blob: 76fa06f49c24d0746822bad95173c69840d85dbd [file] [log] [blame]
Misha Brukmanc501f552004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman76307852003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencercb84e432004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
Eric Christopher455c5772009-12-05 02:46:03 +00008 <meta name="description"
Reid Spencercb84e432004-08-26 20:44:00 +00009 content="LLVM Assembly Language Reference Manual.">
Misha Brukman76307852003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattner757528b0b2004-05-23 21:06:01 +000012
Misha Brukman76307852003-11-08 01:05:38 +000013<body>
Chris Lattner757528b0b2004-05-23 21:06:01 +000014
Chris Lattner48b383b02003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +000016<ol>
Misha Brukman76307852003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendling8693ef82009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
Bill Wendling03bcd6e2010-07-01 21:55:59 +000027 <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
Bill Wendling578ee402010-08-20 22:05:50 +000028 <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000029 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
30 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
31 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
32 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
33 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
34 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
35 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
Chris Lattner80d73c72009-10-10 18:26:06 +000036 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000037 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
38 <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
39 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
40 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000041 </ol>
42 </li>
Chris Lattner0132aff2005-05-06 22:57:40 +000043 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerbc088212009-01-11 20:53:49 +000044 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000045 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000046 <li><a href="#functionstructure">Functions</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000047 <li><a href="#aliasstructure">Aliases</a></li>
Devang Pateld1a89692010-01-11 19:35:55 +000048 <li><a href="#namedmetadatastructure">Named Metadata</a></li>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +000049 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel9eb525d2008-09-26 23:51:19 +000050 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen71183b62007-12-10 03:18:06 +000051 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000052 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencer50c723a2007-02-19 23:54:10 +000053 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman6154a012009-07-27 18:07:55 +000054 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +000055 <li><a href="#volatile">Volatile Memory Accesses</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000056 </ol>
57 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000058 <li><a href="#typesystem">Type System</a>
59 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000060 <li><a href="#t_classifications">Type Classifications</a></li>
Eric Christopher455c5772009-12-05 02:46:03 +000061 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner48b383b02003-11-25 01:02:51 +000062 <ol>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +000063 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000064 <li><a href="#t_floating">Floating Point Types</a></li>
Dale Johannesen33e5c352010-10-01 00:48:59 +000065 <li><a href="#t_x86mmx">X86mmx Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000066 <li><a href="#t_void">Void Type</a></li>
67 <li><a href="#t_label">Label Type</a></li>
Nick Lewyckyadbc2842009-05-30 05:06:04 +000068 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000069 </ol>
70 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000071 <li><a href="#t_derived">Derived Types</a>
72 <ol>
Chris Lattner392be582010-02-12 20:49:41 +000073 <li><a href="#t_aggregate">Aggregate Types</a>
74 <ol>
75 <li><a href="#t_array">Array Type</a></li>
76 <li><a href="#t_struct">Structure Type</a></li>
77 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Chris Lattner392be582010-02-12 20:49:41 +000078 <li><a href="#t_vector">Vector Type</a></li>
79 </ol>
80 </li>
Misha Brukman76307852003-11-08 01:05:38 +000081 <li><a href="#t_function">Function Type</a></li>
82 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner37b6b092005-04-25 17:34:15 +000083 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000084 </ol>
85 </li>
Chris Lattnercf7a5842009-02-02 07:32:36 +000086 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000087 </ol>
88 </li>
Chris Lattner6af02f32004-12-09 16:11:40 +000089 <li><a href="#constants">Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +000090 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000091 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner361bfcd2009-02-28 18:32:25 +000092 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000093 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
94 <li><a href="#undefvalues">Undefined Values</a></li>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +000095 <li><a href="#trapvalues">Trap Values</a></li>
Chris Lattner2bfd3202009-10-27 21:19:13 +000096 <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000097 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattner74d3f822004-12-09 17:30:23 +000098 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000099 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +0000100 <li><a href="#othervalues">Other Values</a>
101 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000102 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Devang Pateld1a89692010-01-11 19:35:55 +0000103 <li><a href="#metadata">Metadata Nodes and Metadata Strings</a></li>
Chris Lattner98f013c2006-01-25 23:47:57 +0000104 </ol>
105 </li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000106 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
107 <ol>
108 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner58f9bb22009-07-20 06:14:25 +0000109 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
110 Global Variable</a></li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000111 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
112 Global Variable</a></li>
113 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
114 Global Variable</a></li>
115 </ol>
116 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000117 <li><a href="#instref">Instruction Reference</a>
118 <ol>
119 <li><a href="#terminators">Terminator Instructions</a>
120 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000121 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
122 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000123 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +0000124 <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000125 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000126 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner08b7d5b2004-10-16 18:04:13 +0000127 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000128 </ol>
129 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000130 <li><a href="#binaryops">Binary Operations</a>
131 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000132 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000133 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000134 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000135 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000136 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000137 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer7e80b0b2006-10-26 06:15:43 +0000138 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
139 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
140 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer7eb55b32006-11-02 01:53:59 +0000141 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
142 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
143 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000144 </ol>
145 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000146 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
147 <ol>
Reid Spencer2ab01932007-02-02 13:57:07 +0000148 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
149 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
150 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000151 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000152 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000153 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000154 </ol>
155 </li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000156 <li><a href="#vectorops">Vector Operations</a>
157 <ol>
158 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
159 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
160 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000161 </ol>
162 </li>
Dan Gohmanb9d66602008-05-12 23:51:09 +0000163 <li><a href="#aggregateops">Aggregate Operations</a>
164 <ol>
165 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
166 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
167 </ol>
168 </li>
Chris Lattner6ab66722006-08-15 00:45:58 +0000169 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000170 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000171 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +0000172 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
173 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
174 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000175 </ol>
176 </li>
Reid Spencer97c5fa42006-11-08 01:18:52 +0000177 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000178 <ol>
179 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
180 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
181 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
182 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
183 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencer51b07252006-11-09 23:03:26 +0000184 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
185 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
186 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
187 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencerb7344ff2006-11-11 21:00:47 +0000188 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
189 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5b950642006-11-11 23:08:07 +0000190 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000191 </ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000192 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000193 <li><a href="#otherops">Other Operations</a>
194 <ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +0000195 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
196 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000197 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnerb53c28d2004-03-12 05:50:16 +0000198 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000199 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattner33337472006-01-13 23:26:01 +0000200 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000201 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000202 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000203 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000204 </li>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000205 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000206 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000207 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
208 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000209 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
210 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
211 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000212 </ol>
213 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000214 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
215 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000216 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
217 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
218 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000219 </ol>
220 </li>
Chris Lattner3649c3a2004-02-14 04:08:35 +0000221 <li><a href="#int_codegen">Code Generator Intrinsics</a>
222 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000223 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
224 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
225 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
226 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
227 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
228 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
Dan Gohmane58f7b32010-05-26 21:56:15 +0000229 <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswellaa1c3c12004-04-09 16:43:20 +0000230 </ol>
231 </li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000232 <li><a href="#int_libc">Standard C Library Intrinsics</a>
233 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000234 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
235 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
236 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
237 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
238 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohmanb6324c12007-10-15 20:30:11 +0000239 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
240 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
241 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000242 </ol>
243 </li>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000244 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000245 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000246 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattnerb748c672006-01-16 22:34:14 +0000247 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
248 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
249 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000250 </ol>
251 </li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000252 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
253 <ol>
Bill Wendlingfd2bd722009-02-08 04:04:40 +0000254 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
255 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
256 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
257 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
258 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingb9a73272009-02-08 23:00:09 +0000259 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000260 </ol>
261 </li>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +0000262 <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
263 <ol>
Chris Lattnerbbd8bd32010-03-14 23:03:31 +0000264 <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
265 <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +0000266 </ol>
267 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000268 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskey2211f492007-03-14 19:31:19 +0000269 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands86e01192007-09-11 14:10:23 +0000270 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +0000271 <ol>
272 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands644f9172007-07-27 12:58:54 +0000273 </ol>
274 </li>
Bill Wendlingf85850f2008-11-18 22:10:53 +0000275 <li><a href="#int_atomics">Atomic intrinsics</a>
276 <ol>
277 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
278 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
279 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
280 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
281 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
282 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
283 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
284 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
285 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
286 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
287 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
288 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
289 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
290 </ol>
291 </li>
Nick Lewycky6f7d8342009-10-13 07:03:23 +0000292 <li><a href="#int_memorymarkers">Memory Use Markers</a>
293 <ol>
294 <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
295 <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
296 <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
297 <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
298 </ol>
299 </li>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000300 <li><a href="#int_general">General intrinsics</a>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000301 <ol>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000302 <li><a href="#int_var_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000303 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000304 <li><a href="#int_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000305 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +0000306 <li><a href="#int_trap">
Bill Wendling14313312008-11-19 05:56:17 +0000307 '<tt>llvm.trap</tt>' Intrinsic</a></li>
308 <li><a href="#int_stackprotector">
309 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Eric Christopher73484322009-11-30 08:03:53 +0000310 <li><a href="#int_objectsize">
311 '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000312 </ol>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000313 </li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000314 </ol>
315 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000316</ol>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000317
318<div class="doc_author">
319 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
320 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman76307852003-11-08 01:05:38 +0000321</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000322
Chris Lattner2f7c9632001-06-06 20:29:01 +0000323<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000324<div class="doc_section"> <a name="abstract">Abstract </a></div>
325<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000326
Misha Brukman76307852003-11-08 01:05:38 +0000327<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000328
329<p>This document is a reference manual for the LLVM assembly language. LLVM is
330 a Static Single Assignment (SSA) based representation that provides type
331 safety, low-level operations, flexibility, and the capability of representing
332 'all' high-level languages cleanly. It is the common code representation
333 used throughout all phases of the LLVM compilation strategy.</p>
334
Misha Brukman76307852003-11-08 01:05:38 +0000335</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000336
Chris Lattner2f7c9632001-06-06 20:29:01 +0000337<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000338<div class="doc_section"> <a name="introduction">Introduction</a> </div>
339<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000340
Misha Brukman76307852003-11-08 01:05:38 +0000341<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000342
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000343<p>The LLVM code representation is designed to be used in three different forms:
344 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
345 for fast loading by a Just-In-Time compiler), and as a human readable
346 assembly language representation. This allows LLVM to provide a powerful
347 intermediate representation for efficient compiler transformations and
348 analysis, while providing a natural means to debug and visualize the
349 transformations. The three different forms of LLVM are all equivalent. This
350 document describes the human readable representation and notation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000351
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000352<p>The LLVM representation aims to be light-weight and low-level while being
353 expressive, typed, and extensible at the same time. It aims to be a
354 "universal IR" of sorts, by being at a low enough level that high-level ideas
355 may be cleanly mapped to it (similar to how microprocessors are "universal
356 IR's", allowing many source languages to be mapped to them). By providing
357 type information, LLVM can be used as the target of optimizations: for
358 example, through pointer analysis, it can be proven that a C automatic
Bill Wendling7f4a3362009-11-02 00:24:16 +0000359 variable is never accessed outside of the current function, allowing it to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000360 be promoted to a simple SSA value instead of a memory location.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000361
Misha Brukman76307852003-11-08 01:05:38 +0000362</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000363
Chris Lattner2f7c9632001-06-06 20:29:01 +0000364<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000365<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000366
Misha Brukman76307852003-11-08 01:05:38 +0000367<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000368
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000369<p>It is important to note that this document describes 'well formed' LLVM
370 assembly language. There is a difference between what the parser accepts and
371 what is considered 'well formed'. For example, the following instruction is
372 syntactically okay, but not well formed:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000373
Benjamin Kramer79698be2010-07-13 12:26:09 +0000374<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000375%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattner757528b0b2004-05-23 21:06:01 +0000376</pre>
377
Bill Wendling7f4a3362009-11-02 00:24:16 +0000378<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
379 LLVM infrastructure provides a verification pass that may be used to verify
380 that an LLVM module is well formed. This pass is automatically run by the
381 parser after parsing input assembly and by the optimizer before it outputs
382 bitcode. The violations pointed out by the verifier pass indicate bugs in
383 transformation passes or input to the parser.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000384
Bill Wendling3716c5d2007-05-29 09:04:49 +0000385</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000386
Chris Lattner87a3dbe2007-10-03 17:34:29 +0000387<!-- Describe the typesetting conventions here. -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000388
Chris Lattner2f7c9632001-06-06 20:29:01 +0000389<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000390<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000391<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000392
Misha Brukman76307852003-11-08 01:05:38 +0000393<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000394
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000395<p>LLVM identifiers come in two basic types: global and local. Global
396 identifiers (functions, global variables) begin with the <tt>'@'</tt>
397 character. Local identifiers (register names, types) begin with
398 the <tt>'%'</tt> character. Additionally, there are three different formats
399 for identifiers, for different purposes:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000400
Chris Lattner2f7c9632001-06-06 20:29:01 +0000401<ol>
Reid Spencerb23b65f2007-08-07 14:34:28 +0000402 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000403 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
404 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
405 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
406 other characters in their names can be surrounded with quotes. Special
407 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
408 ASCII code for the character in hexadecimal. In this way, any character
409 can be used in a name value, even quotes themselves.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000410
Reid Spencerb23b65f2007-08-07 14:34:28 +0000411 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000412 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000413
Reid Spencer8f08d802004-12-09 18:02:53 +0000414 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000415 constants</a>, below.</li>
Misha Brukman76307852003-11-08 01:05:38 +0000416</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000417
Reid Spencerb23b65f2007-08-07 14:34:28 +0000418<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000419 don't need to worry about name clashes with reserved words, and the set of
420 reserved words may be expanded in the future without penalty. Additionally,
421 unnamed identifiers allow a compiler to quickly come up with a temporary
422 variable without having to avoid symbol table conflicts.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000423
Chris Lattner48b383b02003-11-25 01:02:51 +0000424<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000425 languages. There are keywords for different opcodes
426 ('<tt><a href="#i_add">add</a></tt>',
427 '<tt><a href="#i_bitcast">bitcast</a></tt>',
428 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
429 ('<tt><a href="#t_void">void</a></tt>',
430 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
431 reserved words cannot conflict with variable names, because none of them
432 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000433
434<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000435 '<tt>%X</tt>' by 8:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000436
Misha Brukman76307852003-11-08 01:05:38 +0000437<p>The easy way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000438
Benjamin Kramer79698be2010-07-13 12:26:09 +0000439<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000440%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnerd79749a2004-12-09 16:36:40 +0000441</pre>
442
Misha Brukman76307852003-11-08 01:05:38 +0000443<p>After strength reduction:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000444
Benjamin Kramer79698be2010-07-13 12:26:09 +0000445<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000446%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnerd79749a2004-12-09 16:36:40 +0000447</pre>
448
Misha Brukman76307852003-11-08 01:05:38 +0000449<p>And the hard way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000450
Benjamin Kramer79698be2010-07-13 12:26:09 +0000451<pre class="doc_code">
Gabor Greifbd0328f2009-10-28 13:05:07 +0000452%0 = <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
453%1 = <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000454%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnerd79749a2004-12-09 16:36:40 +0000455</pre>
456
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000457<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
458 lexical features of LLVM:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000459
Chris Lattner2f7c9632001-06-06 20:29:01 +0000460<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000461 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000462 line.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000463
464 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000465 assigned to a named value.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000466
Misha Brukman76307852003-11-08 01:05:38 +0000467 <li>Unnamed temporaries are numbered sequentially</li>
468</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000469
Bill Wendling7f4a3362009-11-02 00:24:16 +0000470<p>It also shows a convention that we follow in this document. When
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000471 demonstrating instructions, we will follow an instruction with a comment that
472 defines the type and name of value produced. Comments are shown in italic
473 text.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000474
Misha Brukman76307852003-11-08 01:05:38 +0000475</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000476
477<!-- *********************************************************************** -->
478<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
479<!-- *********************************************************************** -->
480
481<!-- ======================================================================= -->
482<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
483</div>
484
485<div class="doc_text">
486
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000487<p>LLVM programs are composed of "Module"s, each of which is a translation unit
488 of the input programs. Each module consists of functions, global variables,
489 and symbol table entries. Modules may be combined together with the LLVM
490 linker, which merges function (and global variable) definitions, resolves
491 forward declarations, and merges symbol table entries. Here is an example of
492 the "hello world" module:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000493
Benjamin Kramer79698be2010-07-13 12:26:09 +0000494<pre class="doc_code">
Chris Lattner54a7be72010-08-17 17:13:42 +0000495<i>; Declare the string constant as a global constant.</i>&nbsp;
496<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000497
Chris Lattner54a7be72010-08-17 17:13:42 +0000498<i>; External declaration of the puts function</i>&nbsp;
499<a href="#functionstructure">declare</a> i32 @puts(i8*) <i>; i32 (i8*)* </i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000500
501<i>; Definition of main function</i>
Chris Lattner54a7be72010-08-17 17:13:42 +0000502define i32 @main() { <i>; i32()* </i>&nbsp;
503 <i>; Convert [13 x i8]* to i8 *...</i>&nbsp;
504 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8*</i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000505
Chris Lattner54a7be72010-08-17 17:13:42 +0000506 <i>; Call puts function to write out the string to stdout.</i>&nbsp;
507 <a href="#i_call">call</a> i32 @puts(i8* %cast210) <i>; i32</i>&nbsp;
508 <a href="#i_ret">ret</a> i32 0&nbsp;
509}
Devang Pateld1a89692010-01-11 19:35:55 +0000510
511<i>; Named metadata</i>
512!1 = metadata !{i32 41}
513!foo = !{!1, null}
Bill Wendling3716c5d2007-05-29 09:04:49 +0000514</pre>
Chris Lattner6af02f32004-12-09 16:11:40 +0000515
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000516<p>This example is made up of a <a href="#globalvars">global variable</a> named
Devang Pateld1a89692010-01-11 19:35:55 +0000517 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000518 a <a href="#functionstructure">function definition</a> for
Devang Pateld1a89692010-01-11 19:35:55 +0000519 "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a>
520 "<tt>foo"</tt>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000521
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000522<p>In general, a module is made up of a list of global values, where both
523 functions and global variables are global values. Global values are
524 represented by a pointer to a memory location (in this case, a pointer to an
525 array of char, and a pointer to a function), and have one of the
526 following <a href="#linkage">linkage types</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000527
Chris Lattnerd79749a2004-12-09 16:36:40 +0000528</div>
529
530<!-- ======================================================================= -->
531<div class="doc_subsection">
532 <a name="linkage">Linkage Types</a>
533</div>
534
535<div class="doc_text">
536
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000537<p>All Global Variables and Functions have one of the following types of
538 linkage:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000539
540<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000541 <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000542 <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
543 by objects in the current module. In particular, linking code into a
544 module with an private global value may cause the private to be renamed as
545 necessary to avoid collisions. Because the symbol is private to the
546 module, all references can be updated. This doesn't show up in any symbol
547 table in the object file.</dd>
Rafael Espindola6de96a12009-01-15 20:18:42 +0000548
Bill Wendling7f4a3362009-11-02 00:24:16 +0000549 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000550 <dd>Similar to <tt>private</tt>, but the symbol is passed through the
551 assembler and evaluated by the linker. Unlike normal strong symbols, they
552 are removed by the linker from the final linked image (executable or
553 dynamic library).</dd>
554
555 <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
556 <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
557 <tt>linker_private_weak</tt> symbols are subject to coalescing by the
558 linker. The symbols are removed by the linker from the final linked image
559 (executable or dynamic library).</dd>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +0000560
Bill Wendling578ee402010-08-20 22:05:50 +0000561 <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt>
562 <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address
563 of the object is not taken. For instance, functions that had an inline
564 definition, but the compiler decided not to inline it. Note,
565 unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>,
566 <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt>
567 visibility. The symbols are removed by the linker from the final linked
568 image (executable or dynamic library).</dd>
569
Bill Wendling7f4a3362009-11-02 00:24:16 +0000570 <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
Bill Wendling36321712010-06-29 22:34:52 +0000571 <dd>Similar to private, but the value shows as a local symbol
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000572 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
573 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000574
Bill Wendling7f4a3362009-11-02 00:24:16 +0000575 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
Chris Lattner184f1be2009-04-13 05:44:34 +0000576 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000577 into the object file corresponding to the LLVM module. They exist to
578 allow inlining and other optimizations to take place given knowledge of
579 the definition of the global, which is known to be somewhere outside the
580 module. Globals with <tt>available_externally</tt> linkage are allowed to
581 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
582 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner184f1be2009-04-13 05:44:34 +0000583
Bill Wendling7f4a3362009-11-02 00:24:16 +0000584 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
Chris Lattnere20b4702007-01-14 06:51:48 +0000585 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Chris Lattner0de4caa2010-01-09 19:15:14 +0000586 the same name when linkage occurs. This can be used to implement
587 some forms of inline functions, templates, or other code which must be
588 generated in each translation unit that uses it, but where the body may
589 be overridden with a more definitive definition later. Unreferenced
590 <tt>linkonce</tt> globals are allowed to be discarded. Note that
591 <tt>linkonce</tt> linkage does not actually allow the optimizer to
592 inline the body of this function into callers because it doesn't know if
593 this definition of the function is the definitive definition within the
594 program or whether it will be overridden by a stronger definition.
595 To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
596 linkage.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000597
Bill Wendling7f4a3362009-11-02 00:24:16 +0000598 <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000599 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
600 <tt>linkonce</tt> linkage, except that unreferenced globals with
601 <tt>weak</tt> linkage may not be discarded. This is used for globals that
602 are declared "weak" in C source code.</dd>
603
Bill Wendling7f4a3362009-11-02 00:24:16 +0000604 <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000605 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
606 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
607 global scope.
608 Symbols with "<tt>common</tt>" linkage are merged in the same way as
609 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
Chris Lattner0aff0b22009-08-05 05:41:44 +0000610 <tt>common</tt> symbols may not have an explicit section,
Eric Christopher455c5772009-12-05 02:46:03 +0000611 must have a zero initializer, and may not be marked '<a
Chris Lattner0aff0b22009-08-05 05:41:44 +0000612 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
613 have common linkage.</dd>
Chris Lattnerd0554882009-08-05 05:21:07 +0000614
Chris Lattnerd79749a2004-12-09 16:36:40 +0000615
Bill Wendling7f4a3362009-11-02 00:24:16 +0000616 <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000617 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000618 pointer to array type. When two global variables with appending linkage
619 are linked together, the two global arrays are appended together. This is
620 the LLVM, typesafe, equivalent of having the system linker append together
621 "sections" with identical names when .o files are linked.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000622
Bill Wendling7f4a3362009-11-02 00:24:16 +0000623 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000624 <dd>The semantics of this linkage follow the ELF object file model: the symbol
625 is weak until linked, if not linked, the symbol becomes null instead of
626 being an undefined reference.</dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000627
Bill Wendling7f4a3362009-11-02 00:24:16 +0000628 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
629 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000630 <dd>Some languages allow differing globals to be merged, such as two functions
631 with different semantics. Other languages, such as <tt>C++</tt>, ensure
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000632 that only equivalent globals are ever merged (the "one definition rule"
633 &mdash; "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000634 and <tt>weak_odr</tt> linkage types to indicate that the global will only
635 be merged with equivalent globals. These linkage types are otherwise the
636 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000637
Chris Lattner6af02f32004-12-09 16:11:40 +0000638 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000639 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000640 visible, meaning that it participates in linkage and can be used to
641 resolve external symbol references.</dd>
Reid Spencer7972c472007-04-11 23:49:50 +0000642</dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000643
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000644<p>The next two types of linkage are targeted for Microsoft Windows platform
645 only. They are designed to support importing (exporting) symbols from (to)
646 DLLs (Dynamic Link Libraries).</p>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000647
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000648<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000649 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000650 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000651 or variable via a global pointer to a pointer that is set up by the DLL
652 exporting the symbol. On Microsoft Windows targets, the pointer name is
653 formed by combining <code>__imp_</code> and the function or variable
654 name.</dd>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000655
Bill Wendling7f4a3362009-11-02 00:24:16 +0000656 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000657 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000658 pointer to a pointer in a DLL, so that it can be referenced with the
659 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
660 name is formed by combining <code>__imp_</code> and the function or
661 variable name.</dd>
Chris Lattner6af02f32004-12-09 16:11:40 +0000662</dl>
663
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000664<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
665 another module defined a "<tt>.LC0</tt>" variable and was linked with this
666 one, one of the two would be renamed, preventing a collision. Since
667 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
668 declarations), they are accessible outside of the current module.</p>
669
670<p>It is illegal for a function <i>declaration</i> to have any linkage type
671 other than "externally visible", <tt>dllimport</tt>
672 or <tt>extern_weak</tt>.</p>
673
Duncan Sands12da8ce2009-03-07 15:45:40 +0000674<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000675 or <tt>weak_odr</tt> linkages.</p>
676
Chris Lattner6af02f32004-12-09 16:11:40 +0000677</div>
678
679<!-- ======================================================================= -->
680<div class="doc_subsection">
Chris Lattner0132aff2005-05-06 22:57:40 +0000681 <a name="callingconv">Calling Conventions</a>
682</div>
683
684<div class="doc_text">
685
686<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000687 and <a href="#i_invoke">invokes</a> can all have an optional calling
688 convention specified for the call. The calling convention of any pair of
689 dynamic caller/callee must match, or the behavior of the program is
690 undefined. The following calling conventions are supported by LLVM, and more
691 may be added in the future:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000692
693<dl>
694 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000695 <dd>This calling convention (the default if no other calling convention is
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000696 specified) matches the target C calling conventions. This calling
697 convention supports varargs function calls and tolerates some mismatch in
698 the declared prototype and implemented declaration of the function (as
699 does normal C).</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000700
701 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000702 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000703 (e.g. by passing things in registers). This calling convention allows the
704 target to use whatever tricks it wants to produce fast code for the
705 target, without having to conform to an externally specified ABI
Jeffrey Yasskinb8677462010-01-09 19:44:16 +0000706 (Application Binary Interface).
707 <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
Chris Lattnera179e4d2010-03-11 00:22:57 +0000708 when this or the GHC convention is used.</a> This calling convention
709 does not support varargs and requires the prototype of all callees to
710 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000711
712 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000713 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000714 as possible under the assumption that the call is not commonly executed.
715 As such, these calls often preserve all registers so that the call does
716 not break any live ranges in the caller side. This calling convention
717 does not support varargs and requires the prototype of all callees to
718 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000719
Chris Lattnera179e4d2010-03-11 00:22:57 +0000720 <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
721 <dd>This calling convention has been implemented specifically for use by the
722 <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
723 It passes everything in registers, going to extremes to achieve this by
724 disabling callee save registers. This calling convention should not be
725 used lightly but only for specific situations such as an alternative to
726 the <em>register pinning</em> performance technique often used when
727 implementing functional programming languages.At the moment only X86
728 supports this convention and it has the following limitations:
729 <ul>
730 <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
731 floating point types are supported.</li>
732 <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
733 6 floating point parameters.</li>
734 </ul>
735 This calling convention supports
736 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
737 requires both the caller and callee are using it.
738 </dd>
739
Chris Lattner573f64e2005-05-07 01:46:40 +0000740 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000741 <dd>Any calling convention may be specified by number, allowing
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000742 target-specific calling conventions to be used. Target specific calling
743 conventions start at 64.</dd>
Chris Lattner573f64e2005-05-07 01:46:40 +0000744</dl>
Chris Lattner0132aff2005-05-06 22:57:40 +0000745
746<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000747 support Pascal conventions or any other well-known target-independent
748 convention.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000749
750</div>
751
752<!-- ======================================================================= -->
753<div class="doc_subsection">
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000754 <a name="visibility">Visibility Styles</a>
755</div>
756
757<div class="doc_text">
758
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000759<p>All Global Variables and Functions have one of the following visibility
760 styles:</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000761
762<dl>
763 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattner67c37d12008-08-05 18:29:16 +0000764 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000765 that the declaration is visible to other modules and, in shared libraries,
766 means that the declared entity may be overridden. On Darwin, default
767 visibility means that the declaration is visible to other modules. Default
768 visibility corresponds to "external linkage" in the language.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000769
770 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000771 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000772 object if they are in the same shared object. Usually, hidden visibility
773 indicates that the symbol will not be placed into the dynamic symbol
774 table, so no other module (executable or shared library) can reference it
775 directly.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000776
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000777 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000778 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000779 the dynamic symbol table, but that references within the defining module
780 will bind to the local symbol. That is, the symbol cannot be overridden by
781 another module.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000782</dl>
783
784</div>
785
786<!-- ======================================================================= -->
787<div class="doc_subsection">
Chris Lattnerbc088212009-01-11 20:53:49 +0000788 <a name="namedtypes">Named Types</a>
789</div>
790
791<div class="doc_text">
792
793<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000794 it easier to read the IR and make the IR more condensed (particularly when
795 recursive types are involved). An example of a name specification is:</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000796
Benjamin Kramer79698be2010-07-13 12:26:09 +0000797<pre class="doc_code">
Chris Lattnerbc088212009-01-11 20:53:49 +0000798%mytype = type { %mytype*, i32 }
799</pre>
Chris Lattnerbc088212009-01-11 20:53:49 +0000800
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000801<p>You may give a name to any <a href="#typesystem">type</a> except
Chris Lattner249b9762010-08-17 23:26:04 +0000802 "<a href="#t_void">void</a>". Type name aliases may be used anywhere a type
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000803 is expected with the syntax "%mytype".</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000804
805<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000806 and that you can therefore specify multiple names for the same type. This
807 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
808 uses structural typing, the name is not part of the type. When printing out
809 LLVM IR, the printer will pick <em>one name</em> to render all types of a
810 particular shape. This means that if you have code where two different
811 source types end up having the same LLVM type, that the dumper will sometimes
812 print the "wrong" or unexpected type. This is an important design point and
813 isn't going to change.</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000814
815</div>
816
Chris Lattnerbc088212009-01-11 20:53:49 +0000817<!-- ======================================================================= -->
818<div class="doc_subsection">
Chris Lattner6af02f32004-12-09 16:11:40 +0000819 <a name="globalvars">Global Variables</a>
820</div>
821
822<div class="doc_text">
823
Chris Lattner5d5aede2005-02-12 19:30:21 +0000824<p>Global variables define regions of memory allocated at compilation time
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000825 instead of run-time. Global variables may optionally be initialized, may
826 have an explicit section to be placed in, and may have an optional explicit
827 alignment specified. A variable may be defined as "thread_local", which
828 means that it will not be shared by threads (each thread will have a
829 separated copy of the variable). A variable may be defined as a global
830 "constant," which indicates that the contents of the variable
831 will <b>never</b> be modified (enabling better optimization, allowing the
832 global data to be placed in the read-only section of an executable, etc).
833 Note that variables that need runtime initialization cannot be marked
834 "constant" as there is a store to the variable.</p>
Chris Lattner5d5aede2005-02-12 19:30:21 +0000835
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000836<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
837 constant, even if the final definition of the global is not. This capability
838 can be used to enable slightly better optimization of the program, but
839 requires the language definition to guarantee that optimizations based on the
840 'constantness' are valid for the translation units that do not include the
841 definition.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000842
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000843<p>As SSA values, global variables define pointer values that are in scope
844 (i.e. they dominate) all basic blocks in the program. Global variables
845 always define a pointer to their "content" type because they describe a
846 region of memory, and all memory objects in LLVM are accessed through
847 pointers.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000848
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000849<p>A global variable may be declared to reside in a target-specific numbered
850 address space. For targets that support them, address spaces may affect how
851 optimizations are performed and/or what target instructions are used to
852 access the variable. The default address space is zero. The address space
853 qualifier must precede any other attributes.</p>
Christopher Lamb308121c2007-12-11 09:31:00 +0000854
Chris Lattner662c8722005-11-12 00:45:07 +0000855<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000856 supports it, it will emit globals to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000857
Chris Lattner78e00bc2010-04-28 00:13:42 +0000858<p>An explicit alignment may be specified for a global, which must be a power
859 of 2. If not present, or if the alignment is set to zero, the alignment of
860 the global is set by the target to whatever it feels convenient. If an
861 explicit alignment is specified, the global is forced to have exactly that
Chris Lattner4bd85e42010-04-28 00:31:12 +0000862 alignment. Targets and optimizers are not allowed to over-align the global
863 if the global has an assigned section. In this case, the extra alignment
864 could be observable: for example, code could assume that the globals are
865 densely packed in their section and try to iterate over them as an array,
866 alignment padding would break this iteration.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000867
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000868<p>For example, the following defines a global in a numbered address space with
869 an initializer, section, and alignment:</p>
Chris Lattner5760c502007-01-14 00:27:09 +0000870
Benjamin Kramer79698be2010-07-13 12:26:09 +0000871<pre class="doc_code">
Dan Gohmanaaa679b2009-01-11 00:40:00 +0000872@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner5760c502007-01-14 00:27:09 +0000873</pre>
874
Chris Lattner6af02f32004-12-09 16:11:40 +0000875</div>
876
877
878<!-- ======================================================================= -->
879<div class="doc_subsection">
880 <a name="functionstructure">Functions</a>
881</div>
882
883<div class="doc_text">
884
Dan Gohmana269a0a2010-03-01 17:41:39 +0000885<p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000886 optional <a href="#linkage">linkage type</a>, an optional
887 <a href="#visibility">visibility style</a>, an optional
888 <a href="#callingconv">calling convention</a>, a return type, an optional
889 <a href="#paramattrs">parameter attribute</a> for the return type, a function
890 name, a (possibly empty) argument list (each with optional
891 <a href="#paramattrs">parameter attributes</a>), optional
892 <a href="#fnattrs">function attributes</a>, an optional section, an optional
893 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
894 curly brace, a list of basic blocks, and a closing curly brace.</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000895
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000896<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
897 optional <a href="#linkage">linkage type</a>, an optional
Eric Christopher455c5772009-12-05 02:46:03 +0000898 <a href="#visibility">visibility style</a>, an optional
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000899 <a href="#callingconv">calling convention</a>, a return type, an optional
900 <a href="#paramattrs">parameter attribute</a> for the return type, a function
901 name, a possibly empty list of arguments, an optional alignment, and an
902 optional <a href="#gc">garbage collector name</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000903
Chris Lattner67c37d12008-08-05 18:29:16 +0000904<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000905 (Control Flow Graph) for the function. Each basic block may optionally start
906 with a label (giving the basic block a symbol table entry), contains a list
907 of instructions, and ends with a <a href="#terminators">terminator</a>
908 instruction (such as a branch or function return).</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000909
Chris Lattnera59fb102007-06-08 16:52:14 +0000910<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000911 executed on entrance to the function, and it is not allowed to have
912 predecessor basic blocks (i.e. there can not be any branches to the entry
913 block of a function). Because the block can have no predecessors, it also
914 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000915
Chris Lattner662c8722005-11-12 00:45:07 +0000916<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000917 supports it, it will emit functions to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000918
Chris Lattner54611b42005-11-06 08:02:57 +0000919<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000920 the alignment is set to zero, the alignment of the function is set by the
921 target to whatever it feels convenient. If an explicit alignment is
922 specified, the function is forced to have at least that much alignment. All
923 alignments must be a power of 2.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000924
Bill Wendling30235112009-07-20 02:39:26 +0000925<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000926<pre class="doc_code">
Chris Lattner0ae02092008-10-13 16:55:18 +0000927define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000928 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
929 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
930 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
931 [<a href="#gc">gc</a>] { ... }
932</pre>
Devang Patel02256232008-10-07 17:48:33 +0000933
Chris Lattner6af02f32004-12-09 16:11:40 +0000934</div>
935
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000936<!-- ======================================================================= -->
937<div class="doc_subsection">
938 <a name="aliasstructure">Aliases</a>
939</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000940
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000941<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000942
943<p>Aliases act as "second name" for the aliasee value (which can be either
944 function, global variable, another alias or bitcast of global value). Aliases
945 may have an optional <a href="#linkage">linkage type</a>, and an
946 optional <a href="#visibility">visibility style</a>.</p>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000947
Bill Wendling30235112009-07-20 02:39:26 +0000948<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000949<pre class="doc_code">
Duncan Sands7e99a942008-09-12 20:48:21 +0000950@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000951</pre>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000952
953</div>
954
Chris Lattner91c15c42006-01-23 23:23:47 +0000955<!-- ======================================================================= -->
Devang Pateld1a89692010-01-11 19:35:55 +0000956<div class="doc_subsection">
957 <a name="namedmetadatastructure">Named Metadata</a>
958</div>
959
960<div class="doc_text">
961
Chris Lattnerc2f8f162010-01-15 21:50:19 +0000962<p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
Dan Gohman093cb792010-07-21 18:54:18 +0000963 nodes</a> (but not metadata strings) are the only valid operands for
Chris Lattnerc2f8f162010-01-15 21:50:19 +0000964 a named metadata.</p>
Devang Pateld1a89692010-01-11 19:35:55 +0000965
966<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000967<pre class="doc_code">
Dan Gohman093cb792010-07-21 18:54:18 +0000968; Some unnamed metadata nodes, which are referenced by the named metadata.
969!0 = metadata !{metadata !"zero"}
Devang Pateld1a89692010-01-11 19:35:55 +0000970!1 = metadata !{metadata !"one"}
Dan Gohman093cb792010-07-21 18:54:18 +0000971!2 = metadata !{metadata !"two"}
Dan Gohman58cd65f2010-07-13 19:48:13 +0000972; A named metadata.
Dan Gohman093cb792010-07-21 18:54:18 +0000973!name = !{!0, !1, !2}
Devang Pateld1a89692010-01-11 19:35:55 +0000974</pre>
Devang Pateld1a89692010-01-11 19:35:55 +0000975
976</div>
977
978<!-- ======================================================================= -->
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000979<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000980
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000981<div class="doc_text">
982
983<p>The return type and each parameter of a function type may have a set of
984 <i>parameter attributes</i> associated with them. Parameter attributes are
985 used to communicate additional information about the result or parameters of
986 a function. Parameter attributes are considered to be part of the function,
987 not of the function type, so functions with different parameter attributes
988 can have the same function type.</p>
989
990<p>Parameter attributes are simple keywords that follow the type specified. If
991 multiple parameter attributes are needed, they are space separated. For
992 example:</p>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000993
Benjamin Kramer79698be2010-07-13 12:26:09 +0000994<pre class="doc_code">
Nick Lewyckydac78d82009-02-15 23:06:14 +0000995declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattnerd2597d72008-10-04 18:33:34 +0000996declare i32 @atoi(i8 zeroext)
997declare signext i8 @returns_signed_char()
Bill Wendling3716c5d2007-05-29 09:04:49 +0000998</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000999
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001000<p>Note that any attributes for the function result (<tt>nounwind</tt>,
1001 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001002
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001003<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001004
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001005<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +00001006 <dt><tt><b>zeroext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001007 <dd>This indicates to the code generator that the parameter or return value
1008 should be zero-extended to a 32-bit value by the caller (for a parameter)
1009 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001010
Bill Wendling7f4a3362009-11-02 00:24:16 +00001011 <dt><tt><b>signext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001012 <dd>This indicates to the code generator that the parameter or return value
1013 should be sign-extended to a 32-bit value by the caller (for a parameter)
1014 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001015
Bill Wendling7f4a3362009-11-02 00:24:16 +00001016 <dt><tt><b>inreg</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001017 <dd>This indicates that this parameter or return value should be treated in a
1018 special target-dependent fashion during while emitting code for a function
1019 call or return (usually, by putting it in a register as opposed to memory,
1020 though some targets use it to distinguish between two different kinds of
1021 registers). Use of this attribute is target-specific.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001022
Bill Wendling7f4a3362009-11-02 00:24:16 +00001023 <dt><tt><b><a name="byval">byval</a></b></tt></dt>
Chris Lattnerd78dbee2010-11-20 23:49:06 +00001024 <dd><p>This indicates that the pointer parameter should really be passed by
1025 value to the function. The attribute implies that a hidden copy of the
1026 pointee
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001027 is made between the caller and the callee, so the callee is unable to
1028 modify the value in the callee. This attribute is only valid on LLVM
1029 pointer arguments. It is generally used to pass structs and arrays by
1030 value, but is also valid on pointers to scalars. The copy is considered
1031 to belong to the caller not the callee (for example,
1032 <tt><a href="#readonly">readonly</a></tt> functions should not write to
1033 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnerd78dbee2010-11-20 23:49:06 +00001034 values.</p>
1035
1036 <p>The byval attribute also supports specifying an alignment with
1037 the align attribute. It indicates the alignment of the stack slot to
1038 form and the known alignment of the pointer specified to the call site. If
1039 the alignment is not specified, then the code generator makes a
1040 target-specific assumption.</p></dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001041
Dan Gohman3770af52010-07-02 23:18:08 +00001042 <dt><tt><b><a name="sret">sret</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001043 <dd>This indicates that the pointer parameter specifies the address of a
1044 structure that is the return value of the function in the source program.
1045 This pointer must be guaranteed by the caller to be valid: loads and
1046 stores to the structure may be assumed by the callee to not to trap. This
1047 may only be applied to the first parameter. This is not a valid attribute
1048 for return values. </dd>
1049
Dan Gohman3770af52010-07-02 23:18:08 +00001050 <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
Dan Gohmandf12d082010-07-02 18:41:32 +00001051 <dd>This indicates that pointer values
1052 <a href="#pointeraliasing"><i>based</i></a> on the argument or return
Dan Gohmande256292010-07-02 23:46:54 +00001053 value do not alias pointer values which are not <i>based</i> on it,
1054 ignoring certain "irrelevant" dependencies.
1055 For a call to the parent function, dependencies between memory
1056 references from before or after the call and from those during the call
1057 are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
1058 return value used in that call.
Dan Gohmandf12d082010-07-02 18:41:32 +00001059 The caller shares the responsibility with the callee for ensuring that
1060 these requirements are met.
1061 For further details, please see the discussion of the NoAlias response in
Dan Gohman6c858db2010-07-06 15:26:33 +00001062 <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
1063<br>
John McCall72ed8902010-07-06 21:07:14 +00001064 Note that this definition of <tt>noalias</tt> is intentionally
1065 similar to the definition of <tt>restrict</tt> in C99 for function
Chris Lattner5eff9ca2010-07-06 20:51:35 +00001066 arguments, though it is slightly weaker.
Dan Gohman6c858db2010-07-06 15:26:33 +00001067<br>
1068 For function return values, C99's <tt>restrict</tt> is not meaningful,
1069 while LLVM's <tt>noalias</tt> is.
1070 </dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001071
Dan Gohman3770af52010-07-02 23:18:08 +00001072 <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001073 <dd>This indicates that the callee does not make any copies of the pointer
1074 that outlive the callee itself. This is not a valid attribute for return
1075 values.</dd>
1076
Dan Gohman3770af52010-07-02 23:18:08 +00001077 <dt><tt><b><a name="nest">nest</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001078 <dd>This indicates that the pointer parameter can be excised using the
1079 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1080 attribute for return values.</dd>
1081</dl>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001082
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001083</div>
1084
1085<!-- ======================================================================= -->
Chris Lattner91c15c42006-01-23 23:23:47 +00001086<div class="doc_subsection">
Gordon Henriksen71183b62007-12-10 03:18:06 +00001087 <a name="gc">Garbage Collector Names</a>
1088</div>
1089
1090<div class="doc_text">
Gordon Henriksen71183b62007-12-10 03:18:06 +00001091
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001092<p>Each function may specify a garbage collector name, which is simply a
1093 string:</p>
1094
Benjamin Kramer79698be2010-07-13 12:26:09 +00001095<pre class="doc_code">
Bill Wendling7f4a3362009-11-02 00:24:16 +00001096define void @f() gc "name" { ... }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001097</pre>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001098
1099<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001100 collector which will cause the compiler to alter its output in order to
1101 support the named garbage collection algorithm.</p>
1102
Gordon Henriksen71183b62007-12-10 03:18:06 +00001103</div>
1104
1105<!-- ======================================================================= -->
1106<div class="doc_subsection">
Devang Patel9eb525d2008-09-26 23:51:19 +00001107 <a name="fnattrs">Function Attributes</a>
Devang Patelcaacdba2008-09-04 23:05:13 +00001108</div>
1109
1110<div class="doc_text">
Devang Patel9eb525d2008-09-26 23:51:19 +00001111
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001112<p>Function attributes are set to communicate additional information about a
1113 function. Function attributes are considered to be part of the function, not
1114 of the function type, so functions with different parameter attributes can
1115 have the same function type.</p>
Devang Patel9eb525d2008-09-26 23:51:19 +00001116
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001117<p>Function attributes are simple keywords that follow the type specified. If
1118 multiple attributes are needed, they are space separated. For example:</p>
Devang Patelcaacdba2008-09-04 23:05:13 +00001119
Benjamin Kramer79698be2010-07-13 12:26:09 +00001120<pre class="doc_code">
Devang Patel9eb525d2008-09-26 23:51:19 +00001121define void @f() noinline { ... }
1122define void @f() alwaysinline { ... }
1123define void @f() alwaysinline optsize { ... }
Bill Wendling7f4a3362009-11-02 00:24:16 +00001124define void @f() optsize { ... }
Bill Wendlingb175fa42008-09-07 10:26:33 +00001125</pre>
Devang Patelcaacdba2008-09-04 23:05:13 +00001126
Bill Wendlingb175fa42008-09-07 10:26:33 +00001127<dl>
Charles Davisbe5557e2010-02-12 00:31:15 +00001128 <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1129 <dd>This attribute indicates that, when emitting the prologue and epilogue,
1130 the backend should forcibly align the stack pointer. Specify the
1131 desired alignment, which must be a power of two, in parentheses.
1132
Bill Wendling7f4a3362009-11-02 00:24:16 +00001133 <dt><tt><b>alwaysinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001134 <dd>This attribute indicates that the inliner should attempt to inline this
1135 function into callers whenever possible, ignoring any active inlining size
1136 threshold for this caller.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001137
Charles Davis22fe1862010-10-25 15:37:09 +00001138 <dt><tt><b>hotpatch</b></tt></dt>
Charles Davis1b2d3722010-10-25 16:29:03 +00001139 <dd>This attribute indicates that the function should be 'hotpatchable',
Charles Davis74205252010-10-25 19:07:39 +00001140 meaning the function can be patched and/or hooked even while it is
1141 loaded into memory. On x86, the function prologue will be preceded
1142 by six bytes of padding and will begin with a two-byte instruction.
1143 Most of the functions in the Windows system DLLs in Windows XP SP2 or
1144 higher were compiled in this fashion.</dd>
Charles Davis22fe1862010-10-25 15:37:09 +00001145
Jakob Stoklund Olesen74bb06c2010-02-06 01:16:28 +00001146 <dt><tt><b>inlinehint</b></tt></dt>
1147 <dd>This attribute indicates that the source code contained a hint that inlining
1148 this function is desirable (such as the "inline" keyword in C/C++). It
1149 is just a hint; it imposes no requirements on the inliner.</dd>
1150
Nick Lewycky14b58da2010-07-06 18:24:09 +00001151 <dt><tt><b>naked</b></tt></dt>
1152 <dd>This attribute disables prologue / epilogue emission for the function.
1153 This can have very system-specific consequences.</dd>
1154
1155 <dt><tt><b>noimplicitfloat</b></tt></dt>
1156 <dd>This attributes disables implicit floating point instructions.</dd>
1157
Bill Wendling7f4a3362009-11-02 00:24:16 +00001158 <dt><tt><b>noinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001159 <dd>This attribute indicates that the inliner should never inline this
1160 function in any situation. This attribute may not be used together with
1161 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001162
Nick Lewycky14b58da2010-07-06 18:24:09 +00001163 <dt><tt><b>noredzone</b></tt></dt>
1164 <dd>This attribute indicates that the code generator should not use a red
1165 zone, even if the target-specific ABI normally permits it.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001166
Bill Wendling7f4a3362009-11-02 00:24:16 +00001167 <dt><tt><b>noreturn</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001168 <dd>This function attribute indicates that the function never returns
1169 normally. This produces undefined behavior at runtime if the function
1170 ever does dynamically return.</dd>
Bill Wendlinga8130172008-11-13 01:02:51 +00001171
Bill Wendling7f4a3362009-11-02 00:24:16 +00001172 <dt><tt><b>nounwind</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001173 <dd>This function attribute indicates that the function never returns with an
1174 unwind or exceptional control flow. If the function does unwind, its
1175 runtime behavior is undefined.</dd>
Bill Wendling0f5541e2008-11-26 19:07:40 +00001176
Nick Lewycky14b58da2010-07-06 18:24:09 +00001177 <dt><tt><b>optsize</b></tt></dt>
1178 <dd>This attribute suggests that optimization passes and code generator passes
1179 make choices that keep the code size of this function low, and otherwise
1180 do optimizations specifically to reduce code size.</dd>
1181
Bill Wendling7f4a3362009-11-02 00:24:16 +00001182 <dt><tt><b>readnone</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001183 <dd>This attribute indicates that the function computes its result (or decides
1184 to unwind an exception) based strictly on its arguments, without
1185 dereferencing any pointer arguments or otherwise accessing any mutable
1186 state (e.g. memory, control registers, etc) visible to caller functions.
1187 It does not write through any pointer arguments
1188 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1189 changes any state visible to callers. This means that it cannot unwind
1190 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1191 could use the <tt>unwind</tt> instruction.</dd>
Devang Patel310fd4a2009-06-12 19:45:19 +00001192
Bill Wendling7f4a3362009-11-02 00:24:16 +00001193 <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001194 <dd>This attribute indicates that the function does not write through any
1195 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1196 arguments) or otherwise modify any state (e.g. memory, control registers,
1197 etc) visible to caller functions. It may dereference pointer arguments
1198 and read state that may be set in the caller. A readonly function always
1199 returns the same value (or unwinds an exception identically) when called
1200 with the same set of arguments and global state. It cannot unwind an
1201 exception by calling the <tt>C++</tt> exception throwing methods, but may
1202 use the <tt>unwind</tt> instruction.</dd>
Anton Korobeynikovc8ce7b082009-07-17 18:07:26 +00001203
Bill Wendling7f4a3362009-11-02 00:24:16 +00001204 <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001205 <dd>This attribute indicates that the function should emit a stack smashing
1206 protector. It is in the form of a "canary"&mdash;a random value placed on
1207 the stack before the local variables that's checked upon return from the
1208 function to see if it has been overwritten. A heuristic is used to
1209 determine if a function needs stack protectors or not.<br>
1210<br>
1211 If a function that has an <tt>ssp</tt> attribute is inlined into a
1212 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1213 function will have an <tt>ssp</tt> attribute.</dd>
1214
Bill Wendling7f4a3362009-11-02 00:24:16 +00001215 <dt><tt><b>sspreq</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001216 <dd>This attribute indicates that the function should <em>always</em> emit a
1217 stack smashing protector. This overrides
Bill Wendling30235112009-07-20 02:39:26 +00001218 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1219<br>
1220 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1221 function that doesn't have an <tt>sspreq</tt> attribute or which has
1222 an <tt>ssp</tt> attribute, then the resulting function will have
1223 an <tt>sspreq</tt> attribute.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001224</dl>
1225
Devang Patelcaacdba2008-09-04 23:05:13 +00001226</div>
1227
1228<!-- ======================================================================= -->
1229<div class="doc_subsection">
Chris Lattner93564892006-04-08 04:40:53 +00001230 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner91c15c42006-01-23 23:23:47 +00001231</div>
1232
1233<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001234
1235<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1236 the GCC "file scope inline asm" blocks. These blocks are internally
1237 concatenated by LLVM and treated as a single unit, but may be separated in
1238 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001239
Benjamin Kramer79698be2010-07-13 12:26:09 +00001240<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00001241module asm "inline asm code goes here"
1242module asm "more can go here"
1243</pre>
Chris Lattner91c15c42006-01-23 23:23:47 +00001244
1245<p>The strings can contain any character by escaping non-printable characters.
1246 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001247 for the number.</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001248
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001249<p>The inline asm code is simply printed to the machine code .s file when
1250 assembly code is generated.</p>
1251
Chris Lattner91c15c42006-01-23 23:23:47 +00001252</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001253
Reid Spencer50c723a2007-02-19 23:54:10 +00001254<!-- ======================================================================= -->
1255<div class="doc_subsection">
1256 <a name="datalayout">Data Layout</a>
1257</div>
1258
1259<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001260
Reid Spencer50c723a2007-02-19 23:54:10 +00001261<p>A module may specify a target specific data layout string that specifies how
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001262 data is to be laid out in memory. The syntax for the data layout is
1263 simply:</p>
1264
Benjamin Kramer79698be2010-07-13 12:26:09 +00001265<pre class="doc_code">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001266target datalayout = "<i>layout specification</i>"
1267</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001268
1269<p>The <i>layout specification</i> consists of a list of specifications
1270 separated by the minus sign character ('-'). Each specification starts with
1271 a letter and may include other information after the letter to define some
1272 aspect of the data layout. The specifications accepted are as follows:</p>
1273
Reid Spencer50c723a2007-02-19 23:54:10 +00001274<dl>
1275 <dt><tt>E</tt></dt>
1276 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001277 bits with the most significance have the lowest address location.</dd>
1278
Reid Spencer50c723a2007-02-19 23:54:10 +00001279 <dt><tt>e</tt></dt>
Chris Lattner67c37d12008-08-05 18:29:16 +00001280 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001281 the bits with the least significance have the lowest address
1282 location.</dd>
1283
Reid Spencer50c723a2007-02-19 23:54:10 +00001284 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001285 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001286 <i>preferred</i> alignments. All sizes are in bits. Specifying
1287 the <i>pref</i> alignment is optional. If omitted, the
1288 preceding <tt>:</tt> should be omitted too.</dd>
1289
Reid Spencer50c723a2007-02-19 23:54:10 +00001290 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1291 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001292 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1293
Reid Spencer50c723a2007-02-19 23:54:10 +00001294 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001295 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001296 <i>size</i>.</dd>
1297
Reid Spencer50c723a2007-02-19 23:54:10 +00001298 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001299 <dd>This specifies the alignment for a floating point type of a given bit
Dale Johannesence522852010-05-28 18:54:47 +00001300 <i>size</i>. Only values of <i>size</i> that are supported by the target
1301 will work. 32 (float) and 64 (double) are supported on all targets;
1302 80 or 128 (different flavors of long double) are also supported on some
1303 targets.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001304
Reid Spencer50c723a2007-02-19 23:54:10 +00001305 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1306 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001307 <i>size</i>.</dd>
1308
Daniel Dunbar7921a592009-06-08 22:17:53 +00001309 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1310 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001311 <i>size</i>.</dd>
Chris Lattnera381eff2009-11-07 09:35:34 +00001312
1313 <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1314 <dd>This specifies a set of native integer widths for the target CPU
1315 in bits. For example, it might contain "n32" for 32-bit PowerPC,
1316 "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64. Elements of
Eric Christopher455c5772009-12-05 02:46:03 +00001317 this set are considered to support most general arithmetic
Chris Lattnera381eff2009-11-07 09:35:34 +00001318 operations efficiently.</dd>
Reid Spencer50c723a2007-02-19 23:54:10 +00001319</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001320
Reid Spencer50c723a2007-02-19 23:54:10 +00001321<p>When constructing the data layout for a given target, LLVM starts with a
Dan Gohman61110ae2010-04-28 00:36:01 +00001322 default set of specifications which are then (possibly) overridden by the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001323 specifications in the <tt>datalayout</tt> keyword. The default specifications
1324 are given in this list:</p>
1325
Reid Spencer50c723a2007-02-19 23:54:10 +00001326<ul>
1327 <li><tt>E</tt> - big endian</li>
Dan Gohman8ad777d2010-02-23 02:44:03 +00001328 <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001329 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1330 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1331 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1332 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner67c37d12008-08-05 18:29:16 +00001333 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencer50c723a2007-02-19 23:54:10 +00001334 alignment of 64-bits</li>
1335 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1336 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1337 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1338 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1339 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar7921a592009-06-08 22:17:53 +00001340 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001341</ul>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001342
1343<p>When LLVM is determining the alignment for a given type, it uses the
1344 following rules:</p>
1345
Reid Spencer50c723a2007-02-19 23:54:10 +00001346<ol>
1347 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001348 specification is used.</li>
1349
Reid Spencer50c723a2007-02-19 23:54:10 +00001350 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001351 smallest integer type that is larger than the bitwidth of the sought type
1352 is used. If none of the specifications are larger than the bitwidth then
1353 the the largest integer type is used. For example, given the default
1354 specifications above, the i7 type will use the alignment of i8 (next
1355 largest) while both i65 and i256 will use the alignment of i64 (largest
1356 specified).</li>
1357
Reid Spencer50c723a2007-02-19 23:54:10 +00001358 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001359 largest vector type that is smaller than the sought vector type will be
1360 used as a fall back. This happens because &lt;128 x double&gt; can be
1361 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001362</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001363
Reid Spencer50c723a2007-02-19 23:54:10 +00001364</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001365
Dan Gohman6154a012009-07-27 18:07:55 +00001366<!-- ======================================================================= -->
1367<div class="doc_subsection">
1368 <a name="pointeraliasing">Pointer Aliasing Rules</a>
1369</div>
1370
1371<div class="doc_text">
1372
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001373<p>Any memory access must be done through a pointer value associated
Andreas Bolkae39f0332009-07-27 20:37:10 +00001374with an address range of the memory access, otherwise the behavior
Dan Gohman6154a012009-07-27 18:07:55 +00001375is undefined. Pointer values are associated with address ranges
1376according to the following rules:</p>
1377
1378<ul>
Dan Gohmandf12d082010-07-02 18:41:32 +00001379 <li>A pointer value is associated with the addresses associated with
1380 any value it is <i>based</i> on.
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001381 <li>An address of a global variable is associated with the address
Dan Gohman6154a012009-07-27 18:07:55 +00001382 range of the variable's storage.</li>
1383 <li>The result value of an allocation instruction is associated with
1384 the address range of the allocated storage.</li>
1385 <li>A null pointer in the default address-space is associated with
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001386 no address.</li>
Dan Gohman6154a012009-07-27 18:07:55 +00001387 <li>An integer constant other than zero or a pointer value returned
1388 from a function not defined within LLVM may be associated with address
1389 ranges allocated through mechanisms other than those provided by
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001390 LLVM. Such ranges shall not overlap with any ranges of addresses
Dan Gohman6154a012009-07-27 18:07:55 +00001391 allocated by mechanisms provided by LLVM.</li>
Dan Gohmandf12d082010-07-02 18:41:32 +00001392</ul>
1393
1394<p>A pointer value is <i>based</i> on another pointer value according
1395 to the following rules:</p>
1396
1397<ul>
1398 <li>A pointer value formed from a
1399 <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
1400 is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
1401 <li>The result value of a
1402 <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
1403 of the <tt>bitcast</tt>.</li>
1404 <li>A pointer value formed by an
1405 <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
1406 pointer values that contribute (directly or indirectly) to the
1407 computation of the pointer's value.</li>
1408 <li>The "<i>based</i> on" relationship is transitive.</li>
1409</ul>
1410
1411<p>Note that this definition of <i>"based"</i> is intentionally
1412 similar to the definition of <i>"based"</i> in C99, though it is
1413 slightly weaker.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001414
1415<p>LLVM IR does not associate types with memory. The result type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001416<tt><a href="#i_load">load</a></tt> merely indicates the size and
1417alignment of the memory from which to load, as well as the
Dan Gohman4eb47192010-06-17 19:23:50 +00001418interpretation of the value. The first operand type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001419<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1420and alignment of the store.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001421
1422<p>Consequently, type-based alias analysis, aka TBAA, aka
1423<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1424LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1425additional information which specialized optimization passes may use
1426to implement type-based alias analysis.</p>
1427
1428</div>
1429
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001430<!-- ======================================================================= -->
1431<div class="doc_subsection">
1432 <a name="volatile">Volatile Memory Accesses</a>
1433</div>
1434
1435<div class="doc_text">
1436
1437<p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
1438href="#i_store"><tt>store</tt></a>s, and <a
1439href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
1440The optimizers must not change the number of volatile operations or change their
1441order of execution relative to other volatile operations. The optimizers
1442<i>may</i> change the order of volatile operations relative to non-volatile
1443operations. This is not Java's "volatile" and has no cross-thread
1444synchronization behavior.</p>
1445
1446</div>
1447
Chris Lattner2f7c9632001-06-06 20:29:01 +00001448<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001449<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1450<!-- *********************************************************************** -->
Chris Lattner6af02f32004-12-09 16:11:40 +00001451
Misha Brukman76307852003-11-08 01:05:38 +00001452<div class="doc_text">
Chris Lattner6af02f32004-12-09 16:11:40 +00001453
Misha Brukman76307852003-11-08 01:05:38 +00001454<p>The LLVM type system is one of the most important features of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001455 intermediate representation. Being typed enables a number of optimizations
1456 to be performed on the intermediate representation directly, without having
1457 to do extra analyses on the side before the transformation. A strong type
1458 system makes it easier to read the generated code and enables novel analyses
1459 and transformations that are not feasible to perform on normal three address
1460 code representations.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +00001461
1462</div>
1463
Chris Lattner2f7c9632001-06-06 20:29:01 +00001464<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001465<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner48b383b02003-11-25 01:02:51 +00001466Classifications</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001467
Misha Brukman76307852003-11-08 01:05:38 +00001468<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001469
1470<p>The types fall into a few useful classifications:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +00001471
1472<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00001473 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001474 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001475 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001476 <td><a href="#t_integer">integer</a></td>
Reid Spencer138249b2007-05-16 18:44:01 +00001477 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001478 </tr>
1479 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001480 <td><a href="#t_floating">floating point</a></td>
1481 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001482 </tr>
1483 <tr>
1484 <td><a name="t_firstclass">first class</a></td>
Chris Lattner7824d182008-01-04 04:32:38 +00001485 <td><a href="#t_integer">integer</a>,
1486 <a href="#t_floating">floating point</a>,
1487 <a href="#t_pointer">pointer</a>,
Dan Gohman08783a882008-06-18 18:42:13 +00001488 <a href="#t_vector">vector</a>,
Dan Gohmanb9d66602008-05-12 23:51:09 +00001489 <a href="#t_struct">structure</a>,
1490 <a href="#t_array">array</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001491 <a href="#t_label">label</a>,
1492 <a href="#t_metadata">metadata</a>.
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001493 </td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001494 </tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001495 <tr>
1496 <td><a href="#t_primitive">primitive</a></td>
1497 <td><a href="#t_label">label</a>,
1498 <a href="#t_void">void</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001499 <a href="#t_floating">floating point</a>,
Dale Johannesen33e5c352010-10-01 00:48:59 +00001500 <a href="#t_x86mmx">x86mmx</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001501 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner7824d182008-01-04 04:32:38 +00001502 </tr>
1503 <tr>
1504 <td><a href="#t_derived">derived</a></td>
Chris Lattner392be582010-02-12 20:49:41 +00001505 <td><a href="#t_array">array</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001506 <a href="#t_function">function</a>,
1507 <a href="#t_pointer">pointer</a>,
1508 <a href="#t_struct">structure</a>,
1509 <a href="#t_pstruct">packed structure</a>,
1510 <a href="#t_vector">vector</a>,
1511 <a href="#t_opaque">opaque</a>.
Dan Gohman93bf60d2008-10-14 16:32:04 +00001512 </td>
Chris Lattner7824d182008-01-04 04:32:38 +00001513 </tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001514 </tbody>
Misha Brukman76307852003-11-08 01:05:38 +00001515</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001516
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001517<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1518 important. Values of these types are the only ones which can be produced by
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001519 instructions.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001520
Misha Brukman76307852003-11-08 01:05:38 +00001521</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001522
Chris Lattner2f7c9632001-06-06 20:29:01 +00001523<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001524<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner43542b32008-01-04 04:34:14 +00001525
Chris Lattner7824d182008-01-04 04:32:38 +00001526<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001527
Chris Lattner7824d182008-01-04 04:32:38 +00001528<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001529 system.</p>
Chris Lattner7824d182008-01-04 04:32:38 +00001530
Chris Lattner43542b32008-01-04 04:34:14 +00001531</div>
1532
Chris Lattner7824d182008-01-04 04:32:38 +00001533<!-- _______________________________________________________________________ -->
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001534<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1535
1536<div class="doc_text">
1537
1538<h5>Overview:</h5>
1539<p>The integer type is a very simple type that simply specifies an arbitrary
1540 bit width for the integer type desired. Any bit width from 1 bit to
1541 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1542
1543<h5>Syntax:</h5>
1544<pre>
1545 iN
1546</pre>
1547
1548<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1549 value.</p>
1550
1551<h5>Examples:</h5>
1552<table class="layout">
1553 <tr class="layout">
1554 <td class="left"><tt>i1</tt></td>
1555 <td class="left">a single-bit integer.</td>
1556 </tr>
1557 <tr class="layout">
1558 <td class="left"><tt>i32</tt></td>
1559 <td class="left">a 32-bit integer.</td>
1560 </tr>
1561 <tr class="layout">
1562 <td class="left"><tt>i1942652</tt></td>
1563 <td class="left">a really big integer of over 1 million bits.</td>
1564 </tr>
1565</table>
1566
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001567</div>
1568
1569<!-- _______________________________________________________________________ -->
Chris Lattner7824d182008-01-04 04:32:38 +00001570<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1571
1572<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001573
1574<table>
1575 <tbody>
1576 <tr><th>Type</th><th>Description</th></tr>
1577 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1578 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1579 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1580 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1581 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1582 </tbody>
1583</table>
1584
Chris Lattner7824d182008-01-04 04:32:38 +00001585</div>
1586
1587<!-- _______________________________________________________________________ -->
Dale Johannesen33e5c352010-10-01 00:48:59 +00001588<div class="doc_subsubsection"> <a name="t_x86mmx">X86mmx Type</a> </div>
1589
1590<div class="doc_text">
1591
1592<h5>Overview:</h5>
1593<p>The x86mmx type represents a value held in an MMX register on an x86 machine. The operations allowed on it are quite limited: parameters and return values, load and store, and bitcast. User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type. There are no arrays, vectors or constants of this type.</p>
1594
1595<h5>Syntax:</h5>
1596<pre>
Dale Johannesenb1f0ff12010-10-01 01:07:02 +00001597 x86mmx
Dale Johannesen33e5c352010-10-01 00:48:59 +00001598</pre>
1599
1600</div>
1601
1602<!-- _______________________________________________________________________ -->
Chris Lattner7824d182008-01-04 04:32:38 +00001603<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1604
1605<div class="doc_text">
Bill Wendling30235112009-07-20 02:39:26 +00001606
Chris Lattner7824d182008-01-04 04:32:38 +00001607<h5>Overview:</h5>
1608<p>The void type does not represent any value and has no size.</p>
1609
1610<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001611<pre>
1612 void
1613</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001614
Chris Lattner7824d182008-01-04 04:32:38 +00001615</div>
1616
1617<!-- _______________________________________________________________________ -->
1618<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1619
1620<div class="doc_text">
Bill Wendling30235112009-07-20 02:39:26 +00001621
Chris Lattner7824d182008-01-04 04:32:38 +00001622<h5>Overview:</h5>
1623<p>The label type represents code labels.</p>
1624
1625<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001626<pre>
1627 label
1628</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001629
Chris Lattner7824d182008-01-04 04:32:38 +00001630</div>
1631
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001632<!-- _______________________________________________________________________ -->
1633<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1634
1635<div class="doc_text">
Bill Wendling30235112009-07-20 02:39:26 +00001636
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001637<h5>Overview:</h5>
Nick Lewycky93e06a52009-09-27 23:27:42 +00001638<p>The metadata type represents embedded metadata. No derived types may be
1639 created from metadata except for <a href="#t_function">function</a>
1640 arguments.
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001641
1642<h5>Syntax:</h5>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001643<pre>
1644 metadata
1645</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001646
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001647</div>
1648
Chris Lattner7824d182008-01-04 04:32:38 +00001649
1650<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001651<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001652
Misha Brukman76307852003-11-08 01:05:38 +00001653<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001654
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001655<p>The real power in LLVM comes from the derived types in the system. This is
1656 what allows a programmer to represent arrays, functions, pointers, and other
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001657 useful types. Each of these types contain one or more element types which
1658 may be a primitive type, or another derived type. For example, it is
1659 possible to have a two dimensional array, using an array as the element type
1660 of another array.</p>
Dan Gohman142ccc02009-01-24 15:58:40 +00001661
Chris Lattner392be582010-02-12 20:49:41 +00001662
1663</div>
1664
1665<!-- _______________________________________________________________________ -->
1666<div class="doc_subsubsection"> <a name="t_aggregate">Aggregate Types</a> </div>
1667
1668<div class="doc_text">
1669
1670<p>Aggregate Types are a subset of derived types that can contain multiple
1671 member types. <a href="#t_array">Arrays</a>,
Chris Lattner13ee7952010-08-28 04:09:24 +00001672 <a href="#t_struct">structs</a>, and <a href="#t_vector">vectors</a> are
1673 aggregate types.</p>
Chris Lattner392be582010-02-12 20:49:41 +00001674
1675</div>
1676
Reid Spencer138249b2007-05-16 18:44:01 +00001677<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001678<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001679
Misha Brukman76307852003-11-08 01:05:38 +00001680<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001681
Chris Lattner2f7c9632001-06-06 20:29:01 +00001682<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001683<p>The array type is a very simple derived type that arranges elements
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001684 sequentially in memory. The array type requires a size (number of elements)
1685 and an underlying data type.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001686
Chris Lattner590645f2002-04-14 06:13:44 +00001687<h5>Syntax:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001688<pre>
1689 [&lt;# elements&gt; x &lt;elementtype&gt;]
1690</pre>
1691
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001692<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1693 be any type with a size.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001694
Chris Lattner590645f2002-04-14 06:13:44 +00001695<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001696<table class="layout">
1697 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001698 <td class="left"><tt>[40 x i32]</tt></td>
1699 <td class="left">Array of 40 32-bit integer values.</td>
1700 </tr>
1701 <tr class="layout">
1702 <td class="left"><tt>[41 x i32]</tt></td>
1703 <td class="left">Array of 41 32-bit integer values.</td>
1704 </tr>
1705 <tr class="layout">
1706 <td class="left"><tt>[4 x i8]</tt></td>
1707 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001708 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001709</table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001710<p>Here are some examples of multidimensional arrays:</p>
1711<table class="layout">
1712 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001713 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1714 <td class="left">3x4 array of 32-bit integer values.</td>
1715 </tr>
1716 <tr class="layout">
1717 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1718 <td class="left">12x10 array of single precision floating point values.</td>
1719 </tr>
1720 <tr class="layout">
1721 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1722 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001723 </tr>
1724</table>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001725
Dan Gohmanc74bc282009-11-09 19:01:53 +00001726<p>There is no restriction on indexing beyond the end of the array implied by
1727 a static type (though there are restrictions on indexing beyond the bounds
1728 of an allocated object in some cases). This means that single-dimension
1729 'variable sized array' addressing can be implemented in LLVM with a zero
1730 length array type. An implementation of 'pascal style arrays' in LLVM could
1731 use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001732
Misha Brukman76307852003-11-08 01:05:38 +00001733</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001734
Chris Lattner2f7c9632001-06-06 20:29:01 +00001735<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001736<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001737
Misha Brukman76307852003-11-08 01:05:38 +00001738<div class="doc_text">
Chris Lattnerda508ac2008-04-23 04:59:35 +00001739
Chris Lattner2f7c9632001-06-06 20:29:01 +00001740<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001741<p>The function type can be thought of as a function signature. It consists of
1742 a return type and a list of formal parameter types. The return type of a
Chris Lattner13ee7952010-08-28 04:09:24 +00001743 function type is a first class type or a void type.</p>
Devang Pateld6cff512008-03-10 20:49:15 +00001744
Chris Lattner2f7c9632001-06-06 20:29:01 +00001745<h5>Syntax:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001746<pre>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00001747 &lt;returntype&gt; (&lt;parameter list&gt;)
Chris Lattnerda508ac2008-04-23 04:59:35 +00001748</pre>
1749
John Criswell4c0cf7f2005-10-24 16:17:18 +00001750<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001751 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1752 which indicates that the function takes a variable number of arguments.
1753 Variable argument functions can access their arguments with
1754 the <a href="#int_varargs">variable argument handling intrinsic</a>
Chris Lattner47f2a832010-03-02 06:36:51 +00001755 functions. '<tt>&lt;returntype&gt;</tt>' is any type except
Nick Lewycky93e06a52009-09-27 23:27:42 +00001756 <a href="#t_label">label</a>.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001757
Chris Lattner2f7c9632001-06-06 20:29:01 +00001758<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001759<table class="layout">
1760 <tr class="layout">
Reid Spencer58c08712006-12-31 07:18:34 +00001761 <td class="left"><tt>i32 (i32)</tt></td>
1762 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001763 </td>
Reid Spencer58c08712006-12-31 07:18:34 +00001764 </tr><tr class="layout">
Chris Lattner47f2a832010-03-02 06:36:51 +00001765 <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencer655dcc62006-12-31 07:20:23 +00001766 </tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00001767 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
Chris Lattner47f2a832010-03-02 06:36:51 +00001768 an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
1769 returning <tt>float</tt>.
Reid Spencer58c08712006-12-31 07:18:34 +00001770 </td>
1771 </tr><tr class="layout">
1772 <td class="left"><tt>i32 (i8*, ...)</tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00001773 <td class="left">A vararg function that takes at least one
1774 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1775 which returns an integer. This is the signature for <tt>printf</tt> in
Reid Spencer58c08712006-12-31 07:18:34 +00001776 LLVM.
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001777 </td>
Devang Patele3dfc1c2008-03-24 05:35:41 +00001778 </tr><tr class="layout">
1779 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00001780 <td class="left">A function taking an <tt>i32</tt>, returning a
1781 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
Devang Patele3dfc1c2008-03-24 05:35:41 +00001782 </td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001783 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001784</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001785
Misha Brukman76307852003-11-08 01:05:38 +00001786</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001787
Chris Lattner2f7c9632001-06-06 20:29:01 +00001788<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001789<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001790
Misha Brukman76307852003-11-08 01:05:38 +00001791<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001792
Chris Lattner2f7c9632001-06-06 20:29:01 +00001793<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001794<p>The structure type is used to represent a collection of data members together
1795 in memory. The packing of the field types is defined to match the ABI of the
1796 underlying processor. The elements of a structure may be any type that has a
1797 size.</p>
1798
Jeffrey Yasskinf991bbb2010-01-11 19:19:26 +00001799<p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
1800 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
1801 with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
1802 Structures in registers are accessed using the
1803 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
1804 '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001805<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00001806<pre>
1807 { &lt;type list&gt; }
1808</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001809
Chris Lattner2f7c9632001-06-06 20:29:01 +00001810<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001811<table class="layout">
1812 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001813 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1814 <td class="left">A triple of three <tt>i32</tt> values</td>
1815 </tr><tr class="layout">
1816 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1817 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1818 second element is a <a href="#t_pointer">pointer</a> to a
1819 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1820 an <tt>i32</tt>.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001821 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001822</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001823
Misha Brukman76307852003-11-08 01:05:38 +00001824</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001825
Chris Lattner2f7c9632001-06-06 20:29:01 +00001826<!-- _______________________________________________________________________ -->
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001827<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1828</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001829
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001830<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001831
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001832<h5>Overview:</h5>
1833<p>The packed structure type is used to represent a collection of data members
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001834 together in memory. There is no padding between fields. Further, the
1835 alignment of a packed structure is 1 byte. The elements of a packed
1836 structure may be any type that has a size.</p>
1837
1838<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1839 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1840 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1841
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001842<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00001843<pre>
1844 &lt; { &lt;type list&gt; } &gt;
1845</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001846
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001847<h5>Examples:</h5>
1848<table class="layout">
1849 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001850 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1851 <td class="left">A triple of three <tt>i32</tt> values</td>
1852 </tr><tr class="layout">
Bill Wendlingb175fa42008-09-07 10:26:33 +00001853 <td class="left">
1854<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen5819f182007-04-22 01:17:39 +00001855 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1856 second element is a <a href="#t_pointer">pointer</a> to a
1857 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1858 an <tt>i32</tt>.</td>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001859 </tr>
1860</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001861
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001862</div>
1863
1864<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001865<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Chris Lattner4a67c912009-02-08 19:53:29 +00001866
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001867<div class="doc_text">
1868
1869<h5>Overview:</h5>
Dan Gohman88481112010-02-25 16:50:07 +00001870<p>The pointer type is used to specify memory locations.
1871 Pointers are commonly used to reference objects in memory.</p>
1872
1873<p>Pointer types may have an optional address space attribute defining the
1874 numbered address space where the pointed-to object resides. The default
1875 address space is number zero. The semantics of non-zero address
1876 spaces are target-specific.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001877
1878<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
1879 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00001880
Chris Lattner590645f2002-04-14 06:13:44 +00001881<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00001882<pre>
1883 &lt;type&gt; *
1884</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001885
Chris Lattner590645f2002-04-14 06:13:44 +00001886<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001887<table class="layout">
1888 <tr class="layout">
Dan Gohman623806e2009-01-04 23:44:43 +00001889 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00001890 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1891 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1892 </tr>
1893 <tr class="layout">
Dan Gohmanaabfdb32010-05-28 17:13:49 +00001894 <td class="left"><tt>i32 (i32*) *</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00001895 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001896 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner747359f2007-12-19 05:04:11 +00001897 <tt>i32</tt>.</td>
1898 </tr>
1899 <tr class="layout">
1900 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1901 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1902 that resides in address space #5.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001903 </tr>
Misha Brukman76307852003-11-08 01:05:38 +00001904</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001905
Misha Brukman76307852003-11-08 01:05:38 +00001906</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001907
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001908<!-- _______________________________________________________________________ -->
Reid Spencer404a3252007-02-15 03:07:05 +00001909<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001910
Misha Brukman76307852003-11-08 01:05:38 +00001911<div class="doc_text">
Chris Lattner37b6b092005-04-25 17:34:15 +00001912
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001913<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001914<p>A vector type is a simple derived type that represents a vector of elements.
1915 Vector types are used when multiple primitive data are operated in parallel
1916 using a single instruction (SIMD). A vector type requires a size (number of
Duncan Sands31c0e0e2009-11-27 13:38:03 +00001917 elements) and an underlying primitive data type. Vector types are considered
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001918 <a href="#t_firstclass">first class</a>.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001919
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001920<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001921<pre>
1922 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1923</pre>
1924
Chris Lattnerf11031a2010-10-10 18:20:35 +00001925<p>The number of elements is a constant integer value larger than 0; elementtype
1926 may be any integer or floating point type. Vectors of size zero are not
1927 allowed, and pointers are not allowed as the element type.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001928
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001929<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001930<table class="layout">
1931 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001932 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1933 <td class="left">Vector of 4 32-bit integer values.</td>
1934 </tr>
1935 <tr class="layout">
1936 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1937 <td class="left">Vector of 8 32-bit floating-point values.</td>
1938 </tr>
1939 <tr class="layout">
1940 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1941 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001942 </tr>
1943</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001944
Misha Brukman76307852003-11-08 01:05:38 +00001945</div>
1946
Chris Lattner37b6b092005-04-25 17:34:15 +00001947<!-- _______________________________________________________________________ -->
1948<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1949<div class="doc_text">
1950
1951<h5>Overview:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001952<p>Opaque types are used to represent unknown types in the system. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001953 corresponds (for example) to the C notion of a forward declared structure
1954 type. In LLVM, opaque types can eventually be resolved to any type (not just
1955 a structure type).</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001956
1957<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001958<pre>
1959 opaque
1960</pre>
1961
1962<h5>Examples:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001963<table class="layout">
1964 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001965 <td class="left"><tt>opaque</tt></td>
1966 <td class="left">An opaque type.</td>
Chris Lattner37b6b092005-04-25 17:34:15 +00001967 </tr>
1968</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001969
Chris Lattner37b6b092005-04-25 17:34:15 +00001970</div>
1971
Chris Lattnercf7a5842009-02-02 07:32:36 +00001972<!-- ======================================================================= -->
1973<div class="doc_subsection">
1974 <a name="t_uprefs">Type Up-references</a>
1975</div>
1976
1977<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001978
Chris Lattnercf7a5842009-02-02 07:32:36 +00001979<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001980<p>An "up reference" allows you to refer to a lexically enclosing type without
1981 requiring it to have a name. For instance, a structure declaration may
1982 contain a pointer to any of the types it is lexically a member of. Example
1983 of up references (with their equivalent as named type declarations)
1984 include:</p>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001985
1986<pre>
Chris Lattnerbf1d5452009-02-09 10:00:56 +00001987 { \2 * } %x = type { %x* }
Chris Lattnercf7a5842009-02-02 07:32:36 +00001988 { \2 }* %y = type { %y }*
1989 \1* %z = type %z*
1990</pre>
1991
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001992<p>An up reference is needed by the asmprinter for printing out cyclic types
1993 when there is no declared name for a type in the cycle. Because the
1994 asmprinter does not want to print out an infinite type string, it needs a
1995 syntax to handle recursive types that have no names (all names are optional
1996 in llvm IR).</p>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001997
1998<h5>Syntax:</h5>
1999<pre>
2000 \&lt;level&gt;
2001</pre>
2002
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002003<p>The level is the count of the lexical type that is being referred to.</p>
Chris Lattnercf7a5842009-02-02 07:32:36 +00002004
2005<h5>Examples:</h5>
Chris Lattnercf7a5842009-02-02 07:32:36 +00002006<table class="layout">
2007 <tr class="layout">
2008 <td class="left"><tt>\1*</tt></td>
2009 <td class="left">Self-referential pointer.</td>
2010 </tr>
2011 <tr class="layout">
2012 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
2013 <td class="left">Recursive structure where the upref refers to the out-most
2014 structure.</td>
2015 </tr>
2016</table>
Chris Lattnercf7a5842009-02-02 07:32:36 +00002017
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002018</div>
Chris Lattner37b6b092005-04-25 17:34:15 +00002019
Chris Lattner74d3f822004-12-09 17:30:23 +00002020<!-- *********************************************************************** -->
2021<div class="doc_section"> <a name="constants">Constants</a> </div>
2022<!-- *********************************************************************** -->
2023
2024<div class="doc_text">
2025
2026<p>LLVM has several different basic types of constants. This section describes
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002027 them all and their syntax.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002028
2029</div>
2030
2031<!-- ======================================================================= -->
Reid Spencer8f08d802004-12-09 18:02:53 +00002032<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002033
2034<div class="doc_text">
2035
2036<dl>
2037 <dt><b>Boolean constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002038 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00002039 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002040
2041 <dt><b>Integer constants</b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002042 <dd>Standard integers (such as '4') are constants of
2043 the <a href="#t_integer">integer</a> type. Negative numbers may be used
2044 with integer types.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002045
2046 <dt><b>Floating point constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002047 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002048 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2049 notation (see below). The assembler requires the exact decimal value of a
2050 floating-point constant. For example, the assembler accepts 1.25 but
2051 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
2052 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002053
2054 <dt><b>Null pointer constants</b></dt>
John Criswelldfe6a862004-12-10 15:51:16 +00002055 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002056 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002057</dl>
2058
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002059<p>The one non-intuitive notation for constants is the hexadecimal form of
2060 floating point constants. For example, the form '<tt>double
2061 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2062 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
2063 constants are required (and the only time that they are generated by the
2064 disassembler) is when a floating point constant must be emitted but it cannot
2065 be represented as a decimal floating point number in a reasonable number of
2066 digits. For example, NaN's, infinities, and other special values are
2067 represented in their IEEE hexadecimal format so that assembly and disassembly
2068 do not cause any bits to change in the constants.</p>
2069
Dale Johannesencd4a3012009-02-11 22:14:51 +00002070<p>When using the hexadecimal form, constants of types float and double are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002071 represented using the 16-digit form shown above (which matches the IEEE754
2072 representation for double); float values must, however, be exactly
2073 representable as IEE754 single precision. Hexadecimal format is always used
2074 for long double, and there are three forms of long double. The 80-bit format
2075 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2076 The 128-bit format used by PowerPC (two adjacent doubles) is represented
2077 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
2078 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2079 currently supported target uses this format. Long doubles will only work if
2080 they match the long double format on your target. All hexadecimal formats
2081 are big-endian (sign bit at the left).</p>
2082
Dale Johannesen33e5c352010-10-01 00:48:59 +00002083<p>There are no constants of type x86mmx.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002084</div>
2085
2086<!-- ======================================================================= -->
Chris Lattner361bfcd2009-02-28 18:32:25 +00002087<div class="doc_subsection">
Bill Wendling972b7202009-07-20 02:32:41 +00002088<a name="aggregateconstants"></a> <!-- old anchor -->
2089<a name="complexconstants">Complex Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +00002090</div>
2091
2092<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002093
Chris Lattner361bfcd2009-02-28 18:32:25 +00002094<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002095 constants and smaller complex constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002096
2097<dl>
2098 <dt><b>Structure constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002099 <dd>Structure constants are represented with notation similar to structure
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002100 type definitions (a comma separated list of elements, surrounded by braces
2101 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2102 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2103 Structure constants must have <a href="#t_struct">structure type</a>, and
2104 the number and types of elements must match those specified by the
2105 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002106
2107 <dt><b>Array constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002108 <dd>Array constants are represented with notation similar to array type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002109 definitions (a comma separated list of elements, surrounded by square
2110 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
2111 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
2112 the number and types of elements must match those specified by the
2113 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002114
Reid Spencer404a3252007-02-15 03:07:05 +00002115 <dt><b>Vector constants</b></dt>
Reid Spencer404a3252007-02-15 03:07:05 +00002116 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002117 definitions (a comma separated list of elements, surrounded by
2118 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
2119 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
2120 have <a href="#t_vector">vector type</a>, and the number and types of
2121 elements must match those specified by the type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002122
2123 <dt><b>Zero initialization</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002124 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Chris Lattner392be582010-02-12 20:49:41 +00002125 value to zero of <em>any</em> type, including scalar and
2126 <a href="#t_aggregate">aggregate</a> types.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002127 This is often used to avoid having to print large zero initializers
2128 (e.g. for large arrays) and is always exactly equivalent to using explicit
2129 zero initializers.</dd>
Nick Lewycky49f89192009-04-04 07:22:01 +00002130
2131 <dt><b>Metadata node</b></dt>
Nick Lewycky8e2c4f42009-05-30 16:08:30 +00002132 <dd>A metadata node is a structure-like constant with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002133 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
2134 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
2135 be interpreted as part of the instruction stream, metadata is a place to
2136 attach additional information such as debug info.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002137</dl>
2138
2139</div>
2140
2141<!-- ======================================================================= -->
2142<div class="doc_subsection">
2143 <a name="globalconstants">Global Variable and Function Addresses</a>
2144</div>
2145
2146<div class="doc_text">
2147
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002148<p>The addresses of <a href="#globalvars">global variables</a>
2149 and <a href="#functionstructure">functions</a> are always implicitly valid
2150 (link-time) constants. These constants are explicitly referenced when
2151 the <a href="#identifiers">identifier for the global</a> is used and always
2152 have <a href="#t_pointer">pointer</a> type. For example, the following is a
2153 legal LLVM file:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002154
Benjamin Kramer79698be2010-07-13 12:26:09 +00002155<pre class="doc_code">
Chris Lattner00538a12007-06-06 18:28:13 +00002156@X = global i32 17
2157@Y = global i32 42
2158@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattner74d3f822004-12-09 17:30:23 +00002159</pre>
2160
2161</div>
2162
2163<!-- ======================================================================= -->
Reid Spencer641f5c92004-12-09 18:13:12 +00002164<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002165<div class="doc_text">
2166
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002167<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
Benjamin Kramer0f420382009-10-12 14:46:08 +00002168 indicates that the user of the value may receive an unspecified bit-pattern.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002169 Undefined values may be of any type (other than '<tt>label</tt>'
2170 or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002171
Chris Lattner92ada5d2009-09-11 01:49:31 +00002172<p>Undefined values are useful because they indicate to the compiler that the
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002173 program is well defined no matter what value is used. This gives the
2174 compiler more freedom to optimize. Here are some examples of (potentially
2175 surprising) transformations that are valid (in pseudo IR):</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002176
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002177
Benjamin Kramer79698be2010-07-13 12:26:09 +00002178<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002179 %A = add %X, undef
2180 %B = sub %X, undef
2181 %C = xor %X, undef
2182Safe:
2183 %A = undef
2184 %B = undef
2185 %C = undef
2186</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002187
2188<p>This is safe because all of the output bits are affected by the undef bits.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002189 Any output bit can have a zero or one depending on the input bits.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002190
Benjamin Kramer79698be2010-07-13 12:26:09 +00002191<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002192 %A = or %X, undef
2193 %B = and %X, undef
2194Safe:
2195 %A = -1
2196 %B = 0
2197Unsafe:
2198 %A = undef
2199 %B = undef
2200</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002201
2202<p>These logical operations have bits that are not always affected by the input.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002203 For example, if <tt>%X</tt> has a zero bit, then the output of the
2204 '<tt>and</tt>' operation will always be a zero for that bit, no matter what
2205 the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
2206 optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
2207 However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
2208 0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
2209 all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
2210 set, allowing the '<tt>or</tt>' to be folded to -1.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002211
Benjamin Kramer79698be2010-07-13 12:26:09 +00002212<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002213 %A = select undef, %X, %Y
2214 %B = select undef, 42, %Y
2215 %C = select %X, %Y, undef
2216Safe:
2217 %A = %X (or %Y)
2218 %B = 42 (or %Y)
2219 %C = %Y
2220Unsafe:
2221 %A = undef
2222 %B = undef
2223 %C = undef
2224</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002225
Bill Wendling6bbe0912010-10-27 01:07:41 +00002226<p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
2227 branch) conditions can go <em>either way</em>, but they have to come from one
2228 of the two operands. In the <tt>%A</tt> example, if <tt>%X</tt> and
2229 <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
2230 have to have a cleared low bit. However, in the <tt>%C</tt> example, the
2231 optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
2232 same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
2233 eliminated.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002234
Benjamin Kramer79698be2010-07-13 12:26:09 +00002235<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002236 %A = xor undef, undef
Eric Christopher455c5772009-12-05 02:46:03 +00002237
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002238 %B = undef
2239 %C = xor %B, %B
2240
2241 %D = undef
2242 %E = icmp lt %D, 4
2243 %F = icmp gte %D, 4
2244
2245Safe:
2246 %A = undef
2247 %B = undef
2248 %C = undef
2249 %D = undef
2250 %E = undef
2251 %F = undef
2252</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002253
Bill Wendling6bbe0912010-10-27 01:07:41 +00002254<p>This example points out that two '<tt>undef</tt>' operands are not
2255 necessarily the same. This can be surprising to people (and also matches C
2256 semantics) where they assume that "<tt>X^X</tt>" is always zero, even
2257 if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
2258 short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
2259 its value over its "live range". This is true because the variable doesn't
2260 actually <em>have a live range</em>. Instead, the value is logically read
2261 from arbitrary registers that happen to be around when needed, so the value
2262 is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
2263 need to have the same semantics or the core LLVM "replace all uses with"
2264 concept would not hold.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002265
Benjamin Kramer79698be2010-07-13 12:26:09 +00002266<pre class="doc_code">
Chris Lattnera34a7182009-09-07 23:33:52 +00002267 %A = fdiv undef, %X
2268 %B = fdiv %X, undef
2269Safe:
2270 %A = undef
2271b: unreachable
2272</pre>
Chris Lattnera34a7182009-09-07 23:33:52 +00002273
2274<p>These examples show the crucial difference between an <em>undefined
Bill Wendling6bbe0912010-10-27 01:07:41 +00002275 value</em> and <em>undefined behavior</em>. An undefined value (like
2276 '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
2277 the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
2278 the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
2279 defined on SNaN's. However, in the second example, we can make a more
2280 aggressive assumption: because the <tt>undef</tt> is allowed to be an
2281 arbitrary value, we are allowed to assume that it could be zero. Since a
2282 divide by zero has <em>undefined behavior</em>, we are allowed to assume that
2283 the operation does not execute at all. This allows us to delete the divide and
2284 all code after it. Because the undefined operation "can't happen", the
2285 optimizer can assume that it occurs in dead code.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002286
Benjamin Kramer79698be2010-07-13 12:26:09 +00002287<pre class="doc_code">
Chris Lattnera34a7182009-09-07 23:33:52 +00002288a: store undef -> %X
2289b: store %X -> undef
2290Safe:
2291a: &lt;deleted&gt;
2292b: unreachable
2293</pre>
Chris Lattnera34a7182009-09-07 23:33:52 +00002294
Bill Wendling6bbe0912010-10-27 01:07:41 +00002295<p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
2296 undefined value can be assumed to not have any effect; we can assume that the
2297 value is overwritten with bits that happen to match what was already there.
2298 However, a store <em>to</em> an undefined location could clobber arbitrary
2299 memory, therefore, it has undefined behavior.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002300
Chris Lattner74d3f822004-12-09 17:30:23 +00002301</div>
2302
2303<!-- ======================================================================= -->
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002304<div class="doc_subsection"><a name="trapvalues">Trap Values</a></div>
2305<div class="doc_text">
2306
Dan Gohmanb2a709b2010-04-26 20:21:21 +00002307<p>Trap values are similar to <a href="#undefvalues">undef values</a>, however
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002308 instead of representing an unspecified bit pattern, they represent the
2309 fact that an instruction or constant expression which cannot evoke side
2310 effects has nevertheless detected a condition which results in undefined
Dan Gohmanb2a709b2010-04-26 20:21:21 +00002311 behavior.</p>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002312
Dan Gohman2f1ae062010-04-28 00:49:41 +00002313<p>There is currently no way of representing a trap value in the IR; they
Dan Gohmanac355aa2010-05-03 14:51:43 +00002314 only exist when produced by operations such as
Dan Gohman2f1ae062010-04-28 00:49:41 +00002315 <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002316
Dan Gohman2f1ae062010-04-28 00:49:41 +00002317<p>Trap value behavior is defined in terms of value <i>dependence</i>:</p>
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002318
Dan Gohman2f1ae062010-04-28 00:49:41 +00002319<ul>
2320<li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
2321 their operands.</li>
2322
2323<li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
2324 to their dynamic predecessor basic block.</li>
2325
2326<li>Function arguments depend on the corresponding actual argument values in
2327 the dynamic callers of their functions.</li>
2328
2329<li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
2330 <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
2331 control back to them.</li>
2332
Dan Gohman7292a752010-05-03 14:55:22 +00002333<li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
2334 <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_unwind"><tt>unwind</tt></a>,
2335 or exception-throwing call instructions that dynamically transfer control
2336 back to them.</li>
2337
Dan Gohman2f1ae062010-04-28 00:49:41 +00002338<li>Non-volatile loads and stores depend on the most recent stores to all of the
2339 referenced memory addresses, following the order in the IR
2340 (including loads and stores implied by intrinsics such as
2341 <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
2342
Dan Gohman3513ea52010-05-03 14:59:34 +00002343<!-- TODO: In the case of multiple threads, this only applies if the store
2344 "happens-before" the load or store. -->
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002345
Dan Gohman2f1ae062010-04-28 00:49:41 +00002346<!-- TODO: floating-point exception state -->
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002347
Dan Gohman2f1ae062010-04-28 00:49:41 +00002348<li>An instruction with externally visible side effects depends on the most
2349 recent preceding instruction with externally visible side effects, following
Dan Gohman6c858db2010-07-06 15:26:33 +00002350 the order in the IR. (This includes
2351 <a href="#volatile">volatile operations</a>.)</li>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002352
Dan Gohman7292a752010-05-03 14:55:22 +00002353<li>An instruction <i>control-depends</i> on a
2354 <a href="#terminators">terminator instruction</a>
2355 if the terminator instruction has multiple successors and the instruction
2356 is always executed when control transfers to one of the successors, and
2357 may not be executed when control is transfered to another.</li>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002358
2359<li>Dependence is transitive.</li>
2360
2361</ul>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002362
2363<p>Whenever a trap value is generated, all values which depend on it evaluate
2364 to trap. If they have side effects, the evoke their side effects as if each
2365 operand with a trap value were undef. If they have externally-visible side
2366 effects, the behavior is undefined.</p>
2367
2368<p>Here are some examples:</p>
Dan Gohman48a25882010-04-26 20:54:53 +00002369
Benjamin Kramer79698be2010-07-13 12:26:09 +00002370<pre class="doc_code">
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002371entry:
2372 %trap = sub nuw i32 0, 1 ; Results in a trap value.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002373 %still_trap = and i32 %trap, 0 ; Whereas (and i32 undef, 0) would return 0.
2374 %trap_yet_again = getelementptr i32* @h, i32 %still_trap
2375 store i32 0, i32* %trap_yet_again ; undefined behavior
2376
2377 store i32 %trap, i32* @g ; Trap value conceptually stored to memory.
2378 %trap2 = load i32* @g ; Returns a trap value, not just undef.
2379
2380 volatile store i32 %trap, i32* @g ; External observation; undefined behavior.
2381
2382 %narrowaddr = bitcast i32* @g to i16*
2383 %wideaddr = bitcast i32* @g to i64*
2384 %trap3 = load 16* %narrowaddr ; Returns a trap value.
2385 %trap4 = load i64* %widaddr ; Returns a trap value.
2386
2387 %cmp = icmp i32 slt %trap, 0 ; Returns a trap value.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002388 %br i1 %cmp, %true, %end ; Branch to either destination.
2389
2390true:
Dan Gohman2f1ae062010-04-28 00:49:41 +00002391 volatile store i32 0, i32* @g ; This is control-dependent on %cmp, so
2392 ; it has undefined behavior.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002393 br label %end
2394
2395end:
2396 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2397 ; Both edges into this PHI are
2398 ; control-dependent on %cmp, so this
Dan Gohman2f1ae062010-04-28 00:49:41 +00002399 ; always results in a trap value.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002400
2401 volatile store i32 0, i32* @g ; %end is control-equivalent to %entry
2402 ; so this is defined (ignoring earlier
2403 ; undefined behavior in this example).
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002404</pre>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002405
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002406</div>
2407
2408<!-- ======================================================================= -->
Chris Lattner2bfd3202009-10-27 21:19:13 +00002409<div class="doc_subsection"><a name="blockaddress">Addresses of Basic
2410 Blocks</a></div>
Chris Lattnere4801f72009-10-27 21:01:34 +00002411<div class="doc_text">
2412
Chris Lattneraa99c942009-11-01 01:27:45 +00002413<p><b><tt>blockaddress(@function, %block)</tt></b></p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002414
2415<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
Chris Lattner5c5f0ac2009-10-27 21:49:40 +00002416 basic block in the specified function, and always has an i8* type. Taking
Chris Lattneraa99c942009-11-01 01:27:45 +00002417 the address of the entry block is illegal.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002418
Chris Lattnere4801f72009-10-27 21:01:34 +00002419<p>This value only has defined behavior when used as an operand to the
Bill Wendling6bbe0912010-10-27 01:07:41 +00002420 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
2421 comparisons against null. Pointer equality tests between labels addresses
2422 results in undefined behavior &mdash; though, again, comparison against null
2423 is ok, and no label is equal to the null pointer. This may be passed around
2424 as an opaque pointer sized value as long as the bits are not inspected. This
2425 allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
2426 long as the original value is reconstituted before the <tt>indirectbr</tt>
2427 instruction.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002428
Bill Wendling6bbe0912010-10-27 01:07:41 +00002429<p>Finally, some targets may provide defined semantics when using the value as
2430 the operand to an inline assembly, but that is target specific.</p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002431
2432</div>
2433
2434
2435<!-- ======================================================================= -->
Chris Lattner74d3f822004-12-09 17:30:23 +00002436<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
2437</div>
2438
2439<div class="doc_text">
2440
2441<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002442 to be used as constants. Constant expressions may be of
2443 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2444 operation that does not have side effects (e.g. load and call are not
Bill Wendling6bbe0912010-10-27 01:07:41 +00002445 supported). The following is the syntax for constant expressions:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002446
2447<dl>
Dan Gohmand6a6f612010-05-28 17:07:41 +00002448 <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002449 <dd>Truncate a constant to another type. The bit size of CST must be larger
2450 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002451
Dan Gohmand6a6f612010-05-28 17:07:41 +00002452 <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002453 <dd>Zero extend a constant to another type. The bit size of CST must be
Duncan Sandsa522e562010-07-13 12:06:14 +00002454 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002455
Dan Gohmand6a6f612010-05-28 17:07:41 +00002456 <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002457 <dd>Sign extend a constant to another type. The bit size of CST must be
Duncan Sandsa522e562010-07-13 12:06:14 +00002458 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002459
Dan Gohmand6a6f612010-05-28 17:07:41 +00002460 <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002461 <dd>Truncate a floating point constant to another floating point type. The
2462 size of CST must be larger than the size of TYPE. Both types must be
2463 floating point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002464
Dan Gohmand6a6f612010-05-28 17:07:41 +00002465 <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002466 <dd>Floating point extend a constant to another type. The size of CST must be
2467 smaller or equal to the size of TYPE. Both types must be floating
2468 point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002469
Dan Gohmand6a6f612010-05-28 17:07:41 +00002470 <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002471 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002472 constant. TYPE must be a scalar or vector integer type. CST must be of
2473 scalar or vector floating point type. Both CST and TYPE must be scalars,
2474 or vectors of the same number of elements. If the value won't fit in the
2475 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002476
Dan Gohmand6a6f612010-05-28 17:07:41 +00002477 <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002478 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002479 constant. TYPE must be a scalar or vector integer type. CST must be of
2480 scalar or vector floating point type. Both CST and TYPE must be scalars,
2481 or vectors of the same number of elements. If the value won't fit in the
2482 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002483
Dan Gohmand6a6f612010-05-28 17:07:41 +00002484 <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002485 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002486 constant. TYPE must be a scalar or vector floating point type. CST must be
2487 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2488 vectors of the same number of elements. If the value won't fit in the
2489 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002490
Dan Gohmand6a6f612010-05-28 17:07:41 +00002491 <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002492 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002493 constant. TYPE must be a scalar or vector floating point type. CST must be
2494 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2495 vectors of the same number of elements. If the value won't fit in the
2496 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002497
Dan Gohmand6a6f612010-05-28 17:07:41 +00002498 <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
Reid Spencer5b950642006-11-11 23:08:07 +00002499 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002500 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2501 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2502 make it fit in <tt>TYPE</tt>.</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002503
Dan Gohmand6a6f612010-05-28 17:07:41 +00002504 <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002505 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2506 type. CST must be of integer type. The CST value is zero extended,
2507 truncated, or unchanged to make it fit in a pointer size. This one is
2508 <i>really</i> dangerous!</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002509
Dan Gohmand6a6f612010-05-28 17:07:41 +00002510 <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
Chris Lattner789dee32009-02-28 18:27:03 +00002511 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2512 are the same as those for the <a href="#i_bitcast">bitcast
2513 instruction</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002514
Dan Gohmand6a6f612010-05-28 17:07:41 +00002515 <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2516 <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002517 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002518 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2519 instruction, the index list may have zero or more indexes, which are
2520 required to make sense for the type of "CSTPTR".</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002521
Dan Gohmand6a6f612010-05-28 17:07:41 +00002522 <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002523 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Reid Spencer9965ee72006-12-04 19:23:19 +00002524
Dan Gohmand6a6f612010-05-28 17:07:41 +00002525 <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer9965ee72006-12-04 19:23:19 +00002526 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2527
Dan Gohmand6a6f612010-05-28 17:07:41 +00002528 <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer9965ee72006-12-04 19:23:19 +00002529 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002530
Dan Gohmand6a6f612010-05-28 17:07:41 +00002531 <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002532 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2533 constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002534
Dan Gohmand6a6f612010-05-28 17:07:41 +00002535 <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002536 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2537 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002538
Dan Gohmand6a6f612010-05-28 17:07:41 +00002539 <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002540 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2541 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002542
Nick Lewycky9ab9a7f2010-05-29 06:44:15 +00002543 <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
2544 <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
2545 constants. The index list is interpreted in a similar manner as indices in
2546 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2547 index value must be specified.</dd>
2548
2549 <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
2550 <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
2551 constants. The index list is interpreted in a similar manner as indices in
2552 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2553 index value must be specified.</dd>
2554
Dan Gohmand6a6f612010-05-28 17:07:41 +00002555 <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002556 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2557 be any of the <a href="#binaryops">binary</a>
2558 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2559 on operands are the same as those for the corresponding instruction
2560 (e.g. no bitwise operations on floating point values are allowed).</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002561</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002562
Chris Lattner74d3f822004-12-09 17:30:23 +00002563</div>
Chris Lattnerb1652612004-03-08 16:49:10 +00002564
Chris Lattner2f7c9632001-06-06 20:29:01 +00002565<!-- *********************************************************************** -->
Chris Lattner98f013c2006-01-25 23:47:57 +00002566<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2567<!-- *********************************************************************** -->
2568
2569<!-- ======================================================================= -->
2570<div class="doc_subsection">
2571<a name="inlineasm">Inline Assembler Expressions</a>
2572</div>
2573
2574<div class="doc_text">
2575
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002576<p>LLVM supports inline assembler expressions (as opposed
2577 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2578 a special value. This value represents the inline assembler as a string
2579 (containing the instructions to emit), a list of operand constraints (stored
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002580 as a string), a flag that indicates whether or not the inline asm
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002581 expression has side effects, and a flag indicating whether the function
2582 containing the asm needs to align its stack conservatively. An example
2583 inline assembler expression is:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002584
Benjamin Kramer79698be2010-07-13 12:26:09 +00002585<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002586i32 (i32) asm "bswap $0", "=r,r"
Chris Lattner98f013c2006-01-25 23:47:57 +00002587</pre>
2588
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002589<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2590 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2591 have:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002592
Benjamin Kramer79698be2010-07-13 12:26:09 +00002593<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002594%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattner98f013c2006-01-25 23:47:57 +00002595</pre>
2596
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002597<p>Inline asms with side effects not visible in the constraint list must be
2598 marked as having side effects. This is done through the use of the
2599 '<tt>sideeffect</tt>' keyword, like so:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002600
Benjamin Kramer79698be2010-07-13 12:26:09 +00002601<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002602call void asm sideeffect "eieio", ""()
Chris Lattner98f013c2006-01-25 23:47:57 +00002603</pre>
2604
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002605<p>In some cases inline asms will contain code that will not work unless the
2606 stack is aligned in some way, such as calls or SSE instructions on x86,
2607 yet will not contain code that does that alignment within the asm.
2608 The compiler should make conservative assumptions about what the asm might
2609 contain and should generate its usual stack alignment code in the prologue
2610 if the '<tt>alignstack</tt>' keyword is present:</p>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002611
Benjamin Kramer79698be2010-07-13 12:26:09 +00002612<pre class="doc_code">
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002613call void asm alignstack "eieio", ""()
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002614</pre>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002615
2616<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2617 first.</p>
2618
Chris Lattner98f013c2006-01-25 23:47:57 +00002619<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002620 documented here. Constraints on what can be done (e.g. duplication, moving,
2621 etc need to be documented). This is probably best done by reference to
2622 another document that covers inline asm from a holistic perspective.</p>
Chris Lattner51065562010-04-07 05:38:05 +00002623</div>
2624
2625<div class="doc_subsubsection">
2626<a name="inlineasm_md">Inline Asm Metadata</a>
2627</div>
2628
2629<div class="doc_text">
2630
2631<p>The call instructions that wrap inline asm nodes may have a "!srcloc" MDNode
Chris Lattner79ffdc72010-11-17 08:20:42 +00002632 attached to it that contains a list of constant integers. If present, the
2633 code generator will use the integer as the location cookie value when report
Chris Lattner51065562010-04-07 05:38:05 +00002634 errors through the LLVMContext error reporting mechanisms. This allows a
Dan Gohman61110ae2010-04-28 00:36:01 +00002635 front-end to correlate backend errors that occur with inline asm back to the
Chris Lattner51065562010-04-07 05:38:05 +00002636 source code that produced it. For example:</p>
2637
Benjamin Kramer79698be2010-07-13 12:26:09 +00002638<pre class="doc_code">
Chris Lattner51065562010-04-07 05:38:05 +00002639call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
2640...
2641!42 = !{ i32 1234567 }
2642</pre>
Chris Lattner51065562010-04-07 05:38:05 +00002643
2644<p>It is up to the front-end to make sense of the magic numbers it places in the
Chris Lattner79ffdc72010-11-17 08:20:42 +00002645 IR. If the MDNode contains multiple constants, the code generator will use
2646 the one that corresponds to the line of the asm that the error occurs on.</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002647
2648</div>
2649
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002650<!-- ======================================================================= -->
2651<div class="doc_subsection"><a name="metadata">Metadata Nodes and Metadata
2652 Strings</a>
2653</div>
2654
2655<div class="doc_text">
2656
2657<p>LLVM IR allows metadata to be attached to instructions in the program that
2658 can convey extra information about the code to the optimizers and code
2659 generator. One example application of metadata is source-level debug
2660 information. There are two metadata primitives: strings and nodes. All
2661 metadata has the <tt>metadata</tt> type and is identified in syntax by a
2662 preceding exclamation point ('<tt>!</tt>').</p>
2663
2664<p>A metadata string is a string surrounded by double quotes. It can contain
2665 any character by escaping non-printable characters with "\xx" where "xx" is
2666 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
2667
2668<p>Metadata nodes are represented with notation similar to structure constants
2669 (a comma separated list of elements, surrounded by braces and preceded by an
2670 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2671 10}</tt>". Metadata nodes can have any values as their operand.</p>
2672
2673<p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of
2674 metadata nodes, which can be looked up in the module symbol table. For
2675 example: "<tt>!foo = metadata !{!4, !3}</tt>".
2676
Devang Patel9984bd62010-03-04 23:44:48 +00002677<p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt>
Benjamin Kramer79698be2010-07-13 12:26:09 +00002678 function is using two metadata arguments.</p>
Devang Patel9984bd62010-03-04 23:44:48 +00002679
Benjamin Kramer79698be2010-07-13 12:26:09 +00002680 <pre class="doc_code">
Devang Patel9984bd62010-03-04 23:44:48 +00002681 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2682 </pre>
Devang Patel9984bd62010-03-04 23:44:48 +00002683
2684<p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
Benjamin Kramer79698be2010-07-13 12:26:09 +00002685 attached with <tt>add</tt> instruction using <tt>!dbg</tt> identifier.</p>
Devang Patel9984bd62010-03-04 23:44:48 +00002686
Benjamin Kramer79698be2010-07-13 12:26:09 +00002687 <pre class="doc_code">
Devang Patel9984bd62010-03-04 23:44:48 +00002688 %indvar.next = add i64 %indvar, 1, !dbg !21
2689 </pre>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002690</div>
2691
Chris Lattnerae76db52009-07-20 05:55:19 +00002692
2693<!-- *********************************************************************** -->
2694<div class="doc_section">
2695 <a name="intrinsic_globals">Intrinsic Global Variables</a>
2696</div>
2697<!-- *********************************************************************** -->
2698
2699<p>LLVM has a number of "magic" global variables that contain data that affect
2700code generation or other IR semantics. These are documented here. All globals
Chris Lattner58f9bb22009-07-20 06:14:25 +00002701of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
2702section and all globals that start with "<tt>llvm.</tt>" are reserved for use
2703by LLVM.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00002704
2705<!-- ======================================================================= -->
2706<div class="doc_subsection">
2707<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
2708</div>
2709
2710<div class="doc_text">
2711
2712<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
2713href="#linkage_appending">appending linkage</a>. This array contains a list of
2714pointers to global variables and functions which may optionally have a pointer
2715cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
2716
2717<pre>
2718 @X = global i8 4
2719 @Y = global i32 123
2720
2721 @llvm.used = appending global [2 x i8*] [
2722 i8* @X,
2723 i8* bitcast (i32* @Y to i8*)
2724 ], section "llvm.metadata"
2725</pre>
2726
2727<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
2728compiler, assembler, and linker are required to treat the symbol as if there is
2729a reference to the global that it cannot see. For example, if a variable has
2730internal linkage and no references other than that from the <tt>@llvm.used</tt>
2731list, it cannot be deleted. This is commonly used to represent references from
2732inline asms and other things the compiler cannot "see", and corresponds to
2733"attribute((used))" in GNU C.</p>
2734
2735<p>On some targets, the code generator must emit a directive to the assembler or
2736object file to prevent the assembler and linker from molesting the symbol.</p>
2737
2738</div>
2739
2740<!-- ======================================================================= -->
2741<div class="doc_subsection">
Chris Lattner58f9bb22009-07-20 06:14:25 +00002742<a name="intg_compiler_used">The '<tt>llvm.compiler.used</tt>' Global Variable</a>
2743</div>
2744
2745<div class="doc_text">
2746
2747<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
2748<tt>@llvm.used</tt> directive, except that it only prevents the compiler from
2749touching the symbol. On targets that support it, this allows an intelligent
2750linker to optimize references to the symbol without being impeded as it would be
2751by <tt>@llvm.used</tt>.</p>
2752
2753<p>This is a rare construct that should only be used in rare circumstances, and
2754should not be exposed to source languages.</p>
2755
2756</div>
2757
2758<!-- ======================================================================= -->
2759<div class="doc_subsection">
Chris Lattnerae76db52009-07-20 05:55:19 +00002760<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
2761</div>
2762
2763<div class="doc_text">
David Chisnalla9d4a6f2010-04-30 19:23:49 +00002764<pre>
2765%0 = type { i32, void ()* }
David Chisnallb492b812010-04-30 19:27:35 +00002766@llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
David Chisnalla9d4a6f2010-04-30 19:23:49 +00002767</pre>
2768<p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor functions and associated priorities. The functions referenced by this array will be called in ascending order of priority (i.e. lowest first) when the module is loaded. The order of functions with the same priority is not defined.
2769</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00002770
2771</div>
2772
2773<!-- ======================================================================= -->
2774<div class="doc_subsection">
2775<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
2776</div>
2777
2778<div class="doc_text">
David Chisnalla9d4a6f2010-04-30 19:23:49 +00002779<pre>
2780%0 = type { i32, void ()* }
David Chisnallb492b812010-04-30 19:27:35 +00002781@llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
David Chisnalla9d4a6f2010-04-30 19:23:49 +00002782</pre>
Chris Lattnerae76db52009-07-20 05:55:19 +00002783
David Chisnalla9d4a6f2010-04-30 19:23:49 +00002784<p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions and associated priorities. The functions referenced by this array will be called in descending order of priority (i.e. highest first) when the module is loaded. The order of functions with the same priority is not defined.
2785</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00002786
2787</div>
2788
2789
Chris Lattner98f013c2006-01-25 23:47:57 +00002790<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002791<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2792<!-- *********************************************************************** -->
Chris Lattner74d3f822004-12-09 17:30:23 +00002793
Misha Brukman76307852003-11-08 01:05:38 +00002794<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00002795
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002796<p>The LLVM instruction set consists of several different classifications of
2797 instructions: <a href="#terminators">terminator
2798 instructions</a>, <a href="#binaryops">binary instructions</a>,
2799 <a href="#bitwiseops">bitwise binary instructions</a>,
2800 <a href="#memoryops">memory instructions</a>, and
2801 <a href="#otherops">other instructions</a>.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002802
Misha Brukman76307852003-11-08 01:05:38 +00002803</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002804
Chris Lattner2f7c9632001-06-06 20:29:01 +00002805<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002806<div class="doc_subsection"> <a name="terminators">Terminator
2807Instructions</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002808
Misha Brukman76307852003-11-08 01:05:38 +00002809<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00002810
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002811<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
2812 in a program ends with a "Terminator" instruction, which indicates which
2813 block should be executed after the current block is finished. These
2814 terminator instructions typically yield a '<tt>void</tt>' value: they produce
2815 control flow, not values (the one exception being the
2816 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
2817
Duncan Sands626b0242010-04-15 20:35:54 +00002818<p>There are seven different terminator instructions: the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002819 '<a href="#i_ret"><tt>ret</tt></a>' instruction, the
2820 '<a href="#i_br"><tt>br</tt></a>' instruction, the
2821 '<a href="#i_switch"><tt>switch</tt></a>' instruction, the
Bill Wendling33fef7e2009-11-02 00:25:26 +00002822 '<a href="#i_indirectbr">'<tt>indirectbr</tt></a>' Instruction, the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002823 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
2824 '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
2825 '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002826
Misha Brukman76307852003-11-08 01:05:38 +00002827</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002828
Chris Lattner2f7c9632001-06-06 20:29:01 +00002829<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002830<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2831Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002832
Misha Brukman76307852003-11-08 01:05:38 +00002833<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002834
Chris Lattner2f7c9632001-06-06 20:29:01 +00002835<h5>Syntax:</h5>
Dan Gohmancc3132e2008-10-04 19:00:07 +00002836<pre>
2837 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002838 ret void <i>; Return from void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002839</pre>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002840
Chris Lattner2f7c9632001-06-06 20:29:01 +00002841<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002842<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
2843 a value) from a function back to the caller.</p>
2844
2845<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
2846 value and then causes control flow, and one that just causes control flow to
2847 occur.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002848
Chris Lattner2f7c9632001-06-06 20:29:01 +00002849<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002850<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
2851 return value. The type of the return value must be a
2852 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohmancc3132e2008-10-04 19:00:07 +00002853
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002854<p>A function is not <a href="#wellformed">well formed</a> if it it has a
2855 non-void return type and contains a '<tt>ret</tt>' instruction with no return
2856 value or a return value with a type that does not match its type, or if it
2857 has a void return type and contains a '<tt>ret</tt>' instruction with a
2858 return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002859
Chris Lattner2f7c9632001-06-06 20:29:01 +00002860<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002861<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
2862 the calling function's context. If the caller is a
2863 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
2864 instruction after the call. If the caller was an
2865 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
2866 the beginning of the "normal" destination block. If the instruction returns
2867 a value, that value shall set the call or invoke instruction's return
2868 value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002869
Chris Lattner2f7c9632001-06-06 20:29:01 +00002870<h5>Example:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002871<pre>
2872 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002873 ret void <i>; Return from a void function</i>
Bill Wendling050ee8f2009-02-28 22:12:54 +00002874 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002875</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00002876
Misha Brukman76307852003-11-08 01:05:38 +00002877</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002878<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002879<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002880
Misha Brukman76307852003-11-08 01:05:38 +00002881<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002882
Chris Lattner2f7c9632001-06-06 20:29:01 +00002883<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002884<pre>
2885 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002886</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002887
Chris Lattner2f7c9632001-06-06 20:29:01 +00002888<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002889<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
2890 different basic block in the current function. There are two forms of this
2891 instruction, corresponding to a conditional branch and an unconditional
2892 branch.</p>
2893
Chris Lattner2f7c9632001-06-06 20:29:01 +00002894<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002895<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
2896 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
2897 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
2898 target.</p>
2899
Chris Lattner2f7c9632001-06-06 20:29:01 +00002900<h5>Semantics:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00002901<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002902 argument is evaluated. If the value is <tt>true</tt>, control flows to the
2903 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2904 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
2905
Chris Lattner2f7c9632001-06-06 20:29:01 +00002906<h5>Example:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002907<pre>
2908Test:
2909 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
2910 br i1 %cond, label %IfEqual, label %IfUnequal
2911IfEqual:
2912 <a href="#i_ret">ret</a> i32 1
2913IfUnequal:
2914 <a href="#i_ret">ret</a> i32 0
2915</pre>
2916
Misha Brukman76307852003-11-08 01:05:38 +00002917</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002918
Chris Lattner2f7c9632001-06-06 20:29:01 +00002919<!-- _______________________________________________________________________ -->
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002920<div class="doc_subsubsection">
2921 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2922</div>
2923
Misha Brukman76307852003-11-08 01:05:38 +00002924<div class="doc_text">
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002925
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002926<h5>Syntax:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002927<pre>
2928 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2929</pre>
2930
Chris Lattner2f7c9632001-06-06 20:29:01 +00002931<h5>Overview:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002932<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002933 several different places. It is a generalization of the '<tt>br</tt>'
2934 instruction, allowing a branch to occur to one of many possible
2935 destinations.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002936
Chris Lattner2f7c9632001-06-06 20:29:01 +00002937<h5>Arguments:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002938<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002939 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
2940 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
2941 The table is not allowed to contain duplicate constant entries.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002942
Chris Lattner2f7c9632001-06-06 20:29:01 +00002943<h5>Semantics:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002944<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002945 destinations. When the '<tt>switch</tt>' instruction is executed, this table
2946 is searched for the given value. If the value is found, control flow is
Benjamin Kramer0f420382009-10-12 14:46:08 +00002947 transferred to the corresponding destination; otherwise, control flow is
2948 transferred to the default destination.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002949
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002950<h5>Implementation:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002951<p>Depending on properties of the target machine and the particular
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002952 <tt>switch</tt> instruction, this instruction may be code generated in
2953 different ways. For example, it could be generated as a series of chained
2954 conditional branches or with a lookup table.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002955
2956<h5>Example:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002957<pre>
2958 <i>; Emulate a conditional br instruction</i>
Reid Spencer36a15422007-01-12 03:35:51 +00002959 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman623806e2009-01-04 23:44:43 +00002960 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002961
2962 <i>; Emulate an unconditional br instruction</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002963 switch i32 0, label %dest [ ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002964
2965 <i>; Implement a jump table:</i>
Dan Gohman623806e2009-01-04 23:44:43 +00002966 switch i32 %val, label %otherwise [ i32 0, label %onzero
2967 i32 1, label %onone
2968 i32 2, label %ontwo ]
Chris Lattner2f7c9632001-06-06 20:29:01 +00002969</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002970
Misha Brukman76307852003-11-08 01:05:38 +00002971</div>
Chris Lattner0132aff2005-05-06 22:57:40 +00002972
Chris Lattner3ed871f2009-10-27 19:13:16 +00002973
2974<!-- _______________________________________________________________________ -->
2975<div class="doc_subsubsection">
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00002976 <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
Chris Lattner3ed871f2009-10-27 19:13:16 +00002977</div>
2978
2979<div class="doc_text">
2980
2981<h5>Syntax:</h5>
2982<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00002983 indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00002984</pre>
2985
2986<h5>Overview:</h5>
2987
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00002988<p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
Chris Lattner3ed871f2009-10-27 19:13:16 +00002989 within the current function, whose address is specified by
Chris Lattnere4801f72009-10-27 21:01:34 +00002990 "<tt>address</tt>". Address must be derived from a <a
2991 href="#blockaddress">blockaddress</a> constant.</p>
Chris Lattner3ed871f2009-10-27 19:13:16 +00002992
2993<h5>Arguments:</h5>
2994
2995<p>The '<tt>address</tt>' argument is the address of the label to jump to. The
2996 rest of the arguments indicate the full set of possible destinations that the
2997 address may point to. Blocks are allowed to occur multiple times in the
2998 destination list, though this isn't particularly useful.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002999
Chris Lattner3ed871f2009-10-27 19:13:16 +00003000<p>This destination list is required so that dataflow analysis has an accurate
3001 understanding of the CFG.</p>
3002
3003<h5>Semantics:</h5>
3004
3005<p>Control transfers to the block specified in the address argument. All
3006 possible destination blocks must be listed in the label list, otherwise this
3007 instruction has undefined behavior. This implies that jumps to labels
3008 defined in other functions have undefined behavior as well.</p>
3009
3010<h5>Implementation:</h5>
3011
3012<p>This is typically implemented with a jump through a register.</p>
3013
3014<h5>Example:</h5>
3015<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003016 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00003017</pre>
3018
3019</div>
3020
3021
Chris Lattner2f7c9632001-06-06 20:29:01 +00003022<!-- _______________________________________________________________________ -->
Chris Lattner0132aff2005-05-06 22:57:40 +00003023<div class="doc_subsubsection">
3024 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
3025</div>
3026
Misha Brukman76307852003-11-08 01:05:38 +00003027<div class="doc_text">
Chris Lattner0132aff2005-05-06 22:57:40 +00003028
Chris Lattner2f7c9632001-06-06 20:29:01 +00003029<h5>Syntax:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003030<pre>
Devang Patel02256232008-10-07 17:48:33 +00003031 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner6b7a0082006-05-14 18:23:06 +00003032 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattner0132aff2005-05-06 22:57:40 +00003033</pre>
3034
Chris Lattnera8292f32002-05-06 22:08:29 +00003035<h5>Overview:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003036<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003037 function, with the possibility of control flow transfer to either the
3038 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
3039 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
3040 control flow will return to the "normal" label. If the callee (or any
3041 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
3042 instruction, control is interrupted and continued at the dynamically nearest
3043 "exception" label.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003044
Chris Lattner2f7c9632001-06-06 20:29:01 +00003045<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003046<p>This instruction requires several arguments:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003047
Chris Lattner2f7c9632001-06-06 20:29:01 +00003048<ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003049 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
3050 convention</a> the call should use. If none is specified, the call
3051 defaults to using C calling conventions.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00003052
3053 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003054 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
3055 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00003056
Chris Lattner0132aff2005-05-06 22:57:40 +00003057 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003058 function value being invoked. In most cases, this is a direct function
3059 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
3060 off an arbitrary pointer to function value.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003061
3062 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003063 function to be invoked. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003064
3065 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner47f2a832010-03-02 06:36:51 +00003066 signature argument types and parameter attributes. All arguments must be
3067 of <a href="#t_firstclass">first class</a> type. If the function
3068 signature indicates the function accepts a variable number of arguments,
3069 the extra arguments can be specified.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003070
3071 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003072 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003073
3074 <li>'<tt>exception label</tt>': the label reached when a callee returns with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003075 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003076
Devang Patel02256232008-10-07 17:48:33 +00003077 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003078 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
3079 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003080</ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00003081
Chris Lattner2f7c9632001-06-06 20:29:01 +00003082<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003083<p>This instruction is designed to operate as a standard
3084 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
3085 primary difference is that it establishes an association with a label, which
3086 is used by the runtime library to unwind the stack.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003087
3088<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003089 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
3090 exception. Additionally, this is important for implementation of
3091 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003092
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003093<p>For the purposes of the SSA form, the definition of the value returned by the
3094 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
3095 block to the "normal" label. If the callee unwinds then no return value is
3096 available.</p>
Dan Gohman9069d892009-05-22 21:47:08 +00003097
Chris Lattner97257f82010-01-15 18:08:37 +00003098<p>Note that the code generator does not yet completely support unwind, and
3099that the invoke/unwind semantics are likely to change in future versions.</p>
3100
Chris Lattner2f7c9632001-06-06 20:29:01 +00003101<h5>Example:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003102<pre>
Nick Lewycky084ab472008-03-16 07:18:12 +00003103 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00003104 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewycky084ab472008-03-16 07:18:12 +00003105 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00003106 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003107</pre>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003108
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003109</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003110
Chris Lattner5ed60612003-09-03 00:41:47 +00003111<!-- _______________________________________________________________________ -->
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003112
Chris Lattner48b383b02003-11-25 01:02:51 +00003113<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
3114Instruction</a> </div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003115
Misha Brukman76307852003-11-08 01:05:38 +00003116<div class="doc_text">
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003117
Chris Lattner5ed60612003-09-03 00:41:47 +00003118<h5>Syntax:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003119<pre>
3120 unwind
3121</pre>
3122
Chris Lattner5ed60612003-09-03 00:41:47 +00003123<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003124<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003125 at the first callee in the dynamic call stack which used
3126 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
3127 This is primarily used to implement exception handling.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003128
Chris Lattner5ed60612003-09-03 00:41:47 +00003129<h5>Semantics:</h5>
Chris Lattnerfe8519c2008-04-19 21:01:16 +00003130<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003131 immediately halt. The dynamic call stack is then searched for the
3132 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
3133 Once found, execution continues at the "exceptional" destination block
3134 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
3135 instruction in the dynamic call chain, undefined behavior results.</p>
3136
Chris Lattner97257f82010-01-15 18:08:37 +00003137<p>Note that the code generator does not yet completely support unwind, and
3138that the invoke/unwind semantics are likely to change in future versions.</p>
3139
Misha Brukman76307852003-11-08 01:05:38 +00003140</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003141
3142<!-- _______________________________________________________________________ -->
3143
3144<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
3145Instruction</a> </div>
3146
3147<div class="doc_text">
3148
3149<h5>Syntax:</h5>
3150<pre>
3151 unreachable
3152</pre>
3153
3154<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003155<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003156 instruction is used to inform the optimizer that a particular portion of the
3157 code is not reachable. This can be used to indicate that the code after a
3158 no-return function cannot be reached, and other facts.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003159
3160<h5>Semantics:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003161<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003162
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003163</div>
3164
Chris Lattner2f7c9632001-06-06 20:29:01 +00003165<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003166<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003167
Misha Brukman76307852003-11-08 01:05:38 +00003168<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003169
3170<p>Binary operators are used to do most of the computation in a program. They
3171 require two operands of the same type, execute an operation on them, and
3172 produce a single value. The operands might represent multiple data, as is
3173 the case with the <a href="#t_vector">vector</a> data type. The result value
3174 has the same type as its operands.</p>
3175
Misha Brukman76307852003-11-08 01:05:38 +00003176<p>There are several different binary operators:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003177
Misha Brukman76307852003-11-08 01:05:38 +00003178</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003179
Chris Lattner2f7c9632001-06-06 20:29:01 +00003180<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003181<div class="doc_subsubsection">
3182 <a name="i_add">'<tt>add</tt>' Instruction</a>
3183</div>
3184
Misha Brukman76307852003-11-08 01:05:38 +00003185<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003186
Chris Lattner2f7c9632001-06-06 20:29:01 +00003187<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003188<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003189 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003190 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3191 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3192 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003193</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003194
Chris Lattner2f7c9632001-06-06 20:29:01 +00003195<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003196<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003197
Chris Lattner2f7c9632001-06-06 20:29:01 +00003198<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003199<p>The two arguments to the '<tt>add</tt>' instruction must
3200 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3201 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003202
Chris Lattner2f7c9632001-06-06 20:29:01 +00003203<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003204<p>The value produced is the integer sum of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003205
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003206<p>If the sum has unsigned overflow, the result returned is the mathematical
3207 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003208
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003209<p>Because LLVM integers use a two's complement representation, this instruction
3210 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003211
Dan Gohman902dfff2009-07-22 22:44:56 +00003212<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3213 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3214 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003215 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3216 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003217
Chris Lattner2f7c9632001-06-06 20:29:01 +00003218<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003219<pre>
3220 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003221</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003222
Misha Brukman76307852003-11-08 01:05:38 +00003223</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003224
Chris Lattner2f7c9632001-06-06 20:29:01 +00003225<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003226<div class="doc_subsubsection">
Dan Gohmana5b96452009-06-04 22:49:04 +00003227 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
3228</div>
3229
3230<div class="doc_text">
3231
3232<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003233<pre>
3234 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3235</pre>
3236
3237<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003238<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3239
3240<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003241<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003242 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3243 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003244
3245<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003246<p>The value produced is the floating point sum of the two operands.</p>
3247
3248<h5>Example:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003249<pre>
3250 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
3251</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003252
Dan Gohmana5b96452009-06-04 22:49:04 +00003253</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003254
Dan Gohmana5b96452009-06-04 22:49:04 +00003255<!-- _______________________________________________________________________ -->
3256<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003257 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
3258</div>
3259
Misha Brukman76307852003-11-08 01:05:38 +00003260<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003261
Chris Lattner2f7c9632001-06-06 20:29:01 +00003262<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003263<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003264 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003265 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3266 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3267 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003268</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003269
Chris Lattner2f7c9632001-06-06 20:29:01 +00003270<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003271<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003272 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003273
3274<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003275 '<tt>neg</tt>' instruction present in most other intermediate
3276 representations.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003277
Chris Lattner2f7c9632001-06-06 20:29:01 +00003278<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003279<p>The two arguments to the '<tt>sub</tt>' instruction must
3280 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3281 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003282
Chris Lattner2f7c9632001-06-06 20:29:01 +00003283<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003284<p>The value produced is the integer difference of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003285
Dan Gohmana5b96452009-06-04 22:49:04 +00003286<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003287 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3288 result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003289
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003290<p>Because LLVM integers use a two's complement representation, this instruction
3291 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003292
Dan Gohman902dfff2009-07-22 22:44:56 +00003293<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3294 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3295 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003296 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3297 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003298
Chris Lattner2f7c9632001-06-06 20:29:01 +00003299<h5>Example:</h5>
Bill Wendling2d8b9a82007-05-29 09:42:13 +00003300<pre>
3301 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003302 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003303</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003304
Misha Brukman76307852003-11-08 01:05:38 +00003305</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003306
Chris Lattner2f7c9632001-06-06 20:29:01 +00003307<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003308<div class="doc_subsubsection">
Dan Gohmana5b96452009-06-04 22:49:04 +00003309 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
3310</div>
3311
3312<div class="doc_text">
3313
3314<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003315<pre>
3316 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3317</pre>
3318
3319<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003320<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003321 operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003322
3323<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003324 '<tt>fneg</tt>' instruction present in most other intermediate
3325 representations.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003326
3327<h5>Arguments:</h5>
Bill Wendling972b7202009-07-20 02:32:41 +00003328<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003329 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3330 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003331
3332<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003333<p>The value produced is the floating point difference of the two operands.</p>
3334
3335<h5>Example:</h5>
3336<pre>
3337 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
3338 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
3339</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003340
Dan Gohmana5b96452009-06-04 22:49:04 +00003341</div>
3342
3343<!-- _______________________________________________________________________ -->
3344<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003345 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
3346</div>
3347
Misha Brukman76307852003-11-08 01:05:38 +00003348<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003349
Chris Lattner2f7c9632001-06-06 20:29:01 +00003350<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003351<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003352 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003353 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3354 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3355 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003356</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003357
Chris Lattner2f7c9632001-06-06 20:29:01 +00003358<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003359<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003360
Chris Lattner2f7c9632001-06-06 20:29:01 +00003361<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003362<p>The two arguments to the '<tt>mul</tt>' instruction must
3363 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3364 integer values. Both arguments must have identical types.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003365
Chris Lattner2f7c9632001-06-06 20:29:01 +00003366<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003367<p>The value produced is the integer product of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003368
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003369<p>If the result of the multiplication has unsigned overflow, the result
3370 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3371 width of the result.</p>
3372
3373<p>Because LLVM integers use a two's complement representation, and the result
3374 is the same width as the operands, this instruction returns the correct
3375 result for both signed and unsigned integers. If a full product
3376 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3377 be sign-extended or zero-extended as appropriate to the width of the full
3378 product.</p>
3379
Dan Gohman902dfff2009-07-22 22:44:56 +00003380<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3381 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3382 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003383 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3384 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003385
Chris Lattner2f7c9632001-06-06 20:29:01 +00003386<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003387<pre>
3388 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003389</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003390
Misha Brukman76307852003-11-08 01:05:38 +00003391</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003392
Chris Lattner2f7c9632001-06-06 20:29:01 +00003393<!-- _______________________________________________________________________ -->
Dan Gohmana5b96452009-06-04 22:49:04 +00003394<div class="doc_subsubsection">
3395 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
3396</div>
3397
3398<div class="doc_text">
3399
3400<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003401<pre>
3402 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003403</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003404
Dan Gohmana5b96452009-06-04 22:49:04 +00003405<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003406<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003407
3408<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003409<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003410 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3411 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003412
3413<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003414<p>The value produced is the floating point product of the two operands.</p>
3415
3416<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003417<pre>
3418 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003419</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003420
Dan Gohmana5b96452009-06-04 22:49:04 +00003421</div>
3422
3423<!-- _______________________________________________________________________ -->
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003424<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
3425</a></div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003426
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003427<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003428
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003429<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003430<pre>
3431 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003432</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003433
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003434<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003435<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003436
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003437<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003438<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003439 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3440 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003441
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003442<h5>Semantics:</h5>
Chris Lattner2f2427e2008-01-28 00:36:27 +00003443<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003444
Chris Lattner2f2427e2008-01-28 00:36:27 +00003445<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003446 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
3447
Chris Lattner2f2427e2008-01-28 00:36:27 +00003448<p>Division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003449
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003450<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003451<pre>
3452 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003453</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003454
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003455</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003456
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003457<!-- _______________________________________________________________________ -->
3458<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
3459</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003460
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003461<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003462
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003463<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003464<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003465 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003466 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003467</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003468
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003469<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003470<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003471
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003472<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003473<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003474 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3475 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003476
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003477<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003478<p>The value produced is the signed integer quotient of the two operands rounded
3479 towards zero.</p>
3480
Chris Lattner2f2427e2008-01-28 00:36:27 +00003481<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003482 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
3483
Chris Lattner2f2427e2008-01-28 00:36:27 +00003484<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003485 undefined behavior; this is a rare case, but can occur, for example, by doing
3486 a 32-bit division of -2147483648 by -1.</p>
3487
Dan Gohman71dfd782009-07-22 00:04:19 +00003488<p>If the <tt>exact</tt> keyword is present, the result value of the
Dan Gohman57255802010-04-23 15:23:32 +00003489 <tt>sdiv</tt> is a <a href="#trapvalues">trap value</a> if the result would
Dan Gohmane501ff72010-07-11 00:08:34 +00003490 be rounded.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003491
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003492<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003493<pre>
3494 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003495</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003496
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003497</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003498
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003499<!-- _______________________________________________________________________ -->
3500<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00003501Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003502
Misha Brukman76307852003-11-08 01:05:38 +00003503<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003504
Chris Lattner2f7c9632001-06-06 20:29:01 +00003505<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003506<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003507 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003508</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003509
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003510<h5>Overview:</h5>
3511<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003512
Chris Lattner48b383b02003-11-25 01:02:51 +00003513<h5>Arguments:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00003514<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003515 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3516 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003517
Chris Lattner48b383b02003-11-25 01:02:51 +00003518<h5>Semantics:</h5>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003519<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003520
Chris Lattner48b383b02003-11-25 01:02:51 +00003521<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003522<pre>
3523 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003524</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003525
Chris Lattner48b383b02003-11-25 01:02:51 +00003526</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003527
Chris Lattner48b383b02003-11-25 01:02:51 +00003528<!-- _______________________________________________________________________ -->
Reid Spencer7eb55b32006-11-02 01:53:59 +00003529<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
3530</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003531
Reid Spencer7eb55b32006-11-02 01:53:59 +00003532<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003533
Reid Spencer7eb55b32006-11-02 01:53:59 +00003534<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003535<pre>
3536 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003537</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003538
Reid Spencer7eb55b32006-11-02 01:53:59 +00003539<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003540<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3541 division of its two arguments.</p>
3542
Reid Spencer7eb55b32006-11-02 01:53:59 +00003543<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003544<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003545 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3546 values. Both arguments must have identical types.</p>
3547
Reid Spencer7eb55b32006-11-02 01:53:59 +00003548<h5>Semantics:</h5>
3549<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003550 This instruction always performs an unsigned division to get the
3551 remainder.</p>
3552
Chris Lattner2f2427e2008-01-28 00:36:27 +00003553<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003554 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3555
Chris Lattner2f2427e2008-01-28 00:36:27 +00003556<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003557
Reid Spencer7eb55b32006-11-02 01:53:59 +00003558<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003559<pre>
3560 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003561</pre>
3562
3563</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003564
Reid Spencer7eb55b32006-11-02 01:53:59 +00003565<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003566<div class="doc_subsubsection">
3567 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
3568</div>
3569
Chris Lattner48b383b02003-11-25 01:02:51 +00003570<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003571
Chris Lattner48b383b02003-11-25 01:02:51 +00003572<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003573<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003574 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003575</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003576
Chris Lattner48b383b02003-11-25 01:02:51 +00003577<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003578<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3579 division of its two operands. This instruction can also take
3580 <a href="#t_vector">vector</a> versions of the values in which case the
3581 elements must be integers.</p>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00003582
Chris Lattner48b383b02003-11-25 01:02:51 +00003583<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003584<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003585 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3586 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003587
Chris Lattner48b383b02003-11-25 01:02:51 +00003588<h5>Semantics:</h5>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003589<p>This instruction returns the <i>remainder</i> of a division (where the result
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003590 has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
3591 operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
3592 a value. For more information about the difference,
3593 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3594 Math Forum</a>. For a table of how this is implemented in various languages,
3595 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3596 Wikipedia: modulo operation</a>.</p>
3597
Chris Lattner2f2427e2008-01-28 00:36:27 +00003598<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003599 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3600
Chris Lattner2f2427e2008-01-28 00:36:27 +00003601<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003602 Overflow also leads to undefined behavior; this is a rare case, but can
3603 occur, for example, by taking the remainder of a 32-bit division of
3604 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3605 lets srem be implemented using instructions that return both the result of
3606 the division and the remainder.)</p>
3607
Chris Lattner48b383b02003-11-25 01:02:51 +00003608<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003609<pre>
3610 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003611</pre>
3612
3613</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003614
Reid Spencer7eb55b32006-11-02 01:53:59 +00003615<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003616<div class="doc_subsubsection">
3617 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
3618
Reid Spencer7eb55b32006-11-02 01:53:59 +00003619<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003620
Reid Spencer7eb55b32006-11-02 01:53:59 +00003621<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003622<pre>
3623 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003624</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003625
Reid Spencer7eb55b32006-11-02 01:53:59 +00003626<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003627<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
3628 its two operands.</p>
3629
Reid Spencer7eb55b32006-11-02 01:53:59 +00003630<h5>Arguments:</h5>
3631<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003632 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3633 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003634
Reid Spencer7eb55b32006-11-02 01:53:59 +00003635<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003636<p>This instruction returns the <i>remainder</i> of a division. The remainder
3637 has the same sign as the dividend.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003638
Reid Spencer7eb55b32006-11-02 01:53:59 +00003639<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003640<pre>
3641 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003642</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003643
Misha Brukman76307852003-11-08 01:05:38 +00003644</div>
Robert Bocchino820bc75b2006-02-17 21:18:08 +00003645
Reid Spencer2ab01932007-02-02 13:57:07 +00003646<!-- ======================================================================= -->
3647<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
3648Operations</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003649
Reid Spencer2ab01932007-02-02 13:57:07 +00003650<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003651
3652<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3653 program. They are generally very efficient instructions and can commonly be
3654 strength reduced from other instructions. They require two operands of the
3655 same type, execute an operation on them, and produce a single value. The
3656 resulting value is the same type as its operands.</p>
3657
Reid Spencer2ab01932007-02-02 13:57:07 +00003658</div>
3659
Reid Spencer04e259b2007-01-31 21:39:12 +00003660<!-- _______________________________________________________________________ -->
3661<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
3662Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003663
Reid Spencer04e259b2007-01-31 21:39:12 +00003664<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003665
Reid Spencer04e259b2007-01-31 21:39:12 +00003666<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003667<pre>
3668 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003669</pre>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003670
Reid Spencer04e259b2007-01-31 21:39:12 +00003671<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003672<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
3673 a specified number of bits.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003674
Reid Spencer04e259b2007-01-31 21:39:12 +00003675<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003676<p>Both arguments to the '<tt>shl</tt>' instruction must be the
3677 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3678 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003679
Reid Spencer04e259b2007-01-31 21:39:12 +00003680<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003681<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
3682 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
3683 is (statically or dynamically) negative or equal to or larger than the number
3684 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3685 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3686 shift amount in <tt>op2</tt>.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003687
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003688<h5>Example:</h5>
3689<pre>
Reid Spencer04e259b2007-01-31 21:39:12 +00003690 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
3691 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
3692 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003693 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003694 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003695</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003696
Reid Spencer04e259b2007-01-31 21:39:12 +00003697</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003698
Reid Spencer04e259b2007-01-31 21:39:12 +00003699<!-- _______________________________________________________________________ -->
3700<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
3701Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003702
Reid Spencer04e259b2007-01-31 21:39:12 +00003703<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003704
Reid Spencer04e259b2007-01-31 21:39:12 +00003705<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003706<pre>
3707 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003708</pre>
3709
3710<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003711<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
3712 operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003713
3714<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003715<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003716 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3717 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003718
3719<h5>Semantics:</h5>
3720<p>This instruction always performs a logical shift right operation. The most
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003721 significant bits of the result will be filled with zero bits after the shift.
3722 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
3723 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3724 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3725 shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003726
3727<h5>Example:</h5>
3728<pre>
3729 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
3730 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
3731 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
3732 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003733 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003734 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003735</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003736
Reid Spencer04e259b2007-01-31 21:39:12 +00003737</div>
3738
Reid Spencer2ab01932007-02-02 13:57:07 +00003739<!-- _______________________________________________________________________ -->
Reid Spencer04e259b2007-01-31 21:39:12 +00003740<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
3741Instruction</a> </div>
3742<div class="doc_text">
3743
3744<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003745<pre>
3746 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003747</pre>
3748
3749<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003750<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
3751 operand shifted to the right a specified number of bits with sign
3752 extension.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003753
3754<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003755<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003756 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3757 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003758
3759<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003760<p>This instruction always performs an arithmetic shift right operation, The
3761 most significant bits of the result will be filled with the sign bit
3762 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
3763 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
3764 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
3765 the corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003766
3767<h5>Example:</h5>
3768<pre>
3769 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3770 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3771 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3772 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003773 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003774 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003775</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003776
Reid Spencer04e259b2007-01-31 21:39:12 +00003777</div>
3778
Chris Lattner2f7c9632001-06-06 20:29:01 +00003779<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003780<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3781Instruction</a> </div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003782
Misha Brukman76307852003-11-08 01:05:38 +00003783<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003784
Chris Lattner2f7c9632001-06-06 20:29:01 +00003785<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003786<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003787 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003788</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003789
Chris Lattner2f7c9632001-06-06 20:29:01 +00003790<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003791<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
3792 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003793
Chris Lattner2f7c9632001-06-06 20:29:01 +00003794<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003795<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003796 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3797 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003798
Chris Lattner2f7c9632001-06-06 20:29:01 +00003799<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003800<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003801
Misha Brukman76307852003-11-08 01:05:38 +00003802<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00003803 <tbody>
3804 <tr>
3805 <td>In0</td>
3806 <td>In1</td>
3807 <td>Out</td>
3808 </tr>
3809 <tr>
3810 <td>0</td>
3811 <td>0</td>
3812 <td>0</td>
3813 </tr>
3814 <tr>
3815 <td>0</td>
3816 <td>1</td>
3817 <td>0</td>
3818 </tr>
3819 <tr>
3820 <td>1</td>
3821 <td>0</td>
3822 <td>0</td>
3823 </tr>
3824 <tr>
3825 <td>1</td>
3826 <td>1</td>
3827 <td>1</td>
3828 </tr>
3829 </tbody>
3830</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003831
Chris Lattner2f7c9632001-06-06 20:29:01 +00003832<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003833<pre>
3834 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003835 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3836 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003837</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003838</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003839<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003840<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003841
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003842<div class="doc_text">
3843
3844<h5>Syntax:</h5>
3845<pre>
3846 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3847</pre>
3848
3849<h5>Overview:</h5>
3850<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
3851 two operands.</p>
3852
3853<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003854<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003855 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3856 values. Both arguments must have identical types.</p>
3857
Chris Lattner2f7c9632001-06-06 20:29:01 +00003858<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003859<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003860
Chris Lattner48b383b02003-11-25 01:02:51 +00003861<table border="1" cellspacing="0" cellpadding="4">
3862 <tbody>
3863 <tr>
3864 <td>In0</td>
3865 <td>In1</td>
3866 <td>Out</td>
3867 </tr>
3868 <tr>
3869 <td>0</td>
3870 <td>0</td>
3871 <td>0</td>
3872 </tr>
3873 <tr>
3874 <td>0</td>
3875 <td>1</td>
3876 <td>1</td>
3877 </tr>
3878 <tr>
3879 <td>1</td>
3880 <td>0</td>
3881 <td>1</td>
3882 </tr>
3883 <tr>
3884 <td>1</td>
3885 <td>1</td>
3886 <td>1</td>
3887 </tr>
3888 </tbody>
3889</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003890
Chris Lattner2f7c9632001-06-06 20:29:01 +00003891<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003892<pre>
3893 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003894 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3895 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003896</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003897
Misha Brukman76307852003-11-08 01:05:38 +00003898</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003899
Chris Lattner2f7c9632001-06-06 20:29:01 +00003900<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003901<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3902Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003903
Misha Brukman76307852003-11-08 01:05:38 +00003904<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003905
Chris Lattner2f7c9632001-06-06 20:29:01 +00003906<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003907<pre>
3908 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003909</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003910
Chris Lattner2f7c9632001-06-06 20:29:01 +00003911<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003912<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
3913 its two operands. The <tt>xor</tt> is used to implement the "one's
3914 complement" operation, which is the "~" operator in C.</p>
3915
Chris Lattner2f7c9632001-06-06 20:29:01 +00003916<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003917<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003918 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3919 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003920
Chris Lattner2f7c9632001-06-06 20:29:01 +00003921<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003922<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003923
Chris Lattner48b383b02003-11-25 01:02:51 +00003924<table border="1" cellspacing="0" cellpadding="4">
3925 <tbody>
3926 <tr>
3927 <td>In0</td>
3928 <td>In1</td>
3929 <td>Out</td>
3930 </tr>
3931 <tr>
3932 <td>0</td>
3933 <td>0</td>
3934 <td>0</td>
3935 </tr>
3936 <tr>
3937 <td>0</td>
3938 <td>1</td>
3939 <td>1</td>
3940 </tr>
3941 <tr>
3942 <td>1</td>
3943 <td>0</td>
3944 <td>1</td>
3945 </tr>
3946 <tr>
3947 <td>1</td>
3948 <td>1</td>
3949 <td>0</td>
3950 </tr>
3951 </tbody>
3952</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003953
Chris Lattner2f7c9632001-06-06 20:29:01 +00003954<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003955<pre>
3956 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003957 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3958 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3959 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003960</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003961
Misha Brukman76307852003-11-08 01:05:38 +00003962</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003963
Chris Lattner2f7c9632001-06-06 20:29:01 +00003964<!-- ======================================================================= -->
Eric Christopher455c5772009-12-05 02:46:03 +00003965<div class="doc_subsection">
Chris Lattnerce83bff2006-04-08 23:07:04 +00003966 <a name="vectorops">Vector Operations</a>
3967</div>
3968
3969<div class="doc_text">
3970
3971<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003972 target-independent manner. These instructions cover the element-access and
3973 vector-specific operations needed to process vectors effectively. While LLVM
3974 does directly support these vector operations, many sophisticated algorithms
3975 will want to use target-specific intrinsics to take full advantage of a
3976 specific target.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003977
3978</div>
3979
3980<!-- _______________________________________________________________________ -->
3981<div class="doc_subsubsection">
3982 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3983</div>
3984
3985<div class="doc_text">
3986
3987<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003988<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003989 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003990</pre>
3991
3992<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003993<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
3994 from a vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003995
3996
3997<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003998<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
3999 of <a href="#t_vector">vector</a> type. The second operand is an index
4000 indicating the position from which to extract the element. The index may be
4001 a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004002
4003<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004004<p>The result is a scalar of the same type as the element type of
4005 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
4006 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4007 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004008
4009<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004010<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004011 &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004012</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004013
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004014</div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004015
4016<!-- _______________________________________________________________________ -->
4017<div class="doc_subsubsection">
4018 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
4019</div>
4020
4021<div class="doc_text">
4022
4023<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004024<pre>
Dan Gohman43ba0672008-05-12 23:38:42 +00004025 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004026</pre>
4027
4028<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004029<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
4030 vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004031
4032<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004033<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
4034 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
4035 whose type must equal the element type of the first operand. The third
4036 operand is an index indicating the position at which to insert the value.
4037 The index may be a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004038
4039<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004040<p>The result is a vector of the same type as <tt>val</tt>. Its element values
4041 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
4042 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4043 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004044
4045<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004046<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004047 &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004048</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004049
Chris Lattnerce83bff2006-04-08 23:07:04 +00004050</div>
4051
4052<!-- _______________________________________________________________________ -->
4053<div class="doc_subsubsection">
4054 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
4055</div>
4056
4057<div class="doc_text">
4058
4059<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004060<pre>
Mon P Wang25f01062008-11-10 04:46:22 +00004061 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004062</pre>
4063
4064<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004065<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
4066 from two input vectors, returning a vector with the same element type as the
4067 input and length that is the same as the shuffle mask.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004068
4069<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004070<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
4071 with types that match each other. The third argument is a shuffle mask whose
4072 element type is always 'i32'. The result of the instruction is a vector
4073 whose length is the same as the shuffle mask and whose element type is the
4074 same as the element type of the first two operands.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004075
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004076<p>The shuffle mask operand is required to be a constant vector with either
4077 constant integer or undef values.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004078
4079<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004080<p>The elements of the two input vectors are numbered from left to right across
4081 both of the vectors. The shuffle mask operand specifies, for each element of
4082 the result vector, which element of the two input vectors the result element
4083 gets. The element selector may be undef (meaning "don't care") and the
4084 second operand may be undef if performing a shuffle from only one vector.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004085
4086<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004087<pre>
Eric Christopher455c5772009-12-05 02:46:03 +00004088 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen5819f182007-04-22 01:17:39 +00004089 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004090 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004091 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Eric Christopher455c5772009-12-05 02:46:03 +00004092 &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
Mon P Wang25f01062008-11-10 04:46:22 +00004093 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004094 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Mon P Wang25f01062008-11-10 04:46:22 +00004095 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004096</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004097
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004098</div>
Tanya Lattnerb138bbe2006-04-14 19:24:33 +00004099
Chris Lattnerce83bff2006-04-08 23:07:04 +00004100<!-- ======================================================================= -->
Eric Christopher455c5772009-12-05 02:46:03 +00004101<div class="doc_subsection">
Dan Gohmanb9d66602008-05-12 23:51:09 +00004102 <a name="aggregateops">Aggregate Operations</a>
4103</div>
4104
4105<div class="doc_text">
4106
Chris Lattner392be582010-02-12 20:49:41 +00004107<p>LLVM supports several instructions for working with
4108 <a href="#t_aggregate">aggregate</a> values.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004109
4110</div>
4111
4112<!-- _______________________________________________________________________ -->
4113<div class="doc_subsubsection">
4114 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
4115</div>
4116
4117<div class="doc_text">
4118
4119<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004120<pre>
4121 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
4122</pre>
4123
4124<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00004125<p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
4126 from an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004127
4128<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004129<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
Chris Lattner13ee7952010-08-28 04:09:24 +00004130 of <a href="#t_struct">struct</a> or
Chris Lattner392be582010-02-12 20:49:41 +00004131 <a href="#t_array">array</a> type. The operands are constant indices to
4132 specify which value to extract in a similar manner as indices in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004133 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Frits van Bommel7cf63ac2010-12-05 20:54:38 +00004134 <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
4135 <ul>
4136 <li>Since the value being indexed is not a pointer, the first index is
4137 omitted and assumed to be zero.</li>
4138 <li>At least one index must be specified.</li>
4139 <li>Not only struct indices but also array indices must be in
4140 bounds.</li>
4141 </ul>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004142
4143<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004144<p>The result is the value at the position in the aggregate specified by the
4145 index operands.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004146
4147<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004148<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004149 &lt;result&gt; = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004150</pre>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004151
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004152</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004153
4154<!-- _______________________________________________________________________ -->
4155<div class="doc_subsubsection">
4156 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
4157</div>
4158
4159<div class="doc_text">
4160
4161<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004162<pre>
Jeffrey Yasskinf991bbb2010-01-11 19:19:26 +00004163 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt; <i>; yields &lt;aggregate type&gt;</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004164</pre>
4165
4166<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00004167<p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
4168 in an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004169
4170<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004171<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
Chris Lattner13ee7952010-08-28 04:09:24 +00004172 of <a href="#t_struct">struct</a> or
Chris Lattner392be582010-02-12 20:49:41 +00004173 <a href="#t_array">array</a> type. The second operand is a first-class
4174 value to insert. The following operands are constant indices indicating
4175 the position at which to insert the value in a similar manner as indices in a
Frits van Bommel7cf63ac2010-12-05 20:54:38 +00004176 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction. The
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004177 value to insert must have the same type as the value identified by the
4178 indices.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004179
4180<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004181<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
4182 that of <tt>val</tt> except that the value at the position specified by the
4183 indices is that of <tt>elt</tt>.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004184
4185<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004186<pre>
Jeffrey Yasskinf991bbb2010-01-11 19:19:26 +00004187 %agg1 = insertvalue {i32, float} undef, i32 1, 0 <i>; yields {i32 1, float undef}</i>
4188 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 <i>; yields {i32 1, float %val}</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004189</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004190
Dan Gohmanb9d66602008-05-12 23:51:09 +00004191</div>
4192
4193
4194<!-- ======================================================================= -->
Eric Christopher455c5772009-12-05 02:46:03 +00004195<div class="doc_subsection">
Chris Lattner6ab66722006-08-15 00:45:58 +00004196 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner54611b42005-11-06 08:02:57 +00004197</div>
4198
Misha Brukman76307852003-11-08 01:05:38 +00004199<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00004200
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004201<p>A key design point of an SSA-based representation is how it represents
4202 memory. In LLVM, no memory locations are in SSA form, which makes things
Victor Hernandeza70c6df2009-10-26 23:44:29 +00004203 very simple. This section describes how to read, write, and allocate
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004204 memory in LLVM.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004205
Misha Brukman76307852003-11-08 01:05:38 +00004206</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004207
Chris Lattner2f7c9632001-06-06 20:29:01 +00004208<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00004209<div class="doc_subsubsection">
Chris Lattner54611b42005-11-06 08:02:57 +00004210 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
4211</div>
4212
Misha Brukman76307852003-11-08 01:05:38 +00004213<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00004214
Chris Lattner2f7c9632001-06-06 20:29:01 +00004215<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004216<pre>
Dan Gohman2140a742010-05-28 01:14:11 +00004217 &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004218</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00004219
Chris Lattner2f7c9632001-06-06 20:29:01 +00004220<h5>Overview:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00004221<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004222 currently executing function, to be automatically released when this function
4223 returns to its caller. The object is always allocated in the generic address
4224 space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004225
Chris Lattner2f7c9632001-06-06 20:29:01 +00004226<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004227<p>The '<tt>alloca</tt>' instruction
4228 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4229 runtime stack, returning a pointer of the appropriate type to the program.
4230 If "NumElements" is specified, it is the number of elements allocated,
4231 otherwise "NumElements" is defaulted to be one. If a constant alignment is
4232 specified, the value result of the allocation is guaranteed to be aligned to
4233 at least that boundary. If not specified, or if zero, the target can choose
4234 to align the allocation on any convenient boundary compatible with the
4235 type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004236
Misha Brukman76307852003-11-08 01:05:38 +00004237<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004238
Chris Lattner2f7c9632001-06-06 20:29:01 +00004239<h5>Semantics:</h5>
Bill Wendling9ee6a312009-05-08 20:49:29 +00004240<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004241 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
4242 memory is automatically released when the function returns. The
4243 '<tt>alloca</tt>' instruction is commonly used to represent automatic
4244 variables that must have an address available. When the function returns
4245 (either with the <tt><a href="#i_ret">ret</a></tt>
4246 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
4247 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004248
Chris Lattner2f7c9632001-06-06 20:29:01 +00004249<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004250<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00004251 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
4252 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
4253 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
4254 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004255</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004256
Misha Brukman76307852003-11-08 01:05:38 +00004257</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004258
Chris Lattner2f7c9632001-06-06 20:29:01 +00004259<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00004260<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
4261Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004262
Misha Brukman76307852003-11-08 01:05:38 +00004263<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004264
Chris Lattner095735d2002-05-06 03:03:22 +00004265<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004266<pre>
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004267 &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4268 &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4269 !&lt;index&gt; = !{ i32 1 }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004270</pre>
4271
Chris Lattner095735d2002-05-06 03:03:22 +00004272<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004273<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004274
Chris Lattner095735d2002-05-06 03:03:22 +00004275<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004276<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
4277 from which to load. The pointer must point to
4278 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
4279 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00004280 number or order of execution of this <tt>load</tt> with other <a
4281 href="#volatile">volatile operations</a>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004282
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004283<p>The optional constant <tt>align</tt> argument specifies the alignment of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004284 operation (that is, the alignment of the memory address). A value of 0 or an
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004285 omitted <tt>align</tt> argument means that the operation has the preferential
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004286 alignment for the target. It is the responsibility of the code emitter to
4287 ensure that the alignment information is correct. Overestimating the
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004288 alignment results in undefined behavior. Underestimating the alignment may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004289 produce less efficient code. An alignment of 1 is always safe.</p>
4290
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004291<p>The optional <tt>!nontemporal</tt> metadata must reference a single
4292 metatadata name &lt;index&gt; corresponding to a metadata node with
Dan Gohmana269a0a2010-03-01 17:41:39 +00004293 one <tt>i32</tt> entry of value 1. The existence of
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004294 the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
4295 and code generator that this load is not expected to be reused in the cache.
4296 The code generator may select special instructions to save cache bandwidth,
Dan Gohmana269a0a2010-03-01 17:41:39 +00004297 such as the <tt>MOVNT</tt> instruction on x86.</p>
David Greene9641d062010-02-16 20:50:18 +00004298
Chris Lattner095735d2002-05-06 03:03:22 +00004299<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004300<p>The location of memory pointed to is loaded. If the value being loaded is of
4301 scalar type then the number of bytes read does not exceed the minimum number
4302 of bytes needed to hold all bits of the type. For example, loading an
4303 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
4304 <tt>i20</tt> with a size that is not an integral number of bytes, the result
4305 is undefined if the value was not originally written using a store of the
4306 same type.</p>
4307
Chris Lattner095735d2002-05-06 03:03:22 +00004308<h5>Examples:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004309<pre>
4310 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4311 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004312 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004313</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004314
Misha Brukman76307852003-11-08 01:05:38 +00004315</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004316
Chris Lattner095735d2002-05-06 03:03:22 +00004317<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00004318<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
4319Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004320
Reid Spencera89fb182006-11-09 21:18:01 +00004321<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004322
Chris Lattner095735d2002-05-06 03:03:22 +00004323<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004324<pre>
Benjamin Kramer79698be2010-07-13 12:26:09 +00004325 store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
4326 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004327</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004328
Chris Lattner095735d2002-05-06 03:03:22 +00004329<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004330<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004331
Chris Lattner095735d2002-05-06 03:03:22 +00004332<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004333<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
4334 and an address at which to store it. The type of the
4335 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
4336 the <a href="#t_firstclass">first class</a> type of the
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00004337 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
4338 <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
4339 order of execution of this <tt>store</tt> with other <a
4340 href="#volatile">volatile operations</a>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004341
4342<p>The optional constant "align" argument specifies the alignment of the
4343 operation (that is, the alignment of the memory address). A value of 0 or an
4344 omitted "align" argument means that the operation has the preferential
4345 alignment for the target. It is the responsibility of the code emitter to
4346 ensure that the alignment information is correct. Overestimating the
4347 alignment results in an undefined behavior. Underestimating the alignment may
4348 produce less efficient code. An alignment of 1 is always safe.</p>
4349
David Greene9641d062010-02-16 20:50:18 +00004350<p>The optional !nontemporal metadata must reference a single metatadata
Benjamin Kramer79698be2010-07-13 12:26:09 +00004351 name &lt;index&gt; corresponding to a metadata node with one i32 entry of
Dan Gohmana269a0a2010-03-01 17:41:39 +00004352 value 1. The existence of the !nontemporal metatadata on the
David Greene9641d062010-02-16 20:50:18 +00004353 instruction tells the optimizer and code generator that this load is
4354 not expected to be reused in the cache. The code generator may
4355 select special instructions to save cache bandwidth, such as the
Dan Gohmana269a0a2010-03-01 17:41:39 +00004356 MOVNT instruction on x86.</p>
David Greene9641d062010-02-16 20:50:18 +00004357
4358
Chris Lattner48b383b02003-11-25 01:02:51 +00004359<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004360<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
4361 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
4362 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
4363 does not exceed the minimum number of bytes needed to hold all bits of the
4364 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
4365 writing a value of a type like <tt>i20</tt> with a size that is not an
4366 integral number of bytes, it is unspecified what happens to the extra bits
4367 that do not belong to the type, but they will typically be overwritten.</p>
4368
Chris Lattner095735d2002-05-06 03:03:22 +00004369<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004370<pre>
4371 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8830ffe2007-10-22 05:10:05 +00004372 store i32 3, i32* %ptr <i>; yields {void}</i>
4373 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004374</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004375
Reid Spencer443460a2006-11-09 21:15:49 +00004376</div>
4377
Chris Lattner095735d2002-05-06 03:03:22 +00004378<!-- _______________________________________________________________________ -->
Chris Lattner33fd7022004-04-05 01:30:49 +00004379<div class="doc_subsubsection">
4380 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
4381</div>
4382
Misha Brukman76307852003-11-08 01:05:38 +00004383<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004384
Chris Lattner590645f2002-04-14 06:13:44 +00004385<h5>Syntax:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00004386<pre>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004387 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohman1639c392009-07-27 21:53:46 +00004388 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattner33fd7022004-04-05 01:30:49 +00004389</pre>
4390
Chris Lattner590645f2002-04-14 06:13:44 +00004391<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004392<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
Chris Lattner392be582010-02-12 20:49:41 +00004393 subelement of an <a href="#t_aggregate">aggregate</a> data structure.
4394 It performs address calculation only and does not access memory.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004395
Chris Lattner590645f2002-04-14 06:13:44 +00004396<h5>Arguments:</h5>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004397<p>The first argument is always a pointer, and forms the basis of the
Chris Lattnera40b9122009-07-29 06:44:13 +00004398 calculation. The remaining arguments are indices that indicate which of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004399 elements of the aggregate object are indexed. The interpretation of each
4400 index is dependent on the type being indexed into. The first index always
4401 indexes the pointer value given as the first argument, the second index
4402 indexes a value of the type pointed to (not necessarily the value directly
4403 pointed to, since the first index can be non-zero), etc. The first type
Chris Lattner392be582010-02-12 20:49:41 +00004404 indexed into must be a pointer value, subsequent types can be arrays,
Chris Lattner13ee7952010-08-28 04:09:24 +00004405 vectors, and structs. Note that subsequent types being indexed into
Chris Lattner392be582010-02-12 20:49:41 +00004406 can never be pointers, since that would require loading the pointer before
4407 continuing calculation.</p>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004408
4409<p>The type of each index argument depends on the type it is indexing into.
Chris Lattner13ee7952010-08-28 04:09:24 +00004410 When indexing into a (optionally packed) structure, only <tt>i32</tt>
Chris Lattner392be582010-02-12 20:49:41 +00004411 integer <b>constants</b> are allowed. When indexing into an array, pointer
4412 or vector, integers of any width are allowed, and they are not required to be
Chris Lattnera40b9122009-07-29 06:44:13 +00004413 constant.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004414
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004415<p>For example, let's consider a C code fragment and how it gets compiled to
4416 LLVM:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004417
Benjamin Kramer79698be2010-07-13 12:26:09 +00004418<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00004419struct RT {
4420 char A;
Chris Lattnera446f1b2007-05-29 15:43:56 +00004421 int B[10][20];
Bill Wendling3716c5d2007-05-29 09:04:49 +00004422 char C;
4423};
4424struct ST {
Chris Lattnera446f1b2007-05-29 15:43:56 +00004425 int X;
Bill Wendling3716c5d2007-05-29 09:04:49 +00004426 double Y;
4427 struct RT Z;
4428};
Chris Lattner33fd7022004-04-05 01:30:49 +00004429
Chris Lattnera446f1b2007-05-29 15:43:56 +00004430int *foo(struct ST *s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00004431 return &amp;s[1].Z.B[5][13];
4432}
Chris Lattner33fd7022004-04-05 01:30:49 +00004433</pre>
4434
Misha Brukman76307852003-11-08 01:05:38 +00004435<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004436
Benjamin Kramer79698be2010-07-13 12:26:09 +00004437<pre class="doc_code">
Chris Lattnerbc088212009-01-11 20:53:49 +00004438%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
4439%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattner33fd7022004-04-05 01:30:49 +00004440
Dan Gohman6b867702009-07-25 02:23:48 +00004441define i32* @foo(%ST* %s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00004442entry:
4443 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
4444 ret i32* %reg
4445}
Chris Lattner33fd7022004-04-05 01:30:49 +00004446</pre>
4447
Chris Lattner590645f2002-04-14 06:13:44 +00004448<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004449<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004450 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
4451 }</tt>' type, a structure. The second index indexes into the third element
4452 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
4453 i8 }</tt>' type, another structure. The third index indexes into the second
4454 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
4455 array. The two dimensions of the array are subscripted into, yielding an
4456 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
4457 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004458
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004459<p>Note that it is perfectly legal to index partially through a structure,
4460 returning a pointer to an inner element. Because of this, the LLVM code for
4461 the given testcase is equivalent to:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004462
4463<pre>
Dan Gohman6b867702009-07-25 02:23:48 +00004464 define i32* @foo(%ST* %s) {
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004465 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen5819f182007-04-22 01:17:39 +00004466 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
4467 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004468 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
4469 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
4470 ret i32* %t5
Chris Lattner33fd7022004-04-05 01:30:49 +00004471 }
Chris Lattnera8292f32002-05-06 22:08:29 +00004472</pre>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00004473
Dan Gohman1639c392009-07-27 21:53:46 +00004474<p>If the <tt>inbounds</tt> keyword is present, the result value of the
Dan Gohman57255802010-04-23 15:23:32 +00004475 <tt>getelementptr</tt> is a <a href="#trapvalues">trap value</a> if the
4476 base pointer is not an <i>in bounds</i> address of an allocated object,
4477 or if any of the addresses that would be formed by successive addition of
4478 the offsets implied by the indices to the base address with infinitely
4479 precise arithmetic are not an <i>in bounds</i> address of that allocated
4480 object. The <i>in bounds</i> addresses for an allocated object are all
4481 the addresses that point into the object, plus the address one byte past
4482 the end.</p>
Dan Gohman1639c392009-07-27 21:53:46 +00004483
4484<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
4485 the base address with silently-wrapping two's complement arithmetic, and
4486 the result value of the <tt>getelementptr</tt> may be outside the object
4487 pointed to by the base pointer. The result value may not necessarily be
4488 used to access memory though, even if it happens to point into allocated
4489 storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
4490 section for more information.</p>
4491
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004492<p>The getelementptr instruction is often confusing. For some more insight into
4493 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Chris Lattner6ab66722006-08-15 00:45:58 +00004494
Chris Lattner590645f2002-04-14 06:13:44 +00004495<h5>Example:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00004496<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004497 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004498 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4499 <i>; yields i8*:vptr</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004500 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004501 <i>; yields i8*:eptr</i>
4502 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta0c155e62009-04-25 07:27:44 +00004503 <i>; yields i32*:iptr</i>
Sanjiv Gupta77abea02009-04-24 16:38:13 +00004504 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattner33fd7022004-04-05 01:30:49 +00004505</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004506
Chris Lattner33fd7022004-04-05 01:30:49 +00004507</div>
Reid Spencer443460a2006-11-09 21:15:49 +00004508
Chris Lattner2f7c9632001-06-06 20:29:01 +00004509<!-- ======================================================================= -->
Reid Spencer97c5fa42006-11-08 01:18:52 +00004510<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman76307852003-11-08 01:05:38 +00004511</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004512
Misha Brukman76307852003-11-08 01:05:38 +00004513<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004514
Reid Spencer97c5fa42006-11-08 01:18:52 +00004515<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004516 which all take a single operand and a type. They perform various bit
4517 conversions on the operand.</p>
4518
Misha Brukman76307852003-11-08 01:05:38 +00004519</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004520
Chris Lattnera8292f32002-05-06 22:08:29 +00004521<!-- _______________________________________________________________________ -->
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004522<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004523 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
4524</div>
4525<div class="doc_text">
4526
4527<h5>Syntax:</h5>
4528<pre>
4529 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4530</pre>
4531
4532<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004533<p>The '<tt>trunc</tt>' instruction truncates its operand to the
4534 type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004535
4536<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004537<p>The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
4538 be an <a href="#t_integer">integer</a> type, and a type that specifies the
4539 size and type of the result, which must be
4540 an <a href="#t_integer">integer</a> type. The bit size of <tt>value</tt> must
4541 be larger than the bit size of <tt>ty2</tt>. Equal sized types are not
4542 allowed.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004543
4544<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004545<p>The '<tt>trunc</tt>' instruction truncates the high order bits
4546 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
4547 source size must be larger than the destination size, <tt>trunc</tt> cannot
4548 be a <i>no-op cast</i>. It will always truncate bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004549
4550<h5>Example:</h5>
4551<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004552 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencer36a15422007-01-12 03:35:51 +00004553 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00004554 %Z = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004555</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004556
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004557</div>
4558
4559<!-- _______________________________________________________________________ -->
4560<div class="doc_subsubsection">
4561 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
4562</div>
4563<div class="doc_text">
4564
4565<h5>Syntax:</h5>
4566<pre>
4567 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4568</pre>
4569
4570<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004571<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004572 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004573
4574
4575<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004576<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004577 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4578 also be of <a href="#t_integer">integer</a> type. The bit size of the
Eric Christopher455c5772009-12-05 02:46:03 +00004579 <tt>value</tt> must be smaller than the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004580 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004581
4582<h5>Semantics:</h5>
4583<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004584 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004585
Reid Spencer07c9c682007-01-12 15:46:11 +00004586<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004587
4588<h5>Example:</h5>
4589<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004590 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencer36a15422007-01-12 03:35:51 +00004591 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004592</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004593
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004594</div>
4595
4596<!-- _______________________________________________________________________ -->
4597<div class="doc_subsubsection">
4598 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
4599</div>
4600<div class="doc_text">
4601
4602<h5>Syntax:</h5>
4603<pre>
4604 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4605</pre>
4606
4607<h5>Overview:</h5>
4608<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
4609
4610<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004611<p>The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004612 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4613 also be of <a href="#t_integer">integer</a> type. The bit size of the
Eric Christopher455c5772009-12-05 02:46:03 +00004614 <tt>value</tt> must be smaller than the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004615 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004616
4617<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004618<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
4619 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
4620 of the type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004621
Reid Spencer36a15422007-01-12 03:35:51 +00004622<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004623
4624<h5>Example:</h5>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004625<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004626 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencer36a15422007-01-12 03:35:51 +00004627 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004628</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004629
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004630</div>
4631
4632<!-- _______________________________________________________________________ -->
4633<div class="doc_subsubsection">
Reid Spencer2e2740d2006-11-09 21:48:10 +00004634 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
4635</div>
4636
4637<div class="doc_text">
4638
4639<h5>Syntax:</h5>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004640<pre>
4641 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4642</pre>
4643
4644<h5>Overview:</h5>
4645<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004646 <tt>ty2</tt>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004647
4648<h5>Arguments:</h5>
4649<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004650 point</a> value to cast and a <a href="#t_floating">floating point</a> type
4651 to cast it to. The size of <tt>value</tt> must be larger than the size of
Eric Christopher455c5772009-12-05 02:46:03 +00004652 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004653 <i>no-op cast</i>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004654
4655<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004656<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
Eric Christopher455c5772009-12-05 02:46:03 +00004657 <a href="#t_floating">floating point</a> type to a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004658 <a href="#t_floating">floating point</a> type. If the value cannot fit
4659 within the destination type, <tt>ty2</tt>, then the results are
4660 undefined.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004661
4662<h5>Example:</h5>
4663<pre>
4664 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4665 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4666</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004667
Reid Spencer2e2740d2006-11-09 21:48:10 +00004668</div>
4669
4670<!-- _______________________________________________________________________ -->
4671<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004672 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4673</div>
4674<div class="doc_text">
4675
4676<h5>Syntax:</h5>
4677<pre>
4678 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4679</pre>
4680
4681<h5>Overview:</h5>
4682<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004683 floating point value.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004684
4685<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004686<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004687 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
4688 a <a href="#t_floating">floating point</a> type to cast it to. The source
4689 type must be smaller than the destination type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004690
4691<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004692<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004693 <a href="#t_floating">floating point</a> type to a larger
4694 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
4695 used to make a <i>no-op cast</i> because it always changes bits. Use
4696 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004697
4698<h5>Example:</h5>
4699<pre>
4700 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4701 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4702</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004703
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004704</div>
4705
4706<!-- _______________________________________________________________________ -->
4707<div class="doc_subsubsection">
Reid Spencer2eadb532007-01-21 00:29:26 +00004708 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004709</div>
4710<div class="doc_text">
4711
4712<h5>Syntax:</h5>
4713<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00004714 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004715</pre>
4716
4717<h5>Overview:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00004718<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004719 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004720
4721<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004722<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
4723 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4724 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4725 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4726 vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004727
4728<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004729<p>The '<tt>fptoui</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004730 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4731 towards zero) unsigned integer value. If the value cannot fit
4732 in <tt>ty2</tt>, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004733
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004734<h5>Example:</h5>
4735<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00004736 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00004737 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00004738 %Z = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004739</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004740
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004741</div>
4742
4743<!-- _______________________________________________________________________ -->
4744<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004745 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004746</div>
4747<div class="doc_text">
4748
4749<h5>Syntax:</h5>
4750<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004751 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004752</pre>
4753
4754<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004755<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004756 <a href="#t_floating">floating point</a> <tt>value</tt> to
4757 type <tt>ty2</tt>.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004758
Chris Lattnera8292f32002-05-06 22:08:29 +00004759<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004760<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
4761 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4762 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4763 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4764 vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004765
Chris Lattnera8292f32002-05-06 22:08:29 +00004766<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004767<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004768 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4769 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4770 the results are undefined.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004771
Chris Lattner70de6632001-07-09 00:26:23 +00004772<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004773<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00004774 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00004775 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00004776 %Z = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004777</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004778
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004779</div>
4780
4781<!-- _______________________________________________________________________ -->
4782<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004783 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004784</div>
4785<div class="doc_text">
4786
4787<h5>Syntax:</h5>
4788<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004789 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004790</pre>
4791
4792<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004793<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004794 integer and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004795
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004796<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004797<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004798 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4799 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4800 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4801 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004802
4803<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004804<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004805 integer quantity and converts it to the corresponding floating point
4806 value. If the value cannot fit in the floating point value, the results are
4807 undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004808
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004809<h5>Example:</h5>
4810<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004811 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004812 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004813</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004814
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004815</div>
4816
4817<!-- _______________________________________________________________________ -->
4818<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004819 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004820</div>
4821<div class="doc_text">
4822
4823<h5>Syntax:</h5>
4824<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004825 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004826</pre>
4827
4828<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004829<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
4830 and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004831
4832<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004833<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004834 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4835 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4836 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4837 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004838
4839<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004840<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
4841 quantity and converts it to the corresponding floating point value. If the
4842 value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004843
4844<h5>Example:</h5>
4845<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004846 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004847 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004848</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004849
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004850</div>
4851
4852<!-- _______________________________________________________________________ -->
4853<div class="doc_subsubsection">
Reid Spencerb7344ff2006-11-11 21:00:47 +00004854 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4855</div>
4856<div class="doc_text">
4857
4858<h5>Syntax:</h5>
4859<pre>
4860 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4861</pre>
4862
4863<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004864<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4865 the integer type <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004866
4867<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004868<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
4869 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
4870 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004871
4872<h5>Semantics:</h5>
4873<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004874 <tt>ty2</tt> by interpreting the pointer value as an integer and either
4875 truncating or zero extending that value to the size of the integer type. If
4876 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4877 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
4878 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4879 change.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004880
4881<h5>Example:</h5>
4882<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004883 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4884 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004885</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004886
Reid Spencerb7344ff2006-11-11 21:00:47 +00004887</div>
4888
4889<!-- _______________________________________________________________________ -->
4890<div class="doc_subsubsection">
4891 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4892</div>
4893<div class="doc_text">
4894
4895<h5>Syntax:</h5>
4896<pre>
4897 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4898</pre>
4899
4900<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004901<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
4902 pointer type, <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004903
4904<h5>Arguments:</h5>
Duncan Sands16f122e2007-03-30 12:22:09 +00004905<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004906 value to cast, and a type to cast it to, which must be a
4907 <a href="#t_pointer">pointer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004908
4909<h5>Semantics:</h5>
4910<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004911 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
4912 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4913 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
4914 than the size of a pointer then a zero extension is done. If they are the
4915 same size, nothing is done (<i>no-op cast</i>).</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004916
4917<h5>Example:</h5>
4918<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004919 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00004920 %Y = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4921 %Z = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004922</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004923
Reid Spencerb7344ff2006-11-11 21:00:47 +00004924</div>
4925
4926<!-- _______________________________________________________________________ -->
4927<div class="doc_subsubsection">
Reid Spencer5b950642006-11-11 23:08:07 +00004928 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004929</div>
4930<div class="doc_text">
4931
4932<h5>Syntax:</h5>
4933<pre>
Reid Spencer5b950642006-11-11 23:08:07 +00004934 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004935</pre>
4936
4937<h5>Overview:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00004938<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004939 <tt>ty2</tt> without changing any bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004940
4941<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004942<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
4943 non-aggregate first class value, and a type to cast it to, which must also be
4944 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
4945 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
4946 identical. If the source type is a pointer, the destination type must also be
4947 a pointer. This instruction supports bitwise conversion of vectors to
4948 integers and to vectors of other types (as long as they have the same
4949 size).</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004950
4951<h5>Semantics:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00004952<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004953 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4954 this conversion. The conversion is done as if the <tt>value</tt> had been
4955 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
4956 be converted to other pointer types with this instruction. To convert
4957 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
4958 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004959
4960<h5>Example:</h5>
4961<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004962 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004963 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004964 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner70de6632001-07-09 00:26:23 +00004965</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004966
Misha Brukman76307852003-11-08 01:05:38 +00004967</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004968
Reid Spencer97c5fa42006-11-08 01:18:52 +00004969<!-- ======================================================================= -->
4970<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004971
Reid Spencer97c5fa42006-11-08 01:18:52 +00004972<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004973
4974<p>The instructions in this category are the "miscellaneous" instructions, which
4975 defy better classification.</p>
4976
Reid Spencer97c5fa42006-11-08 01:18:52 +00004977</div>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004978
4979<!-- _______________________________________________________________________ -->
4980<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4981</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004982
Reid Spencerc828a0e2006-11-18 21:50:54 +00004983<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004984
Reid Spencerc828a0e2006-11-18 21:50:54 +00004985<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004986<pre>
4987 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004988</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004989
Reid Spencerc828a0e2006-11-18 21:50:54 +00004990<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004991<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
4992 boolean values based on comparison of its two integer, integer vector, or
4993 pointer operands.</p>
4994
Reid Spencerc828a0e2006-11-18 21:50:54 +00004995<h5>Arguments:</h5>
4996<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004997 the condition code indicating the kind of comparison to perform. It is not a
4998 value, just a keyword. The possible condition code are:</p>
4999
Reid Spencerc828a0e2006-11-18 21:50:54 +00005000<ol>
5001 <li><tt>eq</tt>: equal</li>
5002 <li><tt>ne</tt>: not equal </li>
5003 <li><tt>ugt</tt>: unsigned greater than</li>
5004 <li><tt>uge</tt>: unsigned greater or equal</li>
5005 <li><tt>ult</tt>: unsigned less than</li>
5006 <li><tt>ule</tt>: unsigned less or equal</li>
5007 <li><tt>sgt</tt>: signed greater than</li>
5008 <li><tt>sge</tt>: signed greater or equal</li>
5009 <li><tt>slt</tt>: signed less than</li>
5010 <li><tt>sle</tt>: signed less or equal</li>
5011</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005012
Chris Lattnerc0f423a2007-01-15 01:54:13 +00005013<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005014 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
5015 typed. They must also be identical types.</p>
5016
Reid Spencerc828a0e2006-11-18 21:50:54 +00005017<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005018<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
5019 condition code given as <tt>cond</tt>. The comparison performed always yields
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005020 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005021 result, as follows:</p>
5022
Reid Spencerc828a0e2006-11-18 21:50:54 +00005023<ol>
Eric Christopher455c5772009-12-05 02:46:03 +00005024 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005025 <tt>false</tt> otherwise. No sign interpretation is necessary or
5026 performed.</li>
5027
Eric Christopher455c5772009-12-05 02:46:03 +00005028 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005029 <tt>false</tt> otherwise. No sign interpretation is necessary or
5030 performed.</li>
5031
Reid Spencerc828a0e2006-11-18 21:50:54 +00005032 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005033 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5034
Reid Spencerc828a0e2006-11-18 21:50:54 +00005035 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005036 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5037 to <tt>op2</tt>.</li>
5038
Reid Spencerc828a0e2006-11-18 21:50:54 +00005039 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005040 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5041
Reid Spencerc828a0e2006-11-18 21:50:54 +00005042 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005043 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5044
Reid Spencerc828a0e2006-11-18 21:50:54 +00005045 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005046 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5047
Reid Spencerc828a0e2006-11-18 21:50:54 +00005048 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005049 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5050 to <tt>op2</tt>.</li>
5051
Reid Spencerc828a0e2006-11-18 21:50:54 +00005052 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005053 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5054
Reid Spencerc828a0e2006-11-18 21:50:54 +00005055 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005056 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005057</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005058
Reid Spencerc828a0e2006-11-18 21:50:54 +00005059<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005060 values are compared as if they were integers.</p>
5061
5062<p>If the operands are integer vectors, then they are compared element by
5063 element. The result is an <tt>i1</tt> vector with the same number of elements
5064 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005065
5066<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005067<pre>
5068 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005069 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
5070 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
5071 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
5072 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
5073 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005074</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005075
5076<p>Note that the code generator does not yet support vector types with
5077 the <tt>icmp</tt> instruction.</p>
5078
Reid Spencerc828a0e2006-11-18 21:50:54 +00005079</div>
5080
5081<!-- _______________________________________________________________________ -->
5082<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
5083</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005084
Reid Spencerc828a0e2006-11-18 21:50:54 +00005085<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005086
Reid Spencerc828a0e2006-11-18 21:50:54 +00005087<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005088<pre>
5089 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005090</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005091
Reid Spencerc828a0e2006-11-18 21:50:54 +00005092<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005093<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
5094 values based on comparison of its operands.</p>
5095
5096<p>If the operands are floating point scalars, then the result type is a boolean
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005097(<a href="#t_integer"><tt>i1</tt></a>).</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005098
5099<p>If the operands are floating point vectors, then the result type is a vector
5100 of boolean with the same number of elements as the operands being
5101 compared.</p>
5102
Reid Spencerc828a0e2006-11-18 21:50:54 +00005103<h5>Arguments:</h5>
5104<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005105 the condition code indicating the kind of comparison to perform. It is not a
5106 value, just a keyword. The possible condition code are:</p>
5107
Reid Spencerc828a0e2006-11-18 21:50:54 +00005108<ol>
Reid Spencerf69acf32006-11-19 03:00:14 +00005109 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005110 <li><tt>oeq</tt>: ordered and equal</li>
5111 <li><tt>ogt</tt>: ordered and greater than </li>
5112 <li><tt>oge</tt>: ordered and greater than or equal</li>
5113 <li><tt>olt</tt>: ordered and less than </li>
5114 <li><tt>ole</tt>: ordered and less than or equal</li>
5115 <li><tt>one</tt>: ordered and not equal</li>
5116 <li><tt>ord</tt>: ordered (no nans)</li>
5117 <li><tt>ueq</tt>: unordered or equal</li>
5118 <li><tt>ugt</tt>: unordered or greater than </li>
5119 <li><tt>uge</tt>: unordered or greater than or equal</li>
5120 <li><tt>ult</tt>: unordered or less than </li>
5121 <li><tt>ule</tt>: unordered or less than or equal</li>
5122 <li><tt>une</tt>: unordered or not equal</li>
5123 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00005124 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005125</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005126
Jeff Cohen222a8a42007-04-29 01:07:00 +00005127<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005128 <i>unordered</i> means that either operand may be a QNAN.</p>
5129
5130<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
5131 a <a href="#t_floating">floating point</a> type or
5132 a <a href="#t_vector">vector</a> of floating point type. They must have
5133 identical types.</p>
5134
Reid Spencerc828a0e2006-11-18 21:50:54 +00005135<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00005136<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005137 according to the condition code given as <tt>cond</tt>. If the operands are
5138 vectors, then the vectors are compared element by element. Each comparison
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005139 performed always yields an <a href="#t_integer">i1</a> result, as
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005140 follows:</p>
5141
Reid Spencerc828a0e2006-11-18 21:50:54 +00005142<ol>
5143 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005144
Eric Christopher455c5772009-12-05 02:46:03 +00005145 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005146 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5147
Reid Spencerf69acf32006-11-19 03:00:14 +00005148 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Dan Gohmana269a0a2010-03-01 17:41:39 +00005149 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005150
Eric Christopher455c5772009-12-05 02:46:03 +00005151 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005152 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5153
Eric Christopher455c5772009-12-05 02:46:03 +00005154 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005155 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5156
Eric Christopher455c5772009-12-05 02:46:03 +00005157 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005158 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5159
Eric Christopher455c5772009-12-05 02:46:03 +00005160 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005161 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5162
Reid Spencerf69acf32006-11-19 03:00:14 +00005163 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005164
Eric Christopher455c5772009-12-05 02:46:03 +00005165 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005166 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5167
Eric Christopher455c5772009-12-05 02:46:03 +00005168 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005169 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5170
Eric Christopher455c5772009-12-05 02:46:03 +00005171 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005172 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5173
Eric Christopher455c5772009-12-05 02:46:03 +00005174 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005175 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5176
Eric Christopher455c5772009-12-05 02:46:03 +00005177 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005178 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5179
Eric Christopher455c5772009-12-05 02:46:03 +00005180 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005181 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5182
Reid Spencerf69acf32006-11-19 03:00:14 +00005183 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005184
Reid Spencerc828a0e2006-11-18 21:50:54 +00005185 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
5186</ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005187
5188<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005189<pre>
5190 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanc579d972008-09-09 01:02:47 +00005191 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
5192 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
5193 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005194</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005195
5196<p>Note that the code generator does not yet support vector types with
5197 the <tt>fcmp</tt> instruction.</p>
5198
Reid Spencerc828a0e2006-11-18 21:50:54 +00005199</div>
5200
Reid Spencer97c5fa42006-11-08 01:18:52 +00005201<!-- _______________________________________________________________________ -->
Nate Begemand2195702008-05-12 19:01:56 +00005202<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005203 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
5204</div>
5205
Reid Spencer97c5fa42006-11-08 01:18:52 +00005206<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005207
Reid Spencer97c5fa42006-11-08 01:18:52 +00005208<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005209<pre>
5210 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
5211</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005212
Reid Spencer97c5fa42006-11-08 01:18:52 +00005213<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005214<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
5215 SSA graph representing the function.</p>
5216
Reid Spencer97c5fa42006-11-08 01:18:52 +00005217<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005218<p>The type of the incoming values is specified with the first type field. After
5219 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
5220 one pair for each predecessor basic block of the current block. Only values
5221 of <a href="#t_firstclass">first class</a> type may be used as the value
5222 arguments to the PHI node. Only labels may be used as the label
5223 arguments.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005224
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005225<p>There must be no non-phi instructions between the start of a basic block and
5226 the PHI instructions: i.e. PHI instructions must be first in a basic
5227 block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005228
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005229<p>For the purposes of the SSA form, the use of each incoming value is deemed to
5230 occur on the edge from the corresponding predecessor block to the current
5231 block (but after any definition of an '<tt>invoke</tt>' instruction's return
5232 value on the same edge).</p>
Jay Foad1a4eea52009-06-03 10:20:10 +00005233
Reid Spencer97c5fa42006-11-08 01:18:52 +00005234<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005235<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005236 specified by the pair corresponding to the predecessor basic block that
5237 executed just prior to the current block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005238
Reid Spencer97c5fa42006-11-08 01:18:52 +00005239<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005240<pre>
5241Loop: ; Infinite loop that counts from 0 on up...
5242 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5243 %nextindvar = add i32 %indvar, 1
5244 br label %Loop
5245</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005246
Reid Spencer97c5fa42006-11-08 01:18:52 +00005247</div>
5248
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005249<!-- _______________________________________________________________________ -->
5250<div class="doc_subsubsection">
5251 <a name="i_select">'<tt>select</tt>' Instruction</a>
5252</div>
5253
5254<div class="doc_text">
5255
5256<h5>Syntax:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005257<pre>
Dan Gohmanc579d972008-09-09 01:02:47 +00005258 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
5259
Dan Gohmanef9462f2008-10-14 16:51:45 +00005260 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005261</pre>
5262
5263<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005264<p>The '<tt>select</tt>' instruction is used to choose one value based on a
5265 condition, without branching.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005266
5267
5268<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005269<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
5270 values indicating the condition, and two values of the
5271 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
5272 vectors and the condition is a scalar, then entire vectors are selected, not
5273 individual elements.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005274
5275<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005276<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
5277 first value argument; otherwise, it returns the second value argument.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005278
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005279<p>If the condition is a vector of i1, then the value arguments must be vectors
5280 of the same size, and the selection is done element by element.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005281
5282<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005283<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00005284 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005285</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005286
5287<p>Note that the code generator does not yet support conditions
5288 with vector type.</p>
5289
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005290</div>
5291
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00005292<!-- _______________________________________________________________________ -->
5293<div class="doc_subsubsection">
Chris Lattnere23c1392005-05-06 05:47:36 +00005294 <a name="i_call">'<tt>call</tt>' Instruction</a>
5295</div>
5296
Misha Brukman76307852003-11-08 01:05:38 +00005297<div class="doc_text">
Chris Lattnere23c1392005-05-06 05:47:36 +00005298
Chris Lattner2f7c9632001-06-06 20:29:01 +00005299<h5>Syntax:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00005300<pre>
Devang Patel02256232008-10-07 17:48:33 +00005301 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattnere23c1392005-05-06 05:47:36 +00005302</pre>
5303
Chris Lattner2f7c9632001-06-06 20:29:01 +00005304<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005305<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005306
Chris Lattner2f7c9632001-06-06 20:29:01 +00005307<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005308<p>This instruction requires several arguments:</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005309
Chris Lattnera8292f32002-05-06 22:08:29 +00005310<ol>
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005311 <li>The optional "tail" marker indicates that the callee function does not
5312 access any allocas or varargs in the caller. Note that calls may be
5313 marked "tail" even if they do not occur before
5314 a <a href="#i_ret"><tt>ret</tt></a> instruction. If the "tail" marker is
5315 present, the function call is eligible for tail call optimization,
5316 but <a href="CodeGenerator.html#tailcallopt">might not in fact be
Evan Cheng59676492010-03-08 21:05:02 +00005317 optimized into a jump</a>. The code generator may optimize calls marked
5318 "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
5319 sibling call optimization</a> when the caller and callee have
5320 matching signatures, or 2) forced tail call optimization when the
5321 following extra requirements are met:
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005322 <ul>
5323 <li>Caller and callee both have the calling
5324 convention <tt>fastcc</tt>.</li>
5325 <li>The call is in tail position (ret immediately follows call and ret
5326 uses value of call or is void).</li>
5327 <li>Option <tt>-tailcallopt</tt> is enabled,
Dan Gohman6232f732010-03-02 01:08:11 +00005328 or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005329 <li><a href="CodeGenerator.html#tailcallopt">Platform specific
5330 constraints are met.</a></li>
5331 </ul>
5332 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00005333
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005334 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
5335 convention</a> the call should use. If none is specified, the call
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005336 defaults to using C calling conventions. The calling convention of the
5337 call must match the calling convention of the target function, or else the
5338 behavior is undefined.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00005339
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005340 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
5341 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
5342 '<tt>inreg</tt>' attributes are valid here.</li>
5343
5344 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
5345 type of the return value. Functions that return no value are marked
5346 <tt><a href="#t_void">void</a></tt>.</li>
5347
5348 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
5349 being invoked. The argument types must match the types implied by this
5350 signature. This type can be omitted if the function is not varargs and if
5351 the function type does not return a pointer to a function.</li>
5352
5353 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
5354 be invoked. In most cases, this is a direct function invocation, but
5355 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
5356 to function value.</li>
5357
5358 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner47f2a832010-03-02 06:36:51 +00005359 signature argument types and parameter attributes. All arguments must be
5360 of <a href="#t_firstclass">first class</a> type. If the function
5361 signature indicates the function accepts a variable number of arguments,
5362 the extra arguments can be specified.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005363
5364 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
5365 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
5366 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattnera8292f32002-05-06 22:08:29 +00005367</ol>
Chris Lattnere23c1392005-05-06 05:47:36 +00005368
Chris Lattner2f7c9632001-06-06 20:29:01 +00005369<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005370<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
5371 a specified function, with its incoming arguments bound to the specified
5372 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
5373 function, control flow continues with the instruction after the function
5374 call, and the return value of the function is bound to the result
5375 argument.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005376
Chris Lattner2f7c9632001-06-06 20:29:01 +00005377<h5>Example:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00005378<pre>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00005379 %retval = call i32 @test(i32 %argc)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00005380 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) <i>; yields i32</i>
Chris Lattnerfb7c88d2008-03-21 17:24:17 +00005381 %X = tail call i32 @foo() <i>; yields i32</i>
5382 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
5383 call void %foo(i8 97 signext)
Devang Pateld6cff512008-03-10 20:49:15 +00005384
5385 %struct.A = type { i32, i8 }
Devang Patel7e9b05e2008-10-06 18:50:38 +00005386 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00005387 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
5388 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner6cbe8e92008-10-08 06:26:11 +00005389 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmaneefa7df2008-10-07 10:03:45 +00005390 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattnere23c1392005-05-06 05:47:36 +00005391</pre>
5392
Dale Johannesen68f971b2009-09-24 18:38:21 +00005393<p>llvm treats calls to some functions with names and arguments that match the
Dale Johannesen722212d2009-09-25 17:04:42 +00005394standard C99 library as being the C99 library functions, and may perform
5395optimizations or generate code for them under that assumption. This is
5396something we'd like to change in the future to provide better support for
Dan Gohmana269a0a2010-03-01 17:41:39 +00005397freestanding environments and non-C-based languages.</p>
Dale Johannesen68f971b2009-09-24 18:38:21 +00005398
Misha Brukman76307852003-11-08 01:05:38 +00005399</div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005400
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005401<!-- _______________________________________________________________________ -->
Chris Lattner6a4a0492004-09-27 21:51:25 +00005402<div class="doc_subsubsection">
Chris Lattner33337472006-01-13 23:26:01 +00005403 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005404</div>
5405
Misha Brukman76307852003-11-08 01:05:38 +00005406<div class="doc_text">
Chris Lattner6a4a0492004-09-27 21:51:25 +00005407
Chris Lattner26ca62e2003-10-18 05:51:36 +00005408<h5>Syntax:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005409<pre>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005410 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattner6a4a0492004-09-27 21:51:25 +00005411</pre>
5412
Chris Lattner26ca62e2003-10-18 05:51:36 +00005413<h5>Overview:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005414<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005415 the "variable argument" area of a function call. It is used to implement the
5416 <tt>va_arg</tt> macro in C.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005417
Chris Lattner26ca62e2003-10-18 05:51:36 +00005418<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005419<p>This instruction takes a <tt>va_list*</tt> value and the type of the
5420 argument. It returns a value of the specified argument type and increments
5421 the <tt>va_list</tt> to point to the next argument. The actual type
5422 of <tt>va_list</tt> is target specific.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005423
Chris Lattner26ca62e2003-10-18 05:51:36 +00005424<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005425<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
5426 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
5427 to the next argument. For more information, see the variable argument
5428 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005429
5430<p>It is legal for this instruction to be called in a function which does not
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005431 take a variable number of arguments, for example, the <tt>vfprintf</tt>
5432 function.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005433
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005434<p><tt>va_arg</tt> is an LLVM instruction instead of
5435 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
5436 argument.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005437
Chris Lattner26ca62e2003-10-18 05:51:36 +00005438<h5>Example:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005439<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
5440
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005441<p>Note that the code generator does not yet fully support va_arg on many
5442 targets. Also, it does not currently support va_arg with aggregate types on
5443 any target.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00005444
Misha Brukman76307852003-11-08 01:05:38 +00005445</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005446
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005447<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00005448<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
5449<!-- *********************************************************************** -->
Chris Lattner941515c2004-01-06 05:31:32 +00005450
Misha Brukman76307852003-11-08 01:05:38 +00005451<div class="doc_text">
Chris Lattnerfee11462004-02-12 17:01:32 +00005452
5453<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005454 well known names and semantics and are required to follow certain
5455 restrictions. Overall, these intrinsics represent an extension mechanism for
5456 the LLVM language that does not require changing all of the transformations
5457 in LLVM when adding to the language (or the bitcode reader/writer, the
5458 parser, etc...).</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005459
John Criswell88190562005-05-16 16:17:45 +00005460<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005461 prefix is reserved in LLVM for intrinsic names; thus, function names may not
5462 begin with this prefix. Intrinsic functions must always be external
5463 functions: you cannot define the body of intrinsic functions. Intrinsic
5464 functions may only be used in call or invoke instructions: it is illegal to
5465 take the address of an intrinsic function. Additionally, because intrinsic
5466 functions are part of the LLVM language, it is required if any are added that
5467 they be documented here.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005468
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005469<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
5470 family of functions that perform the same operation but on different data
5471 types. Because LLVM can represent over 8 million different integer types,
5472 overloading is used commonly to allow an intrinsic function to operate on any
5473 integer type. One or more of the argument types or the result type can be
5474 overloaded to accept any integer type. Argument types may also be defined as
5475 exactly matching a previous argument's type or the result type. This allows
5476 an intrinsic function which accepts multiple arguments, but needs all of them
5477 to be of the same type, to only be overloaded with respect to a single
5478 argument or the result.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005479
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005480<p>Overloaded intrinsics will have the names of its overloaded argument types
5481 encoded into its function name, each preceded by a period. Only those types
5482 which are overloaded result in a name suffix. Arguments whose type is matched
5483 against another type do not. For example, the <tt>llvm.ctpop</tt> function
5484 can take an integer of any width and returns an integer of exactly the same
5485 integer width. This leads to a family of functions such as
5486 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
5487 %val)</tt>. Only one type, the return type, is overloaded, and only one type
5488 suffix is required. Because the argument's type is matched against the return
5489 type, it does not require its own name suffix.</p>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005490
Eric Christopher455c5772009-12-05 02:46:03 +00005491<p>To learn how to add an intrinsic function, please see the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005492 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005493
Misha Brukman76307852003-11-08 01:05:38 +00005494</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005495
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005496<!-- ======================================================================= -->
Chris Lattner941515c2004-01-06 05:31:32 +00005497<div class="doc_subsection">
5498 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
5499</div>
5500
Misha Brukman76307852003-11-08 01:05:38 +00005501<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00005502
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005503<p>Variable argument support is defined in LLVM with
5504 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
5505 intrinsic functions. These functions are related to the similarly named
5506 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005507
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005508<p>All of these functions operate on arguments that use a target-specific value
5509 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
5510 not define what this type is, so all transformations should be prepared to
5511 handle these functions regardless of the type used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005512
Chris Lattner30b868d2006-05-15 17:26:46 +00005513<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005514 instruction and the variable argument handling intrinsic functions are
5515 used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005516
Benjamin Kramer79698be2010-07-13 12:26:09 +00005517<pre class="doc_code">
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005518define i32 @test(i32 %X, ...) {
Chris Lattnerfee11462004-02-12 17:01:32 +00005519 ; Initialize variable argument processing
Jeff Cohen222a8a42007-04-29 01:07:00 +00005520 %ap = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005521 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005522 call void @llvm.va_start(i8* %ap2)
Chris Lattnerfee11462004-02-12 17:01:32 +00005523
5524 ; Read a single integer argument
Jeff Cohen222a8a42007-04-29 01:07:00 +00005525 %tmp = va_arg i8** %ap, i32
Chris Lattnerfee11462004-02-12 17:01:32 +00005526
5527 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohen222a8a42007-04-29 01:07:00 +00005528 %aq = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005529 %aq2 = bitcast i8** %aq to i8*
Jeff Cohen222a8a42007-04-29 01:07:00 +00005530 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005531 call void @llvm.va_end(i8* %aq2)
Chris Lattnerfee11462004-02-12 17:01:32 +00005532
5533 ; Stop processing of arguments.
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005534 call void @llvm.va_end(i8* %ap2)
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005535 ret i32 %tmp
Chris Lattnerfee11462004-02-12 17:01:32 +00005536}
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005537
5538declare void @llvm.va_start(i8*)
5539declare void @llvm.va_copy(i8*, i8*)
5540declare void @llvm.va_end(i8*)
Chris Lattnerfee11462004-02-12 17:01:32 +00005541</pre>
Chris Lattner941515c2004-01-06 05:31:32 +00005542
Bill Wendling3716c5d2007-05-29 09:04:49 +00005543</div>
5544
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005545<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00005546<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005547 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00005548</div>
5549
5550
Misha Brukman76307852003-11-08 01:05:38 +00005551<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005552
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005553<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005554<pre>
5555 declare void %llvm.va_start(i8* &lt;arglist&gt;)
5556</pre>
5557
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005558<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005559<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
5560 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005561
5562<h5>Arguments:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005563<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005564
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005565<h5>Semantics:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005566<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005567 macro available in C. In a target-dependent way, it initializes
5568 the <tt>va_list</tt> element to which the argument points, so that the next
5569 call to <tt>va_arg</tt> will produce the first variable argument passed to
5570 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
5571 need to know the last argument of the function as the compiler can figure
5572 that out.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005573
Misha Brukman76307852003-11-08 01:05:38 +00005574</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005575
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005576<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00005577<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005578 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00005579</div>
5580
Misha Brukman76307852003-11-08 01:05:38 +00005581<div class="doc_text">
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005582
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005583<h5>Syntax:</h5>
5584<pre>
5585 declare void @llvm.va_end(i8* &lt;arglist&gt;)
5586</pre>
5587
5588<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005589<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005590 which has been initialized previously
5591 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
5592 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005593
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005594<h5>Arguments:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005595<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005596
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005597<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005598<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005599 macro available in C. In a target-dependent way, it destroys
5600 the <tt>va_list</tt> element to which the argument points. Calls
5601 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
5602 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
5603 with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005604
Misha Brukman76307852003-11-08 01:05:38 +00005605</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005606
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005607<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00005608<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005609 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00005610</div>
5611
Misha Brukman76307852003-11-08 01:05:38 +00005612<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00005613
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005614<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005615<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005616 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005617</pre>
5618
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005619<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005620<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005621 from the source argument list to the destination argument list.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005622
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005623<h5>Arguments:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005624<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005625 The second argument is a pointer to a <tt>va_list</tt> element to copy
5626 from.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005627
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005628<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005629<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005630 macro available in C. In a target-dependent way, it copies the
5631 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
5632 element. This intrinsic is necessary because
5633 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
5634 arbitrarily complex and require, for example, memory allocation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005635
Misha Brukman76307852003-11-08 01:05:38 +00005636</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005637
Chris Lattnerfee11462004-02-12 17:01:32 +00005638<!-- ======================================================================= -->
5639<div class="doc_subsection">
Chris Lattner757528b0b2004-05-23 21:06:01 +00005640 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5641</div>
5642
5643<div class="doc_text">
5644
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005645<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner67c37d12008-08-05 18:29:16 +00005646Collection</a> (GC) requires the implementation and generation of these
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005647intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
5648roots on the stack</a>, as well as garbage collector implementations that
5649require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
5650barriers. Front-ends for type-safe garbage collected languages should generate
5651these intrinsics to make use of the LLVM garbage collectors. For more details,
5652see <a href="GarbageCollection.html">Accurate Garbage Collection with
5653LLVM</a>.</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00005654
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005655<p>The garbage collection intrinsics only operate on objects in the generic
5656 address space (address space zero).</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00005657
Chris Lattner757528b0b2004-05-23 21:06:01 +00005658</div>
5659
5660<!-- _______________________________________________________________________ -->
5661<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005662 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005663</div>
5664
5665<div class="doc_text">
5666
5667<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005668<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005669 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005670</pre>
5671
5672<h5>Overview:</h5>
John Criswelldfe6a862004-12-10 15:51:16 +00005673<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005674 the code generator, and allows some metadata to be associated with it.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005675
5676<h5>Arguments:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005677<p>The first argument specifies the address of a stack object that contains the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005678 root pointer. The second pointer (which must be either a constant or a
5679 global value address) contains the meta-data to be associated with the
5680 root.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005681
5682<h5>Semantics:</h5>
Chris Lattner851b7712008-04-24 05:59:56 +00005683<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005684 location. At compile-time, the code generator generates information to allow
5685 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5686 intrinsic may only be used in a function which <a href="#gc">specifies a GC
5687 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005688
5689</div>
5690
Chris Lattner757528b0b2004-05-23 21:06:01 +00005691<!-- _______________________________________________________________________ -->
5692<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005693 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005694</div>
5695
5696<div class="doc_text">
5697
5698<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005699<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005700 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005701</pre>
5702
5703<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005704<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005705 locations, allowing garbage collector implementations that require read
5706 barriers.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005707
5708<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00005709<p>The second argument is the address to read from, which should be an address
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005710 allocated from the garbage collector. The first object is a pointer to the
5711 start of the referenced object, if needed by the language runtime (otherwise
5712 null).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005713
5714<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005715<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005716 instruction, but may be replaced with substantially more complex code by the
5717 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5718 may only be used in a function which <a href="#gc">specifies a GC
5719 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005720
5721</div>
5722
Chris Lattner757528b0b2004-05-23 21:06:01 +00005723<!-- _______________________________________________________________________ -->
5724<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005725 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005726</div>
5727
5728<div class="doc_text">
5729
5730<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005731<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005732 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005733</pre>
5734
5735<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005736<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005737 locations, allowing garbage collector implementations that require write
5738 barriers (such as generational or reference counting collectors).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005739
5740<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00005741<p>The first argument is the reference to store, the second is the start of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005742 object to store it to, and the third is the address of the field of Obj to
5743 store to. If the runtime does not require a pointer to the object, Obj may
5744 be null.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005745
5746<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005747<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005748 instruction, but may be replaced with substantially more complex code by the
5749 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5750 may only be used in a function which <a href="#gc">specifies a GC
5751 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005752
5753</div>
5754
Chris Lattner757528b0b2004-05-23 21:06:01 +00005755<!-- ======================================================================= -->
5756<div class="doc_subsection">
Chris Lattner3649c3a2004-02-14 04:08:35 +00005757 <a name="int_codegen">Code Generator Intrinsics</a>
5758</div>
5759
5760<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005761
5762<p>These intrinsics are provided by LLVM to expose special features that may
5763 only be implemented with code generator support.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005764
5765</div>
5766
5767<!-- _______________________________________________________________________ -->
5768<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005769 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005770</div>
5771
5772<div class="doc_text">
5773
5774<h5>Syntax:</h5>
5775<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005776 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005777</pre>
5778
5779<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005780<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5781 target-specific value indicating the return address of the current function
5782 or one of its callers.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005783
5784<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005785<p>The argument to this intrinsic indicates which function to return the address
5786 for. Zero indicates the calling function, one indicates its caller, etc.
5787 The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005788
5789<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005790<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
5791 indicating the return address of the specified call frame, or zero if it
5792 cannot be identified. The value returned by this intrinsic is likely to be
5793 incorrect or 0 for arguments other than zero, so it should only be used for
5794 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005795
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005796<p>Note that calling this intrinsic does not prevent function inlining or other
5797 aggressive transformations, so the value returned may not be that of the
5798 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005799
Chris Lattner3649c3a2004-02-14 04:08:35 +00005800</div>
5801
Chris Lattner3649c3a2004-02-14 04:08:35 +00005802<!-- _______________________________________________________________________ -->
5803<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005804 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005805</div>
5806
5807<div class="doc_text">
5808
5809<h5>Syntax:</h5>
5810<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00005811 declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005812</pre>
5813
5814<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005815<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5816 target-specific frame pointer value for the specified stack frame.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005817
5818<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005819<p>The argument to this intrinsic indicates which function to return the frame
5820 pointer for. Zero indicates the calling function, one indicates its caller,
5821 etc. The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005822
5823<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005824<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
5825 indicating the frame address of the specified call frame, or zero if it
5826 cannot be identified. The value returned by this intrinsic is likely to be
5827 incorrect or 0 for arguments other than zero, so it should only be used for
5828 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005829
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005830<p>Note that calling this intrinsic does not prevent function inlining or other
5831 aggressive transformations, so the value returned may not be that of the
5832 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005833
Chris Lattner3649c3a2004-02-14 04:08:35 +00005834</div>
5835
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005836<!-- _______________________________________________________________________ -->
5837<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005838 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005839</div>
5840
5841<div class="doc_text">
5842
5843<h5>Syntax:</h5>
5844<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00005845 declare i8* @llvm.stacksave()
Chris Lattner2f0f0012006-01-13 02:03:13 +00005846</pre>
5847
5848<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005849<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
5850 of the function stack, for use
5851 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
5852 useful for implementing language features like scoped automatic variable
5853 sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005854
5855<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005856<p>This intrinsic returns a opaque pointer value that can be passed
5857 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
5858 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
5859 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
5860 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
5861 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
5862 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005863
5864</div>
5865
5866<!-- _______________________________________________________________________ -->
5867<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005868 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005869</div>
5870
5871<div class="doc_text">
5872
5873<h5>Syntax:</h5>
5874<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00005875 declare void @llvm.stackrestore(i8* %ptr)
Chris Lattner2f0f0012006-01-13 02:03:13 +00005876</pre>
5877
5878<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005879<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5880 the function stack to the state it was in when the
5881 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
5882 executed. This is useful for implementing language features like scoped
5883 automatic variable sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005884
5885<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005886<p>See the description
5887 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005888
5889</div>
5890
Chris Lattner2f0f0012006-01-13 02:03:13 +00005891<!-- _______________________________________________________________________ -->
5892<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005893 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005894</div>
5895
5896<div class="doc_text">
5897
5898<h5>Syntax:</h5>
5899<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005900 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005901</pre>
5902
5903<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005904<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
5905 insert a prefetch instruction if supported; otherwise, it is a noop.
5906 Prefetches have no effect on the behavior of the program but can change its
5907 performance characteristics.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005908
5909<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005910<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
5911 specifier determining if the fetch should be for a read (0) or write (1),
5912 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
5913 locality, to (3) - extremely local keep in cache. The <tt>rw</tt>
5914 and <tt>locality</tt> arguments must be constant integers.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005915
5916<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005917<p>This intrinsic does not modify the behavior of the program. In particular,
5918 prefetches cannot trap and do not produce a value. On targets that support
5919 this intrinsic, the prefetch can provide hints to the processor cache for
5920 better performance.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005921
5922</div>
5923
Andrew Lenharthb4427912005-03-28 20:05:49 +00005924<!-- _______________________________________________________________________ -->
5925<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005926 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005927</div>
5928
5929<div class="doc_text">
5930
5931<h5>Syntax:</h5>
5932<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005933 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharthb4427912005-03-28 20:05:49 +00005934</pre>
5935
5936<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005937<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
5938 Counter (PC) in a region of code to simulators and other tools. The method
5939 is target specific, but it is expected that the marker will use exported
5940 symbols to transmit the PC of the marker. The marker makes no guarantees
5941 that it will remain with any specific instruction after optimizations. It is
5942 possible that the presence of a marker will inhibit optimizations. The
5943 intended use is to be inserted after optimizations to allow correlations of
5944 simulation runs.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005945
5946<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005947<p><tt>id</tt> is a numerical id identifying the marker.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005948
5949<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005950<p>This intrinsic does not modify the behavior of the program. Backends that do
Dan Gohmana269a0a2010-03-01 17:41:39 +00005951 not support this intrinsic may ignore it.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005952
5953</div>
5954
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005955<!-- _______________________________________________________________________ -->
5956<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005957 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005958</div>
5959
5960<div class="doc_text">
5961
5962<h5>Syntax:</h5>
5963<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00005964 declare i64 @llvm.readcyclecounter()
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005965</pre>
5966
5967<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005968<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5969 counter register (or similar low latency, high accuracy clocks) on those
5970 targets that support it. On X86, it should map to RDTSC. On Alpha, it
5971 should map to RPCC. As the backing counters overflow quickly (on the order
5972 of 9 seconds on alpha), this should only be used for small timings.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005973
5974<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005975<p>When directly supported, reading the cycle counter should not modify any
5976 memory. Implementations are allowed to either return a application specific
5977 value or a system wide value. On backends without support, this is lowered
5978 to a constant 0.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005979
5980</div>
5981
Chris Lattner3649c3a2004-02-14 04:08:35 +00005982<!-- ======================================================================= -->
5983<div class="doc_subsection">
Chris Lattnerfee11462004-02-12 17:01:32 +00005984 <a name="int_libc">Standard C Library Intrinsics</a>
5985</div>
5986
5987<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005988
5989<p>LLVM provides intrinsics for a few important standard C library functions.
5990 These intrinsics allow source-language front-ends to pass information about
5991 the alignment of the pointer arguments to the code generator, providing
5992 opportunity for more efficient code generation.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005993
5994</div>
5995
5996<!-- _______________________________________________________________________ -->
5997<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005998 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattnerfee11462004-02-12 17:01:32 +00005999</div>
6000
6001<div class="doc_text">
6002
6003<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006004<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
Mon P Wang508127b2010-04-07 06:35:53 +00006005 integer bit width and for different address spaces. Not all targets support
6006 all bit widths however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006007
Chris Lattnerfee11462004-02-12 17:01:32 +00006008<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006009 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006010 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006011 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006012 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattnerfee11462004-02-12 17:01:32 +00006013</pre>
6014
6015<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006016<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6017 source location to the destination location.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006018
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006019<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006020 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6021 and the pointers can be in specified address spaces.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006022
6023<h5>Arguments:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006024
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006025<p>The first argument is a pointer to the destination, the second is a pointer
6026 to the source. The third argument is an integer argument specifying the
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006027 number of bytes to copy, the fourth argument is the alignment of the
6028 source and destination locations, and the fifth is a boolean indicating a
6029 volatile access.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006030
Dan Gohmana269a0a2010-03-01 17:41:39 +00006031<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006032 then the caller guarantees that both the source and destination pointers are
6033 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00006034
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006035<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6036 <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
6037 The detailed access behavior is not very cleanly specified and it is unwise
6038 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006039
Chris Lattnerfee11462004-02-12 17:01:32 +00006040<h5>Semantics:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006041
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006042<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6043 source location to the destination location, which are not allowed to
6044 overlap. It copies "len" bytes of memory over. If the argument is known to
6045 be aligned to some boundary, this can be specified as the fourth argument,
6046 otherwise it should be set to 0 or 1.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006047
Chris Lattnerfee11462004-02-12 17:01:32 +00006048</div>
6049
Chris Lattnerf30152e2004-02-12 18:10:10 +00006050<!-- _______________________________________________________________________ -->
6051<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00006052 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006053</div>
6054
6055<div class="doc_text">
6056
6057<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00006058<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Mon P Wang508127b2010-04-07 06:35:53 +00006059 width and for different address space. Not all targets support all bit
6060 widths however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006061
Chris Lattnerf30152e2004-02-12 18:10:10 +00006062<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006063 declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006064 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006065 declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006066 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattnerf30152e2004-02-12 18:10:10 +00006067</pre>
6068
6069<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006070<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
6071 source location to the destination location. It is similar to the
6072 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
6073 overlap.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006074
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006075<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006076 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6077 and the pointers can be in specified address spaces.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006078
6079<h5>Arguments:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006080
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006081<p>The first argument is a pointer to the destination, the second is a pointer
6082 to the source. The third argument is an integer argument specifying the
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006083 number of bytes to copy, the fourth argument is the alignment of the
6084 source and destination locations, and the fifth is a boolean indicating a
6085 volatile access.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006086
Dan Gohmana269a0a2010-03-01 17:41:39 +00006087<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006088 then the caller guarantees that the source and destination pointers are
6089 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00006090
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006091<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6092 <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
6093 The detailed access behavior is not very cleanly specified and it is unwise
6094 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006095
Chris Lattnerf30152e2004-02-12 18:10:10 +00006096<h5>Semantics:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006097
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006098<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
6099 source location to the destination location, which may overlap. It copies
6100 "len" bytes of memory over. If the argument is known to be aligned to some
6101 boundary, this can be specified as the fourth argument, otherwise it should
6102 be set to 0 or 1.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006103
Chris Lattnerf30152e2004-02-12 18:10:10 +00006104</div>
6105
Chris Lattner3649c3a2004-02-14 04:08:35 +00006106<!-- _______________________________________________________________________ -->
6107<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00006108 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006109</div>
6110
6111<div class="doc_text">
6112
6113<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00006114<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
John Criswellad05ae42010-07-30 16:30:28 +00006115 width and for different address spaces. However, not all targets support all
6116 bit widths.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006117
Chris Lattner3649c3a2004-02-14 04:08:35 +00006118<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006119 declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattner685db9d2010-04-08 00:54:34 +00006120 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006121 declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattner685db9d2010-04-08 00:54:34 +00006122 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006123</pre>
6124
6125<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006126<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
6127 particular byte value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006128
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006129<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
John Criswellad05ae42010-07-30 16:30:28 +00006130 intrinsic does not return a value and takes extra alignment/volatile
6131 arguments. Also, the destination can be in an arbitrary address space.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006132
6133<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006134<p>The first argument is a pointer to the destination to fill, the second is the
John Criswellad05ae42010-07-30 16:30:28 +00006135 byte value with which to fill it, the third argument is an integer argument
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006136 specifying the number of bytes to fill, and the fourth argument is the known
John Criswellad05ae42010-07-30 16:30:28 +00006137 alignment of the destination location.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006138
Dan Gohmana269a0a2010-03-01 17:41:39 +00006139<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006140 then the caller guarantees that the destination pointer is aligned to that
6141 boundary.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006142
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006143<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6144 <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
6145 The detailed access behavior is not very cleanly specified and it is unwise
6146 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006147
Chris Lattner3649c3a2004-02-14 04:08:35 +00006148<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006149<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
6150 at the destination location. If the argument is known to be aligned to some
6151 boundary, this can be specified as the fourth argument, otherwise it should
6152 be set to 0 or 1.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006153
Chris Lattner3649c3a2004-02-14 04:08:35 +00006154</div>
6155
Chris Lattner3b4f4372004-06-11 02:28:03 +00006156<!-- _______________________________________________________________________ -->
6157<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00006158 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006159</div>
6160
6161<div class="doc_text">
6162
6163<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006164<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
6165 floating point or vector of floating point type. Not all targets support all
6166 types however.</p>
6167
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006168<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00006169 declare float @llvm.sqrt.f32(float %Val)
6170 declare double @llvm.sqrt.f64(double %Val)
6171 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6172 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6173 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006174</pre>
6175
6176<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006177<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
6178 returning the same value as the libm '<tt>sqrt</tt>' functions would.
6179 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
6180 behavior for negative numbers other than -0.0 (which allows for better
6181 optimization, because there is no need to worry about errno being
6182 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006183
6184<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006185<p>The argument and return value are floating point numbers of the same
6186 type.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006187
6188<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006189<p>This function returns the sqrt of the specified operand if it is a
6190 nonnegative floating point number.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006191
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006192</div>
6193
Chris Lattner33b73f92006-09-08 06:34:02 +00006194<!-- _______________________________________________________________________ -->
6195<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00006196 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattner33b73f92006-09-08 06:34:02 +00006197</div>
6198
6199<div class="doc_text">
6200
6201<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006202<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
6203 floating point or vector of floating point type. Not all targets support all
6204 types however.</p>
6205
Chris Lattner33b73f92006-09-08 06:34:02 +00006206<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00006207 declare float @llvm.powi.f32(float %Val, i32 %power)
6208 declare double @llvm.powi.f64(double %Val, i32 %power)
6209 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6210 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6211 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattner33b73f92006-09-08 06:34:02 +00006212</pre>
6213
6214<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006215<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
6216 specified (positive or negative) power. The order of evaluation of
6217 multiplications is not defined. When a vector of floating point type is
6218 used, the second argument remains a scalar integer value.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006219
6220<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006221<p>The second argument is an integer power, and the first is a value to raise to
6222 that power.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006223
6224<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006225<p>This function returns the first value raised to the second power with an
6226 unspecified sequence of rounding operations.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006227
Chris Lattner33b73f92006-09-08 06:34:02 +00006228</div>
6229
Dan Gohmanb6324c12007-10-15 20:30:11 +00006230<!-- _______________________________________________________________________ -->
6231<div class="doc_subsubsection">
6232 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
6233</div>
6234
6235<div class="doc_text">
6236
6237<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006238<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
6239 floating point or vector of floating point type. Not all targets support all
6240 types however.</p>
6241
Dan Gohmanb6324c12007-10-15 20:30:11 +00006242<pre>
6243 declare float @llvm.sin.f32(float %Val)
6244 declare double @llvm.sin.f64(double %Val)
6245 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6246 declare fp128 @llvm.sin.f128(fp128 %Val)
6247 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6248</pre>
6249
6250<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006251<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006252
6253<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006254<p>The argument and return value are floating point numbers of the same
6255 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006256
6257<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006258<p>This function returns the sine of the specified operand, returning the same
6259 values as the libm <tt>sin</tt> functions would, and handles error conditions
6260 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006261
Dan Gohmanb6324c12007-10-15 20:30:11 +00006262</div>
6263
6264<!-- _______________________________________________________________________ -->
6265<div class="doc_subsubsection">
6266 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
6267</div>
6268
6269<div class="doc_text">
6270
6271<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006272<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
6273 floating point or vector of floating point type. Not all targets support all
6274 types however.</p>
6275
Dan Gohmanb6324c12007-10-15 20:30:11 +00006276<pre>
6277 declare float @llvm.cos.f32(float %Val)
6278 declare double @llvm.cos.f64(double %Val)
6279 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6280 declare fp128 @llvm.cos.f128(fp128 %Val)
6281 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6282</pre>
6283
6284<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006285<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006286
6287<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006288<p>The argument and return value are floating point numbers of the same
6289 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006290
6291<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006292<p>This function returns the cosine of the specified operand, returning the same
6293 values as the libm <tt>cos</tt> functions would, and handles error conditions
6294 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006295
Dan Gohmanb6324c12007-10-15 20:30:11 +00006296</div>
6297
6298<!-- _______________________________________________________________________ -->
6299<div class="doc_subsubsection">
6300 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
6301</div>
6302
6303<div class="doc_text">
6304
6305<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006306<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
6307 floating point or vector of floating point type. Not all targets support all
6308 types however.</p>
6309
Dan Gohmanb6324c12007-10-15 20:30:11 +00006310<pre>
6311 declare float @llvm.pow.f32(float %Val, float %Power)
6312 declare double @llvm.pow.f64(double %Val, double %Power)
6313 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6314 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6315 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6316</pre>
6317
6318<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006319<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
6320 specified (positive or negative) power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006321
6322<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006323<p>The second argument is a floating point power, and the first is a value to
6324 raise to that power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006325
6326<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006327<p>This function returns the first value raised to the second power, returning
6328 the same values as the libm <tt>pow</tt> functions would, and handles error
6329 conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006330
Dan Gohmanb6324c12007-10-15 20:30:11 +00006331</div>
6332
Andrew Lenharth1d463522005-05-03 18:01:48 +00006333<!-- ======================================================================= -->
6334<div class="doc_subsection">
Nate Begeman0f223bb2006-01-13 23:26:38 +00006335 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006336</div>
6337
6338<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006339
6340<p>LLVM provides intrinsics for a few important bit manipulation operations.
6341 These allow efficient code generation for some algorithms.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006342
6343</div>
6344
6345<!-- _______________________________________________________________________ -->
6346<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00006347 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman0f223bb2006-01-13 23:26:38 +00006348</div>
6349
6350<div class="doc_text">
6351
6352<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00006353<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006354 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
6355
Nate Begeman0f223bb2006-01-13 23:26:38 +00006356<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00006357 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
6358 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
6359 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman0f223bb2006-01-13 23:26:38 +00006360</pre>
6361
6362<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006363<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
6364 values with an even number of bytes (positive multiple of 16 bits). These
6365 are useful for performing operations on data that is not in the target's
6366 native byte order.</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00006367
6368<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006369<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
6370 and low byte of the input i16 swapped. Similarly,
6371 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
6372 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
6373 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
6374 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
6375 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
6376 more, respectively).</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00006377
6378</div>
6379
6380<!-- _______________________________________________________________________ -->
6381<div class="doc_subsubsection">
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00006382 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006383</div>
6384
6385<div class="doc_text">
6386
6387<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00006388<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006389 width. Not all targets support all bit widths however.</p>
6390
Andrew Lenharth1d463522005-05-03 18:01:48 +00006391<pre>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006392 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006393 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006394 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006395 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
6396 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00006397</pre>
6398
6399<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006400<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
6401 in a value.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006402
6403<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006404<p>The only argument is the value to be counted. The argument may be of any
6405 integer type. The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006406
6407<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006408<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006409
Andrew Lenharth1d463522005-05-03 18:01:48 +00006410</div>
6411
6412<!-- _______________________________________________________________________ -->
6413<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00006414 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006415</div>
6416
6417<div class="doc_text">
6418
6419<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006420<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
6421 integer bit width. Not all targets support all bit widths however.</p>
6422
Andrew Lenharth1d463522005-05-03 18:01:48 +00006423<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00006424 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
6425 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006426 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006427 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
6428 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00006429</pre>
6430
6431<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006432<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
6433 leading zeros in a variable.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006434
6435<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006436<p>The only argument is the value to be counted. The argument may be of any
6437 integer type. The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006438
6439<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006440<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
6441 zeros in a variable. If the src == 0 then the result is the size in bits of
6442 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006443
Andrew Lenharth1d463522005-05-03 18:01:48 +00006444</div>
Chris Lattner3b4f4372004-06-11 02:28:03 +00006445
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006446<!-- _______________________________________________________________________ -->
6447<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00006448 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006449</div>
6450
6451<div class="doc_text">
6452
6453<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006454<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
6455 integer bit width. Not all targets support all bit widths however.</p>
6456
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006457<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00006458 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
6459 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006460 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006461 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
6462 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006463</pre>
6464
6465<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006466<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
6467 trailing zeros.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006468
6469<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006470<p>The only argument is the value to be counted. The argument may be of any
6471 integer type. The return type must match the argument type.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006472
6473<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006474<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
6475 zeros in a variable. If the src == 0 then the result is the size in bits of
6476 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006477
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006478</div>
6479
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006480<!-- ======================================================================= -->
6481<div class="doc_subsection">
6482 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
6483</div>
6484
6485<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006486
6487<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006488
6489</div>
6490
Bill Wendlingf4d70622009-02-08 01:40:31 +00006491<!-- _______________________________________________________________________ -->
6492<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006493 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006494</div>
6495
6496<div class="doc_text">
6497
6498<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006499<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006500 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006501
6502<pre>
6503 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6504 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6505 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6506</pre>
6507
6508<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006509<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006510 a signed addition of the two arguments, and indicate whether an overflow
6511 occurred during the signed summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006512
6513<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006514<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006515 be of integer types of any bit width, but they must have the same bit
6516 width. The second element of the result structure must be of
6517 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6518 undergo signed addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006519
6520<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006521<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006522 a signed addition of the two variables. They return a structure &mdash; the
6523 first element of which is the signed summation, and the second element of
6524 which is a bit specifying if the signed summation resulted in an
6525 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006526
6527<h5>Examples:</h5>
6528<pre>
6529 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6530 %sum = extractvalue {i32, i1} %res, 0
6531 %obit = extractvalue {i32, i1} %res, 1
6532 br i1 %obit, label %overflow, label %normal
6533</pre>
6534
6535</div>
6536
6537<!-- _______________________________________________________________________ -->
6538<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006539 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006540</div>
6541
6542<div class="doc_text">
6543
6544<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006545<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006546 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006547
6548<pre>
6549 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6550 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6551 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6552</pre>
6553
6554<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006555<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006556 an unsigned addition of the two arguments, and indicate whether a carry
6557 occurred during the unsigned summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006558
6559<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006560<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006561 be of integer types of any bit width, but they must have the same bit
6562 width. The second element of the result structure must be of
6563 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6564 undergo unsigned addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006565
6566<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006567<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006568 an unsigned addition of the two arguments. They return a structure &mdash;
6569 the first element of which is the sum, and the second element of which is a
6570 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006571
6572<h5>Examples:</h5>
6573<pre>
6574 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6575 %sum = extractvalue {i32, i1} %res, 0
6576 %obit = extractvalue {i32, i1} %res, 1
6577 br i1 %obit, label %carry, label %normal
6578</pre>
6579
6580</div>
6581
6582<!-- _______________________________________________________________________ -->
6583<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006584 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006585</div>
6586
6587<div class="doc_text">
6588
6589<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006590<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006591 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006592
6593<pre>
6594 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6595 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6596 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6597</pre>
6598
6599<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006600<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006601 a signed subtraction of the two arguments, and indicate whether an overflow
6602 occurred during the signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006603
6604<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006605<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006606 be of integer types of any bit width, but they must have the same bit
6607 width. The second element of the result structure must be of
6608 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6609 undergo signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006610
6611<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006612<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006613 a signed subtraction of the two arguments. They return a structure &mdash;
6614 the first element of which is the subtraction, and the second element of
6615 which is a bit specifying if the signed subtraction resulted in an
6616 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006617
6618<h5>Examples:</h5>
6619<pre>
6620 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6621 %sum = extractvalue {i32, i1} %res, 0
6622 %obit = extractvalue {i32, i1} %res, 1
6623 br i1 %obit, label %overflow, label %normal
6624</pre>
6625
6626</div>
6627
6628<!-- _______________________________________________________________________ -->
6629<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006630 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006631</div>
6632
6633<div class="doc_text">
6634
6635<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006636<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006637 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006638
6639<pre>
6640 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6641 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6642 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6643</pre>
6644
6645<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006646<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006647 an unsigned subtraction of the two arguments, and indicate whether an
6648 overflow occurred during the unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006649
6650<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006651<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006652 be of integer types of any bit width, but they must have the same bit
6653 width. The second element of the result structure must be of
6654 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6655 undergo unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006656
6657<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006658<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006659 an unsigned subtraction of the two arguments. They return a structure &mdash;
6660 the first element of which is the subtraction, and the second element of
6661 which is a bit specifying if the unsigned subtraction resulted in an
6662 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006663
6664<h5>Examples:</h5>
6665<pre>
6666 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6667 %sum = extractvalue {i32, i1} %res, 0
6668 %obit = extractvalue {i32, i1} %res, 1
6669 br i1 %obit, label %overflow, label %normal
6670</pre>
6671
6672</div>
6673
6674<!-- _______________________________________________________________________ -->
6675<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006676 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006677</div>
6678
6679<div class="doc_text">
6680
6681<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006682<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006683 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006684
6685<pre>
6686 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6687 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6688 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6689</pre>
6690
6691<h5>Overview:</h5>
6692
6693<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006694 a signed multiplication of the two arguments, and indicate whether an
6695 overflow occurred during the signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006696
6697<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006698<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006699 be of integer types of any bit width, but they must have the same bit
6700 width. The second element of the result structure must be of
6701 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6702 undergo signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006703
6704<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006705<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006706 a signed multiplication of the two arguments. They return a structure &mdash;
6707 the first element of which is the multiplication, and the second element of
6708 which is a bit specifying if the signed multiplication resulted in an
6709 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006710
6711<h5>Examples:</h5>
6712<pre>
6713 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6714 %sum = extractvalue {i32, i1} %res, 0
6715 %obit = extractvalue {i32, i1} %res, 1
6716 br i1 %obit, label %overflow, label %normal
6717</pre>
6718
Reid Spencer5bf54c82007-04-11 23:23:49 +00006719</div>
6720
Bill Wendlingb9a73272009-02-08 23:00:09 +00006721<!-- _______________________________________________________________________ -->
6722<div class="doc_subsubsection">
6723 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6724</div>
6725
6726<div class="doc_text">
6727
6728<h5>Syntax:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006729<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006730 on any integer bit width.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006731
6732<pre>
6733 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6734 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6735 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6736</pre>
6737
6738<h5>Overview:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006739<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006740 a unsigned multiplication of the two arguments, and indicate whether an
6741 overflow occurred during the unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006742
6743<h5>Arguments:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006744<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006745 be of integer types of any bit width, but they must have the same bit
6746 width. The second element of the result structure must be of
6747 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6748 undergo unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006749
6750<h5>Semantics:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006751<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006752 an unsigned multiplication of the two arguments. They return a structure
6753 &mdash; the first element of which is the multiplication, and the second
6754 element of which is a bit specifying if the unsigned multiplication resulted
6755 in an overflow.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006756
6757<h5>Examples:</h5>
6758<pre>
6759 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6760 %sum = extractvalue {i32, i1} %res, 0
6761 %obit = extractvalue {i32, i1} %res, 1
6762 br i1 %obit, label %overflow, label %normal
6763</pre>
6764
6765</div>
6766
Chris Lattner941515c2004-01-06 05:31:32 +00006767<!-- ======================================================================= -->
6768<div class="doc_subsection">
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00006769 <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
6770</div>
6771
6772<div class="doc_text">
6773
Chris Lattner022a9fb2010-03-15 04:12:21 +00006774<p>Half precision floating point is a storage-only format. This means that it is
6775 a dense encoding (in memory) but does not support computation in the
6776 format.</p>
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00006777
Chris Lattner022a9fb2010-03-15 04:12:21 +00006778<p>This means that code must first load the half-precision floating point
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00006779 value as an i16, then convert it to float with <a
6780 href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
6781 Computation can then be performed on the float value (including extending to
Chris Lattner022a9fb2010-03-15 04:12:21 +00006782 double etc). To store the value back to memory, it is first converted to
6783 float if needed, then converted to i16 with
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00006784 <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
6785 storing as an i16 value.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00006786</div>
6787
6788<!-- _______________________________________________________________________ -->
6789<div class="doc_subsubsection">
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00006790 <a name="int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00006791</div>
6792
6793<div class="doc_text">
6794
6795<h5>Syntax:</h5>
6796<pre>
6797 declare i16 @llvm.convert.to.fp16(f32 %a)
6798</pre>
6799
6800<h5>Overview:</h5>
6801<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
6802 a conversion from single precision floating point format to half precision
6803 floating point format.</p>
6804
6805<h5>Arguments:</h5>
6806<p>The intrinsic function contains single argument - the value to be
6807 converted.</p>
6808
6809<h5>Semantics:</h5>
6810<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
6811 a conversion from single precision floating point format to half precision
Chris Lattner022a9fb2010-03-15 04:12:21 +00006812 floating point format. The return value is an <tt>i16</tt> which
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00006813 contains the converted number.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00006814
6815<h5>Examples:</h5>
6816<pre>
6817 %res = call i16 @llvm.convert.to.fp16(f32 %a)
6818 store i16 %res, i16* @x, align 2
6819</pre>
6820
6821</div>
6822
6823<!-- _______________________________________________________________________ -->
6824<div class="doc_subsubsection">
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00006825 <a name="int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00006826</div>
6827
6828<div class="doc_text">
6829
6830<h5>Syntax:</h5>
6831<pre>
6832 declare f32 @llvm.convert.from.fp16(i16 %a)
6833</pre>
6834
6835<h5>Overview:</h5>
6836<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
6837 a conversion from half precision floating point format to single precision
6838 floating point format.</p>
6839
6840<h5>Arguments:</h5>
6841<p>The intrinsic function contains single argument - the value to be
6842 converted.</p>
6843
6844<h5>Semantics:</h5>
6845<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
Chris Lattner022a9fb2010-03-15 04:12:21 +00006846 conversion from half single precision floating point format to single
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00006847 precision floating point format. The input half-float value is represented by
6848 an <tt>i16</tt> value.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00006849
6850<h5>Examples:</h5>
6851<pre>
6852 %a = load i16* @x, align 2
6853 %res = call f32 @llvm.convert.from.fp16(i16 %a)
6854</pre>
6855
6856</div>
6857
6858<!-- ======================================================================= -->
6859<div class="doc_subsection">
Chris Lattner941515c2004-01-06 05:31:32 +00006860 <a name="int_debugger">Debugger Intrinsics</a>
6861</div>
6862
6863<div class="doc_text">
Chris Lattner941515c2004-01-06 05:31:32 +00006864
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006865<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
6866 prefix), are described in
6867 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
6868 Level Debugging</a> document.</p>
6869
6870</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006871
Jim Laskey2211f492007-03-14 19:31:19 +00006872<!-- ======================================================================= -->
6873<div class="doc_subsection">
6874 <a name="int_eh">Exception Handling Intrinsics</a>
6875</div>
6876
6877<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006878
6879<p>The LLVM exception handling intrinsics (which all start with
6880 <tt>llvm.eh.</tt> prefix), are described in
6881 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6882 Handling</a> document.</p>
6883
Jim Laskey2211f492007-03-14 19:31:19 +00006884</div>
6885
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006886<!-- ======================================================================= -->
6887<div class="doc_subsection">
Duncan Sands86e01192007-09-11 14:10:23 +00006888 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +00006889</div>
6890
6891<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006892
6893<p>This intrinsic makes it possible to excise one parameter, marked with
Dan Gohman3770af52010-07-02 23:18:08 +00006894 the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
6895 The result is a callable
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006896 function pointer lacking the nest parameter - the caller does not need to
6897 provide a value for it. Instead, the value to use is stored in advance in a
6898 "trampoline", a block of memory usually allocated on the stack, which also
6899 contains code to splice the nest value into the argument list. This is used
6900 to implement the GCC nested function address extension.</p>
6901
6902<p>For example, if the function is
6903 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
6904 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
6905 follows:</p>
6906
Benjamin Kramer79698be2010-07-13 12:26:09 +00006907<pre class="doc_code">
Duncan Sands86e01192007-09-11 14:10:23 +00006908 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6909 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
Dan Gohmand6a6f612010-05-28 17:07:41 +00006910 %p = call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval)
Duncan Sands86e01192007-09-11 14:10:23 +00006911 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands644f9172007-07-27 12:58:54 +00006912</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006913
Dan Gohmand6a6f612010-05-28 17:07:41 +00006914<p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
6915 to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006916
Duncan Sands644f9172007-07-27 12:58:54 +00006917</div>
6918
6919<!-- _______________________________________________________________________ -->
6920<div class="doc_subsubsection">
6921 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6922</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006923
Duncan Sands644f9172007-07-27 12:58:54 +00006924<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006925
Duncan Sands644f9172007-07-27 12:58:54 +00006926<h5>Syntax:</h5>
6927<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006928 declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands644f9172007-07-27 12:58:54 +00006929</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006930
Duncan Sands644f9172007-07-27 12:58:54 +00006931<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006932<p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
6933 function pointer suitable for executing it.</p>
6934
Duncan Sands644f9172007-07-27 12:58:54 +00006935<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006936<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6937 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
6938 sufficiently aligned block of memory; this memory is written to by the
6939 intrinsic. Note that the size and the alignment are target-specific - LLVM
6940 currently provides no portable way of determining them, so a front-end that
6941 generates this intrinsic needs to have some target-specific knowledge.
6942 The <tt>func</tt> argument must hold a function bitcast to
6943 an <tt>i8*</tt>.</p>
6944
Duncan Sands644f9172007-07-27 12:58:54 +00006945<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006946<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
6947 dependent code, turning it into a function. A pointer to this function is
6948 returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
6949 function pointer type</a> before being called. The new function's signature
6950 is the same as that of <tt>func</tt> with any arguments marked with
6951 the <tt>nest</tt> attribute removed. At most one such <tt>nest</tt> argument
6952 is allowed, and it must be of pointer type. Calling the new function is
6953 equivalent to calling <tt>func</tt> with the same argument list, but
6954 with <tt>nval</tt> used for the missing <tt>nest</tt> argument. If, after
6955 calling <tt>llvm.init.trampoline</tt>, the memory pointed to
6956 by <tt>tramp</tt> is modified, then the effect of any later call to the
6957 returned function pointer is undefined.</p>
6958
Duncan Sands644f9172007-07-27 12:58:54 +00006959</div>
6960
6961<!-- ======================================================================= -->
6962<div class="doc_subsection">
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006963 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6964</div>
6965
6966<div class="doc_text">
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006967
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006968<p>These intrinsic functions expand the "universal IR" of LLVM to represent
6969 hardware constructs for atomic operations and memory synchronization. This
6970 provides an interface to the hardware, not an interface to the programmer. It
6971 is aimed at a low enough level to allow any programming models or APIs
6972 (Application Programming Interfaces) which need atomic behaviors to map
6973 cleanly onto it. It is also modeled primarily on hardware behavior. Just as
6974 hardware provides a "universal IR" for source languages, it also provides a
6975 starting point for developing a "universal" atomic operation and
6976 synchronization IR.</p>
6977
6978<p>These do <em>not</em> form an API such as high-level threading libraries,
6979 software transaction memory systems, atomic primitives, and intrinsic
6980 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6981 application libraries. The hardware interface provided by LLVM should allow
6982 a clean implementation of all of these APIs and parallel programming models.
6983 No one model or paradigm should be selected above others unless the hardware
6984 itself ubiquitously does so.</p>
6985
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006986</div>
6987
6988<!-- _______________________________________________________________________ -->
6989<div class="doc_subsubsection">
6990 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6991</div>
6992<div class="doc_text">
6993<h5>Syntax:</h5>
6994<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00006995 declare void @llvm.memory.barrier(i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt;)
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006996</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006997
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006998<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006999<p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
7000 specific pairs of memory access types.</p>
7001
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007002<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007003<p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
7004 The first four arguments enables a specific barrier as listed below. The
Dan Gohmana269a0a2010-03-01 17:41:39 +00007005 fifth argument specifies that the barrier applies to io or device or uncached
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007006 memory.</p>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007007
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007008<ul>
7009 <li><tt>ll</tt>: load-load barrier</li>
7010 <li><tt>ls</tt>: load-store barrier</li>
7011 <li><tt>sl</tt>: store-load barrier</li>
7012 <li><tt>ss</tt>: store-store barrier</li>
7013 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
7014</ul>
7015
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007016<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007017<p>This intrinsic causes the system to enforce some ordering constraints upon
7018 the loads and stores of the program. This barrier does not
7019 indicate <em>when</em> any events will occur, it only enforces
7020 an <em>order</em> in which they occur. For any of the specified pairs of load
7021 and store operations (f.ex. load-load, or store-load), all of the first
7022 operations preceding the barrier will complete before any of the second
7023 operations succeeding the barrier begin. Specifically the semantics for each
7024 pairing is as follows:</p>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007025
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007026<ul>
7027 <li><tt>ll</tt>: All loads before the barrier must complete before any load
7028 after the barrier begins.</li>
Eric Christopher455c5772009-12-05 02:46:03 +00007029 <li><tt>ls</tt>: All loads before the barrier must complete before any
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007030 store after the barrier begins.</li>
Eric Christopher455c5772009-12-05 02:46:03 +00007031 <li><tt>ss</tt>: All stores before the barrier must complete before any
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007032 store after the barrier begins.</li>
Eric Christopher455c5772009-12-05 02:46:03 +00007033 <li><tt>sl</tt>: All stores before the barrier must complete before any
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007034 load after the barrier begins.</li>
7035</ul>
7036
7037<p>These semantics are applied with a logical "and" behavior when more than one
7038 is enabled in a single memory barrier intrinsic.</p>
7039
7040<p>Backends may implement stronger barriers than those requested when they do
7041 not support as fine grained a barrier as requested. Some architectures do
7042 not need all types of barriers and on such architectures, these become
7043 noops.</p>
7044
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007045<h5>Example:</h5>
7046<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007047%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7048%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007049 store i32 4, %ptr
7050
7051%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007052 call void @llvm.memory.barrier(i1 false, i1 true, i1 false, i1 false)
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007053 <i>; guarantee the above finishes</i>
7054 store i32 8, %ptr <i>; before this begins</i>
7055</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007056
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007057</div>
7058
Andrew Lenharth95528942008-02-21 06:45:13 +00007059<!-- _______________________________________________________________________ -->
7060<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00007061 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00007062</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007063
Andrew Lenharth95528942008-02-21 06:45:13 +00007064<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007065
Andrew Lenharth95528942008-02-21 06:45:13 +00007066<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007067<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
7068 any integer bit width and for different address spaces. Not all targets
7069 support all bit widths however.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00007070
7071<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007072 declare i8 @llvm.atomic.cmp.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt;)
7073 declare i16 @llvm.atomic.cmp.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt;)
7074 declare i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt;)
7075 declare i64 @llvm.atomic.cmp.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt;)
Andrew Lenharth95528942008-02-21 06:45:13 +00007076</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007077
Andrew Lenharth95528942008-02-21 06:45:13 +00007078<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007079<p>This loads a value in memory and compares it to a given value. If they are
7080 equal, it stores a new value into the memory.</p>
7081
Andrew Lenharth95528942008-02-21 06:45:13 +00007082<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007083<p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
7084 as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
7085 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
7086 this integer type. While any bit width integer may be used, targets may only
7087 lower representations they support in hardware.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00007088
Andrew Lenharth95528942008-02-21 06:45:13 +00007089<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007090<p>This entire intrinsic must be executed atomically. It first loads the value
7091 in memory pointed to by <tt>ptr</tt> and compares it with the
7092 value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
7093 memory. The loaded value is yielded in all cases. This provides the
7094 equivalent of an atomic compare-and-swap operation within the SSA
7095 framework.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00007096
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007097<h5>Examples:</h5>
Andrew Lenharth95528942008-02-21 06:45:13 +00007098<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007099%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7100%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharth95528942008-02-21 06:45:13 +00007101 store i32 4, %ptr
7102
7103%val1 = add i32 4, 4
Dan Gohmand6a6f612010-05-28 17:07:41 +00007104%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 4, %val1)
Andrew Lenharth95528942008-02-21 06:45:13 +00007105 <i>; yields {i32}:result1 = 4</i>
7106%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
7107%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
7108
7109%val2 = add i32 1, 1
Dan Gohmand6a6f612010-05-28 17:07:41 +00007110%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 5, %val2)
Andrew Lenharth95528942008-02-21 06:45:13 +00007111 <i>; yields {i32}:result2 = 8</i>
7112%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
7113
7114%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
7115</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007116
Andrew Lenharth95528942008-02-21 06:45:13 +00007117</div>
7118
7119<!-- _______________________________________________________________________ -->
7120<div class="doc_subsubsection">
7121 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
7122</div>
7123<div class="doc_text">
7124<h5>Syntax:</h5>
7125
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007126<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
7127 integer bit width. Not all targets support all bit widths however.</p>
7128
Andrew Lenharth95528942008-02-21 06:45:13 +00007129<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007130 declare i8 @llvm.atomic.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;val&gt;)
7131 declare i16 @llvm.atomic.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;val&gt;)
7132 declare i32 @llvm.atomic.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;val&gt;)
7133 declare i64 @llvm.atomic.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;val&gt;)
Andrew Lenharth95528942008-02-21 06:45:13 +00007134</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007135
Andrew Lenharth95528942008-02-21 06:45:13 +00007136<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007137<p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
7138 the value from memory. It then stores the value in <tt>val</tt> in the memory
7139 at <tt>ptr</tt>.</p>
7140
Andrew Lenharth95528942008-02-21 06:45:13 +00007141<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007142<p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
7143 the <tt>val</tt> argument and the result must be integers of the same bit
7144 width. The first argument, <tt>ptr</tt>, must be a pointer to a value of this
7145 integer type. The targets may only lower integer representations they
7146 support.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00007147
Andrew Lenharth95528942008-02-21 06:45:13 +00007148<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007149<p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
7150 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
7151 equivalent of an atomic swap operation within the SSA framework.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00007152
Andrew Lenharth95528942008-02-21 06:45:13 +00007153<h5>Examples:</h5>
7154<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007155%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7156%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharth95528942008-02-21 06:45:13 +00007157 store i32 4, %ptr
7158
7159%val1 = add i32 4, 4
Dan Gohmand6a6f612010-05-28 17:07:41 +00007160%result1 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val1)
Andrew Lenharth95528942008-02-21 06:45:13 +00007161 <i>; yields {i32}:result1 = 4</i>
7162%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
7163%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
7164
7165%val2 = add i32 1, 1
Dan Gohmand6a6f612010-05-28 17:07:41 +00007166%result2 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val2)
Andrew Lenharth95528942008-02-21 06:45:13 +00007167 <i>; yields {i32}:result2 = 8</i>
7168
7169%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
7170%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
7171</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007172
Andrew Lenharth95528942008-02-21 06:45:13 +00007173</div>
7174
7175<!-- _______________________________________________________________________ -->
7176<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00007177 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00007178
7179</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007180
Andrew Lenharth95528942008-02-21 06:45:13 +00007181<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007182
Andrew Lenharth95528942008-02-21 06:45:13 +00007183<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007184<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
7185 any integer bit width. Not all targets support all bit widths however.</p>
7186
Andrew Lenharth95528942008-02-21 06:45:13 +00007187<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007188 declare i8 @llvm.atomic.load.add.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7189 declare i16 @llvm.atomic.load.add.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7190 declare i32 @llvm.atomic.load.add.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7191 declare i64 @llvm.atomic.load.add.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Andrew Lenharth95528942008-02-21 06:45:13 +00007192</pre>
Andrew Lenharth95528942008-02-21 06:45:13 +00007193
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007194<h5>Overview:</h5>
7195<p>This intrinsic adds <tt>delta</tt> to the value stored in memory
7196 at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
7197
7198<h5>Arguments:</h5>
7199<p>The intrinsic takes two arguments, the first a pointer to an integer value
7200 and the second an integer value. The result is also an integer value. These
7201 integer types can have any bit width, but they must all have the same bit
7202 width. The targets may only lower integer representations they support.</p>
7203
Andrew Lenharth95528942008-02-21 06:45:13 +00007204<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007205<p>This intrinsic does a series of operations atomically. It first loads the
7206 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
7207 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00007208
7209<h5>Examples:</h5>
7210<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007211%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7212%ptr = bitcast i8* %mallocP to i32*
7213 store i32 4, %ptr
Dan Gohmand6a6f612010-05-28 17:07:41 +00007214%result1 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 4)
Andrew Lenharth95528942008-02-21 06:45:13 +00007215 <i>; yields {i32}:result1 = 4</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007216%result2 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 2)
Andrew Lenharth95528942008-02-21 06:45:13 +00007217 <i>; yields {i32}:result2 = 8</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007218%result3 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 5)
Andrew Lenharth95528942008-02-21 06:45:13 +00007219 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6a490372008-06-25 08:15:39 +00007220%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharth95528942008-02-21 06:45:13 +00007221</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007222
Andrew Lenharth95528942008-02-21 06:45:13 +00007223</div>
7224
Mon P Wang6a490372008-06-25 08:15:39 +00007225<!-- _______________________________________________________________________ -->
7226<div class="doc_subsubsection">
7227 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
7228
7229</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007230
Mon P Wang6a490372008-06-25 08:15:39 +00007231<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007232
Mon P Wang6a490372008-06-25 08:15:39 +00007233<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007234<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
7235 any integer bit width and for different address spaces. Not all targets
7236 support all bit widths however.</p>
7237
Mon P Wang6a490372008-06-25 08:15:39 +00007238<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007239 declare i8 @llvm.atomic.load.sub.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7240 declare i16 @llvm.atomic.load.sub.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7241 declare i32 @llvm.atomic.load.sub.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7242 declare i64 @llvm.atomic.load.sub.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007243</pre>
Mon P Wang6a490372008-06-25 08:15:39 +00007244
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007245<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00007246<p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007247 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
7248
7249<h5>Arguments:</h5>
7250<p>The intrinsic takes two arguments, the first a pointer to an integer value
7251 and the second an integer value. The result is also an integer value. These
7252 integer types can have any bit width, but they must all have the same bit
7253 width. The targets may only lower integer representations they support.</p>
7254
Mon P Wang6a490372008-06-25 08:15:39 +00007255<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007256<p>This intrinsic does a series of operations atomically. It first loads the
7257 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
7258 result to <tt>ptr</tt>. It yields the original value stored
7259 at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007260
7261<h5>Examples:</h5>
7262<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007263%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7264%ptr = bitcast i8* %mallocP to i32*
7265 store i32 8, %ptr
Dan Gohmand6a6f612010-05-28 17:07:41 +00007266%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 4)
Mon P Wang6a490372008-06-25 08:15:39 +00007267 <i>; yields {i32}:result1 = 8</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007268%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 2)
Mon P Wang6a490372008-06-25 08:15:39 +00007269 <i>; yields {i32}:result2 = 4</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007270%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 5)
Mon P Wang6a490372008-06-25 08:15:39 +00007271 <i>; yields {i32}:result3 = 2</i>
7272%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
7273</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007274
Mon P Wang6a490372008-06-25 08:15:39 +00007275</div>
7276
7277<!-- _______________________________________________________________________ -->
7278<div class="doc_subsubsection">
7279 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
7280 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
7281 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
7282 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
Mon P Wang6a490372008-06-25 08:15:39 +00007283</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007284
Mon P Wang6a490372008-06-25 08:15:39 +00007285<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007286
Mon P Wang6a490372008-06-25 08:15:39 +00007287<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007288<p>These are overloaded intrinsics. You can
7289 use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
7290 <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
7291 bit width and for different address spaces. Not all targets support all bit
7292 widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007293
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007294<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007295 declare i8 @llvm.atomic.load.and.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7296 declare i16 @llvm.atomic.load.and.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7297 declare i32 @llvm.atomic.load.and.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7298 declare i64 @llvm.atomic.load.and.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007299</pre>
7300
7301<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007302 declare i8 @llvm.atomic.load.or.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7303 declare i16 @llvm.atomic.load.or.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7304 declare i32 @llvm.atomic.load.or.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7305 declare i64 @llvm.atomic.load.or.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007306</pre>
7307
7308<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007309 declare i8 @llvm.atomic.load.nand.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7310 declare i16 @llvm.atomic.load.nand.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7311 declare i32 @llvm.atomic.load.nand.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7312 declare i64 @llvm.atomic.load.nand.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007313</pre>
7314
7315<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007316 declare i8 @llvm.atomic.load.xor.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7317 declare i16 @llvm.atomic.load.xor.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7318 declare i32 @llvm.atomic.load.xor.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7319 declare i64 @llvm.atomic.load.xor.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007320</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007321
Mon P Wang6a490372008-06-25 08:15:39 +00007322<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007323<p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
7324 the value stored in memory at <tt>ptr</tt>. It yields the original value
7325 at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007326
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007327<h5>Arguments:</h5>
7328<p>These intrinsics take two arguments, the first a pointer to an integer value
7329 and the second an integer value. The result is also an integer value. These
7330 integer types can have any bit width, but they must all have the same bit
7331 width. The targets may only lower integer representations they support.</p>
7332
Mon P Wang6a490372008-06-25 08:15:39 +00007333<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007334<p>These intrinsics does a series of operations atomically. They first load the
7335 value stored at <tt>ptr</tt>. They then do the bitwise
7336 operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
7337 original value stored at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007338
7339<h5>Examples:</h5>
7340<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007341%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7342%ptr = bitcast i8* %mallocP to i32*
7343 store i32 0x0F0F, %ptr
Dan Gohmand6a6f612010-05-28 17:07:41 +00007344%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32(i32* %ptr, i32 0xFF)
Mon P Wang6a490372008-06-25 08:15:39 +00007345 <i>; yields {i32}:result0 = 0x0F0F</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007346%result1 = call i32 @llvm.atomic.load.and.i32.p0i32(i32* %ptr, i32 0xFF)
Mon P Wang6a490372008-06-25 08:15:39 +00007347 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007348%result2 = call i32 @llvm.atomic.load.or.i32.p0i32(i32* %ptr, i32 0F)
Mon P Wang6a490372008-06-25 08:15:39 +00007349 <i>; yields {i32}:result2 = 0xF0</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007350%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32(i32* %ptr, i32 0F)
Mon P Wang6a490372008-06-25 08:15:39 +00007351 <i>; yields {i32}:result3 = FF</i>
7352%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
7353</pre>
Mon P Wang6a490372008-06-25 08:15:39 +00007354
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007355</div>
Mon P Wang6a490372008-06-25 08:15:39 +00007356
7357<!-- _______________________________________________________________________ -->
7358<div class="doc_subsubsection">
7359 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
7360 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
7361 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
7362 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
Mon P Wang6a490372008-06-25 08:15:39 +00007363</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007364
Mon P Wang6a490372008-06-25 08:15:39 +00007365<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007366
Mon P Wang6a490372008-06-25 08:15:39 +00007367<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007368<p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
7369 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
7370 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
7371 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007372
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007373<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007374 declare i8 @llvm.atomic.load.max.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7375 declare i16 @llvm.atomic.load.max.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7376 declare i32 @llvm.atomic.load.max.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7377 declare i64 @llvm.atomic.load.max.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007378</pre>
7379
7380<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007381 declare i8 @llvm.atomic.load.min.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7382 declare i16 @llvm.atomic.load.min.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7383 declare i32 @llvm.atomic.load.min.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7384 declare i64 @llvm.atomic.load.min.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007385</pre>
7386
7387<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007388 declare i8 @llvm.atomic.load.umax.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7389 declare i16 @llvm.atomic.load.umax.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7390 declare i32 @llvm.atomic.load.umax.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7391 declare i64 @llvm.atomic.load.umax.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007392</pre>
7393
7394<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007395 declare i8 @llvm.atomic.load.umin.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7396 declare i16 @llvm.atomic.load.umin.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7397 declare i32 @llvm.atomic.load.umin.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7398 declare i64 @llvm.atomic.load.umin.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007399</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007400
Mon P Wang6a490372008-06-25 08:15:39 +00007401<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00007402<p>These intrinsics takes the signed or unsigned minimum or maximum of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007403 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
7404 original value at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007405
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007406<h5>Arguments:</h5>
7407<p>These intrinsics take two arguments, the first a pointer to an integer value
7408 and the second an integer value. The result is also an integer value. These
7409 integer types can have any bit width, but they must all have the same bit
7410 width. The targets may only lower integer representations they support.</p>
7411
Mon P Wang6a490372008-06-25 08:15:39 +00007412<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007413<p>These intrinsics does a series of operations atomically. They first load the
7414 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
7415 max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
7416 yield the original value stored at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007417
7418<h5>Examples:</h5>
7419<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007420%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7421%ptr = bitcast i8* %mallocP to i32*
7422 store i32 7, %ptr
Dan Gohmand6a6f612010-05-28 17:07:41 +00007423%result0 = call i32 @llvm.atomic.load.min.i32.p0i32(i32* %ptr, i32 -2)
Mon P Wang6a490372008-06-25 08:15:39 +00007424 <i>; yields {i32}:result0 = 7</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007425%result1 = call i32 @llvm.atomic.load.max.i32.p0i32(i32* %ptr, i32 8)
Mon P Wang6a490372008-06-25 08:15:39 +00007426 <i>; yields {i32}:result1 = -2</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007427%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32(i32* %ptr, i32 10)
Mon P Wang6a490372008-06-25 08:15:39 +00007428 <i>; yields {i32}:result2 = 8</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007429%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32(i32* %ptr, i32 30)
Mon P Wang6a490372008-06-25 08:15:39 +00007430 <i>; yields {i32}:result3 = 8</i>
7431%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
7432</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007433
Mon P Wang6a490372008-06-25 08:15:39 +00007434</div>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007435
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007436
7437<!-- ======================================================================= -->
7438<div class="doc_subsection">
7439 <a name="int_memorymarkers">Memory Use Markers</a>
7440</div>
7441
7442<div class="doc_text">
7443
7444<p>This class of intrinsics exists to information about the lifetime of memory
7445 objects and ranges where variables are immutable.</p>
7446
7447</div>
7448
7449<!-- _______________________________________________________________________ -->
7450<div class="doc_subsubsection">
7451 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
7452</div>
7453
7454<div class="doc_text">
7455
7456<h5>Syntax:</h5>
7457<pre>
7458 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7459</pre>
7460
7461<h5>Overview:</h5>
7462<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
7463 object's lifetime.</p>
7464
7465<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007466<p>The first argument is a constant integer representing the size of the
7467 object, or -1 if it is variable sized. The second argument is a pointer to
7468 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007469
7470<h5>Semantics:</h5>
7471<p>This intrinsic indicates that before this point in the code, the value of the
7472 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
Nick Lewyckyd20fd592009-10-27 16:56:58 +00007473 never be used and has an undefined value. A load from the pointer that
7474 precedes this intrinsic can be replaced with
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007475 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
7476
7477</div>
7478
7479<!-- _______________________________________________________________________ -->
7480<div class="doc_subsubsection">
7481 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
7482</div>
7483
7484<div class="doc_text">
7485
7486<h5>Syntax:</h5>
7487<pre>
7488 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7489</pre>
7490
7491<h5>Overview:</h5>
7492<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
7493 object's lifetime.</p>
7494
7495<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007496<p>The first argument is a constant integer representing the size of the
7497 object, or -1 if it is variable sized. The second argument is a pointer to
7498 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007499
7500<h5>Semantics:</h5>
7501<p>This intrinsic indicates that after this point in the code, the value of the
7502 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7503 never be used and has an undefined value. Any stores into the memory object
7504 following this intrinsic may be removed as dead.
7505
7506</div>
7507
7508<!-- _______________________________________________________________________ -->
7509<div class="doc_subsubsection">
7510 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
7511</div>
7512
7513<div class="doc_text">
7514
7515<h5>Syntax:</h5>
7516<pre>
Nick Lewycky2965d3e2010-11-30 04:13:41 +00007517 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007518</pre>
7519
7520<h5>Overview:</h5>
7521<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
7522 a memory object will not change.</p>
7523
7524<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007525<p>The first argument is a constant integer representing the size of the
7526 object, or -1 if it is variable sized. The second argument is a pointer to
7527 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007528
7529<h5>Semantics:</h5>
7530<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
7531 the return value, the referenced memory location is constant and
7532 unchanging.</p>
7533
7534</div>
7535
7536<!-- _______________________________________________________________________ -->
7537<div class="doc_subsubsection">
7538 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
7539</div>
7540
7541<div class="doc_text">
7542
7543<h5>Syntax:</h5>
7544<pre>
7545 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7546</pre>
7547
7548<h5>Overview:</h5>
7549<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
7550 a memory object are mutable.</p>
7551
7552<h5>Arguments:</h5>
7553<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
Nick Lewycky9bc89042009-10-13 07:57:33 +00007554 The second argument is a constant integer representing the size of the
7555 object, or -1 if it is variable sized and the third argument is a pointer
7556 to the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007557
7558<h5>Semantics:</h5>
7559<p>This intrinsic indicates that the memory is mutable again.</p>
7560
7561</div>
7562
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007563<!-- ======================================================================= -->
7564<div class="doc_subsection">
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007565 <a name="int_general">General Intrinsics</a>
7566</div>
7567
7568<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007569
7570<p>This class of intrinsics is designed to be generic and has no specific
7571 purpose.</p>
7572
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007573</div>
7574
7575<!-- _______________________________________________________________________ -->
7576<div class="doc_subsubsection">
7577 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
7578</div>
7579
7580<div class="doc_text">
7581
7582<h5>Syntax:</h5>
7583<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007584 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007585</pre>
7586
7587<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007588<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007589
7590<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007591<p>The first argument is a pointer to a value, the second is a pointer to a
7592 global string, the third is a pointer to a global string which is the source
7593 file name, and the last argument is the line number.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007594
7595<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007596<p>This intrinsic allows annotation of local variables with arbitrary strings.
7597 This can be useful for special purpose optimizations that want to look for
7598 these annotations. These have no other defined use, they are ignored by code
7599 generation and optimization.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007600
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007601</div>
7602
Tanya Lattner293c0372007-09-21 22:59:12 +00007603<!-- _______________________________________________________________________ -->
7604<div class="doc_subsubsection">
Tanya Lattner0186a652007-09-21 23:57:59 +00007605 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattner293c0372007-09-21 22:59:12 +00007606</div>
7607
7608<div class="doc_text">
7609
7610<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007611<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
7612 any integer bit width.</p>
7613
Tanya Lattner293c0372007-09-21 22:59:12 +00007614<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007615 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7616 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7617 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7618 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7619 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattner293c0372007-09-21 22:59:12 +00007620</pre>
7621
7622<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007623<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00007624
7625<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007626<p>The first argument is an integer value (result of some expression), the
7627 second is a pointer to a global string, the third is a pointer to a global
7628 string which is the source file name, and the last argument is the line
7629 number. It returns the value of the first argument.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00007630
7631<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007632<p>This intrinsic allows annotations to be put on arbitrary expressions with
7633 arbitrary strings. This can be useful for special purpose optimizations that
7634 want to look for these annotations. These have no other defined use, they
7635 are ignored by code generation and optimization.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00007636
Tanya Lattner293c0372007-09-21 22:59:12 +00007637</div>
Jim Laskey2211f492007-03-14 19:31:19 +00007638
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007639<!-- _______________________________________________________________________ -->
7640<div class="doc_subsubsection">
7641 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
7642</div>
7643
7644<div class="doc_text">
7645
7646<h5>Syntax:</h5>
7647<pre>
7648 declare void @llvm.trap()
7649</pre>
7650
7651<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007652<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007653
7654<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007655<p>None.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007656
7657<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007658<p>This intrinsics is lowered to the target dependent trap instruction. If the
7659 target does not have a trap instruction, this intrinsic will be lowered to
7660 the call of the <tt>abort()</tt> function.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007661
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007662</div>
7663
Bill Wendling14313312008-11-19 05:56:17 +00007664<!-- _______________________________________________________________________ -->
7665<div class="doc_subsubsection">
Misha Brukman50de2b22008-11-22 23:55:29 +00007666 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling14313312008-11-19 05:56:17 +00007667</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007668
Bill Wendling14313312008-11-19 05:56:17 +00007669<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007670
Bill Wendling14313312008-11-19 05:56:17 +00007671<h5>Syntax:</h5>
7672<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007673 declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
Bill Wendling14313312008-11-19 05:56:17 +00007674</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007675
Bill Wendling14313312008-11-19 05:56:17 +00007676<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007677<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
7678 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
7679 ensure that it is placed on the stack before local variables.</p>
7680
Bill Wendling14313312008-11-19 05:56:17 +00007681<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007682<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
7683 arguments. The first argument is the value loaded from the stack
7684 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
7685 that has enough space to hold the value of the guard.</p>
7686
Bill Wendling14313312008-11-19 05:56:17 +00007687<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007688<p>This intrinsic causes the prologue/epilogue inserter to force the position of
7689 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7690 stack. This is to ensure that if a local variable on the stack is
7691 overwritten, it will destroy the value of the guard. When the function exits,
Bill Wendling6bbe0912010-10-27 01:07:41 +00007692 the guard on the stack is checked against the original guard. If they are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007693 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
7694 function.</p>
7695
Bill Wendling14313312008-11-19 05:56:17 +00007696</div>
7697
Eric Christopher73484322009-11-30 08:03:53 +00007698<!-- _______________________________________________________________________ -->
7699<div class="doc_subsubsection">
7700 <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
7701</div>
7702
7703<div class="doc_text">
7704
7705<h5>Syntax:</h5>
7706<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007707 declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;type&gt;)
7708 declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;type&gt;)
Eric Christopher73484322009-11-30 08:03:53 +00007709</pre>
7710
7711<h5>Overview:</h5>
Bill Wendling6bbe0912010-10-27 01:07:41 +00007712<p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
7713 the optimizers to determine at compile time whether a) an operation (like
7714 memcpy) will overflow a buffer that corresponds to an object, or b) that a
7715 runtime check for overflow isn't necessary. An object in this context means
7716 an allocation of a specific class, structure, array, or other object.</p>
Eric Christopher73484322009-11-30 08:03:53 +00007717
7718<h5>Arguments:</h5>
Bill Wendling6bbe0912010-10-27 01:07:41 +00007719<p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
Eric Christopher31e39bd2009-12-23 00:29:49 +00007720 argument is a pointer to or into the <tt>object</tt>. The second argument
Bill Wendling6bbe0912010-10-27 01:07:41 +00007721 is a boolean 0 or 1. This argument determines whether you want the
7722 maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
Eric Christopher31e39bd2009-12-23 00:29:49 +00007723 1, variables are not allowed.</p>
7724
Eric Christopher73484322009-11-30 08:03:53 +00007725<h5>Semantics:</h5>
7726<p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
Bill Wendling6bbe0912010-10-27 01:07:41 +00007727 representing the size of the object concerned, or <tt>i32/i64 -1 or 0</tt>,
7728 depending on the <tt>type</tt> argument, if the size cannot be determined at
7729 compile time.</p>
Eric Christopher73484322009-11-30 08:03:53 +00007730
7731</div>
7732
Chris Lattner2f7c9632001-06-06 20:29:01 +00007733<!-- *********************************************************************** -->
Chris Lattner2f7c9632001-06-06 20:29:01 +00007734<hr>
Misha Brukmanc501f552004-03-01 17:47:27 +00007735<address>
7736 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00007737 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00007738 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00007739 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00007740
7741 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencerca058542006-03-14 05:39:39 +00007742 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmanc501f552004-03-01 17:47:27 +00007743 Last modified: $Date$
7744</address>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00007745
Misha Brukman76307852003-11-08 01:05:38 +00007746</body>
7747</html>