Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1 | //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // The implementation for the loop memory dependence that was originally |
| 11 | // developed for the loop vectorizer. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
Chandler Carruth | 3bab7e1 | 2017-01-11 09:43:56 +0000 | [diff] [blame] | 15 | #include "llvm/Analysis/LoopAccessAnalysis.h" |
Eugene Zelenko | a3fe70d | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 16 | #include "llvm/ADT/APInt.h" |
| 17 | #include "llvm/ADT/DenseMap.h" |
| 18 | #include "llvm/ADT/DepthFirstIterator.h" |
| 19 | #include "llvm/ADT/EquivalenceClasses.h" |
Eugene Zelenko | a3fe70d | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 20 | #include "llvm/ADT/PointerIntPair.h" |
Chandler Carruth | 3bab7e1 | 2017-01-11 09:43:56 +0000 | [diff] [blame] | 21 | #include "llvm/ADT/STLExtras.h" |
Eugene Zelenko | a3fe70d | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 22 | #include "llvm/ADT/SetVector.h" |
| 23 | #include "llvm/ADT/SmallPtrSet.h" |
| 24 | #include "llvm/ADT/SmallSet.h" |
| 25 | #include "llvm/ADT/SmallVector.h" |
Chandler Carruth | 3bab7e1 | 2017-01-11 09:43:56 +0000 | [diff] [blame] | 26 | #include "llvm/ADT/iterator_range.h" |
Eugene Zelenko | a3fe70d | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 27 | #include "llvm/Analysis/AliasAnalysis.h" |
| 28 | #include "llvm/Analysis/AliasSetTracker.h" |
Chandler Carruth | 3bab7e1 | 2017-01-11 09:43:56 +0000 | [diff] [blame] | 29 | #include "llvm/Analysis/LoopAnalysisManager.h" |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 30 | #include "llvm/Analysis/LoopInfo.h" |
Eugene Zelenko | a3fe70d | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 31 | #include "llvm/Analysis/MemoryLocation.h" |
Adam Nemet | 5b3a5cf | 2016-07-20 21:44:26 +0000 | [diff] [blame] | 32 | #include "llvm/Analysis/OptimizationDiagnosticInfo.h" |
Eugene Zelenko | a3fe70d | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 33 | #include "llvm/Analysis/ScalarEvolution.h" |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 34 | #include "llvm/Analysis/ScalarEvolutionExpander.h" |
Eugene Zelenko | a3fe70d | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 35 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
Benjamin Kramer | 799003b | 2015-03-23 19:32:43 +0000 | [diff] [blame] | 36 | #include "llvm/Analysis/TargetLibraryInfo.h" |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 37 | #include "llvm/Analysis/ValueTracking.h" |
Adam Nemet | f45594c | 2016-07-01 00:09:02 +0000 | [diff] [blame] | 38 | #include "llvm/Analysis/VectorUtils.h" |
Eugene Zelenko | a3fe70d | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 39 | #include "llvm/IR/BasicBlock.h" |
| 40 | #include "llvm/IR/Constants.h" |
| 41 | #include "llvm/IR/DataLayout.h" |
| 42 | #include "llvm/IR/DebugLoc.h" |
| 43 | #include "llvm/IR/DerivedTypes.h" |
| 44 | #include "llvm/IR/DiagnosticInfo.h" |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 45 | #include "llvm/IR/Dominators.h" |
Eugene Zelenko | a3fe70d | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 46 | #include "llvm/IR/Function.h" |
Chandler Carruth | 3bab7e1 | 2017-01-11 09:43:56 +0000 | [diff] [blame] | 47 | #include "llvm/IR/IRBuilder.h" |
Eugene Zelenko | a3fe70d | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 48 | #include "llvm/IR/InstrTypes.h" |
| 49 | #include "llvm/IR/Instruction.h" |
| 50 | #include "llvm/IR/Instructions.h" |
Eugene Zelenko | a3fe70d | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 51 | #include "llvm/IR/Operator.h" |
Xinliang David Li | 8a02131 | 2016-07-02 21:18:40 +0000 | [diff] [blame] | 52 | #include "llvm/IR/PassManager.h" |
Eugene Zelenko | a3fe70d | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 53 | #include "llvm/IR/Type.h" |
| 54 | #include "llvm/IR/Value.h" |
| 55 | #include "llvm/IR/ValueHandle.h" |
| 56 | #include "llvm/Pass.h" |
| 57 | #include "llvm/Support/Casting.h" |
| 58 | #include "llvm/Support/CommandLine.h" |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 59 | #include "llvm/Support/Debug.h" |
Eugene Zelenko | a3fe70d | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 60 | #include "llvm/Support/ErrorHandling.h" |
Benjamin Kramer | 799003b | 2015-03-23 19:32:43 +0000 | [diff] [blame] | 61 | #include "llvm/Support/raw_ostream.h" |
Eugene Zelenko | a3fe70d | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 62 | #include <algorithm> |
| 63 | #include <cassert> |
| 64 | #include <cstdint> |
| 65 | #include <cstdlib> |
| 66 | #include <iterator> |
| 67 | #include <utility> |
| 68 | #include <vector> |
| 69 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 70 | using namespace llvm; |
| 71 | |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 72 | #define DEBUG_TYPE "loop-accesses" |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 73 | |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 74 | static cl::opt<unsigned, true> |
| 75 | VectorizationFactor("force-vector-width", cl::Hidden, |
| 76 | cl::desc("Sets the SIMD width. Zero is autoselect."), |
| 77 | cl::location(VectorizerParams::VectorizationFactor)); |
Adam Nemet | 1d862af | 2015-02-26 04:39:09 +0000 | [diff] [blame] | 78 | unsigned VectorizerParams::VectorizationFactor; |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 79 | |
| 80 | static cl::opt<unsigned, true> |
| 81 | VectorizationInterleave("force-vector-interleave", cl::Hidden, |
| 82 | cl::desc("Sets the vectorization interleave count. " |
| 83 | "Zero is autoselect."), |
| 84 | cl::location( |
| 85 | VectorizerParams::VectorizationInterleave)); |
Adam Nemet | 1d862af | 2015-02-26 04:39:09 +0000 | [diff] [blame] | 86 | unsigned VectorizerParams::VectorizationInterleave; |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 87 | |
Adam Nemet | 1d862af | 2015-02-26 04:39:09 +0000 | [diff] [blame] | 88 | static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( |
| 89 | "runtime-memory-check-threshold", cl::Hidden, |
| 90 | cl::desc("When performing memory disambiguation checks at runtime do not " |
| 91 | "generate more than this number of comparisons (default = 8)."), |
| 92 | cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); |
| 93 | unsigned VectorizerParams::RuntimeMemoryCheckThreshold; |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 94 | |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 95 | /// \brief The maximum iterations used to merge memory checks |
| 96 | static cl::opt<unsigned> MemoryCheckMergeThreshold( |
| 97 | "memory-check-merge-threshold", cl::Hidden, |
| 98 | cl::desc("Maximum number of comparisons done when trying to merge " |
| 99 | "runtime memory checks. (default = 100)"), |
| 100 | cl::init(100)); |
| 101 | |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 102 | /// Maximum SIMD width. |
| 103 | const unsigned VectorizerParams::MaxVectorWidth = 64; |
| 104 | |
Adam Nemet | a2df750 | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 105 | /// \brief We collect dependences up to this threshold. |
| 106 | static cl::opt<unsigned> |
| 107 | MaxDependences("max-dependences", cl::Hidden, |
| 108 | cl::desc("Maximum number of dependences collected by " |
| 109 | "loop-access analysis (default = 100)"), |
| 110 | cl::init(100)); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 111 | |
Adam Nemet | a9f09c6 | 2016-06-17 22:35:41 +0000 | [diff] [blame] | 112 | /// This enables versioning on the strides of symbolically striding memory |
| 113 | /// accesses in code like the following. |
| 114 | /// for (i = 0; i < N; ++i) |
| 115 | /// A[i * Stride1] += B[i * Stride2] ... |
| 116 | /// |
| 117 | /// Will be roughly translated to |
| 118 | /// if (Stride1 == 1 && Stride2 == 1) { |
| 119 | /// for (i = 0; i < N; i+=4) |
| 120 | /// A[i:i+3] += ... |
| 121 | /// } else |
| 122 | /// ... |
| 123 | static cl::opt<bool> EnableMemAccessVersioning( |
| 124 | "enable-mem-access-versioning", cl::init(true), cl::Hidden, |
| 125 | cl::desc("Enable symbolic stride memory access versioning")); |
| 126 | |
Matthew Simpson | 37ec5f9 | 2016-05-16 17:00:56 +0000 | [diff] [blame] | 127 | /// \brief Enable store-to-load forwarding conflict detection. This option can |
| 128 | /// be disabled for correctness testing. |
| 129 | static cl::opt<bool> EnableForwardingConflictDetection( |
| 130 | "store-to-load-forwarding-conflict-detection", cl::Hidden, |
Matthew Simpson | a250dc9 | 2016-05-16 14:14:49 +0000 | [diff] [blame] | 131 | cl::desc("Enable conflict detection in loop-access analysis"), |
| 132 | cl::init(true)); |
| 133 | |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 134 | bool VectorizerParams::isInterleaveForced() { |
| 135 | return ::VectorizationInterleave.getNumOccurrences() > 0; |
| 136 | } |
| 137 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 138 | Value *llvm::stripIntegerCast(Value *V) { |
David Majnemer | 8b40101 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 139 | if (auto *CI = dyn_cast<CastInst>(V)) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 140 | if (CI->getOperand(0)->getType()->isIntegerTy()) |
| 141 | return CI->getOperand(0); |
| 142 | return V; |
| 143 | } |
| 144 | |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 145 | const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 146 | const ValueToValueMap &PtrToStride, |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 147 | Value *Ptr, Value *OrigPtr) { |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 148 | const SCEV *OrigSCEV = PSE.getSCEV(Ptr); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 149 | |
| 150 | // If there is an entry in the map return the SCEV of the pointer with the |
| 151 | // symbolic stride replaced by one. |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 152 | ValueToValueMap::const_iterator SI = |
| 153 | PtrToStride.find(OrigPtr ? OrigPtr : Ptr); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 154 | if (SI != PtrToStride.end()) { |
| 155 | Value *StrideVal = SI->second; |
| 156 | |
| 157 | // Strip casts. |
| 158 | StrideVal = stripIntegerCast(StrideVal); |
| 159 | |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 160 | ScalarEvolution *SE = PSE.getSE(); |
Silviu Baranga | e3c0534 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 161 | const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); |
| 162 | const auto *CT = |
| 163 | static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); |
| 164 | |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 165 | PSE.addPredicate(*SE->getEqualPredicate(U, CT)); |
| 166 | auto *Expr = PSE.getSCEV(Ptr); |
Silviu Baranga | e3c0534 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 167 | |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 168 | DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 169 | << "\n"); |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 170 | return Expr; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 171 | } |
| 172 | |
| 173 | // Otherwise, just return the SCEV of the original pointer. |
Silviu Baranga | e3c0534 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 174 | return OrigSCEV; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 175 | } |
| 176 | |
Elena Demikhovsky | 3622fbf | 2016-08-28 08:53:53 +0000 | [diff] [blame] | 177 | /// Calculate Start and End points of memory access. |
| 178 | /// Let's assume A is the first access and B is a memory access on N-th loop |
| 179 | /// iteration. Then B is calculated as: |
| 180 | /// B = A + Step*N . |
| 181 | /// Step value may be positive or negative. |
| 182 | /// N is a calculated back-edge taken count: |
| 183 | /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 |
| 184 | /// Start and End points are calculated in the following way: |
| 185 | /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, |
| 186 | /// where SizeOfElt is the size of single memory access in bytes. |
| 187 | /// |
| 188 | /// There is no conflict when the intervals are disjoint: |
| 189 | /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) |
Adam Nemet | 7cdebac | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 190 | void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, |
| 191 | unsigned DepSetId, unsigned ASId, |
Silviu Baranga | e3c0534 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 192 | const ValueToValueMap &Strides, |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 193 | PredicatedScalarEvolution &PSE) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 194 | // Get the stride replaced scev. |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 195 | const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 196 | ScalarEvolution *SE = PSE.getSE(); |
Silviu Baranga | 0e5804a | 2015-07-16 14:02:58 +0000 | [diff] [blame] | 197 | |
Adam Nemet | 279784f | 2016-03-24 04:28:47 +0000 | [diff] [blame] | 198 | const SCEV *ScStart; |
| 199 | const SCEV *ScEnd; |
Silviu Baranga | 0e5804a | 2015-07-16 14:02:58 +0000 | [diff] [blame] | 200 | |
Adam Nemet | 59a6550 | 2016-03-24 05:15:24 +0000 | [diff] [blame] | 201 | if (SE->isLoopInvariant(Sc, Lp)) |
Adam Nemet | 279784f | 2016-03-24 04:28:47 +0000 | [diff] [blame] | 202 | ScStart = ScEnd = Sc; |
Adam Nemet | 279784f | 2016-03-24 04:28:47 +0000 | [diff] [blame] | 203 | else { |
| 204 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); |
| 205 | assert(AR && "Invalid addrec expression"); |
Silviu Baranga | 6f444df | 2016-04-08 14:29:09 +0000 | [diff] [blame] | 206 | const SCEV *Ex = PSE.getBackedgeTakenCount(); |
Adam Nemet | 279784f | 2016-03-24 04:28:47 +0000 | [diff] [blame] | 207 | |
| 208 | ScStart = AR->getStart(); |
| 209 | ScEnd = AR->evaluateAtIteration(Ex, *SE); |
| 210 | const SCEV *Step = AR->getStepRecurrence(*SE); |
| 211 | |
| 212 | // For expressions with negative step, the upper bound is ScStart and the |
| 213 | // lower bound is ScEnd. |
David Majnemer | 8b40101 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 214 | if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { |
Adam Nemet | 279784f | 2016-03-24 04:28:47 +0000 | [diff] [blame] | 215 | if (CStep->getValue()->isNegative()) |
| 216 | std::swap(ScStart, ScEnd); |
| 217 | } else { |
Elena Demikhovsky | 3622fbf | 2016-08-28 08:53:53 +0000 | [diff] [blame] | 218 | // Fallback case: the step is not constant, but we can still |
Adam Nemet | 279784f | 2016-03-24 04:28:47 +0000 | [diff] [blame] | 219 | // get the upper and lower bounds of the interval by using min/max |
| 220 | // expressions. |
| 221 | ScStart = SE->getUMinExpr(ScStart, ScEnd); |
| 222 | ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); |
| 223 | } |
Elena Demikhovsky | 3622fbf | 2016-08-28 08:53:53 +0000 | [diff] [blame] | 224 | // Add the size of the pointed element to ScEnd. |
| 225 | unsigned EltSize = |
| 226 | Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; |
| 227 | const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); |
| 228 | ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); |
Silviu Baranga | 0e5804a | 2015-07-16 14:02:58 +0000 | [diff] [blame] | 229 | } |
| 230 | |
| 231 | Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 232 | } |
| 233 | |
Adam Nemet | bbe1f1d | 2015-07-27 19:38:48 +0000 | [diff] [blame] | 234 | SmallVector<RuntimePointerChecking::PointerCheck, 4> |
Adam Nemet | 3853088 | 2015-08-09 20:06:06 +0000 | [diff] [blame] | 235 | RuntimePointerChecking::generateChecks() const { |
Adam Nemet | bbe1f1d | 2015-07-27 19:38:48 +0000 | [diff] [blame] | 236 | SmallVector<PointerCheck, 4> Checks; |
| 237 | |
Adam Nemet | 7c52e05 | 2015-07-27 19:38:50 +0000 | [diff] [blame] | 238 | for (unsigned I = 0; I < CheckingGroups.size(); ++I) { |
| 239 | for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { |
| 240 | const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; |
| 241 | const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; |
Adam Nemet | bbe1f1d | 2015-07-27 19:38:48 +0000 | [diff] [blame] | 242 | |
Adam Nemet | 3853088 | 2015-08-09 20:06:06 +0000 | [diff] [blame] | 243 | if (needsChecking(CGI, CGJ)) |
Adam Nemet | bbe1f1d | 2015-07-27 19:38:48 +0000 | [diff] [blame] | 244 | Checks.push_back(std::make_pair(&CGI, &CGJ)); |
| 245 | } |
| 246 | } |
| 247 | return Checks; |
| 248 | } |
| 249 | |
Adam Nemet | 1584039 | 2015-08-07 22:44:15 +0000 | [diff] [blame] | 250 | void RuntimePointerChecking::generateChecks( |
| 251 | MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { |
| 252 | assert(Checks.empty() && "Checks is not empty"); |
| 253 | groupChecks(DepCands, UseDependencies); |
| 254 | Checks = generateChecks(); |
| 255 | } |
| 256 | |
Adam Nemet | 651a5a2 | 2015-08-09 20:06:08 +0000 | [diff] [blame] | 257 | bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, |
| 258 | const CheckingPtrGroup &N) const { |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 259 | for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) |
| 260 | for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) |
Adam Nemet | 651a5a2 | 2015-08-09 20:06:08 +0000 | [diff] [blame] | 261 | if (needsChecking(M.Members[I], N.Members[J])) |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 262 | return true; |
| 263 | return false; |
| 264 | } |
| 265 | |
| 266 | /// Compare \p I and \p J and return the minimum. |
| 267 | /// Return nullptr in case we couldn't find an answer. |
| 268 | static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, |
| 269 | ScalarEvolution *SE) { |
| 270 | const SCEV *Diff = SE->getMinusSCEV(J, I); |
| 271 | const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); |
| 272 | |
| 273 | if (!C) |
| 274 | return nullptr; |
| 275 | if (C->getValue()->isNegative()) |
| 276 | return J; |
| 277 | return I; |
| 278 | } |
| 279 | |
Adam Nemet | 7cdebac | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 280 | bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 281 | const SCEV *Start = RtCheck.Pointers[Index].Start; |
| 282 | const SCEV *End = RtCheck.Pointers[Index].End; |
| 283 | |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 284 | // Compare the starts and ends with the known minimum and maximum |
| 285 | // of this set. We need to know how we compare against the min/max |
| 286 | // of the set in order to be able to emit memchecks. |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 287 | const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 288 | if (!Min0) |
| 289 | return false; |
| 290 | |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 291 | const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 292 | if (!Min1) |
| 293 | return false; |
| 294 | |
| 295 | // Update the low bound expression if we've found a new min value. |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 296 | if (Min0 == Start) |
| 297 | Low = Start; |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 298 | |
| 299 | // Update the high bound expression if we've found a new max value. |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 300 | if (Min1 != End) |
| 301 | High = End; |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 302 | |
| 303 | Members.push_back(Index); |
| 304 | return true; |
| 305 | } |
| 306 | |
Adam Nemet | 7cdebac | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 307 | void RuntimePointerChecking::groupChecks( |
| 308 | MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 309 | // We build the groups from dependency candidates equivalence classes |
| 310 | // because: |
| 311 | // - We know that pointers in the same equivalence class share |
| 312 | // the same underlying object and therefore there is a chance |
| 313 | // that we can compare pointers |
| 314 | // - We wouldn't be able to merge two pointers for which we need |
| 315 | // to emit a memcheck. The classes in DepCands are already |
| 316 | // conveniently built such that no two pointers in the same |
| 317 | // class need checking against each other. |
| 318 | |
| 319 | // We use the following (greedy) algorithm to construct the groups |
| 320 | // For every pointer in the equivalence class: |
| 321 | // For each existing group: |
| 322 | // - if the difference between this pointer and the min/max bounds |
| 323 | // of the group is a constant, then make the pointer part of the |
| 324 | // group and update the min/max bounds of that group as required. |
| 325 | |
| 326 | CheckingGroups.clear(); |
| 327 | |
Silviu Baranga | 4825060 | 2015-07-28 13:44:08 +0000 | [diff] [blame] | 328 | // If we need to check two pointers to the same underlying object |
| 329 | // with a non-constant difference, we shouldn't perform any pointer |
| 330 | // grouping with those pointers. This is because we can easily get |
| 331 | // into cases where the resulting check would return false, even when |
| 332 | // the accesses are safe. |
| 333 | // |
| 334 | // The following example shows this: |
| 335 | // for (i = 0; i < 1000; ++i) |
| 336 | // a[5000 + i * m] = a[i] + a[i + 9000] |
| 337 | // |
| 338 | // Here grouping gives a check of (5000, 5000 + 1000 * m) against |
| 339 | // (0, 10000) which is always false. However, if m is 1, there is no |
| 340 | // dependence. Not grouping the checks for a[i] and a[i + 9000] allows |
| 341 | // us to perform an accurate check in this case. |
| 342 | // |
| 343 | // The above case requires that we have an UnknownDependence between |
| 344 | // accesses to the same underlying object. This cannot happen unless |
| 345 | // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies |
| 346 | // is also false. In this case we will use the fallback path and create |
| 347 | // separate checking groups for all pointers. |
Mehdi Amini | afd1351 | 2015-11-05 05:49:43 +0000 | [diff] [blame] | 348 | |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 349 | // If we don't have the dependency partitions, construct a new |
Silviu Baranga | 4825060 | 2015-07-28 13:44:08 +0000 | [diff] [blame] | 350 | // checking pointer group for each pointer. This is also required |
| 351 | // for correctness, because in this case we can have checking between |
| 352 | // pointers to the same underlying object. |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 353 | if (!UseDependencies) { |
| 354 | for (unsigned I = 0; I < Pointers.size(); ++I) |
| 355 | CheckingGroups.push_back(CheckingPtrGroup(I, *this)); |
| 356 | return; |
| 357 | } |
| 358 | |
| 359 | unsigned TotalComparisons = 0; |
| 360 | |
| 361 | DenseMap<Value *, unsigned> PositionMap; |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 362 | for (unsigned Index = 0; Index < Pointers.size(); ++Index) |
| 363 | PositionMap[Pointers[Index].PointerValue] = Index; |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 364 | |
Silviu Baranga | ce3877f | 2015-07-09 15:18:25 +0000 | [diff] [blame] | 365 | // We need to keep track of what pointers we've already seen so we |
| 366 | // don't process them twice. |
| 367 | SmallSet<unsigned, 2> Seen; |
| 368 | |
Sanjay Patel | e4b9f50 | 2015-12-07 19:21:39 +0000 | [diff] [blame] | 369 | // Go through all equivalence classes, get the "pointer check groups" |
Silviu Baranga | ce3877f | 2015-07-09 15:18:25 +0000 | [diff] [blame] | 370 | // and add them to the overall solution. We use the order in which accesses |
| 371 | // appear in 'Pointers' to enforce determinism. |
| 372 | for (unsigned I = 0; I < Pointers.size(); ++I) { |
| 373 | // We've seen this pointer before, and therefore already processed |
| 374 | // its equivalence class. |
| 375 | if (Seen.count(I)) |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 376 | continue; |
| 377 | |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 378 | MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, |
| 379 | Pointers[I].IsWritePtr); |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 380 | |
Silviu Baranga | ce3877f | 2015-07-09 15:18:25 +0000 | [diff] [blame] | 381 | SmallVector<CheckingPtrGroup, 2> Groups; |
| 382 | auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); |
| 383 | |
Silviu Baranga | a647c30 | 2015-07-13 14:48:24 +0000 | [diff] [blame] | 384 | // Because DepCands is constructed by visiting accesses in the order in |
| 385 | // which they appear in alias sets (which is deterministic) and the |
| 386 | // iteration order within an equivalence class member is only dependent on |
| 387 | // the order in which unions and insertions are performed on the |
| 388 | // equivalence class, the iteration order is deterministic. |
Silviu Baranga | ce3877f | 2015-07-09 15:18:25 +0000 | [diff] [blame] | 389 | for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 390 | MI != ME; ++MI) { |
| 391 | unsigned Pointer = PositionMap[MI->getPointer()]; |
| 392 | bool Merged = false; |
Silviu Baranga | ce3877f | 2015-07-09 15:18:25 +0000 | [diff] [blame] | 393 | // Mark this pointer as seen. |
| 394 | Seen.insert(Pointer); |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 395 | |
| 396 | // Go through all the existing sets and see if we can find one |
| 397 | // which can include this pointer. |
| 398 | for (CheckingPtrGroup &Group : Groups) { |
| 399 | // Don't perform more than a certain amount of comparisons. |
| 400 | // This should limit the cost of grouping the pointers to something |
| 401 | // reasonable. If we do end up hitting this threshold, the algorithm |
| 402 | // will create separate groups for all remaining pointers. |
| 403 | if (TotalComparisons > MemoryCheckMergeThreshold) |
| 404 | break; |
| 405 | |
| 406 | TotalComparisons++; |
| 407 | |
| 408 | if (Group.addPointer(Pointer)) { |
| 409 | Merged = true; |
| 410 | break; |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | if (!Merged) |
| 415 | // We couldn't add this pointer to any existing set or the threshold |
| 416 | // for the number of comparisons has been reached. Create a new group |
| 417 | // to hold the current pointer. |
| 418 | Groups.push_back(CheckingPtrGroup(Pointer, *this)); |
| 419 | } |
| 420 | |
| 421 | // We've computed the grouped checks for this partition. |
| 422 | // Save the results and continue with the next one. |
| 423 | std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); |
| 424 | } |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 425 | } |
| 426 | |
Adam Nemet | 041e6de | 2015-07-16 02:48:05 +0000 | [diff] [blame] | 427 | bool RuntimePointerChecking::arePointersInSamePartition( |
| 428 | const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, |
| 429 | unsigned PtrIdx2) { |
| 430 | return (PtrToPartition[PtrIdx1] != -1 && |
| 431 | PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); |
| 432 | } |
| 433 | |
Adam Nemet | 651a5a2 | 2015-08-09 20:06:08 +0000 | [diff] [blame] | 434 | bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 435 | const PointerInfo &PointerI = Pointers[I]; |
| 436 | const PointerInfo &PointerJ = Pointers[J]; |
| 437 | |
Adam Nemet | a8945b7 | 2015-02-18 03:43:58 +0000 | [diff] [blame] | 438 | // No need to check if two readonly pointers intersect. |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 439 | if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) |
Adam Nemet | a8945b7 | 2015-02-18 03:43:58 +0000 | [diff] [blame] | 440 | return false; |
| 441 | |
| 442 | // Only need to check pointers between two different dependency sets. |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 443 | if (PointerI.DependencySetId == PointerJ.DependencySetId) |
Adam Nemet | a8945b7 | 2015-02-18 03:43:58 +0000 | [diff] [blame] | 444 | return false; |
| 445 | |
| 446 | // Only need to check pointers in the same alias set. |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 447 | if (PointerI.AliasSetId != PointerJ.AliasSetId) |
Adam Nemet | a8945b7 | 2015-02-18 03:43:58 +0000 | [diff] [blame] | 448 | return false; |
| 449 | |
| 450 | return true; |
| 451 | } |
| 452 | |
Adam Nemet | 54f0b83 | 2015-07-27 23:54:41 +0000 | [diff] [blame] | 453 | void RuntimePointerChecking::printChecks( |
| 454 | raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, |
| 455 | unsigned Depth) const { |
| 456 | unsigned N = 0; |
| 457 | for (const auto &Check : Checks) { |
| 458 | const auto &First = Check.first->Members, &Second = Check.second->Members; |
| 459 | |
| 460 | OS.indent(Depth) << "Check " << N++ << ":\n"; |
| 461 | |
| 462 | OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; |
| 463 | for (unsigned K = 0; K < First.size(); ++K) |
| 464 | OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; |
| 465 | |
| 466 | OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; |
| 467 | for (unsigned K = 0; K < Second.size(); ++K) |
| 468 | OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; |
| 469 | } |
| 470 | } |
| 471 | |
Adam Nemet | 3a91e94 | 2015-08-07 19:44:48 +0000 | [diff] [blame] | 472 | void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 473 | |
| 474 | OS.indent(Depth) << "Run-time memory checks:\n"; |
Adam Nemet | 1584039 | 2015-08-07 22:44:15 +0000 | [diff] [blame] | 475 | printChecks(OS, Checks, Depth); |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 476 | |
| 477 | OS.indent(Depth) << "Grouped accesses:\n"; |
| 478 | for (unsigned I = 0; I < CheckingGroups.size(); ++I) { |
Adam Nemet | 54f0b83 | 2015-07-27 23:54:41 +0000 | [diff] [blame] | 479 | const auto &CG = CheckingGroups[I]; |
| 480 | |
| 481 | OS.indent(Depth + 2) << "Group " << &CG << ":\n"; |
| 482 | OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High |
| 483 | << ")\n"; |
| 484 | for (unsigned J = 0; J < CG.Members.size(); ++J) { |
| 485 | OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 486 | << "\n"; |
| 487 | } |
| 488 | } |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 489 | } |
| 490 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 491 | namespace { |
Eugene Zelenko | a3fe70d | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 492 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 493 | /// \brief Analyses memory accesses in a loop. |
| 494 | /// |
| 495 | /// Checks whether run time pointer checks are needed and builds sets for data |
| 496 | /// dependence checking. |
| 497 | class AccessAnalysis { |
| 498 | public: |
| 499 | /// \brief Read or write access location. |
| 500 | typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; |
| 501 | typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; |
| 502 | |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 503 | AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 504 | MemoryDepChecker::DepCandidates &DA, |
| 505 | PredicatedScalarEvolution &PSE) |
Silviu Baranga | e3c0534 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 506 | : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false), |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 507 | PSE(PSE) {} |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 508 | |
| 509 | /// \brief Register a load and whether it is only read from. |
Chandler Carruth | ac80dc7 | 2015-06-17 07:18:54 +0000 | [diff] [blame] | 510 | void addLoad(MemoryLocation &Loc, bool IsReadOnly) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 511 | Value *Ptr = const_cast<Value*>(Loc.Ptr); |
Chandler Carruth | ecbd168 | 2015-06-17 07:21:38 +0000 | [diff] [blame] | 512 | AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 513 | Accesses.insert(MemAccessInfo(Ptr, false)); |
| 514 | if (IsReadOnly) |
| 515 | ReadOnlyPtr.insert(Ptr); |
| 516 | } |
| 517 | |
| 518 | /// \brief Register a store. |
Chandler Carruth | ac80dc7 | 2015-06-17 07:18:54 +0000 | [diff] [blame] | 519 | void addStore(MemoryLocation &Loc) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 520 | Value *Ptr = const_cast<Value*>(Loc.Ptr); |
Chandler Carruth | ecbd168 | 2015-06-17 07:21:38 +0000 | [diff] [blame] | 521 | AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 522 | Accesses.insert(MemAccessInfo(Ptr, true)); |
| 523 | } |
| 524 | |
| 525 | /// \brief Check whether we can check the pointers at runtime for |
Adam Nemet | ee61474 | 2015-07-09 22:17:38 +0000 | [diff] [blame] | 526 | /// non-intersection. |
| 527 | /// |
| 528 | /// Returns true if we need no check or if we do and we can generate them |
| 529 | /// (i.e. the pointers have computable bounds). |
Adam Nemet | 7cdebac | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 530 | bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, |
| 531 | Loop *TheLoop, const ValueToValueMap &Strides, |
Andrey Turetskiy | 9f02c58 | 2016-06-07 14:55:27 +0000 | [diff] [blame] | 532 | bool ShouldCheckWrap = false); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 533 | |
| 534 | /// \brief Goes over all memory accesses, checks whether a RT check is needed |
| 535 | /// and builds sets of dependent accesses. |
| 536 | void buildDependenceSets() { |
| 537 | processMemAccesses(); |
| 538 | } |
| 539 | |
Adam Nemet | 5dc3b2c | 2015-07-09 06:47:18 +0000 | [diff] [blame] | 540 | /// \brief Initial processing of memory accesses determined that we need to |
| 541 | /// perform dependency checking. |
| 542 | /// |
| 543 | /// Note that this can later be cleared if we retry memcheck analysis without |
| 544 | /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 545 | bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } |
Adam Nemet | df3dc5b | 2015-05-18 15:37:03 +0000 | [diff] [blame] | 546 | |
| 547 | /// We decided that no dependence analysis would be used. Reset the state. |
| 548 | void resetDepChecks(MemoryDepChecker &DepChecker) { |
| 549 | CheckDeps.clear(); |
Adam Nemet | a2df750 | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 550 | DepChecker.clearDependences(); |
Adam Nemet | df3dc5b | 2015-05-18 15:37:03 +0000 | [diff] [blame] | 551 | } |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 552 | |
| 553 | MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } |
| 554 | |
| 555 | private: |
| 556 | typedef SetVector<MemAccessInfo> PtrAccessSet; |
| 557 | |
| 558 | /// \brief Go over all memory access and check whether runtime pointer checks |
Adam Nemet | b41d2d3 | 2015-07-09 06:47:21 +0000 | [diff] [blame] | 559 | /// are needed and build sets of dependency check candidates. |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 560 | void processMemAccesses(); |
| 561 | |
| 562 | /// Set of all accesses. |
| 563 | PtrAccessSet Accesses; |
| 564 | |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 565 | const DataLayout &DL; |
| 566 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 567 | /// Set of accesses that need a further dependence check. |
| 568 | MemAccessInfoSet CheckDeps; |
| 569 | |
| 570 | /// Set of pointers that are read only. |
| 571 | SmallPtrSet<Value*, 16> ReadOnlyPtr; |
| 572 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 573 | /// An alias set tracker to partition the access set by underlying object and |
| 574 | //intrinsic property (such as TBAA metadata). |
| 575 | AliasSetTracker AST; |
| 576 | |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 577 | LoopInfo *LI; |
| 578 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 579 | /// Sets of potentially dependent accesses - members of one set share an |
| 580 | /// underlying pointer. The set "CheckDeps" identfies which sets really need a |
| 581 | /// dependence check. |
Adam Nemet | dee666b | 2015-03-10 17:40:34 +0000 | [diff] [blame] | 582 | MemoryDepChecker::DepCandidates &DepCands; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 583 | |
Adam Nemet | 5dc3b2c | 2015-07-09 06:47:18 +0000 | [diff] [blame] | 584 | /// \brief Initial processing of memory accesses determined that we may need |
| 585 | /// to add memchecks. Perform the analysis to determine the necessary checks. |
| 586 | /// |
| 587 | /// Note that, this is different from isDependencyCheckNeeded. When we retry |
| 588 | /// memcheck analysis without dependency checking |
| 589 | /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared |
| 590 | /// while this remains set if we have potentially dependent accesses. |
| 591 | bool IsRTCheckAnalysisNeeded; |
Silviu Baranga | e3c0534 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 592 | |
| 593 | /// The SCEV predicate containing all the SCEV-related assumptions. |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 594 | PredicatedScalarEvolution &PSE; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 595 | }; |
| 596 | |
| 597 | } // end anonymous namespace |
| 598 | |
| 599 | /// \brief Check whether a pointer can participate in a runtime bounds check. |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 600 | static bool hasComputableBounds(PredicatedScalarEvolution &PSE, |
Silviu Baranga | e3c0534 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 601 | const ValueToValueMap &Strides, Value *Ptr, |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 602 | Loop *L) { |
| 603 | const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); |
Adam Nemet | 279784f | 2016-03-24 04:28:47 +0000 | [diff] [blame] | 604 | |
| 605 | // The bounds for loop-invariant pointer is trivial. |
| 606 | if (PSE.getSE()->isLoopInvariant(PtrScev, L)) |
| 607 | return true; |
| 608 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 609 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); |
| 610 | if (!AR) |
| 611 | return false; |
| 612 | |
| 613 | return AR->isAffine(); |
| 614 | } |
| 615 | |
Andrey Turetskiy | 9f02c58 | 2016-06-07 14:55:27 +0000 | [diff] [blame] | 616 | /// \brief Check whether a pointer address cannot wrap. |
| 617 | static bool isNoWrap(PredicatedScalarEvolution &PSE, |
| 618 | const ValueToValueMap &Strides, Value *Ptr, Loop *L) { |
| 619 | const SCEV *PtrScev = PSE.getSCEV(Ptr); |
| 620 | if (PSE.getSE()->isLoopInvariant(PtrScev, L)) |
| 621 | return true; |
| 622 | |
David Majnemer | 7afb46d | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 623 | int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); |
Andrey Turetskiy | 9f02c58 | 2016-06-07 14:55:27 +0000 | [diff] [blame] | 624 | return Stride == 1; |
| 625 | } |
| 626 | |
Adam Nemet | 7cdebac | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 627 | bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, |
| 628 | ScalarEvolution *SE, Loop *TheLoop, |
| 629 | const ValueToValueMap &StridesMap, |
Andrey Turetskiy | 9f02c58 | 2016-06-07 14:55:27 +0000 | [diff] [blame] | 630 | bool ShouldCheckWrap) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 631 | // Find pointers with computable bounds. We are going to use this information |
| 632 | // to place a runtime bound check. |
| 633 | bool CanDoRT = true; |
| 634 | |
Adam Nemet | ee61474 | 2015-07-09 22:17:38 +0000 | [diff] [blame] | 635 | bool NeedRTCheck = false; |
Adam Nemet | 5dc3b2c | 2015-07-09 06:47:18 +0000 | [diff] [blame] | 636 | if (!IsRTCheckAnalysisNeeded) return true; |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame] | 637 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 638 | bool IsDepCheckNeeded = isDependencyCheckNeeded(); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 639 | |
| 640 | // We assign a consecutive id to access from different alias sets. |
| 641 | // Accesses between different groups doesn't need to be checked. |
| 642 | unsigned ASId = 1; |
| 643 | for (auto &AS : AST) { |
Adam Nemet | 424edc6 | 2015-07-08 22:58:48 +0000 | [diff] [blame] | 644 | int NumReadPtrChecks = 0; |
| 645 | int NumWritePtrChecks = 0; |
| 646 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 647 | // We assign consecutive id to access from different dependence sets. |
| 648 | // Accesses within the same set don't need a runtime check. |
| 649 | unsigned RunningDepId = 1; |
| 650 | DenseMap<Value *, unsigned> DepSetId; |
| 651 | |
| 652 | for (auto A : AS) { |
| 653 | Value *Ptr = A.getValue(); |
| 654 | bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); |
| 655 | MemAccessInfo Access(Ptr, IsWrite); |
| 656 | |
Adam Nemet | 424edc6 | 2015-07-08 22:58:48 +0000 | [diff] [blame] | 657 | if (IsWrite) |
| 658 | ++NumWritePtrChecks; |
| 659 | else |
| 660 | ++NumReadPtrChecks; |
| 661 | |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 662 | if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) && |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 663 | // When we run after a failing dependency check we have to make sure |
| 664 | // we don't have wrapping pointers. |
Andrey Turetskiy | 9f02c58 | 2016-06-07 14:55:27 +0000 | [diff] [blame] | 665 | (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 666 | // The id of the dependence set. |
| 667 | unsigned DepId; |
| 668 | |
| 669 | if (IsDepCheckNeeded) { |
| 670 | Value *Leader = DepCands.getLeaderValue(Access).getPointer(); |
| 671 | unsigned &LeaderId = DepSetId[Leader]; |
| 672 | if (!LeaderId) |
| 673 | LeaderId = RunningDepId++; |
| 674 | DepId = LeaderId; |
| 675 | } else |
| 676 | // Each access has its own dependence set. |
| 677 | DepId = RunningDepId++; |
| 678 | |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 679 | RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 680 | |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 681 | DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 682 | } else { |
Adam Nemet | f10ca27 | 2015-05-18 15:36:52 +0000 | [diff] [blame] | 683 | DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 684 | CanDoRT = false; |
| 685 | } |
| 686 | } |
| 687 | |
Adam Nemet | 424edc6 | 2015-07-08 22:58:48 +0000 | [diff] [blame] | 688 | // If we have at least two writes or one write and a read then we need to |
| 689 | // check them. But there is no need to checks if there is only one |
| 690 | // dependence set for this alias set. |
| 691 | // |
| 692 | // Note that this function computes CanDoRT and NeedRTCheck independently. |
| 693 | // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer |
| 694 | // for which we couldn't find the bounds but we don't actually need to emit |
| 695 | // any checks so it does not matter. |
| 696 | if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2)) |
| 697 | NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 && |
| 698 | NumWritePtrChecks >= 1)); |
| 699 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 700 | ++ASId; |
| 701 | } |
| 702 | |
| 703 | // If the pointers that we would use for the bounds comparison have different |
| 704 | // address spaces, assume the values aren't directly comparable, so we can't |
| 705 | // use them for the runtime check. We also have to assume they could |
| 706 | // overlap. In the future there should be metadata for whether address spaces |
| 707 | // are disjoint. |
| 708 | unsigned NumPointers = RtCheck.Pointers.size(); |
| 709 | for (unsigned i = 0; i < NumPointers; ++i) { |
| 710 | for (unsigned j = i + 1; j < NumPointers; ++j) { |
| 711 | // Only need to check pointers between two different dependency sets. |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 712 | if (RtCheck.Pointers[i].DependencySetId == |
| 713 | RtCheck.Pointers[j].DependencySetId) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 714 | continue; |
| 715 | // Only need to check pointers in the same alias set. |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 716 | if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 717 | continue; |
| 718 | |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 719 | Value *PtrI = RtCheck.Pointers[i].PointerValue; |
| 720 | Value *PtrJ = RtCheck.Pointers[j].PointerValue; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 721 | |
| 722 | unsigned ASi = PtrI->getType()->getPointerAddressSpace(); |
| 723 | unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); |
| 724 | if (ASi != ASj) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 725 | DEBUG(dbgs() << "LAA: Runtime check would require comparison between" |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 726 | " different address spaces\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 727 | return false; |
| 728 | } |
| 729 | } |
| 730 | } |
| 731 | |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 732 | if (NeedRTCheck && CanDoRT) |
Adam Nemet | 1584039 | 2015-08-07 22:44:15 +0000 | [diff] [blame] | 733 | RtCheck.generateChecks(DepCands, IsDepCheckNeeded); |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 734 | |
Adam Nemet | 155e874 | 2015-08-07 22:44:21 +0000 | [diff] [blame] | 735 | DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() |
Adam Nemet | ee61474 | 2015-07-09 22:17:38 +0000 | [diff] [blame] | 736 | << " pointer comparisons.\n"); |
| 737 | |
| 738 | RtCheck.Need = NeedRTCheck; |
| 739 | |
| 740 | bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; |
| 741 | if (!CanDoRTIfNeeded) |
| 742 | RtCheck.reset(); |
| 743 | return CanDoRTIfNeeded; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 744 | } |
| 745 | |
| 746 | void AccessAnalysis::processMemAccesses() { |
| 747 | // We process the set twice: first we process read-write pointers, last we |
| 748 | // process read-only pointers. This allows us to skip dependence tests for |
| 749 | // read-only pointers. |
| 750 | |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 751 | DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 752 | DEBUG(dbgs() << " AST: "; AST.dump()); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 753 | DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 754 | DEBUG({ |
| 755 | for (auto A : Accesses) |
| 756 | dbgs() << "\t" << *A.getPointer() << " (" << |
| 757 | (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? |
| 758 | "read-only" : "read")) << ")\n"; |
| 759 | }); |
| 760 | |
| 761 | // The AliasSetTracker has nicely partitioned our pointers by metadata |
| 762 | // compatibility and potential for underlying-object overlap. As a result, we |
| 763 | // only need to check for potential pointer dependencies within each alias |
| 764 | // set. |
| 765 | for (auto &AS : AST) { |
| 766 | // Note that both the alias-set tracker and the alias sets themselves used |
| 767 | // linked lists internally and so the iteration order here is deterministic |
| 768 | // (matching the original instruction order within each set). |
| 769 | |
| 770 | bool SetHasWrite = false; |
| 771 | |
| 772 | // Map of pointers to last access encountered. |
| 773 | typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; |
| 774 | UnderlyingObjToAccessMap ObjToLastAccess; |
| 775 | |
| 776 | // Set of access to check after all writes have been processed. |
| 777 | PtrAccessSet DeferredAccesses; |
| 778 | |
| 779 | // Iterate over each alias set twice, once to process read/write pointers, |
| 780 | // and then to process read-only pointers. |
| 781 | for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { |
| 782 | bool UseDeferred = SetIteration > 0; |
| 783 | PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; |
| 784 | |
| 785 | for (auto AV : AS) { |
| 786 | Value *Ptr = AV.getValue(); |
| 787 | |
| 788 | // For a single memory access in AliasSetTracker, Accesses may contain |
| 789 | // both read and write, and they both need to be handled for CheckDeps. |
| 790 | for (auto AC : S) { |
| 791 | if (AC.getPointer() != Ptr) |
| 792 | continue; |
| 793 | |
| 794 | bool IsWrite = AC.getInt(); |
| 795 | |
| 796 | // If we're using the deferred access set, then it contains only |
| 797 | // reads. |
| 798 | bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; |
| 799 | if (UseDeferred && !IsReadOnlyPtr) |
| 800 | continue; |
| 801 | // Otherwise, the pointer must be in the PtrAccessSet, either as a |
| 802 | // read or a write. |
| 803 | assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || |
| 804 | S.count(MemAccessInfo(Ptr, false))) && |
| 805 | "Alias-set pointer not in the access set?"); |
| 806 | |
| 807 | MemAccessInfo Access(Ptr, IsWrite); |
| 808 | DepCands.insert(Access); |
| 809 | |
| 810 | // Memorize read-only pointers for later processing and skip them in |
| 811 | // the first round (they need to be checked after we have seen all |
| 812 | // write pointers). Note: we also mark pointer that are not |
| 813 | // consecutive as "read-only" pointers (so that we check |
| 814 | // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". |
| 815 | if (!UseDeferred && IsReadOnlyPtr) { |
| 816 | DeferredAccesses.insert(Access); |
| 817 | continue; |
| 818 | } |
| 819 | |
| 820 | // If this is a write - check other reads and writes for conflicts. If |
| 821 | // this is a read only check other writes for conflicts (but only if |
| 822 | // there is no other write to the ptr - this is an optimization to |
| 823 | // catch "a[i] = a[i] + " without having to do a dependence check). |
| 824 | if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { |
| 825 | CheckDeps.insert(Access); |
Adam Nemet | 5dc3b2c | 2015-07-09 06:47:18 +0000 | [diff] [blame] | 826 | IsRTCheckAnalysisNeeded = true; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 827 | } |
| 828 | |
| 829 | if (IsWrite) |
| 830 | SetHasWrite = true; |
| 831 | |
| 832 | // Create sets of pointers connected by a shared alias set and |
| 833 | // underlying object. |
| 834 | typedef SmallVector<Value *, 16> ValueVector; |
| 835 | ValueVector TempObjects; |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 836 | |
| 837 | GetUnderlyingObjects(Ptr, TempObjects, DL, LI); |
| 838 | DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 839 | for (Value *UnderlyingObj : TempObjects) { |
Mehdi Amini | afd1351 | 2015-11-05 05:49:43 +0000 | [diff] [blame] | 840 | // nullptr never alias, don't join sets for pointer that have "null" |
| 841 | // in their UnderlyingObjects list. |
| 842 | if (isa<ConstantPointerNull>(UnderlyingObj)) |
| 843 | continue; |
| 844 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 845 | UnderlyingObjToAccessMap::iterator Prev = |
| 846 | ObjToLastAccess.find(UnderlyingObj); |
| 847 | if (Prev != ObjToLastAccess.end()) |
| 848 | DepCands.unionSets(Access, Prev->second); |
| 849 | |
| 850 | ObjToLastAccess[UnderlyingObj] = Access; |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 851 | DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 852 | } |
| 853 | } |
| 854 | } |
| 855 | } |
| 856 | } |
| 857 | } |
| 858 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 859 | static bool isInBoundsGep(Value *Ptr) { |
| 860 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) |
| 861 | return GEP->isInBounds(); |
| 862 | return false; |
| 863 | } |
| 864 | |
Adam Nemet | c4866d2 | 2015-06-26 17:25:43 +0000 | [diff] [blame] | 865 | /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, |
| 866 | /// i.e. monotonically increasing/decreasing. |
| 867 | static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 868 | PredicatedScalarEvolution &PSE, const Loop *L) { |
Adam Nemet | c4866d2 | 2015-06-26 17:25:43 +0000 | [diff] [blame] | 869 | // FIXME: This should probably only return true for NUW. |
| 870 | if (AR->getNoWrapFlags(SCEV::NoWrapMask)) |
| 871 | return true; |
| 872 | |
| 873 | // Scalar evolution does not propagate the non-wrapping flags to values that |
| 874 | // are derived from a non-wrapping induction variable because non-wrapping |
| 875 | // could be flow-sensitive. |
| 876 | // |
| 877 | // Look through the potentially overflowing instruction to try to prove |
| 878 | // non-wrapping for the *specific* value of Ptr. |
| 879 | |
| 880 | // The arithmetic implied by an inbounds GEP can't overflow. |
| 881 | auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); |
| 882 | if (!GEP || !GEP->isInBounds()) |
| 883 | return false; |
| 884 | |
| 885 | // Make sure there is only one non-const index and analyze that. |
| 886 | Value *NonConstIndex = nullptr; |
David Majnemer | 8b40101 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 887 | for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) |
| 888 | if (!isa<ConstantInt>(Index)) { |
Adam Nemet | c4866d2 | 2015-06-26 17:25:43 +0000 | [diff] [blame] | 889 | if (NonConstIndex) |
| 890 | return false; |
David Majnemer | 8b40101 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 891 | NonConstIndex = Index; |
Adam Nemet | c4866d2 | 2015-06-26 17:25:43 +0000 | [diff] [blame] | 892 | } |
| 893 | if (!NonConstIndex) |
| 894 | // The recurrence is on the pointer, ignore for now. |
| 895 | return false; |
| 896 | |
| 897 | // The index in GEP is signed. It is non-wrapping if it's derived from a NSW |
| 898 | // AddRec using a NSW operation. |
| 899 | if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) |
| 900 | if (OBO->hasNoSignedWrap() && |
| 901 | // Assume constant for other the operand so that the AddRec can be |
| 902 | // easily found. |
| 903 | isa<ConstantInt>(OBO->getOperand(1))) { |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 904 | auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); |
Adam Nemet | c4866d2 | 2015-06-26 17:25:43 +0000 | [diff] [blame] | 905 | |
| 906 | if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) |
| 907 | return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); |
| 908 | } |
| 909 | |
| 910 | return false; |
| 911 | } |
| 912 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 913 | /// \brief Check whether the access through \p Ptr has a constant stride. |
David Majnemer | 7afb46d | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 914 | int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, |
| 915 | const Loop *Lp, const ValueToValueMap &StridesMap, |
Elena Demikhovsky | 5f8cc0c | 2016-09-18 13:56:08 +0000 | [diff] [blame] | 916 | bool Assume, bool ShouldCheckWrap) { |
Craig Topper | e3dcce9 | 2015-08-01 22:20:21 +0000 | [diff] [blame] | 917 | Type *Ty = Ptr->getType(); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 918 | assert(Ty->isPointerTy() && "Unexpected non-ptr"); |
| 919 | |
| 920 | // Make sure that the pointer does not point to aggregate types. |
Craig Topper | e3dcce9 | 2015-08-01 22:20:21 +0000 | [diff] [blame] | 921 | auto *PtrTy = cast<PointerType>(Ty); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 922 | if (PtrTy->getElementType()->isAggregateType()) { |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 923 | DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr |
| 924 | << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 925 | return 0; |
| 926 | } |
| 927 | |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 928 | const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 929 | |
| 930 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 931 | if (Assume && !AR) |
Silviu Baranga | d68ed85 | 2016-03-23 15:29:30 +0000 | [diff] [blame] | 932 | AR = PSE.getAsAddRec(Ptr); |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 933 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 934 | if (!AR) { |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 935 | DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr |
| 936 | << " SCEV: " << *PtrScev << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 937 | return 0; |
| 938 | } |
| 939 | |
| 940 | // The accesss function must stride over the innermost loop. |
| 941 | if (Lp != AR->getLoop()) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 942 | DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 943 | *Ptr << " SCEV: " << *AR << "\n"); |
Kyle Butt | a02ce98 | 2016-01-08 01:55:13 +0000 | [diff] [blame] | 944 | return 0; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 945 | } |
| 946 | |
| 947 | // The address calculation must not wrap. Otherwise, a dependence could be |
| 948 | // inverted. |
| 949 | // An inbounds getelementptr that is a AddRec with a unit stride |
| 950 | // cannot wrap per definition. The unit stride requirement is checked later. |
| 951 | // An getelementptr without an inbounds attribute and unit stride would have |
| 952 | // to access the pointer value "0" which is undefined behavior in address |
| 953 | // space 0, therefore we can also vectorize this case. |
| 954 | bool IsInBoundsGEP = isInBoundsGep(Ptr); |
Elena Demikhovsky | 5f8cc0c | 2016-09-18 13:56:08 +0000 | [diff] [blame] | 955 | bool IsNoWrapAddRec = !ShouldCheckWrap || |
| 956 | PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || |
| 957 | isNoWrapAddRec(Ptr, AR, PSE, Lp); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 958 | bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; |
| 959 | if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 960 | if (Assume) { |
| 961 | PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); |
| 962 | IsNoWrapAddRec = true; |
| 963 | DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" |
| 964 | << "LAA: Pointer: " << *Ptr << "\n" |
| 965 | << "LAA: SCEV: " << *AR << "\n" |
| 966 | << "LAA: Added an overflow assumption\n"); |
| 967 | } else { |
| 968 | DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " |
| 969 | << *Ptr << " SCEV: " << *AR << "\n"); |
| 970 | return 0; |
| 971 | } |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 972 | } |
| 973 | |
| 974 | // Check the step is constant. |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 975 | const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 976 | |
Adam Nemet | 943befe | 2015-07-09 00:03:22 +0000 | [diff] [blame] | 977 | // Calculate the pointer stride and check if it is constant. |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 978 | const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); |
| 979 | if (!C) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 980 | DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 981 | " SCEV: " << *AR << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 982 | return 0; |
| 983 | } |
| 984 | |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 985 | auto &DL = Lp->getHeader()->getModule()->getDataLayout(); |
| 986 | int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); |
Sanjoy Das | 0de2fec | 2015-12-17 20:28:46 +0000 | [diff] [blame] | 987 | const APInt &APStepVal = C->getAPInt(); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 988 | |
| 989 | // Huge step value - give up. |
| 990 | if (APStepVal.getBitWidth() > 64) |
| 991 | return 0; |
| 992 | |
| 993 | int64_t StepVal = APStepVal.getSExtValue(); |
| 994 | |
| 995 | // Strided access. |
| 996 | int64_t Stride = StepVal / Size; |
| 997 | int64_t Rem = StepVal % Size; |
| 998 | if (Rem) |
| 999 | return 0; |
| 1000 | |
| 1001 | // If the SCEV could wrap but we have an inbounds gep with a unit stride we |
| 1002 | // know we can't "wrap around the address space". In case of address space |
| 1003 | // zero we know that this won't happen without triggering undefined behavior. |
| 1004 | if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 1005 | Stride != 1 && Stride != -1) { |
| 1006 | if (Assume) { |
| 1007 | // We can avoid this case by adding a run-time check. |
| 1008 | DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " |
| 1009 | << "inbouds or in address space 0 may wrap:\n" |
| 1010 | << "LAA: Pointer: " << *Ptr << "\n" |
| 1011 | << "LAA: SCEV: " << *AR << "\n" |
| 1012 | << "LAA: Added an overflow assumption\n"); |
| 1013 | PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); |
| 1014 | } else |
| 1015 | return 0; |
| 1016 | } |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1017 | |
| 1018 | return Stride; |
| 1019 | } |
| 1020 | |
Haicheng Wu | f1c00a2 | 2016-01-26 02:27:47 +0000 | [diff] [blame] | 1021 | /// Take the pointer operand from the Load/Store instruction. |
| 1022 | /// Returns NULL if this is not a valid Load/Store instruction. |
| 1023 | static Value *getPointerOperand(Value *I) { |
David Majnemer | 8b40101 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 1024 | if (auto *LI = dyn_cast<LoadInst>(I)) |
Haicheng Wu | f1c00a2 | 2016-01-26 02:27:47 +0000 | [diff] [blame] | 1025 | return LI->getPointerOperand(); |
David Majnemer | 8b40101 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 1026 | if (auto *SI = dyn_cast<StoreInst>(I)) |
Haicheng Wu | f1c00a2 | 2016-01-26 02:27:47 +0000 | [diff] [blame] | 1027 | return SI->getPointerOperand(); |
| 1028 | return nullptr; |
| 1029 | } |
| 1030 | |
| 1031 | /// Take the address space operand from the Load/Store instruction. |
| 1032 | /// Returns -1 if this is not a valid Load/Store instruction. |
| 1033 | static unsigned getAddressSpaceOperand(Value *I) { |
| 1034 | if (LoadInst *L = dyn_cast<LoadInst>(I)) |
| 1035 | return L->getPointerAddressSpace(); |
| 1036 | if (StoreInst *S = dyn_cast<StoreInst>(I)) |
| 1037 | return S->getPointerAddressSpace(); |
| 1038 | return -1; |
| 1039 | } |
| 1040 | |
Michael Kuperstein | 2a735b7 | 2017-02-03 19:32:50 +0000 | [diff] [blame] | 1041 | bool llvm::sortMemAccesses(ArrayRef<Value *> VL, const DataLayout &DL, |
| 1042 | ScalarEvolution &SE, |
Michael Kuperstein | 768d013 | 2017-03-06 23:54:51 +0000 | [diff] [blame] | 1043 | SmallVectorImpl<Value *> &Sorted) { |
Michael Kuperstein | 723999d | 2017-02-03 19:09:45 +0000 | [diff] [blame] | 1044 | SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs; |
| 1045 | OffValPairs.reserve(VL.size()); |
| 1046 | Sorted.reserve(VL.size()); |
Mohammad Shahid | 3121334 | 2017-01-28 17:59:44 +0000 | [diff] [blame] | 1047 | |
Michael Kuperstein | 723999d | 2017-02-03 19:09:45 +0000 | [diff] [blame] | 1048 | // Walk over the pointers, and map each of them to an offset relative to |
| 1049 | // first pointer in the array. |
| 1050 | Value *Ptr0 = getPointerOperand(VL[0]); |
| 1051 | const SCEV *Scev0 = SE.getSCEV(Ptr0); |
| 1052 | Value *Obj0 = GetUnderlyingObject(Ptr0, DL); |
Michael Kuperstein | 768d013 | 2017-03-06 23:54:51 +0000 | [diff] [blame] | 1053 | |
Michael Kuperstein | 723999d | 2017-02-03 19:09:45 +0000 | [diff] [blame] | 1054 | for (auto *Val : VL) { |
Michael Kuperstein | c07cca8 | 2017-02-27 23:18:11 +0000 | [diff] [blame] | 1055 | // The only kind of access we care about here is load. |
| 1056 | if (!isa<LoadInst>(Val)) |
| 1057 | return false; |
| 1058 | |
Michael Kuperstein | 723999d | 2017-02-03 19:09:45 +0000 | [diff] [blame] | 1059 | Value *Ptr = getPointerOperand(Val); |
Michael Kuperstein | c07cca8 | 2017-02-27 23:18:11 +0000 | [diff] [blame] | 1060 | assert(Ptr && "Expected value to have a pointer operand."); |
Michael Kuperstein | 723999d | 2017-02-03 19:09:45 +0000 | [diff] [blame] | 1061 | |
| 1062 | // If a pointer refers to a different underlying object, bail - the |
| 1063 | // pointers are by definition incomparable. |
| 1064 | Value *CurrObj = GetUnderlyingObject(Ptr, DL); |
Michael Kuperstein | 2a735b7 | 2017-02-03 19:32:50 +0000 | [diff] [blame] | 1065 | if (CurrObj != Obj0) |
| 1066 | return false; |
Michael Kuperstein | 723999d | 2017-02-03 19:09:45 +0000 | [diff] [blame] | 1067 | |
| 1068 | const SCEVConstant *Diff = |
| 1069 | dyn_cast<SCEVConstant>(SE.getMinusSCEV(SE.getSCEV(Ptr), Scev0)); |
| 1070 | |
| 1071 | // The pointers may not have a constant offset from each other, or SCEV |
| 1072 | // may just not be smart enough to figure out they do. Regardless, |
| 1073 | // there's nothing we can do. |
Michael Kuperstein | 2a735b7 | 2017-02-03 19:32:50 +0000 | [diff] [blame] | 1074 | if (!Diff) |
| 1075 | return false; |
Michael Kuperstein | 723999d | 2017-02-03 19:09:45 +0000 | [diff] [blame] | 1076 | |
| 1077 | OffValPairs.emplace_back(Diff->getAPInt().getSExtValue(), Val); |
Mohammad Shahid | 3121334 | 2017-01-28 17:59:44 +0000 | [diff] [blame] | 1078 | } |
Michael Kuperstein | 723999d | 2017-02-03 19:09:45 +0000 | [diff] [blame] | 1079 | |
Michael Kuperstein | 768d013 | 2017-03-06 23:54:51 +0000 | [diff] [blame] | 1080 | std::sort(OffValPairs.begin(), OffValPairs.end(), |
| 1081 | [](const std::pair<int64_t, Value *> &Left, |
| 1082 | const std::pair<int64_t, Value *> &Right) { |
| 1083 | return Left.first < Right.first; |
Mohammad Shahid | 3121334 | 2017-01-28 17:59:44 +0000 | [diff] [blame] | 1084 | }); |
| 1085 | |
Michael Kuperstein | 768d013 | 2017-03-06 23:54:51 +0000 | [diff] [blame] | 1086 | for (auto &it : OffValPairs) |
| 1087 | Sorted.push_back(it.second); |
Michael Kuperstein | 2a735b7 | 2017-02-03 19:32:50 +0000 | [diff] [blame] | 1088 | |
| 1089 | return true; |
Mohammad Shahid | 3121334 | 2017-01-28 17:59:44 +0000 | [diff] [blame] | 1090 | } |
| 1091 | |
Haicheng Wu | f1c00a2 | 2016-01-26 02:27:47 +0000 | [diff] [blame] | 1092 | /// Returns true if the memory operations \p A and \p B are consecutive. |
| 1093 | bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, |
| 1094 | ScalarEvolution &SE, bool CheckType) { |
| 1095 | Value *PtrA = getPointerOperand(A); |
| 1096 | Value *PtrB = getPointerOperand(B); |
| 1097 | unsigned ASA = getAddressSpaceOperand(A); |
| 1098 | unsigned ASB = getAddressSpaceOperand(B); |
| 1099 | |
| 1100 | // Check that the address spaces match and that the pointers are valid. |
| 1101 | if (!PtrA || !PtrB || (ASA != ASB)) |
| 1102 | return false; |
| 1103 | |
| 1104 | // Make sure that A and B are different pointers. |
| 1105 | if (PtrA == PtrB) |
| 1106 | return false; |
| 1107 | |
| 1108 | // Make sure that A and B have the same type if required. |
Chad Rosier | 83a1203 | 2016-08-31 18:37:52 +0000 | [diff] [blame] | 1109 | if (CheckType && PtrA->getType() != PtrB->getType()) |
| 1110 | return false; |
Haicheng Wu | f1c00a2 | 2016-01-26 02:27:47 +0000 | [diff] [blame] | 1111 | |
| 1112 | unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); |
| 1113 | Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); |
| 1114 | APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty)); |
| 1115 | |
| 1116 | APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); |
| 1117 | PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); |
| 1118 | PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); |
| 1119 | |
| 1120 | // OffsetDelta = OffsetB - OffsetA; |
| 1121 | const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); |
| 1122 | const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); |
| 1123 | const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); |
| 1124 | const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); |
| 1125 | const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); |
| 1126 | // Check if they are based on the same pointer. That makes the offsets |
| 1127 | // sufficient. |
| 1128 | if (PtrA == PtrB) |
| 1129 | return OffsetDelta == Size; |
| 1130 | |
| 1131 | // Compute the necessary base pointer delta to have the necessary final delta |
| 1132 | // equal to the size. |
| 1133 | // BaseDelta = Size - OffsetDelta; |
| 1134 | const SCEV *SizeSCEV = SE.getConstant(Size); |
| 1135 | const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); |
| 1136 | |
| 1137 | // Otherwise compute the distance with SCEV between the base pointers. |
| 1138 | const SCEV *PtrSCEVA = SE.getSCEV(PtrA); |
| 1139 | const SCEV *PtrSCEVB = SE.getSCEV(PtrB); |
| 1140 | const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); |
| 1141 | return X == PtrSCEVB; |
| 1142 | } |
| 1143 | |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1144 | bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { |
| 1145 | switch (Type) { |
| 1146 | case NoDep: |
| 1147 | case Forward: |
| 1148 | case BackwardVectorizable: |
| 1149 | return true; |
| 1150 | |
| 1151 | case Unknown: |
| 1152 | case ForwardButPreventsForwarding: |
| 1153 | case Backward: |
| 1154 | case BackwardVectorizableButPreventsForwarding: |
| 1155 | return false; |
| 1156 | } |
David Majnemer | d388e93 | 2015-03-10 20:23:29 +0000 | [diff] [blame] | 1157 | llvm_unreachable("unexpected DepType!"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1158 | } |
| 1159 | |
Adam Nemet | 397f582 | 2015-11-03 23:50:03 +0000 | [diff] [blame] | 1160 | bool MemoryDepChecker::Dependence::isBackward() const { |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1161 | switch (Type) { |
| 1162 | case NoDep: |
| 1163 | case Forward: |
| 1164 | case ForwardButPreventsForwarding: |
Adam Nemet | 397f582 | 2015-11-03 23:50:03 +0000 | [diff] [blame] | 1165 | case Unknown: |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1166 | return false; |
| 1167 | |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1168 | case BackwardVectorizable: |
| 1169 | case Backward: |
| 1170 | case BackwardVectorizableButPreventsForwarding: |
| 1171 | return true; |
| 1172 | } |
David Majnemer | d388e93 | 2015-03-10 20:23:29 +0000 | [diff] [blame] | 1173 | llvm_unreachable("unexpected DepType!"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1174 | } |
| 1175 | |
Adam Nemet | 397f582 | 2015-11-03 23:50:03 +0000 | [diff] [blame] | 1176 | bool MemoryDepChecker::Dependence::isPossiblyBackward() const { |
| 1177 | return isBackward() || Type == Unknown; |
| 1178 | } |
| 1179 | |
| 1180 | bool MemoryDepChecker::Dependence::isForward() const { |
| 1181 | switch (Type) { |
| 1182 | case Forward: |
| 1183 | case ForwardButPreventsForwarding: |
| 1184 | return true; |
| 1185 | |
| 1186 | case NoDep: |
| 1187 | case Unknown: |
| 1188 | case BackwardVectorizable: |
| 1189 | case Backward: |
| 1190 | case BackwardVectorizableButPreventsForwarding: |
| 1191 | return false; |
| 1192 | } |
| 1193 | llvm_unreachable("unexpected DepType!"); |
| 1194 | } |
| 1195 | |
David Majnemer | 7afb46d | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1196 | bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, |
| 1197 | uint64_t TypeByteSize) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1198 | // If loads occur at a distance that is not a multiple of a feasible vector |
| 1199 | // factor store-load forwarding does not take place. |
| 1200 | // Positive dependences might cause troubles because vectorizing them might |
| 1201 | // prevent store-load forwarding making vectorized code run a lot slower. |
| 1202 | // a[i] = a[i-3] ^ a[i-8]; |
| 1203 | // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and |
| 1204 | // hence on your typical architecture store-load forwarding does not take |
| 1205 | // place. Vectorizing in such cases does not make sense. |
| 1206 | // Store-load forwarding distance. |
Adam Nemet | 884d313 | 2016-05-16 16:57:47 +0000 | [diff] [blame] | 1207 | |
| 1208 | // After this many iterations store-to-load forwarding conflicts should not |
| 1209 | // cause any slowdowns. |
David Majnemer | 7afb46d | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1210 | const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1211 | // Maximum vector factor. |
David Majnemer | 7afb46d | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1212 | uint64_t MaxVFWithoutSLForwardIssues = std::min( |
Adam Nemet | 2c34ab5 | 2016-05-12 21:41:53 +0000 | [diff] [blame] | 1213 | VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1214 | |
Adam Nemet | 884d313 | 2016-05-16 16:57:47 +0000 | [diff] [blame] | 1215 | // Compute the smallest VF at which the store and load would be misaligned. |
David Majnemer | 7afb46d | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1216 | for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; |
Adam Nemet | 9b5852a | 2016-05-16 16:57:42 +0000 | [diff] [blame] | 1217 | VF *= 2) { |
Adam Nemet | 884d313 | 2016-05-16 16:57:47 +0000 | [diff] [blame] | 1218 | // If the number of vector iteration between the store and the load are |
| 1219 | // small we could incur conflicts. |
| 1220 | if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { |
Adam Nemet | 9b5852a | 2016-05-16 16:57:42 +0000 | [diff] [blame] | 1221 | MaxVFWithoutSLForwardIssues = (VF >>= 1); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1222 | break; |
| 1223 | } |
| 1224 | } |
| 1225 | |
Adam Nemet | 9b5852a | 2016-05-16 16:57:42 +0000 | [diff] [blame] | 1226 | if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { |
| 1227 | DEBUG(dbgs() << "LAA: Distance " << Distance |
| 1228 | << " that could cause a store-load forwarding conflict\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1229 | return true; |
| 1230 | } |
| 1231 | |
| 1232 | if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 1233 | MaxVFWithoutSLForwardIssues != |
Adam Nemet | 9b5852a | 2016-05-16 16:57:42 +0000 | [diff] [blame] | 1234 | VectorizerParams::MaxVectorWidth * TypeByteSize) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1235 | MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; |
| 1236 | return false; |
| 1237 | } |
| 1238 | |
Dorit Nuzman | eac89d7 | 2017-02-12 09:32:53 +0000 | [diff] [blame] | 1239 | /// Given a non-constant (unknown) dependence-distance \p Dist between two |
| 1240 | /// memory accesses, that have the same stride whose absolute value is given |
| 1241 | /// in \p Stride, and that have the same type size \p TypeByteSize, |
| 1242 | /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is |
| 1243 | /// possible to prove statically that the dependence distance is larger |
| 1244 | /// than the range that the accesses will travel through the execution of |
| 1245 | /// the loop. If so, return true; false otherwise. This is useful for |
| 1246 | /// example in loops such as the following (PR31098): |
| 1247 | /// for (i = 0; i < D; ++i) { |
| 1248 | /// = out[i]; |
| 1249 | /// out[i+D] = |
| 1250 | /// } |
| 1251 | static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, |
| 1252 | const SCEV &BackedgeTakenCount, |
| 1253 | const SCEV &Dist, uint64_t Stride, |
| 1254 | uint64_t TypeByteSize) { |
| 1255 | |
| 1256 | // If we can prove that |
| 1257 | // (**) |Dist| > BackedgeTakenCount * Step |
| 1258 | // where Step is the absolute stride of the memory accesses in bytes, |
| 1259 | // then there is no dependence. |
| 1260 | // |
| 1261 | // Ratioanle: |
| 1262 | // We basically want to check if the absolute distance (|Dist/Step|) |
| 1263 | // is >= the loop iteration count (or > BackedgeTakenCount). |
| 1264 | // This is equivalent to the Strong SIV Test (Practical Dependence Testing, |
| 1265 | // Section 4.2.1); Note, that for vectorization it is sufficient to prove |
| 1266 | // that the dependence distance is >= VF; This is checked elsewhere. |
| 1267 | // But in some cases we can prune unknown dependence distances early, and |
| 1268 | // even before selecting the VF, and without a runtime test, by comparing |
| 1269 | // the distance against the loop iteration count. Since the vectorized code |
| 1270 | // will be executed only if LoopCount >= VF, proving distance >= LoopCount |
| 1271 | // also guarantees that distance >= VF. |
| 1272 | // |
| 1273 | const uint64_t ByteStride = Stride * TypeByteSize; |
| 1274 | const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); |
| 1275 | const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); |
| 1276 | |
| 1277 | const SCEV *CastedDist = &Dist; |
| 1278 | const SCEV *CastedProduct = Product; |
| 1279 | uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); |
| 1280 | uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); |
| 1281 | |
| 1282 | // The dependence distance can be positive/negative, so we sign extend Dist; |
| 1283 | // The multiplication of the absolute stride in bytes and the |
| 1284 | // backdgeTakenCount is non-negative, so we zero extend Product. |
| 1285 | if (DistTypeSize > ProductTypeSize) |
| 1286 | CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); |
| 1287 | else |
| 1288 | CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); |
| 1289 | |
| 1290 | // Is Dist - (BackedgeTakenCount * Step) > 0 ? |
| 1291 | // (If so, then we have proven (**) because |Dist| >= Dist) |
| 1292 | const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); |
| 1293 | if (SE.isKnownPositive(Minus)) |
| 1294 | return true; |
| 1295 | |
| 1296 | // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? |
| 1297 | // (If so, then we have proven (**) because |Dist| >= -1*Dist) |
| 1298 | const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); |
| 1299 | Minus = SE.getMinusSCEV(NegDist, CastedProduct); |
| 1300 | if (SE.isKnownPositive(Minus)) |
| 1301 | return true; |
| 1302 | |
| 1303 | return false; |
| 1304 | } |
| 1305 | |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1306 | /// \brief Check the dependence for two accesses with the same stride \p Stride. |
| 1307 | /// \p Distance is the positive distance and \p TypeByteSize is type size in |
| 1308 | /// bytes. |
| 1309 | /// |
| 1310 | /// \returns true if they are independent. |
David Majnemer | 7afb46d | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1311 | static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, |
| 1312 | uint64_t TypeByteSize) { |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1313 | assert(Stride > 1 && "The stride must be greater than 1"); |
| 1314 | assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); |
| 1315 | assert(Distance > 0 && "The distance must be non-zero"); |
| 1316 | |
| 1317 | // Skip if the distance is not multiple of type byte size. |
| 1318 | if (Distance % TypeByteSize) |
| 1319 | return false; |
| 1320 | |
David Majnemer | 7afb46d | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1321 | uint64_t ScaledDist = Distance / TypeByteSize; |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1322 | |
| 1323 | // No dependence if the scaled distance is not multiple of the stride. |
| 1324 | // E.g. |
| 1325 | // for (i = 0; i < 1024 ; i += 4) |
| 1326 | // A[i+2] = A[i] + 1; |
| 1327 | // |
| 1328 | // Two accesses in memory (scaled distance is 2, stride is 4): |
| 1329 | // | A[0] | | | | A[4] | | | | |
| 1330 | // | | | A[2] | | | | A[6] | | |
| 1331 | // |
| 1332 | // E.g. |
| 1333 | // for (i = 0; i < 1024 ; i += 3) |
| 1334 | // A[i+4] = A[i] + 1; |
| 1335 | // |
| 1336 | // Two accesses in memory (scaled distance is 4, stride is 3): |
| 1337 | // | A[0] | | | A[3] | | | A[6] | | | |
| 1338 | // | | | | | A[4] | | | A[7] | | |
| 1339 | return ScaledDist % Stride; |
| 1340 | } |
| 1341 | |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1342 | MemoryDepChecker::Dependence::DepType |
| 1343 | MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, |
| 1344 | const MemAccessInfo &B, unsigned BIdx, |
| 1345 | const ValueToValueMap &Strides) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1346 | assert (AIdx < BIdx && "Must pass arguments in program order"); |
| 1347 | |
| 1348 | Value *APtr = A.getPointer(); |
| 1349 | Value *BPtr = B.getPointer(); |
| 1350 | bool AIsWrite = A.getInt(); |
| 1351 | bool BIsWrite = B.getInt(); |
| 1352 | |
| 1353 | // Two reads are independent. |
| 1354 | if (!AIsWrite && !BIsWrite) |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1355 | return Dependence::NoDep; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1356 | |
| 1357 | // We cannot check pointers in different address spaces. |
| 1358 | if (APtr->getType()->getPointerAddressSpace() != |
| 1359 | BPtr->getType()->getPointerAddressSpace()) |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1360 | return Dependence::Unknown; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1361 | |
David Majnemer | 7afb46d | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1362 | int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); |
| 1363 | int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1364 | |
Silviu Baranga | adf4b73 | 2016-05-10 12:28:49 +0000 | [diff] [blame] | 1365 | const SCEV *Src = PSE.getSCEV(APtr); |
| 1366 | const SCEV *Sink = PSE.getSCEV(BPtr); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1367 | |
| 1368 | // If the induction step is negative we have to invert source and sink of the |
| 1369 | // dependence. |
| 1370 | if (StrideAPtr < 0) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1371 | std::swap(APtr, BPtr); |
| 1372 | std::swap(Src, Sink); |
| 1373 | std::swap(AIsWrite, BIsWrite); |
| 1374 | std::swap(AIdx, BIdx); |
| 1375 | std::swap(StrideAPtr, StrideBPtr); |
| 1376 | } |
| 1377 | |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 1378 | const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1379 | |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1380 | DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 1381 | << "(Induction step: " << StrideAPtr << ")\n"); |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1382 | DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 1383 | << *InstMap[BIdx] << ": " << *Dist << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1384 | |
Adam Nemet | 943befe | 2015-07-09 00:03:22 +0000 | [diff] [blame] | 1385 | // Need accesses with constant stride. We don't want to vectorize |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1386 | // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in |
| 1387 | // the address space. |
| 1388 | if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ |
Adam Nemet | 943befe | 2015-07-09 00:03:22 +0000 | [diff] [blame] | 1389 | DEBUG(dbgs() << "Pointer access with non-constant stride\n"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1390 | return Dependence::Unknown; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1391 | } |
| 1392 | |
Dorit Nuzman | eac89d7 | 2017-02-12 09:32:53 +0000 | [diff] [blame] | 1393 | Type *ATy = APtr->getType()->getPointerElementType(); |
| 1394 | Type *BTy = BPtr->getType()->getPointerElementType(); |
| 1395 | auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); |
| 1396 | uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); |
| 1397 | uint64_t Stride = std::abs(StrideAPtr); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1398 | const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); |
| 1399 | if (!C) { |
Dorit Nuzman | eac89d7 | 2017-02-12 09:32:53 +0000 | [diff] [blame] | 1400 | if (TypeByteSize == DL.getTypeAllocSize(BTy) && |
| 1401 | isSafeDependenceDistance(DL, *(PSE.getSE()), |
| 1402 | *(PSE.getBackedgeTakenCount()), *Dist, Stride, |
| 1403 | TypeByteSize)) |
| 1404 | return Dependence::NoDep; |
| 1405 | |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1406 | DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1407 | ShouldRetryWithRuntimeCheck = true; |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1408 | return Dependence::Unknown; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1409 | } |
| 1410 | |
Sanjoy Das | 0de2fec | 2015-12-17 20:28:46 +0000 | [diff] [blame] | 1411 | const APInt &Val = C->getAPInt(); |
Matthew Simpson | 6feebe9 | 2016-05-19 15:37:19 +0000 | [diff] [blame] | 1412 | int64_t Distance = Val.getSExtValue(); |
Matthew Simpson | 6feebe9 | 2016-05-19 15:37:19 +0000 | [diff] [blame] | 1413 | |
| 1414 | // Attempt to prove strided accesses independent. |
| 1415 | if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && |
| 1416 | areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { |
| 1417 | DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); |
| 1418 | return Dependence::NoDep; |
| 1419 | } |
| 1420 | |
| 1421 | // Negative distances are not plausible dependencies. |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1422 | if (Val.isNegative()) { |
| 1423 | bool IsTrueDataDependence = (AIsWrite && !BIsWrite); |
Matthew Simpson | 37ec5f9 | 2016-05-16 17:00:56 +0000 | [diff] [blame] | 1424 | if (IsTrueDataDependence && EnableForwardingConflictDetection && |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1425 | (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || |
Adam Nemet | b8486e5 | 2016-03-01 00:50:08 +0000 | [diff] [blame] | 1426 | ATy != BTy)) { |
| 1427 | DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1428 | return Dependence::ForwardButPreventsForwarding; |
Adam Nemet | b8486e5 | 2016-03-01 00:50:08 +0000 | [diff] [blame] | 1429 | } |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1430 | |
Adam Nemet | 724ab22 | 2016-05-05 23:41:28 +0000 | [diff] [blame] | 1431 | DEBUG(dbgs() << "LAA: Dependence is negative\n"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1432 | return Dependence::Forward; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1433 | } |
| 1434 | |
| 1435 | // Write to the same location with the same size. |
| 1436 | // Could be improved to assert type sizes are the same (i32 == float, etc). |
| 1437 | if (Val == 0) { |
| 1438 | if (ATy == BTy) |
Adam Nemet | d7037c5 | 2015-11-03 20:13:43 +0000 | [diff] [blame] | 1439 | return Dependence::Forward; |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1440 | DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1441 | return Dependence::Unknown; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1442 | } |
| 1443 | |
| 1444 | assert(Val.isStrictlyPositive() && "Expect a positive value"); |
| 1445 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1446 | if (ATy != BTy) { |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 1447 | DEBUG(dbgs() << |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1448 | "LAA: ReadWrite-Write positive dependency with different types\n"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1449 | return Dependence::Unknown; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1450 | } |
| 1451 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1452 | // Bail out early if passed-in parameters make vectorization not feasible. |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 1453 | unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? |
| 1454 | VectorizerParams::VectorizationFactor : 1); |
| 1455 | unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? |
| 1456 | VectorizerParams::VectorizationInterleave : 1); |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1457 | // The minimum number of iterations for a vectorized/unrolled version. |
| 1458 | unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1459 | |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1460 | // It's not vectorizable if the distance is smaller than the minimum distance |
| 1461 | // needed for a vectroized/unrolled version. Vectorizing one iteration in |
| 1462 | // front needs TypeByteSize * Stride. Vectorizing the last iteration needs |
| 1463 | // TypeByteSize (No need to plus the last gap distance). |
| 1464 | // |
| 1465 | // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. |
| 1466 | // foo(int *A) { |
| 1467 | // int *B = (int *)((char *)A + 14); |
| 1468 | // for (i = 0 ; i < 1024 ; i += 2) |
| 1469 | // B[i] = A[i] + 1; |
| 1470 | // } |
| 1471 | // |
| 1472 | // Two accesses in memory (stride is 2): |
| 1473 | // | A[0] | | A[2] | | A[4] | | A[6] | | |
| 1474 | // | B[0] | | B[2] | | B[4] | |
| 1475 | // |
| 1476 | // Distance needs for vectorizing iterations except the last iteration: |
| 1477 | // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. |
| 1478 | // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. |
| 1479 | // |
| 1480 | // If MinNumIter is 2, it is vectorizable as the minimum distance needed is |
| 1481 | // 12, which is less than distance. |
| 1482 | // |
| 1483 | // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), |
| 1484 | // the minimum distance needed is 28, which is greater than distance. It is |
| 1485 | // not safe to do vectorization. |
David Majnemer | 7afb46d | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1486 | uint64_t MinDistanceNeeded = |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1487 | TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; |
David Majnemer | 7afb46d | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1488 | if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1489 | DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance |
| 1490 | << '\n'); |
| 1491 | return Dependence::Backward; |
| 1492 | } |
| 1493 | |
| 1494 | // Unsafe if the minimum distance needed is greater than max safe distance. |
| 1495 | if (MinDistanceNeeded > MaxSafeDepDistBytes) { |
| 1496 | DEBUG(dbgs() << "LAA: Failure because it needs at least " |
| 1497 | << MinDistanceNeeded << " size in bytes"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1498 | return Dependence::Backward; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1499 | } |
| 1500 | |
Adam Nemet | 9cc0c39 | 2015-02-26 17:58:48 +0000 | [diff] [blame] | 1501 | // Positive distance bigger than max vectorization factor. |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1502 | // FIXME: Should use max factor instead of max distance in bytes, which could |
| 1503 | // not handle different types. |
| 1504 | // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. |
| 1505 | // void foo (int *A, char *B) { |
| 1506 | // for (unsigned i = 0; i < 1024; i++) { |
| 1507 | // A[i+2] = A[i] + 1; |
| 1508 | // B[i+2] = B[i] + 1; |
| 1509 | // } |
| 1510 | // } |
| 1511 | // |
| 1512 | // This case is currently unsafe according to the max safe distance. If we |
| 1513 | // analyze the two accesses on array B, the max safe dependence distance |
| 1514 | // is 2. Then we analyze the accesses on array A, the minimum distance needed |
| 1515 | // is 8, which is less than 2 and forbidden vectorization, But actually |
| 1516 | // both A and B could be vectorized by 2 iterations. |
| 1517 | MaxSafeDepDistBytes = |
David Majnemer | 7afb46d | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1518 | std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1519 | |
| 1520 | bool IsTrueDataDependence = (!AIsWrite && BIsWrite); |
Matthew Simpson | 37ec5f9 | 2016-05-16 17:00:56 +0000 | [diff] [blame] | 1521 | if (IsTrueDataDependence && EnableForwardingConflictDetection && |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1522 | couldPreventStoreLoadForward(Distance, TypeByteSize)) |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1523 | return Dependence::BackwardVectorizableButPreventsForwarding; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1524 | |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1525 | DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() |
| 1526 | << " with max VF = " |
| 1527 | << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1528 | |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1529 | return Dependence::BackwardVectorizable; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1530 | } |
| 1531 | |
Adam Nemet | dee666b | 2015-03-10 17:40:34 +0000 | [diff] [blame] | 1532 | bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1533 | MemAccessInfoSet &CheckDeps, |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 1534 | const ValueToValueMap &Strides) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1535 | |
David Majnemer | 7afb46d | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1536 | MaxSafeDepDistBytes = -1; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1537 | while (!CheckDeps.empty()) { |
| 1538 | MemAccessInfo CurAccess = *CheckDeps.begin(); |
| 1539 | |
| 1540 | // Get the relevant memory access set. |
| 1541 | EquivalenceClasses<MemAccessInfo>::iterator I = |
| 1542 | AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); |
| 1543 | |
| 1544 | // Check accesses within this set. |
Richard Trieu | 7a08381 | 2016-02-18 22:09:30 +0000 | [diff] [blame] | 1545 | EquivalenceClasses<MemAccessInfo>::member_iterator AI = |
| 1546 | AccessSets.member_begin(I); |
| 1547 | EquivalenceClasses<MemAccessInfo>::member_iterator AE = |
| 1548 | AccessSets.member_end(); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1549 | |
| 1550 | // Check every access pair. |
| 1551 | while (AI != AE) { |
| 1552 | CheckDeps.erase(*AI); |
| 1553 | EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); |
| 1554 | while (OI != AE) { |
| 1555 | // Check every accessing instruction pair in program order. |
| 1556 | for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), |
| 1557 | I1E = Accesses[*AI].end(); I1 != I1E; ++I1) |
| 1558 | for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), |
| 1559 | I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1560 | auto A = std::make_pair(&*AI, *I1); |
| 1561 | auto B = std::make_pair(&*OI, *I2); |
| 1562 | |
| 1563 | assert(*I1 != *I2); |
| 1564 | if (*I1 > *I2) |
| 1565 | std::swap(A, B); |
| 1566 | |
| 1567 | Dependence::DepType Type = |
| 1568 | isDependent(*A.first, A.second, *B.first, B.second, Strides); |
| 1569 | SafeForVectorization &= Dependence::isSafeForVectorization(Type); |
| 1570 | |
Adam Nemet | a2df750 | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 1571 | // Gather dependences unless we accumulated MaxDependences |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1572 | // dependences. In that case return as soon as we find the first |
| 1573 | // unsafe dependence. This puts a limit on this quadratic |
| 1574 | // algorithm. |
Adam Nemet | a2df750 | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 1575 | if (RecordDependences) { |
| 1576 | if (Type != Dependence::NoDep) |
| 1577 | Dependences.push_back(Dependence(A.second, B.second, Type)); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1578 | |
Adam Nemet | a2df750 | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 1579 | if (Dependences.size() >= MaxDependences) { |
| 1580 | RecordDependences = false; |
| 1581 | Dependences.clear(); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1582 | DEBUG(dbgs() << "Too many dependences, stopped recording\n"); |
| 1583 | } |
| 1584 | } |
Adam Nemet | a2df750 | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 1585 | if (!RecordDependences && !SafeForVectorization) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1586 | return false; |
| 1587 | } |
| 1588 | ++OI; |
| 1589 | } |
| 1590 | AI++; |
| 1591 | } |
| 1592 | } |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1593 | |
Adam Nemet | a2df750 | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 1594 | DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1595 | return SafeForVectorization; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1596 | } |
| 1597 | |
Adam Nemet | ec1e2bb | 2015-03-10 18:54:26 +0000 | [diff] [blame] | 1598 | SmallVector<Instruction *, 4> |
| 1599 | MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { |
| 1600 | MemAccessInfo Access(Ptr, isWrite); |
| 1601 | auto &IndexVector = Accesses.find(Access)->second; |
| 1602 | |
| 1603 | SmallVector<Instruction *, 4> Insts; |
David Majnemer | 2d006e7 | 2016-08-12 04:32:42 +0000 | [diff] [blame] | 1604 | transform(IndexVector, |
Adam Nemet | ec1e2bb | 2015-03-10 18:54:26 +0000 | [diff] [blame] | 1605 | std::back_inserter(Insts), |
| 1606 | [&](unsigned Idx) { return this->InstMap[Idx]; }); |
| 1607 | return Insts; |
| 1608 | } |
| 1609 | |
Adam Nemet | 58913d6 | 2015-03-10 17:40:43 +0000 | [diff] [blame] | 1610 | const char *MemoryDepChecker::Dependence::DepName[] = { |
| 1611 | "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", |
| 1612 | "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; |
| 1613 | |
| 1614 | void MemoryDepChecker::Dependence::print( |
| 1615 | raw_ostream &OS, unsigned Depth, |
| 1616 | const SmallVectorImpl<Instruction *> &Instrs) const { |
| 1617 | OS.indent(Depth) << DepName[Type] << ":\n"; |
| 1618 | OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; |
| 1619 | OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; |
| 1620 | } |
| 1621 | |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1622 | bool LoopAccessInfo::canAnalyzeLoop() { |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1623 | // We need to have a loop header. |
Adam Nemet | d8968f0 | 2016-01-18 21:16:33 +0000 | [diff] [blame] | 1624 | DEBUG(dbgs() << "LAA: Found a loop in " |
| 1625 | << TheLoop->getHeader()->getParent()->getName() << ": " |
| 1626 | << TheLoop->getHeader()->getName() << '\n'); |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1627 | |
Adam Nemet | d8968f0 | 2016-01-18 21:16:33 +0000 | [diff] [blame] | 1628 | // We can only analyze innermost loops. |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1629 | if (!TheLoop->empty()) { |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1630 | DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); |
Adam Nemet | 877ccee | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1631 | recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1632 | return false; |
| 1633 | } |
| 1634 | |
| 1635 | // We must have a single backedge. |
| 1636 | if (TheLoop->getNumBackEdges() != 1) { |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1637 | DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); |
Adam Nemet | 877ccee | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1638 | recordAnalysis("CFGNotUnderstood") |
| 1639 | << "loop control flow is not understood by analyzer"; |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1640 | return false; |
| 1641 | } |
| 1642 | |
| 1643 | // We must have a single exiting block. |
| 1644 | if (!TheLoop->getExitingBlock()) { |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1645 | DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); |
Adam Nemet | 877ccee | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1646 | recordAnalysis("CFGNotUnderstood") |
| 1647 | << "loop control flow is not understood by analyzer"; |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1648 | return false; |
| 1649 | } |
| 1650 | |
| 1651 | // We only handle bottom-tested loops, i.e. loop in which the condition is |
| 1652 | // checked at the end of each iteration. With that we can assume that all |
| 1653 | // instructions in the loop are executed the same number of times. |
| 1654 | if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1655 | DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); |
Adam Nemet | 877ccee | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1656 | recordAnalysis("CFGNotUnderstood") |
| 1657 | << "loop control flow is not understood by analyzer"; |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1658 | return false; |
| 1659 | } |
| 1660 | |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1661 | // ScalarEvolution needs to be able to find the exit count. |
Xinliang David Li | 94734ee | 2016-07-01 05:59:55 +0000 | [diff] [blame] | 1662 | const SCEV *ExitCount = PSE->getBackedgeTakenCount(); |
| 1663 | if (ExitCount == PSE->getSE()->getCouldNotCompute()) { |
Adam Nemet | 877ccee | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1664 | recordAnalysis("CantComputeNumberOfIterations") |
| 1665 | << "could not determine number of loop iterations"; |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1666 | DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); |
| 1667 | return false; |
| 1668 | } |
| 1669 | |
| 1670 | return true; |
| 1671 | } |
| 1672 | |
Adam Nemet | b49d9a5 | 2016-07-13 22:36:27 +0000 | [diff] [blame] | 1673 | void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, |
Adam Nemet | 7da74ab | 2016-07-13 22:36:35 +0000 | [diff] [blame] | 1674 | const TargetLibraryInfo *TLI, |
| 1675 | DominatorTree *DT) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1676 | typedef SmallPtrSet<Value*, 16> ValueSet; |
| 1677 | |
Matthew Simpson | e3e3b99 | 2016-06-06 14:15:41 +0000 | [diff] [blame] | 1678 | // Holds the Load and Store instructions. |
| 1679 | SmallVector<LoadInst *, 16> Loads; |
| 1680 | SmallVector<StoreInst *, 16> Stores; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1681 | |
| 1682 | // Holds all the different accesses in the loop. |
| 1683 | unsigned NumReads = 0; |
| 1684 | unsigned NumReadWrites = 0; |
| 1685 | |
Xinliang David Li | ce030ac | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 1686 | PtrRtChecking->Pointers.clear(); |
| 1687 | PtrRtChecking->Need = false; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1688 | |
| 1689 | const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1690 | |
| 1691 | // For each block. |
David Majnemer | 8b40101 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 1692 | for (BasicBlock *BB : TheLoop->blocks()) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1693 | // Scan the BB and collect legal loads and stores. |
David Majnemer | 8b40101 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 1694 | for (Instruction &I : *BB) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1695 | // If this is a load, save it. If this instruction can read from memory |
| 1696 | // but is not a load, then we quit. Notice that we don't handle function |
| 1697 | // calls that read or write. |
David Majnemer | 8b40101 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 1698 | if (I.mayReadFromMemory()) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1699 | // Many math library functions read the rounding mode. We will only |
| 1700 | // vectorize a loop if it contains known function calls that don't set |
| 1701 | // the flag. Therefore, it is safe to ignore this read from memory. |
David Majnemer | 8b40101 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 1702 | auto *Call = dyn_cast<CallInst>(&I); |
David Majnemer | b4b2723 | 2016-04-19 19:10:21 +0000 | [diff] [blame] | 1703 | if (Call && getVectorIntrinsicIDForCall(Call, TLI)) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1704 | continue; |
| 1705 | |
Michael Zolotukhin | 9b3cf60 | 2015-03-17 19:46:50 +0000 | [diff] [blame] | 1706 | // If the function has an explicit vectorized counterpart, we can safely |
| 1707 | // assume that it can be vectorized. |
| 1708 | if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && |
| 1709 | TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) |
| 1710 | continue; |
| 1711 | |
David Majnemer | 8b40101 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 1712 | auto *Ld = dyn_cast<LoadInst>(&I); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1713 | if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { |
Adam Nemet | 877ccee | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1714 | recordAnalysis("NonSimpleLoad", Ld) |
| 1715 | << "read with atomic ordering or volatile read"; |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1716 | DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1717 | CanVecMem = false; |
| 1718 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1719 | } |
| 1720 | NumLoads++; |
| 1721 | Loads.push_back(Ld); |
Xinliang David Li | ce030ac | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 1722 | DepChecker->addAccess(Ld); |
Adam Nemet | a9f09c6 | 2016-06-17 22:35:41 +0000 | [diff] [blame] | 1723 | if (EnableMemAccessVersioning) |
Adam Nemet | c953bb9 | 2016-06-16 22:57:55 +0000 | [diff] [blame] | 1724 | collectStridedAccess(Ld); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1725 | continue; |
| 1726 | } |
| 1727 | |
| 1728 | // Save 'store' instructions. Abort if other instructions write to memory. |
David Majnemer | 8b40101 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 1729 | if (I.mayWriteToMemory()) { |
| 1730 | auto *St = dyn_cast<StoreInst>(&I); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1731 | if (!St) { |
Adam Nemet | 877ccee | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1732 | recordAnalysis("CantVectorizeInstruction", St) |
| 1733 | << "instruction cannot be vectorized"; |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1734 | CanVecMem = false; |
| 1735 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1736 | } |
| 1737 | if (!St->isSimple() && !IsAnnotatedParallel) { |
Adam Nemet | 877ccee | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1738 | recordAnalysis("NonSimpleStore", St) |
| 1739 | << "write with atomic ordering or volatile write"; |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1740 | DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1741 | CanVecMem = false; |
| 1742 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1743 | } |
| 1744 | NumStores++; |
| 1745 | Stores.push_back(St); |
Xinliang David Li | ce030ac | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 1746 | DepChecker->addAccess(St); |
Adam Nemet | a9f09c6 | 2016-06-17 22:35:41 +0000 | [diff] [blame] | 1747 | if (EnableMemAccessVersioning) |
Adam Nemet | c953bb9 | 2016-06-16 22:57:55 +0000 | [diff] [blame] | 1748 | collectStridedAccess(St); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1749 | } |
| 1750 | } // Next instr. |
| 1751 | } // Next block. |
| 1752 | |
| 1753 | // Now we have two lists that hold the loads and the stores. |
| 1754 | // Next, we find the pointers that they use. |
| 1755 | |
| 1756 | // Check if we see any stores. If there are no stores, then we don't |
| 1757 | // care if the pointers are *restrict*. |
| 1758 | if (!Stores.size()) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1759 | DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1760 | CanVecMem = true; |
| 1761 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1762 | } |
| 1763 | |
Adam Nemet | dee666b | 2015-03-10 17:40:34 +0000 | [diff] [blame] | 1764 | MemoryDepChecker::DepCandidates DependentAccesses; |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 1765 | AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), |
Xinliang David Li | 94734ee | 2016-07-01 05:59:55 +0000 | [diff] [blame] | 1766 | AA, LI, DependentAccesses, *PSE); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1767 | |
| 1768 | // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects |
| 1769 | // multiple times on the same object. If the ptr is accessed twice, once |
| 1770 | // for read and once for write, it will only appear once (on the write |
| 1771 | // list). This is okay, since we are going to check for conflicts between |
| 1772 | // writes and between reads and writes, but not between reads and reads. |
| 1773 | ValueSet Seen; |
| 1774 | |
Matthew Simpson | e3e3b99 | 2016-06-06 14:15:41 +0000 | [diff] [blame] | 1775 | for (StoreInst *ST : Stores) { |
| 1776 | Value *Ptr = ST->getPointerOperand(); |
Adam Nemet | ce48250 | 2015-04-08 17:48:40 +0000 | [diff] [blame] | 1777 | // Check for store to loop invariant address. |
| 1778 | StoreToLoopInvariantAddress |= isUniform(Ptr); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1779 | // If we did *not* see this pointer before, insert it to the read-write |
| 1780 | // list. At this phase it is only a 'write' list. |
| 1781 | if (Seen.insert(Ptr).second) { |
| 1782 | ++NumReadWrites; |
| 1783 | |
Chandler Carruth | ac80dc7 | 2015-06-17 07:18:54 +0000 | [diff] [blame] | 1784 | MemoryLocation Loc = MemoryLocation::get(ST); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1785 | // The TBAA metadata could have a control dependency on the predication |
| 1786 | // condition, so we cannot rely on it when determining whether or not we |
| 1787 | // need runtime pointer checks. |
Adam Nemet | 01abb2c | 2015-02-18 03:43:19 +0000 | [diff] [blame] | 1788 | if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1789 | Loc.AATags.TBAA = nullptr; |
| 1790 | |
| 1791 | Accesses.addStore(Loc); |
| 1792 | } |
| 1793 | } |
| 1794 | |
| 1795 | if (IsAnnotatedParallel) { |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 1796 | DEBUG(dbgs() |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1797 | << "LAA: A loop annotated parallel, ignore memory dependency " |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 1798 | << "checks.\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1799 | CanVecMem = true; |
| 1800 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1801 | } |
| 1802 | |
Matthew Simpson | e3e3b99 | 2016-06-06 14:15:41 +0000 | [diff] [blame] | 1803 | for (LoadInst *LD : Loads) { |
| 1804 | Value *Ptr = LD->getPointerOperand(); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1805 | // If we did *not* see this pointer before, insert it to the |
| 1806 | // read list. If we *did* see it before, then it is already in |
| 1807 | // the read-write list. This allows us to vectorize expressions |
| 1808 | // such as A[i] += x; Because the address of A[i] is a read-write |
| 1809 | // pointer. This only works if the index of A[i] is consecutive. |
| 1810 | // If the address of i is unknown (for example A[B[i]]) then we may |
| 1811 | // read a few words, modify, and write a few words, and some of the |
| 1812 | // words may be written to the same address. |
| 1813 | bool IsReadOnlyPtr = false; |
Adam Nemet | 139ffba | 2016-06-16 08:27:03 +0000 | [diff] [blame] | 1814 | if (Seen.insert(Ptr).second || |
Xinliang David Li | 94734ee | 2016-07-01 05:59:55 +0000 | [diff] [blame] | 1815 | !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1816 | ++NumReads; |
| 1817 | IsReadOnlyPtr = true; |
| 1818 | } |
| 1819 | |
Chandler Carruth | ac80dc7 | 2015-06-17 07:18:54 +0000 | [diff] [blame] | 1820 | MemoryLocation Loc = MemoryLocation::get(LD); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1821 | // The TBAA metadata could have a control dependency on the predication |
| 1822 | // condition, so we cannot rely on it when determining whether or not we |
| 1823 | // need runtime pointer checks. |
Adam Nemet | 01abb2c | 2015-02-18 03:43:19 +0000 | [diff] [blame] | 1824 | if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1825 | Loc.AATags.TBAA = nullptr; |
| 1826 | |
| 1827 | Accesses.addLoad(Loc, IsReadOnlyPtr); |
| 1828 | } |
| 1829 | |
| 1830 | // If we write (or read-write) to a single destination and there are no |
| 1831 | // other reads in this loop then is it safe to vectorize. |
| 1832 | if (NumReadWrites == 1 && NumReads == 0) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1833 | DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1834 | CanVecMem = true; |
| 1835 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1836 | } |
| 1837 | |
| 1838 | // Build dependence sets and check whether we need a runtime pointer bounds |
| 1839 | // check. |
| 1840 | Accesses.buildDependenceSets(); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1841 | |
| 1842 | // Find pointers with computable bounds. We are going to use this information |
| 1843 | // to place a runtime bound check. |
Xinliang David Li | 94734ee | 2016-07-01 05:59:55 +0000 | [diff] [blame] | 1844 | bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), |
Adam Nemet | 139ffba | 2016-06-16 08:27:03 +0000 | [diff] [blame] | 1845 | TheLoop, SymbolicStrides); |
Adam Nemet | ee61474 | 2015-07-09 22:17:38 +0000 | [diff] [blame] | 1846 | if (!CanDoRTIfNeeded) { |
Adam Nemet | 877ccee | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1847 | recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; |
Adam Nemet | ee61474 | 2015-07-09 22:17:38 +0000 | [diff] [blame] | 1848 | DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " |
| 1849 | << "the array bounds.\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1850 | CanVecMem = false; |
| 1851 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1852 | } |
| 1853 | |
Adam Nemet | ee61474 | 2015-07-09 22:17:38 +0000 | [diff] [blame] | 1854 | DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1855 | |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1856 | CanVecMem = true; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1857 | if (Accesses.isDependencyCheckNeeded()) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1858 | DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); |
Xinliang David Li | ce030ac | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 1859 | CanVecMem = DepChecker->areDepsSafe( |
Adam Nemet | 139ffba | 2016-06-16 08:27:03 +0000 | [diff] [blame] | 1860 | DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); |
Xinliang David Li | ce030ac | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 1861 | MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1862 | |
Xinliang David Li | ce030ac | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 1863 | if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1864 | DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1865 | |
| 1866 | // Clear the dependency checks. We assume they are not needed. |
Xinliang David Li | ce030ac | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 1867 | Accesses.resetDepChecks(*DepChecker); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1868 | |
Xinliang David Li | ce030ac | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 1869 | PtrRtChecking->reset(); |
| 1870 | PtrRtChecking->Need = true; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1871 | |
Xinliang David Li | 94734ee | 2016-07-01 05:59:55 +0000 | [diff] [blame] | 1872 | auto *SE = PSE->getSE(); |
Xinliang David Li | ce030ac | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 1873 | CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, |
Adam Nemet | 139ffba | 2016-06-16 08:27:03 +0000 | [diff] [blame] | 1874 | SymbolicStrides, true); |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame] | 1875 | |
Adam Nemet | 949e91a | 2015-03-10 19:12:41 +0000 | [diff] [blame] | 1876 | // Check that we found the bounds for the pointer. |
Adam Nemet | ee61474 | 2015-07-09 22:17:38 +0000 | [diff] [blame] | 1877 | if (!CanDoRTIfNeeded) { |
Adam Nemet | 877ccee | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1878 | recordAnalysis("CantCheckMemDepsAtRunTime") |
| 1879 | << "cannot check memory dependencies at runtime"; |
Adam Nemet | b6dc76f | 2015-03-10 18:54:19 +0000 | [diff] [blame] | 1880 | DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); |
Adam Nemet | b6dc76f | 2015-03-10 18:54:19 +0000 | [diff] [blame] | 1881 | CanVecMem = false; |
| 1882 | return; |
| 1883 | } |
| 1884 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1885 | CanVecMem = true; |
| 1886 | } |
| 1887 | } |
| 1888 | |
Adam Nemet | 4bb90a7 | 2015-03-10 21:47:39 +0000 | [diff] [blame] | 1889 | if (CanVecMem) |
| 1890 | DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" |
Xinliang David Li | ce030ac | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 1891 | << (PtrRtChecking->Need ? "" : " don't") |
Adam Nemet | 0f67c6c | 2015-07-09 22:17:41 +0000 | [diff] [blame] | 1892 | << " need runtime memory checks.\n"); |
Adam Nemet | 4bb90a7 | 2015-03-10 21:47:39 +0000 | [diff] [blame] | 1893 | else { |
Adam Nemet | 877ccee | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1894 | recordAnalysis("UnsafeMemDep") |
Adam Nemet | 0a77dfa | 2016-05-09 23:03:44 +0000 | [diff] [blame] | 1895 | << "unsafe dependent memory operations in loop. Use " |
| 1896 | "#pragma loop distribute(enable) to allow loop distribution " |
| 1897 | "to attempt to isolate the offending operations into a separate " |
Adam Nemet | 877ccee | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1898 | "loop"; |
Adam Nemet | 4bb90a7 | 2015-03-10 21:47:39 +0000 | [diff] [blame] | 1899 | DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); |
| 1900 | } |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1901 | } |
| 1902 | |
Adam Nemet | 01abb2c | 2015-02-18 03:43:19 +0000 | [diff] [blame] | 1903 | bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, |
| 1904 | DominatorTree *DT) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1905 | assert(TheLoop->contains(BB) && "Unknown block used"); |
| 1906 | |
| 1907 | // Blocks that do not dominate the latch need predication. |
| 1908 | BasicBlock* Latch = TheLoop->getLoopLatch(); |
| 1909 | return !DT->dominates(BB, Latch); |
| 1910 | } |
| 1911 | |
Adam Nemet | 877ccee | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1912 | OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, |
| 1913 | Instruction *I) { |
Adam Nemet | c922853 | 2015-02-19 19:14:56 +0000 | [diff] [blame] | 1914 | assert(!Report && "Multiple reports generated"); |
Adam Nemet | 877ccee | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1915 | |
| 1916 | Value *CodeRegion = TheLoop->getHeader(); |
| 1917 | DebugLoc DL = TheLoop->getStartLoc(); |
| 1918 | |
| 1919 | if (I) { |
| 1920 | CodeRegion = I->getParent(); |
| 1921 | // If there is no debug location attached to the instruction, revert back to |
| 1922 | // using the loop's. |
| 1923 | if (I->getDebugLoc()) |
| 1924 | DL = I->getDebugLoc(); |
| 1925 | } |
| 1926 | |
| 1927 | Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, |
| 1928 | CodeRegion); |
| 1929 | return *Report; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1930 | } |
| 1931 | |
Adam Nemet | 57ac766 | 2015-02-19 19:15:21 +0000 | [diff] [blame] | 1932 | bool LoopAccessInfo::isUniform(Value *V) const { |
Michael Kuperstein | 3ceac2b | 2016-08-04 22:48:03 +0000 | [diff] [blame] | 1933 | auto *SE = PSE->getSE(); |
| 1934 | // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is |
| 1935 | // never considered uniform. |
| 1936 | // TODO: Is this really what we want? Even without FP SCEV, we may want some |
| 1937 | // trivially loop-invariant FP values to be considered uniform. |
| 1938 | if (!SE->isSCEVable(V->getType())) |
| 1939 | return false; |
| 1940 | return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1941 | } |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1942 | |
| 1943 | // FIXME: this function is currently a duplicate of the one in |
| 1944 | // LoopVectorize.cpp. |
| 1945 | static Instruction *getFirstInst(Instruction *FirstInst, Value *V, |
| 1946 | Instruction *Loc) { |
| 1947 | if (FirstInst) |
| 1948 | return FirstInst; |
| 1949 | if (Instruction *I = dyn_cast<Instruction>(V)) |
| 1950 | return I->getParent() == Loc->getParent() ? I : nullptr; |
| 1951 | return nullptr; |
| 1952 | } |
| 1953 | |
Benjamin Kramer | 039b104 | 2015-10-28 13:54:36 +0000 | [diff] [blame] | 1954 | namespace { |
Eugene Zelenko | a3fe70d | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 1955 | |
Adam Nemet | 4e533ef | 2015-08-21 23:19:57 +0000 | [diff] [blame] | 1956 | /// \brief IR Values for the lower and upper bounds of a pointer evolution. We |
| 1957 | /// need to use value-handles because SCEV expansion can invalidate previously |
| 1958 | /// expanded values. Thus expansion of a pointer can invalidate the bounds for |
| 1959 | /// a previous one. |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1960 | struct PointerBounds { |
Adam Nemet | 4e533ef | 2015-08-21 23:19:57 +0000 | [diff] [blame] | 1961 | TrackingVH<Value> Start; |
| 1962 | TrackingVH<Value> End; |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1963 | }; |
Eugene Zelenko | a3fe70d | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 1964 | |
Benjamin Kramer | 039b104 | 2015-10-28 13:54:36 +0000 | [diff] [blame] | 1965 | } // end anonymous namespace |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1966 | |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1967 | /// \brief Expand code for the lower and upper bound of the pointer group \p CG |
| 1968 | /// in \p TheLoop. \return the values for the bounds. |
| 1969 | static PointerBounds |
| 1970 | expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, |
| 1971 | Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, |
| 1972 | const RuntimePointerChecking &PtrRtChecking) { |
| 1973 | Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; |
| 1974 | const SCEV *Sc = SE->getSCEV(Ptr); |
| 1975 | |
Keno Fischer | 92f377b | 2016-12-05 21:25:03 +0000 | [diff] [blame] | 1976 | unsigned AS = Ptr->getType()->getPointerAddressSpace(); |
| 1977 | LLVMContext &Ctx = Loc->getContext(); |
| 1978 | |
| 1979 | // Use this type for pointer arithmetic. |
| 1980 | Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); |
| 1981 | |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1982 | if (SE->isLoopInvariant(Sc, TheLoop)) { |
| 1983 | DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr |
| 1984 | << "\n"); |
Keno Fischer | 92f377b | 2016-12-05 21:25:03 +0000 | [diff] [blame] | 1985 | // Ptr could be in the loop body. If so, expand a new one at the correct |
| 1986 | // location. |
| 1987 | Instruction *Inst = dyn_cast<Instruction>(Ptr); |
| 1988 | Value *NewPtr = (Inst && TheLoop->contains(Inst)) |
| 1989 | ? Exp.expandCodeFor(Sc, PtrArithTy, Loc) |
| 1990 | : Ptr; |
| 1991 | return {NewPtr, NewPtr}; |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1992 | } else { |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1993 | Value *Start = nullptr, *End = nullptr; |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1994 | DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); |
| 1995 | Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); |
| 1996 | End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); |
| 1997 | DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); |
| 1998 | return {Start, End}; |
| 1999 | } |
| 2000 | } |
| 2001 | |
| 2002 | /// \brief Turns a collection of checks into a collection of expanded upper and |
| 2003 | /// lower bounds for both pointers in the check. |
| 2004 | static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( |
| 2005 | const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, |
| 2006 | Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, |
| 2007 | const RuntimePointerChecking &PtrRtChecking) { |
| 2008 | SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; |
| 2009 | |
| 2010 | // Here we're relying on the SCEV Expander's cache to only emit code for the |
| 2011 | // same bounds once. |
David Majnemer | 2d006e7 | 2016-08-12 04:32:42 +0000 | [diff] [blame] | 2012 | transform( |
| 2013 | PointerChecks, std::back_inserter(ChecksWithBounds), |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2014 | [&](const RuntimePointerChecking::PointerCheck &Check) { |
NAKAMURA Takumi | 94abbbd | 2015-07-27 01:35:30 +0000 | [diff] [blame] | 2015 | PointerBounds |
| 2016 | First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), |
| 2017 | Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); |
| 2018 | return std::make_pair(First, Second); |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2019 | }); |
| 2020 | |
| 2021 | return ChecksWithBounds; |
| 2022 | } |
| 2023 | |
Adam Nemet | 5b0a479 | 2015-08-11 00:09:37 +0000 | [diff] [blame] | 2024 | std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2025 | Instruction *Loc, |
| 2026 | const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) |
| 2027 | const { |
Adam Nemet | 1824e41 | 2016-07-13 22:18:51 +0000 | [diff] [blame] | 2028 | const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); |
Xinliang David Li | 94734ee | 2016-07-01 05:59:55 +0000 | [diff] [blame] | 2029 | auto *SE = PSE->getSE(); |
Adam Nemet | 1824e41 | 2016-07-13 22:18:51 +0000 | [diff] [blame] | 2030 | SCEVExpander Exp(*SE, DL, "induction"); |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2031 | auto ExpandedChecks = |
Xinliang David Li | ce030ac | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 2032 | expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2033 | |
| 2034 | LLVMContext &Ctx = Loc->getContext(); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2035 | Instruction *FirstInst = nullptr; |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2036 | IRBuilder<> ChkBuilder(Loc); |
| 2037 | // Our instructions might fold to a constant. |
| 2038 | Value *MemoryRuntimeCheck = nullptr; |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 2039 | |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2040 | for (const auto &Check : ExpandedChecks) { |
| 2041 | const PointerBounds &A = Check.first, &B = Check.second; |
Adam Nemet | cdb791c | 2015-08-19 17:24:36 +0000 | [diff] [blame] | 2042 | // Check if two pointers (A and B) conflict where conflict is computed as: |
| 2043 | // start(A) <= end(B) && start(B) <= end(A) |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2044 | unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); |
| 2045 | unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2046 | |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2047 | assert((AS0 == B.End->getType()->getPointerAddressSpace()) && |
| 2048 | (AS1 == A.End->getType()->getPointerAddressSpace()) && |
| 2049 | "Trying to bounds check pointers with different address spaces"); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2050 | |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2051 | Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); |
| 2052 | Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2053 | |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2054 | Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); |
| 2055 | Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); |
| 2056 | Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); |
| 2057 | Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2058 | |
Elena Demikhovsky | 3622fbf | 2016-08-28 08:53:53 +0000 | [diff] [blame] | 2059 | // [A|B].Start points to the first accessed byte under base [A|B]. |
| 2060 | // [A|B].End points to the last accessed byte, plus one. |
| 2061 | // There is no conflict when the intervals are disjoint: |
| 2062 | // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) |
| 2063 | // |
| 2064 | // bound0 = (B.Start < A.End) |
| 2065 | // bound1 = (A.Start < B.End) |
| 2066 | // IsConflict = bound0 & bound1 |
| 2067 | Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2068 | FirstInst = getFirstInst(FirstInst, Cmp0, Loc); |
Elena Demikhovsky | 3622fbf | 2016-08-28 08:53:53 +0000 | [diff] [blame] | 2069 | Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2070 | FirstInst = getFirstInst(FirstInst, Cmp1, Loc); |
| 2071 | Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); |
| 2072 | FirstInst = getFirstInst(FirstInst, IsConflict, Loc); |
| 2073 | if (MemoryRuntimeCheck) { |
| 2074 | IsConflict = |
| 2075 | ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2076 | FirstInst = getFirstInst(FirstInst, IsConflict, Loc); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2077 | } |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2078 | MemoryRuntimeCheck = IsConflict; |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2079 | } |
| 2080 | |
Adam Nemet | 90fec84 | 2015-04-02 17:51:57 +0000 | [diff] [blame] | 2081 | if (!MemoryRuntimeCheck) |
| 2082 | return std::make_pair(nullptr, nullptr); |
| 2083 | |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2084 | // We have to do this trickery because the IRBuilder might fold the check to a |
| 2085 | // constant expression in which case there is no Instruction anchored in a |
| 2086 | // the block. |
| 2087 | Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, |
| 2088 | ConstantInt::getTrue(Ctx)); |
| 2089 | ChkBuilder.Insert(Check, "memcheck.conflict"); |
| 2090 | FirstInst = getFirstInst(FirstInst, Check, Loc); |
| 2091 | return std::make_pair(FirstInst, Check); |
| 2092 | } |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2093 | |
Adam Nemet | 5b0a479 | 2015-08-11 00:09:37 +0000 | [diff] [blame] | 2094 | std::pair<Instruction *, Instruction *> |
| 2095 | LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { |
Xinliang David Li | ce030ac | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 2096 | if (!PtrRtChecking->Need) |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2097 | return std::make_pair(nullptr, nullptr); |
| 2098 | |
Xinliang David Li | ce030ac | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 2099 | return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2100 | } |
| 2101 | |
Adam Nemet | c953bb9 | 2016-06-16 22:57:55 +0000 | [diff] [blame] | 2102 | void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { |
| 2103 | Value *Ptr = nullptr; |
| 2104 | if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) |
| 2105 | Ptr = LI->getPointerOperand(); |
| 2106 | else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) |
| 2107 | Ptr = SI->getPointerOperand(); |
| 2108 | else |
| 2109 | return; |
| 2110 | |
Xinliang David Li | 94734ee | 2016-07-01 05:59:55 +0000 | [diff] [blame] | 2111 | Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); |
Adam Nemet | c953bb9 | 2016-06-16 22:57:55 +0000 | [diff] [blame] | 2112 | if (!Stride) |
| 2113 | return; |
| 2114 | |
| 2115 | DEBUG(dbgs() << "LAA: Found a strided access that we can version"); |
| 2116 | DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); |
| 2117 | SymbolicStrides[Ptr] = Stride; |
| 2118 | StrideSet.insert(Stride); |
| 2119 | } |
| 2120 | |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2121 | LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2122 | const TargetLibraryInfo *TLI, AliasAnalysis *AA, |
Adam Nemet | a9f09c6 | 2016-06-17 22:35:41 +0000 | [diff] [blame] | 2123 | DominatorTree *DT, LoopInfo *LI) |
Xinliang David Li | 94734ee | 2016-07-01 05:59:55 +0000 | [diff] [blame] | 2124 | : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)), |
Xinliang David Li | ce030ac | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 2125 | PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)), |
Xinliang David Li | 94734ee | 2016-07-01 05:59:55 +0000 | [diff] [blame] | 2126 | DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), |
Adam Nemet | 7da74ab | 2016-07-13 22:36:35 +0000 | [diff] [blame] | 2127 | NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), |
| 2128 | StoreToLoopInvariantAddress(false) { |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 2129 | if (canAnalyzeLoop()) |
Adam Nemet | 7da74ab | 2016-07-13 22:36:35 +0000 | [diff] [blame] | 2130 | analyzeLoop(AA, LI, TLI, DT); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2131 | } |
| 2132 | |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 2133 | void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { |
| 2134 | if (CanVecMem) { |
Adam Nemet | 4ad38b6 | 2016-05-13 22:49:09 +0000 | [diff] [blame] | 2135 | OS.indent(Depth) << "Memory dependences are safe"; |
David Majnemer | 7afb46d | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 2136 | if (MaxSafeDepDistBytes != -1ULL) |
Adam Nemet | c62e554 | 2016-05-13 22:49:13 +0000 | [diff] [blame] | 2137 | OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes |
| 2138 | << " bytes"; |
Xinliang David Li | ce030ac | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 2139 | if (PtrRtChecking->Need) |
Adam Nemet | 4ad38b6 | 2016-05-13 22:49:09 +0000 | [diff] [blame] | 2140 | OS << " with run-time checks"; |
| 2141 | OS << "\n"; |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 2142 | } |
| 2143 | |
| 2144 | if (Report) |
Adam Nemet | 877ccee | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 2145 | OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 2146 | |
Xinliang David Li | ce030ac | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 2147 | if (auto *Dependences = DepChecker->getDependences()) { |
Adam Nemet | a2df750 | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 2148 | OS.indent(Depth) << "Dependences:\n"; |
| 2149 | for (auto &Dep : *Dependences) { |
Xinliang David Li | ce030ac | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 2150 | Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); |
Adam Nemet | 58913d6 | 2015-03-10 17:40:43 +0000 | [diff] [blame] | 2151 | OS << "\n"; |
| 2152 | } |
| 2153 | } else |
Adam Nemet | a2df750 | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 2154 | OS.indent(Depth) << "Too many dependences, not recorded\n"; |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 2155 | |
| 2156 | // List the pair of accesses need run-time checks to prove independence. |
Xinliang David Li | ce030ac | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 2157 | PtrRtChecking->print(OS, Depth); |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 2158 | OS << "\n"; |
Adam Nemet | c338432 | 2015-05-18 15:36:57 +0000 | [diff] [blame] | 2159 | |
| 2160 | OS.indent(Depth) << "Store to invariant address was " |
| 2161 | << (StoreToLoopInvariantAddress ? "" : "not ") |
| 2162 | << "found in loop.\n"; |
Silviu Baranga | e3c0534 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 2163 | |
| 2164 | OS.indent(Depth) << "SCEV assumptions:\n"; |
Xinliang David Li | 94734ee | 2016-07-01 05:59:55 +0000 | [diff] [blame] | 2165 | PSE->getUnionPredicate().print(OS, Depth); |
Silviu Baranga | b77365b | 2016-04-14 16:08:45 +0000 | [diff] [blame] | 2166 | |
| 2167 | OS << "\n"; |
| 2168 | |
| 2169 | OS.indent(Depth) << "Expressions re-written:\n"; |
Xinliang David Li | 94734ee | 2016-07-01 05:59:55 +0000 | [diff] [blame] | 2170 | PSE->print(OS, Depth); |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 2171 | } |
| 2172 | |
Xinliang David Li | 7853c1d | 2016-07-08 20:55:26 +0000 | [diff] [blame] | 2173 | const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2174 | auto &LAI = LoopAccessInfoMap[L]; |
| 2175 | |
Adam Nemet | 1824e41 | 2016-07-13 22:18:51 +0000 | [diff] [blame] | 2176 | if (!LAI) |
| 2177 | LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); |
| 2178 | |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2179 | return *LAI.get(); |
| 2180 | } |
| 2181 | |
Xinliang David Li | 7853c1d | 2016-07-08 20:55:26 +0000 | [diff] [blame] | 2182 | void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { |
| 2183 | LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); |
Xinliang David Li | ecde1c7 | 2016-06-09 03:22:39 +0000 | [diff] [blame] | 2184 | |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 2185 | for (Loop *TopLevelLoop : *LI) |
| 2186 | for (Loop *L : depth_first(TopLevelLoop)) { |
| 2187 | OS.indent(2) << L->getHeader()->getName() << ":\n"; |
Adam Nemet | bdbc522 | 2016-06-16 08:26:56 +0000 | [diff] [blame] | 2188 | auto &LAI = LAA.getInfo(L); |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 2189 | LAI.print(OS, 4); |
| 2190 | } |
| 2191 | } |
| 2192 | |
Xinliang David Li | 7853c1d | 2016-07-08 20:55:26 +0000 | [diff] [blame] | 2193 | bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { |
Xinliang David Li | ecde1c7 | 2016-06-09 03:22:39 +0000 | [diff] [blame] | 2194 | SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2195 | auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); |
Xinliang David Li | ecde1c7 | 2016-06-09 03:22:39 +0000 | [diff] [blame] | 2196 | TLI = TLIP ? &TLIP->getTLI() : nullptr; |
| 2197 | AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| 2198 | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 2199 | LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2200 | |
| 2201 | return false; |
| 2202 | } |
| 2203 | |
Xinliang David Li | 7853c1d | 2016-07-08 20:55:26 +0000 | [diff] [blame] | 2204 | void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { |
Chandler Carruth | 2f1fd16 | 2015-08-17 02:08:17 +0000 | [diff] [blame] | 2205 | AU.addRequired<ScalarEvolutionWrapperPass>(); |
Chandler Carruth | 7b560d4 | 2015-09-09 17:55:00 +0000 | [diff] [blame] | 2206 | AU.addRequired<AAResultsWrapperPass>(); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2207 | AU.addRequired<DominatorTreeWrapperPass>(); |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 2208 | AU.addRequired<LoopInfoWrapperPass>(); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2209 | |
| 2210 | AU.setPreservesAll(); |
| 2211 | } |
| 2212 | |
Xinliang David Li | 7853c1d | 2016-07-08 20:55:26 +0000 | [diff] [blame] | 2213 | char LoopAccessLegacyAnalysis::ID = 0; |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2214 | static const char laa_name[] = "Loop Access Analysis"; |
| 2215 | #define LAA_NAME "loop-accesses" |
| 2216 | |
Xinliang David Li | 7853c1d | 2016-07-08 20:55:26 +0000 | [diff] [blame] | 2217 | INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) |
Chandler Carruth | 7b560d4 | 2015-09-09 17:55:00 +0000 | [diff] [blame] | 2218 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
Chandler Carruth | 2f1fd16 | 2015-08-17 02:08:17 +0000 | [diff] [blame] | 2219 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2220 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 2221 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
Xinliang David Li | 7853c1d | 2016-07-08 20:55:26 +0000 | [diff] [blame] | 2222 | INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2223 | |
Chandler Carruth | dab4eae | 2016-11-23 17:53:26 +0000 | [diff] [blame] | 2224 | AnalysisKey LoopAccessAnalysis::Key; |
Xinliang David Li | 8a02131 | 2016-07-02 21:18:40 +0000 | [diff] [blame] | 2225 | |
Chandler Carruth | 410eaeb | 2017-01-11 06:23:21 +0000 | [diff] [blame] | 2226 | LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, |
| 2227 | LoopStandardAnalysisResults &AR) { |
| 2228 | return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); |
Xinliang David Li | 8a02131 | 2016-07-02 21:18:40 +0000 | [diff] [blame] | 2229 | } |
| 2230 | |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2231 | namespace llvm { |
Eugene Zelenko | a3fe70d | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 2232 | |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2233 | Pass *createLAAPass() { |
Xinliang David Li | 7853c1d | 2016-07-08 20:55:26 +0000 | [diff] [blame] | 2234 | return new LoopAccessLegacyAnalysis(); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2235 | } |
Eugene Zelenko | a3fe70d | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 2236 | |
| 2237 | } // end namespace llvm |