent accesses.
591 bool IsRTCheckAnalysisNeeded;
Silviu Barangae3c05342015-11-02 14:41:02 +0000592
593 /// The SCEV predicate containing all the SCEV-related assumptions.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000594 PredicatedScalarEvolution &PSE;
Adam Nemet04563272015-02-01 16:56:15 +0000595};
596
597} // end anonymous namespace
598
599/// \brief Check whether a pointer can participate in a runtime bounds check.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000600static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
Silviu Barangae3c05342015-11-02 14:41:02 +0000601 const ValueToValueMap &Strides, Value *Ptr,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000602 Loop *L) {
603 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Adam Nemet279784f2016-03-24 04:28:47 +0000604
605 // The bounds for loop-invariant pointer is trivial.
606 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
607 return true;
608
Adam Nemet04563272015-02-01 16:56:15 +0000609 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
610 if (!AR)
611 return false;
612
613 return AR->isAffine();
614}
615
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000616/// \brief Check whether a pointer address cannot wrap.
617static bool isNoWrap(PredicatedScalarEvolution &PSE,
618 const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
619 const SCEV *PtrScev = PSE.getSCEV(Ptr);
620 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
621 return true;
622
David Majnemer7afb46d2016-07-07 06:24:36 +0000623 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000624 return Stride == 1;
625}
626
Adam Nemet7cdebac2015-07-14 22:32:44 +0000627bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
628 ScalarEvolution *SE, Loop *TheLoop,
629 const ValueToValueMap &StridesMap,
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000630 bool ShouldCheckWrap) {
Adam Nemet04563272015-02-01 16:56:15 +0000631 // Find pointers with computable bounds. We are going to use this information
632 // to place a runtime bound check.
633 bool CanDoRT = true;
634
Adam Nemetee614742015-07-09 22:17:38 +0000635 bool NeedRTCheck = false;
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000636 if (!IsRTCheckAnalysisNeeded) return true;
Silviu Baranga98a13712015-06-08 10:27:06 +0000637
Adam Nemet04563272015-02-01 16:56:15 +0000638 bool IsDepCheckNeeded = isDependencyCheckNeeded();
Adam Nemet04563272015-02-01 16:56:15 +0000639
640 // We assign a consecutive id to access from different alias sets.
641 // Accesses between different groups doesn't need to be checked.
642 unsigned ASId = 1;
643 for (auto &AS : AST) {
Adam Nemet424edc62015-07-08 22:58:48 +0000644 int NumReadPtrChecks = 0;
645 int NumWritePtrChecks = 0;
646
Adam Nemet04563272015-02-01 16:56:15 +0000647 // We assign consecutive id to access from different dependence sets.
648 // Accesses within the same set don't need a runtime check.
649 unsigned RunningDepId = 1;
650 DenseMap<Value *, unsigned> DepSetId;
651
652 for (auto A : AS) {
653 Value *Ptr = A.getValue();
654 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
655 MemAccessInfo Access(Ptr, IsWrite);
656
Adam Nemet424edc62015-07-08 22:58:48 +0000657 if (IsWrite)
658 ++NumWritePtrChecks;
659 else
660 ++NumReadPtrChecks;
661
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000662 if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000663 // When we run after a failing dependency check we have to make sure
664 // we don't have wrapping pointers.
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000665 (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) {
Adam Nemet04563272015-02-01 16:56:15 +0000666 // The id of the dependence set.
667 unsigned DepId;
668
669 if (IsDepCheckNeeded) {
670 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
671 unsigned &LeaderId = DepSetId[Leader];
672 if (!LeaderId)
673 LeaderId = RunningDepId++;
674 DepId = LeaderId;
675 } else
676 // Each access has its own dependence set.
677 DepId = RunningDepId++;
678
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000679 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
Adam Nemet04563272015-02-01 16:56:15 +0000680
Adam Nemet339f42b2015-02-19 19:15:07 +0000681 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000682 } else {
Adam Nemetf10ca272015-05-18 15:36:52 +0000683 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000684 CanDoRT = false;
685 }
686 }
687
Adam Nemet424edc62015-07-08 22:58:48 +0000688 // If we have at least two writes or one write and a read then we need to
689 // check them. But there is no need to checks if there is only one
690 // dependence set for this alias set.
691 //
692 // Note that this function computes CanDoRT and NeedRTCheck independently.
693 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
694 // for which we couldn't find the bounds but we don't actually need to emit
695 // any checks so it does not matter.
696 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
697 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
698 NumWritePtrChecks >= 1));
699
Adam Nemet04563272015-02-01 16:56:15 +0000700 ++ASId;
701 }
702
703 // If the pointers that we would use for the bounds comparison have different
704 // address spaces, assume the values aren't directly comparable, so we can't
705 // use them for the runtime check. We also have to assume they could
706 // overlap. In the future there should be metadata for whether address spaces
707 // are disjoint.
708 unsigned NumPointers = RtCheck.Pointers.size();
709 for (unsigned i = 0; i < NumPointers; ++i) {
710 for (unsigned j = i + 1; j < NumPointers; ++j) {
711 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000712 if (RtCheck.Pointers[i].DependencySetId ==
713 RtCheck.Pointers[j].DependencySetId)
Adam Nemet04563272015-02-01 16:56:15 +0000714 continue;
715 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000716 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
Adam Nemet04563272015-02-01 16:56:15 +0000717 continue;
718
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000719 Value *PtrI = RtCheck.Pointers[i].PointerValue;
720 Value *PtrJ = RtCheck.Pointers[j].PointerValue;
Adam Nemet04563272015-02-01 16:56:15 +0000721
722 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
723 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
724 if (ASi != ASj) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000725 DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
Adam Nemet04d41632015-02-19 19:14:34 +0000726 " different address spaces\n");
Adam Nemet04563272015-02-01 16:56:15 +0000727 return false;
728 }
729 }
730 }
731
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000732 if (NeedRTCheck && CanDoRT)
Adam Nemet15840392015-08-07 22:44:15 +0000733 RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000734
Adam Nemet155e8742015-08-07 22:44:21 +0000735 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
Adam Nemetee614742015-07-09 22:17:38 +0000736 << " pointer comparisons.\n");
737
738 RtCheck.Need = NeedRTCheck;
739
740 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
741 if (!CanDoRTIfNeeded)
742 RtCheck.reset();
743 return CanDoRTIfNeeded;
Adam Nemet04563272015-02-01 16:56:15 +0000744}
745
746void AccessAnalysis::processMemAccesses() {
747 // We process the set twice: first we process read-write pointers, last we
748 // process read-only pointers. This allows us to skip dependence tests for
749 // read-only pointers.
750
Adam Nemet339f42b2015-02-19 19:15:07 +0000751 DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
Adam Nemet04563272015-02-01 16:56:15 +0000752 DEBUG(dbgs() << " AST: "; AST.dump());
Adam Nemet9c926572015-03-10 17:40:37 +0000753 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
Adam Nemet04563272015-02-01 16:56:15 +0000754 DEBUG({
755 for (auto A : Accesses)
756 dbgs() << "\t" << *A.getPointer() << " (" <<
757 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
758 "read-only" : "read")) << ")\n";
759 });
760
761 // The AliasSetTracker has nicely partitioned our pointers by metadata
762 // compatibility and potential for underlying-object overlap. As a result, we
763 // only need to check for potential pointer dependencies within each alias
764 // set.
765 for (auto &AS : AST) {
766 // Note that both the alias-set tracker and the alias sets themselves used
767 // linked lists internally and so the iteration order here is deterministic
768 // (matching the original instruction order within each set).
769
770 bool SetHasWrite = false;
771
772 // Map of pointers to last access encountered.
773 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
774 UnderlyingObjToAccessMap ObjToLastAccess;
775
776 // Set of access to check after all writes have been processed.
777 PtrAccessSet DeferredAccesses;
778
779 // Iterate over each alias set twice, once to process read/write pointers,
780 // and then to process read-only pointers.
781 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
782 bool UseDeferred = SetIteration > 0;
783 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
784
785 for (auto AV : AS) {
786 Value *Ptr = AV.getValue();
787
788 // For a single memory access in AliasSetTracker, Accesses may contain
789 // both read and write, and they both need to be handled for CheckDeps.
790 for (auto AC : S) {
791 if (AC.getPointer() != Ptr)
792 continue;
793
794 bool IsWrite = AC.getInt();
795
796 // If we're using the deferred access set, then it contains only
797 // reads.
798 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
799 if (UseDeferred && !IsReadOnlyPtr)
800 continue;
801 // Otherwise, the pointer must be in the PtrAccessSet, either as a
802 // read or a write.
803 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
804 S.count(MemAccessInfo(Ptr, false))) &&
805 "Alias-set pointer not in the access set?");
806
807 MemAccessInfo Access(Ptr, IsWrite);
808 DepCands.insert(Access);
809
810 // Memorize read-only pointers for later processing and skip them in
811 // the first round (they need to be checked after we have seen all
812 // write pointers). Note: we also mark pointer that are not
813 // consecutive as "read-only" pointers (so that we check
814 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
815 if (!UseDeferred && IsReadOnlyPtr) {
816 DeferredAccesses.insert(Access);
817 continue;
818 }
819
820 // If this is a write - check other reads and writes for conflicts. If
821 // this is a read only check other writes for conflicts (but only if
822 // there is no other write to the ptr - this is an optimization to
823 // catch "a[i] = a[i] + " without having to do a dependence check).
824 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
825 CheckDeps.insert(Access);
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000826 IsRTCheckAnalysisNeeded = true;
Adam Nemet04563272015-02-01 16:56:15 +0000827 }
828
829 if (IsWrite)
830 SetHasWrite = true;
831
832 // Create sets of pointers connected by a shared alias set and
833 // underlying object.
834 typedef SmallVector<Value *, 16> ValueVector;
835 ValueVector TempObjects;
Adam Nemete2b885c2015-04-23 20:09:20 +0000836
837 GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
838 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000839 for (Value *UnderlyingObj : TempObjects) {
Mehdi Aminiafd13512015-11-05 05:49:43 +0000840 // nullptr never alias, don't join sets for pointer that have "null"
841 // in their UnderlyingObjects list.
842 if (isa<ConstantPointerNull>(UnderlyingObj))
843 continue;
844
Adam Nemet04563272015-02-01 16:56:15 +0000845 UnderlyingObjToAccessMap::iterator Prev =
846 ObjToLastAccess.find(UnderlyingObj);
847 if (Prev != ObjToLastAccess.end())
848 DepCands.unionSets(Access, Prev->second);
849
850 ObjToLastAccess[UnderlyingObj] = Access;
Adam Nemete2b885c2015-04-23 20:09:20 +0000851 DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000852 }
853 }
854 }
855 }
856 }
857}
858
Adam Nemet04563272015-02-01 16:56:15 +0000859static bool isInBoundsGep(Value *Ptr) {
860 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
861 return GEP->isInBounds();
862 return false;
863}
864
Adam Nemetc4866d22015-06-26 17:25:43 +0000865/// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
866/// i.e. monotonically increasing/decreasing.
867static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000868 PredicatedScalarEvolution &PSE, const Loop *L) {
Adam Nemetc4866d22015-06-26 17:25:43 +0000869 // FIXME: This should probably only return true for NUW.
870 if (AR->getNoWrapFlags(SCEV::NoWrapMask))
871 return true;
872
873 // Scalar evolution does not propagate the non-wrapping flags to values that
874 // are derived from a non-wrapping induction variable because non-wrapping
875 // could be flow-sensitive.
876 //
877 // Look through the potentially overflowing instruction to try to prove
878 // non-wrapping for the *specific* value of Ptr.
879
880 // The arithmetic implied by an inbounds GEP can't overflow.
881 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
882 if (!GEP || !GEP->isInBounds())
883 return false;
884
885 // Make sure there is only one non-const index and analyze that.
886 Value *NonConstIndex = nullptr;
David Majnemer8b401012016-07-12 20:31:46 +0000887 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
888 if (!isa<ConstantInt>(Index)) {
Adam Nemetc4866d22015-06-26 17:25:43 +0000889 if (NonConstIndex)
890 return false;
David Majnemer8b401012016-07-12 20:31:46 +0000891 NonConstIndex = Index;
Adam Nemetc4866d22015-06-26 17:25:43 +0000892 }
893 if (!NonConstIndex)
894 // The recurrence is on the pointer, ignore for now.
895 return false;
896
897 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
898 // AddRec using a NSW operation.
899 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
900 if (OBO->hasNoSignedWrap() &&
901 // Assume constant for other the operand so that the AddRec can be
902 // easily found.
903 isa<ConstantInt>(OBO->getOperand(1))) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000904 auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
Adam Nemetc4866d22015-06-26 17:25:43 +0000905
906 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
907 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
908 }
909
910 return false;
911}
912
Adam Nemet04563272015-02-01 16:56:15 +0000913/// \brief Check whether the access through \p Ptr has a constant stride.
David Majnemer7afb46d2016-07-07 06:24:36 +0000914int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
915 const Loop *Lp, const ValueToValueMap &StridesMap,
Elena Demikhovsky5f8cc0c2016-09-18 13:56:08 +0000916 bool Assume, bool ShouldCheckWrap) {
Craig Toppere3dcce92015-08-01 22:20:21 +0000917 Type *Ty = Ptr->getType();
Adam Nemet04563272015-02-01 16:56:15 +0000918 assert(Ty->isPointerTy() && "Unexpected non-ptr");
919
920 // Make sure that the pointer does not point to aggregate types.
Craig Toppere3dcce92015-08-01 22:20:21 +0000921 auto *PtrTy = cast<PointerType>(Ty);
Adam Nemet04563272015-02-01 16:56:15 +0000922 if (PtrTy->getElementType()->isAggregateType()) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000923 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
924 << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000925 return 0;
926 }
927
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000928 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000929
930 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000931 if (Assume && !AR)
Silviu Barangad68ed852016-03-23 15:29:30 +0000932 AR = PSE.getAsAddRec(Ptr);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000933
Adam Nemet04563272015-02-01 16:56:15 +0000934 if (!AR) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000935 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
936 << " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000937 return 0;
938 }
939
940 // The accesss function must stride over the innermost loop.
941 if (Lp != AR->getLoop()) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000942 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000943 *Ptr << " SCEV: " << *AR << "\n");
Kyle Butta02ce982016-01-08 01:55:13 +0000944 return 0;
Adam Nemet04563272015-02-01 16:56:15 +0000945 }
946
947 // The address calculation must not wrap. Otherwise, a dependence could be
948 // inverted.
949 // An inbounds getelementptr that is a AddRec with a unit stride
950 // cannot wrap per definition. The unit stride requirement is checked later.
951 // An getelementptr without an inbounds attribute and unit stride would have
952 // to access the pointer value "0" which is undefined behavior in address
953 // space 0, therefore we can also vectorize this case.
954 bool IsInBoundsGEP = isInBoundsGep(Ptr);
Elena Demikhovsky5f8cc0c2016-09-18 13:56:08 +0000955 bool IsNoWrapAddRec = !ShouldCheckWrap ||
956 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
957 isNoWrapAddRec(Ptr, AR, PSE, Lp);
Adam Nemet04563272015-02-01 16:56:15 +0000958 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
959 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000960 if (Assume) {
961 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
962 IsNoWrapAddRec = true;
963 DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
964 << "LAA: Pointer: " << *Ptr << "\n"
965 << "LAA: SCEV: " << *AR << "\n"
966 << "LAA: Added an overflow assumption\n");
967 } else {
968 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
969 << *Ptr << " SCEV: " << *AR << "\n");
970 return 0;
971 }
Adam Nemet04563272015-02-01 16:56:15 +0000972 }
973
974 // Check the step is constant.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000975 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
Adam Nemet04563272015-02-01 16:56:15 +0000976
Adam Nemet943befe2015-07-09 00:03:22 +0000977 // Calculate the pointer stride and check if it is constant.
Adam Nemet04563272015-02-01 16:56:15 +0000978 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
979 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000980 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000981 " SCEV: " << *AR << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000982 return 0;
983 }
984
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000985 auto &DL = Lp->getHeader()->getModule()->getDataLayout();
986 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000987 const APInt &APStepVal = C->getAPInt();
Adam Nemet04563272015-02-01 16:56:15 +0000988
989 // Huge step value - give up.
990 if (APStepVal.getBitWidth() > 64)
991 return 0;
992
993 int64_t StepVal = APStepVal.getSExtValue();
994
995 // Strided access.
996 int64_t Stride = StepVal / Size;
997 int64_t Rem = StepVal % Size;
998 if (Rem)
999 return 0;
1000
1001 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1002 // know we can't "wrap around the address space". In case of address space
1003 // zero we know that this won't happen without triggering undefined behavior.
1004 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001005 Stride != 1 && Stride != -1) {
1006 if (Assume) {
1007 // We can avoid this case by adding a run-time check.
1008 DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1009 << "inbouds or in address space 0 may wrap:\n"
1010 << "LAA: Pointer: " << *Ptr << "\n"
1011 << "LAA: SCEV: " << *AR << "\n"
1012 << "LAA: Added an overflow assumption\n");
1013 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1014 } else
1015 return 0;
1016 }
Adam Nemet04563272015-02-01 16:56:15 +00001017
1018 return Stride;
1019}
1020
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001021/// Take the pointer operand from the Load/Store instruction.
1022/// Returns NULL if this is not a valid Load/Store instruction.
1023static Value *getPointerOperand(Value *I) {
David Majnemer8b401012016-07-12 20:31:46 +00001024 if (auto *LI = dyn_cast<LoadInst>(I))
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001025 return LI->getPointerOperand();
David Majnemer8b401012016-07-12 20:31:46 +00001026 if (auto *SI = dyn_cast<StoreInst>(I))
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001027 return SI->getPointerOperand();
1028 return nullptr;
1029}
1030
1031/// Take the address space operand from the Load/Store instruction.
1032/// Returns -1 if this is not a valid Load/Store instruction.
1033static unsigned getAddressSpaceOperand(Value *I) {
1034 if (LoadInst *L = dyn_cast<LoadInst>(I))
1035 return L->getPointerAddressSpace();
1036 if (StoreInst *S = dyn_cast<StoreInst>(I))
1037 return S->getPointerAddressSpace();
1038 return -1;
1039}
1040
Michael Kuperstein2a735b72017-02-03 19:32:50 +00001041bool llvm::sortMemAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
1042 ScalarEvolution &SE,
Michael Kuperstein768d0132017-03-06 23:54:51 +00001043 SmallVectorImpl<Value *> &Sorted) {
Michael Kuperstein723999d2017-02-03 19:09:45 +00001044 SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs;
1045 OffValPairs.reserve(VL.size());
1046 Sorted.reserve(VL.size());
Mohammad Shahid31213342017-01-28 17:59:44 +00001047
Michael Kuperstein723999d2017-02-03 19:09:45 +00001048 // Walk over the pointers, and map each of them to an offset relative to
1049 // first pointer in the array.
1050 Value *Ptr0 = getPointerOperand(VL[0]);
1051 const SCEV *Scev0 = SE.getSCEV(Ptr0);
1052 Value *Obj0 = GetUnderlyingObject(Ptr0, DL);
Michael Kuperstein768d0132017-03-06 23:54:51 +00001053
Michael Kuperstein723999d2017-02-03 19:09:45 +00001054 for (auto *Val : VL) {
Michael Kupersteinc07cca82017-02-27 23:18:11 +00001055 // The only kind of access we care about here is load.
1056 if (!isa<LoadInst>(Val))
1057 return false;
1058
Michael Kuperstein723999d2017-02-03 19:09:45 +00001059 Value *Ptr = getPointerOperand(Val);
Michael Kupersteinc07cca82017-02-27 23:18:11 +00001060 assert(Ptr && "Expected value to have a pointer operand.");
Michael Kuperstein723999d2017-02-03 19:09:45 +00001061
1062 // If a pointer refers to a different underlying object, bail - the
1063 // pointers are by definition incomparable.
1064 Value *CurrObj = GetUnderlyingObject(Ptr, DL);
Michael Kuperstein2a735b72017-02-03 19:32:50 +00001065 if (CurrObj != Obj0)
1066 return false;
Michael Kuperstein723999d2017-02-03 19:09:45 +00001067
1068 const SCEVConstant *Diff =
1069 dyn_cast<SCEVConstant>(SE.getMinusSCEV(SE.getSCEV(Ptr), Scev0));
1070
1071 // The pointers may not have a constant offset from each other, or SCEV
1072 // may just not be smart enough to figure out they do. Regardless,
1073 // there's nothing we can do.
Michael Kuperstein2a735b72017-02-03 19:32:50 +00001074 if (!Diff)
1075 return false;
Michael Kuperstein723999d2017-02-03 19:09:45 +00001076
1077 OffValPairs.emplace_back(Diff->getAPInt().getSExtValue(), Val);
Mohammad Shahid31213342017-01-28 17:59:44 +00001078 }
Michael Kuperstein723999d2017-02-03 19:09:45 +00001079
Michael Kuperstein768d0132017-03-06 23:54:51 +00001080 std::sort(OffValPairs.begin(), OffValPairs.end(),
1081 [](const std::pair<int64_t, Value *> &Left,
1082 const std::pair<int64_t, Value *> &Right) {
1083 return Left.first < Right.first;
Mohammad Shahid31213342017-01-28 17:59:44 +00001084 });
1085
Michael Kuperstein768d0132017-03-06 23:54:51 +00001086 for (auto &it : OffValPairs)
1087 Sorted.push_back(it.second);
Michael Kuperstein2a735b72017-02-03 19:32:50 +00001088
1089 return true;
Mohammad Shahid31213342017-01-28 17:59:44 +00001090}
1091
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001092/// Returns true if the memory operations \p A and \p B are consecutive.
1093bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1094 ScalarEvolution &SE, bool CheckType) {
1095 Value *PtrA = getPointerOperand(A);
1096 Value *PtrB = getPointerOperand(B);
1097 unsigned ASA = getAddressSpaceOperand(A);
1098 unsigned ASB = getAddressSpaceOperand(B);
1099
1100 // Check that the address spaces match and that the pointers are valid.
1101 if (!PtrA || !PtrB || (ASA != ASB))
1102 return false;
1103
1104 // Make sure that A and B are different pointers.
1105 if (PtrA == PtrB)
1106 return false;
1107
1108 // Make sure that A and B have the same type if required.
Chad Rosier83a12032016-08-31 18:37:52 +00001109 if (CheckType && PtrA->getType() != PtrB->getType())
1110 return false;
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001111
1112 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
1113 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1114 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1115
1116 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1117 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1118 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1119
1120 // OffsetDelta = OffsetB - OffsetA;
1121 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1122 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1123 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1124 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1125 const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1126 // Check if they are based on the same pointer. That makes the offsets
1127 // sufficient.
1128 if (PtrA == PtrB)
1129 return OffsetDelta == Size;
1130
1131 // Compute the necessary base pointer delta to have the necessary final delta
1132 // equal to the size.
1133 // BaseDelta = Size - OffsetDelta;
1134 const SCEV *SizeSCEV = SE.getConstant(Size);
1135 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1136
1137 // Otherwise compute the distance with SCEV between the base pointers.
1138 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1139 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1140 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1141 return X == PtrSCEVB;
1142}
1143
Adam Nemet9c926572015-03-10 17:40:37 +00001144bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1145 switch (Type) {
1146 case NoDep:
1147 case Forward:
1148 case BackwardVectorizable:
1149 return true;
1150
1151 case Unknown:
1152 case ForwardButPreventsForwarding:
1153 case Backward:
1154 case BackwardVectorizableButPreventsForwarding:
1155 return false;
1156 }
David Majnemerd388e932015-03-10 20:23:29 +00001157 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001158}
1159
Adam Nemet397f5822015-11-03 23:50:03 +00001160bool MemoryDepChecker::Dependence::isBackward() const {
Adam Nemet9c926572015-03-10 17:40:37 +00001161 switch (Type) {
1162 case NoDep:
1163 case Forward:
1164 case ForwardButPreventsForwarding:
Adam Nemet397f5822015-11-03 23:50:03 +00001165 case Unknown:
Adam Nemet9c926572015-03-10 17:40:37 +00001166 return false;
1167
Adam Nemet9c926572015-03-10 17:40:37 +00001168 case BackwardVectorizable:
1169 case Backward:
1170 case BackwardVectorizableButPreventsForwarding:
1171 return true;
1172 }
David Majnemerd388e932015-03-10 20:23:29 +00001173 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001174}
1175
Adam Nemet397f5822015-11-03 23:50:03 +00001176bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1177 return isBackward() || Type == Unknown;
1178}
1179
1180bool MemoryDepChecker::Dependence::isForward() const {
1181 switch (Type) {
1182 case Forward:
1183 case ForwardButPreventsForwarding:
1184 return true;
1185
1186 case NoDep:
1187 case Unknown:
1188 case BackwardVectorizable:
1189 case Backward:
1190 case BackwardVectorizableButPreventsForwarding:
1191 return false;
1192 }
1193 llvm_unreachable("unexpected DepType!");
1194}
1195
David Majnemer7afb46d2016-07-07 06:24:36 +00001196bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1197 uint64_t TypeByteSize) {
Adam Nemet04563272015-02-01 16:56:15 +00001198 // If loads occur at a distance that is not a multiple of a feasible vector
1199 // factor store-load forwarding does not take place.
1200 // Positive dependences might cause troubles because vectorizing them might
1201 // prevent store-load forwarding making vectorized code run a lot slower.
1202 // a[i] = a[i-3] ^ a[i-8];
1203 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1204 // hence on your typical architecture store-load forwarding does not take
1205 // place. Vectorizing in such cases does not make sense.
1206 // Store-load forwarding distance.
Adam Nemet884d3132016-05-16 16:57:47 +00001207
1208 // After this many iterations store-to-load forwarding conflicts should not
1209 // cause any slowdowns.
David Majnemer7afb46d2016-07-07 06:24:36 +00001210 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
Adam Nemet04563272015-02-01 16:56:15 +00001211 // Maximum vector factor.
David Majnemer7afb46d2016-07-07 06:24:36 +00001212 uint64_t MaxVFWithoutSLForwardIssues = std::min(
Adam Nemet2c34ab52016-05-12 21:41:53 +00001213 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
Adam Nemet04563272015-02-01 16:56:15 +00001214
Adam Nemet884d3132016-05-16 16:57:47 +00001215 // Compute the smallest VF at which the store and load would be misaligned.
David Majnemer7afb46d2016-07-07 06:24:36 +00001216 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
Adam Nemet9b5852a2016-05-16 16:57:42 +00001217 VF *= 2) {
Adam Nemet884d3132016-05-16 16:57:47 +00001218 // If the number of vector iteration between the store and the load are
1219 // small we could incur conflicts.
1220 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
Adam Nemet9b5852a2016-05-16 16:57:42 +00001221 MaxVFWithoutSLForwardIssues = (VF >>= 1);
Adam Nemet04563272015-02-01 16:56:15 +00001222 break;
1223 }
1224 }
1225
Adam Nemet9b5852a2016-05-16 16:57:42 +00001226 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1227 DEBUG(dbgs() << "LAA: Distance " << Distance
1228 << " that could cause a store-load forwarding conflict\n");
Adam Nemet04563272015-02-01 16:56:15 +00001229 return true;
1230 }
1231
1232 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
Adam Nemetf219c642015-02-19 19:14:52 +00001233 MaxVFWithoutSLForwardIssues !=
Adam Nemet9b5852a2016-05-16 16:57:42 +00001234 VectorizerParams::MaxVectorWidth * TypeByteSize)
Adam Nemet04563272015-02-01 16:56:15 +00001235 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1236 return false;
1237}
1238
Dorit Nuzmaneac89d72017-02-12 09:32:53 +00001239/// Given a non-constant (unknown) dependence-distance \p Dist between two
1240/// memory accesses, that have the same stride whose absolute value is given
1241/// in \p Stride, and that have the same type size \p TypeByteSize,
1242/// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1243/// possible to prove statically that the dependence distance is larger
1244/// than the range that the accesses will travel through the execution of
1245/// the loop. If so, return true; false otherwise. This is useful for
1246/// example in loops such as the following (PR31098):
1247/// for (i = 0; i < D; ++i) {
1248/// = out[i];
1249/// out[i+D] =
1250/// }
1251static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1252 const SCEV &BackedgeTakenCount,
1253 const SCEV &Dist, uint64_t Stride,
1254 uint64_t TypeByteSize) {
1255
1256 // If we can prove that
1257 // (**) |Dist| > BackedgeTakenCount * Step
1258 // where Step is the absolute stride of the memory accesses in bytes,
1259 // then there is no dependence.
1260 //
1261 // Ratioanle:
1262 // We basically want to check if the absolute distance (|Dist/Step|)
1263 // is >= the loop iteration count (or > BackedgeTakenCount).
1264 // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1265 // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1266 // that the dependence distance is >= VF; This is checked elsewhere.
1267 // But in some cases we can prune unknown dependence distances early, and
1268 // even before selecting the VF, and without a runtime test, by comparing
1269 // the distance against the loop iteration count. Since the vectorized code
1270 // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1271 // also guarantees that distance >= VF.
1272 //
1273 const uint64_t ByteStride = Stride * TypeByteSize;
1274 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1275 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1276
1277 const SCEV *CastedDist = &Dist;
1278 const SCEV *CastedProduct = Product;
1279 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType());
1280 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType());
1281
1282 // The dependence distance can be positive/negative, so we sign extend Dist;
1283 // The multiplication of the absolute stride in bytes and the
1284 // backdgeTakenCount is non-negative, so we zero extend Product.
1285 if (DistTypeSize > ProductTypeSize)
1286 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1287 else
1288 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1289
1290 // Is Dist - (BackedgeTakenCount * Step) > 0 ?
1291 // (If so, then we have proven (**) because |Dist| >= Dist)
1292 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1293 if (SE.isKnownPositive(Minus))
1294 return true;
1295
1296 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ?
1297 // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1298 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1299 Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1300 if (SE.isKnownPositive(Minus))
1301 return true;
1302
1303 return false;
1304}
1305
Hao Liu751004a2015-06-08 04:48:37 +00001306/// \brief Check the dependence for two accesses with the same stride \p Stride.
1307/// \p Distance is the positive distance and \p TypeByteSize is type size in
1308/// bytes.
1309///
1310/// \returns true if they are independent.
David Majnemer7afb46d2016-07-07 06:24:36 +00001311static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1312 uint64_t TypeByteSize) {
Hao Liu751004a2015-06-08 04:48:37 +00001313 assert(Stride > 1 && "The stride must be greater than 1");
1314 assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1315 assert(Distance > 0 && "The distance must be non-zero");
1316
1317 // Skip if the distance is not multiple of type byte size.
1318 if (Distance % TypeByteSize)
1319 return false;
1320
David Majnemer7afb46d2016-07-07 06:24:36 +00001321 uint64_t ScaledDist = Distance / TypeByteSize;
Hao Liu751004a2015-06-08 04:48:37 +00001322
1323 // No dependence if the scaled distance is not multiple of the stride.
1324 // E.g.
1325 // for (i = 0; i < 1024 ; i += 4)
1326 // A[i+2] = A[i] + 1;
1327 //
1328 // Two accesses in memory (scaled distance is 2, stride is 4):
1329 // | A[0] | | | | A[4] | | | |
1330 // | | | A[2] | | | | A[6] | |
1331 //
1332 // E.g.
1333 // for (i = 0; i < 1024 ; i += 3)
1334 // A[i+4] = A[i] + 1;
1335 //
1336 // Two accesses in memory (scaled distance is 4, stride is 3):
1337 // | A[0] | | | A[3] | | | A[6] | | |
1338 // | | | | | A[4] | | | A[7] | |
1339 return ScaledDist % Stride;
1340}
1341
Adam Nemet9c926572015-03-10 17:40:37 +00001342MemoryDepChecker::Dependence::DepType
1343MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1344 const MemAccessInfo &B, unsigned BIdx,
1345 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001346 assert (AIdx < BIdx && "Must pass arguments in program order");
1347
1348 Value *APtr = A.getPointer();
1349 Value *BPtr = B.getPointer();
1350 bool AIsWrite = A.getInt();
1351 bool BIsWrite = B.getInt();
1352
1353 // Two reads are independent.
1354 if (!AIsWrite && !BIsWrite)
Adam Nemet9c926572015-03-10 17:40:37 +00001355 return Dependence::NoDep;
Adam Nemet04563272015-02-01 16:56:15 +00001356
1357 // We cannot check pointers in different address spaces.
1358 if (APtr->getType()->getPointerAddressSpace() !=
1359 BPtr->getType()->getPointerAddressSpace())
Adam Nemet9c926572015-03-10 17:40:37 +00001360 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001361
David Majnemer7afb46d2016-07-07 06:24:36 +00001362 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1363 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
Adam Nemet04563272015-02-01 16:56:15 +00001364
Silviu Barangaadf4b732016-05-10 12:28:49 +00001365 const SCEV *Src = PSE.getSCEV(APtr);
1366 const SCEV *Sink = PSE.getSCEV(BPtr);
Adam Nemet04563272015-02-01 16:56:15 +00001367
1368 // If the induction step is negative we have to invert source and sink of the
1369 // dependence.
1370 if (StrideAPtr < 0) {
Adam Nemet04563272015-02-01 16:56:15 +00001371 std::swap(APtr, BPtr);
1372 std::swap(Src, Sink);
1373 std::swap(AIsWrite, BIsWrite);
1374 std::swap(AIdx, BIdx);
1375 std::swap(StrideAPtr, StrideBPtr);
1376 }
1377
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001378 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
Adam Nemet04563272015-02-01 16:56:15 +00001379
Adam Nemet339f42b2015-02-19 19:15:07 +00001380 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001381 << "(Induction step: " << StrideAPtr << ")\n");
Adam Nemet339f42b2015-02-19 19:15:07 +00001382 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001383 << *InstMap[BIdx] << ": " << *Dist << "\n");
Adam Nemet04563272015-02-01 16:56:15 +00001384
Adam Nemet943befe2015-07-09 00:03:22 +00001385 // Need accesses with constant stride. We don't want to vectorize
Adam Nemet04563272015-02-01 16:56:15 +00001386 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1387 // the address space.
1388 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
Adam Nemet943befe2015-07-09 00:03:22 +00001389 DEBUG(dbgs() << "Pointer access with non-constant stride\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001390 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001391 }
1392
Dorit Nuzmaneac89d72017-02-12 09:32:53 +00001393 Type *ATy = APtr->getType()->getPointerElementType();
1394 Type *BTy = BPtr->getType()->getPointerElementType();
1395 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1396 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1397 uint64_t Stride = std::abs(StrideAPtr);
Adam Nemet04563272015-02-01 16:56:15 +00001398 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1399 if (!C) {
Dorit Nuzmaneac89d72017-02-12 09:32:53 +00001400 if (TypeByteSize == DL.getTypeAllocSize(BTy) &&
1401 isSafeDependenceDistance(DL, *(PSE.getSE()),
1402 *(PSE.getBackedgeTakenCount()), *Dist, Stride,
1403 TypeByteSize))
1404 return Dependence::NoDep;
1405
Adam Nemet339f42b2015-02-19 19:15:07 +00001406 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
Adam Nemet04563272015-02-01 16:56:15 +00001407 ShouldRetryWithRuntimeCheck = true;
Adam Nemet9c926572015-03-10 17:40:37 +00001408 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001409 }
1410
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001411 const APInt &Val = C->getAPInt();
Matthew Simpson6feebe92016-05-19 15:37:19 +00001412 int64_t Distance = Val.getSExtValue();
Matthew Simpson6feebe92016-05-19 15:37:19 +00001413
1414 // Attempt to prove strided accesses independent.
1415 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1416 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1417 DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1418 return Dependence::NoDep;
1419 }
1420
1421 // Negative distances are not plausible dependencies.
Adam Nemet04563272015-02-01 16:56:15 +00001422 if (Val.isNegative()) {
1423 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001424 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001425 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
Adam Nemetb8486e52016-03-01 00:50:08 +00001426 ATy != BTy)) {
1427 DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001428 return Dependence::ForwardButPreventsForwarding;
Adam Nemetb8486e52016-03-01 00:50:08 +00001429 }
Adam Nemet04563272015-02-01 16:56:15 +00001430
Adam Nemet724ab222016-05-05 23:41:28 +00001431 DEBUG(dbgs() << "LAA: Dependence is negative\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001432 return Dependence::Forward;
Adam Nemet04563272015-02-01 16:56:15 +00001433 }
1434
1435 // Write to the same location with the same size.
1436 // Could be improved to assert type sizes are the same (i32 == float, etc).
1437 if (Val == 0) {
1438 if (ATy == BTy)
Adam Nemetd7037c52015-11-03 20:13:43 +00001439 return Dependence::Forward;
Adam Nemet339f42b2015-02-19 19:15:07 +00001440 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001441 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001442 }
1443
1444 assert(Val.isStrictlyPositive() && "Expect a positive value");
1445
Adam Nemet04563272015-02-01 16:56:15 +00001446 if (ATy != BTy) {
Adam Nemet04d41632015-02-19 19:14:34 +00001447 DEBUG(dbgs() <<
Adam Nemet339f42b2015-02-19 19:15:07 +00001448 "LAA: ReadWrite-Write positive dependency with different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001449 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001450 }
1451
Adam Nemet04563272015-02-01 16:56:15 +00001452 // Bail out early if passed-in parameters make vectorization not feasible.
Adam Nemetf219c642015-02-19 19:14:52 +00001453 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1454 VectorizerParams::VectorizationFactor : 1);
1455 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1456 VectorizerParams::VectorizationInterleave : 1);
Hao Liu751004a2015-06-08 04:48:37 +00001457 // The minimum number of iterations for a vectorized/unrolled version.
1458 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
Adam Nemet04563272015-02-01 16:56:15 +00001459
Hao Liu751004a2015-06-08 04:48:37 +00001460 // It's not vectorizable if the distance is smaller than the minimum distance
1461 // needed for a vectroized/unrolled version. Vectorizing one iteration in
1462 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1463 // TypeByteSize (No need to plus the last gap distance).
1464 //
1465 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1466 // foo(int *A) {
1467 // int *B = (int *)((char *)A + 14);
1468 // for (i = 0 ; i < 1024 ; i += 2)
1469 // B[i] = A[i] + 1;
1470 // }
1471 //
1472 // Two accesses in memory (stride is 2):
1473 // | A[0] | | A[2] | | A[4] | | A[6] | |
1474 // | B[0] | | B[2] | | B[4] |
1475 //
1476 // Distance needs for vectorizing iterations except the last iteration:
1477 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1478 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1479 //
1480 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1481 // 12, which is less than distance.
1482 //
1483 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1484 // the minimum distance needed is 28, which is greater than distance. It is
1485 // not safe to do vectorization.
David Majnemer7afb46d2016-07-07 06:24:36 +00001486 uint64_t MinDistanceNeeded =
Hao Liu751004a2015-06-08 04:48:37 +00001487 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
David Majnemer7afb46d2016-07-07 06:24:36 +00001488 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
Hao Liu751004a2015-06-08 04:48:37 +00001489 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1490 << '\n');
1491 return Dependence::Backward;
1492 }
1493
1494 // Unsafe if the minimum distance needed is greater than max safe distance.
1495 if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1496 DEBUG(dbgs() << "LAA: Failure because it needs at least "
1497 << MinDistanceNeeded << " size in bytes");
Adam Nemet9c926572015-03-10 17:40:37 +00001498 return Dependence::Backward;
Adam Nemet04563272015-02-01 16:56:15 +00001499 }
1500
Adam Nemet9cc0c392015-02-26 17:58:48 +00001501 // Positive distance bigger than max vectorization factor.
Hao Liu751004a2015-06-08 04:48:37 +00001502 // FIXME: Should use max factor instead of max distance in bytes, which could
1503 // not handle different types.
1504 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1505 // void foo (int *A, char *B) {
1506 // for (unsigned i = 0; i < 1024; i++) {
1507 // A[i+2] = A[i] + 1;
1508 // B[i+2] = B[i] + 1;
1509 // }
1510 // }
1511 //
1512 // This case is currently unsafe according to the max safe distance. If we
1513 // analyze the two accesses on array B, the max safe dependence distance
1514 // is 2. Then we analyze the accesses on array A, the minimum distance needed
1515 // is 8, which is less than 2 and forbidden vectorization, But actually
1516 // both A and B could be vectorized by 2 iterations.
1517 MaxSafeDepDistBytes =
David Majnemer7afb46d2016-07-07 06:24:36 +00001518 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
Adam Nemet04563272015-02-01 16:56:15 +00001519
1520 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001521 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001522 couldPreventStoreLoadForward(Distance, TypeByteSize))
Adam Nemet9c926572015-03-10 17:40:37 +00001523 return Dependence::BackwardVectorizableButPreventsForwarding;
Adam Nemet04563272015-02-01 16:56:15 +00001524
Hao Liu751004a2015-06-08 04:48:37 +00001525 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1526 << " with max VF = "
1527 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
Adam Nemet04563272015-02-01 16:56:15 +00001528
Adam Nemet9c926572015-03-10 17:40:37 +00001529 return Dependence::BackwardVectorizable;
Adam Nemet04563272015-02-01 16:56:15 +00001530}
1531
Adam Nemetdee666b2015-03-10 17:40:34 +00001532bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
Adam Nemet04563272015-02-01 16:56:15 +00001533 MemAccessInfoSet &CheckDeps,
Adam Nemet8bc61df2015-02-24 00:41:59 +00001534 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001535
David Majnemer7afb46d2016-07-07 06:24:36 +00001536 MaxSafeDepDistBytes = -1;
Adam Nemet04563272015-02-01 16:56:15 +00001537 while (!CheckDeps.empty()) {
1538 MemAccessInfo CurAccess = *CheckDeps.begin();
1539
1540 // Get the relevant memory access set.
1541 EquivalenceClasses<MemAccessInfo>::iterator I =
1542 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1543
1544 // Check accesses within this set.
Richard Trieu7a083812016-02-18 22:09:30 +00001545 EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1546 AccessSets.member_begin(I);
1547 EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1548 AccessSets.member_end();
Adam Nemet04563272015-02-01 16:56:15 +00001549
1550 // Check every access pair.
1551 while (AI != AE) {
1552 CheckDeps.erase(*AI);
1553 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1554 while (OI != AE) {
1555 // Check every accessing instruction pair in program order.
1556 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1557 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1558 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1559 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
Adam Nemet9c926572015-03-10 17:40:37 +00001560 auto A = std::make_pair(&*AI, *I1);
1561 auto B = std::make_pair(&*OI, *I2);
1562
1563 assert(*I1 != *I2);
1564 if (*I1 > *I2)
1565 std::swap(A, B);
1566
1567 Dependence::DepType Type =
1568 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1569 SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1570
Adam Nemeta2df7502015-11-03 21:39:52 +00001571 // Gather dependences unless we accumulated MaxDependences
Adam Nemet9c926572015-03-10 17:40:37 +00001572 // dependences. In that case return as soon as we find the first
1573 // unsafe dependence. This puts a limit on this quadratic
1574 // algorithm.
Adam Nemeta2df7502015-11-03 21:39:52 +00001575 if (RecordDependences) {
1576 if (Type != Dependence::NoDep)
1577 Dependences.push_back(Dependence(A.second, B.second, Type));
Adam Nemet9c926572015-03-10 17:40:37 +00001578
Adam Nemeta2df7502015-11-03 21:39:52 +00001579 if (Dependences.size() >= MaxDependences) {
1580 RecordDependences = false;
1581 Dependences.clear();
Adam Nemet9c926572015-03-10 17:40:37 +00001582 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1583 }
1584 }
Adam Nemeta2df7502015-11-03 21:39:52 +00001585 if (!RecordDependences && !SafeForVectorization)
Adam Nemet04563272015-02-01 16:56:15 +00001586 return false;
1587 }
1588 ++OI;
1589 }
1590 AI++;
1591 }
1592 }
Adam Nemet9c926572015-03-10 17:40:37 +00001593
Adam Nemeta2df7502015-11-03 21:39:52 +00001594 DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001595 return SafeForVectorization;
Adam Nemet04563272015-02-01 16:56:15 +00001596}
1597
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001598SmallVector<Instruction *, 4>
1599MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1600 MemAccessInfo Access(Ptr, isWrite);
1601 auto &IndexVector = Accesses.find(Access)->second;
1602
1603 SmallVector<Instruction *, 4> Insts;
David Majnemer2d006e72016-08-12 04:32:42 +00001604 transform(IndexVector,
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001605 std::back_inserter(Insts),
1606 [&](unsigned Idx) { return this->InstMap[Idx]; });
1607 return Insts;
1608}
1609
Adam Nemet58913d62015-03-10 17:40:43 +00001610const char *MemoryDepChecker::Dependence::DepName[] = {
1611 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1612 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1613
1614void MemoryDepChecker::Dependence::print(
1615 raw_ostream &OS, unsigned Depth,
1616 const SmallVectorImpl<Instruction *> &Instrs) const {
1617 OS.indent(Depth) << DepName[Type] << ":\n";
1618 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1619 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1620}
1621
Adam Nemet929c38e2015-02-19 19:15:10 +00001622bool LoopAccessInfo::canAnalyzeLoop() {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001623 // We need to have a loop header.
Adam Nemetd8968f02016-01-18 21:16:33 +00001624 DEBUG(dbgs() << "LAA: Found a loop in "
1625 << TheLoop->getHeader()->getParent()->getName() << ": "
1626 << TheLoop->getHeader()->getName() << '\n');
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001627
Adam Nemetd8968f02016-01-18 21:16:33 +00001628 // We can only analyze innermost loops.
Adam Nemet929c38e2015-02-19 19:15:10 +00001629 if (!TheLoop->empty()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001630 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001631 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
Adam Nemet929c38e2015-02-19 19:15:10 +00001632 return false;
1633 }
1634
1635 // We must have a single backedge.
1636 if (TheLoop->getNumBackEdges() != 1) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001637 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001638 recordAnalysis("CFGNotUnderstood")
1639 << "loop control flow is not understood by analyzer";
Adam Nemet929c38e2015-02-19 19:15:10 +00001640 return false;
1641 }
1642
1643 // We must have a single exiting block.
1644 if (!TheLoop->getExitingBlock()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001645 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001646 recordAnalysis("CFGNotUnderstood")
1647 << "loop control flow is not understood by analyzer";
Adam Nemet929c38e2015-02-19 19:15:10 +00001648 return false;
1649 }
1650
1651 // We only handle bottom-tested loops, i.e. loop in which the condition is
1652 // checked at the end of each iteration. With that we can assume that all
1653 // instructions in the loop are executed the same number of times.
1654 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001655 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001656 recordAnalysis("CFGNotUnderstood")
1657 << "loop control flow is not understood by analyzer";
Adam Nemet929c38e2015-02-19 19:15:10 +00001658 return false;
1659 }
1660
Adam Nemet929c38e2015-02-19 19:15:10 +00001661 // ScalarEvolution needs to be able to find the exit count.
Xinliang David Li94734ee2016-07-01 05:59:55 +00001662 const SCEV *ExitCount = PSE->getBackedgeTakenCount();
1663 if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001664 recordAnalysis("CantComputeNumberOfIterations")
1665 << "could not determine number of loop iterations";
Adam Nemet929c38e2015-02-19 19:15:10 +00001666 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1667 return false;
1668 }
1669
1670 return true;
1671}
1672
Adam Nemetb49d9a52016-07-13 22:36:27 +00001673void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
Adam Nemet7da74ab2016-07-13 22:36:35 +00001674 const TargetLibraryInfo *TLI,
1675 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001676 typedef SmallPtrSet<Value*, 16> ValueSet;
1677
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001678 // Holds the Load and Store instructions.
1679 SmallVector<LoadInst *, 16> Loads;
1680 SmallVector<StoreInst *, 16> Stores;
Adam Nemet04563272015-02-01 16:56:15 +00001681
1682 // Holds all the different accesses in the loop.
1683 unsigned NumReads = 0;
1684 unsigned NumReadWrites = 0;
1685
Xinliang David Lice030ac2016-06-22 23:20:59 +00001686 PtrRtChecking->Pointers.clear();
1687 PtrRtChecking->Need = false;
Adam Nemet04563272015-02-01 16:56:15 +00001688
1689 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
Adam Nemet04563272015-02-01 16:56:15 +00001690
1691 // For each block.
David Majnemer8b401012016-07-12 20:31:46 +00001692 for (BasicBlock *BB : TheLoop->blocks()) {
Adam Nemet04563272015-02-01 16:56:15 +00001693 // Scan the BB and collect legal loads and stores.
David Majnemer8b401012016-07-12 20:31:46 +00001694 for (Instruction &I : *BB) {
Adam Nemet04563272015-02-01 16:56:15 +00001695 // If this is a load, save it. If this instruction can read from memory
1696 // but is not a load, then we quit. Notice that we don't handle function
1697 // calls that read or write.
David Majnemer8b401012016-07-12 20:31:46 +00001698 if (I.mayReadFromMemory()) {
Adam Nemet04563272015-02-01 16:56:15 +00001699 // Many math library functions read the rounding mode. We will only
1700 // vectorize a loop if it contains known function calls that don't set
1701 // the flag. Therefore, it is safe to ignore this read from memory.
David Majnemer8b401012016-07-12 20:31:46 +00001702 auto *Call = dyn_cast<CallInst>(&I);
David Majnemerb4b27232016-04-19 19:10:21 +00001703 if (Call && getVectorIntrinsicIDForCall(Call, TLI))
Adam Nemet04563272015-02-01 16:56:15 +00001704 continue;
1705
Michael Zolotukhin9b3cf602015-03-17 19:46:50 +00001706 // If the function has an explicit vectorized counterpart, we can safely
1707 // assume that it can be vectorized.
1708 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1709 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1710 continue;
1711
David Majnemer8b401012016-07-12 20:31:46 +00001712 auto *Ld = dyn_cast<LoadInst>(&I);
Adam Nemet04563272015-02-01 16:56:15 +00001713 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001714 recordAnalysis("NonSimpleLoad", Ld)
1715 << "read with atomic ordering or volatile read";
Adam Nemet339f42b2015-02-19 19:15:07 +00001716 DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001717 CanVecMem = false;
1718 return;
Adam Nemet04563272015-02-01 16:56:15 +00001719 }
1720 NumLoads++;
1721 Loads.push_back(Ld);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001722 DepChecker->addAccess(Ld);
Adam Nemeta9f09c62016-06-17 22:35:41 +00001723 if (EnableMemAccessVersioning)
Adam Nemetc953bb92016-06-16 22:57:55 +00001724 collectStridedAccess(Ld);
Adam Nemet04563272015-02-01 16:56:15 +00001725 continue;
1726 }
1727
1728 // Save 'store' instructions. Abort if other instructions write to memory.
David Majnemer8b401012016-07-12 20:31:46 +00001729 if (I.mayWriteToMemory()) {
1730 auto *St = dyn_cast<StoreInst>(&I);
Adam Nemet04563272015-02-01 16:56:15 +00001731 if (!St) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001732 recordAnalysis("CantVectorizeInstruction", St)
1733 << "instruction cannot be vectorized";
Adam Nemet436018c2015-02-19 19:15:00 +00001734 CanVecMem = false;
1735 return;
Adam Nemet04563272015-02-01 16:56:15 +00001736 }
1737 if (!St->isSimple() && !IsAnnotatedParallel) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001738 recordAnalysis("NonSimpleStore", St)
1739 << "write with atomic ordering or volatile write";
Adam Nemet339f42b2015-02-19 19:15:07 +00001740 DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001741 CanVecMem = false;
1742 return;
Adam Nemet04563272015-02-01 16:56:15 +00001743 }
1744 NumStores++;
1745 Stores.push_back(St);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001746 DepChecker->addAccess(St);
Adam Nemeta9f09c62016-06-17 22:35:41 +00001747 if (EnableMemAccessVersioning)
Adam Nemetc953bb92016-06-16 22:57:55 +00001748 collectStridedAccess(St);
Adam Nemet04563272015-02-01 16:56:15 +00001749 }
1750 } // Next instr.
1751 } // Next block.
1752
1753 // Now we have two lists that hold the loads and the stores.
1754 // Next, we find the pointers that they use.
1755
1756 // Check if we see any stores. If there are no stores, then we don't
1757 // care if the pointers are *restrict*.
1758 if (!Stores.size()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001759 DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001760 CanVecMem = true;
1761 return;
Adam Nemet04563272015-02-01 16:56:15 +00001762 }
1763
Adam Nemetdee666b2015-03-10 17:40:34 +00001764 MemoryDepChecker::DepCandidates DependentAccesses;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001765 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
Xinliang David Li94734ee2016-07-01 05:59:55 +00001766 AA, LI, DependentAccesses, *PSE);
Adam Nemet04563272015-02-01 16:56:15 +00001767
1768 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1769 // multiple times on the same object. If the ptr is accessed twice, once
1770 // for read and once for write, it will only appear once (on the write
1771 // list). This is okay, since we are going to check for conflicts between
1772 // writes and between reads and writes, but not between reads and reads.
1773 ValueSet Seen;
1774
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001775 for (StoreInst *ST : Stores) {
1776 Value *Ptr = ST->getPointerOperand();
Adam Nemetce482502015-04-08 17:48:40 +00001777 // Check for store to loop invariant address.
1778 StoreToLoopInvariantAddress |= isUniform(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +00001779 // If we did *not* see this pointer before, insert it to the read-write
1780 // list. At this phase it is only a 'write' list.
1781 if (Seen.insert(Ptr).second) {
1782 ++NumReadWrites;
1783
Chandler Carruthac80dc72015-06-17 07:18:54 +00001784 MemoryLocation Loc = MemoryLocation::get(ST);
Adam Nemet04563272015-02-01 16:56:15 +00001785 // The TBAA metadata could have a control dependency on the predication
1786 // condition, so we cannot rely on it when determining whether or not we
1787 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001788 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001789 Loc.AATags.TBAA = nullptr;
1790
1791 Accesses.addStore(Loc);
1792 }
1793 }
1794
1795 if (IsAnnotatedParallel) {
Adam Nemet04d41632015-02-19 19:14:34 +00001796 DEBUG(dbgs()
Adam Nemet339f42b2015-02-19 19:15:07 +00001797 << "LAA: A loop annotated parallel, ignore memory dependency "
Adam Nemet04d41632015-02-19 19:14:34 +00001798 << "checks.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001799 CanVecMem = true;
1800 return;
Adam Nemet04563272015-02-01 16:56:15 +00001801 }
1802
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001803 for (LoadInst *LD : Loads) {
1804 Value *Ptr = LD->getPointerOperand();
Adam Nemet04563272015-02-01 16:56:15 +00001805 // If we did *not* see this pointer before, insert it to the
1806 // read list. If we *did* see it before, then it is already in
1807 // the read-write list. This allows us to vectorize expressions
1808 // such as A[i] += x; Because the address of A[i] is a read-write
1809 // pointer. This only works if the index of A[i] is consecutive.
1810 // If the address of i is unknown (for example A[B[i]]) then we may
1811 // read a few words, modify, and write a few words, and some of the
1812 // words may be written to the same address.
1813 bool IsReadOnlyPtr = false;
Adam Nemet139ffba2016-06-16 08:27:03 +00001814 if (Seen.insert(Ptr).second ||
Xinliang David Li94734ee2016-07-01 05:59:55 +00001815 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
Adam Nemet04563272015-02-01 16:56:15 +00001816 ++NumReads;
1817 IsReadOnlyPtr = true;
1818 }
1819
Chandler Carruthac80dc72015-06-17 07:18:54 +00001820 MemoryLocation Loc = MemoryLocation::get(LD);
Adam Nemet04563272015-02-01 16:56:15 +00001821 // The TBAA metadata could have a control dependency on the predication
1822 // condition, so we cannot rely on it when determining whether or not we
1823 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001824 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001825 Loc.AATags.TBAA = nullptr;
1826
1827 Accesses.addLoad(Loc, IsReadOnlyPtr);
1828 }
1829
1830 // If we write (or read-write) to a single destination and there are no
1831 // other reads in this loop then is it safe to vectorize.
1832 if (NumReadWrites == 1 && NumReads == 0) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001833 DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001834 CanVecMem = true;
1835 return;
Adam Nemet04563272015-02-01 16:56:15 +00001836 }
1837
1838 // Build dependence sets and check whether we need a runtime pointer bounds
1839 // check.
1840 Accesses.buildDependenceSets();
Adam Nemet04563272015-02-01 16:56:15 +00001841
1842 // Find pointers with computable bounds. We are going to use this information
1843 // to place a runtime bound check.
Xinliang David Li94734ee2016-07-01 05:59:55 +00001844 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
Adam Nemet139ffba2016-06-16 08:27:03 +00001845 TheLoop, SymbolicStrides);
Adam Nemetee614742015-07-09 22:17:38 +00001846 if (!CanDoRTIfNeeded) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001847 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
Adam Nemetee614742015-07-09 22:17:38 +00001848 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1849 << "the array bounds.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001850 CanVecMem = false;
1851 return;
Adam Nemet04563272015-02-01 16:56:15 +00001852 }
1853
Adam Nemetee614742015-07-09 22:17:38 +00001854 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
Adam Nemet04563272015-02-01 16:56:15 +00001855
Adam Nemet436018c2015-02-19 19:15:00 +00001856 CanVecMem = true;
Adam Nemet04563272015-02-01 16:56:15 +00001857 if (Accesses.isDependencyCheckNeeded()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001858 DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
Xinliang David Lice030ac2016-06-22 23:20:59 +00001859 CanVecMem = DepChecker->areDepsSafe(
Adam Nemet139ffba2016-06-16 08:27:03 +00001860 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001861 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
Adam Nemet04563272015-02-01 16:56:15 +00001862
Xinliang David Lice030ac2016-06-22 23:20:59 +00001863 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001864 DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
Adam Nemet04563272015-02-01 16:56:15 +00001865
1866 // Clear the dependency checks. We assume they are not needed.
Xinliang David Lice030ac2016-06-22 23:20:59 +00001867 Accesses.resetDepChecks(*DepChecker);
Adam Nemet04563272015-02-01 16:56:15 +00001868
Xinliang David Lice030ac2016-06-22 23:20:59 +00001869 PtrRtChecking->reset();
1870 PtrRtChecking->Need = true;
Adam Nemet04563272015-02-01 16:56:15 +00001871
Xinliang David Li94734ee2016-07-01 05:59:55 +00001872 auto *SE = PSE->getSE();
Xinliang David Lice030ac2016-06-22 23:20:59 +00001873 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
Adam Nemet139ffba2016-06-16 08:27:03 +00001874 SymbolicStrides, true);
Silviu Baranga98a13712015-06-08 10:27:06 +00001875
Adam Nemet949e91a2015-03-10 19:12:41 +00001876 // Check that we found the bounds for the pointer.
Adam Nemetee614742015-07-09 22:17:38 +00001877 if (!CanDoRTIfNeeded) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001878 recordAnalysis("CantCheckMemDepsAtRunTime")
1879 << "cannot check memory dependencies at runtime";
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001880 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001881 CanVecMem = false;
1882 return;
1883 }
1884
Adam Nemet04563272015-02-01 16:56:15 +00001885 CanVecMem = true;
1886 }
1887 }
1888
Adam Nemet4bb90a72015-03-10 21:47:39 +00001889 if (CanVecMem)
1890 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
Xinliang David Lice030ac2016-06-22 23:20:59 +00001891 << (PtrRtChecking->Need ? "" : " don't")
Adam Nemet0f67c6c2015-07-09 22:17:41 +00001892 << " need runtime memory checks.\n");
Adam Nemet4bb90a72015-03-10 21:47:39 +00001893 else {
Adam Nemet877ccee2016-09-30 00:01:30 +00001894 recordAnalysis("UnsafeMemDep")
Adam Nemet0a77dfa2016-05-09 23:03:44 +00001895 << "unsafe dependent memory operations in loop. Use "
1896 "#pragma loop distribute(enable) to allow loop distribution "
1897 "to attempt to isolate the offending operations into a separate "
Adam Nemet877ccee2016-09-30 00:01:30 +00001898 "loop";
Adam Nemet4bb90a72015-03-10 21:47:39 +00001899 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1900 }
Adam Nemet04563272015-02-01 16:56:15 +00001901}
1902
Adam Nemet01abb2c2015-02-18 03:43:19 +00001903bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1904 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001905 assert(TheLoop->contains(BB) && "Unknown block used");
1906
1907 // Blocks that do not dominate the latch need predication.
1908 BasicBlock* Latch = TheLoop->getLoopLatch();
1909 return !DT->dominates(BB, Latch);
1910}
1911
Adam Nemet877ccee2016-09-30 00:01:30 +00001912OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
1913 Instruction *I) {
Adam Nemetc9228532015-02-19 19:14:56 +00001914 assert(!Report && "Multiple reports generated");
Adam Nemet877ccee2016-09-30 00:01:30 +00001915
1916 Value *CodeRegion = TheLoop->getHeader();
1917 DebugLoc DL = TheLoop->getStartLoc();
1918
1919 if (I) {
1920 CodeRegion = I->getParent();
1921 // If there is no debug location attached to the instruction, revert back to
1922 // using the loop's.
1923 if (I->getDebugLoc())
1924 DL = I->getDebugLoc();
1925 }
1926
1927 Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
1928 CodeRegion);
1929 return *Report;
Adam Nemet04563272015-02-01 16:56:15 +00001930}
1931
Adam Nemet57ac7662015-02-19 19:15:21 +00001932bool LoopAccessInfo::isUniform(Value *V) const {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +00001933 auto *SE = PSE->getSE();
1934 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
1935 // never considered uniform.
1936 // TODO: Is this really what we want? Even without FP SCEV, we may want some
1937 // trivially loop-invariant FP values to be considered uniform.
1938 if (!SE->isSCEVable(V->getType()))
1939 return false;
1940 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
Adam Nemet04563272015-02-01 16:56:15 +00001941}
Adam Nemet7206d7a2015-02-06 18:31:04 +00001942
1943// FIXME: this function is currently a duplicate of the one in
1944// LoopVectorize.cpp.
1945static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1946 Instruction *Loc) {
1947 if (FirstInst)
1948 return FirstInst;
1949 if (Instruction *I = dyn_cast<Instruction>(V))
1950 return I->getParent() == Loc->getParent() ? I : nullptr;
1951 return nullptr;
1952}
1953
Benjamin Kramer039b1042015-10-28 13:54:36 +00001954namespace {
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00001955
Adam Nemet4e533ef2015-08-21 23:19:57 +00001956/// \brief IR Values for the lower and upper bounds of a pointer evolution. We
1957/// need to use value-handles because SCEV expansion can invalidate previously
1958/// expanded values. Thus expansion of a pointer can invalidate the bounds for
1959/// a previous one.
Adam Nemet1da7df32015-07-26 05:32:14 +00001960struct PointerBounds {
Adam Nemet4e533ef2015-08-21 23:19:57 +00001961 TrackingVH<Value> Start;
1962 TrackingVH<Value> End;
Adam Nemet1da7df32015-07-26 05:32:14 +00001963};
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00001964
Benjamin Kramer039b1042015-10-28 13:54:36 +00001965} // end anonymous namespace
Adam Nemet7206d7a2015-02-06 18:31:04 +00001966
Adam Nemet1da7df32015-07-26 05:32:14 +00001967/// \brief Expand code for the lower and upper bound of the pointer group \p CG
1968/// in \p TheLoop. \return the values for the bounds.
1969static PointerBounds
1970expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1971 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1972 const RuntimePointerChecking &PtrRtChecking) {
1973 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1974 const SCEV *Sc = SE->getSCEV(Ptr);
1975
Keno Fischer92f377b2016-12-05 21:25:03 +00001976 unsigned AS = Ptr->getType()->getPointerAddressSpace();
1977 LLVMContext &Ctx = Loc->getContext();
1978
1979 // Use this type for pointer arithmetic.
1980 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1981
Adam Nemet1da7df32015-07-26 05:32:14 +00001982 if (SE->isLoopInvariant(Sc, TheLoop)) {
1983 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1984 << "\n");
Keno Fischer92f377b2016-12-05 21:25:03 +00001985 // Ptr could be in the loop body. If so, expand a new one at the correct
1986 // location.
1987 Instruction *Inst = dyn_cast<Instruction>(Ptr);
1988 Value *NewPtr = (Inst && TheLoop->contains(Inst))
1989 ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
1990 : Ptr;
1991 return {NewPtr, NewPtr};
Adam Nemet1da7df32015-07-26 05:32:14 +00001992 } else {
Adam Nemet1da7df32015-07-26 05:32:14 +00001993 Value *Start = nullptr, *End = nullptr;
Adam Nemet1da7df32015-07-26 05:32:14 +00001994 DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1995 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1996 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1997 DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1998 return {Start, End};
1999 }
2000}
2001
2002/// \brief Turns a collection of checks into a collection of expanded upper and
2003/// lower bounds for both pointers in the check.
2004static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
2005 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
2006 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
2007 const RuntimePointerChecking &PtrRtChecking) {
2008 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
2009
2010 // Here we're relying on the SCEV Expander's cache to only emit code for the
2011 // same bounds once.
David Majnemer2d006e72016-08-12 04:32:42 +00002012 transform(
2013 PointerChecks, std::back_inserter(ChecksWithBounds),
Adam Nemet1da7df32015-07-26 05:32:14 +00002014 [&](const RuntimePointerChecking::PointerCheck &Check) {
NAKAMURA Takumi94abbbd2015-07-27 01:35:30 +00002015 PointerBounds
2016 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
2017 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
2018 return std::make_pair(First, Second);
Adam Nemet1da7df32015-07-26 05:32:14 +00002019 });
2020
2021 return ChecksWithBounds;
2022}
2023
Adam Nemet5b0a4792015-08-11 00:09:37 +00002024std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
Adam Nemet1da7df32015-07-26 05:32:14 +00002025 Instruction *Loc,
2026 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
2027 const {
Adam Nemet1824e412016-07-13 22:18:51 +00002028 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
Xinliang David Li94734ee2016-07-01 05:59:55 +00002029 auto *SE = PSE->getSE();
Adam Nemet1824e412016-07-13 22:18:51 +00002030 SCEVExpander Exp(*SE, DL, "induction");
Adam Nemet1da7df32015-07-26 05:32:14 +00002031 auto ExpandedChecks =
Xinliang David Lice030ac2016-06-22 23:20:59 +00002032 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
Adam Nemet7206d7a2015-02-06 18:31:04 +00002033
2034 LLVMContext &Ctx = Loc->getContext();
Adam Nemet7206d7a2015-02-06 18:31:04 +00002035 Instruction *FirstInst = nullptr;
Adam Nemet7206d7a2015-02-06 18:31:04 +00002036 IRBuilder<> ChkBuilder(Loc);
2037 // Our instructions might fold to a constant.
2038 Value *MemoryRuntimeCheck = nullptr;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00002039
Adam Nemet1da7df32015-07-26 05:32:14 +00002040 for (const auto &Check : ExpandedChecks) {
2041 const PointerBounds &A = Check.first, &B = Check.second;
Adam Nemetcdb791c2015-08-19 17:24:36 +00002042 // Check if two pointers (A and B) conflict where conflict is computed as:
2043 // start(A) <= end(B) && start(B) <= end(A)
Adam Nemet1da7df32015-07-26 05:32:14 +00002044 unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
2045 unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
Adam Nemet7206d7a2015-02-06 18:31:04 +00002046
Adam Nemet1da7df32015-07-26 05:32:14 +00002047 assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
2048 (AS1 == A.End->getType()->getPointerAddressSpace()) &&
2049 "Trying to bounds check pointers with different address spaces");
Adam Nemet7206d7a2015-02-06 18:31:04 +00002050
Adam Nemet1da7df32015-07-26 05:32:14 +00002051 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
2052 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
Adam Nemet7206d7a2015-02-06 18:31:04 +00002053
Adam Nemet1da7df32015-07-26 05:32:14 +00002054 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
2055 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
2056 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
2057 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
Adam Nemet7206d7a2015-02-06 18:31:04 +00002058
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +00002059 // [A|B].Start points to the first accessed byte under base [A|B].
2060 // [A|B].End points to the last accessed byte, plus one.
2061 // There is no conflict when the intervals are disjoint:
2062 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
2063 //
2064 // bound0 = (B.Start < A.End)
2065 // bound1 = (A.Start < B.End)
2066 // IsConflict = bound0 & bound1
2067 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
Adam Nemet1da7df32015-07-26 05:32:14 +00002068 FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +00002069 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
Adam Nemet1da7df32015-07-26 05:32:14 +00002070 FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
2071 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
2072 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2073 if (MemoryRuntimeCheck) {
2074 IsConflict =
2075 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
Adam Nemet7206d7a2015-02-06 18:31:04 +00002076 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
Adam Nemet7206d7a2015-02-06 18:31:04 +00002077 }
Adam Nemet1da7df32015-07-26 05:32:14 +00002078 MemoryRuntimeCheck = IsConflict;
Adam Nemet7206d7a2015-02-06 18:31:04 +00002079 }
2080
Adam Nemet90fec842015-04-02 17:51:57 +00002081 if (!MemoryRuntimeCheck)
2082 return std::make_pair(nullptr, nullptr);
2083
Adam Nemet7206d7a2015-02-06 18:31:04 +00002084 // We have to do this trickery because the IRBuilder might fold the check to a
2085 // constant expression in which case there is no Instruction anchored in a
2086 // the block.
2087 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
2088 ConstantInt::getTrue(Ctx));
2089 ChkBuilder.Insert(Check, "memcheck.conflict");
2090 FirstInst = getFirstInst(FirstInst, Check, Loc);
2091 return std::make_pair(FirstInst, Check);
2092}
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002093
Adam Nemet5b0a4792015-08-11 00:09:37 +00002094std::pair<Instruction *, Instruction *>
2095LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
Xinliang David Lice030ac2016-06-22 23:20:59 +00002096 if (!PtrRtChecking->Need)
Adam Nemet1da7df32015-07-26 05:32:14 +00002097 return std::make_pair(nullptr, nullptr);
2098
Xinliang David Lice030ac2016-06-22 23:20:59 +00002099 return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
Adam Nemet1da7df32015-07-26 05:32:14 +00002100}
2101
Adam Nemetc953bb92016-06-16 22:57:55 +00002102void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2103 Value *Ptr = nullptr;
2104 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
2105 Ptr = LI->getPointerOperand();
2106 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
2107 Ptr = SI->getPointerOperand();
2108 else
2109 return;
2110
Xinliang David Li94734ee2016-07-01 05:59:55 +00002111 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
Adam Nemetc953bb92016-06-16 22:57:55 +00002112 if (!Stride)
2113 return;
2114
2115 DEBUG(dbgs() << "LAA: Found a strided access that we can version");
2116 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2117 SymbolicStrides[Ptr] = Stride;
2118 StrideSet.insert(Stride);
2119}
2120
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002121LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002122 const TargetLibraryInfo *TLI, AliasAnalysis *AA,
Adam Nemeta9f09c62016-06-17 22:35:41 +00002123 DominatorTree *DT, LoopInfo *LI)
Xinliang David Li94734ee2016-07-01 05:59:55 +00002124 : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)),
Xinliang David Lice030ac2016-06-22 23:20:59 +00002125 PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)),
Xinliang David Li94734ee2016-07-01 05:59:55 +00002126 DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
Adam Nemet7da74ab2016-07-13 22:36:35 +00002127 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
2128 StoreToLoopInvariantAddress(false) {
Adam Nemet929c38e2015-02-19 19:15:10 +00002129 if (canAnalyzeLoop())
Adam Nemet7da74ab2016-07-13 22:36:35 +00002130 analyzeLoop(AA, LI, TLI, DT);
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002131}
2132
Adam Nemete91cc6e2015-02-19 19:15:19 +00002133void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2134 if (CanVecMem) {
Adam Nemet4ad38b62016-05-13 22:49:09 +00002135 OS.indent(Depth) << "Memory dependences are safe";
David Majnemer7afb46d2016-07-07 06:24:36 +00002136 if (MaxSafeDepDistBytes != -1ULL)
Adam Nemetc62e5542016-05-13 22:49:13 +00002137 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2138 << " bytes";
Xinliang David Lice030ac2016-06-22 23:20:59 +00002139 if (PtrRtChecking->Need)
Adam Nemet4ad38b62016-05-13 22:49:09 +00002140 OS << " with run-time checks";
2141 OS << "\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00002142 }
2143
2144 if (Report)
Adam Nemet877ccee2016-09-30 00:01:30 +00002145 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00002146
Xinliang David Lice030ac2016-06-22 23:20:59 +00002147 if (auto *Dependences = DepChecker->getDependences()) {
Adam Nemeta2df7502015-11-03 21:39:52 +00002148 OS.indent(Depth) << "Dependences:\n";
2149 for (auto &Dep : *Dependences) {
Xinliang David Lice030ac2016-06-22 23:20:59 +00002150 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
Adam Nemet58913d62015-03-10 17:40:43 +00002151 OS << "\n";
2152 }
2153 } else
Adam Nemeta2df7502015-11-03 21:39:52 +00002154 OS.indent(Depth) << "Too many dependences, not recorded\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00002155
2156 // List the pair of accesses need run-time checks to prove independence.
Xinliang David Lice030ac2016-06-22 23:20:59 +00002157 PtrRtChecking->print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00002158 OS << "\n";
Adam Nemetc3384322015-05-18 15:36:57 +00002159
2160 OS.indent(Depth) << "Store to invariant address was "
2161 << (StoreToLoopInvariantAddress ? "" : "not ")
2162 << "found in loop.\n";
Silviu Barangae3c05342015-11-02 14:41:02 +00002163
2164 OS.indent(Depth) << "SCEV assumptions:\n";
Xinliang David Li94734ee2016-07-01 05:59:55 +00002165 PSE->getUnionPredicate().print(OS, Depth);
Silviu Barangab77365b2016-04-14 16:08:45 +00002166
2167 OS << "\n";
2168
2169 OS.indent(Depth) << "Expressions re-written:\n";
Xinliang David Li94734ee2016-07-01 05:59:55 +00002170 PSE->print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00002171}
2172
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002173const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002174 auto &LAI = LoopAccessInfoMap[L];
2175
Adam Nemet1824e412016-07-13 22:18:51 +00002176 if (!LAI)
2177 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
2178
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002179 return *LAI.get();
2180}
2181
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002182void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
2183 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
Xinliang David Liecde1c72016-06-09 03:22:39 +00002184
Adam Nemete91cc6e2015-02-19 19:15:19 +00002185 for (Loop *TopLevelLoop : *LI)
2186 for (Loop *L : depth_first(TopLevelLoop)) {
2187 OS.indent(2) << L->getHeader()->getName() << ":\n";
Adam Nemetbdbc5222016-06-16 08:26:56 +00002188 auto &LAI = LAA.getInfo(L);
Adam Nemete91cc6e2015-02-19 19:15:19 +00002189 LAI.print(OS, 4);
2190 }
2191}
2192
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002193bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
Xinliang David Liecde1c72016-06-09 03:22:39 +00002194 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002195 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
Xinliang David Liecde1c72016-06-09 03:22:39 +00002196 TLI = TLIP ? &TLIP->getTLI() : nullptr;
2197 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2198 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2199 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002200
2201 return false;
2202}
2203
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002204void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002205 AU.addRequired<ScalarEvolutionWrapperPass>();
Chandler Carruth7b560d42015-09-09 17:55:00 +00002206 AU.addRequired<AAResultsWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002207 AU.addRequired<DominatorTreeWrapperPass>();
Adam Nemete91cc6e2015-02-19 19:15:19 +00002208 AU.addRequired<LoopInfoWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002209
2210 AU.setPreservesAll();
2211}
2212
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002213char LoopAccessLegacyAnalysis::ID = 0;
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002214static const char laa_name[] = "Loop Access Analysis";
2215#define LAA_NAME "loop-accesses"
2216
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002217INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
Chandler Carruth7b560d42015-09-09 17:55:00 +00002218INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002219INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002220INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Adam Nemete91cc6e2015-02-19 19:15:19 +00002221INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002222INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002223
Chandler Carruthdab4eae2016-11-23 17:53:26 +00002224AnalysisKey LoopAccessAnalysis::Key;
Xinliang David Li8a021312016-07-02 21:18:40 +00002225
Chandler Carruth410eaeb2017-01-11 06:23:21 +00002226LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2227 LoopStandardAnalysisResults &AR) {
2228 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
Xinliang David Li8a021312016-07-02 21:18:40 +00002229}
2230
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002231namespace llvm {
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00002232
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002233 Pass *createLAAPass() {
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002234 return new LoopAccessLegacyAnalysis();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002235 }
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00002236
2237} // end namespace llvm