blob: 713f0e52d92cb727112c9c49de2d3c2d137b0b7d [file] [log] [blame]
Chris Lattner158e1f52006-02-05 05:50:24 +00001//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// HasV9 - This predicate is true when the target processor supports V9
25// instructions. Note that the machine may be running in 32-bit mode.
26def HasV9 : Predicate<"Subtarget.isV9()">;
27
28// HasNoV9 - This predicate is true when the target doesn't have V9
29// instructions. Use of this is just a hack for the isel not having proper
30// costs for V8 instructions that are more expensive than their V9 ones.
31def HasNoV9 : Predicate<"!Subtarget.isV9()">;
32
33// HasVIS - This is true when the target processor has VIS extensions.
34def HasVIS : Predicate<"Subtarget.isVIS()">;
35
36// UseDeprecatedInsts - This predicate is true when the target processor is a
37// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
38// to use when appropriate. In either of these cases, the instruction selector
39// will pick deprecated instructions.
40def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
41
42//===----------------------------------------------------------------------===//
43// Instruction Pattern Stuff
44//===----------------------------------------------------------------------===//
45
46def simm11 : PatLeaf<(imm), [{
47 // simm11 predicate - True if the imm fits in a 11-bit sign extended field.
48 return (((int)N->getValue() << (32-11)) >> (32-11)) == (int)N->getValue();
49}]>;
50
51def simm13 : PatLeaf<(imm), [{
52 // simm13 predicate - True if the imm fits in a 13-bit sign extended field.
53 return (((int)N->getValue() << (32-13)) >> (32-13)) == (int)N->getValue();
54}]>;
55
56def LO10 : SDNodeXForm<imm, [{
57 return CurDAG->getTargetConstant((unsigned)N->getValue() & 1023, MVT::i32);
58}]>;
59
60def HI22 : SDNodeXForm<imm, [{
61 // Transformation function: shift the immediate value down into the low bits.
62 return CurDAG->getTargetConstant((unsigned)N->getValue() >> 10, MVT::i32);
63}]>;
64
65def SETHIimm : PatLeaf<(imm), [{
66 return (((unsigned)N->getValue() >> 10) << 10) == (unsigned)N->getValue();
67}], HI22>;
68
69// Addressing modes.
Evan Cheng577ef762006-10-11 21:03:53 +000070def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
71def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
Chris Lattner158e1f52006-02-05 05:50:24 +000072
73// Address operands
74def MEMrr : Operand<i32> {
75 let PrintMethod = "printMemOperand";
76 let NumMIOperands = 2;
77 let MIOperandInfo = (ops IntRegs, IntRegs);
78}
79def MEMri : Operand<i32> {
80 let PrintMethod = "printMemOperand";
81 let NumMIOperands = 2;
82 let MIOperandInfo = (ops IntRegs, i32imm);
83}
84
85// Branch targets have OtherVT type.
86def brtarget : Operand<OtherVT>;
87def calltarget : Operand<i32>;
88
89// Operand for printing out a condition code.
90let PrintMethod = "printCCOperand" in
91 def CCOp : Operand<i32>;
92
93def SDTSPcmpfcc :
Chris Lattner0c4dea42006-02-10 06:58:25 +000094SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
Chris Lattner158e1f52006-02-05 05:50:24 +000095def SDTSPbrcc :
Chris Lattner0c4dea42006-02-10 06:58:25 +000096SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
Chris Lattner158e1f52006-02-05 05:50:24 +000097def SDTSPselectcc :
Chris Lattner0c4dea42006-02-10 06:58:25 +000098SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
Chris Lattner158e1f52006-02-05 05:50:24 +000099def SDTSPFTOI :
100SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
101def SDTSPITOF :
102SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
103
104def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutFlag]>;
105def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutFlag]>;
Chris Lattner0c4dea42006-02-10 06:58:25 +0000106def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
107def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000108
109def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
110def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
111
112def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>;
113def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>;
114
Chris Lattner0c4dea42006-02-10 06:58:25 +0000115def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInFlag]>;
116def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInFlag]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000117
118// These are target-independent nodes, but have target-specific formats.
119def SDT_SPCallSeq : SDTypeProfile<0, 1, [ SDTCisVT<0, i32> ]>;
Evan Cheng81b645a2006-08-11 09:03:33 +0000120def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeq,
121 [SDNPHasChain, SDNPOutFlag]>;
122def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeq,
123 [SDNPHasChain, SDNPOutFlag]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000124
125def SDT_SPCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
126def call : SDNode<"SPISD::CALL", SDT_SPCall,
127 [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
128
129def SDT_SPRetFlag : SDTypeProfile<0, 0, []>;
130def retflag : SDNode<"SPISD::RET_FLAG", SDT_SPRetFlag,
131 [SDNPHasChain, SDNPOptInFlag]>;
132
133//===----------------------------------------------------------------------===//
134// SPARC Flag Conditions
135//===----------------------------------------------------------------------===//
136
137// Note that these values must be kept in sync with the CCOp::CondCode enum
138// values.
139class ICC_VAL<int N> : PatLeaf<(i32 N)>;
140def ICC_NE : ICC_VAL< 9>; // Not Equal
141def ICC_E : ICC_VAL< 1>; // Equal
142def ICC_G : ICC_VAL<10>; // Greater
143def ICC_LE : ICC_VAL< 2>; // Less or Equal
144def ICC_GE : ICC_VAL<11>; // Greater or Equal
145def ICC_L : ICC_VAL< 3>; // Less
146def ICC_GU : ICC_VAL<12>; // Greater Unsigned
147def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned
148def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned
149def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned
150def ICC_POS : ICC_VAL<14>; // Positive
151def ICC_NEG : ICC_VAL< 6>; // Negative
152def ICC_VC : ICC_VAL<15>; // Overflow Clear
153def ICC_VS : ICC_VAL< 7>; // Overflow Set
154
155class FCC_VAL<int N> : PatLeaf<(i32 N)>;
156def FCC_U : FCC_VAL<23>; // Unordered
157def FCC_G : FCC_VAL<22>; // Greater
158def FCC_UG : FCC_VAL<21>; // Unordered or Greater
159def FCC_L : FCC_VAL<20>; // Less
160def FCC_UL : FCC_VAL<19>; // Unordered or Less
161def FCC_LG : FCC_VAL<18>; // Less or Greater
162def FCC_NE : FCC_VAL<17>; // Not Equal
163def FCC_E : FCC_VAL<25>; // Equal
164def FCC_UE : FCC_VAL<24>; // Unordered or Equal
165def FCC_GE : FCC_VAL<25>; // Greater or Equal
166def FCC_UGE : FCC_VAL<26>; // Unordered or Greater or Equal
167def FCC_LE : FCC_VAL<27>; // Less or Equal
168def FCC_ULE : FCC_VAL<28>; // Unordered or Less or Equal
169def FCC_O : FCC_VAL<29>; // Ordered
170
Chris Lattnerbad9d2e2006-09-01 22:28:02 +0000171//===----------------------------------------------------------------------===//
172// Instruction Class Templates
173//===----------------------------------------------------------------------===//
174
175/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
176multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
177 def rr : F3_1<2, Op3Val,
178 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
179 !strconcat(OpcStr, " $b, $c, $dst"),
180 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
181 def ri : F3_2<2, Op3Val,
182 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
183 !strconcat(OpcStr, " $b, $c, $dst"),
184 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
185}
186
187/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
188/// pattern.
189multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
190 def rr : F3_1<2, Op3Val,
191 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
192 !strconcat(OpcStr, " $b, $c, $dst"), []>;
193 def ri : F3_2<2, Op3Val,
194 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
195 !strconcat(OpcStr, " $b, $c, $dst"), []>;
196}
Chris Lattner158e1f52006-02-05 05:50:24 +0000197
198//===----------------------------------------------------------------------===//
199// Instructions
200//===----------------------------------------------------------------------===//
201
202// Pseudo instructions.
203class Pseudo<dag ops, string asmstr, list<dag> pattern>
204 : InstSP<ops, asmstr, pattern>;
205
206def ADJCALLSTACKDOWN : Pseudo<(ops i32imm:$amt),
207 "!ADJCALLSTACKDOWN $amt",
208 [(callseq_start imm:$amt)]>;
209def ADJCALLSTACKUP : Pseudo<(ops i32imm:$amt),
210 "!ADJCALLSTACKUP $amt",
211 [(callseq_end imm:$amt)]>;
212def IMPLICIT_DEF_Int : Pseudo<(ops IntRegs:$dst),
213 "!IMPLICIT_DEF $dst",
214 [(set IntRegs:$dst, (undef))]>;
215def IMPLICIT_DEF_FP : Pseudo<(ops FPRegs:$dst), "!IMPLICIT_DEF $dst",
216 [(set FPRegs:$dst, (undef))]>;
217def IMPLICIT_DEF_DFP : Pseudo<(ops DFPRegs:$dst), "!IMPLICIT_DEF $dst",
218 [(set DFPRegs:$dst, (undef))]>;
219
220// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the
221// fpmover pass.
Chris Lattner747cf602006-02-21 18:04:32 +0000222let Predicates = [HasNoV9] in { // Only emit these in V8 mode.
Chris Lattner158e1f52006-02-05 05:50:24 +0000223 def FpMOVD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
224 "!FpMOVD $src, $dst", []>;
225 def FpNEGD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
226 "!FpNEGD $src, $dst",
227 [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
228 def FpABSD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
229 "!FpABSD $src, $dst",
230 [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
231}
232
233// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded by the
234// scheduler into a branch sequence. This has to handle all permutations of
235// selection between i32/f32/f64 on ICC and FCC.
Chris Lattner747cf602006-02-21 18:04:32 +0000236let usesCustomDAGSchedInserter = 1 in { // Expanded by the scheduler.
Chris Lattner158e1f52006-02-05 05:50:24 +0000237 def SELECT_CC_Int_ICC
238 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
239 "; SELECT_CC_Int_ICC PSEUDO!",
240 [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000241 imm:$Cond))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000242 def SELECT_CC_Int_FCC
243 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
244 "; SELECT_CC_Int_FCC PSEUDO!",
245 [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000246 imm:$Cond))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000247 def SELECT_CC_FP_ICC
248 : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
249 "; SELECT_CC_FP_ICC PSEUDO!",
250 [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000251 imm:$Cond))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000252 def SELECT_CC_FP_FCC
253 : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
254 "; SELECT_CC_FP_FCC PSEUDO!",
255 [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000256 imm:$Cond))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000257 def SELECT_CC_DFP_ICC
258 : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
259 "; SELECT_CC_DFP_ICC PSEUDO!",
260 [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000261 imm:$Cond))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000262 def SELECT_CC_DFP_FCC
263 : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
264 "; SELECT_CC_DFP_FCC PSEUDO!",
265 [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000266 imm:$Cond))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000267}
268
269
270// Section A.3 - Synthetic Instructions, p. 85
271// special cases of JMPL:
272let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, noResults = 1 in {
273 let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
274 def RETL: F3_2<2, 0b111000, (ops), "retl", [(retflag)]>;
275}
276
277// Section B.1 - Load Integer Instructions, p. 90
278def LDSBrr : F3_1<3, 0b001001,
279 (ops IntRegs:$dst, MEMrr:$addr),
280 "ldsb [$addr], $dst",
Evan Chenge71fe34d2006-10-09 20:57:25 +0000281 [(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000282def LDSBri : F3_2<3, 0b001001,
283 (ops IntRegs:$dst, MEMri:$addr),
284 "ldsb [$addr], $dst",
Evan Chenge71fe34d2006-10-09 20:57:25 +0000285 [(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000286def LDSHrr : F3_1<3, 0b001010,
287 (ops IntRegs:$dst, MEMrr:$addr),
288 "ldsh [$addr], $dst",
Evan Chenge71fe34d2006-10-09 20:57:25 +0000289 [(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000290def LDSHri : F3_2<3, 0b001010,
291 (ops IntRegs:$dst, MEMri:$addr),
292 "ldsh [$addr], $dst",
Evan Chenge71fe34d2006-10-09 20:57:25 +0000293 [(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000294def LDUBrr : F3_1<3, 0b000001,
295 (ops IntRegs:$dst, MEMrr:$addr),
296 "ldub [$addr], $dst",
Evan Chenge71fe34d2006-10-09 20:57:25 +0000297 [(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000298def LDUBri : F3_2<3, 0b000001,
299 (ops IntRegs:$dst, MEMri:$addr),
300 "ldub [$addr], $dst",
Evan Chenge71fe34d2006-10-09 20:57:25 +0000301 [(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000302def LDUHrr : F3_1<3, 0b000010,
303 (ops IntRegs:$dst, MEMrr:$addr),
304 "lduh [$addr], $dst",
Evan Chenge71fe34d2006-10-09 20:57:25 +0000305 [(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000306def LDUHri : F3_2<3, 0b000010,
307 (ops IntRegs:$dst, MEMri:$addr),
308 "lduh [$addr], $dst",
Evan Chenge71fe34d2006-10-09 20:57:25 +0000309 [(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000310def LDrr : F3_1<3, 0b000000,
311 (ops IntRegs:$dst, MEMrr:$addr),
312 "ld [$addr], $dst",
313 [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
314def LDri : F3_2<3, 0b000000,
315 (ops IntRegs:$dst, MEMri:$addr),
316 "ld [$addr], $dst",
317 [(set IntRegs:$dst, (load ADDRri:$addr))]>;
318
319// Section B.2 - Load Floating-point Instructions, p. 92
320def LDFrr : F3_1<3, 0b100000,
321 (ops FPRegs:$dst, MEMrr:$addr),
322 "ld [$addr], $dst",
323 [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
324def LDFri : F3_2<3, 0b100000,
325 (ops FPRegs:$dst, MEMri:$addr),
326 "ld [$addr], $dst",
327 [(set FPRegs:$dst, (load ADDRri:$addr))]>;
328def LDDFrr : F3_1<3, 0b100011,
329 (ops DFPRegs:$dst, MEMrr:$addr),
330 "ldd [$addr], $dst",
331 [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
332def LDDFri : F3_2<3, 0b100011,
333 (ops DFPRegs:$dst, MEMri:$addr),
334 "ldd [$addr], $dst",
335 [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
336
337// Section B.4 - Store Integer Instructions, p. 95
338def STBrr : F3_1<3, 0b000101,
339 (ops MEMrr:$addr, IntRegs:$src),
340 "stb $src, [$addr]",
341 [(truncstore IntRegs:$src, ADDRrr:$addr, i8)]>;
342def STBri : F3_2<3, 0b000101,
343 (ops MEMri:$addr, IntRegs:$src),
344 "stb $src, [$addr]",
345 [(truncstore IntRegs:$src, ADDRri:$addr, i8)]>;
346def STHrr : F3_1<3, 0b000110,
347 (ops MEMrr:$addr, IntRegs:$src),
348 "sth $src, [$addr]",
349 [(truncstore IntRegs:$src, ADDRrr:$addr, i16)]>;
350def STHri : F3_2<3, 0b000110,
351 (ops MEMri:$addr, IntRegs:$src),
352 "sth $src, [$addr]",
353 [(truncstore IntRegs:$src, ADDRri:$addr, i16)]>;
354def STrr : F3_1<3, 0b000100,
355 (ops MEMrr:$addr, IntRegs:$src),
356 "st $src, [$addr]",
357 [(store IntRegs:$src, ADDRrr:$addr)]>;
358def STri : F3_2<3, 0b000100,
359 (ops MEMri:$addr, IntRegs:$src),
360 "st $src, [$addr]",
361 [(store IntRegs:$src, ADDRri:$addr)]>;
362
363// Section B.5 - Store Floating-point Instructions, p. 97
364def STFrr : F3_1<3, 0b100100,
365 (ops MEMrr:$addr, FPRegs:$src),
366 "st $src, [$addr]",
367 [(store FPRegs:$src, ADDRrr:$addr)]>;
368def STFri : F3_2<3, 0b100100,
369 (ops MEMri:$addr, FPRegs:$src),
370 "st $src, [$addr]",
371 [(store FPRegs:$src, ADDRri:$addr)]>;
372def STDFrr : F3_1<3, 0b100111,
373 (ops MEMrr:$addr, DFPRegs:$src),
374 "std $src, [$addr]",
375 [(store DFPRegs:$src, ADDRrr:$addr)]>;
376def STDFri : F3_2<3, 0b100111,
377 (ops MEMri:$addr, DFPRegs:$src),
378 "std $src, [$addr]",
379 [(store DFPRegs:$src, ADDRri:$addr)]>;
380
381// Section B.9 - SETHI Instruction, p. 104
382def SETHIi: F2_1<0b100,
383 (ops IntRegs:$dst, i32imm:$src),
384 "sethi $src, $dst",
385 [(set IntRegs:$dst, SETHIimm:$src)]>;
386
387// Section B.10 - NOP Instruction, p. 105
388// (It's a special case of SETHI)
389let rd = 0, imm22 = 0 in
390 def NOP : F2_1<0b100, (ops), "nop", []>;
391
392// Section B.11 - Logical Instructions, p. 106
Chris Lattnerbad9d2e2006-09-01 22:28:02 +0000393defm AND : F3_12<"and", 0b000001, and>;
394
Chris Lattner158e1f52006-02-05 05:50:24 +0000395def ANDNrr : F3_1<2, 0b000101,
396 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
397 "andn $b, $c, $dst",
398 [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
399def ANDNri : F3_2<2, 0b000101,
400 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
401 "andn $b, $c, $dst", []>;
Chris Lattnerbad9d2e2006-09-01 22:28:02 +0000402
403defm OR : F3_12<"or", 0b000010, or>;
404
Chris Lattner158e1f52006-02-05 05:50:24 +0000405def ORNrr : F3_1<2, 0b000110,
406 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
407 "orn $b, $c, $dst",
408 [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
409def ORNri : F3_2<2, 0b000110,
410 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
411 "orn $b, $c, $dst", []>;
Chris Lattnerbad9d2e2006-09-01 22:28:02 +0000412defm XOR : F3_12<"xor", 0b000011, xor>;
413
Chris Lattner158e1f52006-02-05 05:50:24 +0000414def XNORrr : F3_1<2, 0b000111,
415 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
416 "xnor $b, $c, $dst",
417 [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
418def XNORri : F3_2<2, 0b000111,
419 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
420 "xnor $b, $c, $dst", []>;
421
422// Section B.12 - Shift Instructions, p. 107
Chris Lattnerbad9d2e2006-09-01 22:28:02 +0000423defm SLL : F3_12<"sll", 0b100101, shl>;
424defm SRL : F3_12<"srl", 0b100110, srl>;
425defm SRA : F3_12<"sra", 0b100111, sra>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000426
427// Section B.13 - Add Instructions, p. 108
Chris Lattnerbad9d2e2006-09-01 22:28:02 +0000428defm ADD : F3_12<"add", 0b000000, add>;
Chris Lattnerfcb8a3a2006-02-10 07:35:42 +0000429
430// "LEA" forms of add (patterns to make tblgen happy)
431def LEA_ADDri : F3_2<2, 0b000000,
432 (ops IntRegs:$dst, MEMri:$addr),
433 "add ${addr:arith}, $dst",
434 [(set IntRegs:$dst, ADDRri:$addr)]>;
435
Chris Lattnerbad9d2e2006-09-01 22:28:02 +0000436defm ADDCC : F3_12<"addcc", 0b010000, addc>;
437defm ADDX : F3_12<"addx", 0b001000, adde>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000438
439// Section B.15 - Subtract Instructions, p. 110
Chris Lattnerbad9d2e2006-09-01 22:28:02 +0000440defm SUB : F3_12 <"sub" , 0b000100, sub>;
441defm SUBX : F3_12 <"subx" , 0b001100, sube>;
442defm SUBCC : F3_12 <"subcc", 0b010100, SPcmpicc>;
443
Chris Lattner158e1f52006-02-05 05:50:24 +0000444def SUBXCCrr: F3_1<2, 0b011100,
445 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
446 "subxcc $b, $c, $dst", []>;
447
448// Section B.18 - Multiply Instructions, p. 113
Chris Lattnerbad9d2e2006-09-01 22:28:02 +0000449defm UMUL : F3_12np<"umul", 0b001010>;
450defm SMUL : F3_12 <"smul", 0b001011, mul>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000451
Chris Lattnerc75d5b02006-02-09 05:06:36 +0000452
Chris Lattner158e1f52006-02-05 05:50:24 +0000453// Section B.19 - Divide Instructions, p. 115
Chris Lattnerbad9d2e2006-09-01 22:28:02 +0000454defm UDIV : F3_12np<"udiv", 0b001110>;
455defm SDIV : F3_12np<"sdiv", 0b001111>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000456
457// Section B.20 - SAVE and RESTORE, p. 117
Chris Lattnerbad9d2e2006-09-01 22:28:02 +0000458defm SAVE : F3_12np<"save" , 0b111100>;
459defm RESTORE : F3_12np<"restore", 0b111101>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000460
461// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
462
463// conditional branch class:
464class BranchSP<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
465 : F2_2<cc, 0b010, ops, asmstr, pattern> {
466 let isBranch = 1;
467 let isTerminator = 1;
468 let hasDelaySlot = 1;
469 let noResults = 1;
470}
471
472let isBarrier = 1 in
473 def BA : BranchSP<0b1000, (ops brtarget:$dst),
474 "ba $dst",
475 [(br bb:$dst)]>;
476
477// FIXME: the encoding for the JIT should look at the condition field.
478def BCOND : BranchSP<0, (ops brtarget:$dst, CCOp:$cc),
479 "b$cc $dst",
Chris Lattner0c4dea42006-02-10 06:58:25 +0000480 [(SPbricc bb:$dst, imm:$cc)]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000481
482
483// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
484
485// floating-point conditional branch class:
486class FPBranchSP<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
487 : F2_2<cc, 0b110, ops, asmstr, pattern> {
488 let isBranch = 1;
489 let isTerminator = 1;
490 let hasDelaySlot = 1;
491 let noResults = 1;
492}
493
494// FIXME: the encoding for the JIT should look at the condition field.
495def FBCOND : FPBranchSP<0, (ops brtarget:$dst, CCOp:$cc),
496 "fb$cc $dst",
Chris Lattner0c4dea42006-02-10 06:58:25 +0000497 [(SPbrfcc bb:$dst, imm:$cc)]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000498
499
500// Section B.24 - Call and Link Instruction, p. 125
501// This is the only Format 1 instruction
502let Uses = [O0, O1, O2, O3, O4, O5],
503 hasDelaySlot = 1, isCall = 1, noResults = 1,
504 Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
505 D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in {
506 def CALL : InstSP<(ops calltarget:$dst),
507 "call $dst", []> {
508 bits<30> disp;
509 let op = 1;
510 let Inst{29-0} = disp;
511 }
512
513 // indirect calls
514 def JMPLrr : F3_1<2, 0b111000,
515 (ops MEMrr:$ptr),
516 "call $ptr",
517 [(call ADDRrr:$ptr)]>;
518 def JMPLri : F3_2<2, 0b111000,
519 (ops MEMri:$ptr),
520 "call $ptr",
521 [(call ADDRri:$ptr)]>;
522}
523
524// Section B.28 - Read State Register Instructions
525def RDY : F3_1<2, 0b101000,
526 (ops IntRegs:$dst),
527 "rd %y, $dst", []>;
528
529// Section B.29 - Write State Register Instructions
530def WRYrr : F3_1<2, 0b110000,
531 (ops IntRegs:$b, IntRegs:$c),
532 "wr $b, $c, %y", []>;
533def WRYri : F3_2<2, 0b110000,
534 (ops IntRegs:$b, i32imm:$c),
535 "wr $b, $c, %y", []>;
536
537// Convert Integer to Floating-point Instructions, p. 141
538def FITOS : F3_3<2, 0b110100, 0b011000100,
539 (ops FPRegs:$dst, FPRegs:$src),
540 "fitos $src, $dst",
541 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
542def FITOD : F3_3<2, 0b110100, 0b011001000,
543 (ops DFPRegs:$dst, FPRegs:$src),
544 "fitod $src, $dst",
545 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
546
547// Convert Floating-point to Integer Instructions, p. 142
548def FSTOI : F3_3<2, 0b110100, 0b011010001,
549 (ops FPRegs:$dst, FPRegs:$src),
550 "fstoi $src, $dst",
551 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
552def FDTOI : F3_3<2, 0b110100, 0b011010010,
553 (ops FPRegs:$dst, DFPRegs:$src),
554 "fdtoi $src, $dst",
555 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
556
557// Convert between Floating-point Formats Instructions, p. 143
558def FSTOD : F3_3<2, 0b110100, 0b011001001,
559 (ops DFPRegs:$dst, FPRegs:$src),
560 "fstod $src, $dst",
561 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
562def FDTOS : F3_3<2, 0b110100, 0b011000110,
563 (ops FPRegs:$dst, DFPRegs:$src),
564 "fdtos $src, $dst",
565 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
566
567// Floating-point Move Instructions, p. 144
568def FMOVS : F3_3<2, 0b110100, 0b000000001,
569 (ops FPRegs:$dst, FPRegs:$src),
570 "fmovs $src, $dst", []>;
571def FNEGS : F3_3<2, 0b110100, 0b000000101,
572 (ops FPRegs:$dst, FPRegs:$src),
573 "fnegs $src, $dst",
574 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
575def FABSS : F3_3<2, 0b110100, 0b000001001,
576 (ops FPRegs:$dst, FPRegs:$src),
577 "fabss $src, $dst",
578 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
579
580
581// Floating-point Square Root Instructions, p.145
582def FSQRTS : F3_3<2, 0b110100, 0b000101001,
583 (ops FPRegs:$dst, FPRegs:$src),
584 "fsqrts $src, $dst",
585 [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
586def FSQRTD : F3_3<2, 0b110100, 0b000101010,
587 (ops DFPRegs:$dst, DFPRegs:$src),
588 "fsqrtd $src, $dst",
589 [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
590
591
592
593// Floating-point Add and Subtract Instructions, p. 146
594def FADDS : F3_3<2, 0b110100, 0b001000001,
595 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
596 "fadds $src1, $src2, $dst",
597 [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
598def FADDD : F3_3<2, 0b110100, 0b001000010,
599 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
600 "faddd $src1, $src2, $dst",
601 [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
602def FSUBS : F3_3<2, 0b110100, 0b001000101,
603 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
604 "fsubs $src1, $src2, $dst",
605 [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
606def FSUBD : F3_3<2, 0b110100, 0b001000110,
607 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
608 "fsubd $src1, $src2, $dst",
609 [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
610
611// Floating-point Multiply and Divide Instructions, p. 147
612def FMULS : F3_3<2, 0b110100, 0b001001001,
613 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
614 "fmuls $src1, $src2, $dst",
615 [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
616def FMULD : F3_3<2, 0b110100, 0b001001010,
617 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
618 "fmuld $src1, $src2, $dst",
619 [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
620def FSMULD : F3_3<2, 0b110100, 0b001101001,
621 (ops DFPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
622 "fsmuld $src1, $src2, $dst",
623 [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
624 (fextend FPRegs:$src2)))]>;
625def FDIVS : F3_3<2, 0b110100, 0b001001101,
626 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
627 "fdivs $src1, $src2, $dst",
628 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
629def FDIVD : F3_3<2, 0b110100, 0b001001110,
630 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
631 "fdivd $src1, $src2, $dst",
632 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
633
634// Floating-point Compare Instructions, p. 148
635// Note: the 2nd template arg is different for these guys.
636// Note 2: the result of a FCMP is not available until the 2nd cycle
637// after the instr is retired, but there is no interlock. This behavior
638// is modelled with a forced noop after the instruction.
639def FCMPS : F3_3<2, 0b110101, 0b001010001,
640 (ops FPRegs:$src1, FPRegs:$src2),
641 "fcmps $src1, $src2\n\tnop",
Chris Lattner0c4dea42006-02-10 06:58:25 +0000642 [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000643def FCMPD : F3_3<2, 0b110101, 0b001010010,
644 (ops DFPRegs:$src1, DFPRegs:$src2),
645 "fcmpd $src1, $src2\n\tnop",
Chris Lattner0c4dea42006-02-10 06:58:25 +0000646 [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000647
648
649//===----------------------------------------------------------------------===//
650// V9 Instructions
651//===----------------------------------------------------------------------===//
652
653// V9 Conditional Moves.
654let Predicates = [HasV9], isTwoAddress = 1 in {
655 // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
656 // FIXME: Add instruction encodings for the JIT some day.
657 def MOVICCrr
658 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, CCOp:$cc),
659 "mov$cc %icc, $F, $dst",
660 [(set IntRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000661 (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000662 def MOVICCri
663 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, CCOp:$cc),
664 "mov$cc %icc, $F, $dst",
665 [(set IntRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000666 (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000667
668 def MOVFCCrr
669 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, CCOp:$cc),
670 "mov$cc %fcc0, $F, $dst",
671 [(set IntRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000672 (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000673 def MOVFCCri
674 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, CCOp:$cc),
675 "mov$cc %fcc0, $F, $dst",
676 [(set IntRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000677 (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000678
679 def FMOVS_ICC
680 : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, CCOp:$cc),
681 "fmovs$cc %icc, $F, $dst",
682 [(set FPRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000683 (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000684 def FMOVD_ICC
685 : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
686 "fmovd$cc %icc, $F, $dst",
687 [(set DFPRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000688 (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000689 def FMOVS_FCC
690 : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, CCOp:$cc),
691 "fmovs$cc %fcc0, $F, $dst",
692 [(set FPRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000693 (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000694 def FMOVD_FCC
695 : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
696 "fmovd$cc %fcc0, $F, $dst",
697 [(set DFPRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000698 (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000699
700}
701
702// Floating-Point Move Instructions, p. 164 of the V9 manual.
703let Predicates = [HasV9] in {
704 def FMOVD : F3_3<2, 0b110100, 0b000000010,
705 (ops DFPRegs:$dst, DFPRegs:$src),
706 "fmovd $src, $dst", []>;
707 def FNEGD : F3_3<2, 0b110100, 0b000000110,
708 (ops DFPRegs:$dst, DFPRegs:$src),
709 "fnegd $src, $dst",
710 [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
711 def FABSD : F3_3<2, 0b110100, 0b000001010,
712 (ops DFPRegs:$dst, DFPRegs:$src),
713 "fabsd $src, $dst",
714 [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
715}
716
717// POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear
718// the top 32-bits before using it. To do this clearing, we use a SLLri X,0.
719def POPCrr : F3_1<2, 0b101110,
720 (ops IntRegs:$dst, IntRegs:$src),
721 "popc $src, $dst", []>, Requires<[HasV9]>;
722def : Pat<(ctpop IntRegs:$src),
723 (POPCrr (SLLri IntRegs:$src, 0))>;
724
725//===----------------------------------------------------------------------===//
726// Non-Instruction Patterns
727//===----------------------------------------------------------------------===//
728
729// Small immediates.
730def : Pat<(i32 simm13:$val),
731 (ORri G0, imm:$val)>;
732// Arbitrary immediates.
733def : Pat<(i32 imm:$val),
734 (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
735
Nate Begeman5965bd12006-02-17 05:43:56 +0000736// subc
737def : Pat<(subc IntRegs:$b, IntRegs:$c),
738 (SUBCCrr IntRegs:$b, IntRegs:$c)>;
739def : Pat<(subc IntRegs:$b, simm13:$val),
740 (SUBCCri IntRegs:$b, imm:$val)>;
741
Chris Lattner158e1f52006-02-05 05:50:24 +0000742// Global addresses, constant pool entries
743def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
744def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
745def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
746def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
747
748// Add reg, lo. This is used when taking the addr of a global/constpool entry.
749def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
750 (ADDri IntRegs:$r, tglobaladdr:$in)>;
751def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
752 (ADDri IntRegs:$r, tconstpool:$in)>;
753
Chris Lattner158e1f52006-02-05 05:50:24 +0000754// Calls:
755def : Pat<(call tglobaladdr:$dst),
756 (CALL tglobaladdr:$dst)>;
Chris Lattnerfcb8a3a2006-02-10 07:35:42 +0000757def : Pat<(call texternalsym:$dst),
758 (CALL texternalsym:$dst)>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000759
760def : Pat<(ret), (RETL)>;
761
762// Map integer extload's to zextloads.
Evan Chenge71fe34d2006-10-09 20:57:25 +0000763def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
764def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
765def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
766def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
767def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
768def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000769
770// zextload bool -> zextload byte
Evan Chenge71fe34d2006-10-09 20:57:25 +0000771def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
772def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000773
774// truncstore bool -> truncstore byte.
775def : Pat<(truncstore IntRegs:$src, ADDRrr:$addr, i1),
776 (STBrr ADDRrr:$addr, IntRegs:$src)>;
777def : Pat<(truncstore IntRegs:$src, ADDRri:$addr, i1),
778 (STBri ADDRri:$addr, IntRegs:$src)>;