blob: f3213989fe823533d72888e56b55e78a261223d7 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
200``linker_private``
201 Similar to ``private``, but the symbol is passed through the
202 assembler and evaluated by the linker. Unlike normal strong symbols,
203 they are removed by the linker from the final linked image
204 (executable or dynamic library).
205``linker_private_weak``
206 Similar to "``linker_private``", but the symbol is weak. Note that
207 ``linker_private_weak`` symbols are subject to coalescing by the
208 linker. The symbols are removed by the linker from the final linked
209 image (executable or dynamic library).
210``internal``
211 Similar to private, but the value shows as a local symbol
212 (``STB_LOCAL`` in the case of ELF) in the object file. This
213 corresponds to the notion of the '``static``' keyword in C.
214``available_externally``
215 Globals with "``available_externally``" linkage are never emitted
216 into the object file corresponding to the LLVM module. They exist to
217 allow inlining and other optimizations to take place given knowledge
218 of the definition of the global, which is known to be somewhere
219 outside the module. Globals with ``available_externally`` linkage
220 are allowed to be discarded at will, and are otherwise the same as
221 ``linkonce_odr``. This linkage type is only allowed on definitions,
222 not declarations.
223``linkonce``
224 Globals with "``linkonce``" linkage are merged with other globals of
225 the same name when linkage occurs. This can be used to implement
226 some forms of inline functions, templates, or other code which must
227 be generated in each translation unit that uses it, but where the
228 body may be overridden with a more definitive definition later.
229 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
230 that ``linkonce`` linkage does not actually allow the optimizer to
231 inline the body of this function into callers because it doesn't
232 know if this definition of the function is the definitive definition
233 within the program or whether it will be overridden by a stronger
234 definition. To enable inlining and other optimizations, use
235 "``linkonce_odr``" linkage.
236``weak``
237 "``weak``" linkage has the same merging semantics as ``linkonce``
238 linkage, except that unreferenced globals with ``weak`` linkage may
239 not be discarded. This is used for globals that are declared "weak"
240 in C source code.
241``common``
242 "``common``" linkage is most similar to "``weak``" linkage, but they
243 are used for tentative definitions in C, such as "``int X;``" at
244 global scope. Symbols with "``common``" linkage are merged in the
245 same way as ``weak symbols``, and they may not be deleted if
246 unreferenced. ``common`` symbols may not have an explicit section,
247 must have a zero initializer, and may not be marked
248 ':ref:`constant <globalvars>`'. Functions and aliases may not have
249 common linkage.
250
251.. _linkage_appending:
252
253``appending``
254 "``appending``" linkage may only be applied to global variables of
255 pointer to array type. When two global variables with appending
256 linkage are linked together, the two global arrays are appended
257 together. This is the LLVM, typesafe, equivalent of having the
258 system linker append together "sections" with identical names when
259 .o files are linked.
260``extern_weak``
261 The semantics of this linkage follow the ELF object file model: the
262 symbol is weak until linked, if not linked, the symbol becomes null
263 instead of being an undefined reference.
264``linkonce_odr``, ``weak_odr``
265 Some languages allow differing globals to be merged, such as two
266 functions with different semantics. Other languages, such as
267 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000268 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000269 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
270 global will only be merged with equivalent globals. These linkage
271 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000272``external``
273 If none of the above identifiers are used, the global is externally
274 visible, meaning that it participates in linkage and can be used to
275 resolve external symbol references.
276
277The next two types of linkage are targeted for Microsoft Windows
278platform only. They are designed to support importing (exporting)
279symbols from (to) DLLs (Dynamic Link Libraries).
280
281``dllimport``
282 "``dllimport``" linkage causes the compiler to reference a function
283 or variable via a global pointer to a pointer that is set up by the
284 DLL exporting the symbol. On Microsoft Windows targets, the pointer
285 name is formed by combining ``__imp_`` and the function or variable
286 name.
287``dllexport``
288 "``dllexport``" linkage causes the compiler to provide a global
289 pointer to a pointer in a DLL, so that it can be referenced with the
290 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
291 name is formed by combining ``__imp_`` and the function or variable
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000292 name. Since this linkage exists for defining a dll interface, the
293 compiler, assembler and linker know it is externally referenced and
294 must refrain from deleting the symbol.
Sean Silvab084af42012-12-07 10:36:55 +0000295
Sean Silvab084af42012-12-07 10:36:55 +0000296It is illegal for a function *declaration* to have any linkage type
297other than ``external``, ``dllimport`` or ``extern_weak``.
298
Sean Silvab084af42012-12-07 10:36:55 +0000299.. _callingconv:
300
301Calling Conventions
302-------------------
303
304LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
305:ref:`invokes <i_invoke>` can all have an optional calling convention
306specified for the call. The calling convention of any pair of dynamic
307caller/callee must match, or the behavior of the program is undefined.
308The following calling conventions are supported by LLVM, and more may be
309added in the future:
310
311"``ccc``" - The C calling convention
312 This calling convention (the default if no other calling convention
313 is specified) matches the target C calling conventions. This calling
314 convention supports varargs function calls and tolerates some
315 mismatch in the declared prototype and implemented declaration of
316 the function (as does normal C).
317"``fastcc``" - The fast calling convention
318 This calling convention attempts to make calls as fast as possible
319 (e.g. by passing things in registers). This calling convention
320 allows the target to use whatever tricks it wants to produce fast
321 code for the target, without having to conform to an externally
322 specified ABI (Application Binary Interface). `Tail calls can only
323 be optimized when this, the GHC or the HiPE convention is
324 used. <CodeGenerator.html#id80>`_ This calling convention does not
325 support varargs and requires the prototype of all callees to exactly
326 match the prototype of the function definition.
327"``coldcc``" - The cold calling convention
328 This calling convention attempts to make code in the caller as
329 efficient as possible under the assumption that the call is not
330 commonly executed. As such, these calls often preserve all registers
331 so that the call does not break any live ranges in the caller side.
332 This calling convention does not support varargs and requires the
333 prototype of all callees to exactly match the prototype of the
334 function definition.
335"``cc 10``" - GHC convention
336 This calling convention has been implemented specifically for use by
337 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
338 It passes everything in registers, going to extremes to achieve this
339 by disabling callee save registers. This calling convention should
340 not be used lightly but only for specific situations such as an
341 alternative to the *register pinning* performance technique often
342 used when implementing functional programming languages. At the
343 moment only X86 supports this convention and it has the following
344 limitations:
345
346 - On *X86-32* only supports up to 4 bit type parameters. No
347 floating point types are supported.
348 - On *X86-64* only supports up to 10 bit type parameters and 6
349 floating point parameters.
350
351 This calling convention supports `tail call
352 optimization <CodeGenerator.html#id80>`_ but requires both the
353 caller and callee are using it.
354"``cc 11``" - The HiPE calling convention
355 This calling convention has been implemented specifically for use by
356 the `High-Performance Erlang
357 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
358 native code compiler of the `Ericsson's Open Source Erlang/OTP
359 system <http://www.erlang.org/download.shtml>`_. It uses more
360 registers for argument passing than the ordinary C calling
361 convention and defines no callee-saved registers. The calling
362 convention properly supports `tail call
363 optimization <CodeGenerator.html#id80>`_ but requires that both the
364 caller and the callee use it. It uses a *register pinning*
365 mechanism, similar to GHC's convention, for keeping frequently
366 accessed runtime components pinned to specific hardware registers.
367 At the moment only X86 supports this convention (both 32 and 64
368 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000369"``webkit_jscc``" - WebKit's JavaScript calling convention
370 This calling convention has been implemented for `WebKit FTL JIT
371 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
372 stack right to left (as cdecl does), and returns a value in the
373 platform's customary return register.
374"``anyregcc``" - Dynamic calling convention for code patching
375 This is a special convention that supports patching an arbitrary code
376 sequence in place of a call site. This convention forces the call
377 arguments into registers but allows them to be dynamcially
378 allocated. This can currently only be used with calls to
379 llvm.experimental.patchpoint because only this intrinsic records
380 the location of its arguments in a side table. See :doc:`StackMaps`.
Sean Silvab084af42012-12-07 10:36:55 +0000381"``cc <n>``" - Numbered convention
382 Any calling convention may be specified by number, allowing
383 target-specific calling conventions to be used. Target specific
384 calling conventions start at 64.
385
386More calling conventions can be added/defined on an as-needed basis, to
387support Pascal conventions or any other well-known target-independent
388convention.
389
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000390.. _visibilitystyles:
391
Sean Silvab084af42012-12-07 10:36:55 +0000392Visibility Styles
393-----------------
394
395All Global Variables and Functions have one of the following visibility
396styles:
397
398"``default``" - Default style
399 On targets that use the ELF object file format, default visibility
400 means that the declaration is visible to other modules and, in
401 shared libraries, means that the declared entity may be overridden.
402 On Darwin, default visibility means that the declaration is visible
403 to other modules. Default visibility corresponds to "external
404 linkage" in the language.
405"``hidden``" - Hidden style
406 Two declarations of an object with hidden visibility refer to the
407 same object if they are in the same shared object. Usually, hidden
408 visibility indicates that the symbol will not be placed into the
409 dynamic symbol table, so no other module (executable or shared
410 library) can reference it directly.
411"``protected``" - Protected style
412 On ELF, protected visibility indicates that the symbol will be
413 placed in the dynamic symbol table, but that references within the
414 defining module will bind to the local symbol. That is, the symbol
415 cannot be overridden by another module.
416
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000417.. _namedtypes:
418
Sean Silvab084af42012-12-07 10:36:55 +0000419Named Types
420-----------
421
422LLVM IR allows you to specify name aliases for certain types. This can
423make it easier to read the IR and make the IR more condensed
424(particularly when recursive types are involved). An example of a name
425specification is:
426
427.. code-block:: llvm
428
429 %mytype = type { %mytype*, i32 }
430
431You may give a name to any :ref:`type <typesystem>` except
432":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
433expected with the syntax "%mytype".
434
435Note that type names are aliases for the structural type that they
436indicate, and that you can therefore specify multiple names for the same
437type. This often leads to confusing behavior when dumping out a .ll
438file. Since LLVM IR uses structural typing, the name is not part of the
439type. When printing out LLVM IR, the printer will pick *one name* to
440render all types of a particular shape. This means that if you have code
441where two different source types end up having the same LLVM type, that
442the dumper will sometimes print the "wrong" or unexpected type. This is
443an important design point and isn't going to change.
444
445.. _globalvars:
446
447Global Variables
448----------------
449
450Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000451instead of run-time.
452
453Global variables definitions must be initialized, may have an explicit section
454to be placed in, and may have an optional explicit alignment specified.
455
456Global variables in other translation units can also be declared, in which
457case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000458
459A variable may be defined as ``thread_local``, which means that it will
460not be shared by threads (each thread will have a separated copy of the
461variable). Not all targets support thread-local variables. Optionally, a
462TLS model may be specified:
463
464``localdynamic``
465 For variables that are only used within the current shared library.
466``initialexec``
467 For variables in modules that will not be loaded dynamically.
468``localexec``
469 For variables defined in the executable and only used within it.
470
471The models correspond to the ELF TLS models; see `ELF Handling For
472Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
473more information on under which circumstances the different models may
474be used. The target may choose a different TLS model if the specified
475model is not supported, or if a better choice of model can be made.
476
Michael Gottesman006039c2013-01-31 05:48:48 +0000477A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000478the contents of the variable will **never** be modified (enabling better
479optimization, allowing the global data to be placed in the read-only
480section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000481initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000482variable.
483
484LLVM explicitly allows *declarations* of global variables to be marked
485constant, even if the final definition of the global is not. This
486capability can be used to enable slightly better optimization of the
487program, but requires the language definition to guarantee that
488optimizations based on the 'constantness' are valid for the translation
489units that do not include the definition.
490
491As SSA values, global variables define pointer values that are in scope
492(i.e. they dominate) all basic blocks in the program. Global variables
493always define a pointer to their "content" type because they describe a
494region of memory, and all memory objects in LLVM are accessed through
495pointers.
496
497Global variables can be marked with ``unnamed_addr`` which indicates
498that the address is not significant, only the content. Constants marked
499like this can be merged with other constants if they have the same
500initializer. Note that a constant with significant address *can* be
501merged with a ``unnamed_addr`` constant, the result being a constant
502whose address is significant.
503
504A global variable may be declared to reside in a target-specific
505numbered address space. For targets that support them, address spaces
506may affect how optimizations are performed and/or what target
507instructions are used to access the variable. The default address space
508is zero. The address space qualifier must precede any other attributes.
509
510LLVM allows an explicit section to be specified for globals. If the
511target supports it, it will emit globals to the section specified.
512
Michael Gottesmane743a302013-02-04 03:22:00 +0000513By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000514variables defined within the module are not modified from their
515initial values before the start of the global initializer. This is
516true even for variables potentially accessible from outside the
517module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000518``@llvm.used`` or dllexported variables. This assumption may be suppressed
519by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000520
Sean Silvab084af42012-12-07 10:36:55 +0000521An explicit alignment may be specified for a global, which must be a
522power of 2. If not present, or if the alignment is set to zero, the
523alignment of the global is set by the target to whatever it feels
524convenient. If an explicit alignment is specified, the global is forced
525to have exactly that alignment. Targets and optimizers are not allowed
526to over-align the global if the global has an assigned section. In this
527case, the extra alignment could be observable: for example, code could
528assume that the globals are densely packed in their section and try to
529iterate over them as an array, alignment padding would break this
530iteration.
531
532For example, the following defines a global in a numbered address space
533with an initializer, section, and alignment:
534
535.. code-block:: llvm
536
537 @G = addrspace(5) constant float 1.0, section "foo", align 4
538
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000539The following example just declares a global variable
540
541.. code-block:: llvm
542
543 @G = external global i32
544
Sean Silvab084af42012-12-07 10:36:55 +0000545The following example defines a thread-local global with the
546``initialexec`` TLS model:
547
548.. code-block:: llvm
549
550 @G = thread_local(initialexec) global i32 0, align 4
551
552.. _functionstructure:
553
554Functions
555---------
556
557LLVM function definitions consist of the "``define``" keyword, an
558optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
559style <visibility>`, an optional :ref:`calling convention <callingconv>`,
560an optional ``unnamed_addr`` attribute, a return type, an optional
561:ref:`parameter attribute <paramattrs>` for the return type, a function
562name, a (possibly empty) argument list (each with optional :ref:`parameter
563attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
564an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000565collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
566curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000567
568LLVM function declarations consist of the "``declare``" keyword, an
569optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
570style <visibility>`, an optional :ref:`calling convention <callingconv>`,
571an optional ``unnamed_addr`` attribute, a return type, an optional
572:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000573name, a possibly empty list of arguments, an optional alignment, an optional
574:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000575
Bill Wendling6822ecb2013-10-27 05:09:12 +0000576A function definition contains a list of basic blocks, forming the CFG (Control
577Flow Graph) for the function. Each basic block may optionally start with a label
578(giving the basic block a symbol table entry), contains a list of instructions,
579and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
580function return). If an explicit label is not provided, a block is assigned an
581implicit numbered label, using the next value from the same counter as used for
582unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
583entry block does not have an explicit label, it will be assigned label "%0",
584then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000585
586The first basic block in a function is special in two ways: it is
587immediately executed on entrance to the function, and it is not allowed
588to have predecessor basic blocks (i.e. there can not be any branches to
589the entry block of a function). Because the block can have no
590predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
591
592LLVM allows an explicit section to be specified for functions. If the
593target supports it, it will emit functions to the section specified.
594
595An explicit alignment may be specified for a function. If not present,
596or if the alignment is set to zero, the alignment of the function is set
597by the target to whatever it feels convenient. If an explicit alignment
598is specified, the function is forced to have at least that much
599alignment. All alignments must be a power of 2.
600
601If the ``unnamed_addr`` attribute is given, the address is know to not
602be significant and two identical functions can be merged.
603
604Syntax::
605
606 define [linkage] [visibility]
607 [cconv] [ret attrs]
608 <ResultType> @<FunctionName> ([argument list])
609 [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000610 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000611
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000612.. _langref_aliases:
613
Sean Silvab084af42012-12-07 10:36:55 +0000614Aliases
615-------
616
617Aliases act as "second name" for the aliasee value (which can be either
618function, global variable, another alias or bitcast of global value).
619Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
620:ref:`visibility style <visibility>`.
621
622Syntax::
623
624 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
625
Rafael Espindola65785492013-10-07 13:57:59 +0000626The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola78527052013-10-06 15:10:43 +0000627``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000628``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000629might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000630alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000631
Sean Silvab084af42012-12-07 10:36:55 +0000632.. _namedmetadatastructure:
633
634Named Metadata
635--------------
636
637Named metadata is a collection of metadata. :ref:`Metadata
638nodes <metadata>` (but not metadata strings) are the only valid
639operands for a named metadata.
640
641Syntax::
642
643 ; Some unnamed metadata nodes, which are referenced by the named metadata.
644 !0 = metadata !{metadata !"zero"}
645 !1 = metadata !{metadata !"one"}
646 !2 = metadata !{metadata !"two"}
647 ; A named metadata.
648 !name = !{!0, !1, !2}
649
650.. _paramattrs:
651
652Parameter Attributes
653--------------------
654
655The return type and each parameter of a function type may have a set of
656*parameter attributes* associated with them. Parameter attributes are
657used to communicate additional information about the result or
658parameters of a function. Parameter attributes are considered to be part
659of the function, not of the function type, so functions with different
660parameter attributes can have the same function type.
661
662Parameter attributes are simple keywords that follow the type specified.
663If multiple parameter attributes are needed, they are space separated.
664For example:
665
666.. code-block:: llvm
667
668 declare i32 @printf(i8* noalias nocapture, ...)
669 declare i32 @atoi(i8 zeroext)
670 declare signext i8 @returns_signed_char()
671
672Note that any attributes for the function result (``nounwind``,
673``readonly``) come immediately after the argument list.
674
675Currently, only the following parameter attributes are defined:
676
677``zeroext``
678 This indicates to the code generator that the parameter or return
679 value should be zero-extended to the extent required by the target's
680 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
681 the caller (for a parameter) or the callee (for a return value).
682``signext``
683 This indicates to the code generator that the parameter or return
684 value should be sign-extended to the extent required by the target's
685 ABI (which is usually 32-bits) by the caller (for a parameter) or
686 the callee (for a return value).
687``inreg``
688 This indicates that this parameter or return value should be treated
689 in a special target-dependent fashion during while emitting code for
690 a function call or return (usually, by putting it in a register as
691 opposed to memory, though some targets use it to distinguish between
692 two different kinds of registers). Use of this attribute is
693 target-specific.
694``byval``
695 This indicates that the pointer parameter should really be passed by
696 value to the function. The attribute implies that a hidden copy of
697 the pointee is made between the caller and the callee, so the callee
698 is unable to modify the value in the caller. This attribute is only
699 valid on LLVM pointer arguments. It is generally used to pass
700 structs and arrays by value, but is also valid on pointers to
701 scalars. The copy is considered to belong to the caller not the
702 callee (for example, ``readonly`` functions should not write to
703 ``byval`` parameters). This is not a valid attribute for return
704 values.
705
706 The byval attribute also supports specifying an alignment with the
707 align attribute. It indicates the alignment of the stack slot to
708 form and the known alignment of the pointer specified to the call
709 site. If the alignment is not specified, then the code generator
710 makes a target-specific assumption.
711
Reid Klecknera534a382013-12-19 02:14:12 +0000712.. _attr_inalloca:
713
714``inalloca``
715
716.. Warning:: This feature is unstable and not fully implemented.
717
718 The ``inalloca`` argument attribute allows the caller to get the
719 address of an outgoing argument to a ``call`` or ``invoke`` before
720 it executes. It is similar to ``byval`` in that it is used to pass
721 arguments by value, but it guarantees that the argument will not be
722 copied.
723
724 To be :ref:`well formed <wellformed>`, the caller must pass in an
725 alloca value into an ``inalloca`` parameter, and an alloca may be
726 used as an ``inalloca`` argument at most once. The attribute can
727 only be applied to parameters that would be passed in memory and not
728 registers. The ``inalloca`` attribute cannot be used in conjunction
729 with other attributes that affect argument storage, like ``inreg``,
730 ``nest``, ``sret``, or ``byval``. The ``inalloca`` stack space is
731 considered to be clobbered by any call that uses it, so any
732 ``inalloca`` parameters cannot be marked ``readonly``.
733
734 Allocas passed with ``inalloca`` to a call must be in the opposite
735 order of the parameter list, meaning that the rightmost argument
736 must be allocated first. If a call has inalloca arguments, no other
737 allocas can occur between the first alloca used by the call and the
738 call site, unless they are are cleared by calls to
739 :ref:`llvm.stackrestore <int_stackrestore>`. Violating these rules
740 results in undefined behavior at runtime.
741
742 See :doc:`InAlloca` for more information on how to use this
743 attribute.
744
Sean Silvab084af42012-12-07 10:36:55 +0000745``sret``
746 This indicates that the pointer parameter specifies the address of a
747 structure that is the return value of the function in the source
748 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000749 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000750 not to trap and to be properly aligned. This may only be applied to
751 the first parameter. This is not a valid attribute for return
752 values.
753``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000754 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000755 the argument or return value do not alias pointer values which are
756 not *based* on it, ignoring certain "irrelevant" dependencies. For a
757 call to the parent function, dependencies between memory references
758 from before or after the call and from those during the call are
759 "irrelevant" to the ``noalias`` keyword for the arguments and return
760 value used in that call. The caller shares the responsibility with
761 the callee for ensuring that these requirements are met. For further
762 details, please see the discussion of the NoAlias response in `alias
763 analysis <AliasAnalysis.html#MustMayNo>`_.
764
765 Note that this definition of ``noalias`` is intentionally similar
766 to the definition of ``restrict`` in C99 for function arguments,
767 though it is slightly weaker.
768
769 For function return values, C99's ``restrict`` is not meaningful,
770 while LLVM's ``noalias`` is.
771``nocapture``
772 This indicates that the callee does not make any copies of the
773 pointer that outlive the callee itself. This is not a valid
774 attribute for return values.
775
776.. _nest:
777
778``nest``
779 This indicates that the pointer parameter can be excised using the
780 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000781 attribute for return values and can only be applied to one parameter.
782
783``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000784 This indicates that the function always returns the argument as its return
785 value. This is an optimization hint to the code generator when generating
786 the caller, allowing tail call optimization and omission of register saves
787 and restores in some cases; it is not checked or enforced when generating
788 the callee. The parameter and the function return type must be valid
789 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
790 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000791
792.. _gc:
793
794Garbage Collector Names
795-----------------------
796
797Each function may specify a garbage collector name, which is simply a
798string:
799
800.. code-block:: llvm
801
802 define void @f() gc "name" { ... }
803
804The compiler declares the supported values of *name*. Specifying a
805collector which will cause the compiler to alter its output in order to
806support the named garbage collection algorithm.
807
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000808.. _prefixdata:
809
810Prefix Data
811-----------
812
813Prefix data is data associated with a function which the code generator
814will emit immediately before the function body. The purpose of this feature
815is to allow frontends to associate language-specific runtime metadata with
816specific functions and make it available through the function pointer while
817still allowing the function pointer to be called. To access the data for a
818given function, a program may bitcast the function pointer to a pointer to
819the constant's type. This implies that the IR symbol points to the start
820of the prefix data.
821
822To maintain the semantics of ordinary function calls, the prefix data must
823have a particular format. Specifically, it must begin with a sequence of
824bytes which decode to a sequence of machine instructions, valid for the
825module's target, which transfer control to the point immediately succeeding
826the prefix data, without performing any other visible action. This allows
827the inliner and other passes to reason about the semantics of the function
828definition without needing to reason about the prefix data. Obviously this
829makes the format of the prefix data highly target dependent.
830
Peter Collingbourne213358a2013-09-23 20:14:21 +0000831Prefix data is laid out as if it were an initializer for a global variable
832of the prefix data's type. No padding is automatically placed between the
833prefix data and the function body. If padding is required, it must be part
834of the prefix data.
835
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000836A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
837which encodes the ``nop`` instruction:
838
839.. code-block:: llvm
840
841 define void @f() prefix i8 144 { ... }
842
843Generally prefix data can be formed by encoding a relative branch instruction
844which skips the metadata, as in this example of valid prefix data for the
845x86_64 architecture, where the first two bytes encode ``jmp .+10``:
846
847.. code-block:: llvm
848
849 %0 = type <{ i8, i8, i8* }>
850
851 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
852
853A function may have prefix data but no body. This has similar semantics
854to the ``available_externally`` linkage in that the data may be used by the
855optimizers but will not be emitted in the object file.
856
Bill Wendling63b88192013-02-06 06:52:58 +0000857.. _attrgrp:
858
859Attribute Groups
860----------------
861
862Attribute groups are groups of attributes that are referenced by objects within
863the IR. They are important for keeping ``.ll`` files readable, because a lot of
864functions will use the same set of attributes. In the degenerative case of a
865``.ll`` file that corresponds to a single ``.c`` file, the single attribute
866group will capture the important command line flags used to build that file.
867
868An attribute group is a module-level object. To use an attribute group, an
869object references the attribute group's ID (e.g. ``#37``). An object may refer
870to more than one attribute group. In that situation, the attributes from the
871different groups are merged.
872
873Here is an example of attribute groups for a function that should always be
874inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
875
876.. code-block:: llvm
877
878 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000879 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000880
881 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000882 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000883
884 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
885 define void @f() #0 #1 { ... }
886
Sean Silvab084af42012-12-07 10:36:55 +0000887.. _fnattrs:
888
889Function Attributes
890-------------------
891
892Function attributes are set to communicate additional information about
893a function. Function attributes are considered to be part of the
894function, not of the function type, so functions with different function
895attributes can have the same function type.
896
897Function attributes are simple keywords that follow the type specified.
898If multiple attributes are needed, they are space separated. For
899example:
900
901.. code-block:: llvm
902
903 define void @f() noinline { ... }
904 define void @f() alwaysinline { ... }
905 define void @f() alwaysinline optsize { ... }
906 define void @f() optsize { ... }
907
Sean Silvab084af42012-12-07 10:36:55 +0000908``alignstack(<n>)``
909 This attribute indicates that, when emitting the prologue and
910 epilogue, the backend should forcibly align the stack pointer.
911 Specify the desired alignment, which must be a power of two, in
912 parentheses.
913``alwaysinline``
914 This attribute indicates that the inliner should attempt to inline
915 this function into callers whenever possible, ignoring any active
916 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000917``builtin``
918 This indicates that the callee function at a call site should be
919 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000920 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000921 direct calls to functions which are declared with the ``nobuiltin``
922 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000923``cold``
924 This attribute indicates that this function is rarely called. When
925 computing edge weights, basic blocks post-dominated by a cold
926 function call are also considered to be cold; and, thus, given low
927 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000928``inlinehint``
929 This attribute indicates that the source code contained a hint that
930 inlining this function is desirable (such as the "inline" keyword in
931 C/C++). It is just a hint; it imposes no requirements on the
932 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000933``minsize``
934 This attribute suggests that optimization passes and code generator
935 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000936 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000937 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +0000938``naked``
939 This attribute disables prologue / epilogue emission for the
940 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +0000941``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +0000942 This indicates that the callee function at a call site is not recognized as
943 a built-in function. LLVM will retain the original call and not replace it
944 with equivalent code based on the semantics of the built-in function, unless
945 the call site uses the ``builtin`` attribute. This is valid at call sites
946 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +0000947``noduplicate``
948 This attribute indicates that calls to the function cannot be
949 duplicated. A call to a ``noduplicate`` function may be moved
950 within its parent function, but may not be duplicated within
951 its parent function.
952
953 A function containing a ``noduplicate`` call may still
954 be an inlining candidate, provided that the call is not
955 duplicated by inlining. That implies that the function has
956 internal linkage and only has one call site, so the original
957 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000958``noimplicitfloat``
959 This attributes disables implicit floating point instructions.
960``noinline``
961 This attribute indicates that the inliner should never inline this
962 function in any situation. This attribute may not be used together
963 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +0000964``nonlazybind``
965 This attribute suppresses lazy symbol binding for the function. This
966 may make calls to the function faster, at the cost of extra program
967 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +0000968``noredzone``
969 This attribute indicates that the code generator should not use a
970 red zone, even if the target-specific ABI normally permits it.
971``noreturn``
972 This function attribute indicates that the function never returns
973 normally. This produces undefined behavior at runtime if the
974 function ever does dynamically return.
975``nounwind``
976 This function attribute indicates that the function never returns
977 with an unwind or exceptional control flow. If the function does
978 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000979``optnone``
980 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000981 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000982 exception of interprocedural optimization passes.
983 This attribute cannot be used together with the ``alwaysinline``
984 attribute; this attribute is also incompatible
985 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000986
Paul Robinsondcbe35b2013-11-18 21:44:03 +0000987 This attribute requires the ``noinline`` attribute to be specified on
988 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000989 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +0000990 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +0000991``optsize``
992 This attribute suggests that optimization passes and code generator
993 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000994 and otherwise do optimizations specifically to reduce code size as
995 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +0000996``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000997 On a function, this attribute indicates that the function computes its
998 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +0000999 without dereferencing any pointer arguments or otherwise accessing
1000 any mutable state (e.g. memory, control registers, etc) visible to
1001 caller functions. It does not write through any pointer arguments
1002 (including ``byval`` arguments) and never changes any state visible
1003 to callers. This means that it cannot unwind exceptions by calling
1004 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001005
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001006 On an argument, this attribute indicates that the function does not
1007 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001008 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001009``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001010 On a function, this attribute indicates that the function does not write
1011 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001012 modify any state (e.g. memory, control registers, etc) visible to
1013 caller functions. It may dereference pointer arguments and read
1014 state that may be set in the caller. A readonly function always
1015 returns the same value (or unwinds an exception identically) when
1016 called with the same set of arguments and global state. It cannot
1017 unwind an exception by calling the ``C++`` exception throwing
1018 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001019
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001020 On an argument, this attribute indicates that the function does not write
1021 through this pointer argument, even though it may write to the memory that
1022 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001023``returns_twice``
1024 This attribute indicates that this function can return twice. The C
1025 ``setjmp`` is an example of such a function. The compiler disables
1026 some optimizations (like tail calls) in the caller of these
1027 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001028``sanitize_address``
1029 This attribute indicates that AddressSanitizer checks
1030 (dynamic address safety analysis) are enabled for this function.
1031``sanitize_memory``
1032 This attribute indicates that MemorySanitizer checks (dynamic detection
1033 of accesses to uninitialized memory) are enabled for this function.
1034``sanitize_thread``
1035 This attribute indicates that ThreadSanitizer checks
1036 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001037``ssp``
1038 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001039 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001040 placed on the stack before the local variables that's checked upon
1041 return from the function to see if it has been overwritten. A
1042 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001043 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001044
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001045 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1046 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1047 - Calls to alloca() with variable sizes or constant sizes greater than
1048 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001049
1050 If a function that has an ``ssp`` attribute is inlined into a
1051 function that doesn't have an ``ssp`` attribute, then the resulting
1052 function will have an ``ssp`` attribute.
1053``sspreq``
1054 This attribute indicates that the function should *always* emit a
1055 stack smashing protector. This overrides the ``ssp`` function
1056 attribute.
1057
1058 If a function that has an ``sspreq`` attribute is inlined into a
1059 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001060 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1061 an ``sspreq`` attribute.
1062``sspstrong``
1063 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001064 protector. This attribute causes a strong heuristic to be used when
1065 determining if a function needs stack protectors. The strong heuristic
1066 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001067
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001068 - Arrays of any size and type
1069 - Aggregates containing an array of any size and type.
1070 - Calls to alloca().
1071 - Local variables that have had their address taken.
1072
1073 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001074
1075 If a function that has an ``sspstrong`` attribute is inlined into a
1076 function that doesn't have an ``sspstrong`` attribute, then the
1077 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001078``uwtable``
1079 This attribute indicates that the ABI being targeted requires that
1080 an unwind table entry be produce for this function even if we can
1081 show that no exceptions passes by it. This is normally the case for
1082 the ELF x86-64 abi, but it can be disabled for some compilation
1083 units.
Sean Silvab084af42012-12-07 10:36:55 +00001084
1085.. _moduleasm:
1086
1087Module-Level Inline Assembly
1088----------------------------
1089
1090Modules may contain "module-level inline asm" blocks, which corresponds
1091to the GCC "file scope inline asm" blocks. These blocks are internally
1092concatenated by LLVM and treated as a single unit, but may be separated
1093in the ``.ll`` file if desired. The syntax is very simple:
1094
1095.. code-block:: llvm
1096
1097 module asm "inline asm code goes here"
1098 module asm "more can go here"
1099
1100The strings can contain any character by escaping non-printable
1101characters. The escape sequence used is simply "\\xx" where "xx" is the
1102two digit hex code for the number.
1103
1104The inline asm code is simply printed to the machine code .s file when
1105assembly code is generated.
1106
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001107.. _langref_datalayout:
1108
Sean Silvab084af42012-12-07 10:36:55 +00001109Data Layout
1110-----------
1111
1112A module may specify a target specific data layout string that specifies
1113how data is to be laid out in memory. The syntax for the data layout is
1114simply:
1115
1116.. code-block:: llvm
1117
1118 target datalayout = "layout specification"
1119
1120The *layout specification* consists of a list of specifications
1121separated by the minus sign character ('-'). Each specification starts
1122with a letter and may include other information after the letter to
1123define some aspect of the data layout. The specifications accepted are
1124as follows:
1125
1126``E``
1127 Specifies that the target lays out data in big-endian form. That is,
1128 the bits with the most significance have the lowest address
1129 location.
1130``e``
1131 Specifies that the target lays out data in little-endian form. That
1132 is, the bits with the least significance have the lowest address
1133 location.
1134``S<size>``
1135 Specifies the natural alignment of the stack in bits. Alignment
1136 promotion of stack variables is limited to the natural stack
1137 alignment to avoid dynamic stack realignment. The stack alignment
1138 must be a multiple of 8-bits. If omitted, the natural stack
1139 alignment defaults to "unspecified", which does not prevent any
1140 alignment promotions.
1141``p[n]:<size>:<abi>:<pref>``
1142 This specifies the *size* of a pointer and its ``<abi>`` and
1143 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1144 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1145 preceding ``:`` should be omitted too. The address space, ``n`` is
1146 optional, and if not specified, denotes the default address space 0.
1147 The value of ``n`` must be in the range [1,2^23).
1148``i<size>:<abi>:<pref>``
1149 This specifies the alignment for an integer type of a given bit
1150 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1151``v<size>:<abi>:<pref>``
1152 This specifies the alignment for a vector type of a given bit
1153 ``<size>``.
1154``f<size>:<abi>:<pref>``
1155 This specifies the alignment for a floating point type of a given bit
1156 ``<size>``. Only values of ``<size>`` that are supported by the target
1157 will work. 32 (float) and 64 (double) are supported on all targets; 80
1158 or 128 (different flavors of long double) are also supported on some
1159 targets.
1160``a<size>:<abi>:<pref>``
1161 This specifies the alignment for an aggregate type of a given bit
1162 ``<size>``.
Rafael Espindola58873562014-01-03 19:21:54 +00001163``m:<mangling>``
1164 If prerest, specifies that llvm names are mangled in the output. The
1165 options are
1166 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1167 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1168 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1169 symbols get a ``_`` prefix.
1170 * ``c``: COFF prefix: Similar to Mach-O, but stdcall and fastcall
1171 functions also get a sufiix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001172``n<size1>:<size2>:<size3>...``
1173 This specifies a set of native integer widths for the target CPU in
1174 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1175 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1176 this set are considered to support most general arithmetic operations
1177 efficiently.
1178
1179When constructing the data layout for a given target, LLVM starts with a
1180default set of specifications which are then (possibly) overridden by
1181the specifications in the ``datalayout`` keyword. The default
1182specifications are given in this list:
1183
1184- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001185- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1186- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1187 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001188- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001189- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1190- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1191- ``i16:16:16`` - i16 is 16-bit aligned
1192- ``i32:32:32`` - i32 is 32-bit aligned
1193- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1194 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001195- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001196- ``f32:32:32`` - float is 32-bit aligned
1197- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001198- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001199- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1200- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001201- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001202
1203When LLVM is determining the alignment for a given type, it uses the
1204following rules:
1205
1206#. If the type sought is an exact match for one of the specifications,
1207 that specification is used.
1208#. If no match is found, and the type sought is an integer type, then
1209 the smallest integer type that is larger than the bitwidth of the
1210 sought type is used. If none of the specifications are larger than
1211 the bitwidth then the largest integer type is used. For example,
1212 given the default specifications above, the i7 type will use the
1213 alignment of i8 (next largest) while both i65 and i256 will use the
1214 alignment of i64 (largest specified).
1215#. If no match is found, and the type sought is a vector type, then the
1216 largest vector type that is smaller than the sought vector type will
1217 be used as a fall back. This happens because <128 x double> can be
1218 implemented in terms of 64 <2 x double>, for example.
1219
1220The function of the data layout string may not be what you expect.
1221Notably, this is not a specification from the frontend of what alignment
1222the code generator should use.
1223
1224Instead, if specified, the target data layout is required to match what
1225the ultimate *code generator* expects. This string is used by the
1226mid-level optimizers to improve code, and this only works if it matches
1227what the ultimate code generator uses. If you would like to generate IR
1228that does not embed this target-specific detail into the IR, then you
1229don't have to specify the string. This will disable some optimizations
1230that require precise layout information, but this also prevents those
1231optimizations from introducing target specificity into the IR.
1232
Bill Wendling5cc90842013-10-18 23:41:25 +00001233.. _langref_triple:
1234
1235Target Triple
1236-------------
1237
1238A module may specify a target triple string that describes the target
1239host. The syntax for the target triple is simply:
1240
1241.. code-block:: llvm
1242
1243 target triple = "x86_64-apple-macosx10.7.0"
1244
1245The *target triple* string consists of a series of identifiers delimited
1246by the minus sign character ('-'). The canonical forms are:
1247
1248::
1249
1250 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1251 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1252
1253This information is passed along to the backend so that it generates
1254code for the proper architecture. It's possible to override this on the
1255command line with the ``-mtriple`` command line option.
1256
Sean Silvab084af42012-12-07 10:36:55 +00001257.. _pointeraliasing:
1258
1259Pointer Aliasing Rules
1260----------------------
1261
1262Any memory access must be done through a pointer value associated with
1263an address range of the memory access, otherwise the behavior is
1264undefined. Pointer values are associated with address ranges according
1265to the following rules:
1266
1267- A pointer value is associated with the addresses associated with any
1268 value it is *based* on.
1269- An address of a global variable is associated with the address range
1270 of the variable's storage.
1271- The result value of an allocation instruction is associated with the
1272 address range of the allocated storage.
1273- A null pointer in the default address-space is associated with no
1274 address.
1275- An integer constant other than zero or a pointer value returned from
1276 a function not defined within LLVM may be associated with address
1277 ranges allocated through mechanisms other than those provided by
1278 LLVM. Such ranges shall not overlap with any ranges of addresses
1279 allocated by mechanisms provided by LLVM.
1280
1281A pointer value is *based* on another pointer value according to the
1282following rules:
1283
1284- A pointer value formed from a ``getelementptr`` operation is *based*
1285 on the first operand of the ``getelementptr``.
1286- The result value of a ``bitcast`` is *based* on the operand of the
1287 ``bitcast``.
1288- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1289 values that contribute (directly or indirectly) to the computation of
1290 the pointer's value.
1291- The "*based* on" relationship is transitive.
1292
1293Note that this definition of *"based"* is intentionally similar to the
1294definition of *"based"* in C99, though it is slightly weaker.
1295
1296LLVM IR does not associate types with memory. The result type of a
1297``load`` merely indicates the size and alignment of the memory from
1298which to load, as well as the interpretation of the value. The first
1299operand type of a ``store`` similarly only indicates the size and
1300alignment of the store.
1301
1302Consequently, type-based alias analysis, aka TBAA, aka
1303``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1304:ref:`Metadata <metadata>` may be used to encode additional information
1305which specialized optimization passes may use to implement type-based
1306alias analysis.
1307
1308.. _volatile:
1309
1310Volatile Memory Accesses
1311------------------------
1312
1313Certain memory accesses, such as :ref:`load <i_load>`'s,
1314:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1315marked ``volatile``. The optimizers must not change the number of
1316volatile operations or change their order of execution relative to other
1317volatile operations. The optimizers *may* change the order of volatile
1318operations relative to non-volatile operations. This is not Java's
1319"volatile" and has no cross-thread synchronization behavior.
1320
Andrew Trick89fc5a62013-01-30 21:19:35 +00001321IR-level volatile loads and stores cannot safely be optimized into
1322llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1323flagged volatile. Likewise, the backend should never split or merge
1324target-legal volatile load/store instructions.
1325
Andrew Trick7e6f9282013-01-31 00:49:39 +00001326.. admonition:: Rationale
1327
1328 Platforms may rely on volatile loads and stores of natively supported
1329 data width to be executed as single instruction. For example, in C
1330 this holds for an l-value of volatile primitive type with native
1331 hardware support, but not necessarily for aggregate types. The
1332 frontend upholds these expectations, which are intentionally
1333 unspecified in the IR. The rules above ensure that IR transformation
1334 do not violate the frontend's contract with the language.
1335
Sean Silvab084af42012-12-07 10:36:55 +00001336.. _memmodel:
1337
1338Memory Model for Concurrent Operations
1339--------------------------------------
1340
1341The LLVM IR does not define any way to start parallel threads of
1342execution or to register signal handlers. Nonetheless, there are
1343platform-specific ways to create them, and we define LLVM IR's behavior
1344in their presence. This model is inspired by the C++0x memory model.
1345
1346For a more informal introduction to this model, see the :doc:`Atomics`.
1347
1348We define a *happens-before* partial order as the least partial order
1349that
1350
1351- Is a superset of single-thread program order, and
1352- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1353 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1354 techniques, like pthread locks, thread creation, thread joining,
1355 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1356 Constraints <ordering>`).
1357
1358Note that program order does not introduce *happens-before* edges
1359between a thread and signals executing inside that thread.
1360
1361Every (defined) read operation (load instructions, memcpy, atomic
1362loads/read-modify-writes, etc.) R reads a series of bytes written by
1363(defined) write operations (store instructions, atomic
1364stores/read-modify-writes, memcpy, etc.). For the purposes of this
1365section, initialized globals are considered to have a write of the
1366initializer which is atomic and happens before any other read or write
1367of the memory in question. For each byte of a read R, R\ :sub:`byte`
1368may see any write to the same byte, except:
1369
1370- If write\ :sub:`1` happens before write\ :sub:`2`, and
1371 write\ :sub:`2` happens before R\ :sub:`byte`, then
1372 R\ :sub:`byte` does not see write\ :sub:`1`.
1373- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1374 R\ :sub:`byte` does not see write\ :sub:`3`.
1375
1376Given that definition, R\ :sub:`byte` is defined as follows:
1377
1378- If R is volatile, the result is target-dependent. (Volatile is
1379 supposed to give guarantees which can support ``sig_atomic_t`` in
1380 C/C++, and may be used for accesses to addresses which do not behave
1381 like normal memory. It does not generally provide cross-thread
1382 synchronization.)
1383- Otherwise, if there is no write to the same byte that happens before
1384 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1385- Otherwise, if R\ :sub:`byte` may see exactly one write,
1386 R\ :sub:`byte` returns the value written by that write.
1387- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1388 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1389 Memory Ordering Constraints <ordering>` section for additional
1390 constraints on how the choice is made.
1391- Otherwise R\ :sub:`byte` returns ``undef``.
1392
1393R returns the value composed of the series of bytes it read. This
1394implies that some bytes within the value may be ``undef`` **without**
1395the entire value being ``undef``. Note that this only defines the
1396semantics of the operation; it doesn't mean that targets will emit more
1397than one instruction to read the series of bytes.
1398
1399Note that in cases where none of the atomic intrinsics are used, this
1400model places only one restriction on IR transformations on top of what
1401is required for single-threaded execution: introducing a store to a byte
1402which might not otherwise be stored is not allowed in general.
1403(Specifically, in the case where another thread might write to and read
1404from an address, introducing a store can change a load that may see
1405exactly one write into a load that may see multiple writes.)
1406
1407.. _ordering:
1408
1409Atomic Memory Ordering Constraints
1410----------------------------------
1411
1412Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1413:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1414:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1415an ordering parameter that determines which other atomic instructions on
1416the same address they *synchronize with*. These semantics are borrowed
1417from Java and C++0x, but are somewhat more colloquial. If these
1418descriptions aren't precise enough, check those specs (see spec
1419references in the :doc:`atomics guide <Atomics>`).
1420:ref:`fence <i_fence>` instructions treat these orderings somewhat
1421differently since they don't take an address. See that instruction's
1422documentation for details.
1423
1424For a simpler introduction to the ordering constraints, see the
1425:doc:`Atomics`.
1426
1427``unordered``
1428 The set of values that can be read is governed by the happens-before
1429 partial order. A value cannot be read unless some operation wrote
1430 it. This is intended to provide a guarantee strong enough to model
1431 Java's non-volatile shared variables. This ordering cannot be
1432 specified for read-modify-write operations; it is not strong enough
1433 to make them atomic in any interesting way.
1434``monotonic``
1435 In addition to the guarantees of ``unordered``, there is a single
1436 total order for modifications by ``monotonic`` operations on each
1437 address. All modification orders must be compatible with the
1438 happens-before order. There is no guarantee that the modification
1439 orders can be combined to a global total order for the whole program
1440 (and this often will not be possible). The read in an atomic
1441 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1442 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1443 order immediately before the value it writes. If one atomic read
1444 happens before another atomic read of the same address, the later
1445 read must see the same value or a later value in the address's
1446 modification order. This disallows reordering of ``monotonic`` (or
1447 stronger) operations on the same address. If an address is written
1448 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1449 read that address repeatedly, the other threads must eventually see
1450 the write. This corresponds to the C++0x/C1x
1451 ``memory_order_relaxed``.
1452``acquire``
1453 In addition to the guarantees of ``monotonic``, a
1454 *synchronizes-with* edge may be formed with a ``release`` operation.
1455 This is intended to model C++'s ``memory_order_acquire``.
1456``release``
1457 In addition to the guarantees of ``monotonic``, if this operation
1458 writes a value which is subsequently read by an ``acquire``
1459 operation, it *synchronizes-with* that operation. (This isn't a
1460 complete description; see the C++0x definition of a release
1461 sequence.) This corresponds to the C++0x/C1x
1462 ``memory_order_release``.
1463``acq_rel`` (acquire+release)
1464 Acts as both an ``acquire`` and ``release`` operation on its
1465 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1466``seq_cst`` (sequentially consistent)
1467 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1468 operation which only reads, ``release`` for an operation which only
1469 writes), there is a global total order on all
1470 sequentially-consistent operations on all addresses, which is
1471 consistent with the *happens-before* partial order and with the
1472 modification orders of all the affected addresses. Each
1473 sequentially-consistent read sees the last preceding write to the
1474 same address in this global order. This corresponds to the C++0x/C1x
1475 ``memory_order_seq_cst`` and Java volatile.
1476
1477.. _singlethread:
1478
1479If an atomic operation is marked ``singlethread``, it only *synchronizes
1480with* or participates in modification and seq\_cst total orderings with
1481other operations running in the same thread (for example, in signal
1482handlers).
1483
1484.. _fastmath:
1485
1486Fast-Math Flags
1487---------------
1488
1489LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1490:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1491:ref:`frem <i_frem>`) have the following flags that can set to enable
1492otherwise unsafe floating point operations
1493
1494``nnan``
1495 No NaNs - Allow optimizations to assume the arguments and result are not
1496 NaN. Such optimizations are required to retain defined behavior over
1497 NaNs, but the value of the result is undefined.
1498
1499``ninf``
1500 No Infs - Allow optimizations to assume the arguments and result are not
1501 +/-Inf. Such optimizations are required to retain defined behavior over
1502 +/-Inf, but the value of the result is undefined.
1503
1504``nsz``
1505 No Signed Zeros - Allow optimizations to treat the sign of a zero
1506 argument or result as insignificant.
1507
1508``arcp``
1509 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1510 argument rather than perform division.
1511
1512``fast``
1513 Fast - Allow algebraically equivalent transformations that may
1514 dramatically change results in floating point (e.g. reassociate). This
1515 flag implies all the others.
1516
1517.. _typesystem:
1518
1519Type System
1520===========
1521
1522The LLVM type system is one of the most important features of the
1523intermediate representation. Being typed enables a number of
1524optimizations to be performed on the intermediate representation
1525directly, without having to do extra analyses on the side before the
1526transformation. A strong type system makes it easier to read the
1527generated code and enables novel analyses and transformations that are
1528not feasible to perform on normal three address code representations.
1529
Rafael Espindola08013342013-12-07 19:34:20 +00001530.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001531
Rafael Espindola08013342013-12-07 19:34:20 +00001532Void Type
1533---------
Sean Silvab084af42012-12-07 10:36:55 +00001534
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001535:Overview:
1536
Rafael Espindola08013342013-12-07 19:34:20 +00001537
1538The void type does not represent any value and has no size.
1539
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001540:Syntax:
1541
Rafael Espindola08013342013-12-07 19:34:20 +00001542
1543::
1544
1545 void
Sean Silvab084af42012-12-07 10:36:55 +00001546
1547
Rafael Espindola08013342013-12-07 19:34:20 +00001548.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001549
Rafael Espindola08013342013-12-07 19:34:20 +00001550Function Type
1551-------------
Sean Silvab084af42012-12-07 10:36:55 +00001552
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001553:Overview:
1554
Sean Silvab084af42012-12-07 10:36:55 +00001555
Rafael Espindola08013342013-12-07 19:34:20 +00001556The function type can be thought of as a function signature. It consists of a
1557return type and a list of formal parameter types. The return type of a function
1558type is a void type or first class type --- except for :ref:`label <t_label>`
1559and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001560
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001561:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001562
Rafael Espindola08013342013-12-07 19:34:20 +00001563::
Sean Silvab084af42012-12-07 10:36:55 +00001564
Rafael Espindola08013342013-12-07 19:34:20 +00001565 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001566
Rafael Espindola08013342013-12-07 19:34:20 +00001567...where '``<parameter list>``' is a comma-separated list of type
1568specifiers. Optionally, the parameter list may include a type ``...``, which
1569indicates that the function takes a variable number of arguments. Variable
1570argument functions can access their arguments with the :ref:`variable argument
1571handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1572except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001573
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001574:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001575
Rafael Espindola08013342013-12-07 19:34:20 +00001576+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1577| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1578+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1579| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1580+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1581| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1582+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1583| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1584+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1585
1586.. _t_firstclass:
1587
1588First Class Types
1589-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001590
1591The :ref:`first class <t_firstclass>` types are perhaps the most important.
1592Values of these types are the only ones which can be produced by
1593instructions.
1594
Rafael Espindola08013342013-12-07 19:34:20 +00001595.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001596
Rafael Espindola08013342013-12-07 19:34:20 +00001597Single Value Types
1598^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001599
Rafael Espindola08013342013-12-07 19:34:20 +00001600These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001601
1602.. _t_integer:
1603
1604Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001605""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001606
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001607:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001608
1609The integer type is a very simple type that simply specifies an
1610arbitrary bit width for the integer type desired. Any bit width from 1
1611bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1612
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001613:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001614
1615::
1616
1617 iN
1618
1619The number of bits the integer will occupy is specified by the ``N``
1620value.
1621
1622Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001623*********
Sean Silvab084af42012-12-07 10:36:55 +00001624
1625+----------------+------------------------------------------------+
1626| ``i1`` | a single-bit integer. |
1627+----------------+------------------------------------------------+
1628| ``i32`` | a 32-bit integer. |
1629+----------------+------------------------------------------------+
1630| ``i1942652`` | a really big integer of over 1 million bits. |
1631+----------------+------------------------------------------------+
1632
1633.. _t_floating:
1634
1635Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001636""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001637
1638.. list-table::
1639 :header-rows: 1
1640
1641 * - Type
1642 - Description
1643
1644 * - ``half``
1645 - 16-bit floating point value
1646
1647 * - ``float``
1648 - 32-bit floating point value
1649
1650 * - ``double``
1651 - 64-bit floating point value
1652
1653 * - ``fp128``
1654 - 128-bit floating point value (112-bit mantissa)
1655
1656 * - ``x86_fp80``
1657 - 80-bit floating point value (X87)
1658
1659 * - ``ppc_fp128``
1660 - 128-bit floating point value (two 64-bits)
1661
1662.. _t_x86mmx:
1663
1664X86mmx Type
Rafael Espindola08013342013-12-07 19:34:20 +00001665"""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001666
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001667:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001668
1669The x86mmx type represents a value held in an MMX register on an x86
1670machine. The operations allowed on it are quite limited: parameters and
1671return values, load and store, and bitcast. User-specified MMX
1672instructions are represented as intrinsic or asm calls with arguments
1673and/or results of this type. There are no arrays, vectors or constants
1674of this type.
1675
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001676:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001677
1678::
1679
1680 x86mmx
1681
Sean Silvab084af42012-12-07 10:36:55 +00001682
Rafael Espindola08013342013-12-07 19:34:20 +00001683.. _t_pointer:
1684
1685Pointer Type
1686""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001687
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001688:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001689
Rafael Espindola08013342013-12-07 19:34:20 +00001690The pointer type is used to specify memory locations. Pointers are
1691commonly used to reference objects in memory.
1692
1693Pointer types may have an optional address space attribute defining the
1694numbered address space where the pointed-to object resides. The default
1695address space is number zero. The semantics of non-zero address spaces
1696are target-specific.
1697
1698Note that LLVM does not permit pointers to void (``void*``) nor does it
1699permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001700
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001701:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001702
1703::
1704
Rafael Espindola08013342013-12-07 19:34:20 +00001705 <type> *
1706
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001707:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001708
1709+-------------------------+--------------------------------------------------------------------------------------------------------------+
1710| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1711+-------------------------+--------------------------------------------------------------------------------------------------------------+
1712| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1713+-------------------------+--------------------------------------------------------------------------------------------------------------+
1714| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1715+-------------------------+--------------------------------------------------------------------------------------------------------------+
1716
1717.. _t_vector:
1718
1719Vector Type
1720"""""""""""
1721
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001722:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001723
1724A vector type is a simple derived type that represents a vector of
1725elements. Vector types are used when multiple primitive data are
1726operated in parallel using a single instruction (SIMD). A vector type
1727requires a size (number of elements) and an underlying primitive data
1728type. Vector types are considered :ref:`first class <t_firstclass>`.
1729
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001730:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001731
1732::
1733
1734 < <# elements> x <elementtype> >
1735
1736The number of elements is a constant integer value larger than 0;
1737elementtype may be any integer or floating point type, or a pointer to
1738these types. Vectors of size zero are not allowed.
1739
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001740:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001741
1742+-------------------+--------------------------------------------------+
1743| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1744+-------------------+--------------------------------------------------+
1745| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1746+-------------------+--------------------------------------------------+
1747| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1748+-------------------+--------------------------------------------------+
1749| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1750+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001751
1752.. _t_label:
1753
1754Label Type
1755^^^^^^^^^^
1756
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001757:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001758
1759The label type represents code labels.
1760
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001761:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001762
1763::
1764
1765 label
1766
1767.. _t_metadata:
1768
1769Metadata Type
1770^^^^^^^^^^^^^
1771
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001772:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001773
1774The metadata type represents embedded metadata. No derived types may be
1775created from metadata except for :ref:`function <t_function>` arguments.
1776
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001777:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001778
1779::
1780
1781 metadata
1782
Sean Silvab084af42012-12-07 10:36:55 +00001783.. _t_aggregate:
1784
1785Aggregate Types
1786^^^^^^^^^^^^^^^
1787
1788Aggregate Types are a subset of derived types that can contain multiple
1789member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1790aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1791aggregate types.
1792
1793.. _t_array:
1794
1795Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001796""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001797
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001798:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001799
1800The array type is a very simple derived type that arranges elements
1801sequentially in memory. The array type requires a size (number of
1802elements) and an underlying data type.
1803
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001804:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001805
1806::
1807
1808 [<# elements> x <elementtype>]
1809
1810The number of elements is a constant integer value; ``elementtype`` may
1811be any type with a size.
1812
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001813:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001814
1815+------------------+--------------------------------------+
1816| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1817+------------------+--------------------------------------+
1818| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1819+------------------+--------------------------------------+
1820| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1821+------------------+--------------------------------------+
1822
1823Here are some examples of multidimensional arrays:
1824
1825+-----------------------------+----------------------------------------------------------+
1826| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1827+-----------------------------+----------------------------------------------------------+
1828| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1829+-----------------------------+----------------------------------------------------------+
1830| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1831+-----------------------------+----------------------------------------------------------+
1832
1833There is no restriction on indexing beyond the end of the array implied
1834by a static type (though there are restrictions on indexing beyond the
1835bounds of an allocated object in some cases). This means that
1836single-dimension 'variable sized array' addressing can be implemented in
1837LLVM with a zero length array type. An implementation of 'pascal style
1838arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1839example.
1840
Sean Silvab084af42012-12-07 10:36:55 +00001841.. _t_struct:
1842
1843Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001844""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001845
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001846:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001847
1848The structure type is used to represent a collection of data members
1849together in memory. The elements of a structure may be any type that has
1850a size.
1851
1852Structures in memory are accessed using '``load``' and '``store``' by
1853getting a pointer to a field with the '``getelementptr``' instruction.
1854Structures in registers are accessed using the '``extractvalue``' and
1855'``insertvalue``' instructions.
1856
1857Structures may optionally be "packed" structures, which indicate that
1858the alignment of the struct is one byte, and that there is no padding
1859between the elements. In non-packed structs, padding between field types
1860is inserted as defined by the DataLayout string in the module, which is
1861required to match what the underlying code generator expects.
1862
1863Structures can either be "literal" or "identified". A literal structure
1864is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1865identified types are always defined at the top level with a name.
1866Literal types are uniqued by their contents and can never be recursive
1867or opaque since there is no way to write one. Identified types can be
1868recursive, can be opaqued, and are never uniqued.
1869
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001870:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001871
1872::
1873
1874 %T1 = type { <type list> } ; Identified normal struct type
1875 %T2 = type <{ <type list> }> ; Identified packed struct type
1876
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001877:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001878
1879+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1880| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1881+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001882| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001883+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1884| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1885+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1886
1887.. _t_opaque:
1888
1889Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001890""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001891
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001892:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001893
1894Opaque structure types are used to represent named structure types that
1895do not have a body specified. This corresponds (for example) to the C
1896notion of a forward declared structure.
1897
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001898:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001899
1900::
1901
1902 %X = type opaque
1903 %52 = type opaque
1904
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001905:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001906
1907+--------------+-------------------+
1908| ``opaque`` | An opaque type. |
1909+--------------+-------------------+
1910
Sean Silvab084af42012-12-07 10:36:55 +00001911Constants
1912=========
1913
1914LLVM has several different basic types of constants. This section
1915describes them all and their syntax.
1916
1917Simple Constants
1918----------------
1919
1920**Boolean constants**
1921 The two strings '``true``' and '``false``' are both valid constants
1922 of the ``i1`` type.
1923**Integer constants**
1924 Standard integers (such as '4') are constants of the
1925 :ref:`integer <t_integer>` type. Negative numbers may be used with
1926 integer types.
1927**Floating point constants**
1928 Floating point constants use standard decimal notation (e.g.
1929 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1930 hexadecimal notation (see below). The assembler requires the exact
1931 decimal value of a floating-point constant. For example, the
1932 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1933 decimal in binary. Floating point constants must have a :ref:`floating
1934 point <t_floating>` type.
1935**Null pointer constants**
1936 The identifier '``null``' is recognized as a null pointer constant
1937 and must be of :ref:`pointer type <t_pointer>`.
1938
1939The one non-intuitive notation for constants is the hexadecimal form of
1940floating point constants. For example, the form
1941'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1942than) '``double 4.5e+15``'. The only time hexadecimal floating point
1943constants are required (and the only time that they are generated by the
1944disassembler) is when a floating point constant must be emitted but it
1945cannot be represented as a decimal floating point number in a reasonable
1946number of digits. For example, NaN's, infinities, and other special
1947values are represented in their IEEE hexadecimal format so that assembly
1948and disassembly do not cause any bits to change in the constants.
1949
1950When using the hexadecimal form, constants of types half, float, and
1951double are represented using the 16-digit form shown above (which
1952matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00001953must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00001954precision, respectively. Hexadecimal format is always used for long
1955double, and there are three forms of long double. The 80-bit format used
1956by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1957128-bit format used by PowerPC (two adjacent doubles) is represented by
1958``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00001959represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1960will only work if they match the long double format on your target.
1961The IEEE 16-bit format (half precision) is represented by ``0xH``
1962followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1963(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00001964
1965There are no constants of type x86mmx.
1966
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001967.. _complexconstants:
1968
Sean Silvab084af42012-12-07 10:36:55 +00001969Complex Constants
1970-----------------
1971
1972Complex constants are a (potentially recursive) combination of simple
1973constants and smaller complex constants.
1974
1975**Structure constants**
1976 Structure constants are represented with notation similar to
1977 structure type definitions (a comma separated list of elements,
1978 surrounded by braces (``{}``)). For example:
1979 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1980 "``@G = external global i32``". Structure constants must have
1981 :ref:`structure type <t_struct>`, and the number and types of elements
1982 must match those specified by the type.
1983**Array constants**
1984 Array constants are represented with notation similar to array type
1985 definitions (a comma separated list of elements, surrounded by
1986 square brackets (``[]``)). For example:
1987 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1988 :ref:`array type <t_array>`, and the number and types of elements must
1989 match those specified by the type.
1990**Vector constants**
1991 Vector constants are represented with notation similar to vector
1992 type definitions (a comma separated list of elements, surrounded by
1993 less-than/greater-than's (``<>``)). For example:
1994 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1995 must have :ref:`vector type <t_vector>`, and the number and types of
1996 elements must match those specified by the type.
1997**Zero initialization**
1998 The string '``zeroinitializer``' can be used to zero initialize a
1999 value to zero of *any* type, including scalar and
2000 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2001 having to print large zero initializers (e.g. for large arrays) and
2002 is always exactly equivalent to using explicit zero initializers.
2003**Metadata node**
2004 A metadata node is a structure-like constant with :ref:`metadata
2005 type <t_metadata>`. For example:
2006 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2007 constants that are meant to be interpreted as part of the
2008 instruction stream, metadata is a place to attach additional
2009 information such as debug info.
2010
2011Global Variable and Function Addresses
2012--------------------------------------
2013
2014The addresses of :ref:`global variables <globalvars>` and
2015:ref:`functions <functionstructure>` are always implicitly valid
2016(link-time) constants. These constants are explicitly referenced when
2017the :ref:`identifier for the global <identifiers>` is used and always have
2018:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2019file:
2020
2021.. code-block:: llvm
2022
2023 @X = global i32 17
2024 @Y = global i32 42
2025 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2026
2027.. _undefvalues:
2028
2029Undefined Values
2030----------------
2031
2032The string '``undef``' can be used anywhere a constant is expected, and
2033indicates that the user of the value may receive an unspecified
2034bit-pattern. Undefined values may be of any type (other than '``label``'
2035or '``void``') and be used anywhere a constant is permitted.
2036
2037Undefined values are useful because they indicate to the compiler that
2038the program is well defined no matter what value is used. This gives the
2039compiler more freedom to optimize. Here are some examples of
2040(potentially surprising) transformations that are valid (in pseudo IR):
2041
2042.. code-block:: llvm
2043
2044 %A = add %X, undef
2045 %B = sub %X, undef
2046 %C = xor %X, undef
2047 Safe:
2048 %A = undef
2049 %B = undef
2050 %C = undef
2051
2052This is safe because all of the output bits are affected by the undef
2053bits. Any output bit can have a zero or one depending on the input bits.
2054
2055.. code-block:: llvm
2056
2057 %A = or %X, undef
2058 %B = and %X, undef
2059 Safe:
2060 %A = -1
2061 %B = 0
2062 Unsafe:
2063 %A = undef
2064 %B = undef
2065
2066These logical operations have bits that are not always affected by the
2067input. For example, if ``%X`` has a zero bit, then the output of the
2068'``and``' operation will always be a zero for that bit, no matter what
2069the corresponding bit from the '``undef``' is. As such, it is unsafe to
2070optimize or assume that the result of the '``and``' is '``undef``'.
2071However, it is safe to assume that all bits of the '``undef``' could be
20720, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2073all the bits of the '``undef``' operand to the '``or``' could be set,
2074allowing the '``or``' to be folded to -1.
2075
2076.. code-block:: llvm
2077
2078 %A = select undef, %X, %Y
2079 %B = select undef, 42, %Y
2080 %C = select %X, %Y, undef
2081 Safe:
2082 %A = %X (or %Y)
2083 %B = 42 (or %Y)
2084 %C = %Y
2085 Unsafe:
2086 %A = undef
2087 %B = undef
2088 %C = undef
2089
2090This set of examples shows that undefined '``select``' (and conditional
2091branch) conditions can go *either way*, but they have to come from one
2092of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2093both known to have a clear low bit, then ``%A`` would have to have a
2094cleared low bit. However, in the ``%C`` example, the optimizer is
2095allowed to assume that the '``undef``' operand could be the same as
2096``%Y``, allowing the whole '``select``' to be eliminated.
2097
2098.. code-block:: llvm
2099
2100 %A = xor undef, undef
2101
2102 %B = undef
2103 %C = xor %B, %B
2104
2105 %D = undef
2106 %E = icmp lt %D, 4
2107 %F = icmp gte %D, 4
2108
2109 Safe:
2110 %A = undef
2111 %B = undef
2112 %C = undef
2113 %D = undef
2114 %E = undef
2115 %F = undef
2116
2117This example points out that two '``undef``' operands are not
2118necessarily the same. This can be surprising to people (and also matches
2119C semantics) where they assume that "``X^X``" is always zero, even if
2120``X`` is undefined. This isn't true for a number of reasons, but the
2121short answer is that an '``undef``' "variable" can arbitrarily change
2122its value over its "live range". This is true because the variable
2123doesn't actually *have a live range*. Instead, the value is logically
2124read from arbitrary registers that happen to be around when needed, so
2125the value is not necessarily consistent over time. In fact, ``%A`` and
2126``%C`` need to have the same semantics or the core LLVM "replace all
2127uses with" concept would not hold.
2128
2129.. code-block:: llvm
2130
2131 %A = fdiv undef, %X
2132 %B = fdiv %X, undef
2133 Safe:
2134 %A = undef
2135 b: unreachable
2136
2137These examples show the crucial difference between an *undefined value*
2138and *undefined behavior*. An undefined value (like '``undef``') is
2139allowed to have an arbitrary bit-pattern. This means that the ``%A``
2140operation can be constant folded to '``undef``', because the '``undef``'
2141could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2142However, in the second example, we can make a more aggressive
2143assumption: because the ``undef`` is allowed to be an arbitrary value,
2144we are allowed to assume that it could be zero. Since a divide by zero
2145has *undefined behavior*, we are allowed to assume that the operation
2146does not execute at all. This allows us to delete the divide and all
2147code after it. Because the undefined operation "can't happen", the
2148optimizer can assume that it occurs in dead code.
2149
2150.. code-block:: llvm
2151
2152 a: store undef -> %X
2153 b: store %X -> undef
2154 Safe:
2155 a: <deleted>
2156 b: unreachable
2157
2158These examples reiterate the ``fdiv`` example: a store *of* an undefined
2159value can be assumed to not have any effect; we can assume that the
2160value is overwritten with bits that happen to match what was already
2161there. However, a store *to* an undefined location could clobber
2162arbitrary memory, therefore, it has undefined behavior.
2163
2164.. _poisonvalues:
2165
2166Poison Values
2167-------------
2168
2169Poison values are similar to :ref:`undef values <undefvalues>`, however
2170they also represent the fact that an instruction or constant expression
2171which cannot evoke side effects has nevertheless detected a condition
2172which results in undefined behavior.
2173
2174There is currently no way of representing a poison value in the IR; they
2175only exist when produced by operations such as :ref:`add <i_add>` with
2176the ``nsw`` flag.
2177
2178Poison value behavior is defined in terms of value *dependence*:
2179
2180- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2181- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2182 their dynamic predecessor basic block.
2183- Function arguments depend on the corresponding actual argument values
2184 in the dynamic callers of their functions.
2185- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2186 instructions that dynamically transfer control back to them.
2187- :ref:`Invoke <i_invoke>` instructions depend on the
2188 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2189 call instructions that dynamically transfer control back to them.
2190- Non-volatile loads and stores depend on the most recent stores to all
2191 of the referenced memory addresses, following the order in the IR
2192 (including loads and stores implied by intrinsics such as
2193 :ref:`@llvm.memcpy <int_memcpy>`.)
2194- An instruction with externally visible side effects depends on the
2195 most recent preceding instruction with externally visible side
2196 effects, following the order in the IR. (This includes :ref:`volatile
2197 operations <volatile>`.)
2198- An instruction *control-depends* on a :ref:`terminator
2199 instruction <terminators>` if the terminator instruction has
2200 multiple successors and the instruction is always executed when
2201 control transfers to one of the successors, and may not be executed
2202 when control is transferred to another.
2203- Additionally, an instruction also *control-depends* on a terminator
2204 instruction if the set of instructions it otherwise depends on would
2205 be different if the terminator had transferred control to a different
2206 successor.
2207- Dependence is transitive.
2208
2209Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2210with the additional affect that any instruction which has a *dependence*
2211on a poison value has undefined behavior.
2212
2213Here are some examples:
2214
2215.. code-block:: llvm
2216
2217 entry:
2218 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2219 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2220 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2221 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2222
2223 store i32 %poison, i32* @g ; Poison value stored to memory.
2224 %poison2 = load i32* @g ; Poison value loaded back from memory.
2225
2226 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2227
2228 %narrowaddr = bitcast i32* @g to i16*
2229 %wideaddr = bitcast i32* @g to i64*
2230 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2231 %poison4 = load i64* %wideaddr ; Returns a poison value.
2232
2233 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2234 br i1 %cmp, label %true, label %end ; Branch to either destination.
2235
2236 true:
2237 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2238 ; it has undefined behavior.
2239 br label %end
2240
2241 end:
2242 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2243 ; Both edges into this PHI are
2244 ; control-dependent on %cmp, so this
2245 ; always results in a poison value.
2246
2247 store volatile i32 0, i32* @g ; This would depend on the store in %true
2248 ; if %cmp is true, or the store in %entry
2249 ; otherwise, so this is undefined behavior.
2250
2251 br i1 %cmp, label %second_true, label %second_end
2252 ; The same branch again, but this time the
2253 ; true block doesn't have side effects.
2254
2255 second_true:
2256 ; No side effects!
2257 ret void
2258
2259 second_end:
2260 store volatile i32 0, i32* @g ; This time, the instruction always depends
2261 ; on the store in %end. Also, it is
2262 ; control-equivalent to %end, so this is
2263 ; well-defined (ignoring earlier undefined
2264 ; behavior in this example).
2265
2266.. _blockaddress:
2267
2268Addresses of Basic Blocks
2269-------------------------
2270
2271``blockaddress(@function, %block)``
2272
2273The '``blockaddress``' constant computes the address of the specified
2274basic block in the specified function, and always has an ``i8*`` type.
2275Taking the address of the entry block is illegal.
2276
2277This value only has defined behavior when used as an operand to the
2278':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2279against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002280undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002281no label is equal to the null pointer. This may be passed around as an
2282opaque pointer sized value as long as the bits are not inspected. This
2283allows ``ptrtoint`` and arithmetic to be performed on these values so
2284long as the original value is reconstituted before the ``indirectbr``
2285instruction.
2286
2287Finally, some targets may provide defined semantics when using the value
2288as the operand to an inline assembly, but that is target specific.
2289
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002290.. _constantexprs:
2291
Sean Silvab084af42012-12-07 10:36:55 +00002292Constant Expressions
2293--------------------
2294
2295Constant expressions are used to allow expressions involving other
2296constants to be used as constants. Constant expressions may be of any
2297:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2298that does not have side effects (e.g. load and call are not supported).
2299The following is the syntax for constant expressions:
2300
2301``trunc (CST to TYPE)``
2302 Truncate a constant to another type. The bit size of CST must be
2303 larger than the bit size of TYPE. Both types must be integers.
2304``zext (CST to TYPE)``
2305 Zero extend a constant to another type. The bit size of CST must be
2306 smaller than the bit size of TYPE. Both types must be integers.
2307``sext (CST to TYPE)``
2308 Sign extend a constant to another type. The bit size of CST must be
2309 smaller than the bit size of TYPE. Both types must be integers.
2310``fptrunc (CST to TYPE)``
2311 Truncate a floating point constant to another floating point type.
2312 The size of CST must be larger than the size of TYPE. Both types
2313 must be floating point.
2314``fpext (CST to TYPE)``
2315 Floating point extend a constant to another type. The size of CST
2316 must be smaller or equal to the size of TYPE. Both types must be
2317 floating point.
2318``fptoui (CST to TYPE)``
2319 Convert a floating point constant to the corresponding unsigned
2320 integer constant. TYPE must be a scalar or vector integer type. CST
2321 must be of scalar or vector floating point type. Both CST and TYPE
2322 must be scalars, or vectors of the same number of elements. If the
2323 value won't fit in the integer type, the results are undefined.
2324``fptosi (CST to TYPE)``
2325 Convert a floating point constant to the corresponding signed
2326 integer constant. TYPE must be a scalar or vector integer type. CST
2327 must be of scalar or vector floating point type. Both CST and TYPE
2328 must be scalars, or vectors of the same number of elements. If the
2329 value won't fit in the integer type, the results are undefined.
2330``uitofp (CST to TYPE)``
2331 Convert an unsigned integer constant to the corresponding floating
2332 point constant. TYPE must be a scalar or vector floating point type.
2333 CST must be of scalar or vector integer type. Both CST and TYPE must
2334 be scalars, or vectors of the same number of elements. If the value
2335 won't fit in the floating point type, the results are undefined.
2336``sitofp (CST to TYPE)``
2337 Convert a signed integer constant to the corresponding floating
2338 point constant. TYPE must be a scalar or vector floating point type.
2339 CST must be of scalar or vector integer type. Both CST and TYPE must
2340 be scalars, or vectors of the same number of elements. If the value
2341 won't fit in the floating point type, the results are undefined.
2342``ptrtoint (CST to TYPE)``
2343 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002344 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002345 pointer type. The ``CST`` value is zero extended, truncated, or
2346 unchanged to make it fit in ``TYPE``.
2347``inttoptr (CST to TYPE)``
2348 Convert an integer constant to a pointer constant. TYPE must be a
2349 pointer type. CST must be of integer type. The CST value is zero
2350 extended, truncated, or unchanged to make it fit in a pointer size.
2351 This one is *really* dangerous!
2352``bitcast (CST to TYPE)``
2353 Convert a constant, CST, to another TYPE. The constraints of the
2354 operands are the same as those for the :ref:`bitcast
2355 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002356``addrspacecast (CST to TYPE)``
2357 Convert a constant pointer or constant vector of pointer, CST, to another
2358 TYPE in a different address space. The constraints of the operands are the
2359 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002360``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2361 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2362 constants. As with the :ref:`getelementptr <i_getelementptr>`
2363 instruction, the index list may have zero or more indexes, which are
2364 required to make sense for the type of "CSTPTR".
2365``select (COND, VAL1, VAL2)``
2366 Perform the :ref:`select operation <i_select>` on constants.
2367``icmp COND (VAL1, VAL2)``
2368 Performs the :ref:`icmp operation <i_icmp>` on constants.
2369``fcmp COND (VAL1, VAL2)``
2370 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2371``extractelement (VAL, IDX)``
2372 Perform the :ref:`extractelement operation <i_extractelement>` on
2373 constants.
2374``insertelement (VAL, ELT, IDX)``
2375 Perform the :ref:`insertelement operation <i_insertelement>` on
2376 constants.
2377``shufflevector (VEC1, VEC2, IDXMASK)``
2378 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2379 constants.
2380``extractvalue (VAL, IDX0, IDX1, ...)``
2381 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2382 constants. The index list is interpreted in a similar manner as
2383 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2384 least one index value must be specified.
2385``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2386 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2387 The index list is interpreted in a similar manner as indices in a
2388 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2389 value must be specified.
2390``OPCODE (LHS, RHS)``
2391 Perform the specified operation of the LHS and RHS constants. OPCODE
2392 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2393 binary <bitwiseops>` operations. The constraints on operands are
2394 the same as those for the corresponding instruction (e.g. no bitwise
2395 operations on floating point values are allowed).
2396
2397Other Values
2398============
2399
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002400.. _inlineasmexprs:
2401
Sean Silvab084af42012-12-07 10:36:55 +00002402Inline Assembler Expressions
2403----------------------------
2404
2405LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2406Inline Assembly <moduleasm>`) through the use of a special value. This
2407value represents the inline assembler as a string (containing the
2408instructions to emit), a list of operand constraints (stored as a
2409string), a flag that indicates whether or not the inline asm expression
2410has side effects, and a flag indicating whether the function containing
2411the asm needs to align its stack conservatively. An example inline
2412assembler expression is:
2413
2414.. code-block:: llvm
2415
2416 i32 (i32) asm "bswap $0", "=r,r"
2417
2418Inline assembler expressions may **only** be used as the callee operand
2419of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2420Thus, typically we have:
2421
2422.. code-block:: llvm
2423
2424 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2425
2426Inline asms with side effects not visible in the constraint list must be
2427marked as having side effects. This is done through the use of the
2428'``sideeffect``' keyword, like so:
2429
2430.. code-block:: llvm
2431
2432 call void asm sideeffect "eieio", ""()
2433
2434In some cases inline asms will contain code that will not work unless
2435the stack is aligned in some way, such as calls or SSE instructions on
2436x86, yet will not contain code that does that alignment within the asm.
2437The compiler should make conservative assumptions about what the asm
2438might contain and should generate its usual stack alignment code in the
2439prologue if the '``alignstack``' keyword is present:
2440
2441.. code-block:: llvm
2442
2443 call void asm alignstack "eieio", ""()
2444
2445Inline asms also support using non-standard assembly dialects. The
2446assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2447the inline asm is using the Intel dialect. Currently, ATT and Intel are
2448the only supported dialects. An example is:
2449
2450.. code-block:: llvm
2451
2452 call void asm inteldialect "eieio", ""()
2453
2454If multiple keywords appear the '``sideeffect``' keyword must come
2455first, the '``alignstack``' keyword second and the '``inteldialect``'
2456keyword last.
2457
2458Inline Asm Metadata
2459^^^^^^^^^^^^^^^^^^^
2460
2461The call instructions that wrap inline asm nodes may have a
2462"``!srcloc``" MDNode attached to it that contains a list of constant
2463integers. If present, the code generator will use the integer as the
2464location cookie value when report errors through the ``LLVMContext``
2465error reporting mechanisms. This allows a front-end to correlate backend
2466errors that occur with inline asm back to the source code that produced
2467it. For example:
2468
2469.. code-block:: llvm
2470
2471 call void asm sideeffect "something bad", ""(), !srcloc !42
2472 ...
2473 !42 = !{ i32 1234567 }
2474
2475It is up to the front-end to make sense of the magic numbers it places
2476in the IR. If the MDNode contains multiple constants, the code generator
2477will use the one that corresponds to the line of the asm that the error
2478occurs on.
2479
2480.. _metadata:
2481
2482Metadata Nodes and Metadata Strings
2483-----------------------------------
2484
2485LLVM IR allows metadata to be attached to instructions in the program
2486that can convey extra information about the code to the optimizers and
2487code generator. One example application of metadata is source-level
2488debug information. There are two metadata primitives: strings and nodes.
2489All metadata has the ``metadata`` type and is identified in syntax by a
2490preceding exclamation point ('``!``').
2491
2492A metadata string is a string surrounded by double quotes. It can
2493contain any character by escaping non-printable characters with
2494"``\xx``" where "``xx``" is the two digit hex code. For example:
2495"``!"test\00"``".
2496
2497Metadata nodes are represented with notation similar to structure
2498constants (a comma separated list of elements, surrounded by braces and
2499preceded by an exclamation point). Metadata nodes can have any values as
2500their operand. For example:
2501
2502.. code-block:: llvm
2503
2504 !{ metadata !"test\00", i32 10}
2505
2506A :ref:`named metadata <namedmetadatastructure>` is a collection of
2507metadata nodes, which can be looked up in the module symbol table. For
2508example:
2509
2510.. code-block:: llvm
2511
2512 !foo = metadata !{!4, !3}
2513
2514Metadata can be used as function arguments. Here ``llvm.dbg.value``
2515function is using two metadata arguments:
2516
2517.. code-block:: llvm
2518
2519 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2520
2521Metadata can be attached with an instruction. Here metadata ``!21`` is
2522attached to the ``add`` instruction using the ``!dbg`` identifier:
2523
2524.. code-block:: llvm
2525
2526 %indvar.next = add i64 %indvar, 1, !dbg !21
2527
2528More information about specific metadata nodes recognized by the
2529optimizers and code generator is found below.
2530
2531'``tbaa``' Metadata
2532^^^^^^^^^^^^^^^^^^^
2533
2534In LLVM IR, memory does not have types, so LLVM's own type system is not
2535suitable for doing TBAA. Instead, metadata is added to the IR to
2536describe a type system of a higher level language. This can be used to
2537implement typical C/C++ TBAA, but it can also be used to implement
2538custom alias analysis behavior for other languages.
2539
2540The current metadata format is very simple. TBAA metadata nodes have up
2541to three fields, e.g.:
2542
2543.. code-block:: llvm
2544
2545 !0 = metadata !{ metadata !"an example type tree" }
2546 !1 = metadata !{ metadata !"int", metadata !0 }
2547 !2 = metadata !{ metadata !"float", metadata !0 }
2548 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2549
2550The first field is an identity field. It can be any value, usually a
2551metadata string, which uniquely identifies the type. The most important
2552name in the tree is the name of the root node. Two trees with different
2553root node names are entirely disjoint, even if they have leaves with
2554common names.
2555
2556The second field identifies the type's parent node in the tree, or is
2557null or omitted for a root node. A type is considered to alias all of
2558its descendants and all of its ancestors in the tree. Also, a type is
2559considered to alias all types in other trees, so that bitcode produced
2560from multiple front-ends is handled conservatively.
2561
2562If the third field is present, it's an integer which if equal to 1
2563indicates that the type is "constant" (meaning
2564``pointsToConstantMemory`` should return true; see `other useful
2565AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2566
2567'``tbaa.struct``' Metadata
2568^^^^^^^^^^^^^^^^^^^^^^^^^^
2569
2570The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2571aggregate assignment operations in C and similar languages, however it
2572is defined to copy a contiguous region of memory, which is more than
2573strictly necessary for aggregate types which contain holes due to
2574padding. Also, it doesn't contain any TBAA information about the fields
2575of the aggregate.
2576
2577``!tbaa.struct`` metadata can describe which memory subregions in a
2578memcpy are padding and what the TBAA tags of the struct are.
2579
2580The current metadata format is very simple. ``!tbaa.struct`` metadata
2581nodes are a list of operands which are in conceptual groups of three.
2582For each group of three, the first operand gives the byte offset of a
2583field in bytes, the second gives its size in bytes, and the third gives
2584its tbaa tag. e.g.:
2585
2586.. code-block:: llvm
2587
2588 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2589
2590This describes a struct with two fields. The first is at offset 0 bytes
2591with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2592and has size 4 bytes and has tbaa tag !2.
2593
2594Note that the fields need not be contiguous. In this example, there is a
25954 byte gap between the two fields. This gap represents padding which
2596does not carry useful data and need not be preserved.
2597
2598'``fpmath``' Metadata
2599^^^^^^^^^^^^^^^^^^^^^
2600
2601``fpmath`` metadata may be attached to any instruction of floating point
2602type. It can be used to express the maximum acceptable error in the
2603result of that instruction, in ULPs, thus potentially allowing the
2604compiler to use a more efficient but less accurate method of computing
2605it. ULP is defined as follows:
2606
2607 If ``x`` is a real number that lies between two finite consecutive
2608 floating-point numbers ``a`` and ``b``, without being equal to one
2609 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2610 distance between the two non-equal finite floating-point numbers
2611 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2612
2613The metadata node shall consist of a single positive floating point
2614number representing the maximum relative error, for example:
2615
2616.. code-block:: llvm
2617
2618 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2619
2620'``range``' Metadata
2621^^^^^^^^^^^^^^^^^^^^
2622
2623``range`` metadata may be attached only to loads of integer types. It
2624expresses the possible ranges the loaded value is in. The ranges are
2625represented with a flattened list of integers. The loaded value is known
2626to be in the union of the ranges defined by each consecutive pair. Each
2627pair has the following properties:
2628
2629- The type must match the type loaded by the instruction.
2630- The pair ``a,b`` represents the range ``[a,b)``.
2631- Both ``a`` and ``b`` are constants.
2632- The range is allowed to wrap.
2633- The range should not represent the full or empty set. That is,
2634 ``a!=b``.
2635
2636In addition, the pairs must be in signed order of the lower bound and
2637they must be non-contiguous.
2638
2639Examples:
2640
2641.. code-block:: llvm
2642
2643 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2644 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2645 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2646 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2647 ...
2648 !0 = metadata !{ i8 0, i8 2 }
2649 !1 = metadata !{ i8 255, i8 2 }
2650 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2651 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2652
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002653'``llvm.loop``'
2654^^^^^^^^^^^^^^^
2655
2656It is sometimes useful to attach information to loop constructs. Currently,
2657loop metadata is implemented as metadata attached to the branch instruction
2658in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002659guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002660specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002661
2662The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002663itself to avoid merging it with any other identifier metadata, e.g.,
2664during module linkage or function inlining. That is, each loop should refer
2665to their own identification metadata even if they reside in separate functions.
2666The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002667constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002668
2669.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002670
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002671 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002672 !1 = metadata !{ metadata !1 }
2673
Paul Redmond5fdf8362013-05-28 20:00:34 +00002674The loop identifier metadata can be used to specify additional per-loop
2675metadata. Any operands after the first operand can be treated as user-defined
2676metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2677by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002678
Paul Redmond5fdf8362013-05-28 20:00:34 +00002679.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002680
Paul Redmond5fdf8362013-05-28 20:00:34 +00002681 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2682 ...
2683 !0 = metadata !{ metadata !0, metadata !1 }
2684 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002685
2686'``llvm.mem``'
2687^^^^^^^^^^^^^^^
2688
2689Metadata types used to annotate memory accesses with information helpful
2690for optimizations are prefixed with ``llvm.mem``.
2691
2692'``llvm.mem.parallel_loop_access``' Metadata
2693^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2694
2695For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002696the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002697also all of the memory accessing instructions in the loop body need to be
2698marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2699is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002700the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002701converted to sequential loops due to optimization passes that are unaware of
2702the parallel semantics and that insert new memory instructions to the loop
2703body.
2704
2705Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002706both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002707metadata types that refer to the same loop identifier metadata.
2708
2709.. code-block:: llvm
2710
2711 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002712 ...
2713 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2714 ...
2715 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2716 ...
2717 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002718
2719 for.end:
2720 ...
2721 !0 = metadata !{ metadata !0 }
2722
2723It is also possible to have nested parallel loops. In that case the
2724memory accesses refer to a list of loop identifier metadata nodes instead of
2725the loop identifier metadata node directly:
2726
2727.. code-block:: llvm
2728
2729 outer.for.body:
2730 ...
2731
2732 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002733 ...
2734 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2735 ...
2736 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2737 ...
2738 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002739
2740 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002741 ...
2742 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2743 ...
2744 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2745 ...
2746 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002747
2748 outer.for.end: ; preds = %for.body
2749 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002750 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2751 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2752 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002753
Paul Redmond5fdf8362013-05-28 20:00:34 +00002754'``llvm.vectorizer``'
2755^^^^^^^^^^^^^^^^^^^^^
2756
2757Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2758vectorization parameters such as vectorization factor and unroll factor.
2759
2760``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2761loop identification metadata.
2762
2763'``llvm.vectorizer.unroll``' Metadata
2764^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2765
2766This metadata instructs the loop vectorizer to unroll the specified
2767loop exactly ``N`` times.
2768
2769The first operand is the string ``llvm.vectorizer.unroll`` and the second
2770operand is an integer specifying the unroll factor. For example:
2771
2772.. code-block:: llvm
2773
2774 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2775
2776Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2777loop.
2778
2779If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2780determined automatically.
2781
2782'``llvm.vectorizer.width``' Metadata
2783^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2784
Paul Redmondeccbb322013-05-30 17:22:46 +00002785This metadata sets the target width of the vectorizer to ``N``. Without
2786this metadata, the vectorizer will choose a width automatically.
2787Regardless of this metadata, the vectorizer will only vectorize loops if
2788it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002789
2790The first operand is the string ``llvm.vectorizer.width`` and the second
2791operand is an integer specifying the width. For example:
2792
2793.. code-block:: llvm
2794
2795 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2796
2797Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2798loop.
2799
2800If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2801automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002802
Sean Silvab084af42012-12-07 10:36:55 +00002803Module Flags Metadata
2804=====================
2805
2806Information about the module as a whole is difficult to convey to LLVM's
2807subsystems. The LLVM IR isn't sufficient to transmit this information.
2808The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002809this. These flags are in the form of key / value pairs --- much like a
2810dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002811look it up.
2812
2813The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2814Each triplet has the following form:
2815
2816- The first element is a *behavior* flag, which specifies the behavior
2817 when two (or more) modules are merged together, and it encounters two
2818 (or more) metadata with the same ID. The supported behaviors are
2819 described below.
2820- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002821 metadata. Each module may only have one flag entry for each unique ID (not
2822 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002823- The third element is the value of the flag.
2824
2825When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002826``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2827each unique metadata ID string, there will be exactly one entry in the merged
2828modules ``llvm.module.flags`` metadata table, and the value for that entry will
2829be determined by the merge behavior flag, as described below. The only exception
2830is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002831
2832The following behaviors are supported:
2833
2834.. list-table::
2835 :header-rows: 1
2836 :widths: 10 90
2837
2838 * - Value
2839 - Behavior
2840
2841 * - 1
2842 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002843 Emits an error if two values disagree, otherwise the resulting value
2844 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002845
2846 * - 2
2847 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002848 Emits a warning if two values disagree. The result value will be the
2849 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002850
2851 * - 3
2852 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002853 Adds a requirement that another module flag be present and have a
2854 specified value after linking is performed. The value must be a
2855 metadata pair, where the first element of the pair is the ID of the
2856 module flag to be restricted, and the second element of the pair is
2857 the value the module flag should be restricted to. This behavior can
2858 be used to restrict the allowable results (via triggering of an
2859 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002860
2861 * - 4
2862 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002863 Uses the specified value, regardless of the behavior or value of the
2864 other module. If both modules specify **Override**, but the values
2865 differ, an error will be emitted.
2866
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002867 * - 5
2868 - **Append**
2869 Appends the two values, which are required to be metadata nodes.
2870
2871 * - 6
2872 - **AppendUnique**
2873 Appends the two values, which are required to be metadata
2874 nodes. However, duplicate entries in the second list are dropped
2875 during the append operation.
2876
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002877It is an error for a particular unique flag ID to have multiple behaviors,
2878except in the case of **Require** (which adds restrictions on another metadata
2879value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002880
2881An example of module flags:
2882
2883.. code-block:: llvm
2884
2885 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2886 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2887 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2888 !3 = metadata !{ i32 3, metadata !"qux",
2889 metadata !{
2890 metadata !"foo", i32 1
2891 }
2892 }
2893 !llvm.module.flags = !{ !0, !1, !2, !3 }
2894
2895- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2896 if two or more ``!"foo"`` flags are seen is to emit an error if their
2897 values are not equal.
2898
2899- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2900 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002901 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002902
2903- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2904 behavior if two or more ``!"qux"`` flags are seen is to emit a
2905 warning if their values are not equal.
2906
2907- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2908
2909 ::
2910
2911 metadata !{ metadata !"foo", i32 1 }
2912
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002913 The behavior is to emit an error if the ``llvm.module.flags`` does not
2914 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2915 performed.
Sean Silvab084af42012-12-07 10:36:55 +00002916
2917Objective-C Garbage Collection Module Flags Metadata
2918----------------------------------------------------
2919
2920On the Mach-O platform, Objective-C stores metadata about garbage
2921collection in a special section called "image info". The metadata
2922consists of a version number and a bitmask specifying what types of
2923garbage collection are supported (if any) by the file. If two or more
2924modules are linked together their garbage collection metadata needs to
2925be merged rather than appended together.
2926
2927The Objective-C garbage collection module flags metadata consists of the
2928following key-value pairs:
2929
2930.. list-table::
2931 :header-rows: 1
2932 :widths: 30 70
2933
2934 * - Key
2935 - Value
2936
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002937 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002938 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00002939
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002940 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002941 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00002942 always 0.
2943
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002944 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002945 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00002946 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2947 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2948 Objective-C ABI version 2.
2949
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002950 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002951 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00002952 not. Valid values are 0, for no garbage collection, and 2, for garbage
2953 collection supported.
2954
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002955 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002956 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00002957 If present, its value must be 6. This flag requires that the
2958 ``Objective-C Garbage Collection`` flag have the value 2.
2959
2960Some important flag interactions:
2961
2962- If a module with ``Objective-C Garbage Collection`` set to 0 is
2963 merged with a module with ``Objective-C Garbage Collection`` set to
2964 2, then the resulting module has the
2965 ``Objective-C Garbage Collection`` flag set to 0.
2966- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2967 merged with a module with ``Objective-C GC Only`` set to 6.
2968
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002969Automatic Linker Flags Module Flags Metadata
2970--------------------------------------------
2971
2972Some targets support embedding flags to the linker inside individual object
2973files. Typically this is used in conjunction with language extensions which
2974allow source files to explicitly declare the libraries they depend on, and have
2975these automatically be transmitted to the linker via object files.
2976
2977These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002978using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002979to be ``AppendUnique``, and the value for the key is expected to be a metadata
2980node which should be a list of other metadata nodes, each of which should be a
2981list of metadata strings defining linker options.
2982
2983For example, the following metadata section specifies two separate sets of
2984linker options, presumably to link against ``libz`` and the ``Cocoa``
2985framework::
2986
Michael Liaoa7699082013-03-06 18:24:34 +00002987 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002988 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00002989 metadata !{ metadata !"-lz" },
2990 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002991 !llvm.module.flags = !{ !0 }
2992
2993The metadata encoding as lists of lists of options, as opposed to a collapsed
2994list of options, is chosen so that the IR encoding can use multiple option
2995strings to specify e.g., a single library, while still having that specifier be
2996preserved as an atomic element that can be recognized by a target specific
2997assembly writer or object file emitter.
2998
2999Each individual option is required to be either a valid option for the target's
3000linker, or an option that is reserved by the target specific assembly writer or
3001object file emitter. No other aspect of these options is defined by the IR.
3002
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003003.. _intrinsicglobalvariables:
3004
Sean Silvab084af42012-12-07 10:36:55 +00003005Intrinsic Global Variables
3006==========================
3007
3008LLVM has a number of "magic" global variables that contain data that
3009affect code generation or other IR semantics. These are documented here.
3010All globals of this sort should have a section specified as
3011"``llvm.metadata``". This section and all globals that start with
3012"``llvm.``" are reserved for use by LLVM.
3013
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003014.. _gv_llvmused:
3015
Sean Silvab084af42012-12-07 10:36:55 +00003016The '``llvm.used``' Global Variable
3017-----------------------------------
3018
Rafael Espindola74f2e462013-04-22 14:58:02 +00003019The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003020:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003021pointers to named global variables, functions and aliases which may optionally
3022have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003023use of it is:
3024
3025.. code-block:: llvm
3026
3027 @X = global i8 4
3028 @Y = global i32 123
3029
3030 @llvm.used = appending global [2 x i8*] [
3031 i8* @X,
3032 i8* bitcast (i32* @Y to i8*)
3033 ], section "llvm.metadata"
3034
Rafael Espindola74f2e462013-04-22 14:58:02 +00003035If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3036and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003037symbol that it cannot see (which is why they have to be named). For example, if
3038a variable has internal linkage and no references other than that from the
3039``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3040references from inline asms and other things the compiler cannot "see", and
3041corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003042
3043On some targets, the code generator must emit a directive to the
3044assembler or object file to prevent the assembler and linker from
3045molesting the symbol.
3046
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003047.. _gv_llvmcompilerused:
3048
Sean Silvab084af42012-12-07 10:36:55 +00003049The '``llvm.compiler.used``' Global Variable
3050--------------------------------------------
3051
3052The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3053directive, except that it only prevents the compiler from touching the
3054symbol. On targets that support it, this allows an intelligent linker to
3055optimize references to the symbol without being impeded as it would be
3056by ``@llvm.used``.
3057
3058This is a rare construct that should only be used in rare circumstances,
3059and should not be exposed to source languages.
3060
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003061.. _gv_llvmglobalctors:
3062
Sean Silvab084af42012-12-07 10:36:55 +00003063The '``llvm.global_ctors``' Global Variable
3064-------------------------------------------
3065
3066.. code-block:: llvm
3067
3068 %0 = type { i32, void ()* }
3069 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3070
3071The ``@llvm.global_ctors`` array contains a list of constructor
3072functions and associated priorities. The functions referenced by this
3073array will be called in ascending order of priority (i.e. lowest first)
3074when the module is loaded. The order of functions with the same priority
3075is not defined.
3076
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003077.. _llvmglobaldtors:
3078
Sean Silvab084af42012-12-07 10:36:55 +00003079The '``llvm.global_dtors``' Global Variable
3080-------------------------------------------
3081
3082.. code-block:: llvm
3083
3084 %0 = type { i32, void ()* }
3085 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3086
3087The ``@llvm.global_dtors`` array contains a list of destructor functions
3088and associated priorities. The functions referenced by this array will
3089be called in descending order of priority (i.e. highest first) when the
3090module is loaded. The order of functions with the same priority is not
3091defined.
3092
3093Instruction Reference
3094=====================
3095
3096The LLVM instruction set consists of several different classifications
3097of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3098instructions <binaryops>`, :ref:`bitwise binary
3099instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3100:ref:`other instructions <otherops>`.
3101
3102.. _terminators:
3103
3104Terminator Instructions
3105-----------------------
3106
3107As mentioned :ref:`previously <functionstructure>`, every basic block in a
3108program ends with a "Terminator" instruction, which indicates which
3109block should be executed after the current block is finished. These
3110terminator instructions typically yield a '``void``' value: they produce
3111control flow, not values (the one exception being the
3112':ref:`invoke <i_invoke>`' instruction).
3113
3114The terminator instructions are: ':ref:`ret <i_ret>`',
3115':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3116':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3117':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3118
3119.. _i_ret:
3120
3121'``ret``' Instruction
3122^^^^^^^^^^^^^^^^^^^^^
3123
3124Syntax:
3125"""""""
3126
3127::
3128
3129 ret <type> <value> ; Return a value from a non-void function
3130 ret void ; Return from void function
3131
3132Overview:
3133"""""""""
3134
3135The '``ret``' instruction is used to return control flow (and optionally
3136a value) from a function back to the caller.
3137
3138There are two forms of the '``ret``' instruction: one that returns a
3139value and then causes control flow, and one that just causes control
3140flow to occur.
3141
3142Arguments:
3143""""""""""
3144
3145The '``ret``' instruction optionally accepts a single argument, the
3146return value. The type of the return value must be a ':ref:`first
3147class <t_firstclass>`' type.
3148
3149A function is not :ref:`well formed <wellformed>` if it it has a non-void
3150return type and contains a '``ret``' instruction with no return value or
3151a return value with a type that does not match its type, or if it has a
3152void return type and contains a '``ret``' instruction with a return
3153value.
3154
3155Semantics:
3156""""""""""
3157
3158When the '``ret``' instruction is executed, control flow returns back to
3159the calling function's context. If the caller is a
3160":ref:`call <i_call>`" instruction, execution continues at the
3161instruction after the call. If the caller was an
3162":ref:`invoke <i_invoke>`" instruction, execution continues at the
3163beginning of the "normal" destination block. If the instruction returns
3164a value, that value shall set the call or invoke instruction's return
3165value.
3166
3167Example:
3168""""""""
3169
3170.. code-block:: llvm
3171
3172 ret i32 5 ; Return an integer value of 5
3173 ret void ; Return from a void function
3174 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3175
3176.. _i_br:
3177
3178'``br``' Instruction
3179^^^^^^^^^^^^^^^^^^^^
3180
3181Syntax:
3182"""""""
3183
3184::
3185
3186 br i1 <cond>, label <iftrue>, label <iffalse>
3187 br label <dest> ; Unconditional branch
3188
3189Overview:
3190"""""""""
3191
3192The '``br``' instruction is used to cause control flow to transfer to a
3193different basic block in the current function. There are two forms of
3194this instruction, corresponding to a conditional branch and an
3195unconditional branch.
3196
3197Arguments:
3198""""""""""
3199
3200The conditional branch form of the '``br``' instruction takes a single
3201'``i1``' value and two '``label``' values. The unconditional form of the
3202'``br``' instruction takes a single '``label``' value as a target.
3203
3204Semantics:
3205""""""""""
3206
3207Upon execution of a conditional '``br``' instruction, the '``i1``'
3208argument is evaluated. If the value is ``true``, control flows to the
3209'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3210to the '``iffalse``' ``label`` argument.
3211
3212Example:
3213""""""""
3214
3215.. code-block:: llvm
3216
3217 Test:
3218 %cond = icmp eq i32 %a, %b
3219 br i1 %cond, label %IfEqual, label %IfUnequal
3220 IfEqual:
3221 ret i32 1
3222 IfUnequal:
3223 ret i32 0
3224
3225.. _i_switch:
3226
3227'``switch``' Instruction
3228^^^^^^^^^^^^^^^^^^^^^^^^
3229
3230Syntax:
3231"""""""
3232
3233::
3234
3235 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3236
3237Overview:
3238"""""""""
3239
3240The '``switch``' instruction is used to transfer control flow to one of
3241several different places. It is a generalization of the '``br``'
3242instruction, allowing a branch to occur to one of many possible
3243destinations.
3244
3245Arguments:
3246""""""""""
3247
3248The '``switch``' instruction uses three parameters: an integer
3249comparison value '``value``', a default '``label``' destination, and an
3250array of pairs of comparison value constants and '``label``'s. The table
3251is not allowed to contain duplicate constant entries.
3252
3253Semantics:
3254""""""""""
3255
3256The ``switch`` instruction specifies a table of values and destinations.
3257When the '``switch``' instruction is executed, this table is searched
3258for the given value. If the value is found, control flow is transferred
3259to the corresponding destination; otherwise, control flow is transferred
3260to the default destination.
3261
3262Implementation:
3263"""""""""""""""
3264
3265Depending on properties of the target machine and the particular
3266``switch`` instruction, this instruction may be code generated in
3267different ways. For example, it could be generated as a series of
3268chained conditional branches or with a lookup table.
3269
3270Example:
3271""""""""
3272
3273.. code-block:: llvm
3274
3275 ; Emulate a conditional br instruction
3276 %Val = zext i1 %value to i32
3277 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3278
3279 ; Emulate an unconditional br instruction
3280 switch i32 0, label %dest [ ]
3281
3282 ; Implement a jump table:
3283 switch i32 %val, label %otherwise [ i32 0, label %onzero
3284 i32 1, label %onone
3285 i32 2, label %ontwo ]
3286
3287.. _i_indirectbr:
3288
3289'``indirectbr``' Instruction
3290^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3291
3292Syntax:
3293"""""""
3294
3295::
3296
3297 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3298
3299Overview:
3300"""""""""
3301
3302The '``indirectbr``' instruction implements an indirect branch to a
3303label within the current function, whose address is specified by
3304"``address``". Address must be derived from a
3305:ref:`blockaddress <blockaddress>` constant.
3306
3307Arguments:
3308""""""""""
3309
3310The '``address``' argument is the address of the label to jump to. The
3311rest of the arguments indicate the full set of possible destinations
3312that the address may point to. Blocks are allowed to occur multiple
3313times in the destination list, though this isn't particularly useful.
3314
3315This destination list is required so that dataflow analysis has an
3316accurate understanding of the CFG.
3317
3318Semantics:
3319""""""""""
3320
3321Control transfers to the block specified in the address argument. All
3322possible destination blocks must be listed in the label list, otherwise
3323this instruction has undefined behavior. This implies that jumps to
3324labels defined in other functions have undefined behavior as well.
3325
3326Implementation:
3327"""""""""""""""
3328
3329This is typically implemented with a jump through a register.
3330
3331Example:
3332""""""""
3333
3334.. code-block:: llvm
3335
3336 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3337
3338.. _i_invoke:
3339
3340'``invoke``' Instruction
3341^^^^^^^^^^^^^^^^^^^^^^^^
3342
3343Syntax:
3344"""""""
3345
3346::
3347
3348 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3349 to label <normal label> unwind label <exception label>
3350
3351Overview:
3352"""""""""
3353
3354The '``invoke``' instruction causes control to transfer to a specified
3355function, with the possibility of control flow transfer to either the
3356'``normal``' label or the '``exception``' label. If the callee function
3357returns with the "``ret``" instruction, control flow will return to the
3358"normal" label. If the callee (or any indirect callees) returns via the
3359":ref:`resume <i_resume>`" instruction or other exception handling
3360mechanism, control is interrupted and continued at the dynamically
3361nearest "exception" label.
3362
3363The '``exception``' label is a `landing
3364pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3365'``exception``' label is required to have the
3366":ref:`landingpad <i_landingpad>`" instruction, which contains the
3367information about the behavior of the program after unwinding happens,
3368as its first non-PHI instruction. The restrictions on the
3369"``landingpad``" instruction's tightly couples it to the "``invoke``"
3370instruction, so that the important information contained within the
3371"``landingpad``" instruction can't be lost through normal code motion.
3372
3373Arguments:
3374""""""""""
3375
3376This instruction requires several arguments:
3377
3378#. The optional "cconv" marker indicates which :ref:`calling
3379 convention <callingconv>` the call should use. If none is
3380 specified, the call defaults to using C calling conventions.
3381#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3382 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3383 are valid here.
3384#. '``ptr to function ty``': shall be the signature of the pointer to
3385 function value being invoked. In most cases, this is a direct
3386 function invocation, but indirect ``invoke``'s are just as possible,
3387 branching off an arbitrary pointer to function value.
3388#. '``function ptr val``': An LLVM value containing a pointer to a
3389 function to be invoked.
3390#. '``function args``': argument list whose types match the function
3391 signature argument types and parameter attributes. All arguments must
3392 be of :ref:`first class <t_firstclass>` type. If the function signature
3393 indicates the function accepts a variable number of arguments, the
3394 extra arguments can be specified.
3395#. '``normal label``': the label reached when the called function
3396 executes a '``ret``' instruction.
3397#. '``exception label``': the label reached when a callee returns via
3398 the :ref:`resume <i_resume>` instruction or other exception handling
3399 mechanism.
3400#. The optional :ref:`function attributes <fnattrs>` list. Only
3401 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3402 attributes are valid here.
3403
3404Semantics:
3405""""""""""
3406
3407This instruction is designed to operate as a standard '``call``'
3408instruction in most regards. The primary difference is that it
3409establishes an association with a label, which is used by the runtime
3410library to unwind the stack.
3411
3412This instruction is used in languages with destructors to ensure that
3413proper cleanup is performed in the case of either a ``longjmp`` or a
3414thrown exception. Additionally, this is important for implementation of
3415'``catch``' clauses in high-level languages that support them.
3416
3417For the purposes of the SSA form, the definition of the value returned
3418by the '``invoke``' instruction is deemed to occur on the edge from the
3419current block to the "normal" label. If the callee unwinds then no
3420return value is available.
3421
3422Example:
3423""""""""
3424
3425.. code-block:: llvm
3426
3427 %retval = invoke i32 @Test(i32 15) to label %Continue
3428 unwind label %TestCleanup ; {i32}:retval set
3429 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3430 unwind label %TestCleanup ; {i32}:retval set
3431
3432.. _i_resume:
3433
3434'``resume``' Instruction
3435^^^^^^^^^^^^^^^^^^^^^^^^
3436
3437Syntax:
3438"""""""
3439
3440::
3441
3442 resume <type> <value>
3443
3444Overview:
3445"""""""""
3446
3447The '``resume``' instruction is a terminator instruction that has no
3448successors.
3449
3450Arguments:
3451""""""""""
3452
3453The '``resume``' instruction requires one argument, which must have the
3454same type as the result of any '``landingpad``' instruction in the same
3455function.
3456
3457Semantics:
3458""""""""""
3459
3460The '``resume``' instruction resumes propagation of an existing
3461(in-flight) exception whose unwinding was interrupted with a
3462:ref:`landingpad <i_landingpad>` instruction.
3463
3464Example:
3465""""""""
3466
3467.. code-block:: llvm
3468
3469 resume { i8*, i32 } %exn
3470
3471.. _i_unreachable:
3472
3473'``unreachable``' Instruction
3474^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3475
3476Syntax:
3477"""""""
3478
3479::
3480
3481 unreachable
3482
3483Overview:
3484"""""""""
3485
3486The '``unreachable``' instruction has no defined semantics. This
3487instruction is used to inform the optimizer that a particular portion of
3488the code is not reachable. This can be used to indicate that the code
3489after a no-return function cannot be reached, and other facts.
3490
3491Semantics:
3492""""""""""
3493
3494The '``unreachable``' instruction has no defined semantics.
3495
3496.. _binaryops:
3497
3498Binary Operations
3499-----------------
3500
3501Binary operators are used to do most of the computation in a program.
3502They require two operands of the same type, execute an operation on
3503them, and produce a single value. The operands might represent multiple
3504data, as is the case with the :ref:`vector <t_vector>` data type. The
3505result value has the same type as its operands.
3506
3507There are several different binary operators:
3508
3509.. _i_add:
3510
3511'``add``' Instruction
3512^^^^^^^^^^^^^^^^^^^^^
3513
3514Syntax:
3515"""""""
3516
3517::
3518
3519 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3520 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3521 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3522 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3523
3524Overview:
3525"""""""""
3526
3527The '``add``' instruction returns the sum of its two operands.
3528
3529Arguments:
3530""""""""""
3531
3532The two arguments to the '``add``' instruction must be
3533:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3534arguments must have identical types.
3535
3536Semantics:
3537""""""""""
3538
3539The value produced is the integer sum of the two operands.
3540
3541If the sum has unsigned overflow, the result returned is the
3542mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3543the result.
3544
3545Because LLVM integers use a two's complement representation, this
3546instruction is appropriate for both signed and unsigned integers.
3547
3548``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3549respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3550result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3551unsigned and/or signed overflow, respectively, occurs.
3552
3553Example:
3554""""""""
3555
3556.. code-block:: llvm
3557
3558 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3559
3560.. _i_fadd:
3561
3562'``fadd``' Instruction
3563^^^^^^^^^^^^^^^^^^^^^^
3564
3565Syntax:
3566"""""""
3567
3568::
3569
3570 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3571
3572Overview:
3573"""""""""
3574
3575The '``fadd``' instruction returns the sum of its two operands.
3576
3577Arguments:
3578""""""""""
3579
3580The two arguments to the '``fadd``' instruction must be :ref:`floating
3581point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3582Both arguments must have identical types.
3583
3584Semantics:
3585""""""""""
3586
3587The value produced is the floating point sum of the two operands. This
3588instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3589which are optimization hints to enable otherwise unsafe floating point
3590optimizations:
3591
3592Example:
3593""""""""
3594
3595.. code-block:: llvm
3596
3597 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3598
3599'``sub``' Instruction
3600^^^^^^^^^^^^^^^^^^^^^
3601
3602Syntax:
3603"""""""
3604
3605::
3606
3607 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3608 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3609 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3610 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3611
3612Overview:
3613"""""""""
3614
3615The '``sub``' instruction returns the difference of its two operands.
3616
3617Note that the '``sub``' instruction is used to represent the '``neg``'
3618instruction present in most other intermediate representations.
3619
3620Arguments:
3621""""""""""
3622
3623The two arguments to the '``sub``' instruction must be
3624:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3625arguments must have identical types.
3626
3627Semantics:
3628""""""""""
3629
3630The value produced is the integer difference of the two operands.
3631
3632If the difference has unsigned overflow, the result returned is the
3633mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3634the result.
3635
3636Because LLVM integers use a two's complement representation, this
3637instruction is appropriate for both signed and unsigned integers.
3638
3639``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3640respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3641result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3642unsigned and/or signed overflow, respectively, occurs.
3643
3644Example:
3645""""""""
3646
3647.. code-block:: llvm
3648
3649 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3650 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3651
3652.. _i_fsub:
3653
3654'``fsub``' Instruction
3655^^^^^^^^^^^^^^^^^^^^^^
3656
3657Syntax:
3658"""""""
3659
3660::
3661
3662 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3663
3664Overview:
3665"""""""""
3666
3667The '``fsub``' instruction returns the difference of its two operands.
3668
3669Note that the '``fsub``' instruction is used to represent the '``fneg``'
3670instruction present in most other intermediate representations.
3671
3672Arguments:
3673""""""""""
3674
3675The two arguments to the '``fsub``' instruction must be :ref:`floating
3676point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3677Both arguments must have identical types.
3678
3679Semantics:
3680""""""""""
3681
3682The value produced is the floating point difference of the two operands.
3683This instruction can also take any number of :ref:`fast-math
3684flags <fastmath>`, which are optimization hints to enable otherwise
3685unsafe floating point optimizations:
3686
3687Example:
3688""""""""
3689
3690.. code-block:: llvm
3691
3692 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3693 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3694
3695'``mul``' Instruction
3696^^^^^^^^^^^^^^^^^^^^^
3697
3698Syntax:
3699"""""""
3700
3701::
3702
3703 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3704 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3705 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3706 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3707
3708Overview:
3709"""""""""
3710
3711The '``mul``' instruction returns the product of its two operands.
3712
3713Arguments:
3714""""""""""
3715
3716The two arguments to the '``mul``' instruction must be
3717:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3718arguments must have identical types.
3719
3720Semantics:
3721""""""""""
3722
3723The value produced is the integer product of the two operands.
3724
3725If the result of the multiplication has unsigned overflow, the result
3726returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3727bit width of the result.
3728
3729Because LLVM integers use a two's complement representation, and the
3730result is the same width as the operands, this instruction returns the
3731correct result for both signed and unsigned integers. If a full product
3732(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3733sign-extended or zero-extended as appropriate to the width of the full
3734product.
3735
3736``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3737respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3738result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3739unsigned and/or signed overflow, respectively, occurs.
3740
3741Example:
3742""""""""
3743
3744.. code-block:: llvm
3745
3746 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3747
3748.. _i_fmul:
3749
3750'``fmul``' Instruction
3751^^^^^^^^^^^^^^^^^^^^^^
3752
3753Syntax:
3754"""""""
3755
3756::
3757
3758 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3759
3760Overview:
3761"""""""""
3762
3763The '``fmul``' instruction returns the product of its two operands.
3764
3765Arguments:
3766""""""""""
3767
3768The two arguments to the '``fmul``' instruction must be :ref:`floating
3769point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3770Both arguments must have identical types.
3771
3772Semantics:
3773""""""""""
3774
3775The value produced is the floating point product of the two operands.
3776This instruction can also take any number of :ref:`fast-math
3777flags <fastmath>`, which are optimization hints to enable otherwise
3778unsafe floating point optimizations:
3779
3780Example:
3781""""""""
3782
3783.. code-block:: llvm
3784
3785 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3786
3787'``udiv``' Instruction
3788^^^^^^^^^^^^^^^^^^^^^^
3789
3790Syntax:
3791"""""""
3792
3793::
3794
3795 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3796 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3797
3798Overview:
3799"""""""""
3800
3801The '``udiv``' instruction returns the quotient of its two operands.
3802
3803Arguments:
3804""""""""""
3805
3806The two arguments to the '``udiv``' instruction must be
3807:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3808arguments must have identical types.
3809
3810Semantics:
3811""""""""""
3812
3813The value produced is the unsigned integer quotient of the two operands.
3814
3815Note that unsigned integer division and signed integer division are
3816distinct operations; for signed integer division, use '``sdiv``'.
3817
3818Division by zero leads to undefined behavior.
3819
3820If the ``exact`` keyword is present, the result value of the ``udiv`` is
3821a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3822such, "((a udiv exact b) mul b) == a").
3823
3824Example:
3825""""""""
3826
3827.. code-block:: llvm
3828
3829 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3830
3831'``sdiv``' Instruction
3832^^^^^^^^^^^^^^^^^^^^^^
3833
3834Syntax:
3835"""""""
3836
3837::
3838
3839 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3840 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3841
3842Overview:
3843"""""""""
3844
3845The '``sdiv``' instruction returns the quotient of its two operands.
3846
3847Arguments:
3848""""""""""
3849
3850The two arguments to the '``sdiv``' instruction must be
3851:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3852arguments must have identical types.
3853
3854Semantics:
3855""""""""""
3856
3857The value produced is the signed integer quotient of the two operands
3858rounded towards zero.
3859
3860Note that signed integer division and unsigned integer division are
3861distinct operations; for unsigned integer division, use '``udiv``'.
3862
3863Division by zero leads to undefined behavior. Overflow also leads to
3864undefined behavior; this is a rare case, but can occur, for example, by
3865doing a 32-bit division of -2147483648 by -1.
3866
3867If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3868a :ref:`poison value <poisonvalues>` if the result would be rounded.
3869
3870Example:
3871""""""""
3872
3873.. code-block:: llvm
3874
3875 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3876
3877.. _i_fdiv:
3878
3879'``fdiv``' Instruction
3880^^^^^^^^^^^^^^^^^^^^^^
3881
3882Syntax:
3883"""""""
3884
3885::
3886
3887 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3888
3889Overview:
3890"""""""""
3891
3892The '``fdiv``' instruction returns the quotient of its two operands.
3893
3894Arguments:
3895""""""""""
3896
3897The two arguments to the '``fdiv``' instruction must be :ref:`floating
3898point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3899Both arguments must have identical types.
3900
3901Semantics:
3902""""""""""
3903
3904The value produced is the floating point quotient of the two operands.
3905This instruction can also take any number of :ref:`fast-math
3906flags <fastmath>`, which are optimization hints to enable otherwise
3907unsafe floating point optimizations:
3908
3909Example:
3910""""""""
3911
3912.. code-block:: llvm
3913
3914 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3915
3916'``urem``' Instruction
3917^^^^^^^^^^^^^^^^^^^^^^
3918
3919Syntax:
3920"""""""
3921
3922::
3923
3924 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3925
3926Overview:
3927"""""""""
3928
3929The '``urem``' instruction returns the remainder from the unsigned
3930division of its two arguments.
3931
3932Arguments:
3933""""""""""
3934
3935The two arguments to the '``urem``' instruction must be
3936:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3937arguments must have identical types.
3938
3939Semantics:
3940""""""""""
3941
3942This instruction returns the unsigned integer *remainder* of a division.
3943This instruction always performs an unsigned division to get the
3944remainder.
3945
3946Note that unsigned integer remainder and signed integer remainder are
3947distinct operations; for signed integer remainder, use '``srem``'.
3948
3949Taking the remainder of a division by zero leads to undefined behavior.
3950
3951Example:
3952""""""""
3953
3954.. code-block:: llvm
3955
3956 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3957
3958'``srem``' Instruction
3959^^^^^^^^^^^^^^^^^^^^^^
3960
3961Syntax:
3962"""""""
3963
3964::
3965
3966 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3967
3968Overview:
3969"""""""""
3970
3971The '``srem``' instruction returns the remainder from the signed
3972division of its two operands. This instruction can also take
3973:ref:`vector <t_vector>` versions of the values in which case the elements
3974must be integers.
3975
3976Arguments:
3977""""""""""
3978
3979The two arguments to the '``srem``' instruction must be
3980:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3981arguments must have identical types.
3982
3983Semantics:
3984""""""""""
3985
3986This instruction returns the *remainder* of a division (where the result
3987is either zero or has the same sign as the dividend, ``op1``), not the
3988*modulo* operator (where the result is either zero or has the same sign
3989as the divisor, ``op2``) of a value. For more information about the
3990difference, see `The Math
3991Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3992table of how this is implemented in various languages, please see
3993`Wikipedia: modulo
3994operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3995
3996Note that signed integer remainder and unsigned integer remainder are
3997distinct operations; for unsigned integer remainder, use '``urem``'.
3998
3999Taking the remainder of a division by zero leads to undefined behavior.
4000Overflow also leads to undefined behavior; this is a rare case, but can
4001occur, for example, by taking the remainder of a 32-bit division of
4002-2147483648 by -1. (The remainder doesn't actually overflow, but this
4003rule lets srem be implemented using instructions that return both the
4004result of the division and the remainder.)
4005
4006Example:
4007""""""""
4008
4009.. code-block:: llvm
4010
4011 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4012
4013.. _i_frem:
4014
4015'``frem``' Instruction
4016^^^^^^^^^^^^^^^^^^^^^^
4017
4018Syntax:
4019"""""""
4020
4021::
4022
4023 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4024
4025Overview:
4026"""""""""
4027
4028The '``frem``' instruction returns the remainder from the division of
4029its two operands.
4030
4031Arguments:
4032""""""""""
4033
4034The two arguments to the '``frem``' instruction must be :ref:`floating
4035point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4036Both arguments must have identical types.
4037
4038Semantics:
4039""""""""""
4040
4041This instruction returns the *remainder* of a division. The remainder
4042has the same sign as the dividend. This instruction can also take any
4043number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4044to enable otherwise unsafe floating point optimizations:
4045
4046Example:
4047""""""""
4048
4049.. code-block:: llvm
4050
4051 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4052
4053.. _bitwiseops:
4054
4055Bitwise Binary Operations
4056-------------------------
4057
4058Bitwise binary operators are used to do various forms of bit-twiddling
4059in a program. They are generally very efficient instructions and can
4060commonly be strength reduced from other instructions. They require two
4061operands of the same type, execute an operation on them, and produce a
4062single value. The resulting value is the same type as its operands.
4063
4064'``shl``' Instruction
4065^^^^^^^^^^^^^^^^^^^^^
4066
4067Syntax:
4068"""""""
4069
4070::
4071
4072 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4073 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4074 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4075 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4076
4077Overview:
4078"""""""""
4079
4080The '``shl``' instruction returns the first operand shifted to the left
4081a specified number of bits.
4082
4083Arguments:
4084""""""""""
4085
4086Both arguments to the '``shl``' instruction must be the same
4087:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4088'``op2``' is treated as an unsigned value.
4089
4090Semantics:
4091""""""""""
4092
4093The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4094where ``n`` is the width of the result. If ``op2`` is (statically or
4095dynamically) negative or equal to or larger than the number of bits in
4096``op1``, the result is undefined. If the arguments are vectors, each
4097vector element of ``op1`` is shifted by the corresponding shift amount
4098in ``op2``.
4099
4100If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4101value <poisonvalues>` if it shifts out any non-zero bits. If the
4102``nsw`` keyword is present, then the shift produces a :ref:`poison
4103value <poisonvalues>` if it shifts out any bits that disagree with the
4104resultant sign bit. As such, NUW/NSW have the same semantics as they
4105would if the shift were expressed as a mul instruction with the same
4106nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4107
4108Example:
4109""""""""
4110
4111.. code-block:: llvm
4112
4113 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4114 <result> = shl i32 4, 2 ; yields {i32}: 16
4115 <result> = shl i32 1, 10 ; yields {i32}: 1024
4116 <result> = shl i32 1, 32 ; undefined
4117 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4118
4119'``lshr``' Instruction
4120^^^^^^^^^^^^^^^^^^^^^^
4121
4122Syntax:
4123"""""""
4124
4125::
4126
4127 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4128 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4129
4130Overview:
4131"""""""""
4132
4133The '``lshr``' instruction (logical shift right) returns the first
4134operand shifted to the right a specified number of bits with zero fill.
4135
4136Arguments:
4137""""""""""
4138
4139Both arguments to the '``lshr``' instruction must be the same
4140:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4141'``op2``' is treated as an unsigned value.
4142
4143Semantics:
4144""""""""""
4145
4146This instruction always performs a logical shift right operation. The
4147most significant bits of the result will be filled with zero bits after
4148the shift. If ``op2`` is (statically or dynamically) equal to or larger
4149than the number of bits in ``op1``, the result is undefined. If the
4150arguments are vectors, each vector element of ``op1`` is shifted by the
4151corresponding shift amount in ``op2``.
4152
4153If the ``exact`` keyword is present, the result value of the ``lshr`` is
4154a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4155non-zero.
4156
4157Example:
4158""""""""
4159
4160.. code-block:: llvm
4161
4162 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4163 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4164 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004165 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004166 <result> = lshr i32 1, 32 ; undefined
4167 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4168
4169'``ashr``' Instruction
4170^^^^^^^^^^^^^^^^^^^^^^
4171
4172Syntax:
4173"""""""
4174
4175::
4176
4177 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4178 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4179
4180Overview:
4181"""""""""
4182
4183The '``ashr``' instruction (arithmetic shift right) returns the first
4184operand shifted to the right a specified number of bits with sign
4185extension.
4186
4187Arguments:
4188""""""""""
4189
4190Both arguments to the '``ashr``' instruction must be the same
4191:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4192'``op2``' is treated as an unsigned value.
4193
4194Semantics:
4195""""""""""
4196
4197This instruction always performs an arithmetic shift right operation,
4198The most significant bits of the result will be filled with the sign bit
4199of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4200than the number of bits in ``op1``, the result is undefined. If the
4201arguments are vectors, each vector element of ``op1`` is shifted by the
4202corresponding shift amount in ``op2``.
4203
4204If the ``exact`` keyword is present, the result value of the ``ashr`` is
4205a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4206non-zero.
4207
4208Example:
4209""""""""
4210
4211.. code-block:: llvm
4212
4213 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4214 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4215 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4216 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4217 <result> = ashr i32 1, 32 ; undefined
4218 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4219
4220'``and``' Instruction
4221^^^^^^^^^^^^^^^^^^^^^
4222
4223Syntax:
4224"""""""
4225
4226::
4227
4228 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4229
4230Overview:
4231"""""""""
4232
4233The '``and``' instruction returns the bitwise logical and of its two
4234operands.
4235
4236Arguments:
4237""""""""""
4238
4239The two arguments to the '``and``' instruction must be
4240:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4241arguments must have identical types.
4242
4243Semantics:
4244""""""""""
4245
4246The truth table used for the '``and``' instruction is:
4247
4248+-----+-----+-----+
4249| In0 | In1 | Out |
4250+-----+-----+-----+
4251| 0 | 0 | 0 |
4252+-----+-----+-----+
4253| 0 | 1 | 0 |
4254+-----+-----+-----+
4255| 1 | 0 | 0 |
4256+-----+-----+-----+
4257| 1 | 1 | 1 |
4258+-----+-----+-----+
4259
4260Example:
4261""""""""
4262
4263.. code-block:: llvm
4264
4265 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4266 <result> = and i32 15, 40 ; yields {i32}:result = 8
4267 <result> = and i32 4, 8 ; yields {i32}:result = 0
4268
4269'``or``' Instruction
4270^^^^^^^^^^^^^^^^^^^^
4271
4272Syntax:
4273"""""""
4274
4275::
4276
4277 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4278
4279Overview:
4280"""""""""
4281
4282The '``or``' instruction returns the bitwise logical inclusive or of its
4283two operands.
4284
4285Arguments:
4286""""""""""
4287
4288The two arguments to the '``or``' instruction must be
4289:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4290arguments must have identical types.
4291
4292Semantics:
4293""""""""""
4294
4295The truth table used for the '``or``' instruction is:
4296
4297+-----+-----+-----+
4298| In0 | In1 | Out |
4299+-----+-----+-----+
4300| 0 | 0 | 0 |
4301+-----+-----+-----+
4302| 0 | 1 | 1 |
4303+-----+-----+-----+
4304| 1 | 0 | 1 |
4305+-----+-----+-----+
4306| 1 | 1 | 1 |
4307+-----+-----+-----+
4308
4309Example:
4310""""""""
4311
4312::
4313
4314 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4315 <result> = or i32 15, 40 ; yields {i32}:result = 47
4316 <result> = or i32 4, 8 ; yields {i32}:result = 12
4317
4318'``xor``' Instruction
4319^^^^^^^^^^^^^^^^^^^^^
4320
4321Syntax:
4322"""""""
4323
4324::
4325
4326 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4327
4328Overview:
4329"""""""""
4330
4331The '``xor``' instruction returns the bitwise logical exclusive or of
4332its two operands. The ``xor`` is used to implement the "one's
4333complement" operation, which is the "~" operator in C.
4334
4335Arguments:
4336""""""""""
4337
4338The two arguments to the '``xor``' instruction must be
4339:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4340arguments must have identical types.
4341
4342Semantics:
4343""""""""""
4344
4345The truth table used for the '``xor``' instruction is:
4346
4347+-----+-----+-----+
4348| In0 | In1 | Out |
4349+-----+-----+-----+
4350| 0 | 0 | 0 |
4351+-----+-----+-----+
4352| 0 | 1 | 1 |
4353+-----+-----+-----+
4354| 1 | 0 | 1 |
4355+-----+-----+-----+
4356| 1 | 1 | 0 |
4357+-----+-----+-----+
4358
4359Example:
4360""""""""
4361
4362.. code-block:: llvm
4363
4364 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4365 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4366 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4367 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4368
4369Vector Operations
4370-----------------
4371
4372LLVM supports several instructions to represent vector operations in a
4373target-independent manner. These instructions cover the element-access
4374and vector-specific operations needed to process vectors effectively.
4375While LLVM does directly support these vector operations, many
4376sophisticated algorithms will want to use target-specific intrinsics to
4377take full advantage of a specific target.
4378
4379.. _i_extractelement:
4380
4381'``extractelement``' Instruction
4382^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4383
4384Syntax:
4385"""""""
4386
4387::
4388
4389 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4390
4391Overview:
4392"""""""""
4393
4394The '``extractelement``' instruction extracts a single scalar element
4395from a vector at a specified index.
4396
4397Arguments:
4398""""""""""
4399
4400The first operand of an '``extractelement``' instruction is a value of
4401:ref:`vector <t_vector>` type. The second operand is an index indicating
4402the position from which to extract the element. The index may be a
4403variable.
4404
4405Semantics:
4406""""""""""
4407
4408The result is a scalar of the same type as the element type of ``val``.
4409Its value is the value at position ``idx`` of ``val``. If ``idx``
4410exceeds the length of ``val``, the results are undefined.
4411
4412Example:
4413""""""""
4414
4415.. code-block:: llvm
4416
4417 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4418
4419.. _i_insertelement:
4420
4421'``insertelement``' Instruction
4422^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4423
4424Syntax:
4425"""""""
4426
4427::
4428
4429 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4430
4431Overview:
4432"""""""""
4433
4434The '``insertelement``' instruction inserts a scalar element into a
4435vector at a specified index.
4436
4437Arguments:
4438""""""""""
4439
4440The first operand of an '``insertelement``' instruction is a value of
4441:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4442type must equal the element type of the first operand. The third operand
4443is an index indicating the position at which to insert the value. The
4444index may be a variable.
4445
4446Semantics:
4447""""""""""
4448
4449The result is a vector of the same type as ``val``. Its element values
4450are those of ``val`` except at position ``idx``, where it gets the value
4451``elt``. If ``idx`` exceeds the length of ``val``, the results are
4452undefined.
4453
4454Example:
4455""""""""
4456
4457.. code-block:: llvm
4458
4459 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4460
4461.. _i_shufflevector:
4462
4463'``shufflevector``' Instruction
4464^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4465
4466Syntax:
4467"""""""
4468
4469::
4470
4471 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4472
4473Overview:
4474"""""""""
4475
4476The '``shufflevector``' instruction constructs a permutation of elements
4477from two input vectors, returning a vector with the same element type as
4478the input and length that is the same as the shuffle mask.
4479
4480Arguments:
4481""""""""""
4482
4483The first two operands of a '``shufflevector``' instruction are vectors
4484with the same type. The third argument is a shuffle mask whose element
4485type is always 'i32'. The result of the instruction is a vector whose
4486length is the same as the shuffle mask and whose element type is the
4487same as the element type of the first two operands.
4488
4489The shuffle mask operand is required to be a constant vector with either
4490constant integer or undef values.
4491
4492Semantics:
4493""""""""""
4494
4495The elements of the two input vectors are numbered from left to right
4496across both of the vectors. The shuffle mask operand specifies, for each
4497element of the result vector, which element of the two input vectors the
4498result element gets. The element selector may be undef (meaning "don't
4499care") and the second operand may be undef if performing a shuffle from
4500only one vector.
4501
4502Example:
4503""""""""
4504
4505.. code-block:: llvm
4506
4507 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4508 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4509 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4510 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4511 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4512 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4513 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4514 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4515
4516Aggregate Operations
4517--------------------
4518
4519LLVM supports several instructions for working with
4520:ref:`aggregate <t_aggregate>` values.
4521
4522.. _i_extractvalue:
4523
4524'``extractvalue``' Instruction
4525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4526
4527Syntax:
4528"""""""
4529
4530::
4531
4532 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4533
4534Overview:
4535"""""""""
4536
4537The '``extractvalue``' instruction extracts the value of a member field
4538from an :ref:`aggregate <t_aggregate>` value.
4539
4540Arguments:
4541""""""""""
4542
4543The first operand of an '``extractvalue``' instruction is a value of
4544:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4545constant indices to specify which value to extract in a similar manner
4546as indices in a '``getelementptr``' instruction.
4547
4548The major differences to ``getelementptr`` indexing are:
4549
4550- Since the value being indexed is not a pointer, the first index is
4551 omitted and assumed to be zero.
4552- At least one index must be specified.
4553- Not only struct indices but also array indices must be in bounds.
4554
4555Semantics:
4556""""""""""
4557
4558The result is the value at the position in the aggregate specified by
4559the index operands.
4560
4561Example:
4562""""""""
4563
4564.. code-block:: llvm
4565
4566 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4567
4568.. _i_insertvalue:
4569
4570'``insertvalue``' Instruction
4571^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4572
4573Syntax:
4574"""""""
4575
4576::
4577
4578 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4579
4580Overview:
4581"""""""""
4582
4583The '``insertvalue``' instruction inserts a value into a member field in
4584an :ref:`aggregate <t_aggregate>` value.
4585
4586Arguments:
4587""""""""""
4588
4589The first operand of an '``insertvalue``' instruction is a value of
4590:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4591a first-class value to insert. The following operands are constant
4592indices indicating the position at which to insert the value in a
4593similar manner as indices in a '``extractvalue``' instruction. The value
4594to insert must have the same type as the value identified by the
4595indices.
4596
4597Semantics:
4598""""""""""
4599
4600The result is an aggregate of the same type as ``val``. Its value is
4601that of ``val`` except that the value at the position specified by the
4602indices is that of ``elt``.
4603
4604Example:
4605""""""""
4606
4607.. code-block:: llvm
4608
4609 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4610 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4611 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4612
4613.. _memoryops:
4614
4615Memory Access and Addressing Operations
4616---------------------------------------
4617
4618A key design point of an SSA-based representation is how it represents
4619memory. In LLVM, no memory locations are in SSA form, which makes things
4620very simple. This section describes how to read, write, and allocate
4621memory in LLVM.
4622
4623.. _i_alloca:
4624
4625'``alloca``' Instruction
4626^^^^^^^^^^^^^^^^^^^^^^^^
4627
4628Syntax:
4629"""""""
4630
4631::
4632
4633 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4634
4635Overview:
4636"""""""""
4637
4638The '``alloca``' instruction allocates memory on the stack frame of the
4639currently executing function, to be automatically released when this
4640function returns to its caller. The object is always allocated in the
4641generic address space (address space zero).
4642
4643Arguments:
4644""""""""""
4645
4646The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4647bytes of memory on the runtime stack, returning a pointer of the
4648appropriate type to the program. If "NumElements" is specified, it is
4649the number of elements allocated, otherwise "NumElements" is defaulted
4650to be one. If a constant alignment is specified, the value result of the
4651allocation is guaranteed to be aligned to at least that boundary. If not
4652specified, or if zero, the target can choose to align the allocation on
4653any convenient boundary compatible with the type.
4654
4655'``type``' may be any sized type.
4656
4657Semantics:
4658""""""""""
4659
4660Memory is allocated; a pointer is returned. The operation is undefined
4661if there is insufficient stack space for the allocation. '``alloca``'d
4662memory is automatically released when the function returns. The
4663'``alloca``' instruction is commonly used to represent automatic
4664variables that must have an address available. When the function returns
4665(either with the ``ret`` or ``resume`` instructions), the memory is
4666reclaimed. Allocating zero bytes is legal, but the result is undefined.
4667The order in which memory is allocated (ie., which way the stack grows)
4668is not specified.
4669
4670Example:
4671""""""""
4672
4673.. code-block:: llvm
4674
4675 %ptr = alloca i32 ; yields {i32*}:ptr
4676 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4677 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4678 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4679
4680.. _i_load:
4681
4682'``load``' Instruction
4683^^^^^^^^^^^^^^^^^^^^^^
4684
4685Syntax:
4686"""""""
4687
4688::
4689
4690 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4691 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4692 !<index> = !{ i32 1 }
4693
4694Overview:
4695"""""""""
4696
4697The '``load``' instruction is used to read from memory.
4698
4699Arguments:
4700""""""""""
4701
Eli Bendersky239a78b2013-04-17 20:17:08 +00004702The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004703from which to load. The pointer must point to a :ref:`first
4704class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4705then the optimizer is not allowed to modify the number or order of
4706execution of this ``load`` with other :ref:`volatile
4707operations <volatile>`.
4708
4709If the ``load`` is marked as ``atomic``, it takes an extra
4710:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4711``release`` and ``acq_rel`` orderings are not valid on ``load``
4712instructions. Atomic loads produce :ref:`defined <memmodel>` results
4713when they may see multiple atomic stores. The type of the pointee must
4714be an integer type whose bit width is a power of two greater than or
4715equal to eight and less than or equal to a target-specific size limit.
4716``align`` must be explicitly specified on atomic loads, and the load has
4717undefined behavior if the alignment is not set to a value which is at
4718least the size in bytes of the pointee. ``!nontemporal`` does not have
4719any defined semantics for atomic loads.
4720
4721The optional constant ``align`` argument specifies the alignment of the
4722operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004723or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004724alignment for the target. It is the responsibility of the code emitter
4725to ensure that the alignment information is correct. Overestimating the
4726alignment results in undefined behavior. Underestimating the alignment
4727may produce less efficient code. An alignment of 1 is always safe.
4728
4729The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004730metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004731``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004732metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004733that this load is not expected to be reused in the cache. The code
4734generator may select special instructions to save cache bandwidth, such
4735as the ``MOVNT`` instruction on x86.
4736
4737The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004738metadata name ``<index>`` corresponding to a metadata node with no
4739entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004740instruction tells the optimizer and code generator that this load
4741address points to memory which does not change value during program
4742execution. The optimizer may then move this load around, for example, by
4743hoisting it out of loops using loop invariant code motion.
4744
4745Semantics:
4746""""""""""
4747
4748The location of memory pointed to is loaded. If the value being loaded
4749is of scalar type then the number of bytes read does not exceed the
4750minimum number of bytes needed to hold all bits of the type. For
4751example, loading an ``i24`` reads at most three bytes. When loading a
4752value of a type like ``i20`` with a size that is not an integral number
4753of bytes, the result is undefined if the value was not originally
4754written using a store of the same type.
4755
4756Examples:
4757"""""""""
4758
4759.. code-block:: llvm
4760
4761 %ptr = alloca i32 ; yields {i32*}:ptr
4762 store i32 3, i32* %ptr ; yields {void}
4763 %val = load i32* %ptr ; yields {i32}:val = i32 3
4764
4765.. _i_store:
4766
4767'``store``' Instruction
4768^^^^^^^^^^^^^^^^^^^^^^^
4769
4770Syntax:
4771"""""""
4772
4773::
4774
4775 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4776 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4777
4778Overview:
4779"""""""""
4780
4781The '``store``' instruction is used to write to memory.
4782
4783Arguments:
4784""""""""""
4785
Eli Benderskyca380842013-04-17 17:17:20 +00004786There are two arguments to the ``store`` instruction: a value to store
4787and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004788operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004789the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004790then the optimizer is not allowed to modify the number or order of
4791execution of this ``store`` with other :ref:`volatile
4792operations <volatile>`.
4793
4794If the ``store`` is marked as ``atomic``, it takes an extra
4795:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4796``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4797instructions. Atomic loads produce :ref:`defined <memmodel>` results
4798when they may see multiple atomic stores. The type of the pointee must
4799be an integer type whose bit width is a power of two greater than or
4800equal to eight and less than or equal to a target-specific size limit.
4801``align`` must be explicitly specified on atomic stores, and the store
4802has undefined behavior if the alignment is not set to a value which is
4803at least the size in bytes of the pointee. ``!nontemporal`` does not
4804have any defined semantics for atomic stores.
4805
Eli Benderskyca380842013-04-17 17:17:20 +00004806The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004807operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004808or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004809alignment for the target. It is the responsibility of the code emitter
4810to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004811alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004812alignment may produce less efficient code. An alignment of 1 is always
4813safe.
4814
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004815The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004816name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004817value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004818tells the optimizer and code generator that this load is not expected to
4819be reused in the cache. The code generator may select special
4820instructions to save cache bandwidth, such as the MOVNT instruction on
4821x86.
4822
4823Semantics:
4824""""""""""
4825
Eli Benderskyca380842013-04-17 17:17:20 +00004826The contents of memory are updated to contain ``<value>`` at the
4827location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004828of scalar type then the number of bytes written does not exceed the
4829minimum number of bytes needed to hold all bits of the type. For
4830example, storing an ``i24`` writes at most three bytes. When writing a
4831value of a type like ``i20`` with a size that is not an integral number
4832of bytes, it is unspecified what happens to the extra bits that do not
4833belong to the type, but they will typically be overwritten.
4834
4835Example:
4836""""""""
4837
4838.. code-block:: llvm
4839
4840 %ptr = alloca i32 ; yields {i32*}:ptr
4841 store i32 3, i32* %ptr ; yields {void}
4842 %val = load i32* %ptr ; yields {i32}:val = i32 3
4843
4844.. _i_fence:
4845
4846'``fence``' Instruction
4847^^^^^^^^^^^^^^^^^^^^^^^
4848
4849Syntax:
4850"""""""
4851
4852::
4853
4854 fence [singlethread] <ordering> ; yields {void}
4855
4856Overview:
4857"""""""""
4858
4859The '``fence``' instruction is used to introduce happens-before edges
4860between operations.
4861
4862Arguments:
4863""""""""""
4864
4865'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4866defines what *synchronizes-with* edges they add. They can only be given
4867``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4868
4869Semantics:
4870""""""""""
4871
4872A fence A which has (at least) ``release`` ordering semantics
4873*synchronizes with* a fence B with (at least) ``acquire`` ordering
4874semantics if and only if there exist atomic operations X and Y, both
4875operating on some atomic object M, such that A is sequenced before X, X
4876modifies M (either directly or through some side effect of a sequence
4877headed by X), Y is sequenced before B, and Y observes M. This provides a
4878*happens-before* dependency between A and B. Rather than an explicit
4879``fence``, one (but not both) of the atomic operations X or Y might
4880provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4881still *synchronize-with* the explicit ``fence`` and establish the
4882*happens-before* edge.
4883
4884A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4885``acquire`` and ``release`` semantics specified above, participates in
4886the global program order of other ``seq_cst`` operations and/or fences.
4887
4888The optional ":ref:`singlethread <singlethread>`" argument specifies
4889that the fence only synchronizes with other fences in the same thread.
4890(This is useful for interacting with signal handlers.)
4891
4892Example:
4893""""""""
4894
4895.. code-block:: llvm
4896
4897 fence acquire ; yields {void}
4898 fence singlethread seq_cst ; yields {void}
4899
4900.. _i_cmpxchg:
4901
4902'``cmpxchg``' Instruction
4903^^^^^^^^^^^^^^^^^^^^^^^^^
4904
4905Syntax:
4906"""""""
4907
4908::
4909
4910 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4911
4912Overview:
4913"""""""""
4914
4915The '``cmpxchg``' instruction is used to atomically modify memory. It
4916loads a value in memory and compares it to a given value. If they are
4917equal, it stores a new value into the memory.
4918
4919Arguments:
4920""""""""""
4921
4922There are three arguments to the '``cmpxchg``' instruction: an address
4923to operate on, a value to compare to the value currently be at that
4924address, and a new value to place at that address if the compared values
4925are equal. The type of '<cmp>' must be an integer type whose bit width
4926is a power of two greater than or equal to eight and less than or equal
4927to a target-specific size limit. '<cmp>' and '<new>' must have the same
4928type, and the type of '<pointer>' must be a pointer to that type. If the
4929``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4930to modify the number or order of execution of this ``cmpxchg`` with
4931other :ref:`volatile operations <volatile>`.
4932
4933The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4934synchronizes with other atomic operations.
4935
4936The optional "``singlethread``" argument declares that the ``cmpxchg``
4937is only atomic with respect to code (usually signal handlers) running in
4938the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4939respect to all other code in the system.
4940
4941The pointer passed into cmpxchg must have alignment greater than or
4942equal to the size in memory of the operand.
4943
4944Semantics:
4945""""""""""
4946
4947The contents of memory at the location specified by the '``<pointer>``'
4948operand is read and compared to '``<cmp>``'; if the read value is the
4949equal, '``<new>``' is written. The original value at the location is
4950returned.
4951
4952A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4953of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4954atomic load with an ordering parameter determined by dropping any
4955``release`` part of the ``cmpxchg``'s ordering.
4956
4957Example:
4958""""""""
4959
4960.. code-block:: llvm
4961
4962 entry:
4963 %orig = atomic load i32* %ptr unordered ; yields {i32}
4964 br label %loop
4965
4966 loop:
4967 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4968 %squared = mul i32 %cmp, %cmp
4969 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4970 %success = icmp eq i32 %cmp, %old
4971 br i1 %success, label %done, label %loop
4972
4973 done:
4974 ...
4975
4976.. _i_atomicrmw:
4977
4978'``atomicrmw``' Instruction
4979^^^^^^^^^^^^^^^^^^^^^^^^^^^
4980
4981Syntax:
4982"""""""
4983
4984::
4985
4986 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4987
4988Overview:
4989"""""""""
4990
4991The '``atomicrmw``' instruction is used to atomically modify memory.
4992
4993Arguments:
4994""""""""""
4995
4996There are three arguments to the '``atomicrmw``' instruction: an
4997operation to apply, an address whose value to modify, an argument to the
4998operation. The operation must be one of the following keywords:
4999
5000- xchg
5001- add
5002- sub
5003- and
5004- nand
5005- or
5006- xor
5007- max
5008- min
5009- umax
5010- umin
5011
5012The type of '<value>' must be an integer type whose bit width is a power
5013of two greater than or equal to eight and less than or equal to a
5014target-specific size limit. The type of the '``<pointer>``' operand must
5015be a pointer to that type. If the ``atomicrmw`` is marked as
5016``volatile``, then the optimizer is not allowed to modify the number or
5017order of execution of this ``atomicrmw`` with other :ref:`volatile
5018operations <volatile>`.
5019
5020Semantics:
5021""""""""""
5022
5023The contents of memory at the location specified by the '``<pointer>``'
5024operand are atomically read, modified, and written back. The original
5025value at the location is returned. The modification is specified by the
5026operation argument:
5027
5028- xchg: ``*ptr = val``
5029- add: ``*ptr = *ptr + val``
5030- sub: ``*ptr = *ptr - val``
5031- and: ``*ptr = *ptr & val``
5032- nand: ``*ptr = ~(*ptr & val)``
5033- or: ``*ptr = *ptr | val``
5034- xor: ``*ptr = *ptr ^ val``
5035- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5036- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5037- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5038 comparison)
5039- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5040 comparison)
5041
5042Example:
5043""""""""
5044
5045.. code-block:: llvm
5046
5047 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5048
5049.. _i_getelementptr:
5050
5051'``getelementptr``' Instruction
5052^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5053
5054Syntax:
5055"""""""
5056
5057::
5058
5059 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5060 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5061 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5062
5063Overview:
5064"""""""""
5065
5066The '``getelementptr``' instruction is used to get the address of a
5067subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5068address calculation only and does not access memory.
5069
5070Arguments:
5071""""""""""
5072
5073The first argument is always a pointer or a vector of pointers, and
5074forms the basis of the calculation. The remaining arguments are indices
5075that indicate which of the elements of the aggregate object are indexed.
5076The interpretation of each index is dependent on the type being indexed
5077into. The first index always indexes the pointer value given as the
5078first argument, the second index indexes a value of the type pointed to
5079(not necessarily the value directly pointed to, since the first index
5080can be non-zero), etc. The first type indexed into must be a pointer
5081value, subsequent types can be arrays, vectors, and structs. Note that
5082subsequent types being indexed into can never be pointers, since that
5083would require loading the pointer before continuing calculation.
5084
5085The type of each index argument depends on the type it is indexing into.
5086When indexing into a (optionally packed) structure, only ``i32`` integer
5087**constants** are allowed (when using a vector of indices they must all
5088be the **same** ``i32`` integer constant). When indexing into an array,
5089pointer or vector, integers of any width are allowed, and they are not
5090required to be constant. These integers are treated as signed values
5091where relevant.
5092
5093For example, let's consider a C code fragment and how it gets compiled
5094to LLVM:
5095
5096.. code-block:: c
5097
5098 struct RT {
5099 char A;
5100 int B[10][20];
5101 char C;
5102 };
5103 struct ST {
5104 int X;
5105 double Y;
5106 struct RT Z;
5107 };
5108
5109 int *foo(struct ST *s) {
5110 return &s[1].Z.B[5][13];
5111 }
5112
5113The LLVM code generated by Clang is:
5114
5115.. code-block:: llvm
5116
5117 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5118 %struct.ST = type { i32, double, %struct.RT }
5119
5120 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5121 entry:
5122 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5123 ret i32* %arrayidx
5124 }
5125
5126Semantics:
5127""""""""""
5128
5129In the example above, the first index is indexing into the
5130'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5131= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5132indexes into the third element of the structure, yielding a
5133'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5134structure. The third index indexes into the second element of the
5135structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5136dimensions of the array are subscripted into, yielding an '``i32``'
5137type. The '``getelementptr``' instruction returns a pointer to this
5138element, thus computing a value of '``i32*``' type.
5139
5140Note that it is perfectly legal to index partially through a structure,
5141returning a pointer to an inner element. Because of this, the LLVM code
5142for the given testcase is equivalent to:
5143
5144.. code-block:: llvm
5145
5146 define i32* @foo(%struct.ST* %s) {
5147 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5148 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5149 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5150 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5151 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5152 ret i32* %t5
5153 }
5154
5155If the ``inbounds`` keyword is present, the result value of the
5156``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5157pointer is not an *in bounds* address of an allocated object, or if any
5158of the addresses that would be formed by successive addition of the
5159offsets implied by the indices to the base address with infinitely
5160precise signed arithmetic are not an *in bounds* address of that
5161allocated object. The *in bounds* addresses for an allocated object are
5162all the addresses that point into the object, plus the address one byte
5163past the end. In cases where the base is a vector of pointers the
5164``inbounds`` keyword applies to each of the computations element-wise.
5165
5166If the ``inbounds`` keyword is not present, the offsets are added to the
5167base address with silently-wrapping two's complement arithmetic. If the
5168offsets have a different width from the pointer, they are sign-extended
5169or truncated to the width of the pointer. The result value of the
5170``getelementptr`` may be outside the object pointed to by the base
5171pointer. The result value may not necessarily be used to access memory
5172though, even if it happens to point into allocated storage. See the
5173:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5174information.
5175
5176The getelementptr instruction is often confusing. For some more insight
5177into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5178
5179Example:
5180""""""""
5181
5182.. code-block:: llvm
5183
5184 ; yields [12 x i8]*:aptr
5185 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5186 ; yields i8*:vptr
5187 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5188 ; yields i8*:eptr
5189 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5190 ; yields i32*:iptr
5191 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5192
5193In cases where the pointer argument is a vector of pointers, each index
5194must be a vector with the same number of elements. For example:
5195
5196.. code-block:: llvm
5197
5198 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5199
5200Conversion Operations
5201---------------------
5202
5203The instructions in this category are the conversion instructions
5204(casting) which all take a single operand and a type. They perform
5205various bit conversions on the operand.
5206
5207'``trunc .. to``' Instruction
5208^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5209
5210Syntax:
5211"""""""
5212
5213::
5214
5215 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5216
5217Overview:
5218"""""""""
5219
5220The '``trunc``' instruction truncates its operand to the type ``ty2``.
5221
5222Arguments:
5223""""""""""
5224
5225The '``trunc``' instruction takes a value to trunc, and a type to trunc
5226it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5227of the same number of integers. The bit size of the ``value`` must be
5228larger than the bit size of the destination type, ``ty2``. Equal sized
5229types are not allowed.
5230
5231Semantics:
5232""""""""""
5233
5234The '``trunc``' instruction truncates the high order bits in ``value``
5235and converts the remaining bits to ``ty2``. Since the source size must
5236be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5237It will always truncate bits.
5238
5239Example:
5240""""""""
5241
5242.. code-block:: llvm
5243
5244 %X = trunc i32 257 to i8 ; yields i8:1
5245 %Y = trunc i32 123 to i1 ; yields i1:true
5246 %Z = trunc i32 122 to i1 ; yields i1:false
5247 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5248
5249'``zext .. to``' Instruction
5250^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5251
5252Syntax:
5253"""""""
5254
5255::
5256
5257 <result> = zext <ty> <value> to <ty2> ; yields ty2
5258
5259Overview:
5260"""""""""
5261
5262The '``zext``' instruction zero extends its operand to type ``ty2``.
5263
5264Arguments:
5265""""""""""
5266
5267The '``zext``' instruction takes a value to cast, and a type to cast it
5268to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5269the same number of integers. The bit size of the ``value`` must be
5270smaller than the bit size of the destination type, ``ty2``.
5271
5272Semantics:
5273""""""""""
5274
5275The ``zext`` fills the high order bits of the ``value`` with zero bits
5276until it reaches the size of the destination type, ``ty2``.
5277
5278When zero extending from i1, the result will always be either 0 or 1.
5279
5280Example:
5281""""""""
5282
5283.. code-block:: llvm
5284
5285 %X = zext i32 257 to i64 ; yields i64:257
5286 %Y = zext i1 true to i32 ; yields i32:1
5287 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5288
5289'``sext .. to``' Instruction
5290^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5291
5292Syntax:
5293"""""""
5294
5295::
5296
5297 <result> = sext <ty> <value> to <ty2> ; yields ty2
5298
5299Overview:
5300"""""""""
5301
5302The '``sext``' sign extends ``value`` to the type ``ty2``.
5303
5304Arguments:
5305""""""""""
5306
5307The '``sext``' instruction takes a value to cast, and a type to cast it
5308to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5309the same number of integers. The bit size of the ``value`` must be
5310smaller than the bit size of the destination type, ``ty2``.
5311
5312Semantics:
5313""""""""""
5314
5315The '``sext``' instruction performs a sign extension by copying the sign
5316bit (highest order bit) of the ``value`` until it reaches the bit size
5317of the type ``ty2``.
5318
5319When sign extending from i1, the extension always results in -1 or 0.
5320
5321Example:
5322""""""""
5323
5324.. code-block:: llvm
5325
5326 %X = sext i8 -1 to i16 ; yields i16 :65535
5327 %Y = sext i1 true to i32 ; yields i32:-1
5328 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5329
5330'``fptrunc .. to``' Instruction
5331^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5332
5333Syntax:
5334"""""""
5335
5336::
5337
5338 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5339
5340Overview:
5341"""""""""
5342
5343The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5344
5345Arguments:
5346""""""""""
5347
5348The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5349value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5350The size of ``value`` must be larger than the size of ``ty2``. This
5351implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5352
5353Semantics:
5354""""""""""
5355
5356The '``fptrunc``' instruction truncates a ``value`` from a larger
5357:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5358point <t_floating>` type. If the value cannot fit within the
5359destination type, ``ty2``, then the results are undefined.
5360
5361Example:
5362""""""""
5363
5364.. code-block:: llvm
5365
5366 %X = fptrunc double 123.0 to float ; yields float:123.0
5367 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5368
5369'``fpext .. to``' Instruction
5370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5371
5372Syntax:
5373"""""""
5374
5375::
5376
5377 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5378
5379Overview:
5380"""""""""
5381
5382The '``fpext``' extends a floating point ``value`` to a larger floating
5383point value.
5384
5385Arguments:
5386""""""""""
5387
5388The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5389``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5390to. The source type must be smaller than the destination type.
5391
5392Semantics:
5393""""""""""
5394
5395The '``fpext``' instruction extends the ``value`` from a smaller
5396:ref:`floating point <t_floating>` type to a larger :ref:`floating
5397point <t_floating>` type. The ``fpext`` cannot be used to make a
5398*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5399*no-op cast* for a floating point cast.
5400
5401Example:
5402""""""""
5403
5404.. code-block:: llvm
5405
5406 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5407 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5408
5409'``fptoui .. to``' Instruction
5410^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5411
5412Syntax:
5413"""""""
5414
5415::
5416
5417 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5418
5419Overview:
5420"""""""""
5421
5422The '``fptoui``' converts a floating point ``value`` to its unsigned
5423integer equivalent of type ``ty2``.
5424
5425Arguments:
5426""""""""""
5427
5428The '``fptoui``' instruction takes a value to cast, which must be a
5429scalar or vector :ref:`floating point <t_floating>` value, and a type to
5430cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5431``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5432type with the same number of elements as ``ty``
5433
5434Semantics:
5435""""""""""
5436
5437The '``fptoui``' instruction converts its :ref:`floating
5438point <t_floating>` operand into the nearest (rounding towards zero)
5439unsigned integer value. If the value cannot fit in ``ty2``, the results
5440are undefined.
5441
5442Example:
5443""""""""
5444
5445.. code-block:: llvm
5446
5447 %X = fptoui double 123.0 to i32 ; yields i32:123
5448 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5449 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5450
5451'``fptosi .. to``' Instruction
5452^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5453
5454Syntax:
5455"""""""
5456
5457::
5458
5459 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5460
5461Overview:
5462"""""""""
5463
5464The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5465``value`` to type ``ty2``.
5466
5467Arguments:
5468""""""""""
5469
5470The '``fptosi``' instruction takes a value to cast, which must be a
5471scalar or vector :ref:`floating point <t_floating>` value, and a type to
5472cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5473``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5474type with the same number of elements as ``ty``
5475
5476Semantics:
5477""""""""""
5478
5479The '``fptosi``' instruction converts its :ref:`floating
5480point <t_floating>` operand into the nearest (rounding towards zero)
5481signed integer value. If the value cannot fit in ``ty2``, the results
5482are undefined.
5483
5484Example:
5485""""""""
5486
5487.. code-block:: llvm
5488
5489 %X = fptosi double -123.0 to i32 ; yields i32:-123
5490 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5491 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5492
5493'``uitofp .. to``' Instruction
5494^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5495
5496Syntax:
5497"""""""
5498
5499::
5500
5501 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5502
5503Overview:
5504"""""""""
5505
5506The '``uitofp``' instruction regards ``value`` as an unsigned integer
5507and converts that value to the ``ty2`` type.
5508
5509Arguments:
5510""""""""""
5511
5512The '``uitofp``' instruction takes a value to cast, which must be a
5513scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5514``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5515``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5516type with the same number of elements as ``ty``
5517
5518Semantics:
5519""""""""""
5520
5521The '``uitofp``' instruction interprets its operand as an unsigned
5522integer quantity and converts it to the corresponding floating point
5523value. If the value cannot fit in the floating point value, the results
5524are undefined.
5525
5526Example:
5527""""""""
5528
5529.. code-block:: llvm
5530
5531 %X = uitofp i32 257 to float ; yields float:257.0
5532 %Y = uitofp i8 -1 to double ; yields double:255.0
5533
5534'``sitofp .. to``' Instruction
5535^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5536
5537Syntax:
5538"""""""
5539
5540::
5541
5542 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5543
5544Overview:
5545"""""""""
5546
5547The '``sitofp``' instruction regards ``value`` as a signed integer and
5548converts that value to the ``ty2`` type.
5549
5550Arguments:
5551""""""""""
5552
5553The '``sitofp``' instruction takes a value to cast, which must be a
5554scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5555``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5556``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5557type with the same number of elements as ``ty``
5558
5559Semantics:
5560""""""""""
5561
5562The '``sitofp``' instruction interprets its operand as a signed integer
5563quantity and converts it to the corresponding floating point value. If
5564the value cannot fit in the floating point value, the results are
5565undefined.
5566
5567Example:
5568""""""""
5569
5570.. code-block:: llvm
5571
5572 %X = sitofp i32 257 to float ; yields float:257.0
5573 %Y = sitofp i8 -1 to double ; yields double:-1.0
5574
5575.. _i_ptrtoint:
5576
5577'``ptrtoint .. to``' Instruction
5578^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5579
5580Syntax:
5581"""""""
5582
5583::
5584
5585 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5586
5587Overview:
5588"""""""""
5589
5590The '``ptrtoint``' instruction converts the pointer or a vector of
5591pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5592
5593Arguments:
5594""""""""""
5595
5596The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5597a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5598type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5599a vector of integers type.
5600
5601Semantics:
5602""""""""""
5603
5604The '``ptrtoint``' instruction converts ``value`` to integer type
5605``ty2`` by interpreting the pointer value as an integer and either
5606truncating or zero extending that value to the size of the integer type.
5607If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5608``value`` is larger than ``ty2`` then a truncation is done. If they are
5609the same size, then nothing is done (*no-op cast*) other than a type
5610change.
5611
5612Example:
5613""""""""
5614
5615.. code-block:: llvm
5616
5617 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5618 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5619 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5620
5621.. _i_inttoptr:
5622
5623'``inttoptr .. to``' Instruction
5624^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5625
5626Syntax:
5627"""""""
5628
5629::
5630
5631 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5632
5633Overview:
5634"""""""""
5635
5636The '``inttoptr``' instruction converts an integer ``value`` to a
5637pointer type, ``ty2``.
5638
5639Arguments:
5640""""""""""
5641
5642The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5643cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5644type.
5645
5646Semantics:
5647""""""""""
5648
5649The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5650applying either a zero extension or a truncation depending on the size
5651of the integer ``value``. If ``value`` is larger than the size of a
5652pointer then a truncation is done. If ``value`` is smaller than the size
5653of a pointer then a zero extension is done. If they are the same size,
5654nothing is done (*no-op cast*).
5655
5656Example:
5657""""""""
5658
5659.. code-block:: llvm
5660
5661 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5662 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5663 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5664 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5665
5666.. _i_bitcast:
5667
5668'``bitcast .. to``' Instruction
5669^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5670
5671Syntax:
5672"""""""
5673
5674::
5675
5676 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5677
5678Overview:
5679"""""""""
5680
5681The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5682changing any bits.
5683
5684Arguments:
5685""""""""""
5686
5687The '``bitcast``' instruction takes a value to cast, which must be a
5688non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005689also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5690bit sizes of ``value`` and the destination type, ``ty2``, must be
5691identical. If the source type is a pointer, the destination type must
5692also be a pointer of the same size. This instruction supports bitwise
5693conversion of vectors to integers and to vectors of other types (as
5694long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005695
5696Semantics:
5697""""""""""
5698
Matt Arsenault24b49c42013-07-31 17:49:08 +00005699The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5700is always a *no-op cast* because no bits change with this
5701conversion. The conversion is done as if the ``value`` had been stored
5702to memory and read back as type ``ty2``. Pointer (or vector of
5703pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005704pointers) types with the same address space through this instruction.
5705To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5706or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005707
5708Example:
5709""""""""
5710
5711.. code-block:: llvm
5712
5713 %X = bitcast i8 255 to i8 ; yields i8 :-1
5714 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5715 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5716 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5717
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005718.. _i_addrspacecast:
5719
5720'``addrspacecast .. to``' Instruction
5721^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5722
5723Syntax:
5724"""""""
5725
5726::
5727
5728 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5729
5730Overview:
5731"""""""""
5732
5733The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5734address space ``n`` to type ``pty2`` in address space ``m``.
5735
5736Arguments:
5737""""""""""
5738
5739The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5740to cast and a pointer type to cast it to, which must have a different
5741address space.
5742
5743Semantics:
5744""""""""""
5745
5746The '``addrspacecast``' instruction converts the pointer value
5747``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005748value modification, depending on the target and the address space
5749pair. Pointer conversions within the same address space must be
5750performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005751conversion is legal then both result and operand refer to the same memory
5752location.
5753
5754Example:
5755""""""""
5756
5757.. code-block:: llvm
5758
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005759 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5760 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5761 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005762
Sean Silvab084af42012-12-07 10:36:55 +00005763.. _otherops:
5764
5765Other Operations
5766----------------
5767
5768The instructions in this category are the "miscellaneous" instructions,
5769which defy better classification.
5770
5771.. _i_icmp:
5772
5773'``icmp``' Instruction
5774^^^^^^^^^^^^^^^^^^^^^^
5775
5776Syntax:
5777"""""""
5778
5779::
5780
5781 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5782
5783Overview:
5784"""""""""
5785
5786The '``icmp``' instruction returns a boolean value or a vector of
5787boolean values based on comparison of its two integer, integer vector,
5788pointer, or pointer vector operands.
5789
5790Arguments:
5791""""""""""
5792
5793The '``icmp``' instruction takes three operands. The first operand is
5794the condition code indicating the kind of comparison to perform. It is
5795not a value, just a keyword. The possible condition code are:
5796
5797#. ``eq``: equal
5798#. ``ne``: not equal
5799#. ``ugt``: unsigned greater than
5800#. ``uge``: unsigned greater or equal
5801#. ``ult``: unsigned less than
5802#. ``ule``: unsigned less or equal
5803#. ``sgt``: signed greater than
5804#. ``sge``: signed greater or equal
5805#. ``slt``: signed less than
5806#. ``sle``: signed less or equal
5807
5808The remaining two arguments must be :ref:`integer <t_integer>` or
5809:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5810must also be identical types.
5811
5812Semantics:
5813""""""""""
5814
5815The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5816code given as ``cond``. The comparison performed always yields either an
5817:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5818
5819#. ``eq``: yields ``true`` if the operands are equal, ``false``
5820 otherwise. No sign interpretation is necessary or performed.
5821#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5822 otherwise. No sign interpretation is necessary or performed.
5823#. ``ugt``: interprets the operands as unsigned values and yields
5824 ``true`` if ``op1`` is greater than ``op2``.
5825#. ``uge``: interprets the operands as unsigned values and yields
5826 ``true`` if ``op1`` is greater than or equal to ``op2``.
5827#. ``ult``: interprets the operands as unsigned values and yields
5828 ``true`` if ``op1`` is less than ``op2``.
5829#. ``ule``: interprets the operands as unsigned values and yields
5830 ``true`` if ``op1`` is less than or equal to ``op2``.
5831#. ``sgt``: interprets the operands as signed values and yields ``true``
5832 if ``op1`` is greater than ``op2``.
5833#. ``sge``: interprets the operands as signed values and yields ``true``
5834 if ``op1`` is greater than or equal to ``op2``.
5835#. ``slt``: interprets the operands as signed values and yields ``true``
5836 if ``op1`` is less than ``op2``.
5837#. ``sle``: interprets the operands as signed values and yields ``true``
5838 if ``op1`` is less than or equal to ``op2``.
5839
5840If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5841are compared as if they were integers.
5842
5843If the operands are integer vectors, then they are compared element by
5844element. The result is an ``i1`` vector with the same number of elements
5845as the values being compared. Otherwise, the result is an ``i1``.
5846
5847Example:
5848""""""""
5849
5850.. code-block:: llvm
5851
5852 <result> = icmp eq i32 4, 5 ; yields: result=false
5853 <result> = icmp ne float* %X, %X ; yields: result=false
5854 <result> = icmp ult i16 4, 5 ; yields: result=true
5855 <result> = icmp sgt i16 4, 5 ; yields: result=false
5856 <result> = icmp ule i16 -4, 5 ; yields: result=false
5857 <result> = icmp sge i16 4, 5 ; yields: result=false
5858
5859Note that the code generator does not yet support vector types with the
5860``icmp`` instruction.
5861
5862.. _i_fcmp:
5863
5864'``fcmp``' Instruction
5865^^^^^^^^^^^^^^^^^^^^^^
5866
5867Syntax:
5868"""""""
5869
5870::
5871
5872 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5873
5874Overview:
5875"""""""""
5876
5877The '``fcmp``' instruction returns a boolean value or vector of boolean
5878values based on comparison of its operands.
5879
5880If the operands are floating point scalars, then the result type is a
5881boolean (:ref:`i1 <t_integer>`).
5882
5883If the operands are floating point vectors, then the result type is a
5884vector of boolean with the same number of elements as the operands being
5885compared.
5886
5887Arguments:
5888""""""""""
5889
5890The '``fcmp``' instruction takes three operands. The first operand is
5891the condition code indicating the kind of comparison to perform. It is
5892not a value, just a keyword. The possible condition code are:
5893
5894#. ``false``: no comparison, always returns false
5895#. ``oeq``: ordered and equal
5896#. ``ogt``: ordered and greater than
5897#. ``oge``: ordered and greater than or equal
5898#. ``olt``: ordered and less than
5899#. ``ole``: ordered and less than or equal
5900#. ``one``: ordered and not equal
5901#. ``ord``: ordered (no nans)
5902#. ``ueq``: unordered or equal
5903#. ``ugt``: unordered or greater than
5904#. ``uge``: unordered or greater than or equal
5905#. ``ult``: unordered or less than
5906#. ``ule``: unordered or less than or equal
5907#. ``une``: unordered or not equal
5908#. ``uno``: unordered (either nans)
5909#. ``true``: no comparison, always returns true
5910
5911*Ordered* means that neither operand is a QNAN while *unordered* means
5912that either operand may be a QNAN.
5913
5914Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5915point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5916type. They must have identical types.
5917
5918Semantics:
5919""""""""""
5920
5921The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5922condition code given as ``cond``. If the operands are vectors, then the
5923vectors are compared element by element. Each comparison performed
5924always yields an :ref:`i1 <t_integer>` result, as follows:
5925
5926#. ``false``: always yields ``false``, regardless of operands.
5927#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5928 is equal to ``op2``.
5929#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5930 is greater than ``op2``.
5931#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5932 is greater than or equal to ``op2``.
5933#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5934 is less than ``op2``.
5935#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5936 is less than or equal to ``op2``.
5937#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5938 is not equal to ``op2``.
5939#. ``ord``: yields ``true`` if both operands are not a QNAN.
5940#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5941 equal to ``op2``.
5942#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5943 greater than ``op2``.
5944#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5945 greater than or equal to ``op2``.
5946#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5947 less than ``op2``.
5948#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5949 less than or equal to ``op2``.
5950#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5951 not equal to ``op2``.
5952#. ``uno``: yields ``true`` if either operand is a QNAN.
5953#. ``true``: always yields ``true``, regardless of operands.
5954
5955Example:
5956""""""""
5957
5958.. code-block:: llvm
5959
5960 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5961 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5962 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5963 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5964
5965Note that the code generator does not yet support vector types with the
5966``fcmp`` instruction.
5967
5968.. _i_phi:
5969
5970'``phi``' Instruction
5971^^^^^^^^^^^^^^^^^^^^^
5972
5973Syntax:
5974"""""""
5975
5976::
5977
5978 <result> = phi <ty> [ <val0>, <label0>], ...
5979
5980Overview:
5981"""""""""
5982
5983The '``phi``' instruction is used to implement the φ node in the SSA
5984graph representing the function.
5985
5986Arguments:
5987""""""""""
5988
5989The type of the incoming values is specified with the first type field.
5990After this, the '``phi``' instruction takes a list of pairs as
5991arguments, with one pair for each predecessor basic block of the current
5992block. Only values of :ref:`first class <t_firstclass>` type may be used as
5993the value arguments to the PHI node. Only labels may be used as the
5994label arguments.
5995
5996There must be no non-phi instructions between the start of a basic block
5997and the PHI instructions: i.e. PHI instructions must be first in a basic
5998block.
5999
6000For the purposes of the SSA form, the use of each incoming value is
6001deemed to occur on the edge from the corresponding predecessor block to
6002the current block (but after any definition of an '``invoke``'
6003instruction's return value on the same edge).
6004
6005Semantics:
6006""""""""""
6007
6008At runtime, the '``phi``' instruction logically takes on the value
6009specified by the pair corresponding to the predecessor basic block that
6010executed just prior to the current block.
6011
6012Example:
6013""""""""
6014
6015.. code-block:: llvm
6016
6017 Loop: ; Infinite loop that counts from 0 on up...
6018 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6019 %nextindvar = add i32 %indvar, 1
6020 br label %Loop
6021
6022.. _i_select:
6023
6024'``select``' Instruction
6025^^^^^^^^^^^^^^^^^^^^^^^^
6026
6027Syntax:
6028"""""""
6029
6030::
6031
6032 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6033
6034 selty is either i1 or {<N x i1>}
6035
6036Overview:
6037"""""""""
6038
6039The '``select``' instruction is used to choose one value based on a
6040condition, without branching.
6041
6042Arguments:
6043""""""""""
6044
6045The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6046values indicating the condition, and two values of the same :ref:`first
6047class <t_firstclass>` type. If the val1/val2 are vectors and the
6048condition is a scalar, then entire vectors are selected, not individual
6049elements.
6050
6051Semantics:
6052""""""""""
6053
6054If the condition is an i1 and it evaluates to 1, the instruction returns
6055the first value argument; otherwise, it returns the second value
6056argument.
6057
6058If the condition is a vector of i1, then the value arguments must be
6059vectors of the same size, and the selection is done element by element.
6060
6061Example:
6062""""""""
6063
6064.. code-block:: llvm
6065
6066 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6067
6068.. _i_call:
6069
6070'``call``' Instruction
6071^^^^^^^^^^^^^^^^^^^^^^
6072
6073Syntax:
6074"""""""
6075
6076::
6077
6078 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6079
6080Overview:
6081"""""""""
6082
6083The '``call``' instruction represents a simple function call.
6084
6085Arguments:
6086""""""""""
6087
6088This instruction requires several arguments:
6089
6090#. The optional "tail" marker indicates that the callee function does
6091 not access any allocas or varargs in the caller. Note that calls may
6092 be marked "tail" even if they do not occur before a
6093 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6094 function call is eligible for tail call optimization, but `might not
6095 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6096 The code generator may optimize calls marked "tail" with either 1)
6097 automatic `sibling call
6098 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6099 callee have matching signatures, or 2) forced tail call optimization
6100 when the following extra requirements are met:
6101
6102 - Caller and callee both have the calling convention ``fastcc``.
6103 - The call is in tail position (ret immediately follows call and ret
6104 uses value of call or is void).
6105 - Option ``-tailcallopt`` is enabled, or
6106 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6107 - `Platform specific constraints are
6108 met. <CodeGenerator.html#tailcallopt>`_
6109
6110#. The optional "cconv" marker indicates which :ref:`calling
6111 convention <callingconv>` the call should use. If none is
6112 specified, the call defaults to using C calling conventions. The
6113 calling convention of the call must match the calling convention of
6114 the target function, or else the behavior is undefined.
6115#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6116 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6117 are valid here.
6118#. '``ty``': the type of the call instruction itself which is also the
6119 type of the return value. Functions that return no value are marked
6120 ``void``.
6121#. '``fnty``': shall be the signature of the pointer to function value
6122 being invoked. The argument types must match the types implied by
6123 this signature. This type can be omitted if the function is not
6124 varargs and if the function type does not return a pointer to a
6125 function.
6126#. '``fnptrval``': An LLVM value containing a pointer to a function to
6127 be invoked. In most cases, this is a direct function invocation, but
6128 indirect ``call``'s are just as possible, calling an arbitrary pointer
6129 to function value.
6130#. '``function args``': argument list whose types match the function
6131 signature argument types and parameter attributes. All arguments must
6132 be of :ref:`first class <t_firstclass>` type. If the function signature
6133 indicates the function accepts a variable number of arguments, the
6134 extra arguments can be specified.
6135#. The optional :ref:`function attributes <fnattrs>` list. Only
6136 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6137 attributes are valid here.
6138
6139Semantics:
6140""""""""""
6141
6142The '``call``' instruction is used to cause control flow to transfer to
6143a specified function, with its incoming arguments bound to the specified
6144values. Upon a '``ret``' instruction in the called function, control
6145flow continues with the instruction after the function call, and the
6146return value of the function is bound to the result argument.
6147
6148Example:
6149""""""""
6150
6151.. code-block:: llvm
6152
6153 %retval = call i32 @test(i32 %argc)
6154 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6155 %X = tail call i32 @foo() ; yields i32
6156 %Y = tail call fastcc i32 @foo() ; yields i32
6157 call void %foo(i8 97 signext)
6158
6159 %struct.A = type { i32, i8 }
6160 %r = call %struct.A @foo() ; yields { 32, i8 }
6161 %gr = extractvalue %struct.A %r, 0 ; yields i32
6162 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6163 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6164 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6165
6166llvm treats calls to some functions with names and arguments that match
6167the standard C99 library as being the C99 library functions, and may
6168perform optimizations or generate code for them under that assumption.
6169This is something we'd like to change in the future to provide better
6170support for freestanding environments and non-C-based languages.
6171
6172.. _i_va_arg:
6173
6174'``va_arg``' Instruction
6175^^^^^^^^^^^^^^^^^^^^^^^^
6176
6177Syntax:
6178"""""""
6179
6180::
6181
6182 <resultval> = va_arg <va_list*> <arglist>, <argty>
6183
6184Overview:
6185"""""""""
6186
6187The '``va_arg``' instruction is used to access arguments passed through
6188the "variable argument" area of a function call. It is used to implement
6189the ``va_arg`` macro in C.
6190
6191Arguments:
6192""""""""""
6193
6194This instruction takes a ``va_list*`` value and the type of the
6195argument. It returns a value of the specified argument type and
6196increments the ``va_list`` to point to the next argument. The actual
6197type of ``va_list`` is target specific.
6198
6199Semantics:
6200""""""""""
6201
6202The '``va_arg``' instruction loads an argument of the specified type
6203from the specified ``va_list`` and causes the ``va_list`` to point to
6204the next argument. For more information, see the variable argument
6205handling :ref:`Intrinsic Functions <int_varargs>`.
6206
6207It is legal for this instruction to be called in a function which does
6208not take a variable number of arguments, for example, the ``vfprintf``
6209function.
6210
6211``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6212function <intrinsics>` because it takes a type as an argument.
6213
6214Example:
6215""""""""
6216
6217See the :ref:`variable argument processing <int_varargs>` section.
6218
6219Note that the code generator does not yet fully support va\_arg on many
6220targets. Also, it does not currently support va\_arg with aggregate
6221types on any target.
6222
6223.. _i_landingpad:
6224
6225'``landingpad``' Instruction
6226^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6227
6228Syntax:
6229"""""""
6230
6231::
6232
6233 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6234 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6235
6236 <clause> := catch <type> <value>
6237 <clause> := filter <array constant type> <array constant>
6238
6239Overview:
6240"""""""""
6241
6242The '``landingpad``' instruction is used by `LLVM's exception handling
6243system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006244is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006245code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6246defines values supplied by the personality function (``pers_fn``) upon
6247re-entry to the function. The ``resultval`` has the type ``resultty``.
6248
6249Arguments:
6250""""""""""
6251
6252This instruction takes a ``pers_fn`` value. This is the personality
6253function associated with the unwinding mechanism. The optional
6254``cleanup`` flag indicates that the landing pad block is a cleanup.
6255
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006256A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006257contains the global variable representing the "type" that may be caught
6258or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6259clause takes an array constant as its argument. Use
6260"``[0 x i8**] undef``" for a filter which cannot throw. The
6261'``landingpad``' instruction must contain *at least* one ``clause`` or
6262the ``cleanup`` flag.
6263
6264Semantics:
6265""""""""""
6266
6267The '``landingpad``' instruction defines the values which are set by the
6268personality function (``pers_fn``) upon re-entry to the function, and
6269therefore the "result type" of the ``landingpad`` instruction. As with
6270calling conventions, how the personality function results are
6271represented in LLVM IR is target specific.
6272
6273The clauses are applied in order from top to bottom. If two
6274``landingpad`` instructions are merged together through inlining, the
6275clauses from the calling function are appended to the list of clauses.
6276When the call stack is being unwound due to an exception being thrown,
6277the exception is compared against each ``clause`` in turn. If it doesn't
6278match any of the clauses, and the ``cleanup`` flag is not set, then
6279unwinding continues further up the call stack.
6280
6281The ``landingpad`` instruction has several restrictions:
6282
6283- A landing pad block is a basic block which is the unwind destination
6284 of an '``invoke``' instruction.
6285- A landing pad block must have a '``landingpad``' instruction as its
6286 first non-PHI instruction.
6287- There can be only one '``landingpad``' instruction within the landing
6288 pad block.
6289- A basic block that is not a landing pad block may not include a
6290 '``landingpad``' instruction.
6291- All '``landingpad``' instructions in a function must have the same
6292 personality function.
6293
6294Example:
6295""""""""
6296
6297.. code-block:: llvm
6298
6299 ;; A landing pad which can catch an integer.
6300 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6301 catch i8** @_ZTIi
6302 ;; A landing pad that is a cleanup.
6303 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6304 cleanup
6305 ;; A landing pad which can catch an integer and can only throw a double.
6306 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6307 catch i8** @_ZTIi
6308 filter [1 x i8**] [@_ZTId]
6309
6310.. _intrinsics:
6311
6312Intrinsic Functions
6313===================
6314
6315LLVM supports the notion of an "intrinsic function". These functions
6316have well known names and semantics and are required to follow certain
6317restrictions. Overall, these intrinsics represent an extension mechanism
6318for the LLVM language that does not require changing all of the
6319transformations in LLVM when adding to the language (or the bitcode
6320reader/writer, the parser, etc...).
6321
6322Intrinsic function names must all start with an "``llvm.``" prefix. This
6323prefix is reserved in LLVM for intrinsic names; thus, function names may
6324not begin with this prefix. Intrinsic functions must always be external
6325functions: you cannot define the body of intrinsic functions. Intrinsic
6326functions may only be used in call or invoke instructions: it is illegal
6327to take the address of an intrinsic function. Additionally, because
6328intrinsic functions are part of the LLVM language, it is required if any
6329are added that they be documented here.
6330
6331Some intrinsic functions can be overloaded, i.e., the intrinsic
6332represents a family of functions that perform the same operation but on
6333different data types. Because LLVM can represent over 8 million
6334different integer types, overloading is used commonly to allow an
6335intrinsic function to operate on any integer type. One or more of the
6336argument types or the result type can be overloaded to accept any
6337integer type. Argument types may also be defined as exactly matching a
6338previous argument's type or the result type. This allows an intrinsic
6339function which accepts multiple arguments, but needs all of them to be
6340of the same type, to only be overloaded with respect to a single
6341argument or the result.
6342
6343Overloaded intrinsics will have the names of its overloaded argument
6344types encoded into its function name, each preceded by a period. Only
6345those types which are overloaded result in a name suffix. Arguments
6346whose type is matched against another type do not. For example, the
6347``llvm.ctpop`` function can take an integer of any width and returns an
6348integer of exactly the same integer width. This leads to a family of
6349functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6350``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6351overloaded, and only one type suffix is required. Because the argument's
6352type is matched against the return type, it does not require its own
6353name suffix.
6354
6355To learn how to add an intrinsic function, please see the `Extending
6356LLVM Guide <ExtendingLLVM.html>`_.
6357
6358.. _int_varargs:
6359
6360Variable Argument Handling Intrinsics
6361-------------------------------------
6362
6363Variable argument support is defined in LLVM with the
6364:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6365functions. These functions are related to the similarly named macros
6366defined in the ``<stdarg.h>`` header file.
6367
6368All of these functions operate on arguments that use a target-specific
6369value type "``va_list``". The LLVM assembly language reference manual
6370does not define what this type is, so all transformations should be
6371prepared to handle these functions regardless of the type used.
6372
6373This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6374variable argument handling intrinsic functions are used.
6375
6376.. code-block:: llvm
6377
6378 define i32 @test(i32 %X, ...) {
6379 ; Initialize variable argument processing
6380 %ap = alloca i8*
6381 %ap2 = bitcast i8** %ap to i8*
6382 call void @llvm.va_start(i8* %ap2)
6383
6384 ; Read a single integer argument
6385 %tmp = va_arg i8** %ap, i32
6386
6387 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6388 %aq = alloca i8*
6389 %aq2 = bitcast i8** %aq to i8*
6390 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6391 call void @llvm.va_end(i8* %aq2)
6392
6393 ; Stop processing of arguments.
6394 call void @llvm.va_end(i8* %ap2)
6395 ret i32 %tmp
6396 }
6397
6398 declare void @llvm.va_start(i8*)
6399 declare void @llvm.va_copy(i8*, i8*)
6400 declare void @llvm.va_end(i8*)
6401
6402.. _int_va_start:
6403
6404'``llvm.va_start``' Intrinsic
6405^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6406
6407Syntax:
6408"""""""
6409
6410::
6411
Nick Lewycky04f6de02013-09-11 22:04:52 +00006412 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006413
6414Overview:
6415"""""""""
6416
6417The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6418subsequent use by ``va_arg``.
6419
6420Arguments:
6421""""""""""
6422
6423The argument is a pointer to a ``va_list`` element to initialize.
6424
6425Semantics:
6426""""""""""
6427
6428The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6429available in C. In a target-dependent way, it initializes the
6430``va_list`` element to which the argument points, so that the next call
6431to ``va_arg`` will produce the first variable argument passed to the
6432function. Unlike the C ``va_start`` macro, this intrinsic does not need
6433to know the last argument of the function as the compiler can figure
6434that out.
6435
6436'``llvm.va_end``' Intrinsic
6437^^^^^^^^^^^^^^^^^^^^^^^^^^^
6438
6439Syntax:
6440"""""""
6441
6442::
6443
6444 declare void @llvm.va_end(i8* <arglist>)
6445
6446Overview:
6447"""""""""
6448
6449The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6450initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6451
6452Arguments:
6453""""""""""
6454
6455The argument is a pointer to a ``va_list`` to destroy.
6456
6457Semantics:
6458""""""""""
6459
6460The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6461available in C. In a target-dependent way, it destroys the ``va_list``
6462element to which the argument points. Calls to
6463:ref:`llvm.va_start <int_va_start>` and
6464:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6465``llvm.va_end``.
6466
6467.. _int_va_copy:
6468
6469'``llvm.va_copy``' Intrinsic
6470^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6471
6472Syntax:
6473"""""""
6474
6475::
6476
6477 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6478
6479Overview:
6480"""""""""
6481
6482The '``llvm.va_copy``' intrinsic copies the current argument position
6483from the source argument list to the destination argument list.
6484
6485Arguments:
6486""""""""""
6487
6488The first argument is a pointer to a ``va_list`` element to initialize.
6489The second argument is a pointer to a ``va_list`` element to copy from.
6490
6491Semantics:
6492""""""""""
6493
6494The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6495available in C. In a target-dependent way, it copies the source
6496``va_list`` element into the destination ``va_list`` element. This
6497intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6498arbitrarily complex and require, for example, memory allocation.
6499
6500Accurate Garbage Collection Intrinsics
6501--------------------------------------
6502
6503LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6504(GC) requires the implementation and generation of these intrinsics.
6505These intrinsics allow identification of :ref:`GC roots on the
6506stack <int_gcroot>`, as well as garbage collector implementations that
6507require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6508Front-ends for type-safe garbage collected languages should generate
6509these intrinsics to make use of the LLVM garbage collectors. For more
6510details, see `Accurate Garbage Collection with
6511LLVM <GarbageCollection.html>`_.
6512
6513The garbage collection intrinsics only operate on objects in the generic
6514address space (address space zero).
6515
6516.. _int_gcroot:
6517
6518'``llvm.gcroot``' Intrinsic
6519^^^^^^^^^^^^^^^^^^^^^^^^^^^
6520
6521Syntax:
6522"""""""
6523
6524::
6525
6526 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6527
6528Overview:
6529"""""""""
6530
6531The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6532the code generator, and allows some metadata to be associated with it.
6533
6534Arguments:
6535""""""""""
6536
6537The first argument specifies the address of a stack object that contains
6538the root pointer. The second pointer (which must be either a constant or
6539a global value address) contains the meta-data to be associated with the
6540root.
6541
6542Semantics:
6543""""""""""
6544
6545At runtime, a call to this intrinsic stores a null pointer into the
6546"ptrloc" location. At compile-time, the code generator generates
6547information to allow the runtime to find the pointer at GC safe points.
6548The '``llvm.gcroot``' intrinsic may only be used in a function which
6549:ref:`specifies a GC algorithm <gc>`.
6550
6551.. _int_gcread:
6552
6553'``llvm.gcread``' Intrinsic
6554^^^^^^^^^^^^^^^^^^^^^^^^^^^
6555
6556Syntax:
6557"""""""
6558
6559::
6560
6561 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6562
6563Overview:
6564"""""""""
6565
6566The '``llvm.gcread``' intrinsic identifies reads of references from heap
6567locations, allowing garbage collector implementations that require read
6568barriers.
6569
6570Arguments:
6571""""""""""
6572
6573The second argument is the address to read from, which should be an
6574address allocated from the garbage collector. The first object is a
6575pointer to the start of the referenced object, if needed by the language
6576runtime (otherwise null).
6577
6578Semantics:
6579""""""""""
6580
6581The '``llvm.gcread``' intrinsic has the same semantics as a load
6582instruction, but may be replaced with substantially more complex code by
6583the garbage collector runtime, as needed. The '``llvm.gcread``'
6584intrinsic may only be used in a function which :ref:`specifies a GC
6585algorithm <gc>`.
6586
6587.. _int_gcwrite:
6588
6589'``llvm.gcwrite``' Intrinsic
6590^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6591
6592Syntax:
6593"""""""
6594
6595::
6596
6597 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6598
6599Overview:
6600"""""""""
6601
6602The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6603locations, allowing garbage collector implementations that require write
6604barriers (such as generational or reference counting collectors).
6605
6606Arguments:
6607""""""""""
6608
6609The first argument is the reference to store, the second is the start of
6610the object to store it to, and the third is the address of the field of
6611Obj to store to. If the runtime does not require a pointer to the
6612object, Obj may be null.
6613
6614Semantics:
6615""""""""""
6616
6617The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6618instruction, but may be replaced with substantially more complex code by
6619the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6620intrinsic may only be used in a function which :ref:`specifies a GC
6621algorithm <gc>`.
6622
6623Code Generator Intrinsics
6624-------------------------
6625
6626These intrinsics are provided by LLVM to expose special features that
6627may only be implemented with code generator support.
6628
6629'``llvm.returnaddress``' Intrinsic
6630^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6631
6632Syntax:
6633"""""""
6634
6635::
6636
6637 declare i8 *@llvm.returnaddress(i32 <level>)
6638
6639Overview:
6640"""""""""
6641
6642The '``llvm.returnaddress``' intrinsic attempts to compute a
6643target-specific value indicating the return address of the current
6644function or one of its callers.
6645
6646Arguments:
6647""""""""""
6648
6649The argument to this intrinsic indicates which function to return the
6650address for. Zero indicates the calling function, one indicates its
6651caller, etc. The argument is **required** to be a constant integer
6652value.
6653
6654Semantics:
6655""""""""""
6656
6657The '``llvm.returnaddress``' intrinsic either returns a pointer
6658indicating the return address of the specified call frame, or zero if it
6659cannot be identified. The value returned by this intrinsic is likely to
6660be incorrect or 0 for arguments other than zero, so it should only be
6661used for debugging purposes.
6662
6663Note that calling this intrinsic does not prevent function inlining or
6664other aggressive transformations, so the value returned may not be that
6665of the obvious source-language caller.
6666
6667'``llvm.frameaddress``' Intrinsic
6668^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6669
6670Syntax:
6671"""""""
6672
6673::
6674
6675 declare i8* @llvm.frameaddress(i32 <level>)
6676
6677Overview:
6678"""""""""
6679
6680The '``llvm.frameaddress``' intrinsic attempts to return the
6681target-specific frame pointer value for the specified stack frame.
6682
6683Arguments:
6684""""""""""
6685
6686The argument to this intrinsic indicates which function to return the
6687frame pointer for. Zero indicates the calling function, one indicates
6688its caller, etc. The argument is **required** to be a constant integer
6689value.
6690
6691Semantics:
6692""""""""""
6693
6694The '``llvm.frameaddress``' intrinsic either returns a pointer
6695indicating the frame address of the specified call frame, or zero if it
6696cannot be identified. The value returned by this intrinsic is likely to
6697be incorrect or 0 for arguments other than zero, so it should only be
6698used for debugging purposes.
6699
6700Note that calling this intrinsic does not prevent function inlining or
6701other aggressive transformations, so the value returned may not be that
6702of the obvious source-language caller.
6703
6704.. _int_stacksave:
6705
6706'``llvm.stacksave``' Intrinsic
6707^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6708
6709Syntax:
6710"""""""
6711
6712::
6713
6714 declare i8* @llvm.stacksave()
6715
6716Overview:
6717"""""""""
6718
6719The '``llvm.stacksave``' intrinsic is used to remember the current state
6720of the function stack, for use with
6721:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6722implementing language features like scoped automatic variable sized
6723arrays in C99.
6724
6725Semantics:
6726""""""""""
6727
6728This intrinsic returns a opaque pointer value that can be passed to
6729:ref:`llvm.stackrestore <int_stackrestore>`. When an
6730``llvm.stackrestore`` intrinsic is executed with a value saved from
6731``llvm.stacksave``, it effectively restores the state of the stack to
6732the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6733practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6734were allocated after the ``llvm.stacksave`` was executed.
6735
6736.. _int_stackrestore:
6737
6738'``llvm.stackrestore``' Intrinsic
6739^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6740
6741Syntax:
6742"""""""
6743
6744::
6745
6746 declare void @llvm.stackrestore(i8* %ptr)
6747
6748Overview:
6749"""""""""
6750
6751The '``llvm.stackrestore``' intrinsic is used to restore the state of
6752the function stack to the state it was in when the corresponding
6753:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6754useful for implementing language features like scoped automatic variable
6755sized arrays in C99.
6756
6757Semantics:
6758""""""""""
6759
6760See the description for :ref:`llvm.stacksave <int_stacksave>`.
6761
6762'``llvm.prefetch``' Intrinsic
6763^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6764
6765Syntax:
6766"""""""
6767
6768::
6769
6770 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6771
6772Overview:
6773"""""""""
6774
6775The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6776insert a prefetch instruction if supported; otherwise, it is a noop.
6777Prefetches have no effect on the behavior of the program but can change
6778its performance characteristics.
6779
6780Arguments:
6781""""""""""
6782
6783``address`` is the address to be prefetched, ``rw`` is the specifier
6784determining if the fetch should be for a read (0) or write (1), and
6785``locality`` is a temporal locality specifier ranging from (0) - no
6786locality, to (3) - extremely local keep in cache. The ``cache type``
6787specifies whether the prefetch is performed on the data (1) or
6788instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6789arguments must be constant integers.
6790
6791Semantics:
6792""""""""""
6793
6794This intrinsic does not modify the behavior of the program. In
6795particular, prefetches cannot trap and do not produce a value. On
6796targets that support this intrinsic, the prefetch can provide hints to
6797the processor cache for better performance.
6798
6799'``llvm.pcmarker``' Intrinsic
6800^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6801
6802Syntax:
6803"""""""
6804
6805::
6806
6807 declare void @llvm.pcmarker(i32 <id>)
6808
6809Overview:
6810"""""""""
6811
6812The '``llvm.pcmarker``' intrinsic is a method to export a Program
6813Counter (PC) in a region of code to simulators and other tools. The
6814method is target specific, but it is expected that the marker will use
6815exported symbols to transmit the PC of the marker. The marker makes no
6816guarantees that it will remain with any specific instruction after
6817optimizations. It is possible that the presence of a marker will inhibit
6818optimizations. The intended use is to be inserted after optimizations to
6819allow correlations of simulation runs.
6820
6821Arguments:
6822""""""""""
6823
6824``id`` is a numerical id identifying the marker.
6825
6826Semantics:
6827""""""""""
6828
6829This intrinsic does not modify the behavior of the program. Backends
6830that do not support this intrinsic may ignore it.
6831
6832'``llvm.readcyclecounter``' Intrinsic
6833^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6834
6835Syntax:
6836"""""""
6837
6838::
6839
6840 declare i64 @llvm.readcyclecounter()
6841
6842Overview:
6843"""""""""
6844
6845The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6846counter register (or similar low latency, high accuracy clocks) on those
6847targets that support it. On X86, it should map to RDTSC. On Alpha, it
6848should map to RPCC. As the backing counters overflow quickly (on the
6849order of 9 seconds on alpha), this should only be used for small
6850timings.
6851
6852Semantics:
6853""""""""""
6854
6855When directly supported, reading the cycle counter should not modify any
6856memory. Implementations are allowed to either return a application
6857specific value or a system wide value. On backends without support, this
6858is lowered to a constant 0.
6859
Tim Northoverbc933082013-05-23 19:11:20 +00006860Note that runtime support may be conditional on the privilege-level code is
6861running at and the host platform.
6862
Sean Silvab084af42012-12-07 10:36:55 +00006863Standard C Library Intrinsics
6864-----------------------------
6865
6866LLVM provides intrinsics for a few important standard C library
6867functions. These intrinsics allow source-language front-ends to pass
6868information about the alignment of the pointer arguments to the code
6869generator, providing opportunity for more efficient code generation.
6870
6871.. _int_memcpy:
6872
6873'``llvm.memcpy``' Intrinsic
6874^^^^^^^^^^^^^^^^^^^^^^^^^^^
6875
6876Syntax:
6877"""""""
6878
6879This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6880integer bit width and for different address spaces. Not all targets
6881support all bit widths however.
6882
6883::
6884
6885 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6886 i32 <len>, i32 <align>, i1 <isvolatile>)
6887 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6888 i64 <len>, i32 <align>, i1 <isvolatile>)
6889
6890Overview:
6891"""""""""
6892
6893The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6894source location to the destination location.
6895
6896Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6897intrinsics do not return a value, takes extra alignment/isvolatile
6898arguments and the pointers can be in specified address spaces.
6899
6900Arguments:
6901""""""""""
6902
6903The first argument is a pointer to the destination, the second is a
6904pointer to the source. The third argument is an integer argument
6905specifying the number of bytes to copy, the fourth argument is the
6906alignment of the source and destination locations, and the fifth is a
6907boolean indicating a volatile access.
6908
6909If the call to this intrinsic has an alignment value that is not 0 or 1,
6910then the caller guarantees that both the source and destination pointers
6911are aligned to that boundary.
6912
6913If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6914a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6915very cleanly specified and it is unwise to depend on it.
6916
6917Semantics:
6918""""""""""
6919
6920The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6921source location to the destination location, which are not allowed to
6922overlap. It copies "len" bytes of memory over. If the argument is known
6923to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00006924argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006925
6926'``llvm.memmove``' Intrinsic
6927^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6928
6929Syntax:
6930"""""""
6931
6932This is an overloaded intrinsic. You can use llvm.memmove on any integer
6933bit width and for different address space. Not all targets support all
6934bit widths however.
6935
6936::
6937
6938 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6939 i32 <len>, i32 <align>, i1 <isvolatile>)
6940 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6941 i64 <len>, i32 <align>, i1 <isvolatile>)
6942
6943Overview:
6944"""""""""
6945
6946The '``llvm.memmove.*``' intrinsics move a block of memory from the
6947source location to the destination location. It is similar to the
6948'``llvm.memcpy``' intrinsic but allows the two memory locations to
6949overlap.
6950
6951Note that, unlike the standard libc function, the ``llvm.memmove.*``
6952intrinsics do not return a value, takes extra alignment/isvolatile
6953arguments and the pointers can be in specified address spaces.
6954
6955Arguments:
6956""""""""""
6957
6958The first argument is a pointer to the destination, the second is a
6959pointer to the source. The third argument is an integer argument
6960specifying the number of bytes to copy, the fourth argument is the
6961alignment of the source and destination locations, and the fifth is a
6962boolean indicating a volatile access.
6963
6964If the call to this intrinsic has an alignment value that is not 0 or 1,
6965then the caller guarantees that the source and destination pointers are
6966aligned to that boundary.
6967
6968If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6969is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6970not very cleanly specified and it is unwise to depend on it.
6971
6972Semantics:
6973""""""""""
6974
6975The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6976source location to the destination location, which may overlap. It
6977copies "len" bytes of memory over. If the argument is known to be
6978aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00006979otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006980
6981'``llvm.memset.*``' Intrinsics
6982^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6983
6984Syntax:
6985"""""""
6986
6987This is an overloaded intrinsic. You can use llvm.memset on any integer
6988bit width and for different address spaces. However, not all targets
6989support all bit widths.
6990
6991::
6992
6993 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6994 i32 <len>, i32 <align>, i1 <isvolatile>)
6995 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6996 i64 <len>, i32 <align>, i1 <isvolatile>)
6997
6998Overview:
6999"""""""""
7000
7001The '``llvm.memset.*``' intrinsics fill a block of memory with a
7002particular byte value.
7003
7004Note that, unlike the standard libc function, the ``llvm.memset``
7005intrinsic does not return a value and takes extra alignment/volatile
7006arguments. Also, the destination can be in an arbitrary address space.
7007
7008Arguments:
7009""""""""""
7010
7011The first argument is a pointer to the destination to fill, the second
7012is the byte value with which to fill it, the third argument is an
7013integer argument specifying the number of bytes to fill, and the fourth
7014argument is the known alignment of the destination location.
7015
7016If the call to this intrinsic has an alignment value that is not 0 or 1,
7017then the caller guarantees that the destination pointer is aligned to
7018that boundary.
7019
7020If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7021a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7022very cleanly specified and it is unwise to depend on it.
7023
7024Semantics:
7025""""""""""
7026
7027The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7028at the destination location. If the argument is known to be aligned to
7029some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007030it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007031
7032'``llvm.sqrt.*``' Intrinsic
7033^^^^^^^^^^^^^^^^^^^^^^^^^^^
7034
7035Syntax:
7036"""""""
7037
7038This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7039floating point or vector of floating point type. Not all targets support
7040all types however.
7041
7042::
7043
7044 declare float @llvm.sqrt.f32(float %Val)
7045 declare double @llvm.sqrt.f64(double %Val)
7046 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7047 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7048 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7049
7050Overview:
7051"""""""""
7052
7053The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7054returning the same value as the libm '``sqrt``' functions would. Unlike
7055``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7056negative numbers other than -0.0 (which allows for better optimization,
7057because there is no need to worry about errno being set).
7058``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7059
7060Arguments:
7061""""""""""
7062
7063The argument and return value are floating point numbers of the same
7064type.
7065
7066Semantics:
7067""""""""""
7068
7069This function returns the sqrt of the specified operand if it is a
7070nonnegative floating point number.
7071
7072'``llvm.powi.*``' Intrinsic
7073^^^^^^^^^^^^^^^^^^^^^^^^^^^
7074
7075Syntax:
7076"""""""
7077
7078This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7079floating point or vector of floating point type. Not all targets support
7080all types however.
7081
7082::
7083
7084 declare float @llvm.powi.f32(float %Val, i32 %power)
7085 declare double @llvm.powi.f64(double %Val, i32 %power)
7086 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7087 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7088 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7089
7090Overview:
7091"""""""""
7092
7093The '``llvm.powi.*``' intrinsics return the first operand raised to the
7094specified (positive or negative) power. The order of evaluation of
7095multiplications is not defined. When a vector of floating point type is
7096used, the second argument remains a scalar integer value.
7097
7098Arguments:
7099""""""""""
7100
7101The second argument is an integer power, and the first is a value to
7102raise to that power.
7103
7104Semantics:
7105""""""""""
7106
7107This function returns the first value raised to the second power with an
7108unspecified sequence of rounding operations.
7109
7110'``llvm.sin.*``' Intrinsic
7111^^^^^^^^^^^^^^^^^^^^^^^^^^
7112
7113Syntax:
7114"""""""
7115
7116This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7117floating point or vector of floating point type. Not all targets support
7118all types however.
7119
7120::
7121
7122 declare float @llvm.sin.f32(float %Val)
7123 declare double @llvm.sin.f64(double %Val)
7124 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7125 declare fp128 @llvm.sin.f128(fp128 %Val)
7126 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7127
7128Overview:
7129"""""""""
7130
7131The '``llvm.sin.*``' intrinsics return the sine of the operand.
7132
7133Arguments:
7134""""""""""
7135
7136The argument and return value are floating point numbers of the same
7137type.
7138
7139Semantics:
7140""""""""""
7141
7142This function returns the sine of the specified operand, returning the
7143same values as the libm ``sin`` functions would, and handles error
7144conditions in the same way.
7145
7146'``llvm.cos.*``' Intrinsic
7147^^^^^^^^^^^^^^^^^^^^^^^^^^
7148
7149Syntax:
7150"""""""
7151
7152This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7153floating point or vector of floating point type. Not all targets support
7154all types however.
7155
7156::
7157
7158 declare float @llvm.cos.f32(float %Val)
7159 declare double @llvm.cos.f64(double %Val)
7160 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7161 declare fp128 @llvm.cos.f128(fp128 %Val)
7162 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7163
7164Overview:
7165"""""""""
7166
7167The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7168
7169Arguments:
7170""""""""""
7171
7172The argument and return value are floating point numbers of the same
7173type.
7174
7175Semantics:
7176""""""""""
7177
7178This function returns the cosine of the specified operand, returning the
7179same values as the libm ``cos`` functions would, and handles error
7180conditions in the same way.
7181
7182'``llvm.pow.*``' Intrinsic
7183^^^^^^^^^^^^^^^^^^^^^^^^^^
7184
7185Syntax:
7186"""""""
7187
7188This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7189floating point or vector of floating point type. Not all targets support
7190all types however.
7191
7192::
7193
7194 declare float @llvm.pow.f32(float %Val, float %Power)
7195 declare double @llvm.pow.f64(double %Val, double %Power)
7196 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7197 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7198 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7199
7200Overview:
7201"""""""""
7202
7203The '``llvm.pow.*``' intrinsics return the first operand raised to the
7204specified (positive or negative) power.
7205
7206Arguments:
7207""""""""""
7208
7209The second argument is a floating point power, and the first is a value
7210to raise to that power.
7211
7212Semantics:
7213""""""""""
7214
7215This function returns the first value raised to the second power,
7216returning the same values as the libm ``pow`` functions would, and
7217handles error conditions in the same way.
7218
7219'``llvm.exp.*``' Intrinsic
7220^^^^^^^^^^^^^^^^^^^^^^^^^^
7221
7222Syntax:
7223"""""""
7224
7225This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7226floating point or vector of floating point type. Not all targets support
7227all types however.
7228
7229::
7230
7231 declare float @llvm.exp.f32(float %Val)
7232 declare double @llvm.exp.f64(double %Val)
7233 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7234 declare fp128 @llvm.exp.f128(fp128 %Val)
7235 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7236
7237Overview:
7238"""""""""
7239
7240The '``llvm.exp.*``' intrinsics perform the exp function.
7241
7242Arguments:
7243""""""""""
7244
7245The argument and return value are floating point numbers of the same
7246type.
7247
7248Semantics:
7249""""""""""
7250
7251This function returns the same values as the libm ``exp`` functions
7252would, and handles error conditions in the same way.
7253
7254'``llvm.exp2.*``' Intrinsic
7255^^^^^^^^^^^^^^^^^^^^^^^^^^^
7256
7257Syntax:
7258"""""""
7259
7260This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7261floating point or vector of floating point type. Not all targets support
7262all types however.
7263
7264::
7265
7266 declare float @llvm.exp2.f32(float %Val)
7267 declare double @llvm.exp2.f64(double %Val)
7268 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7269 declare fp128 @llvm.exp2.f128(fp128 %Val)
7270 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7271
7272Overview:
7273"""""""""
7274
7275The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7276
7277Arguments:
7278""""""""""
7279
7280The argument and return value are floating point numbers of the same
7281type.
7282
7283Semantics:
7284""""""""""
7285
7286This function returns the same values as the libm ``exp2`` functions
7287would, and handles error conditions in the same way.
7288
7289'``llvm.log.*``' Intrinsic
7290^^^^^^^^^^^^^^^^^^^^^^^^^^
7291
7292Syntax:
7293"""""""
7294
7295This is an overloaded intrinsic. You can use ``llvm.log`` on any
7296floating point or vector of floating point type. Not all targets support
7297all types however.
7298
7299::
7300
7301 declare float @llvm.log.f32(float %Val)
7302 declare double @llvm.log.f64(double %Val)
7303 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7304 declare fp128 @llvm.log.f128(fp128 %Val)
7305 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7306
7307Overview:
7308"""""""""
7309
7310The '``llvm.log.*``' intrinsics perform the log function.
7311
7312Arguments:
7313""""""""""
7314
7315The argument and return value are floating point numbers of the same
7316type.
7317
7318Semantics:
7319""""""""""
7320
7321This function returns the same values as the libm ``log`` functions
7322would, and handles error conditions in the same way.
7323
7324'``llvm.log10.*``' Intrinsic
7325^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7326
7327Syntax:
7328"""""""
7329
7330This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7331floating point or vector of floating point type. Not all targets support
7332all types however.
7333
7334::
7335
7336 declare float @llvm.log10.f32(float %Val)
7337 declare double @llvm.log10.f64(double %Val)
7338 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7339 declare fp128 @llvm.log10.f128(fp128 %Val)
7340 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7341
7342Overview:
7343"""""""""
7344
7345The '``llvm.log10.*``' intrinsics perform the log10 function.
7346
7347Arguments:
7348""""""""""
7349
7350The argument and return value are floating point numbers of the same
7351type.
7352
7353Semantics:
7354""""""""""
7355
7356This function returns the same values as the libm ``log10`` functions
7357would, and handles error conditions in the same way.
7358
7359'``llvm.log2.*``' Intrinsic
7360^^^^^^^^^^^^^^^^^^^^^^^^^^^
7361
7362Syntax:
7363"""""""
7364
7365This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7366floating point or vector of floating point type. Not all targets support
7367all types however.
7368
7369::
7370
7371 declare float @llvm.log2.f32(float %Val)
7372 declare double @llvm.log2.f64(double %Val)
7373 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7374 declare fp128 @llvm.log2.f128(fp128 %Val)
7375 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7376
7377Overview:
7378"""""""""
7379
7380The '``llvm.log2.*``' intrinsics perform the log2 function.
7381
7382Arguments:
7383""""""""""
7384
7385The argument and return value are floating point numbers of the same
7386type.
7387
7388Semantics:
7389""""""""""
7390
7391This function returns the same values as the libm ``log2`` functions
7392would, and handles error conditions in the same way.
7393
7394'``llvm.fma.*``' Intrinsic
7395^^^^^^^^^^^^^^^^^^^^^^^^^^
7396
7397Syntax:
7398"""""""
7399
7400This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7401floating point or vector of floating point type. Not all targets support
7402all types however.
7403
7404::
7405
7406 declare float @llvm.fma.f32(float %a, float %b, float %c)
7407 declare double @llvm.fma.f64(double %a, double %b, double %c)
7408 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7409 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7410 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7411
7412Overview:
7413"""""""""
7414
7415The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7416operation.
7417
7418Arguments:
7419""""""""""
7420
7421The argument and return value are floating point numbers of the same
7422type.
7423
7424Semantics:
7425""""""""""
7426
7427This function returns the same values as the libm ``fma`` functions
7428would.
7429
7430'``llvm.fabs.*``' Intrinsic
7431^^^^^^^^^^^^^^^^^^^^^^^^^^^
7432
7433Syntax:
7434"""""""
7435
7436This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7437floating point or vector of floating point type. Not all targets support
7438all types however.
7439
7440::
7441
7442 declare float @llvm.fabs.f32(float %Val)
7443 declare double @llvm.fabs.f64(double %Val)
7444 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7445 declare fp128 @llvm.fabs.f128(fp128 %Val)
7446 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7447
7448Overview:
7449"""""""""
7450
7451The '``llvm.fabs.*``' intrinsics return the absolute value of the
7452operand.
7453
7454Arguments:
7455""""""""""
7456
7457The argument and return value are floating point numbers of the same
7458type.
7459
7460Semantics:
7461""""""""""
7462
7463This function returns the same values as the libm ``fabs`` functions
7464would, and handles error conditions in the same way.
7465
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007466'``llvm.copysign.*``' Intrinsic
7467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7468
7469Syntax:
7470"""""""
7471
7472This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7473floating point or vector of floating point type. Not all targets support
7474all types however.
7475
7476::
7477
7478 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7479 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7480 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7481 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7482 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7483
7484Overview:
7485"""""""""
7486
7487The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7488first operand and the sign of the second operand.
7489
7490Arguments:
7491""""""""""
7492
7493The arguments and return value are floating point numbers of the same
7494type.
7495
7496Semantics:
7497""""""""""
7498
7499This function returns the same values as the libm ``copysign``
7500functions would, and handles error conditions in the same way.
7501
Sean Silvab084af42012-12-07 10:36:55 +00007502'``llvm.floor.*``' Intrinsic
7503^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7504
7505Syntax:
7506"""""""
7507
7508This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7509floating point or vector of floating point type. Not all targets support
7510all types however.
7511
7512::
7513
7514 declare float @llvm.floor.f32(float %Val)
7515 declare double @llvm.floor.f64(double %Val)
7516 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7517 declare fp128 @llvm.floor.f128(fp128 %Val)
7518 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7519
7520Overview:
7521"""""""""
7522
7523The '``llvm.floor.*``' intrinsics return the floor of the operand.
7524
7525Arguments:
7526""""""""""
7527
7528The argument and return value are floating point numbers of the same
7529type.
7530
7531Semantics:
7532""""""""""
7533
7534This function returns the same values as the libm ``floor`` functions
7535would, and handles error conditions in the same way.
7536
7537'``llvm.ceil.*``' Intrinsic
7538^^^^^^^^^^^^^^^^^^^^^^^^^^^
7539
7540Syntax:
7541"""""""
7542
7543This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7544floating point or vector of floating point type. Not all targets support
7545all types however.
7546
7547::
7548
7549 declare float @llvm.ceil.f32(float %Val)
7550 declare double @llvm.ceil.f64(double %Val)
7551 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7552 declare fp128 @llvm.ceil.f128(fp128 %Val)
7553 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7554
7555Overview:
7556"""""""""
7557
7558The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7559
7560Arguments:
7561""""""""""
7562
7563The argument and return value are floating point numbers of the same
7564type.
7565
7566Semantics:
7567""""""""""
7568
7569This function returns the same values as the libm ``ceil`` functions
7570would, and handles error conditions in the same way.
7571
7572'``llvm.trunc.*``' Intrinsic
7573^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7574
7575Syntax:
7576"""""""
7577
7578This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7579floating point or vector of floating point type. Not all targets support
7580all types however.
7581
7582::
7583
7584 declare float @llvm.trunc.f32(float %Val)
7585 declare double @llvm.trunc.f64(double %Val)
7586 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7587 declare fp128 @llvm.trunc.f128(fp128 %Val)
7588 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7589
7590Overview:
7591"""""""""
7592
7593The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7594nearest integer not larger in magnitude than the operand.
7595
7596Arguments:
7597""""""""""
7598
7599The argument and return value are floating point numbers of the same
7600type.
7601
7602Semantics:
7603""""""""""
7604
7605This function returns the same values as the libm ``trunc`` functions
7606would, and handles error conditions in the same way.
7607
7608'``llvm.rint.*``' Intrinsic
7609^^^^^^^^^^^^^^^^^^^^^^^^^^^
7610
7611Syntax:
7612"""""""
7613
7614This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7615floating point or vector of floating point type. Not all targets support
7616all types however.
7617
7618::
7619
7620 declare float @llvm.rint.f32(float %Val)
7621 declare double @llvm.rint.f64(double %Val)
7622 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7623 declare fp128 @llvm.rint.f128(fp128 %Val)
7624 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7625
7626Overview:
7627"""""""""
7628
7629The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7630nearest integer. It may raise an inexact floating-point exception if the
7631operand isn't an integer.
7632
7633Arguments:
7634""""""""""
7635
7636The argument and return value are floating point numbers of the same
7637type.
7638
7639Semantics:
7640""""""""""
7641
7642This function returns the same values as the libm ``rint`` functions
7643would, and handles error conditions in the same way.
7644
7645'``llvm.nearbyint.*``' Intrinsic
7646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7647
7648Syntax:
7649"""""""
7650
7651This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7652floating point or vector of floating point type. Not all targets support
7653all types however.
7654
7655::
7656
7657 declare float @llvm.nearbyint.f32(float %Val)
7658 declare double @llvm.nearbyint.f64(double %Val)
7659 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7660 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7661 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7662
7663Overview:
7664"""""""""
7665
7666The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7667nearest integer.
7668
7669Arguments:
7670""""""""""
7671
7672The argument and return value are floating point numbers of the same
7673type.
7674
7675Semantics:
7676""""""""""
7677
7678This function returns the same values as the libm ``nearbyint``
7679functions would, and handles error conditions in the same way.
7680
Hal Finkel171817e2013-08-07 22:49:12 +00007681'``llvm.round.*``' Intrinsic
7682^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7683
7684Syntax:
7685"""""""
7686
7687This is an overloaded intrinsic. You can use ``llvm.round`` on any
7688floating point or vector of floating point type. Not all targets support
7689all types however.
7690
7691::
7692
7693 declare float @llvm.round.f32(float %Val)
7694 declare double @llvm.round.f64(double %Val)
7695 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7696 declare fp128 @llvm.round.f128(fp128 %Val)
7697 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7698
7699Overview:
7700"""""""""
7701
7702The '``llvm.round.*``' intrinsics returns the operand rounded to the
7703nearest integer.
7704
7705Arguments:
7706""""""""""
7707
7708The argument and return value are floating point numbers of the same
7709type.
7710
7711Semantics:
7712""""""""""
7713
7714This function returns the same values as the libm ``round``
7715functions would, and handles error conditions in the same way.
7716
Sean Silvab084af42012-12-07 10:36:55 +00007717Bit Manipulation Intrinsics
7718---------------------------
7719
7720LLVM provides intrinsics for a few important bit manipulation
7721operations. These allow efficient code generation for some algorithms.
7722
7723'``llvm.bswap.*``' Intrinsics
7724^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7725
7726Syntax:
7727"""""""
7728
7729This is an overloaded intrinsic function. You can use bswap on any
7730integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7731
7732::
7733
7734 declare i16 @llvm.bswap.i16(i16 <id>)
7735 declare i32 @llvm.bswap.i32(i32 <id>)
7736 declare i64 @llvm.bswap.i64(i64 <id>)
7737
7738Overview:
7739"""""""""
7740
7741The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7742values with an even number of bytes (positive multiple of 16 bits).
7743These are useful for performing operations on data that is not in the
7744target's native byte order.
7745
7746Semantics:
7747""""""""""
7748
7749The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7750and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7751intrinsic returns an i32 value that has the four bytes of the input i32
7752swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7753returned i32 will have its bytes in 3, 2, 1, 0 order. The
7754``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7755concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7756respectively).
7757
7758'``llvm.ctpop.*``' Intrinsic
7759^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7760
7761Syntax:
7762"""""""
7763
7764This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7765bit width, or on any vector with integer elements. Not all targets
7766support all bit widths or vector types, however.
7767
7768::
7769
7770 declare i8 @llvm.ctpop.i8(i8 <src>)
7771 declare i16 @llvm.ctpop.i16(i16 <src>)
7772 declare i32 @llvm.ctpop.i32(i32 <src>)
7773 declare i64 @llvm.ctpop.i64(i64 <src>)
7774 declare i256 @llvm.ctpop.i256(i256 <src>)
7775 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7776
7777Overview:
7778"""""""""
7779
7780The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7781in a value.
7782
7783Arguments:
7784""""""""""
7785
7786The only argument is the value to be counted. The argument may be of any
7787integer type, or a vector with integer elements. The return type must
7788match the argument type.
7789
7790Semantics:
7791""""""""""
7792
7793The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7794each element of a vector.
7795
7796'``llvm.ctlz.*``' Intrinsic
7797^^^^^^^^^^^^^^^^^^^^^^^^^^^
7798
7799Syntax:
7800"""""""
7801
7802This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7803integer bit width, or any vector whose elements are integers. Not all
7804targets support all bit widths or vector types, however.
7805
7806::
7807
7808 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7809 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7810 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7811 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7812 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7813 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7814
7815Overview:
7816"""""""""
7817
7818The '``llvm.ctlz``' family of intrinsic functions counts the number of
7819leading zeros in a variable.
7820
7821Arguments:
7822""""""""""
7823
7824The first argument is the value to be counted. This argument may be of
7825any integer type, or a vectory with integer element type. The return
7826type must match the first argument type.
7827
7828The second argument must be a constant and is a flag to indicate whether
7829the intrinsic should ensure that a zero as the first argument produces a
7830defined result. Historically some architectures did not provide a
7831defined result for zero values as efficiently, and many algorithms are
7832now predicated on avoiding zero-value inputs.
7833
7834Semantics:
7835""""""""""
7836
7837The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7838zeros in a variable, or within each element of the vector. If
7839``src == 0`` then the result is the size in bits of the type of ``src``
7840if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7841``llvm.ctlz(i32 2) = 30``.
7842
7843'``llvm.cttz.*``' Intrinsic
7844^^^^^^^^^^^^^^^^^^^^^^^^^^^
7845
7846Syntax:
7847"""""""
7848
7849This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7850integer bit width, or any vector of integer elements. Not all targets
7851support all bit widths or vector types, however.
7852
7853::
7854
7855 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7856 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7857 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7858 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7859 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7860 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7861
7862Overview:
7863"""""""""
7864
7865The '``llvm.cttz``' family of intrinsic functions counts the number of
7866trailing zeros.
7867
7868Arguments:
7869""""""""""
7870
7871The first argument is the value to be counted. This argument may be of
7872any integer type, or a vectory with integer element type. The return
7873type must match the first argument type.
7874
7875The second argument must be a constant and is a flag to indicate whether
7876the intrinsic should ensure that a zero as the first argument produces a
7877defined result. Historically some architectures did not provide a
7878defined result for zero values as efficiently, and many algorithms are
7879now predicated on avoiding zero-value inputs.
7880
7881Semantics:
7882""""""""""
7883
7884The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7885zeros in a variable, or within each element of a vector. If ``src == 0``
7886then the result is the size in bits of the type of ``src`` if
7887``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7888``llvm.cttz(2) = 1``.
7889
7890Arithmetic with Overflow Intrinsics
7891-----------------------------------
7892
7893LLVM provides intrinsics for some arithmetic with overflow operations.
7894
7895'``llvm.sadd.with.overflow.*``' Intrinsics
7896^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7897
7898Syntax:
7899"""""""
7900
7901This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7902on any integer bit width.
7903
7904::
7905
7906 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7907 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7908 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7909
7910Overview:
7911"""""""""
7912
7913The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7914a signed addition of the two arguments, and indicate whether an overflow
7915occurred during the signed summation.
7916
7917Arguments:
7918""""""""""
7919
7920The arguments (%a and %b) and the first element of the result structure
7921may be of integer types of any bit width, but they must have the same
7922bit width. The second element of the result structure must be of type
7923``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7924addition.
7925
7926Semantics:
7927""""""""""
7928
7929The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007930a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007931first element of which is the signed summation, and the second element
7932of which is a bit specifying if the signed summation resulted in an
7933overflow.
7934
7935Examples:
7936"""""""""
7937
7938.. code-block:: llvm
7939
7940 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7941 %sum = extractvalue {i32, i1} %res, 0
7942 %obit = extractvalue {i32, i1} %res, 1
7943 br i1 %obit, label %overflow, label %normal
7944
7945'``llvm.uadd.with.overflow.*``' Intrinsics
7946^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7947
7948Syntax:
7949"""""""
7950
7951This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7952on any integer bit width.
7953
7954::
7955
7956 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7957 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7958 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7959
7960Overview:
7961"""""""""
7962
7963The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7964an unsigned addition of the two arguments, and indicate whether a carry
7965occurred during the unsigned summation.
7966
7967Arguments:
7968""""""""""
7969
7970The arguments (%a and %b) and the first element of the result structure
7971may be of integer types of any bit width, but they must have the same
7972bit width. The second element of the result structure must be of type
7973``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7974addition.
7975
7976Semantics:
7977""""""""""
7978
7979The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007980an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007981first element of which is the sum, and the second element of which is a
7982bit specifying if the unsigned summation resulted in a carry.
7983
7984Examples:
7985"""""""""
7986
7987.. code-block:: llvm
7988
7989 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7990 %sum = extractvalue {i32, i1} %res, 0
7991 %obit = extractvalue {i32, i1} %res, 1
7992 br i1 %obit, label %carry, label %normal
7993
7994'``llvm.ssub.with.overflow.*``' Intrinsics
7995^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7996
7997Syntax:
7998"""""""
7999
8000This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8001on any integer bit width.
8002
8003::
8004
8005 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8006 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8007 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8008
8009Overview:
8010"""""""""
8011
8012The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8013a signed subtraction of the two arguments, and indicate whether an
8014overflow occurred during the signed subtraction.
8015
8016Arguments:
8017""""""""""
8018
8019The arguments (%a and %b) and the first element of the result structure
8020may be of integer types of any bit width, but they must have the same
8021bit width. The second element of the result structure must be of type
8022``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8023subtraction.
8024
8025Semantics:
8026""""""""""
8027
8028The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008029a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008030first element of which is the subtraction, and the second element of
8031which is a bit specifying if the signed subtraction resulted in an
8032overflow.
8033
8034Examples:
8035"""""""""
8036
8037.. code-block:: llvm
8038
8039 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8040 %sum = extractvalue {i32, i1} %res, 0
8041 %obit = extractvalue {i32, i1} %res, 1
8042 br i1 %obit, label %overflow, label %normal
8043
8044'``llvm.usub.with.overflow.*``' Intrinsics
8045^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8046
8047Syntax:
8048"""""""
8049
8050This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8051on any integer bit width.
8052
8053::
8054
8055 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8056 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8057 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8058
8059Overview:
8060"""""""""
8061
8062The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8063an unsigned subtraction of the two arguments, and indicate whether an
8064overflow occurred during the unsigned subtraction.
8065
8066Arguments:
8067""""""""""
8068
8069The arguments (%a and %b) and the first element of the result structure
8070may be of integer types of any bit width, but they must have the same
8071bit width. The second element of the result structure must be of type
8072``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8073subtraction.
8074
8075Semantics:
8076""""""""""
8077
8078The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008079an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008080the first element of which is the subtraction, and the second element of
8081which is a bit specifying if the unsigned subtraction resulted in an
8082overflow.
8083
8084Examples:
8085"""""""""
8086
8087.. code-block:: llvm
8088
8089 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8090 %sum = extractvalue {i32, i1} %res, 0
8091 %obit = extractvalue {i32, i1} %res, 1
8092 br i1 %obit, label %overflow, label %normal
8093
8094'``llvm.smul.with.overflow.*``' Intrinsics
8095^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8096
8097Syntax:
8098"""""""
8099
8100This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8101on any integer bit width.
8102
8103::
8104
8105 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8106 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8107 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8108
8109Overview:
8110"""""""""
8111
8112The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8113a signed multiplication of the two arguments, and indicate whether an
8114overflow occurred during the signed multiplication.
8115
8116Arguments:
8117""""""""""
8118
8119The arguments (%a and %b) and the first element of the result structure
8120may be of integer types of any bit width, but they must have the same
8121bit width. The second element of the result structure must be of type
8122``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8123multiplication.
8124
8125Semantics:
8126""""""""""
8127
8128The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008129a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008130the first element of which is the multiplication, and the second element
8131of which is a bit specifying if the signed multiplication resulted in an
8132overflow.
8133
8134Examples:
8135"""""""""
8136
8137.. code-block:: llvm
8138
8139 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8140 %sum = extractvalue {i32, i1} %res, 0
8141 %obit = extractvalue {i32, i1} %res, 1
8142 br i1 %obit, label %overflow, label %normal
8143
8144'``llvm.umul.with.overflow.*``' Intrinsics
8145^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8146
8147Syntax:
8148"""""""
8149
8150This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8151on any integer bit width.
8152
8153::
8154
8155 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8156 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8157 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8158
8159Overview:
8160"""""""""
8161
8162The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8163a unsigned multiplication of the two arguments, and indicate whether an
8164overflow occurred during the unsigned multiplication.
8165
8166Arguments:
8167""""""""""
8168
8169The arguments (%a and %b) and the first element of the result structure
8170may be of integer types of any bit width, but they must have the same
8171bit width. The second element of the result structure must be of type
8172``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8173multiplication.
8174
8175Semantics:
8176""""""""""
8177
8178The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008179an unsigned multiplication of the two arguments. They return a structure ---
8180the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008181element of which is a bit specifying if the unsigned multiplication
8182resulted in an overflow.
8183
8184Examples:
8185"""""""""
8186
8187.. code-block:: llvm
8188
8189 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8190 %sum = extractvalue {i32, i1} %res, 0
8191 %obit = extractvalue {i32, i1} %res, 1
8192 br i1 %obit, label %overflow, label %normal
8193
8194Specialised Arithmetic Intrinsics
8195---------------------------------
8196
8197'``llvm.fmuladd.*``' Intrinsic
8198^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8199
8200Syntax:
8201"""""""
8202
8203::
8204
8205 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8206 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8207
8208Overview:
8209"""""""""
8210
8211The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008212expressions that can be fused if the code generator determines that (a) the
8213target instruction set has support for a fused operation, and (b) that the
8214fused operation is more efficient than the equivalent, separate pair of mul
8215and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008216
8217Arguments:
8218""""""""""
8219
8220The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8221multiplicands, a and b, and an addend c.
8222
8223Semantics:
8224""""""""""
8225
8226The expression:
8227
8228::
8229
8230 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8231
8232is equivalent to the expression a \* b + c, except that rounding will
8233not be performed between the multiplication and addition steps if the
8234code generator fuses the operations. Fusion is not guaranteed, even if
8235the target platform supports it. If a fused multiply-add is required the
8236corresponding llvm.fma.\* intrinsic function should be used instead.
8237
8238Examples:
8239"""""""""
8240
8241.. code-block:: llvm
8242
8243 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8244
8245Half Precision Floating Point Intrinsics
8246----------------------------------------
8247
8248For most target platforms, half precision floating point is a
8249storage-only format. This means that it is a dense encoding (in memory)
8250but does not support computation in the format.
8251
8252This means that code must first load the half-precision floating point
8253value as an i16, then convert it to float with
8254:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8255then be performed on the float value (including extending to double
8256etc). To store the value back to memory, it is first converted to float
8257if needed, then converted to i16 with
8258:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8259i16 value.
8260
8261.. _int_convert_to_fp16:
8262
8263'``llvm.convert.to.fp16``' Intrinsic
8264^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8265
8266Syntax:
8267"""""""
8268
8269::
8270
8271 declare i16 @llvm.convert.to.fp16(f32 %a)
8272
8273Overview:
8274"""""""""
8275
8276The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8277from single precision floating point format to half precision floating
8278point format.
8279
8280Arguments:
8281""""""""""
8282
8283The intrinsic function contains single argument - the value to be
8284converted.
8285
8286Semantics:
8287""""""""""
8288
8289The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8290from single precision floating point format to half precision floating
8291point format. The return value is an ``i16`` which contains the
8292converted number.
8293
8294Examples:
8295"""""""""
8296
8297.. code-block:: llvm
8298
8299 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8300 store i16 %res, i16* @x, align 2
8301
8302.. _int_convert_from_fp16:
8303
8304'``llvm.convert.from.fp16``' Intrinsic
8305^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8306
8307Syntax:
8308"""""""
8309
8310::
8311
8312 declare f32 @llvm.convert.from.fp16(i16 %a)
8313
8314Overview:
8315"""""""""
8316
8317The '``llvm.convert.from.fp16``' intrinsic function performs a
8318conversion from half precision floating point format to single precision
8319floating point format.
8320
8321Arguments:
8322""""""""""
8323
8324The intrinsic function contains single argument - the value to be
8325converted.
8326
8327Semantics:
8328""""""""""
8329
8330The '``llvm.convert.from.fp16``' intrinsic function performs a
8331conversion from half single precision floating point format to single
8332precision floating point format. The input half-float value is
8333represented by an ``i16`` value.
8334
8335Examples:
8336"""""""""
8337
8338.. code-block:: llvm
8339
8340 %a = load i16* @x, align 2
8341 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8342
8343Debugger Intrinsics
8344-------------------
8345
8346The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8347prefix), are described in the `LLVM Source Level
8348Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8349document.
8350
8351Exception Handling Intrinsics
8352-----------------------------
8353
8354The LLVM exception handling intrinsics (which all start with
8355``llvm.eh.`` prefix), are described in the `LLVM Exception
8356Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8357
8358.. _int_trampoline:
8359
8360Trampoline Intrinsics
8361---------------------
8362
8363These intrinsics make it possible to excise one parameter, marked with
8364the :ref:`nest <nest>` attribute, from a function. The result is a
8365callable function pointer lacking the nest parameter - the caller does
8366not need to provide a value for it. Instead, the value to use is stored
8367in advance in a "trampoline", a block of memory usually allocated on the
8368stack, which also contains code to splice the nest value into the
8369argument list. This is used to implement the GCC nested function address
8370extension.
8371
8372For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8373then the resulting function pointer has signature ``i32 (i32, i32)*``.
8374It can be created as follows:
8375
8376.. code-block:: llvm
8377
8378 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8379 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8380 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8381 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8382 %fp = bitcast i8* %p to i32 (i32, i32)*
8383
8384The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8385``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8386
8387.. _int_it:
8388
8389'``llvm.init.trampoline``' Intrinsic
8390^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8391
8392Syntax:
8393"""""""
8394
8395::
8396
8397 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8398
8399Overview:
8400"""""""""
8401
8402This fills the memory pointed to by ``tramp`` with executable code,
8403turning it into a trampoline.
8404
8405Arguments:
8406""""""""""
8407
8408The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8409pointers. The ``tramp`` argument must point to a sufficiently large and
8410sufficiently aligned block of memory; this memory is written to by the
8411intrinsic. Note that the size and the alignment are target-specific -
8412LLVM currently provides no portable way of determining them, so a
8413front-end that generates this intrinsic needs to have some
8414target-specific knowledge. The ``func`` argument must hold a function
8415bitcast to an ``i8*``.
8416
8417Semantics:
8418""""""""""
8419
8420The block of memory pointed to by ``tramp`` is filled with target
8421dependent code, turning it into a function. Then ``tramp`` needs to be
8422passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8423be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8424function's signature is the same as that of ``func`` with any arguments
8425marked with the ``nest`` attribute removed. At most one such ``nest``
8426argument is allowed, and it must be of pointer type. Calling the new
8427function is equivalent to calling ``func`` with the same argument list,
8428but with ``nval`` used for the missing ``nest`` argument. If, after
8429calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8430modified, then the effect of any later call to the returned function
8431pointer is undefined.
8432
8433.. _int_at:
8434
8435'``llvm.adjust.trampoline``' Intrinsic
8436^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8437
8438Syntax:
8439"""""""
8440
8441::
8442
8443 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8444
8445Overview:
8446"""""""""
8447
8448This performs any required machine-specific adjustment to the address of
8449a trampoline (passed as ``tramp``).
8450
8451Arguments:
8452""""""""""
8453
8454``tramp`` must point to a block of memory which already has trampoline
8455code filled in by a previous call to
8456:ref:`llvm.init.trampoline <int_it>`.
8457
8458Semantics:
8459""""""""""
8460
8461On some architectures the address of the code to be executed needs to be
8462different to the address where the trampoline is actually stored. This
8463intrinsic returns the executable address corresponding to ``tramp``
8464after performing the required machine specific adjustments. The pointer
8465returned can then be :ref:`bitcast and executed <int_trampoline>`.
8466
8467Memory Use Markers
8468------------------
8469
8470This class of intrinsics exists to information about the lifetime of
8471memory objects and ranges where variables are immutable.
8472
Reid Klecknera534a382013-12-19 02:14:12 +00008473.. _int_lifestart:
8474
Sean Silvab084af42012-12-07 10:36:55 +00008475'``llvm.lifetime.start``' Intrinsic
8476^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8477
8478Syntax:
8479"""""""
8480
8481::
8482
8483 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8484
8485Overview:
8486"""""""""
8487
8488The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8489object's lifetime.
8490
8491Arguments:
8492""""""""""
8493
8494The first argument is a constant integer representing the size of the
8495object, or -1 if it is variable sized. The second argument is a pointer
8496to the object.
8497
8498Semantics:
8499""""""""""
8500
8501This intrinsic indicates that before this point in the code, the value
8502of the memory pointed to by ``ptr`` is dead. This means that it is known
8503to never be used and has an undefined value. A load from the pointer
8504that precedes this intrinsic can be replaced with ``'undef'``.
8505
Reid Klecknera534a382013-12-19 02:14:12 +00008506.. _int_lifeend:
8507
Sean Silvab084af42012-12-07 10:36:55 +00008508'``llvm.lifetime.end``' Intrinsic
8509^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8510
8511Syntax:
8512"""""""
8513
8514::
8515
8516 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8517
8518Overview:
8519"""""""""
8520
8521The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8522object's lifetime.
8523
8524Arguments:
8525""""""""""
8526
8527The first argument is a constant integer representing the size of the
8528object, or -1 if it is variable sized. The second argument is a pointer
8529to the object.
8530
8531Semantics:
8532""""""""""
8533
8534This intrinsic indicates that after this point in the code, the value of
8535the memory pointed to by ``ptr`` is dead. This means that it is known to
8536never be used and has an undefined value. Any stores into the memory
8537object following this intrinsic may be removed as dead.
8538
8539'``llvm.invariant.start``' Intrinsic
8540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8541
8542Syntax:
8543"""""""
8544
8545::
8546
8547 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8548
8549Overview:
8550"""""""""
8551
8552The '``llvm.invariant.start``' intrinsic specifies that the contents of
8553a memory object will not change.
8554
8555Arguments:
8556""""""""""
8557
8558The first argument is a constant integer representing the size of the
8559object, or -1 if it is variable sized. The second argument is a pointer
8560to the object.
8561
8562Semantics:
8563""""""""""
8564
8565This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8566the return value, the referenced memory location is constant and
8567unchanging.
8568
8569'``llvm.invariant.end``' Intrinsic
8570^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8571
8572Syntax:
8573"""""""
8574
8575::
8576
8577 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8578
8579Overview:
8580"""""""""
8581
8582The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8583memory object are mutable.
8584
8585Arguments:
8586""""""""""
8587
8588The first argument is the matching ``llvm.invariant.start`` intrinsic.
8589The second argument is a constant integer representing the size of the
8590object, or -1 if it is variable sized and the third argument is a
8591pointer to the object.
8592
8593Semantics:
8594""""""""""
8595
8596This intrinsic indicates that the memory is mutable again.
8597
8598General Intrinsics
8599------------------
8600
8601This class of intrinsics is designed to be generic and has no specific
8602purpose.
8603
8604'``llvm.var.annotation``' Intrinsic
8605^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8606
8607Syntax:
8608"""""""
8609
8610::
8611
8612 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8613
8614Overview:
8615"""""""""
8616
8617The '``llvm.var.annotation``' intrinsic.
8618
8619Arguments:
8620""""""""""
8621
8622The first argument is a pointer to a value, the second is a pointer to a
8623global string, the third is a pointer to a global string which is the
8624source file name, and the last argument is the line number.
8625
8626Semantics:
8627""""""""""
8628
8629This intrinsic allows annotation of local variables with arbitrary
8630strings. This can be useful for special purpose optimizations that want
8631to look for these annotations. These have no other defined use; they are
8632ignored by code generation and optimization.
8633
Michael Gottesman88d18832013-03-26 00:34:27 +00008634'``llvm.ptr.annotation.*``' Intrinsic
8635^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8636
8637Syntax:
8638"""""""
8639
8640This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8641pointer to an integer of any width. *NOTE* you must specify an address space for
8642the pointer. The identifier for the default address space is the integer
8643'``0``'.
8644
8645::
8646
8647 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8648 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8649 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8650 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8651 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8652
8653Overview:
8654"""""""""
8655
8656The '``llvm.ptr.annotation``' intrinsic.
8657
8658Arguments:
8659""""""""""
8660
8661The first argument is a pointer to an integer value of arbitrary bitwidth
8662(result of some expression), the second is a pointer to a global string, the
8663third is a pointer to a global string which is the source file name, and the
8664last argument is the line number. It returns the value of the first argument.
8665
8666Semantics:
8667""""""""""
8668
8669This intrinsic allows annotation of a pointer to an integer with arbitrary
8670strings. This can be useful for special purpose optimizations that want to look
8671for these annotations. These have no other defined use; they are ignored by code
8672generation and optimization.
8673
Sean Silvab084af42012-12-07 10:36:55 +00008674'``llvm.annotation.*``' Intrinsic
8675^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8676
8677Syntax:
8678"""""""
8679
8680This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8681any integer bit width.
8682
8683::
8684
8685 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8686 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8687 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8688 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8689 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8690
8691Overview:
8692"""""""""
8693
8694The '``llvm.annotation``' intrinsic.
8695
8696Arguments:
8697""""""""""
8698
8699The first argument is an integer value (result of some expression), the
8700second is a pointer to a global string, the third is a pointer to a
8701global string which is the source file name, and the last argument is
8702the line number. It returns the value of the first argument.
8703
8704Semantics:
8705""""""""""
8706
8707This intrinsic allows annotations to be put on arbitrary expressions
8708with arbitrary strings. This can be useful for special purpose
8709optimizations that want to look for these annotations. These have no
8710other defined use; they are ignored by code generation and optimization.
8711
8712'``llvm.trap``' Intrinsic
8713^^^^^^^^^^^^^^^^^^^^^^^^^
8714
8715Syntax:
8716"""""""
8717
8718::
8719
8720 declare void @llvm.trap() noreturn nounwind
8721
8722Overview:
8723"""""""""
8724
8725The '``llvm.trap``' intrinsic.
8726
8727Arguments:
8728""""""""""
8729
8730None.
8731
8732Semantics:
8733""""""""""
8734
8735This intrinsic is lowered to the target dependent trap instruction. If
8736the target does not have a trap instruction, this intrinsic will be
8737lowered to a call of the ``abort()`` function.
8738
8739'``llvm.debugtrap``' Intrinsic
8740^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8741
8742Syntax:
8743"""""""
8744
8745::
8746
8747 declare void @llvm.debugtrap() nounwind
8748
8749Overview:
8750"""""""""
8751
8752The '``llvm.debugtrap``' intrinsic.
8753
8754Arguments:
8755""""""""""
8756
8757None.
8758
8759Semantics:
8760""""""""""
8761
8762This intrinsic is lowered to code which is intended to cause an
8763execution trap with the intention of requesting the attention of a
8764debugger.
8765
8766'``llvm.stackprotector``' Intrinsic
8767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8768
8769Syntax:
8770"""""""
8771
8772::
8773
8774 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8775
8776Overview:
8777"""""""""
8778
8779The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8780onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8781is placed on the stack before local variables.
8782
8783Arguments:
8784""""""""""
8785
8786The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8787The first argument is the value loaded from the stack guard
8788``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8789enough space to hold the value of the guard.
8790
8791Semantics:
8792""""""""""
8793
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008794This intrinsic causes the prologue/epilogue inserter to force the position of
8795the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8796to ensure that if a local variable on the stack is overwritten, it will destroy
8797the value of the guard. When the function exits, the guard on the stack is
8798checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8799different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8800calling the ``__stack_chk_fail()`` function.
8801
8802'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00008803^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008804
8805Syntax:
8806"""""""
8807
8808::
8809
8810 declare void @llvm.stackprotectorcheck(i8** <guard>)
8811
8812Overview:
8813"""""""""
8814
8815The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00008816created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00008817``__stack_chk_fail()`` function.
8818
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008819Arguments:
8820""""""""""
8821
8822The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8823the variable ``@__stack_chk_guard``.
8824
8825Semantics:
8826""""""""""
8827
8828This intrinsic is provided to perform the stack protector check by comparing
8829``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8830values do not match call the ``__stack_chk_fail()`` function.
8831
8832The reason to provide this as an IR level intrinsic instead of implementing it
8833via other IR operations is that in order to perform this operation at the IR
8834level without an intrinsic, one would need to create additional basic blocks to
8835handle the success/failure cases. This makes it difficult to stop the stack
8836protector check from disrupting sibling tail calls in Codegen. With this
8837intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00008838codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008839
Sean Silvab084af42012-12-07 10:36:55 +00008840'``llvm.objectsize``' Intrinsic
8841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8842
8843Syntax:
8844"""""""
8845
8846::
8847
8848 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8849 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8850
8851Overview:
8852"""""""""
8853
8854The ``llvm.objectsize`` intrinsic is designed to provide information to
8855the optimizers to determine at compile time whether a) an operation
8856(like memcpy) will overflow a buffer that corresponds to an object, or
8857b) that a runtime check for overflow isn't necessary. An object in this
8858context means an allocation of a specific class, structure, array, or
8859other object.
8860
8861Arguments:
8862""""""""""
8863
8864The ``llvm.objectsize`` intrinsic takes two arguments. The first
8865argument is a pointer to or into the ``object``. The second argument is
8866a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8867or -1 (if false) when the object size is unknown. The second argument
8868only accepts constants.
8869
8870Semantics:
8871""""""""""
8872
8873The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8874the size of the object concerned. If the size cannot be determined at
8875compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8876on the ``min`` argument).
8877
8878'``llvm.expect``' Intrinsic
8879^^^^^^^^^^^^^^^^^^^^^^^^^^^
8880
8881Syntax:
8882"""""""
8883
8884::
8885
8886 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8887 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8888
8889Overview:
8890"""""""""
8891
8892The ``llvm.expect`` intrinsic provides information about expected (the
8893most probable) value of ``val``, which can be used by optimizers.
8894
8895Arguments:
8896""""""""""
8897
8898The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8899a value. The second argument is an expected value, this needs to be a
8900constant value, variables are not allowed.
8901
8902Semantics:
8903""""""""""
8904
8905This intrinsic is lowered to the ``val``.
8906
8907'``llvm.donothing``' Intrinsic
8908^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8909
8910Syntax:
8911"""""""
8912
8913::
8914
8915 declare void @llvm.donothing() nounwind readnone
8916
8917Overview:
8918"""""""""
8919
8920The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8921only intrinsic that can be called with an invoke instruction.
8922
8923Arguments:
8924""""""""""
8925
8926None.
8927
8928Semantics:
8929""""""""""
8930
8931This intrinsic does nothing, and it's removed by optimizers and ignored
8932by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00008933
8934Stack Map Intrinsics
8935--------------------
8936
8937LLVM provides experimental intrinsics to support runtime patching
8938mechanisms commonly desired in dynamic language JITs. These intrinsics
8939are described in :doc:`StackMaps`.