blob: 07335cbdfbfa31f767fa3ee19d2c27e48357a838 [file] [log] [blame]
Adam Nemet04563272015-02-01 16:56:15 +00001//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The implementation for the loop memory dependence that was originally
11// developed for the loop vectorizer.
12//
13//===----------------------------------------------------------------------===//
14
Chandler Carruth3bab7e12017-01-11 09:43:56 +000015#include "llvm/Analysis/LoopAccessAnalysis.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000016#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/EquivalenceClasses.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000020#include "llvm/ADT/PointerIntPair.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000021#include "llvm/ADT/STLExtras.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000022#include "llvm/ADT/SetVector.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/SmallSet.h"
25#include "llvm/ADT/SmallVector.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000026#include "llvm/ADT/iterator_range.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000027#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Analysis/AliasSetTracker.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000029#include "llvm/Analysis/LoopAnalysisManager.h"
Adam Nemet04563272015-02-01 16:56:15 +000030#include "llvm/Analysis/LoopInfo.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000031#include "llvm/Analysis/MemoryLocation.h"
Adam Nemet5b3a5cf2016-07-20 21:44:26 +000032#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000033#include "llvm/Analysis/ScalarEvolution.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000034#include "llvm/Analysis/ScalarEvolutionExpander.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000035#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000036#include "llvm/Analysis/TargetLibraryInfo.h"
Adam Nemet04563272015-02-01 16:56:15 +000037#include "llvm/Analysis/ValueTracking.h"
Adam Nemetf45594c2016-07-01 00:09:02 +000038#include "llvm/Analysis/VectorUtils.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000039#include "llvm/IR/BasicBlock.h"
40#include "llvm/IR/Constants.h"
41#include "llvm/IR/DataLayout.h"
42#include "llvm/IR/DebugLoc.h"
43#include "llvm/IR/DerivedTypes.h"
44#include "llvm/IR/DiagnosticInfo.h"
Adam Nemet04563272015-02-01 16:56:15 +000045#include "llvm/IR/Dominators.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000046#include "llvm/IR/Function.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000047#include "llvm/IR/IRBuilder.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000048#include "llvm/IR/InstrTypes.h"
49#include "llvm/IR/Instruction.h"
50#include "llvm/IR/Instructions.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000051#include "llvm/IR/Operator.h"
Xinliang David Li8a021312016-07-02 21:18:40 +000052#include "llvm/IR/PassManager.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000053#include "llvm/IR/Type.h"
54#include "llvm/IR/Value.h"
55#include "llvm/IR/ValueHandle.h"
56#include "llvm/Pass.h"
57#include "llvm/Support/Casting.h"
58#include "llvm/Support/CommandLine.h"
Adam Nemet04563272015-02-01 16:56:15 +000059#include "llvm/Support/Debug.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000060#include "llvm/Support/ErrorHandling.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000061#include "llvm/Support/raw_ostream.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000062#include <algorithm>
63#include <cassert>
64#include <cstdint>
65#include <cstdlib>
66#include <iterator>
67#include <utility>
68#include <vector>
69
Adam Nemet04563272015-02-01 16:56:15 +000070using namespace llvm;
71
Adam Nemet339f42b2015-02-19 19:15:07 +000072#define DEBUG_TYPE "loop-accesses"
Adam Nemet04563272015-02-01 16:56:15 +000073
Adam Nemetf219c642015-02-19 19:14:52 +000074static cl::opt<unsigned, true>
75VectorizationFactor("force-vector-width", cl::Hidden,
76 cl::desc("Sets the SIMD width. Zero is autoselect."),
77 cl::location(VectorizerParams::VectorizationFactor));
Adam Nemet1d862af2015-02-26 04:39:09 +000078unsigned VectorizerParams::VectorizationFactor;
Adam Nemetf219c642015-02-19 19:14:52 +000079
80static cl::opt<unsigned, true>
81VectorizationInterleave("force-vector-interleave", cl::Hidden,
82 cl::desc("Sets the vectorization interleave count. "
83 "Zero is autoselect."),
84 cl::location(
85 VectorizerParams::VectorizationInterleave));
Adam Nemet1d862af2015-02-26 04:39:09 +000086unsigned VectorizerParams::VectorizationInterleave;
Adam Nemetf219c642015-02-19 19:14:52 +000087
Adam Nemet1d862af2015-02-26 04:39:09 +000088static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
89 "runtime-memory-check-threshold", cl::Hidden,
90 cl::desc("When performing memory disambiguation checks at runtime do not "
91 "generate more than this number of comparisons (default = 8)."),
92 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
93unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
Adam Nemetf219c642015-02-19 19:14:52 +000094
Silviu Baranga1b6b50a2015-07-08 09:16:33 +000095/// \brief The maximum iterations used to merge memory checks
96static cl::opt<unsigned> MemoryCheckMergeThreshold(
97 "memory-check-merge-threshold", cl::Hidden,
98 cl::desc("Maximum number of comparisons done when trying to merge "
99 "runtime memory checks. (default = 100)"),
100 cl::init(100));
101
Adam Nemetf219c642015-02-19 19:14:52 +0000102/// Maximum SIMD width.
103const unsigned VectorizerParams::MaxVectorWidth = 64;
104
Adam Nemeta2df7502015-11-03 21:39:52 +0000105/// \brief We collect dependences up to this threshold.
106static cl::opt<unsigned>
107 MaxDependences("max-dependences", cl::Hidden,
108 cl::desc("Maximum number of dependences collected by "
109 "loop-access analysis (default = 100)"),
110 cl::init(100));
Adam Nemet9c926572015-03-10 17:40:37 +0000111
Adam Nemeta9f09c62016-06-17 22:35:41 +0000112/// This enables versioning on the strides of symbolically striding memory
113/// accesses in code like the following.
114/// for (i = 0; i < N; ++i)
115/// A[i * Stride1] += B[i * Stride2] ...
116///
117/// Will be roughly translated to
118/// if (Stride1 == 1 && Stride2 == 1) {
119/// for (i = 0; i < N; i+=4)
120/// A[i:i+3] += ...
121/// } else
122/// ...
123static cl::opt<bool> EnableMemAccessVersioning(
124 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
125 cl::desc("Enable symbolic stride memory access versioning"));
126
Matthew Simpson37ec5f92016-05-16 17:00:56 +0000127/// \brief Enable store-to-load forwarding conflict detection. This option can
128/// be disabled for correctness testing.
129static cl::opt<bool> EnableForwardingConflictDetection(
130 "store-to-load-forwarding-conflict-detection", cl::Hidden,
Matthew Simpsona250dc92016-05-16 14:14:49 +0000131 cl::desc("Enable conflict detection in loop-access analysis"),
132 cl::init(true));
133
Adam Nemetf219c642015-02-19 19:14:52 +0000134bool VectorizerParams::isInterleaveForced() {
135 return ::VectorizationInterleave.getNumOccurrences() > 0;
136}
137
Adam Nemet2bd6e982015-02-19 19:15:15 +0000138void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
Adam Nemet5b3a5cf2016-07-20 21:44:26 +0000139 const Loop *TheLoop, const char *PassName,
140 OptimizationRemarkEmitter &ORE) {
Adam Nemet04563272015-02-01 16:56:15 +0000141 DebugLoc DL = TheLoop->getStartLoc();
Adam Nemet5b3a5cf2016-07-20 21:44:26 +0000142 const Value *V = TheLoop->getHeader();
143 if (const Instruction *I = Message.getInstr()) {
Adam Nemete3cef932016-09-21 03:14:20 +0000144 // If there is no debug location attached to the instruction, revert back to
145 // using the loop's.
146 if (I->getDebugLoc())
147 DL = I->getDebugLoc();
Adam Nemet5b3a5cf2016-07-20 21:44:26 +0000148 V = I->getParent();
149 }
150 ORE.emitOptimizationRemarkAnalysis(PassName, DL, V, Message.str());
Adam Nemet04563272015-02-01 16:56:15 +0000151}
152
153Value *llvm::stripIntegerCast(Value *V) {
David Majnemer8b401012016-07-12 20:31:46 +0000154 if (auto *CI = dyn_cast<CastInst>(V))
Adam Nemet04563272015-02-01 16:56:15 +0000155 if (CI->getOperand(0)->getType()->isIntegerTy())
156 return CI->getOperand(0);
157 return V;
158}
159
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000160const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
Adam Nemet8bc61df2015-02-24 00:41:59 +0000161 const ValueToValueMap &PtrToStride,
Adam Nemet04563272015-02-01 16:56:15 +0000162 Value *Ptr, Value *OrigPtr) {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000163 const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000164
165 // If there is an entry in the map return the SCEV of the pointer with the
166 // symbolic stride replaced by one.
Adam Nemet8bc61df2015-02-24 00:41:59 +0000167 ValueToValueMap::const_iterator SI =
168 PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000169 if (SI != PtrToStride.end()) {
170 Value *StrideVal = SI->second;
171
172 // Strip casts.
173 StrideVal = stripIntegerCast(StrideVal);
174
175 // Replace symbolic stride by one.
176 Value *One = ConstantInt::get(StrideVal->getType(), 1);
177 ValueToValueMap RewriteMap;
178 RewriteMap[StrideVal] = One;
179
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000180 ScalarEvolution *SE = PSE.getSE();
Silviu Barangae3c05342015-11-02 14:41:02 +0000181 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
182 const auto *CT =
183 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
184
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000185 PSE.addPredicate(*SE->getEqualPredicate(U, CT));
186 auto *Expr = PSE.getSCEV(Ptr);
Silviu Barangae3c05342015-11-02 14:41:02 +0000187
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000188 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
Adam Nemet04563272015-02-01 16:56:15 +0000189 << "\n");
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000190 return Expr;
Adam Nemet04563272015-02-01 16:56:15 +0000191 }
192
193 // Otherwise, just return the SCEV of the original pointer.
Silviu Barangae3c05342015-11-02 14:41:02 +0000194 return OrigSCEV;
Adam Nemet04563272015-02-01 16:56:15 +0000195}
196
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000197/// Calculate Start and End points of memory access.
198/// Let's assume A is the first access and B is a memory access on N-th loop
199/// iteration. Then B is calculated as:
200/// B = A + Step*N .
201/// Step value may be positive or negative.
202/// N is a calculated back-edge taken count:
203/// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
204/// Start and End points are calculated in the following way:
205/// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
206/// where SizeOfElt is the size of single memory access in bytes.
207///
208/// There is no conflict when the intervals are disjoint:
209/// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
Adam Nemet7cdebac2015-07-14 22:32:44 +0000210void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
211 unsigned DepSetId, unsigned ASId,
Silviu Barangae3c05342015-11-02 14:41:02 +0000212 const ValueToValueMap &Strides,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000213 PredicatedScalarEvolution &PSE) {
Adam Nemet04563272015-02-01 16:56:15 +0000214 // Get the stride replaced scev.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000215 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000216 ScalarEvolution *SE = PSE.getSE();
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000217
Adam Nemet279784f2016-03-24 04:28:47 +0000218 const SCEV *ScStart;
219 const SCEV *ScEnd;
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000220
Adam Nemet59a65502016-03-24 05:15:24 +0000221 if (SE->isLoopInvariant(Sc, Lp))
Adam Nemet279784f2016-03-24 04:28:47 +0000222 ScStart = ScEnd = Sc;
Adam Nemet279784f2016-03-24 04:28:47 +0000223 else {
224 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
225 assert(AR && "Invalid addrec expression");
Silviu Baranga6f444df2016-04-08 14:29:09 +0000226 const SCEV *Ex = PSE.getBackedgeTakenCount();
Adam Nemet279784f2016-03-24 04:28:47 +0000227
228 ScStart = AR->getStart();
229 ScEnd = AR->evaluateAtIteration(Ex, *SE);
230 const SCEV *Step = AR->getStepRecurrence(*SE);
231
232 // For expressions with negative step, the upper bound is ScStart and the
233 // lower bound is ScEnd.
David Majnemer8b401012016-07-12 20:31:46 +0000234 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
Adam Nemet279784f2016-03-24 04:28:47 +0000235 if (CStep->getValue()->isNegative())
236 std::swap(ScStart, ScEnd);
237 } else {
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000238 // Fallback case: the step is not constant, but we can still
Adam Nemet279784f2016-03-24 04:28:47 +0000239 // get the upper and lower bounds of the interval by using min/max
240 // expressions.
241 ScStart = SE->getUMinExpr(ScStart, ScEnd);
242 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
243 }
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000244 // Add the size of the pointed element to ScEnd.
245 unsigned EltSize =
246 Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8;
247 const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize);
248 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000249 }
250
251 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000252}
253
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000254SmallVector<RuntimePointerChecking::PointerCheck, 4>
Adam Nemet38530882015-08-09 20:06:06 +0000255RuntimePointerChecking::generateChecks() const {
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000256 SmallVector<PointerCheck, 4> Checks;
257
Adam Nemet7c52e052015-07-27 19:38:50 +0000258 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
259 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
260 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
261 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000262
Adam Nemet38530882015-08-09 20:06:06 +0000263 if (needsChecking(CGI, CGJ))
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000264 Checks.push_back(std::make_pair(&CGI, &CGJ));
265 }
266 }
267 return Checks;
268}
269
Adam Nemet15840392015-08-07 22:44:15 +0000270void RuntimePointerChecking::generateChecks(
271 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
272 assert(Checks.empty() && "Checks is not empty");
273 groupChecks(DepCands, UseDependencies);
274 Checks = generateChecks();
275}
276
Adam Nemet651a5a22015-08-09 20:06:08 +0000277bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
278 const CheckingPtrGroup &N) const {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000279 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
280 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
Adam Nemet651a5a22015-08-09 20:06:08 +0000281 if (needsChecking(M.Members[I], N.Members[J]))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000282 return true;
283 return false;
284}
285
286/// Compare \p I and \p J and return the minimum.
287/// Return nullptr in case we couldn't find an answer.
288static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
289 ScalarEvolution *SE) {
290 const SCEV *Diff = SE->getMinusSCEV(J, I);
291 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
292
293 if (!C)
294 return nullptr;
295 if (C->getValue()->isNegative())
296 return J;
297 return I;
298}
299
Adam Nemet7cdebac2015-07-14 22:32:44 +0000300bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000301 const SCEV *Start = RtCheck.Pointers[Index].Start;
302 const SCEV *End = RtCheck.Pointers[Index].End;
303
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000304 // Compare the starts and ends with the known minimum and maximum
305 // of this set. We need to know how we compare against the min/max
306 // of the set in order to be able to emit memchecks.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000307 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000308 if (!Min0)
309 return false;
310
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000311 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000312 if (!Min1)
313 return false;
314
315 // Update the low bound expression if we've found a new min value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000316 if (Min0 == Start)
317 Low = Start;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000318
319 // Update the high bound expression if we've found a new max value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000320 if (Min1 != End)
321 High = End;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000322
323 Members.push_back(Index);
324 return true;
325}
326
Adam Nemet7cdebac2015-07-14 22:32:44 +0000327void RuntimePointerChecking::groupChecks(
328 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000329 // We build the groups from dependency candidates equivalence classes
330 // because:
331 // - We know that pointers in the same equivalence class share
332 // the same underlying object and therefore there is a chance
333 // that we can compare pointers
334 // - We wouldn't be able to merge two pointers for which we need
335 // to emit a memcheck. The classes in DepCands are already
336 // conveniently built such that no two pointers in the same
337 // class need checking against each other.
338
339 // We use the following (greedy) algorithm to construct the groups
340 // For every pointer in the equivalence class:
341 // For each existing group:
342 // - if the difference between this pointer and the min/max bounds
343 // of the group is a constant, then make the pointer part of the
344 // group and update the min/max bounds of that group as required.
345
346 CheckingGroups.clear();
347
Silviu Baranga48250602015-07-28 13:44:08 +0000348 // If we need to check two pointers to the same underlying object
349 // with a non-constant difference, we shouldn't perform any pointer
350 // grouping with those pointers. This is because we can easily get
351 // into cases where the resulting check would return false, even when
352 // the accesses are safe.
353 //
354 // The following example shows this:
355 // for (i = 0; i < 1000; ++i)
356 // a[5000 + i * m] = a[i] + a[i + 9000]
357 //
358 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
359 // (0, 10000) which is always false. However, if m is 1, there is no
360 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
361 // us to perform an accurate check in this case.
362 //
363 // The above case requires that we have an UnknownDependence between
364 // accesses to the same underlying object. This cannot happen unless
365 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
366 // is also false. In this case we will use the fallback path and create
367 // separate checking groups for all pointers.
Mehdi Aminiafd13512015-11-05 05:49:43 +0000368
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000369 // If we don't have the dependency partitions, construct a new
Silviu Baranga48250602015-07-28 13:44:08 +0000370 // checking pointer group for each pointer. This is also required
371 // for correctness, because in this case we can have checking between
372 // pointers to the same underlying object.
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000373 if (!UseDependencies) {
374 for (unsigned I = 0; I < Pointers.size(); ++I)
375 CheckingGroups.push_back(CheckingPtrGroup(I, *this));
376 return;
377 }
378
379 unsigned TotalComparisons = 0;
380
381 DenseMap<Value *, unsigned> PositionMap;
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000382 for (unsigned Index = 0; Index < Pointers.size(); ++Index)
383 PositionMap[Pointers[Index].PointerValue] = Index;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000384
Silviu Barangace3877f2015-07-09 15:18:25 +0000385 // We need to keep track of what pointers we've already seen so we
386 // don't process them twice.
387 SmallSet<unsigned, 2> Seen;
388
Sanjay Patele4b9f502015-12-07 19:21:39 +0000389 // Go through all equivalence classes, get the "pointer check groups"
Silviu Barangace3877f2015-07-09 15:18:25 +0000390 // and add them to the overall solution. We use the order in which accesses
391 // appear in 'Pointers' to enforce determinism.
392 for (unsigned I = 0; I < Pointers.size(); ++I) {
393 // We've seen this pointer before, and therefore already processed
394 // its equivalence class.
395 if (Seen.count(I))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000396 continue;
397
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000398 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
399 Pointers[I].IsWritePtr);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000400
Silviu Barangace3877f2015-07-09 15:18:25 +0000401 SmallVector<CheckingPtrGroup, 2> Groups;
402 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
403
Silviu Barangaa647c302015-07-13 14:48:24 +0000404 // Because DepCands is constructed by visiting accesses in the order in
405 // which they appear in alias sets (which is deterministic) and the
406 // iteration order within an equivalence class member is only dependent on
407 // the order in which unions and insertions are performed on the
408 // equivalence class, the iteration order is deterministic.
Silviu Barangace3877f2015-07-09 15:18:25 +0000409 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000410 MI != ME; ++MI) {
411 unsigned Pointer = PositionMap[MI->getPointer()];
412 bool Merged = false;
Silviu Barangace3877f2015-07-09 15:18:25 +0000413 // Mark this pointer as seen.
414 Seen.insert(Pointer);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000415
416 // Go through all the existing sets and see if we can find one
417 // which can include this pointer.
418 for (CheckingPtrGroup &Group : Groups) {
419 // Don't perform more than a certain amount of comparisons.
420 // This should limit the cost of grouping the pointers to something
421 // reasonable. If we do end up hitting this threshold, the algorithm
422 // will create separate groups for all remaining pointers.
423 if (TotalComparisons > MemoryCheckMergeThreshold)
424 break;
425
426 TotalComparisons++;
427
428 if (Group.addPointer(Pointer)) {
429 Merged = true;
430 break;
431 }
432 }
433
434 if (!Merged)
435 // We couldn't add this pointer to any existing set or the threshold
436 // for the number of comparisons has been reached. Create a new group
437 // to hold the current pointer.
438 Groups.push_back(CheckingPtrGroup(Pointer, *this));
439 }
440
441 // We've computed the grouped checks for this partition.
442 // Save the results and continue with the next one.
443 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
444 }
Adam Nemet04563272015-02-01 16:56:15 +0000445}
446
Adam Nemet041e6de2015-07-16 02:48:05 +0000447bool RuntimePointerChecking::arePointersInSamePartition(
448 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
449 unsigned PtrIdx2) {
450 return (PtrToPartition[PtrIdx1] != -1 &&
451 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
452}
453
Adam Nemet651a5a22015-08-09 20:06:08 +0000454bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000455 const PointerInfo &PointerI = Pointers[I];
456 const PointerInfo &PointerJ = Pointers[J];
457
Adam Nemeta8945b72015-02-18 03:43:58 +0000458 // No need to check if two readonly pointers intersect.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000459 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
Adam Nemeta8945b72015-02-18 03:43:58 +0000460 return false;
461
462 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000463 if (PointerI.DependencySetId == PointerJ.DependencySetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000464 return false;
465
466 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000467 if (PointerI.AliasSetId != PointerJ.AliasSetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000468 return false;
469
470 return true;
471}
472
Adam Nemet54f0b832015-07-27 23:54:41 +0000473void RuntimePointerChecking::printChecks(
474 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
475 unsigned Depth) const {
476 unsigned N = 0;
477 for (const auto &Check : Checks) {
478 const auto &First = Check.first->Members, &Second = Check.second->Members;
479
480 OS.indent(Depth) << "Check " << N++ << ":\n";
481
482 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
483 for (unsigned K = 0; K < First.size(); ++K)
484 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
485
486 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
487 for (unsigned K = 0; K < Second.size(); ++K)
488 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
489 }
490}
491
Adam Nemet3a91e942015-08-07 19:44:48 +0000492void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
Adam Nemete91cc6e2015-02-19 19:15:19 +0000493
494 OS.indent(Depth) << "Run-time memory checks:\n";
Adam Nemet15840392015-08-07 22:44:15 +0000495 printChecks(OS, Checks, Depth);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000496
497 OS.indent(Depth) << "Grouped accesses:\n";
498 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
Adam Nemet54f0b832015-07-27 23:54:41 +0000499 const auto &CG = CheckingGroups[I];
500
501 OS.indent(Depth + 2) << "Group " << &CG << ":\n";
502 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
503 << ")\n";
504 for (unsigned J = 0; J < CG.Members.size(); ++J) {
505 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000506 << "\n";
507 }
508 }
Adam Nemete91cc6e2015-02-19 19:15:19 +0000509}
510
Adam Nemet04563272015-02-01 16:56:15 +0000511namespace {
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +0000512
Adam Nemet04563272015-02-01 16:56:15 +0000513/// \brief Analyses memory accesses in a loop.
514///
515/// Checks whether run time pointer checks are needed and builds sets for data
516/// dependence checking.
517class AccessAnalysis {
518public:
519 /// \brief Read or write access location.
520 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
521 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
522
Adam Nemete2b885c2015-04-23 20:09:20 +0000523 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000524 MemoryDepChecker::DepCandidates &DA,
525 PredicatedScalarEvolution &PSE)
Silviu Barangae3c05342015-11-02 14:41:02 +0000526 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000527 PSE(PSE) {}
Adam Nemet04563272015-02-01 16:56:15 +0000528
529 /// \brief Register a load and whether it is only read from.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000530 void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
Adam Nemet04563272015-02-01 16:56:15 +0000531 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000532 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000533 Accesses.insert(MemAccessInfo(Ptr, false));
534 if (IsReadOnly)
535 ReadOnlyPtr.insert(Ptr);
536 }
537
538 /// \brief Register a store.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000539 void addStore(MemoryLocation &Loc) {
Adam Nemet04563272015-02-01 16:56:15 +0000540 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000541 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000542 Accesses.insert(MemAccessInfo(Ptr, true));
543 }
544
545 /// \brief Check whether we can check the pointers at runtime for
Adam Nemetee614742015-07-09 22:17:38 +0000546 /// non-intersection.
547 ///
548 /// Returns true if we need no check or if we do and we can generate them
549 /// (i.e. the pointers have computable bounds).
Adam Nemet7cdebac2015-07-14 22:32:44 +0000550 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
551 Loop *TheLoop, const ValueToValueMap &Strides,
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000552 bool ShouldCheckWrap = false);
Adam Nemet04563272015-02-01 16:56:15 +0000553
554 /// \brief Goes over all memory accesses, checks whether a RT check is needed
555 /// and builds sets of dependent accesses.
556 void buildDependenceSets() {
557 processMemAccesses();
558 }
559
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000560 /// \brief Initial processing of memory accesses determined that we need to
561 /// perform dependency checking.
562 ///
563 /// Note that this can later be cleared if we retry memcheck analysis without
564 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
Adam Nemet04563272015-02-01 16:56:15 +0000565 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000566
567 /// We decided that no dependence analysis would be used. Reset the state.
568 void resetDepChecks(MemoryDepChecker &DepChecker) {
569 CheckDeps.clear();
Adam Nemeta2df7502015-11-03 21:39:52 +0000570 DepChecker.clearDependences();
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000571 }
Adam Nemet04563272015-02-01 16:56:15 +0000572
573 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
574
575private:
576 typedef SetVector<MemAccessInfo> PtrAccessSet;
577
578 /// \brief Go over all memory access and check whether runtime pointer checks
Adam Nemetb41d2d32015-07-09 06:47:21 +0000579 /// are needed and build sets of dependency check candidates.
Adam Nemet04563272015-02-01 16:56:15 +0000580 void processMemAccesses();
581
582 /// Set of all accesses.
583 PtrAccessSet Accesses;
584
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000585 const DataLayout &DL;
586
Adam Nemet04563272015-02-01 16:56:15 +0000587 /// Set of accesses that need a further dependence check.
588 MemAccessInfoSet CheckDeps;
589
590 /// Set of pointers that are read only.
591 SmallPtrSet<Value*, 16> ReadOnlyPtr;
592
Adam Nemet04563272015-02-01 16:56:15 +0000593 /// An alias set tracker to partition the access set by underlying object and
594 //intrinsic property (such as TBAA metadata).
595 AliasSetTracker AST;
596
Adam Nemete2b885c2015-04-23 20:09:20 +0000597 LoopInfo *LI;
598
Adam Nemet04563272015-02-01 16:56:15 +0000599 /// Sets of potentially dependent accesses - members of one set share an
600 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
601 /// dependence check.
Adam Nemetdee666b2015-03-10 17:40:34 +0000602 MemoryDepChecker::DepCandidates &DepCands;
Adam Nemet04563272015-02-01 16:56:15 +0000603
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000604 /// \brief Initial processing of memory accesses determined that we may need
605 /// to add memchecks. Perform the analysis to determine the necessary checks.
606 ///
607 /// Note that, this is different from isDependencyCheckNeeded. When we retry
608 /// memcheck analysis without dependency checking
609 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
610 /// while this remains set if we have potentially dependent accesses.
611 bool IsRTCheckAnalysisNeeded;
Silviu Barangae3c05342015-11-02 14:41:02 +0000612
613 /// The SCEV predicate containing all the SCEV-related assumptions.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000614 PredicatedScalarEvolution &PSE;
Adam Nemet04563272015-02-01 16:56:15 +0000615};
616
617} // end anonymous namespace
618
619/// \brief Check whether a pointer can participate in a runtime bounds check.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000620static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
Silviu Barangae3c05342015-11-02 14:41:02 +0000621 const ValueToValueMap &Strides, Value *Ptr,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000622 Loop *L) {
623 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Adam Nemet279784f2016-03-24 04:28:47 +0000624
625 // The bounds for loop-invariant pointer is trivial.
626 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
627 return true;
628
Adam Nemet04563272015-02-01 16:56:15 +0000629 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
630 if (!AR)
631 return false;
632
633 return AR->isAffine();
634}
635
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000636/// \brief Check whether a pointer address cannot wrap.
637static bool isNoWrap(PredicatedScalarEvolution &PSE,
638 const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
639 const SCEV *PtrScev = PSE.getSCEV(Ptr);
640 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
641 return true;
642
David Majnemer7afb46d2016-07-07 06:24:36 +0000643 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000644 return Stride == 1;
645}
646
Adam Nemet7cdebac2015-07-14 22:32:44 +0000647bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
648 ScalarEvolution *SE, Loop *TheLoop,
649 const ValueToValueMap &StridesMap,
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000650 bool ShouldCheckWrap) {
Adam Nemet04563272015-02-01 16:56:15 +0000651 // Find pointers with computable bounds. We are going to use this information
652 // to place a runtime bound check.
653 bool CanDoRT = true;
654
Adam Nemetee614742015-07-09 22:17:38 +0000655 bool NeedRTCheck = false;
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000656 if (!IsRTCheckAnalysisNeeded) return true;
Silviu Baranga98a13712015-06-08 10:27:06 +0000657
Adam Nemet04563272015-02-01 16:56:15 +0000658 bool IsDepCheckNeeded = isDependencyCheckNeeded();
Adam Nemet04563272015-02-01 16:56:15 +0000659
660 // We assign a consecutive id to access from different alias sets.
661 // Accesses between different groups doesn't need to be checked.
662 unsigned ASId = 1;
663 for (auto &AS : AST) {
Adam Nemet424edc62015-07-08 22:58:48 +0000664 int NumReadPtrChecks = 0;
665 int NumWritePtrChecks = 0;
666
Adam Nemet04563272015-02-01 16:56:15 +0000667 // We assign consecutive id to access from different dependence sets.
668 // Accesses within the same set don't need a runtime check.
669 unsigned RunningDepId = 1;
670 DenseMap<Value *, unsigned> DepSetId;
671
672 for (auto A : AS) {
673 Value *Ptr = A.getValue();
674 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
675 MemAccessInfo Access(Ptr, IsWrite);
676
Adam Nemet424edc62015-07-08 22:58:48 +0000677 if (IsWrite)
678 ++NumWritePtrChecks;
679 else
680 ++NumReadPtrChecks;
681
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000682 if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000683 // When we run after a failing dependency check we have to make sure
684 // we don't have wrapping pointers.
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000685 (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) {
Adam Nemet04563272015-02-01 16:56:15 +0000686 // The id of the dependence set.
687 unsigned DepId;
688
689 if (IsDepCheckNeeded) {
690 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
691 unsigned &LeaderId = DepSetId[Leader];
692 if (!LeaderId)
693 LeaderId = RunningDepId++;
694 DepId = LeaderId;
695 } else
696 // Each access has its own dependence set.
697 DepId = RunningDepId++;
698
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000699 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
Adam Nemet04563272015-02-01 16:56:15 +0000700
Adam Nemet339f42b2015-02-19 19:15:07 +0000701 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000702 } else {
Adam Nemetf10ca272015-05-18 15:36:52 +0000703 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000704 CanDoRT = false;
705 }
706 }
707
Adam Nemet424edc62015-07-08 22:58:48 +0000708 // If we have at least two writes or one write and a read then we need to
709 // check them. But there is no need to checks if there is only one
710 // dependence set for this alias set.
711 //
712 // Note that this function computes CanDoRT and NeedRTCheck independently.
713 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
714 // for which we couldn't find the bounds but we don't actually need to emit
715 // any checks so it does not matter.
716 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
717 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
718 NumWritePtrChecks >= 1));
719
Adam Nemet04563272015-02-01 16:56:15 +0000720 ++ASId;
721 }
722
723 // If the pointers that we would use for the bounds comparison have different
724 // address spaces, assume the values aren't directly comparable, so we can't
725 // use them for the runtime check. We also have to assume they could
726 // overlap. In the future there should be metadata for whether address spaces
727 // are disjoint.
728 unsigned NumPointers = RtCheck.Pointers.size();
729 for (unsigned i = 0; i < NumPointers; ++i) {
730 for (unsigned j = i + 1; j < NumPointers; ++j) {
731 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000732 if (RtCheck.Pointers[i].DependencySetId ==
733 RtCheck.Pointers[j].DependencySetId)
Adam Nemet04563272015-02-01 16:56:15 +0000734 continue;
735 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000736 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
Adam Nemet04563272015-02-01 16:56:15 +0000737 continue;
738
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000739 Value *PtrI = RtCheck.Pointers[i].PointerValue;
740 Value *PtrJ = RtCheck.Pointers[j].PointerValue;
Adam Nemet04563272015-02-01 16:56:15 +0000741
742 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
743 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
744 if (ASi != ASj) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000745 DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
Adam Nemet04d41632015-02-19 19:14:34 +0000746 " different address spaces\n");
Adam Nemet04563272015-02-01 16:56:15 +0000747 return false;
748 }
749 }
750 }
751
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000752 if (NeedRTCheck && CanDoRT)
Adam Nemet15840392015-08-07 22:44:15 +0000753 RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000754
Adam Nemet155e8742015-08-07 22:44:21 +0000755 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
Adam Nemetee614742015-07-09 22:17:38 +0000756 << " pointer comparisons.\n");
757
758 RtCheck.Need = NeedRTCheck;
759
760 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
761 if (!CanDoRTIfNeeded)
762 RtCheck.reset();
763 return CanDoRTIfNeeded;
Adam Nemet04563272015-02-01 16:56:15 +0000764}
765
766void AccessAnalysis::processMemAccesses() {
767 // We process the set twice: first we process read-write pointers, last we
768 // process read-only pointers. This allows us to skip dependence tests for
769 // read-only pointers.
770
Adam Nemet339f42b2015-02-19 19:15:07 +0000771 DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
Adam Nemet04563272015-02-01 16:56:15 +0000772 DEBUG(dbgs() << " AST: "; AST.dump());
Adam Nemet9c926572015-03-10 17:40:37 +0000773 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
Adam Nemet04563272015-02-01 16:56:15 +0000774 DEBUG({
775 for (auto A : Accesses)
776 dbgs() << "\t" << *A.getPointer() << " (" <<
777 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
778 "read-only" : "read")) << ")\n";
779 });
780
781 // The AliasSetTracker has nicely partitioned our pointers by metadata
782 // compatibility and potential for underlying-object overlap. As a result, we
783 // only need to check for potential pointer dependencies within each alias
784 // set.
785 for (auto &AS : AST) {
786 // Note that both the alias-set tracker and the alias sets themselves used
787 // linked lists internally and so the iteration order here is deterministic
788 // (matching the original instruction order within each set).
789
790 bool SetHasWrite = false;
791
792 // Map of pointers to last access encountered.
793 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
794 UnderlyingObjToAccessMap ObjToLastAccess;
795
796 // Set of access to check after all writes have been processed.
797 PtrAccessSet DeferredAccesses;
798
799 // Iterate over each alias set twice, once to process read/write pointers,
800 // and then to process read-only pointers.
801 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
802 bool UseDeferred = SetIteration > 0;
803 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
804
805 for (auto AV : AS) {
806 Value *Ptr = AV.getValue();
807
808 // For a single memory access in AliasSetTracker, Accesses may contain
809 // both read and write, and they both need to be handled for CheckDeps.
810 for (auto AC : S) {
811 if (AC.getPointer() != Ptr)
812 continue;
813
814 bool IsWrite = AC.getInt();
815
816 // If we're using the deferred access set, then it contains only
817 // reads.
818 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
819 if (UseDeferred && !IsReadOnlyPtr)
820 continue;
821 // Otherwise, the pointer must be in the PtrAccessSet, either as a
822 // read or a write.
823 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
824 S.count(MemAccessInfo(Ptr, false))) &&
825 "Alias-set pointer not in the access set?");
826
827 MemAccessInfo Access(Ptr, IsWrite);
828 DepCands.insert(Access);
829
830 // Memorize read-only pointers for later processing and skip them in
831 // the first round (they need to be checked after we have seen all
832 // write pointers). Note: we also mark pointer that are not
833 // consecutive as "read-only" pointers (so that we check
834 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
835 if (!UseDeferred && IsReadOnlyPtr) {
836 DeferredAccesses.insert(Access);
837 continue;
838 }
839
840 // If this is a write - check other reads and writes for conflicts. If
841 // this is a read only check other writes for conflicts (but only if
842 // there is no other write to the ptr - this is an optimization to
843 // catch "a[i] = a[i] + " without having to do a dependence check).
844 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
845 CheckDeps.insert(Access);
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000846 IsRTCheckAnalysisNeeded = true;
Adam Nemet04563272015-02-01 16:56:15 +0000847 }
848
849 if (IsWrite)
850 SetHasWrite = true;
851
852 // Create sets of pointers connected by a shared alias set and
853 // underlying object.
854 typedef SmallVector<Value *, 16> ValueVector;
855 ValueVector TempObjects;
Adam Nemete2b885c2015-04-23 20:09:20 +0000856
857 GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
858 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000859 for (Value *UnderlyingObj : TempObjects) {
Mehdi Aminiafd13512015-11-05 05:49:43 +0000860 // nullptr never alias, don't join sets for pointer that have "null"
861 // in their UnderlyingObjects list.
862 if (isa<ConstantPointerNull>(UnderlyingObj))
863 continue;
864
Adam Nemet04563272015-02-01 16:56:15 +0000865 UnderlyingObjToAccessMap::iterator Prev =
866 ObjToLastAccess.find(UnderlyingObj);
867 if (Prev != ObjToLastAccess.end())
868 DepCands.unionSets(Access, Prev->second);
869
870 ObjToLastAccess[UnderlyingObj] = Access;
Adam Nemete2b885c2015-04-23 20:09:20 +0000871 DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000872 }
873 }
874 }
875 }
876 }
877}
878
Adam Nemet04563272015-02-01 16:56:15 +0000879static bool isInBoundsGep(Value *Ptr) {
880 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
881 return GEP->isInBounds();
882 return false;
883}
884
Adam Nemetc4866d22015-06-26 17:25:43 +0000885/// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
886/// i.e. monotonically increasing/decreasing.
887static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000888 PredicatedScalarEvolution &PSE, const Loop *L) {
Adam Nemetc4866d22015-06-26 17:25:43 +0000889 // FIXME: This should probably only return true for NUW.
890 if (AR->getNoWrapFlags(SCEV::NoWrapMask))
891 return true;
892
893 // Scalar evolution does not propagate the non-wrapping flags to values that
894 // are derived from a non-wrapping induction variable because non-wrapping
895 // could be flow-sensitive.
896 //
897 // Look through the potentially overflowing instruction to try to prove
898 // non-wrapping for the *specific* value of Ptr.
899
900 // The arithmetic implied by an inbounds GEP can't overflow.
901 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
902 if (!GEP || !GEP->isInBounds())
903 return false;
904
905 // Make sure there is only one non-const index and analyze that.
906 Value *NonConstIndex = nullptr;
David Majnemer8b401012016-07-12 20:31:46 +0000907 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
908 if (!isa<ConstantInt>(Index)) {
Adam Nemetc4866d22015-06-26 17:25:43 +0000909 if (NonConstIndex)
910 return false;
David Majnemer8b401012016-07-12 20:31:46 +0000911 NonConstIndex = Index;
Adam Nemetc4866d22015-06-26 17:25:43 +0000912 }
913 if (!NonConstIndex)
914 // The recurrence is on the pointer, ignore for now.
915 return false;
916
917 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
918 // AddRec using a NSW operation.
919 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
920 if (OBO->hasNoSignedWrap() &&
921 // Assume constant for other the operand so that the AddRec can be
922 // easily found.
923 isa<ConstantInt>(OBO->getOperand(1))) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000924 auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
Adam Nemetc4866d22015-06-26 17:25:43 +0000925
926 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
927 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
928 }
929
930 return false;
931}
932
Adam Nemet04563272015-02-01 16:56:15 +0000933/// \brief Check whether the access through \p Ptr has a constant stride.
David Majnemer7afb46d2016-07-07 06:24:36 +0000934int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
935 const Loop *Lp, const ValueToValueMap &StridesMap,
Elena Demikhovsky5f8cc0c2016-09-18 13:56:08 +0000936 bool Assume, bool ShouldCheckWrap) {
Craig Toppere3dcce92015-08-01 22:20:21 +0000937 Type *Ty = Ptr->getType();
Adam Nemet04563272015-02-01 16:56:15 +0000938 assert(Ty->isPointerTy() && "Unexpected non-ptr");
939
940 // Make sure that the pointer does not point to aggregate types.
Craig Toppere3dcce92015-08-01 22:20:21 +0000941 auto *PtrTy = cast<PointerType>(Ty);
Adam Nemet04563272015-02-01 16:56:15 +0000942 if (PtrTy->getElementType()->isAggregateType()) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000943 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
944 << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000945 return 0;
946 }
947
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000948 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000949
950 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000951 if (Assume && !AR)
Silviu Barangad68ed852016-03-23 15:29:30 +0000952 AR = PSE.getAsAddRec(Ptr);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000953
Adam Nemet04563272015-02-01 16:56:15 +0000954 if (!AR) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000955 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
956 << " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000957 return 0;
958 }
959
960 // The accesss function must stride over the innermost loop.
961 if (Lp != AR->getLoop()) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000962 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000963 *Ptr << " SCEV: " << *AR << "\n");
Kyle Butta02ce982016-01-08 01:55:13 +0000964 return 0;
Adam Nemet04563272015-02-01 16:56:15 +0000965 }
966
967 // The address calculation must not wrap. Otherwise, a dependence could be
968 // inverted.
969 // An inbounds getelementptr that is a AddRec with a unit stride
970 // cannot wrap per definition. The unit stride requirement is checked later.
971 // An getelementptr without an inbounds attribute and unit stride would have
972 // to access the pointer value "0" which is undefined behavior in address
973 // space 0, therefore we can also vectorize this case.
974 bool IsInBoundsGEP = isInBoundsGep(Ptr);
Elena Demikhovsky5f8cc0c2016-09-18 13:56:08 +0000975 bool IsNoWrapAddRec = !ShouldCheckWrap ||
976 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
977 isNoWrapAddRec(Ptr, AR, PSE, Lp);
Adam Nemet04563272015-02-01 16:56:15 +0000978 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
979 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000980 if (Assume) {
981 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
982 IsNoWrapAddRec = true;
983 DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
984 << "LAA: Pointer: " << *Ptr << "\n"
985 << "LAA: SCEV: " << *AR << "\n"
986 << "LAA: Added an overflow assumption\n");
987 } else {
988 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
989 << *Ptr << " SCEV: " << *AR << "\n");
990 return 0;
991 }
Adam Nemet04563272015-02-01 16:56:15 +0000992 }
993
994 // Check the step is constant.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000995 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
Adam Nemet04563272015-02-01 16:56:15 +0000996
Adam Nemet943befe2015-07-09 00:03:22 +0000997 // Calculate the pointer stride and check if it is constant.
Adam Nemet04563272015-02-01 16:56:15 +0000998 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
999 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001000 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001001 " SCEV: " << *AR << "\n");
Adam Nemet04563272015-02-01 16:56:15 +00001002 return 0;
1003 }
1004
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001005 auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1006 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001007 const APInt &APStepVal = C->getAPInt();
Adam Nemet04563272015-02-01 16:56:15 +00001008
1009 // Huge step value - give up.
1010 if (APStepVal.getBitWidth() > 64)
1011 return 0;
1012
1013 int64_t StepVal = APStepVal.getSExtValue();
1014
1015 // Strided access.
1016 int64_t Stride = StepVal / Size;
1017 int64_t Rem = StepVal % Size;
1018 if (Rem)
1019 return 0;
1020
1021 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1022 // know we can't "wrap around the address space". In case of address space
1023 // zero we know that this won't happen without triggering undefined behavior.
1024 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001025 Stride != 1 && Stride != -1) {
1026 if (Assume) {
1027 // We can avoid this case by adding a run-time check.
1028 DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1029 << "inbouds or in address space 0 may wrap:\n"
1030 << "LAA: Pointer: " << *Ptr << "\n"
1031 << "LAA: SCEV: " << *AR << "\n"
1032 << "LAA: Added an overflow assumption\n");
1033 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1034 } else
1035 return 0;
1036 }
Adam Nemet04563272015-02-01 16:56:15 +00001037
1038 return Stride;
1039}
1040
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001041/// Take the pointer operand from the Load/Store instruction.
1042/// Returns NULL if this is not a valid Load/Store instruction.
1043static Value *getPointerOperand(Value *I) {
David Majnemer8b401012016-07-12 20:31:46 +00001044 if (auto *LI = dyn_cast<LoadInst>(I))
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001045 return LI->getPointerOperand();
David Majnemer8b401012016-07-12 20:31:46 +00001046 if (auto *SI = dyn_cast<StoreInst>(I))
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001047 return SI->getPointerOperand();
1048 return nullptr;
1049}
1050
1051/// Take the address space operand from the Load/Store instruction.
1052/// Returns -1 if this is not a valid Load/Store instruction.
1053static unsigned getAddressSpaceOperand(Value *I) {
1054 if (LoadInst *L = dyn_cast<LoadInst>(I))
1055 return L->getPointerAddressSpace();
1056 if (StoreInst *S = dyn_cast<StoreInst>(I))
1057 return S->getPointerAddressSpace();
1058 return -1;
1059}
1060
Michael Kuperstein2a735b72017-02-03 19:32:50 +00001061bool llvm::sortMemAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
1062 ScalarEvolution &SE,
1063 SmallVectorImpl<Value *> &Sorted) {
Michael Kuperstein723999d2017-02-03 19:09:45 +00001064 SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs;
1065 OffValPairs.reserve(VL.size());
1066 Sorted.reserve(VL.size());
Mohammad Shahid31213342017-01-28 17:59:44 +00001067
Michael Kuperstein723999d2017-02-03 19:09:45 +00001068 // Walk over the pointers, and map each of them to an offset relative to
1069 // first pointer in the array.
1070 Value *Ptr0 = getPointerOperand(VL[0]);
1071 const SCEV *Scev0 = SE.getSCEV(Ptr0);
1072 Value *Obj0 = GetUnderlyingObject(Ptr0, DL);
1073
1074 for (auto *Val : VL) {
1075 Value *Ptr = getPointerOperand(Val);
1076
1077 // If a pointer refers to a different underlying object, bail - the
1078 // pointers are by definition incomparable.
1079 Value *CurrObj = GetUnderlyingObject(Ptr, DL);
Michael Kuperstein2a735b72017-02-03 19:32:50 +00001080 if (CurrObj != Obj0)
1081 return false;
Michael Kuperstein723999d2017-02-03 19:09:45 +00001082
1083 const SCEVConstant *Diff =
1084 dyn_cast<SCEVConstant>(SE.getMinusSCEV(SE.getSCEV(Ptr), Scev0));
1085
1086 // The pointers may not have a constant offset from each other, or SCEV
1087 // may just not be smart enough to figure out they do. Regardless,
1088 // there's nothing we can do.
Michael Kuperstein2a735b72017-02-03 19:32:50 +00001089 if (!Diff)
1090 return false;
Michael Kuperstein723999d2017-02-03 19:09:45 +00001091
1092 OffValPairs.emplace_back(Diff->getAPInt().getSExtValue(), Val);
Mohammad Shahid31213342017-01-28 17:59:44 +00001093 }
Michael Kuperstein723999d2017-02-03 19:09:45 +00001094
Mohammad Shahid31213342017-01-28 17:59:44 +00001095 std::sort(OffValPairs.begin(), OffValPairs.end(),
Michael Kuperstein723999d2017-02-03 19:09:45 +00001096 [](const std::pair<int64_t, Value *> &Left,
1097 const std::pair<int64_t, Value *> &Right) {
Mohammad Shahid31213342017-01-28 17:59:44 +00001098 return Left.first < Right.first;
1099 });
1100
Michael Kuperstein2a735b72017-02-03 19:32:50 +00001101 for (auto &it : OffValPairs)
Mohammad Shahid31213342017-01-28 17:59:44 +00001102 Sorted.push_back(it.second);
Michael Kuperstein2a735b72017-02-03 19:32:50 +00001103
1104 return true;
Mohammad Shahid31213342017-01-28 17:59:44 +00001105}
1106
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001107/// Returns true if the memory operations \p A and \p B are consecutive.
1108bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1109 ScalarEvolution &SE, bool CheckType) {
1110 Value *PtrA = getPointerOperand(A);
1111 Value *PtrB = getPointerOperand(B);
1112 unsigned ASA = getAddressSpaceOperand(A);
1113 unsigned ASB = getAddressSpaceOperand(B);
1114
1115 // Check that the address spaces match and that the pointers are valid.
1116 if (!PtrA || !PtrB || (ASA != ASB))
1117 return false;
1118
1119 // Make sure that A and B are different pointers.
1120 if (PtrA == PtrB)
1121 return false;
1122
1123 // Make sure that A and B have the same type if required.
Chad Rosier83a12032016-08-31 18:37:52 +00001124 if (CheckType && PtrA->getType() != PtrB->getType())
1125 return false;
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001126
1127 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
1128 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1129 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1130
1131 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1132 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1133 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1134
1135 // OffsetDelta = OffsetB - OffsetA;
1136 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1137 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1138 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1139 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1140 const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1141 // Check if they are based on the same pointer. That makes the offsets
1142 // sufficient.
1143 if (PtrA == PtrB)
1144 return OffsetDelta == Size;
1145
1146 // Compute the necessary base pointer delta to have the necessary final delta
1147 // equal to the size.
1148 // BaseDelta = Size - OffsetDelta;
1149 const SCEV *SizeSCEV = SE.getConstant(Size);
1150 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1151
1152 // Otherwise compute the distance with SCEV between the base pointers.
1153 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1154 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1155 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1156 return X == PtrSCEVB;
1157}
1158
Adam Nemet9c926572015-03-10 17:40:37 +00001159bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1160 switch (Type) {
1161 case NoDep:
1162 case Forward:
1163 case BackwardVectorizable:
1164 return true;
1165
1166 case Unknown:
1167 case ForwardButPreventsForwarding:
1168 case Backward:
1169 case BackwardVectorizableButPreventsForwarding:
1170 return false;
1171 }
David Majnemerd388e932015-03-10 20:23:29 +00001172 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001173}
1174
Adam Nemet397f5822015-11-03 23:50:03 +00001175bool MemoryDepChecker::Dependence::isBackward() const {
Adam Nemet9c926572015-03-10 17:40:37 +00001176 switch (Type) {
1177 case NoDep:
1178 case Forward:
1179 case ForwardButPreventsForwarding:
Adam Nemet397f5822015-11-03 23:50:03 +00001180 case Unknown:
Adam Nemet9c926572015-03-10 17:40:37 +00001181 return false;
1182
Adam Nemet9c926572015-03-10 17:40:37 +00001183 case BackwardVectorizable:
1184 case Backward:
1185 case BackwardVectorizableButPreventsForwarding:
1186 return true;
1187 }
David Majnemerd388e932015-03-10 20:23:29 +00001188 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001189}
1190
Adam Nemet397f5822015-11-03 23:50:03 +00001191bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1192 return isBackward() || Type == Unknown;
1193}
1194
1195bool MemoryDepChecker::Dependence::isForward() const {
1196 switch (Type) {
1197 case Forward:
1198 case ForwardButPreventsForwarding:
1199 return true;
1200
1201 case NoDep:
1202 case Unknown:
1203 case BackwardVectorizable:
1204 case Backward:
1205 case BackwardVectorizableButPreventsForwarding:
1206 return false;
1207 }
1208 llvm_unreachable("unexpected DepType!");
1209}
1210
David Majnemer7afb46d2016-07-07 06:24:36 +00001211bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1212 uint64_t TypeByteSize) {
Adam Nemet04563272015-02-01 16:56:15 +00001213 // If loads occur at a distance that is not a multiple of a feasible vector
1214 // factor store-load forwarding does not take place.
1215 // Positive dependences might cause troubles because vectorizing them might
1216 // prevent store-load forwarding making vectorized code run a lot slower.
1217 // a[i] = a[i-3] ^ a[i-8];
1218 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1219 // hence on your typical architecture store-load forwarding does not take
1220 // place. Vectorizing in such cases does not make sense.
1221 // Store-load forwarding distance.
Adam Nemet884d3132016-05-16 16:57:47 +00001222
1223 // After this many iterations store-to-load forwarding conflicts should not
1224 // cause any slowdowns.
David Majnemer7afb46d2016-07-07 06:24:36 +00001225 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
Adam Nemet04563272015-02-01 16:56:15 +00001226 // Maximum vector factor.
David Majnemer7afb46d2016-07-07 06:24:36 +00001227 uint64_t MaxVFWithoutSLForwardIssues = std::min(
Adam Nemet2c34ab52016-05-12 21:41:53 +00001228 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
Adam Nemet04563272015-02-01 16:56:15 +00001229
Adam Nemet884d3132016-05-16 16:57:47 +00001230 // Compute the smallest VF at which the store and load would be misaligned.
David Majnemer7afb46d2016-07-07 06:24:36 +00001231 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
Adam Nemet9b5852a2016-05-16 16:57:42 +00001232 VF *= 2) {
Adam Nemet884d3132016-05-16 16:57:47 +00001233 // If the number of vector iteration between the store and the load are
1234 // small we could incur conflicts.
1235 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
Adam Nemet9b5852a2016-05-16 16:57:42 +00001236 MaxVFWithoutSLForwardIssues = (VF >>= 1);
Adam Nemet04563272015-02-01 16:56:15 +00001237 break;
1238 }
1239 }
1240
Adam Nemet9b5852a2016-05-16 16:57:42 +00001241 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1242 DEBUG(dbgs() << "LAA: Distance " << Distance
1243 << " that could cause a store-load forwarding conflict\n");
Adam Nemet04563272015-02-01 16:56:15 +00001244 return true;
1245 }
1246
1247 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
Adam Nemetf219c642015-02-19 19:14:52 +00001248 MaxVFWithoutSLForwardIssues !=
Adam Nemet9b5852a2016-05-16 16:57:42 +00001249 VectorizerParams::MaxVectorWidth * TypeByteSize)
Adam Nemet04563272015-02-01 16:56:15 +00001250 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1251 return false;
1252}
1253
Dorit Nuzmaneac89d72017-02-12 09:32:53 +00001254/// Given a non-constant (unknown) dependence-distance \p Dist between two
1255/// memory accesses, that have the same stride whose absolute value is given
1256/// in \p Stride, and that have the same type size \p TypeByteSize,
1257/// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1258/// possible to prove statically that the dependence distance is larger
1259/// than the range that the accesses will travel through the execution of
1260/// the loop. If so, return true; false otherwise. This is useful for
1261/// example in loops such as the following (PR31098):
1262/// for (i = 0; i < D; ++i) {
1263/// = out[i];
1264/// out[i+D] =
1265/// }
1266static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1267 const SCEV &BackedgeTakenCount,
1268 const SCEV &Dist, uint64_t Stride,
1269 uint64_t TypeByteSize) {
1270
1271 // If we can prove that
1272 // (**) |Dist| > BackedgeTakenCount * Step
1273 // where Step is the absolute stride of the memory accesses in bytes,
1274 // then there is no dependence.
1275 //
1276 // Ratioanle:
1277 // We basically want to check if the absolute distance (|Dist/Step|)
1278 // is >= the loop iteration count (or > BackedgeTakenCount).
1279 // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1280 // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1281 // that the dependence distance is >= VF; This is checked elsewhere.
1282 // But in some cases we can prune unknown dependence distances early, and
1283 // even before selecting the VF, and without a runtime test, by comparing
1284 // the distance against the loop iteration count. Since the vectorized code
1285 // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1286 // also guarantees that distance >= VF.
1287 //
1288 const uint64_t ByteStride = Stride * TypeByteSize;
1289 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1290 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1291
1292 const SCEV *CastedDist = &Dist;
1293 const SCEV *CastedProduct = Product;
1294 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType());
1295 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType());
1296
1297 // The dependence distance can be positive/negative, so we sign extend Dist;
1298 // The multiplication of the absolute stride in bytes and the
1299 // backdgeTakenCount is non-negative, so we zero extend Product.
1300 if (DistTypeSize > ProductTypeSize)
1301 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1302 else
1303 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1304
1305 // Is Dist - (BackedgeTakenCount * Step) > 0 ?
1306 // (If so, then we have proven (**) because |Dist| >= Dist)
1307 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1308 if (SE.isKnownPositive(Minus))
1309 return true;
1310
1311 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ?
1312 // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1313 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1314 Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1315 if (SE.isKnownPositive(Minus))
1316 return true;
1317
1318 return false;
1319}
1320
Hao Liu751004a2015-06-08 04:48:37 +00001321/// \brief Check the dependence for two accesses with the same stride \p Stride.
1322/// \p Distance is the positive distance and \p TypeByteSize is type size in
1323/// bytes.
1324///
1325/// \returns true if they are independent.
David Majnemer7afb46d2016-07-07 06:24:36 +00001326static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1327 uint64_t TypeByteSize) {
Hao Liu751004a2015-06-08 04:48:37 +00001328 assert(Stride > 1 && "The stride must be greater than 1");
1329 assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1330 assert(Distance > 0 && "The distance must be non-zero");
1331
1332 // Skip if the distance is not multiple of type byte size.
1333 if (Distance % TypeByteSize)
1334 return false;
1335
David Majnemer7afb46d2016-07-07 06:24:36 +00001336 uint64_t ScaledDist = Distance / TypeByteSize;
Hao Liu751004a2015-06-08 04:48:37 +00001337
1338 // No dependence if the scaled distance is not multiple of the stride.
1339 // E.g.
1340 // for (i = 0; i < 1024 ; i += 4)
1341 // A[i+2] = A[i] + 1;
1342 //
1343 // Two accesses in memory (scaled distance is 2, stride is 4):
1344 // | A[0] | | | | A[4] | | | |
1345 // | | | A[2] | | | | A[6] | |
1346 //
1347 // E.g.
1348 // for (i = 0; i < 1024 ; i += 3)
1349 // A[i+4] = A[i] + 1;
1350 //
1351 // Two accesses in memory (scaled distance is 4, stride is 3):
1352 // | A[0] | | | A[3] | | | A[6] | | |
1353 // | | | | | A[4] | | | A[7] | |
1354 return ScaledDist % Stride;
1355}
1356
Adam Nemet9c926572015-03-10 17:40:37 +00001357MemoryDepChecker::Dependence::DepType
1358MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1359 const MemAccessInfo &B, unsigned BIdx,
1360 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001361 assert (AIdx < BIdx && "Must pass arguments in program order");
1362
1363 Value *APtr = A.getPointer();
1364 Value *BPtr = B.getPointer();
1365 bool AIsWrite = A.getInt();
1366 bool BIsWrite = B.getInt();
1367
1368 // Two reads are independent.
1369 if (!AIsWrite && !BIsWrite)
Adam Nemet9c926572015-03-10 17:40:37 +00001370 return Dependence::NoDep;
Adam Nemet04563272015-02-01 16:56:15 +00001371
1372 // We cannot check pointers in different address spaces.
1373 if (APtr->getType()->getPointerAddressSpace() !=
1374 BPtr->getType()->getPointerAddressSpace())
Adam Nemet9c926572015-03-10 17:40:37 +00001375 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001376
David Majnemer7afb46d2016-07-07 06:24:36 +00001377 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1378 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
Adam Nemet04563272015-02-01 16:56:15 +00001379
Silviu Barangaadf4b732016-05-10 12:28:49 +00001380 const SCEV *Src = PSE.getSCEV(APtr);
1381 const SCEV *Sink = PSE.getSCEV(BPtr);
Adam Nemet04563272015-02-01 16:56:15 +00001382
1383 // If the induction step is negative we have to invert source and sink of the
1384 // dependence.
1385 if (StrideAPtr < 0) {
Adam Nemet04563272015-02-01 16:56:15 +00001386 std::swap(APtr, BPtr);
1387 std::swap(Src, Sink);
1388 std::swap(AIsWrite, BIsWrite);
1389 std::swap(AIdx, BIdx);
1390 std::swap(StrideAPtr, StrideBPtr);
1391 }
1392
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001393 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
Adam Nemet04563272015-02-01 16:56:15 +00001394
Adam Nemet339f42b2015-02-19 19:15:07 +00001395 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001396 << "(Induction step: " << StrideAPtr << ")\n");
Adam Nemet339f42b2015-02-19 19:15:07 +00001397 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001398 << *InstMap[BIdx] << ": " << *Dist << "\n");
Adam Nemet04563272015-02-01 16:56:15 +00001399
Adam Nemet943befe2015-07-09 00:03:22 +00001400 // Need accesses with constant stride. We don't want to vectorize
Adam Nemet04563272015-02-01 16:56:15 +00001401 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1402 // the address space.
1403 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
Adam Nemet943befe2015-07-09 00:03:22 +00001404 DEBUG(dbgs() << "Pointer access with non-constant stride\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001405 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001406 }
1407
Dorit Nuzmaneac89d72017-02-12 09:32:53 +00001408 Type *ATy = APtr->getType()->getPointerElementType();
1409 Type *BTy = BPtr->getType()->getPointerElementType();
1410 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1411 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1412 uint64_t Stride = std::abs(StrideAPtr);
Adam Nemet04563272015-02-01 16:56:15 +00001413 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1414 if (!C) {
Dorit Nuzmaneac89d72017-02-12 09:32:53 +00001415 if (TypeByteSize == DL.getTypeAllocSize(BTy) &&
1416 isSafeDependenceDistance(DL, *(PSE.getSE()),
1417 *(PSE.getBackedgeTakenCount()), *Dist, Stride,
1418 TypeByteSize))
1419 return Dependence::NoDep;
1420
Adam Nemet339f42b2015-02-19 19:15:07 +00001421 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
Adam Nemet04563272015-02-01 16:56:15 +00001422 ShouldRetryWithRuntimeCheck = true;
Adam Nemet9c926572015-03-10 17:40:37 +00001423 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001424 }
1425
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001426 const APInt &Val = C->getAPInt();
Matthew Simpson6feebe92016-05-19 15:37:19 +00001427 int64_t Distance = Val.getSExtValue();
Matthew Simpson6feebe92016-05-19 15:37:19 +00001428
1429 // Attempt to prove strided accesses independent.
1430 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1431 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1432 DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1433 return Dependence::NoDep;
1434 }
1435
1436 // Negative distances are not plausible dependencies.
Adam Nemet04563272015-02-01 16:56:15 +00001437 if (Val.isNegative()) {
1438 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001439 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001440 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
Adam Nemetb8486e52016-03-01 00:50:08 +00001441 ATy != BTy)) {
1442 DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001443 return Dependence::ForwardButPreventsForwarding;
Adam Nemetb8486e52016-03-01 00:50:08 +00001444 }
Adam Nemet04563272015-02-01 16:56:15 +00001445
Adam Nemet724ab222016-05-05 23:41:28 +00001446 DEBUG(dbgs() << "LAA: Dependence is negative\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001447 return Dependence::Forward;
Adam Nemet04563272015-02-01 16:56:15 +00001448 }
1449
1450 // Write to the same location with the same size.
1451 // Could be improved to assert type sizes are the same (i32 == float, etc).
1452 if (Val == 0) {
1453 if (ATy == BTy)
Adam Nemetd7037c52015-11-03 20:13:43 +00001454 return Dependence::Forward;
Adam Nemet339f42b2015-02-19 19:15:07 +00001455 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001456 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001457 }
1458
1459 assert(Val.isStrictlyPositive() && "Expect a positive value");
1460
Adam Nemet04563272015-02-01 16:56:15 +00001461 if (ATy != BTy) {
Adam Nemet04d41632015-02-19 19:14:34 +00001462 DEBUG(dbgs() <<
Adam Nemet339f42b2015-02-19 19:15:07 +00001463 "LAA: ReadWrite-Write positive dependency with different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001464 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001465 }
1466
Adam Nemet04563272015-02-01 16:56:15 +00001467 // Bail out early if passed-in parameters make vectorization not feasible.
Adam Nemetf219c642015-02-19 19:14:52 +00001468 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1469 VectorizerParams::VectorizationFactor : 1);
1470 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1471 VectorizerParams::VectorizationInterleave : 1);
Hao Liu751004a2015-06-08 04:48:37 +00001472 // The minimum number of iterations for a vectorized/unrolled version.
1473 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
Adam Nemet04563272015-02-01 16:56:15 +00001474
Hao Liu751004a2015-06-08 04:48:37 +00001475 // It's not vectorizable if the distance is smaller than the minimum distance
1476 // needed for a vectroized/unrolled version. Vectorizing one iteration in
1477 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1478 // TypeByteSize (No need to plus the last gap distance).
1479 //
1480 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1481 // foo(int *A) {
1482 // int *B = (int *)((char *)A + 14);
1483 // for (i = 0 ; i < 1024 ; i += 2)
1484 // B[i] = A[i] + 1;
1485 // }
1486 //
1487 // Two accesses in memory (stride is 2):
1488 // | A[0] | | A[2] | | A[4] | | A[6] | |
1489 // | B[0] | | B[2] | | B[4] |
1490 //
1491 // Distance needs for vectorizing iterations except the last iteration:
1492 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1493 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1494 //
1495 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1496 // 12, which is less than distance.
1497 //
1498 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1499 // the minimum distance needed is 28, which is greater than distance. It is
1500 // not safe to do vectorization.
David Majnemer7afb46d2016-07-07 06:24:36 +00001501 uint64_t MinDistanceNeeded =
Hao Liu751004a2015-06-08 04:48:37 +00001502 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
David Majnemer7afb46d2016-07-07 06:24:36 +00001503 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
Hao Liu751004a2015-06-08 04:48:37 +00001504 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1505 << '\n');
1506 return Dependence::Backward;
1507 }
1508
1509 // Unsafe if the minimum distance needed is greater than max safe distance.
1510 if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1511 DEBUG(dbgs() << "LAA: Failure because it needs at least "
1512 << MinDistanceNeeded << " size in bytes");
Adam Nemet9c926572015-03-10 17:40:37 +00001513 return Dependence::Backward;
Adam Nemet04563272015-02-01 16:56:15 +00001514 }
1515
Adam Nemet9cc0c392015-02-26 17:58:48 +00001516 // Positive distance bigger than max vectorization factor.
Hao Liu751004a2015-06-08 04:48:37 +00001517 // FIXME: Should use max factor instead of max distance in bytes, which could
1518 // not handle different types.
1519 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1520 // void foo (int *A, char *B) {
1521 // for (unsigned i = 0; i < 1024; i++) {
1522 // A[i+2] = A[i] + 1;
1523 // B[i+2] = B[i] + 1;
1524 // }
1525 // }
1526 //
1527 // This case is currently unsafe according to the max safe distance. If we
1528 // analyze the two accesses on array B, the max safe dependence distance
1529 // is 2. Then we analyze the accesses on array A, the minimum distance needed
1530 // is 8, which is less than 2 and forbidden vectorization, But actually
1531 // both A and B could be vectorized by 2 iterations.
1532 MaxSafeDepDistBytes =
David Majnemer7afb46d2016-07-07 06:24:36 +00001533 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
Adam Nemet04563272015-02-01 16:56:15 +00001534
1535 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001536 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001537 couldPreventStoreLoadForward(Distance, TypeByteSize))
Adam Nemet9c926572015-03-10 17:40:37 +00001538 return Dependence::BackwardVectorizableButPreventsForwarding;
Adam Nemet04563272015-02-01 16:56:15 +00001539
Hao Liu751004a2015-06-08 04:48:37 +00001540 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1541 << " with max VF = "
1542 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
Adam Nemet04563272015-02-01 16:56:15 +00001543
Adam Nemet9c926572015-03-10 17:40:37 +00001544 return Dependence::BackwardVectorizable;
Adam Nemet04563272015-02-01 16:56:15 +00001545}
1546
Adam Nemetdee666b2015-03-10 17:40:34 +00001547bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
Adam Nemet04563272015-02-01 16:56:15 +00001548 MemAccessInfoSet &CheckDeps,
Adam Nemet8bc61df2015-02-24 00:41:59 +00001549 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001550
David Majnemer7afb46d2016-07-07 06:24:36 +00001551 MaxSafeDepDistBytes = -1;
Adam Nemet04563272015-02-01 16:56:15 +00001552 while (!CheckDeps.empty()) {
1553 MemAccessInfo CurAccess = *CheckDeps.begin();
1554
1555 // Get the relevant memory access set.
1556 EquivalenceClasses<MemAccessInfo>::iterator I =
1557 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1558
1559 // Check accesses within this set.
Richard Trieu7a083812016-02-18 22:09:30 +00001560 EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1561 AccessSets.member_begin(I);
1562 EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1563 AccessSets.member_end();
Adam Nemet04563272015-02-01 16:56:15 +00001564
1565 // Check every access pair.
1566 while (AI != AE) {
1567 CheckDeps.erase(*AI);
1568 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1569 while (OI != AE) {
1570 // Check every accessing instruction pair in program order.
1571 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1572 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1573 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1574 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
Adam Nemet9c926572015-03-10 17:40:37 +00001575 auto A = std::make_pair(&*AI, *I1);
1576 auto B = std::make_pair(&*OI, *I2);
1577
1578 assert(*I1 != *I2);
1579 if (*I1 > *I2)
1580 std::swap(A, B);
1581
1582 Dependence::DepType Type =
1583 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1584 SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1585
Adam Nemeta2df7502015-11-03 21:39:52 +00001586 // Gather dependences unless we accumulated MaxDependences
Adam Nemet9c926572015-03-10 17:40:37 +00001587 // dependences. In that case return as soon as we find the first
1588 // unsafe dependence. This puts a limit on this quadratic
1589 // algorithm.
Adam Nemeta2df7502015-11-03 21:39:52 +00001590 if (RecordDependences) {
1591 if (Type != Dependence::NoDep)
1592 Dependences.push_back(Dependence(A.second, B.second, Type));
Adam Nemet9c926572015-03-10 17:40:37 +00001593
Adam Nemeta2df7502015-11-03 21:39:52 +00001594 if (Dependences.size() >= MaxDependences) {
1595 RecordDependences = false;
1596 Dependences.clear();
Adam Nemet9c926572015-03-10 17:40:37 +00001597 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1598 }
1599 }
Adam Nemeta2df7502015-11-03 21:39:52 +00001600 if (!RecordDependences && !SafeForVectorization)
Adam Nemet04563272015-02-01 16:56:15 +00001601 return false;
1602 }
1603 ++OI;
1604 }
1605 AI++;
1606 }
1607 }
Adam Nemet9c926572015-03-10 17:40:37 +00001608
Adam Nemeta2df7502015-11-03 21:39:52 +00001609 DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001610 return SafeForVectorization;
Adam Nemet04563272015-02-01 16:56:15 +00001611}
1612
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001613SmallVector<Instruction *, 4>
1614MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1615 MemAccessInfo Access(Ptr, isWrite);
1616 auto &IndexVector = Accesses.find(Access)->second;
1617
1618 SmallVector<Instruction *, 4> Insts;
David Majnemer2d006e72016-08-12 04:32:42 +00001619 transform(IndexVector,
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001620 std::back_inserter(Insts),
1621 [&](unsigned Idx) { return this->InstMap[Idx]; });
1622 return Insts;
1623}
1624
Adam Nemet58913d62015-03-10 17:40:43 +00001625const char *MemoryDepChecker::Dependence::DepName[] = {
1626 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1627 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1628
1629void MemoryDepChecker::Dependence::print(
1630 raw_ostream &OS, unsigned Depth,
1631 const SmallVectorImpl<Instruction *> &Instrs) const {
1632 OS.indent(Depth) << DepName[Type] << ":\n";
1633 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1634 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1635}
1636
Adam Nemet929c38e2015-02-19 19:15:10 +00001637bool LoopAccessInfo::canAnalyzeLoop() {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001638 // We need to have a loop header.
Adam Nemetd8968f02016-01-18 21:16:33 +00001639 DEBUG(dbgs() << "LAA: Found a loop in "
1640 << TheLoop->getHeader()->getParent()->getName() << ": "
1641 << TheLoop->getHeader()->getName() << '\n');
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001642
Adam Nemetd8968f02016-01-18 21:16:33 +00001643 // We can only analyze innermost loops.
Adam Nemet929c38e2015-02-19 19:15:10 +00001644 if (!TheLoop->empty()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001645 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001646 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
Adam Nemet929c38e2015-02-19 19:15:10 +00001647 return false;
1648 }
1649
1650 // We must have a single backedge.
1651 if (TheLoop->getNumBackEdges() != 1) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001652 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001653 recordAnalysis("CFGNotUnderstood")
1654 << "loop control flow is not understood by analyzer";
Adam Nemet929c38e2015-02-19 19:15:10 +00001655 return false;
1656 }
1657
1658 // We must have a single exiting block.
1659 if (!TheLoop->getExitingBlock()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001660 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001661 recordAnalysis("CFGNotUnderstood")
1662 << "loop control flow is not understood by analyzer";
Adam Nemet929c38e2015-02-19 19:15:10 +00001663 return false;
1664 }
1665
1666 // We only handle bottom-tested loops, i.e. loop in which the condition is
1667 // checked at the end of each iteration. With that we can assume that all
1668 // instructions in the loop are executed the same number of times.
1669 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001670 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001671 recordAnalysis("CFGNotUnderstood")
1672 << "loop control flow is not understood by analyzer";
Adam Nemet929c38e2015-02-19 19:15:10 +00001673 return false;
1674 }
1675
Adam Nemet929c38e2015-02-19 19:15:10 +00001676 // ScalarEvolution needs to be able to find the exit count.
Xinliang David Li94734ee2016-07-01 05:59:55 +00001677 const SCEV *ExitCount = PSE->getBackedgeTakenCount();
1678 if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001679 recordAnalysis("CantComputeNumberOfIterations")
1680 << "could not determine number of loop iterations";
Adam Nemet929c38e2015-02-19 19:15:10 +00001681 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1682 return false;
1683 }
1684
1685 return true;
1686}
1687
Adam Nemetb49d9a52016-07-13 22:36:27 +00001688void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
Adam Nemet7da74ab2016-07-13 22:36:35 +00001689 const TargetLibraryInfo *TLI,
1690 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001691 typedef SmallPtrSet<Value*, 16> ValueSet;
1692
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001693 // Holds the Load and Store instructions.
1694 SmallVector<LoadInst *, 16> Loads;
1695 SmallVector<StoreInst *, 16> Stores;
Adam Nemet04563272015-02-01 16:56:15 +00001696
1697 // Holds all the different accesses in the loop.
1698 unsigned NumReads = 0;
1699 unsigned NumReadWrites = 0;
1700
Xinliang David Lice030ac2016-06-22 23:20:59 +00001701 PtrRtChecking->Pointers.clear();
1702 PtrRtChecking->Need = false;
Adam Nemet04563272015-02-01 16:56:15 +00001703
1704 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
Adam Nemet04563272015-02-01 16:56:15 +00001705
1706 // For each block.
David Majnemer8b401012016-07-12 20:31:46 +00001707 for (BasicBlock *BB : TheLoop->blocks()) {
Adam Nemet04563272015-02-01 16:56:15 +00001708 // Scan the BB and collect legal loads and stores.
David Majnemer8b401012016-07-12 20:31:46 +00001709 for (Instruction &I : *BB) {
Adam Nemet04563272015-02-01 16:56:15 +00001710 // If this is a load, save it. If this instruction can read from memory
1711 // but is not a load, then we quit. Notice that we don't handle function
1712 // calls that read or write.
David Majnemer8b401012016-07-12 20:31:46 +00001713 if (I.mayReadFromMemory()) {
Adam Nemet04563272015-02-01 16:56:15 +00001714 // Many math library functions read the rounding mode. We will only
1715 // vectorize a loop if it contains known function calls that don't set
1716 // the flag. Therefore, it is safe to ignore this read from memory.
David Majnemer8b401012016-07-12 20:31:46 +00001717 auto *Call = dyn_cast<CallInst>(&I);
David Majnemerb4b27232016-04-19 19:10:21 +00001718 if (Call && getVectorIntrinsicIDForCall(Call, TLI))
Adam Nemet04563272015-02-01 16:56:15 +00001719 continue;
1720
Michael Zolotukhin9b3cf602015-03-17 19:46:50 +00001721 // If the function has an explicit vectorized counterpart, we can safely
1722 // assume that it can be vectorized.
1723 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1724 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1725 continue;
1726
David Majnemer8b401012016-07-12 20:31:46 +00001727 auto *Ld = dyn_cast<LoadInst>(&I);
Adam Nemet04563272015-02-01 16:56:15 +00001728 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001729 recordAnalysis("NonSimpleLoad", Ld)
1730 << "read with atomic ordering or volatile read";
Adam Nemet339f42b2015-02-19 19:15:07 +00001731 DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001732 CanVecMem = false;
1733 return;
Adam Nemet04563272015-02-01 16:56:15 +00001734 }
1735 NumLoads++;
1736 Loads.push_back(Ld);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001737 DepChecker->addAccess(Ld);
Adam Nemeta9f09c62016-06-17 22:35:41 +00001738 if (EnableMemAccessVersioning)
Adam Nemetc953bb92016-06-16 22:57:55 +00001739 collectStridedAccess(Ld);
Adam Nemet04563272015-02-01 16:56:15 +00001740 continue;
1741 }
1742
1743 // Save 'store' instructions. Abort if other instructions write to memory.
David Majnemer8b401012016-07-12 20:31:46 +00001744 if (I.mayWriteToMemory()) {
1745 auto *St = dyn_cast<StoreInst>(&I);
Adam Nemet04563272015-02-01 16:56:15 +00001746 if (!St) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001747 recordAnalysis("CantVectorizeInstruction", St)
1748 << "instruction cannot be vectorized";
Adam Nemet436018c2015-02-19 19:15:00 +00001749 CanVecMem = false;
1750 return;
Adam Nemet04563272015-02-01 16:56:15 +00001751 }
1752 if (!St->isSimple() && !IsAnnotatedParallel) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001753 recordAnalysis("NonSimpleStore", St)
1754 << "write with atomic ordering or volatile write";
Adam Nemet339f42b2015-02-19 19:15:07 +00001755 DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001756 CanVecMem = false;
1757 return;
Adam Nemet04563272015-02-01 16:56:15 +00001758 }
1759 NumStores++;
1760 Stores.push_back(St);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001761 DepChecker->addAccess(St);
Adam Nemeta9f09c62016-06-17 22:35:41 +00001762 if (EnableMemAccessVersioning)
Adam Nemetc953bb92016-06-16 22:57:55 +00001763 collectStridedAccess(St);
Adam Nemet04563272015-02-01 16:56:15 +00001764 }
1765 } // Next instr.
1766 } // Next block.
1767
1768 // Now we have two lists that hold the loads and the stores.
1769 // Next, we find the pointers that they use.
1770
1771 // Check if we see any stores. If there are no stores, then we don't
1772 // care if the pointers are *restrict*.
1773 if (!Stores.size()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001774 DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001775 CanVecMem = true;
1776 return;
Adam Nemet04563272015-02-01 16:56:15 +00001777 }
1778
Adam Nemetdee666b2015-03-10 17:40:34 +00001779 MemoryDepChecker::DepCandidates DependentAccesses;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001780 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
Xinliang David Li94734ee2016-07-01 05:59:55 +00001781 AA, LI, DependentAccesses, *PSE);
Adam Nemet04563272015-02-01 16:56:15 +00001782
1783 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1784 // multiple times on the same object. If the ptr is accessed twice, once
1785 // for read and once for write, it will only appear once (on the write
1786 // list). This is okay, since we are going to check for conflicts between
1787 // writes and between reads and writes, but not between reads and reads.
1788 ValueSet Seen;
1789
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001790 for (StoreInst *ST : Stores) {
1791 Value *Ptr = ST->getPointerOperand();
Adam Nemetce482502015-04-08 17:48:40 +00001792 // Check for store to loop invariant address.
1793 StoreToLoopInvariantAddress |= isUniform(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +00001794 // If we did *not* see this pointer before, insert it to the read-write
1795 // list. At this phase it is only a 'write' list.
1796 if (Seen.insert(Ptr).second) {
1797 ++NumReadWrites;
1798
Chandler Carruthac80dc72015-06-17 07:18:54 +00001799 MemoryLocation Loc = MemoryLocation::get(ST);
Adam Nemet04563272015-02-01 16:56:15 +00001800 // The TBAA metadata could have a control dependency on the predication
1801 // condition, so we cannot rely on it when determining whether or not we
1802 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001803 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001804 Loc.AATags.TBAA = nullptr;
1805
1806 Accesses.addStore(Loc);
1807 }
1808 }
1809
1810 if (IsAnnotatedParallel) {
Adam Nemet04d41632015-02-19 19:14:34 +00001811 DEBUG(dbgs()
Adam Nemet339f42b2015-02-19 19:15:07 +00001812 << "LAA: A loop annotated parallel, ignore memory dependency "
Adam Nemet04d41632015-02-19 19:14:34 +00001813 << "checks.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001814 CanVecMem = true;
1815 return;
Adam Nemet04563272015-02-01 16:56:15 +00001816 }
1817
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001818 for (LoadInst *LD : Loads) {
1819 Value *Ptr = LD->getPointerOperand();
Adam Nemet04563272015-02-01 16:56:15 +00001820 // If we did *not* see this pointer before, insert it to the
1821 // read list. If we *did* see it before, then it is already in
1822 // the read-write list. This allows us to vectorize expressions
1823 // such as A[i] += x; Because the address of A[i] is a read-write
1824 // pointer. This only works if the index of A[i] is consecutive.
1825 // If the address of i is unknown (for example A[B[i]]) then we may
1826 // read a few words, modify, and write a few words, and some of the
1827 // words may be written to the same address.
1828 bool IsReadOnlyPtr = false;
Adam Nemet139ffba2016-06-16 08:27:03 +00001829 if (Seen.insert(Ptr).second ||
Xinliang David Li94734ee2016-07-01 05:59:55 +00001830 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
Adam Nemet04563272015-02-01 16:56:15 +00001831 ++NumReads;
1832 IsReadOnlyPtr = true;
1833 }
1834
Chandler Carruthac80dc72015-06-17 07:18:54 +00001835 MemoryLocation Loc = MemoryLocation::get(LD);
Adam Nemet04563272015-02-01 16:56:15 +00001836 // The TBAA metadata could have a control dependency on the predication
1837 // condition, so we cannot rely on it when determining whether or not we
1838 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001839 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001840 Loc.AATags.TBAA = nullptr;
1841
1842 Accesses.addLoad(Loc, IsReadOnlyPtr);
1843 }
1844
1845 // If we write (or read-write) to a single destination and there are no
1846 // other reads in this loop then is it safe to vectorize.
1847 if (NumReadWrites == 1 && NumReads == 0) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001848 DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001849 CanVecMem = true;
1850 return;
Adam Nemet04563272015-02-01 16:56:15 +00001851 }
1852
1853 // Build dependence sets and check whether we need a runtime pointer bounds
1854 // check.
1855 Accesses.buildDependenceSets();
Adam Nemet04563272015-02-01 16:56:15 +00001856
1857 // Find pointers with computable bounds. We are going to use this information
1858 // to place a runtime bound check.
Xinliang David Li94734ee2016-07-01 05:59:55 +00001859 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
Adam Nemet139ffba2016-06-16 08:27:03 +00001860 TheLoop, SymbolicStrides);
Adam Nemetee614742015-07-09 22:17:38 +00001861 if (!CanDoRTIfNeeded) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001862 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
Adam Nemetee614742015-07-09 22:17:38 +00001863 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1864 << "the array bounds.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001865 CanVecMem = false;
1866 return;
Adam Nemet04563272015-02-01 16:56:15 +00001867 }
1868
Adam Nemetee614742015-07-09 22:17:38 +00001869 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
Adam Nemet04563272015-02-01 16:56:15 +00001870
Adam Nemet436018c2015-02-19 19:15:00 +00001871 CanVecMem = true;
Adam Nemet04563272015-02-01 16:56:15 +00001872 if (Accesses.isDependencyCheckNeeded()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001873 DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
Xinliang David Lice030ac2016-06-22 23:20:59 +00001874 CanVecMem = DepChecker->areDepsSafe(
Adam Nemet139ffba2016-06-16 08:27:03 +00001875 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001876 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
Adam Nemet04563272015-02-01 16:56:15 +00001877
Xinliang David Lice030ac2016-06-22 23:20:59 +00001878 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001879 DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
Adam Nemet04563272015-02-01 16:56:15 +00001880
1881 // Clear the dependency checks. We assume they are not needed.
Xinliang David Lice030ac2016-06-22 23:20:59 +00001882 Accesses.resetDepChecks(*DepChecker);
Adam Nemet04563272015-02-01 16:56:15 +00001883
Xinliang David Lice030ac2016-06-22 23:20:59 +00001884 PtrRtChecking->reset();
1885 PtrRtChecking->Need = true;
Adam Nemet04563272015-02-01 16:56:15 +00001886
Xinliang David Li94734ee2016-07-01 05:59:55 +00001887 auto *SE = PSE->getSE();
Xinliang David Lice030ac2016-06-22 23:20:59 +00001888 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
Adam Nemet139ffba2016-06-16 08:27:03 +00001889 SymbolicStrides, true);
Silviu Baranga98a13712015-06-08 10:27:06 +00001890
Adam Nemet949e91a2015-03-10 19:12:41 +00001891 // Check that we found the bounds for the pointer.
Adam Nemetee614742015-07-09 22:17:38 +00001892 if (!CanDoRTIfNeeded) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001893 recordAnalysis("CantCheckMemDepsAtRunTime")
1894 << "cannot check memory dependencies at runtime";
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001895 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001896 CanVecMem = false;
1897 return;
1898 }
1899
Adam Nemet04563272015-02-01 16:56:15 +00001900 CanVecMem = true;
1901 }
1902 }
1903
Adam Nemet4bb90a72015-03-10 21:47:39 +00001904 if (CanVecMem)
1905 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
Xinliang David Lice030ac2016-06-22 23:20:59 +00001906 << (PtrRtChecking->Need ? "" : " don't")
Adam Nemet0f67c6c2015-07-09 22:17:41 +00001907 << " need runtime memory checks.\n");
Adam Nemet4bb90a72015-03-10 21:47:39 +00001908 else {
Adam Nemet877ccee2016-09-30 00:01:30 +00001909 recordAnalysis("UnsafeMemDep")
Adam Nemet0a77dfa2016-05-09 23:03:44 +00001910 << "unsafe dependent memory operations in loop. Use "
1911 "#pragma loop distribute(enable) to allow loop distribution "
1912 "to attempt to isolate the offending operations into a separate "
Adam Nemet877ccee2016-09-30 00:01:30 +00001913 "loop";
Adam Nemet4bb90a72015-03-10 21:47:39 +00001914 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1915 }
Adam Nemet04563272015-02-01 16:56:15 +00001916}
1917
Adam Nemet01abb2c2015-02-18 03:43:19 +00001918bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1919 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001920 assert(TheLoop->contains(BB) && "Unknown block used");
1921
1922 // Blocks that do not dominate the latch need predication.
1923 BasicBlock* Latch = TheLoop->getLoopLatch();
1924 return !DT->dominates(BB, Latch);
1925}
1926
Adam Nemet877ccee2016-09-30 00:01:30 +00001927OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
1928 Instruction *I) {
Adam Nemetc9228532015-02-19 19:14:56 +00001929 assert(!Report && "Multiple reports generated");
Adam Nemet877ccee2016-09-30 00:01:30 +00001930
1931 Value *CodeRegion = TheLoop->getHeader();
1932 DebugLoc DL = TheLoop->getStartLoc();
1933
1934 if (I) {
1935 CodeRegion = I->getParent();
1936 // If there is no debug location attached to the instruction, revert back to
1937 // using the loop's.
1938 if (I->getDebugLoc())
1939 DL = I->getDebugLoc();
1940 }
1941
1942 Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
1943 CodeRegion);
1944 return *Report;
Adam Nemet04563272015-02-01 16:56:15 +00001945}
1946
Adam Nemet57ac7662015-02-19 19:15:21 +00001947bool LoopAccessInfo::isUniform(Value *V) const {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +00001948 auto *SE = PSE->getSE();
1949 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
1950 // never considered uniform.
1951 // TODO: Is this really what we want? Even without FP SCEV, we may want some
1952 // trivially loop-invariant FP values to be considered uniform.
1953 if (!SE->isSCEVable(V->getType()))
1954 return false;
1955 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
Adam Nemet04563272015-02-01 16:56:15 +00001956}
Adam Nemet7206d7a2015-02-06 18:31:04 +00001957
1958// FIXME: this function is currently a duplicate of the one in
1959// LoopVectorize.cpp.
1960static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1961 Instruction *Loc) {
1962 if (FirstInst)
1963 return FirstInst;
1964 if (Instruction *I = dyn_cast<Instruction>(V))
1965 return I->getParent() == Loc->getParent() ? I : nullptr;
1966 return nullptr;
1967}
1968
Benjamin Kramer039b1042015-10-28 13:54:36 +00001969namespace {
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00001970
Adam Nemet4e533ef2015-08-21 23:19:57 +00001971/// \brief IR Values for the lower and upper bounds of a pointer evolution. We
1972/// need to use value-handles because SCEV expansion can invalidate previously
1973/// expanded values. Thus expansion of a pointer can invalidate the bounds for
1974/// a previous one.
Adam Nemet1da7df32015-07-26 05:32:14 +00001975struct PointerBounds {
Adam Nemet4e533ef2015-08-21 23:19:57 +00001976 TrackingVH<Value> Start;
1977 TrackingVH<Value> End;
Adam Nemet1da7df32015-07-26 05:32:14 +00001978};
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00001979
Benjamin Kramer039b1042015-10-28 13:54:36 +00001980} // end anonymous namespace
Adam Nemet7206d7a2015-02-06 18:31:04 +00001981
Adam Nemet1da7df32015-07-26 05:32:14 +00001982/// \brief Expand code for the lower and upper bound of the pointer group \p CG
1983/// in \p TheLoop. \return the values for the bounds.
1984static PointerBounds
1985expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1986 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1987 const RuntimePointerChecking &PtrRtChecking) {
1988 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1989 const SCEV *Sc = SE->getSCEV(Ptr);
1990
Keno Fischer92f377b2016-12-05 21:25:03 +00001991 unsigned AS = Ptr->getType()->getPointerAddressSpace();
1992 LLVMContext &Ctx = Loc->getContext();
1993
1994 // Use this type for pointer arithmetic.
1995 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1996
Adam Nemet1da7df32015-07-26 05:32:14 +00001997 if (SE->isLoopInvariant(Sc, TheLoop)) {
1998 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1999 << "\n");
Keno Fischer92f377b2016-12-05 21:25:03 +00002000 // Ptr could be in the loop body. If so, expand a new one at the correct
2001 // location.
2002 Instruction *Inst = dyn_cast<Instruction>(Ptr);
2003 Value *NewPtr = (Inst && TheLoop->contains(Inst))
2004 ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
2005 : Ptr;
2006 return {NewPtr, NewPtr};
Adam Nemet1da7df32015-07-26 05:32:14 +00002007 } else {
Adam Nemet1da7df32015-07-26 05:32:14 +00002008 Value *Start = nullptr, *End = nullptr;
Adam Nemet1da7df32015-07-26 05:32:14 +00002009 DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
2010 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
2011 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
2012 DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
2013 return {Start, End};
2014 }
2015}
2016
2017/// \brief Turns a collection of checks into a collection of expanded upper and
2018/// lower bounds for both pointers in the check.
2019static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
2020 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
2021 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
2022 const RuntimePointerChecking &PtrRtChecking) {
2023 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
2024
2025 // Here we're relying on the SCEV Expander's cache to only emit code for the
2026 // same bounds once.
David Majnemer2d006e72016-08-12 04:32:42 +00002027 transform(
2028 PointerChecks, std::back_inserter(ChecksWithBounds),
Adam Nemet1da7df32015-07-26 05:32:14 +00002029 [&](const RuntimePointerChecking::PointerCheck &Check) {
NAKAMURA Takumi94abbbd2015-07-27 01:35:30 +00002030 PointerBounds
2031 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
2032 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
2033 return std::make_pair(First, Second);
Adam Nemet1da7df32015-07-26 05:32:14 +00002034 });
2035
2036 return ChecksWithBounds;
2037}
2038
Adam Nemet5b0a4792015-08-11 00:09:37 +00002039std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
Adam Nemet1da7df32015-07-26 05:32:14 +00002040 Instruction *Loc,
2041 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
2042 const {
Adam Nemet1824e412016-07-13 22:18:51 +00002043 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
Xinliang David Li94734ee2016-07-01 05:59:55 +00002044 auto *SE = PSE->getSE();
Adam Nemet1824e412016-07-13 22:18:51 +00002045 SCEVExpander Exp(*SE, DL, "induction");
Adam Nemet1da7df32015-07-26 05:32:14 +00002046 auto ExpandedChecks =
Xinliang David Lice030ac2016-06-22 23:20:59 +00002047 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
Adam Nemet7206d7a2015-02-06 18:31:04 +00002048
2049 LLVMContext &Ctx = Loc->getContext();
Adam Nemet7206d7a2015-02-06 18:31:04 +00002050 Instruction *FirstInst = nullptr;
Adam Nemet7206d7a2015-02-06 18:31:04 +00002051 IRBuilder<> ChkBuilder(Loc);
2052 // Our instructions might fold to a constant.
2053 Value *MemoryRuntimeCheck = nullptr;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00002054
Adam Nemet1da7df32015-07-26 05:32:14 +00002055 for (const auto &Check : ExpandedChecks) {
2056 const PointerBounds &A = Check.first, &B = Check.second;
Adam Nemetcdb791c2015-08-19 17:24:36 +00002057 // Check if two pointers (A and B) conflict where conflict is computed as:
2058 // start(A) <= end(B) && start(B) <= end(A)
Adam Nemet1da7df32015-07-26 05:32:14 +00002059 unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
2060 unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
Adam Nemet7206d7a2015-02-06 18:31:04 +00002061
Adam Nemet1da7df32015-07-26 05:32:14 +00002062 assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
2063 (AS1 == A.End->getType()->getPointerAddressSpace()) &&
2064 "Trying to bounds check pointers with different address spaces");
Adam Nemet7206d7a2015-02-06 18:31:04 +00002065
Adam Nemet1da7df32015-07-26 05:32:14 +00002066 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
2067 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
Adam Nemet7206d7a2015-02-06 18:31:04 +00002068
Adam Nemet1da7df32015-07-26 05:32:14 +00002069 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
2070 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
2071 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
2072 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
Adam Nemet7206d7a2015-02-06 18:31:04 +00002073
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +00002074 // [A|B].Start points to the first accessed byte under base [A|B].
2075 // [A|B].End points to the last accessed byte, plus one.
2076 // There is no conflict when the intervals are disjoint:
2077 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
2078 //
2079 // bound0 = (B.Start < A.End)
2080 // bound1 = (A.Start < B.End)
2081 // IsConflict = bound0 & bound1
2082 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
Adam Nemet1da7df32015-07-26 05:32:14 +00002083 FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +00002084 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
Adam Nemet1da7df32015-07-26 05:32:14 +00002085 FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
2086 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
2087 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2088 if (MemoryRuntimeCheck) {
2089 IsConflict =
2090 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
Adam Nemet7206d7a2015-02-06 18:31:04 +00002091 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
Adam Nemet7206d7a2015-02-06 18:31:04 +00002092 }
Adam Nemet1da7df32015-07-26 05:32:14 +00002093 MemoryRuntimeCheck = IsConflict;
Adam Nemet7206d7a2015-02-06 18:31:04 +00002094 }
2095
Adam Nemet90fec842015-04-02 17:51:57 +00002096 if (!MemoryRuntimeCheck)
2097 return std::make_pair(nullptr, nullptr);
2098
Adam Nemet7206d7a2015-02-06 18:31:04 +00002099 // We have to do this trickery because the IRBuilder might fold the check to a
2100 // constant expression in which case there is no Instruction anchored in a
2101 // the block.
2102 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
2103 ConstantInt::getTrue(Ctx));
2104 ChkBuilder.Insert(Check, "memcheck.conflict");
2105 FirstInst = getFirstInst(FirstInst, Check, Loc);
2106 return std::make_pair(FirstInst, Check);
2107}
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002108
Adam Nemet5b0a4792015-08-11 00:09:37 +00002109std::pair<Instruction *, Instruction *>
2110LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
Xinliang David Lice030ac2016-06-22 23:20:59 +00002111 if (!PtrRtChecking->Need)
Adam Nemet1da7df32015-07-26 05:32:14 +00002112 return std::make_pair(nullptr, nullptr);
2113
Xinliang David Lice030ac2016-06-22 23:20:59 +00002114 return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
Adam Nemet1da7df32015-07-26 05:32:14 +00002115}
2116
Adam Nemetc953bb92016-06-16 22:57:55 +00002117void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2118 Value *Ptr = nullptr;
2119 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
2120 Ptr = LI->getPointerOperand();
2121 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
2122 Ptr = SI->getPointerOperand();
2123 else
2124 return;
2125
Xinliang David Li94734ee2016-07-01 05:59:55 +00002126 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
Adam Nemetc953bb92016-06-16 22:57:55 +00002127 if (!Stride)
2128 return;
2129
2130 DEBUG(dbgs() << "LAA: Found a strided access that we can version");
2131 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2132 SymbolicStrides[Ptr] = Stride;
2133 StrideSet.insert(Stride);
2134}
2135
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002136LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002137 const TargetLibraryInfo *TLI, AliasAnalysis *AA,
Adam Nemeta9f09c62016-06-17 22:35:41 +00002138 DominatorTree *DT, LoopInfo *LI)
Xinliang David Li94734ee2016-07-01 05:59:55 +00002139 : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)),
Xinliang David Lice030ac2016-06-22 23:20:59 +00002140 PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)),
Xinliang David Li94734ee2016-07-01 05:59:55 +00002141 DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
Adam Nemet7da74ab2016-07-13 22:36:35 +00002142 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
2143 StoreToLoopInvariantAddress(false) {
Adam Nemet929c38e2015-02-19 19:15:10 +00002144 if (canAnalyzeLoop())
Adam Nemet7da74ab2016-07-13 22:36:35 +00002145 analyzeLoop(AA, LI, TLI, DT);
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002146}
2147
Adam Nemete91cc6e2015-02-19 19:15:19 +00002148void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2149 if (CanVecMem) {
Adam Nemet4ad38b62016-05-13 22:49:09 +00002150 OS.indent(Depth) << "Memory dependences are safe";
David Majnemer7afb46d2016-07-07 06:24:36 +00002151 if (MaxSafeDepDistBytes != -1ULL)
Adam Nemetc62e5542016-05-13 22:49:13 +00002152 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2153 << " bytes";
Xinliang David Lice030ac2016-06-22 23:20:59 +00002154 if (PtrRtChecking->Need)
Adam Nemet4ad38b62016-05-13 22:49:09 +00002155 OS << " with run-time checks";
2156 OS << "\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00002157 }
2158
2159 if (Report)
Adam Nemet877ccee2016-09-30 00:01:30 +00002160 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00002161
Xinliang David Lice030ac2016-06-22 23:20:59 +00002162 if (auto *Dependences = DepChecker->getDependences()) {
Adam Nemeta2df7502015-11-03 21:39:52 +00002163 OS.indent(Depth) << "Dependences:\n";
2164 for (auto &Dep : *Dependences) {
Xinliang David Lice030ac2016-06-22 23:20:59 +00002165 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
Adam Nemet58913d62015-03-10 17:40:43 +00002166 OS << "\n";
2167 }
2168 } else
Adam Nemeta2df7502015-11-03 21:39:52 +00002169 OS.indent(Depth) << "Too many dependences, not recorded\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00002170
2171 // List the pair of accesses need run-time checks to prove independence.
Xinliang David Lice030ac2016-06-22 23:20:59 +00002172 PtrRtChecking->print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00002173 OS << "\n";
Adam Nemetc3384322015-05-18 15:36:57 +00002174
2175 OS.indent(Depth) << "Store to invariant address was "
2176 << (StoreToLoopInvariantAddress ? "" : "not ")
2177 << "found in loop.\n";
Silviu Barangae3c05342015-11-02 14:41:02 +00002178
2179 OS.indent(Depth) << "SCEV assumptions:\n";
Xinliang David Li94734ee2016-07-01 05:59:55 +00002180 PSE->getUnionPredicate().print(OS, Depth);
Silviu Barangab77365b2016-04-14 16:08:45 +00002181
2182 OS << "\n";
2183
2184 OS.indent(Depth) << "Expressions re-written:\n";
Xinliang David Li94734ee2016-07-01 05:59:55 +00002185 PSE->print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00002186}
2187
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002188const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002189 auto &LAI = LoopAccessInfoMap[L];
2190
Adam Nemet1824e412016-07-13 22:18:51 +00002191 if (!LAI)
2192 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
2193
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002194 return *LAI.get();
2195}
2196
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002197void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
2198 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
Xinliang David Liecde1c72016-06-09 03:22:39 +00002199
Adam Nemete91cc6e2015-02-19 19:15:19 +00002200 for (Loop *TopLevelLoop : *LI)
2201 for (Loop *L : depth_first(TopLevelLoop)) {
2202 OS.indent(2) << L->getHeader()->getName() << ":\n";
Adam Nemetbdbc5222016-06-16 08:26:56 +00002203 auto &LAI = LAA.getInfo(L);
Adam Nemete91cc6e2015-02-19 19:15:19 +00002204 LAI.print(OS, 4);
2205 }
2206}
2207
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002208bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
Xinliang David Liecde1c72016-06-09 03:22:39 +00002209 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002210 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
Xinliang David Liecde1c72016-06-09 03:22:39 +00002211 TLI = TLIP ? &TLIP->getTLI() : nullptr;
2212 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2213 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2214 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002215
2216 return false;
2217}
2218
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002219void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002220 AU.addRequired<ScalarEvolutionWrapperPass>();
Chandler Carruth7b560d42015-09-09 17:55:00 +00002221 AU.addRequired<AAResultsWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002222 AU.addRequired<DominatorTreeWrapperPass>();
Adam Nemete91cc6e2015-02-19 19:15:19 +00002223 AU.addRequired<LoopInfoWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002224
2225 AU.setPreservesAll();
2226}
2227
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002228char LoopAccessLegacyAnalysis::ID = 0;
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002229static const char laa_name[] = "Loop Access Analysis";
2230#define LAA_NAME "loop-accesses"
2231
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002232INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
Chandler Carruth7b560d42015-09-09 17:55:00 +00002233INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002234INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002235INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Adam Nemete91cc6e2015-02-19 19:15:19 +00002236INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002237INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002238
Chandler Carruthdab4eae2016-11-23 17:53:26 +00002239AnalysisKey LoopAccessAnalysis::Key;
Xinliang David Li8a021312016-07-02 21:18:40 +00002240
Chandler Carruth410eaeb2017-01-11 06:23:21 +00002241LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2242 LoopStandardAnalysisResults &AR) {
2243 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
Xinliang David Li8a021312016-07-02 21:18:40 +00002244}
2245
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002246namespace llvm {
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00002247
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002248 Pass *createLAAPass() {
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002249 return new LoopAccessLegacyAnalysis();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002250 }
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00002251
2252} // end namespace llvm