blob: 4b93f0780e373193f35fc7e1680cd47ebac62145 [file] [log] [blame]
Tim Northover3b0846e2014-05-24 12:50:23 +00001//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AArch64TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AArch64ISelLowering.h"
Tim Northover3c55cca2014-11-27 21:02:42 +000015#include "AArch64CallingConvention.h"
Benjamin Kramer1f8930e2014-07-25 11:42:14 +000016#include "AArch64MachineFunctionInfo.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000017#include "AArch64PerfectShuffle.h"
18#include "AArch64Subtarget.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000019#include "AArch64TargetMachine.h"
20#include "AArch64TargetObjectFile.h"
21#include "MCTargetDesc/AArch64AddressingModes.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/Intrinsics.h"
29#include "llvm/IR/Type.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetOptions.h"
35using namespace llvm;
36
37#define DEBUG_TYPE "aarch64-lower"
38
39STATISTIC(NumTailCalls, "Number of tail calls");
40STATISTIC(NumShiftInserts, "Number of vector shift inserts");
41
Alexey Samsonovf17f03e2014-08-19 18:40:39 +000042namespace {
Tim Northover3b0846e2014-05-24 12:50:23 +000043enum AlignMode {
44 StrictAlign,
45 NoStrictAlign
46};
Alexey Samsonovf17f03e2014-08-19 18:40:39 +000047}
Tim Northover3b0846e2014-05-24 12:50:23 +000048
49static cl::opt<AlignMode>
50Align(cl::desc("Load/store alignment support"),
51 cl::Hidden, cl::init(NoStrictAlign),
52 cl::values(
53 clEnumValN(StrictAlign, "aarch64-strict-align",
54 "Disallow all unaligned memory accesses"),
55 clEnumValN(NoStrictAlign, "aarch64-no-strict-align",
56 "Allow unaligned memory accesses"),
57 clEnumValEnd));
58
59// Place holder until extr generation is tested fully.
60static cl::opt<bool>
61EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
62 cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
63 cl::init(true));
64
65static cl::opt<bool>
66EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
Kristof Beylsaea84612015-03-04 09:12:08 +000067 cl::desc("Allow AArch64 SLI/SRI formation"),
68 cl::init(false));
69
70// FIXME: The necessary dtprel relocations don't seem to be supported
71// well in the GNU bfd and gold linkers at the moment. Therefore, by
72// default, for now, fall back to GeneralDynamic code generation.
73cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
74 "aarch64-elf-ldtls-generation", cl::Hidden,
75 cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
76 cl::init(false));
Tim Northover3b0846e2014-05-24 12:50:23 +000077
Eric Christopher905f12d2015-01-29 00:19:42 +000078AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
79 const AArch64Subtarget &STI)
80 : TargetLowering(TM), Subtarget(&STI) {
Tim Northover3b0846e2014-05-24 12:50:23 +000081
82 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
83 // we have to make something up. Arbitrarily, choose ZeroOrOne.
84 setBooleanContents(ZeroOrOneBooleanContent);
85 // When comparing vectors the result sets the different elements in the
86 // vector to all-one or all-zero.
87 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
88
89 // Set up the register classes.
90 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
91 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
92
93 if (Subtarget->hasFPARMv8()) {
94 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
95 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
96 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
97 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
98 }
99
100 if (Subtarget->hasNEON()) {
101 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
102 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
103 // Someone set us up the NEON.
104 addDRTypeForNEON(MVT::v2f32);
105 addDRTypeForNEON(MVT::v8i8);
106 addDRTypeForNEON(MVT::v4i16);
107 addDRTypeForNEON(MVT::v2i32);
108 addDRTypeForNEON(MVT::v1i64);
109 addDRTypeForNEON(MVT::v1f64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000110 addDRTypeForNEON(MVT::v4f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000111
112 addQRTypeForNEON(MVT::v4f32);
113 addQRTypeForNEON(MVT::v2f64);
114 addQRTypeForNEON(MVT::v16i8);
115 addQRTypeForNEON(MVT::v8i16);
116 addQRTypeForNEON(MVT::v4i32);
117 addQRTypeForNEON(MVT::v2i64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000118 addQRTypeForNEON(MVT::v8f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000119 }
120
121 // Compute derived properties from the register classes
Eric Christopher23a3a7c2015-02-26 00:00:24 +0000122 computeRegisterProperties(Subtarget->getRegisterInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +0000123
124 // Provide all sorts of operation actions
125 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
126 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
127 setOperationAction(ISD::SETCC, MVT::i32, Custom);
128 setOperationAction(ISD::SETCC, MVT::i64, Custom);
129 setOperationAction(ISD::SETCC, MVT::f32, Custom);
130 setOperationAction(ISD::SETCC, MVT::f64, Custom);
131 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
132 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
133 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
134 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
135 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
136 setOperationAction(ISD::SELECT, MVT::i32, Custom);
137 setOperationAction(ISD::SELECT, MVT::i64, Custom);
138 setOperationAction(ISD::SELECT, MVT::f32, Custom);
139 setOperationAction(ISD::SELECT, MVT::f64, Custom);
140 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
141 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
142 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
143 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
144 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
145 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
146
147 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
148 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
149 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
150
151 setOperationAction(ISD::FREM, MVT::f32, Expand);
152 setOperationAction(ISD::FREM, MVT::f64, Expand);
153 setOperationAction(ISD::FREM, MVT::f80, Expand);
154
155 // Custom lowering hooks are needed for XOR
156 // to fold it into CSINC/CSINV.
157 setOperationAction(ISD::XOR, MVT::i32, Custom);
158 setOperationAction(ISD::XOR, MVT::i64, Custom);
159
160 // Virtually no operation on f128 is legal, but LLVM can't expand them when
161 // there's a valid register class, so we need custom operations in most cases.
162 setOperationAction(ISD::FABS, MVT::f128, Expand);
163 setOperationAction(ISD::FADD, MVT::f128, Custom);
164 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
165 setOperationAction(ISD::FCOS, MVT::f128, Expand);
166 setOperationAction(ISD::FDIV, MVT::f128, Custom);
167 setOperationAction(ISD::FMA, MVT::f128, Expand);
168 setOperationAction(ISD::FMUL, MVT::f128, Custom);
169 setOperationAction(ISD::FNEG, MVT::f128, Expand);
170 setOperationAction(ISD::FPOW, MVT::f128, Expand);
171 setOperationAction(ISD::FREM, MVT::f128, Expand);
172 setOperationAction(ISD::FRINT, MVT::f128, Expand);
173 setOperationAction(ISD::FSIN, MVT::f128, Expand);
174 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
175 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
176 setOperationAction(ISD::FSUB, MVT::f128, Custom);
177 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
178 setOperationAction(ISD::SETCC, MVT::f128, Custom);
179 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
180 setOperationAction(ISD::SELECT, MVT::f128, Custom);
181 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
182 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
183
184 // Lowering for many of the conversions is actually specified by the non-f128
185 // type. The LowerXXX function will be trivial when f128 isn't involved.
186 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
187 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
188 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
189 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
190 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
191 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
192 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
193 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
194 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
195 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
196 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
197 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
198 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
199 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
200
201 // Variable arguments.
202 setOperationAction(ISD::VASTART, MVT::Other, Custom);
203 setOperationAction(ISD::VAARG, MVT::Other, Custom);
204 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
205 setOperationAction(ISD::VAEND, MVT::Other, Expand);
206
207 // Variable-sized objects.
208 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
209 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
210 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
211
212 // Exception handling.
213 // FIXME: These are guesses. Has this been defined yet?
214 setExceptionPointerRegister(AArch64::X0);
215 setExceptionSelectorRegister(AArch64::X1);
216
217 // Constant pool entries
218 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
219
220 // BlockAddress
221 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
222
223 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
224 setOperationAction(ISD::ADDC, MVT::i32, Custom);
225 setOperationAction(ISD::ADDE, MVT::i32, Custom);
226 setOperationAction(ISD::SUBC, MVT::i32, Custom);
227 setOperationAction(ISD::SUBE, MVT::i32, Custom);
228 setOperationAction(ISD::ADDC, MVT::i64, Custom);
229 setOperationAction(ISD::ADDE, MVT::i64, Custom);
230 setOperationAction(ISD::SUBC, MVT::i64, Custom);
231 setOperationAction(ISD::SUBE, MVT::i64, Custom);
232
233 // AArch64 lacks both left-rotate and popcount instructions.
234 setOperationAction(ISD::ROTL, MVT::i32, Expand);
235 setOperationAction(ISD::ROTL, MVT::i64, Expand);
236
237 // AArch64 doesn't have {U|S}MUL_LOHI.
238 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
239 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
240
241
242 // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
243 // counterparts, which AArch64 supports directly.
244 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
245 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
246 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
247 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
248
249 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
250 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
251
252 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
253 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
254 setOperationAction(ISD::SREM, MVT::i32, Expand);
255 setOperationAction(ISD::SREM, MVT::i64, Expand);
256 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
257 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
258 setOperationAction(ISD::UREM, MVT::i32, Expand);
259 setOperationAction(ISD::UREM, MVT::i64, Expand);
260
261 // Custom lower Add/Sub/Mul with overflow.
262 setOperationAction(ISD::SADDO, MVT::i32, Custom);
263 setOperationAction(ISD::SADDO, MVT::i64, Custom);
264 setOperationAction(ISD::UADDO, MVT::i32, Custom);
265 setOperationAction(ISD::UADDO, MVT::i64, Custom);
266 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
267 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
268 setOperationAction(ISD::USUBO, MVT::i32, Custom);
269 setOperationAction(ISD::USUBO, MVT::i64, Custom);
270 setOperationAction(ISD::SMULO, MVT::i32, Custom);
271 setOperationAction(ISD::SMULO, MVT::i64, Custom);
272 setOperationAction(ISD::UMULO, MVT::i32, Custom);
273 setOperationAction(ISD::UMULO, MVT::i64, Custom);
274
275 setOperationAction(ISD::FSIN, MVT::f32, Expand);
276 setOperationAction(ISD::FSIN, MVT::f64, Expand);
277 setOperationAction(ISD::FCOS, MVT::f32, Expand);
278 setOperationAction(ISD::FCOS, MVT::f64, Expand);
279 setOperationAction(ISD::FPOW, MVT::f32, Expand);
280 setOperationAction(ISD::FPOW, MVT::f64, Expand);
281 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
282 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
283
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +0000284 // f16 is a storage-only type, always promote it to f32.
285 setOperationAction(ISD::SETCC, MVT::f16, Promote);
286 setOperationAction(ISD::BR_CC, MVT::f16, Promote);
287 setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
288 setOperationAction(ISD::SELECT, MVT::f16, Promote);
289 setOperationAction(ISD::FADD, MVT::f16, Promote);
290 setOperationAction(ISD::FSUB, MVT::f16, Promote);
291 setOperationAction(ISD::FMUL, MVT::f16, Promote);
292 setOperationAction(ISD::FDIV, MVT::f16, Promote);
293 setOperationAction(ISD::FREM, MVT::f16, Promote);
294 setOperationAction(ISD::FMA, MVT::f16, Promote);
295 setOperationAction(ISD::FNEG, MVT::f16, Promote);
296 setOperationAction(ISD::FABS, MVT::f16, Promote);
297 setOperationAction(ISD::FCEIL, MVT::f16, Promote);
298 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
299 setOperationAction(ISD::FCOS, MVT::f16, Promote);
300 setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
301 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
302 setOperationAction(ISD::FPOW, MVT::f16, Promote);
303 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
304 setOperationAction(ISD::FRINT, MVT::f16, Promote);
305 setOperationAction(ISD::FSIN, MVT::f16, Promote);
306 setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
307 setOperationAction(ISD::FSQRT, MVT::f16, Promote);
308 setOperationAction(ISD::FEXP, MVT::f16, Promote);
309 setOperationAction(ISD::FEXP2, MVT::f16, Promote);
310 setOperationAction(ISD::FLOG, MVT::f16, Promote);
311 setOperationAction(ISD::FLOG2, MVT::f16, Promote);
312 setOperationAction(ISD::FLOG10, MVT::f16, Promote);
313 setOperationAction(ISD::FROUND, MVT::f16, Promote);
314 setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
315 setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
316 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
Oliver Stannardf5469be2014-08-18 14:22:39 +0000317
Oliver Stannard89d15422014-08-27 16:16:04 +0000318 // v4f16 is also a storage-only type, so promote it to v4f32 when that is
319 // known to be safe.
320 setOperationAction(ISD::FADD, MVT::v4f16, Promote);
321 setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
322 setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
323 setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
324 setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
325 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
326 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
327 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
328 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
329 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
330 AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
331 AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
332
333 // Expand all other v4f16 operations.
334 // FIXME: We could generate better code by promoting some operations to
335 // a pair of v4f32s
336 setOperationAction(ISD::FABS, MVT::v4f16, Expand);
337 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
338 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
339 setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
340 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
341 setOperationAction(ISD::FMA, MVT::v4f16, Expand);
342 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
343 setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
344 setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
345 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
346 setOperationAction(ISD::FREM, MVT::v4f16, Expand);
347 setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
348 setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
349 setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
350 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
351 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
352 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
353 setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
354 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
355 setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
356 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
357 setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
358 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
359 setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
360 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
361 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
362
363
364 // v8f16 is also a storage-only type, so expand it.
365 setOperationAction(ISD::FABS, MVT::v8f16, Expand);
366 setOperationAction(ISD::FADD, MVT::v8f16, Expand);
367 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
368 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
369 setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
370 setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
371 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
372 setOperationAction(ISD::FMA, MVT::v8f16, Expand);
373 setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
374 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
375 setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
376 setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
377 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
378 setOperationAction(ISD::FREM, MVT::v8f16, Expand);
379 setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
380 setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
381 setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
382 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
383 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
384 setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
385 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
386 setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
387 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
388 setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
389 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
390 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
391 setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
392 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
393 setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
394 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
395 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
396
Tim Northover3b0846e2014-05-24 12:50:23 +0000397 // AArch64 has implementations of a lot of rounding-like FP operations.
Benjamin Kramer57a3d082015-03-08 16:07:39 +0000398 for (MVT Ty : {MVT::f32, MVT::f64}) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000399 setOperationAction(ISD::FFLOOR, Ty, Legal);
400 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
401 setOperationAction(ISD::FCEIL, Ty, Legal);
402 setOperationAction(ISD::FRINT, Ty, Legal);
403 setOperationAction(ISD::FTRUNC, Ty, Legal);
404 setOperationAction(ISD::FROUND, Ty, Legal);
405 }
406
407 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
408
409 if (Subtarget->isTargetMachO()) {
410 // For iOS, we don't want to the normal expansion of a libcall to
411 // sincos. We want to issue a libcall to __sincos_stret to avoid memory
412 // traffic.
413 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
414 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
415 } else {
416 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
417 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
418 }
419
Juergen Ributzka23266502014-12-10 19:43:32 +0000420 // Make floating-point constants legal for the large code model, so they don't
421 // become loads from the constant pool.
422 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
423 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
424 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
425 }
426
Tim Northover3b0846e2014-05-24 12:50:23 +0000427 // AArch64 does not have floating-point extending loads, i1 sign-extending
428 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000429 for (MVT VT : MVT::fp_valuetypes()) {
430 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
431 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
432 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
433 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
434 }
435 for (MVT VT : MVT::integer_valuetypes())
436 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
437
Tim Northover3b0846e2014-05-24 12:50:23 +0000438 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
439 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
440 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
441 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
442 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
443 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
444 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
Tim Northoverf8bfe212014-07-18 13:07:05 +0000445
446 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
447 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
448
Tim Northover3b0846e2014-05-24 12:50:23 +0000449 // Indexed loads and stores are supported.
450 for (unsigned im = (unsigned)ISD::PRE_INC;
451 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
452 setIndexedLoadAction(im, MVT::i8, Legal);
453 setIndexedLoadAction(im, MVT::i16, Legal);
454 setIndexedLoadAction(im, MVT::i32, Legal);
455 setIndexedLoadAction(im, MVT::i64, Legal);
456 setIndexedLoadAction(im, MVT::f64, Legal);
457 setIndexedLoadAction(im, MVT::f32, Legal);
458 setIndexedStoreAction(im, MVT::i8, Legal);
459 setIndexedStoreAction(im, MVT::i16, Legal);
460 setIndexedStoreAction(im, MVT::i32, Legal);
461 setIndexedStoreAction(im, MVT::i64, Legal);
462 setIndexedStoreAction(im, MVT::f64, Legal);
463 setIndexedStoreAction(im, MVT::f32, Legal);
464 }
465
466 // Trap.
467 setOperationAction(ISD::TRAP, MVT::Other, Legal);
468
469 // We combine OR nodes for bitfield operations.
470 setTargetDAGCombine(ISD::OR);
471
472 // Vector add and sub nodes may conceal a high-half opportunity.
473 // Also, try to fold ADD into CSINC/CSINV..
474 setTargetDAGCombine(ISD::ADD);
475 setTargetDAGCombine(ISD::SUB);
476
477 setTargetDAGCombine(ISD::XOR);
478 setTargetDAGCombine(ISD::SINT_TO_FP);
479 setTargetDAGCombine(ISD::UINT_TO_FP);
480
481 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
482
483 setTargetDAGCombine(ISD::ANY_EXTEND);
484 setTargetDAGCombine(ISD::ZERO_EXTEND);
485 setTargetDAGCombine(ISD::SIGN_EXTEND);
486 setTargetDAGCombine(ISD::BITCAST);
487 setTargetDAGCombine(ISD::CONCAT_VECTORS);
488 setTargetDAGCombine(ISD::STORE);
489
490 setTargetDAGCombine(ISD::MUL);
491
492 setTargetDAGCombine(ISD::SELECT);
493 setTargetDAGCombine(ISD::VSELECT);
Artyom Skrobova70dfe12015-05-14 12:59:46 +0000494 setTargetDAGCombine(ISD::SELECT_CC);
Tim Northover3b0846e2014-05-24 12:50:23 +0000495
496 setTargetDAGCombine(ISD::INTRINSIC_VOID);
497 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
498 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
499
500 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
501 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
502 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
503
504 setStackPointerRegisterToSaveRestore(AArch64::SP);
505
506 setSchedulingPreference(Sched::Hybrid);
507
508 // Enable TBZ/TBNZ
509 MaskAndBranchFoldingIsLegal = true;
Quentin Colombet6843ac42015-03-31 20:52:32 +0000510 EnableExtLdPromotion = true;
Tim Northover3b0846e2014-05-24 12:50:23 +0000511
512 setMinFunctionAlignment(2);
513
514 RequireStrictAlign = (Align == StrictAlign);
515
516 setHasExtractBitsInsn(true);
517
518 if (Subtarget->hasNEON()) {
519 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
520 // silliness like this:
521 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
522 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
523 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
524 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
525 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
526 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
527 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
528 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
529 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
530 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
531 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
532 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
533 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
534 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
535 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
536 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
537 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
538 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
539 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
540 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
541 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
542 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
543 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
544 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
545 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
546
547 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
548 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
549 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
550 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
551 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
552
553 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
554
555 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
556 // elements smaller than i32, so promote the input to i32 first.
557 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
558 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
559 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
560 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
Pirama Arumuga Nainarb1881532015-04-23 17:16:27 +0000561 // i8 and i16 vector elements also need promotion to i32 for v8i8 or v8i16
562 // -> v8f16 conversions.
563 setOperationAction(ISD::SINT_TO_FP, MVT::v8i8, Promote);
564 setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Promote);
565 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote);
566 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Promote);
Tim Northover3b0846e2014-05-24 12:50:23 +0000567 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
568 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
569 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
570 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
571 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
Pirama Arumuga Nainarb1881532015-04-23 17:16:27 +0000572 // Or, direct i32 -> f16 vector conversion. Set it so custom, so the
573 // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
574 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
575 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
Tim Northover3b0846e2014-05-24 12:50:23 +0000576
577 // AArch64 doesn't have MUL.2d:
578 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
Chad Rosierd9d0f862014-10-08 02:31:24 +0000579 // Custom handling for some quad-vector types to detect MULL.
580 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
581 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
582 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
583
Tim Northover3b0846e2014-05-24 12:50:23 +0000584 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
585 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
586 // Likewise, narrowing and extending vector loads/stores aren't handled
587 // directly.
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000588 for (MVT VT : MVT::vector_valuetypes()) {
589 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000590
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000591 setOperationAction(ISD::MULHS, VT, Expand);
592 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
593 setOperationAction(ISD::MULHU, VT, Expand);
594 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000595
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000596 setOperationAction(ISD::BSWAP, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000597
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000598 for (MVT InnerVT : MVT::vector_valuetypes()) {
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000599 setTruncStoreAction(VT, InnerVT, Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000600 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
601 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
602 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
603 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000604 }
605
606 // AArch64 has implementations of a lot of rounding-like FP operations.
Benjamin Kramer57a3d082015-03-08 16:07:39 +0000607 for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000608 setOperationAction(ISD::FFLOOR, Ty, Legal);
609 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
610 setOperationAction(ISD::FCEIL, Ty, Legal);
611 setOperationAction(ISD::FRINT, Ty, Legal);
612 setOperationAction(ISD::FTRUNC, Ty, Legal);
613 setOperationAction(ISD::FROUND, Ty, Legal);
614 }
615 }
James Molloyf089ab72014-08-06 10:42:18 +0000616
617 // Prefer likely predicted branches to selects on out-of-order cores.
618 if (Subtarget->isCortexA57())
619 PredictableSelectIsExpensive = true;
Tim Northover3b0846e2014-05-24 12:50:23 +0000620}
621
622void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000623 if (VT == MVT::v2f32 || VT == MVT::v4f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000624 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
625 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
626
627 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
628 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000629 } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000630 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
631 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
632
633 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
634 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
635 }
636
637 // Mark vector float intrinsics as expand.
638 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
639 setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
640 setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
641 setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
642 setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
643 setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
644 setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
645 setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
646 setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
647 setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
648 }
649
650 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
651 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
652 setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
653 setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
654 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
655 setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
656 setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
657 setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
658 setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
659 setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
660 setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
661 setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
662
663 setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
664 setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
665 setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000666 for (MVT InnerVT : MVT::all_valuetypes())
667 setLoadExtAction(ISD::EXTLOAD, InnerVT, VT.getSimpleVT(), Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000668
669 // CNT supports only B element sizes.
670 if (VT != MVT::v8i8 && VT != MVT::v16i8)
671 setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
672
673 setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
674 setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
675 setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
676 setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
677 setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
678
679 setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
680 setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
681
682 if (Subtarget->isLittleEndian()) {
683 for (unsigned im = (unsigned)ISD::PRE_INC;
684 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
685 setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
686 setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
687 }
688 }
689}
690
691void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
692 addRegisterClass(VT, &AArch64::FPR64RegClass);
693 addTypeForNEON(VT, MVT::v2i32);
694}
695
696void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
697 addRegisterClass(VT, &AArch64::FPR128RegClass);
698 addTypeForNEON(VT, MVT::v4i32);
699}
700
701EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
702 if (!VT.isVector())
703 return MVT::i32;
704 return VT.changeVectorElementTypeToInteger();
705}
706
707/// computeKnownBitsForTargetNode - Determine which of the bits specified in
708/// Mask are known to be either zero or one and return them in the
709/// KnownZero/KnownOne bitsets.
710void AArch64TargetLowering::computeKnownBitsForTargetNode(
711 const SDValue Op, APInt &KnownZero, APInt &KnownOne,
712 const SelectionDAG &DAG, unsigned Depth) const {
713 switch (Op.getOpcode()) {
714 default:
715 break;
716 case AArch64ISD::CSEL: {
717 APInt KnownZero2, KnownOne2;
718 DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
719 DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
720 KnownZero &= KnownZero2;
721 KnownOne &= KnownOne2;
722 break;
723 }
724 case ISD::INTRINSIC_W_CHAIN: {
725 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
726 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
727 switch (IntID) {
728 default: return;
729 case Intrinsic::aarch64_ldaxr:
730 case Intrinsic::aarch64_ldxr: {
731 unsigned BitWidth = KnownOne.getBitWidth();
732 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
733 unsigned MemBits = VT.getScalarType().getSizeInBits();
734 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
735 return;
736 }
737 }
738 break;
739 }
740 case ISD::INTRINSIC_WO_CHAIN:
741 case ISD::INTRINSIC_VOID: {
742 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
743 switch (IntNo) {
744 default:
745 break;
746 case Intrinsic::aarch64_neon_umaxv:
747 case Intrinsic::aarch64_neon_uminv: {
748 // Figure out the datatype of the vector operand. The UMINV instruction
749 // will zero extend the result, so we can mark as known zero all the
750 // bits larger than the element datatype. 32-bit or larget doesn't need
751 // this as those are legal types and will be handled by isel directly.
752 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
753 unsigned BitWidth = KnownZero.getBitWidth();
754 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
755 assert(BitWidth >= 8 && "Unexpected width!");
756 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
757 KnownZero |= Mask;
758 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
759 assert(BitWidth >= 16 && "Unexpected width!");
760 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
761 KnownZero |= Mask;
762 }
763 break;
764 } break;
765 }
766 }
767 }
768}
769
770MVT AArch64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const {
771 return MVT::i64;
772}
773
Tim Northover3b0846e2014-05-24 12:50:23 +0000774FastISel *
775AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
776 const TargetLibraryInfo *libInfo) const {
777 return AArch64::createFastISel(funcInfo, libInfo);
778}
779
780const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
Matthias Braund04893f2015-05-07 21:33:59 +0000781 switch ((AArch64ISD::NodeType)Opcode) {
782 case AArch64ISD::FIRST_NUMBER: break;
Tim Northover3b0846e2014-05-24 12:50:23 +0000783 case AArch64ISD::CALL: return "AArch64ISD::CALL";
784 case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
785 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
786 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
787 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
788 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
789 case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
790 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
791 case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
792 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
793 case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
794 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
Kristof Beylsaea84612015-03-04 09:12:08 +0000795 case AArch64ISD::TLSDESC_CALLSEQ: return "AArch64ISD::TLSDESC_CALLSEQ";
Tim Northover3b0846e2014-05-24 12:50:23 +0000796 case AArch64ISD::ADC: return "AArch64ISD::ADC";
797 case AArch64ISD::SBC: return "AArch64ISD::SBC";
798 case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
799 case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
800 case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
801 case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
802 case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
803 case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
804 case AArch64ISD::FMIN: return "AArch64ISD::FMIN";
805 case AArch64ISD::FMAX: return "AArch64ISD::FMAX";
806 case AArch64ISD::DUP: return "AArch64ISD::DUP";
807 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
808 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
809 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
810 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
811 case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
812 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
813 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
814 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
815 case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
816 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
817 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
818 case AArch64ISD::BICi: return "AArch64ISD::BICi";
819 case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
820 case AArch64ISD::BSL: return "AArch64ISD::BSL";
821 case AArch64ISD::NEG: return "AArch64ISD::NEG";
822 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
823 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
824 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
825 case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
826 case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
827 case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
828 case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
829 case AArch64ISD::REV16: return "AArch64ISD::REV16";
830 case AArch64ISD::REV32: return "AArch64ISD::REV32";
831 case AArch64ISD::REV64: return "AArch64ISD::REV64";
832 case AArch64ISD::EXT: return "AArch64ISD::EXT";
833 case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
834 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
835 case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
836 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
837 case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
838 case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
839 case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
840 case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
841 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
842 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
843 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
844 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
845 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
846 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
847 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
848 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
849 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
850 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
851 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
852 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
853 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
Ahmed Bougachafab58922015-03-10 20:45:38 +0000854 case AArch64ISD::SADDV: return "AArch64ISD::SADDV";
855 case AArch64ISD::UADDV: return "AArch64ISD::UADDV";
856 case AArch64ISD::SMINV: return "AArch64ISD::SMINV";
857 case AArch64ISD::UMINV: return "AArch64ISD::UMINV";
858 case AArch64ISD::SMAXV: return "AArch64ISD::SMAXV";
859 case AArch64ISD::UMAXV: return "AArch64ISD::UMAXV";
Tim Northover3b0846e2014-05-24 12:50:23 +0000860 case AArch64ISD::NOT: return "AArch64ISD::NOT";
861 case AArch64ISD::BIT: return "AArch64ISD::BIT";
862 case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
863 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
864 case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
865 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
866 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
Matthias Braund04893f2015-05-07 21:33:59 +0000867 case AArch64ISD::PREFETCH: return "AArch64ISD::PREFETCH";
Tim Northover3b0846e2014-05-24 12:50:23 +0000868 case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
869 case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
Asiri Rathnayake530b3ed2014-10-01 09:59:45 +0000870 case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
Tim Northover3b0846e2014-05-24 12:50:23 +0000871 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
872 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
873 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
874 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
875 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
876 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
877 case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
878 case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
879 case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
880 case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
881 case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
882 case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
883 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
884 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
885 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
886 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
887 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
888 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
889 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
890 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
891 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
892 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
893 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
894 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
895 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
896 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
897 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
898 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
899 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
Chad Rosierd9d0f862014-10-08 02:31:24 +0000900 case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
901 case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
Tim Northover3b0846e2014-05-24 12:50:23 +0000902 }
Matthias Braund04893f2015-05-07 21:33:59 +0000903 return nullptr;
Tim Northover3b0846e2014-05-24 12:50:23 +0000904}
905
906MachineBasicBlock *
907AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
908 MachineBasicBlock *MBB) const {
909 // We materialise the F128CSEL pseudo-instruction as some control flow and a
910 // phi node:
911
912 // OrigBB:
913 // [... previous instrs leading to comparison ...]
914 // b.ne TrueBB
915 // b EndBB
916 // TrueBB:
917 // ; Fallthrough
918 // EndBB:
919 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
920
Tim Northover3b0846e2014-05-24 12:50:23 +0000921 MachineFunction *MF = MBB->getParent();
Eric Christopher905f12d2015-01-29 00:19:42 +0000922 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +0000923 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
924 DebugLoc DL = MI->getDebugLoc();
925 MachineFunction::iterator It = MBB;
926 ++It;
927
928 unsigned DestReg = MI->getOperand(0).getReg();
929 unsigned IfTrueReg = MI->getOperand(1).getReg();
930 unsigned IfFalseReg = MI->getOperand(2).getReg();
931 unsigned CondCode = MI->getOperand(3).getImm();
932 bool NZCVKilled = MI->getOperand(4).isKill();
933
934 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
935 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
936 MF->insert(It, TrueBB);
937 MF->insert(It, EndBB);
938
939 // Transfer rest of current basic-block to EndBB
940 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
941 MBB->end());
942 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
943
944 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
945 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
946 MBB->addSuccessor(TrueBB);
947 MBB->addSuccessor(EndBB);
948
949 // TrueBB falls through to the end.
950 TrueBB->addSuccessor(EndBB);
951
952 if (!NZCVKilled) {
953 TrueBB->addLiveIn(AArch64::NZCV);
954 EndBB->addLiveIn(AArch64::NZCV);
955 }
956
957 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
958 .addReg(IfTrueReg)
959 .addMBB(TrueBB)
960 .addReg(IfFalseReg)
961 .addMBB(MBB);
962
963 MI->eraseFromParent();
964 return EndBB;
965}
966
967MachineBasicBlock *
968AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
969 MachineBasicBlock *BB) const {
970 switch (MI->getOpcode()) {
971 default:
972#ifndef NDEBUG
973 MI->dump();
974#endif
Craig Topper35b2f752014-06-19 06:10:58 +0000975 llvm_unreachable("Unexpected instruction for custom inserter!");
Tim Northover3b0846e2014-05-24 12:50:23 +0000976
977 case AArch64::F128CSEL:
978 return EmitF128CSEL(MI, BB);
979
980 case TargetOpcode::STACKMAP:
981 case TargetOpcode::PATCHPOINT:
982 return emitPatchPoint(MI, BB);
983 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000984}
985
986//===----------------------------------------------------------------------===//
987// AArch64 Lowering private implementation.
988//===----------------------------------------------------------------------===//
989
990//===----------------------------------------------------------------------===//
991// Lowering Code
992//===----------------------------------------------------------------------===//
993
994/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
995/// CC
996static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
997 switch (CC) {
998 default:
999 llvm_unreachable("Unknown condition code!");
1000 case ISD::SETNE:
1001 return AArch64CC::NE;
1002 case ISD::SETEQ:
1003 return AArch64CC::EQ;
1004 case ISD::SETGT:
1005 return AArch64CC::GT;
1006 case ISD::SETGE:
1007 return AArch64CC::GE;
1008 case ISD::SETLT:
1009 return AArch64CC::LT;
1010 case ISD::SETLE:
1011 return AArch64CC::LE;
1012 case ISD::SETUGT:
1013 return AArch64CC::HI;
1014 case ISD::SETUGE:
1015 return AArch64CC::HS;
1016 case ISD::SETULT:
1017 return AArch64CC::LO;
1018 case ISD::SETULE:
1019 return AArch64CC::LS;
1020 }
1021}
1022
1023/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
1024static void changeFPCCToAArch64CC(ISD::CondCode CC,
1025 AArch64CC::CondCode &CondCode,
1026 AArch64CC::CondCode &CondCode2) {
1027 CondCode2 = AArch64CC::AL;
1028 switch (CC) {
1029 default:
1030 llvm_unreachable("Unknown FP condition!");
1031 case ISD::SETEQ:
1032 case ISD::SETOEQ:
1033 CondCode = AArch64CC::EQ;
1034 break;
1035 case ISD::SETGT:
1036 case ISD::SETOGT:
1037 CondCode = AArch64CC::GT;
1038 break;
1039 case ISD::SETGE:
1040 case ISD::SETOGE:
1041 CondCode = AArch64CC::GE;
1042 break;
1043 case ISD::SETOLT:
1044 CondCode = AArch64CC::MI;
1045 break;
1046 case ISD::SETOLE:
1047 CondCode = AArch64CC::LS;
1048 break;
1049 case ISD::SETONE:
1050 CondCode = AArch64CC::MI;
1051 CondCode2 = AArch64CC::GT;
1052 break;
1053 case ISD::SETO:
1054 CondCode = AArch64CC::VC;
1055 break;
1056 case ISD::SETUO:
1057 CondCode = AArch64CC::VS;
1058 break;
1059 case ISD::SETUEQ:
1060 CondCode = AArch64CC::EQ;
1061 CondCode2 = AArch64CC::VS;
1062 break;
1063 case ISD::SETUGT:
1064 CondCode = AArch64CC::HI;
1065 break;
1066 case ISD::SETUGE:
1067 CondCode = AArch64CC::PL;
1068 break;
1069 case ISD::SETLT:
1070 case ISD::SETULT:
1071 CondCode = AArch64CC::LT;
1072 break;
1073 case ISD::SETLE:
1074 case ISD::SETULE:
1075 CondCode = AArch64CC::LE;
1076 break;
1077 case ISD::SETNE:
1078 case ISD::SETUNE:
1079 CondCode = AArch64CC::NE;
1080 break;
1081 }
1082}
1083
1084/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1085/// CC usable with the vector instructions. Fewer operations are available
1086/// without a real NZCV register, so we have to use less efficient combinations
1087/// to get the same effect.
1088static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1089 AArch64CC::CondCode &CondCode,
1090 AArch64CC::CondCode &CondCode2,
1091 bool &Invert) {
1092 Invert = false;
1093 switch (CC) {
1094 default:
1095 // Mostly the scalar mappings work fine.
1096 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1097 break;
1098 case ISD::SETUO:
1099 Invert = true; // Fallthrough
1100 case ISD::SETO:
1101 CondCode = AArch64CC::MI;
1102 CondCode2 = AArch64CC::GE;
1103 break;
1104 case ISD::SETUEQ:
1105 case ISD::SETULT:
1106 case ISD::SETULE:
1107 case ISD::SETUGT:
1108 case ISD::SETUGE:
1109 // All of the compare-mask comparisons are ordered, but we can switch
1110 // between the two by a double inversion. E.g. ULE == !OGT.
1111 Invert = true;
1112 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1113 break;
1114 }
1115}
1116
1117static bool isLegalArithImmed(uint64_t C) {
1118 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1119 return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1120}
1121
1122static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1123 SDLoc dl, SelectionDAG &DAG) {
1124 EVT VT = LHS.getValueType();
1125
1126 if (VT.isFloatingPoint())
1127 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1128
1129 // The CMP instruction is just an alias for SUBS, and representing it as
1130 // SUBS means that it's possible to get CSE with subtract operations.
1131 // A later phase can perform the optimization of setting the destination
1132 // register to WZR/XZR if it ends up being unused.
1133 unsigned Opcode = AArch64ISD::SUBS;
1134
1135 if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) &&
1136 cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 &&
1137 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1138 // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1139 // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1140 // can be set differently by this operation. It comes down to whether
1141 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1142 // everything is fine. If not then the optimization is wrong. Thus general
1143 // comparisons are only valid if op2 != 0.
1144
1145 // So, finally, the only LLVM-native comparisons that don't mention C and V
1146 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1147 // the absence of information about op2.
1148 Opcode = AArch64ISD::ADDS;
1149 RHS = RHS.getOperand(1);
1150 } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) &&
1151 cast<ConstantSDNode>(RHS)->getZExtValue() == 0 &&
1152 !isUnsignedIntSetCC(CC)) {
1153 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1154 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1155 // of the signed comparisons.
1156 Opcode = AArch64ISD::ANDS;
1157 RHS = LHS.getOperand(1);
1158 LHS = LHS.getOperand(0);
1159 }
1160
1161 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS)
1162 .getValue(1);
1163}
1164
1165static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1166 SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
David Xuee978202014-08-28 04:59:53 +00001167 SDValue Cmp;
1168 AArch64CC::CondCode AArch64CC;
Tim Northover3b0846e2014-05-24 12:50:23 +00001169 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1170 EVT VT = RHS.getValueType();
1171 uint64_t C = RHSC->getZExtValue();
1172 if (!isLegalArithImmed(C)) {
1173 // Constant does not fit, try adjusting it by one?
1174 switch (CC) {
1175 default:
1176 break;
1177 case ISD::SETLT:
1178 case ISD::SETGE:
1179 if ((VT == MVT::i32 && C != 0x80000000 &&
1180 isLegalArithImmed((uint32_t)(C - 1))) ||
1181 (VT == MVT::i64 && C != 0x80000000ULL &&
1182 isLegalArithImmed(C - 1ULL))) {
1183 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1184 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001185 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001186 }
1187 break;
1188 case ISD::SETULT:
1189 case ISD::SETUGE:
1190 if ((VT == MVT::i32 && C != 0 &&
1191 isLegalArithImmed((uint32_t)(C - 1))) ||
1192 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1193 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1194 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001195 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001196 }
1197 break;
1198 case ISD::SETLE:
1199 case ISD::SETGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001200 if ((VT == MVT::i32 && C != INT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001201 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001202 (VT == MVT::i64 && C != INT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001203 isLegalArithImmed(C + 1ULL))) {
1204 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1205 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001206 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001207 }
1208 break;
1209 case ISD::SETULE:
1210 case ISD::SETUGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001211 if ((VT == MVT::i32 && C != UINT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001212 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001213 (VT == MVT::i64 && C != UINT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001214 isLegalArithImmed(C + 1ULL))) {
1215 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1216 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001217 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001218 }
1219 break;
1220 }
1221 }
1222 }
David Xuee978202014-08-28 04:59:53 +00001223 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1224 // For the i8 operand, the largest immediate is 255, so this can be easily
1225 // encoded in the compare instruction. For the i16 operand, however, the
1226 // largest immediate cannot be encoded in the compare.
1227 // Therefore, use a sign extending load and cmn to avoid materializing the -1
1228 // constant. For example,
1229 // movz w1, #65535
1230 // ldrh w0, [x0, #0]
1231 // cmp w0, w1
1232 // >
1233 // ldrsh w0, [x0, #0]
1234 // cmn w0, #1
1235 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1236 // if and only if (sext LHS) == (sext RHS). The checks are in place to ensure
1237 // both the LHS and RHS are truely zero extended and to make sure the
1238 // transformation is profitable.
1239 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
1240 if ((cast<ConstantSDNode>(RHS)->getZExtValue() >> 16 == 0) &&
1241 isa<LoadSDNode>(LHS)) {
1242 if (cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1243 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1244 LHS.getNode()->hasNUsesOfValue(1, 0)) {
1245 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1246 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1247 SDValue SExt =
1248 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1249 DAG.getValueType(MVT::i16));
1250 Cmp = emitComparison(SExt,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001251 DAG.getConstant(ValueofRHS, dl,
1252 RHS.getValueType()),
David Xuee978202014-08-28 04:59:53 +00001253 CC, dl, DAG);
1254 AArch64CC = changeIntCCToAArch64CC(CC);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001255 AArch64cc = DAG.getConstant(AArch64CC, dl, MVT::i32);
David Xuee978202014-08-28 04:59:53 +00001256 return Cmp;
1257 }
1258 }
1259 }
1260 }
1261 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1262 AArch64CC = changeIntCCToAArch64CC(CC);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001263 AArch64cc = DAG.getConstant(AArch64CC, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00001264 return Cmp;
1265}
1266
1267static std::pair<SDValue, SDValue>
1268getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1269 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1270 "Unsupported value type");
1271 SDValue Value, Overflow;
1272 SDLoc DL(Op);
1273 SDValue LHS = Op.getOperand(0);
1274 SDValue RHS = Op.getOperand(1);
1275 unsigned Opc = 0;
1276 switch (Op.getOpcode()) {
1277 default:
1278 llvm_unreachable("Unknown overflow instruction!");
1279 case ISD::SADDO:
1280 Opc = AArch64ISD::ADDS;
1281 CC = AArch64CC::VS;
1282 break;
1283 case ISD::UADDO:
1284 Opc = AArch64ISD::ADDS;
1285 CC = AArch64CC::HS;
1286 break;
1287 case ISD::SSUBO:
1288 Opc = AArch64ISD::SUBS;
1289 CC = AArch64CC::VS;
1290 break;
1291 case ISD::USUBO:
1292 Opc = AArch64ISD::SUBS;
1293 CC = AArch64CC::LO;
1294 break;
1295 // Multiply needs a little bit extra work.
1296 case ISD::SMULO:
1297 case ISD::UMULO: {
1298 CC = AArch64CC::NE;
David Blaikie186d2cb2015-03-24 16:24:01 +00001299 bool IsSigned = Op.getOpcode() == ISD::SMULO;
Tim Northover3b0846e2014-05-24 12:50:23 +00001300 if (Op.getValueType() == MVT::i32) {
1301 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1302 // For a 32 bit multiply with overflow check we want the instruction
1303 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1304 // need to generate the following pattern:
1305 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1306 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1307 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1308 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1309 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001310 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001311 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1312 // operation. We need to clear out the upper 32 bits, because we used a
1313 // widening multiply that wrote all 64 bits. In the end this should be a
1314 // noop.
1315 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1316 if (IsSigned) {
1317 // The signed overflow check requires more than just a simple check for
1318 // any bit set in the upper 32 bits of the result. These bits could be
1319 // just the sign bits of a negative number. To perform the overflow
1320 // check we have to arithmetic shift right the 32nd bit of the result by
1321 // 31 bits. Then we compare the result to the upper 32 bits.
1322 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001323 DAG.getConstant(32, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001324 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1325 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001326 DAG.getConstant(31, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001327 // It is important that LowerBits is last, otherwise the arithmetic
1328 // shift will not be folded into the compare (SUBS).
1329 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1330 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1331 .getValue(1);
1332 } else {
1333 // The overflow check for unsigned multiply is easy. We only need to
1334 // check if any of the upper 32 bits are set. This can be done with a
1335 // CMP (shifted register). For that we need to generate the following
1336 // pattern:
1337 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1338 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001339 DAG.getConstant(32, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001340 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1341 Overflow =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001342 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1343 DAG.getConstant(0, DL, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00001344 UpperBits).getValue(1);
1345 }
1346 break;
1347 }
1348 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1349 // For the 64 bit multiply
1350 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1351 if (IsSigned) {
1352 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1353 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001354 DAG.getConstant(63, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001355 // It is important that LowerBits is last, otherwise the arithmetic
1356 // shift will not be folded into the compare (SUBS).
1357 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1358 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1359 .getValue(1);
1360 } else {
1361 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1362 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1363 Overflow =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001364 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1365 DAG.getConstant(0, DL, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00001366 UpperBits).getValue(1);
1367 }
1368 break;
1369 }
1370 } // switch (...)
1371
1372 if (Opc) {
1373 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1374
1375 // Emit the AArch64 operation with overflow check.
1376 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1377 Overflow = Value.getValue(1);
1378 }
1379 return std::make_pair(Value, Overflow);
1380}
1381
1382SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1383 RTLIB::Libcall Call) const {
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00001384 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
Tim Northover3b0846e2014-05-24 12:50:23 +00001385 return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false,
1386 SDLoc(Op)).first;
1387}
1388
1389static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1390 SDValue Sel = Op.getOperand(0);
1391 SDValue Other = Op.getOperand(1);
1392
1393 // If neither operand is a SELECT_CC, give up.
1394 if (Sel.getOpcode() != ISD::SELECT_CC)
1395 std::swap(Sel, Other);
1396 if (Sel.getOpcode() != ISD::SELECT_CC)
1397 return Op;
1398
1399 // The folding we want to perform is:
1400 // (xor x, (select_cc a, b, cc, 0, -1) )
1401 // -->
1402 // (csel x, (xor x, -1), cc ...)
1403 //
1404 // The latter will get matched to a CSINV instruction.
1405
1406 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1407 SDValue LHS = Sel.getOperand(0);
1408 SDValue RHS = Sel.getOperand(1);
1409 SDValue TVal = Sel.getOperand(2);
1410 SDValue FVal = Sel.getOperand(3);
1411 SDLoc dl(Sel);
1412
1413 // FIXME: This could be generalized to non-integer comparisons.
1414 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1415 return Op;
1416
1417 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1418 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1419
1420 // The the values aren't constants, this isn't the pattern we're looking for.
1421 if (!CFVal || !CTVal)
1422 return Op;
1423
1424 // We can commute the SELECT_CC by inverting the condition. This
1425 // might be needed to make this fit into a CSINV pattern.
1426 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1427 std::swap(TVal, FVal);
1428 std::swap(CTVal, CFVal);
1429 CC = ISD::getSetCCInverse(CC, true);
1430 }
1431
1432 // If the constants line up, perform the transform!
1433 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1434 SDValue CCVal;
1435 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1436
1437 FVal = Other;
1438 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001439 DAG.getConstant(-1ULL, dl, Other.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00001440
1441 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1442 CCVal, Cmp);
1443 }
1444
1445 return Op;
1446}
1447
1448static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1449 EVT VT = Op.getValueType();
1450
1451 // Let legalize expand this if it isn't a legal type yet.
1452 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1453 return SDValue();
1454
1455 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1456
1457 unsigned Opc;
1458 bool ExtraOp = false;
1459 switch (Op.getOpcode()) {
1460 default:
Craig Topper2a30d782014-06-18 05:05:13 +00001461 llvm_unreachable("Invalid code");
Tim Northover3b0846e2014-05-24 12:50:23 +00001462 case ISD::ADDC:
1463 Opc = AArch64ISD::ADDS;
1464 break;
1465 case ISD::SUBC:
1466 Opc = AArch64ISD::SUBS;
1467 break;
1468 case ISD::ADDE:
1469 Opc = AArch64ISD::ADCS;
1470 ExtraOp = true;
1471 break;
1472 case ISD::SUBE:
1473 Opc = AArch64ISD::SBCS;
1474 ExtraOp = true;
1475 break;
1476 }
1477
1478 if (!ExtraOp)
1479 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1480 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1481 Op.getOperand(2));
1482}
1483
1484static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1485 // Let legalize expand this if it isn't a legal type yet.
1486 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1487 return SDValue();
1488
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001489 SDLoc dl(Op);
Tim Northover3b0846e2014-05-24 12:50:23 +00001490 AArch64CC::CondCode CC;
1491 // The actual operation that sets the overflow or carry flag.
1492 SDValue Value, Overflow;
1493 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1494
1495 // We use 0 and 1 as false and true values.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001496 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
1497 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00001498
1499 // We use an inverted condition, because the conditional select is inverted
1500 // too. This will allow it to be selected to a single instruction:
1501 // CSINC Wd, WZR, WZR, invert(cond).
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001502 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
1503 Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
Tim Northover3b0846e2014-05-24 12:50:23 +00001504 CCVal, Overflow);
1505
1506 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001507 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
Tim Northover3b0846e2014-05-24 12:50:23 +00001508}
1509
1510// Prefetch operands are:
1511// 1: Address to prefetch
1512// 2: bool isWrite
1513// 3: int locality (0 = no locality ... 3 = extreme locality)
1514// 4: bool isDataCache
1515static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1516 SDLoc DL(Op);
1517 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1518 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
Yi Konge56de692014-08-05 12:46:47 +00001519 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00001520
1521 bool IsStream = !Locality;
1522 // When the locality number is set
1523 if (Locality) {
1524 // The front-end should have filtered out the out-of-range values
1525 assert(Locality <= 3 && "Prefetch locality out-of-range");
1526 // The locality degree is the opposite of the cache speed.
1527 // Put the number the other way around.
1528 // The encoding starts at 0 for level 1
1529 Locality = 3 - Locality;
1530 }
1531
1532 // built the mask value encoding the expected behavior.
1533 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
Yi Konge56de692014-08-05 12:46:47 +00001534 (!IsData << 3) | // IsDataCache bit
Tim Northover3b0846e2014-05-24 12:50:23 +00001535 (Locality << 1) | // Cache level bits
1536 (unsigned)IsStream; // Stream bit
1537 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001538 DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
Tim Northover3b0846e2014-05-24 12:50:23 +00001539}
1540
1541SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1542 SelectionDAG &DAG) const {
1543 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1544
1545 RTLIB::Libcall LC;
1546 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1547
1548 return LowerF128Call(Op, DAG, LC);
1549}
1550
1551SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1552 SelectionDAG &DAG) const {
1553 if (Op.getOperand(0).getValueType() != MVT::f128) {
1554 // It's legal except when f128 is involved
1555 return Op;
1556 }
1557
1558 RTLIB::Libcall LC;
1559 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1560
1561 // FP_ROUND node has a second operand indicating whether it is known to be
1562 // precise. That doesn't take part in the LibCall so we can't directly use
1563 // LowerF128Call.
1564 SDValue SrcVal = Op.getOperand(0);
1565 return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
1566 /*isSigned*/ false, SDLoc(Op)).first;
1567}
1568
1569static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1570 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1571 // Any additional optimization in this function should be recorded
1572 // in the cost tables.
1573 EVT InVT = Op.getOperand(0).getValueType();
1574 EVT VT = Op.getValueType();
1575
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001576 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001577 SDLoc dl(Op);
1578 SDValue Cv =
1579 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1580 Op.getOperand(0));
1581 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001582 }
1583
1584 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001585 SDLoc dl(Op);
Oliver Stannard89d15422014-08-27 16:16:04 +00001586 MVT ExtVT =
1587 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
1588 VT.getVectorNumElements());
1589 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00001590 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1591 }
1592
1593 // Type changing conversions are illegal.
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001594 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001595}
1596
1597SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1598 SelectionDAG &DAG) const {
1599 if (Op.getOperand(0).getValueType().isVector())
1600 return LowerVectorFP_TO_INT(Op, DAG);
1601
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +00001602 // f16 conversions are promoted to f32.
1603 if (Op.getOperand(0).getValueType() == MVT::f16) {
1604 SDLoc dl(Op);
1605 return DAG.getNode(
1606 Op.getOpcode(), dl, Op.getValueType(),
1607 DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0)));
1608 }
1609
Tim Northover3b0846e2014-05-24 12:50:23 +00001610 if (Op.getOperand(0).getValueType() != MVT::f128) {
1611 // It's legal except when f128 is involved
1612 return Op;
1613 }
1614
1615 RTLIB::Libcall LC;
1616 if (Op.getOpcode() == ISD::FP_TO_SINT)
1617 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1618 else
1619 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1620
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00001621 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
Tim Northover3b0846e2014-05-24 12:50:23 +00001622 return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false,
1623 SDLoc(Op)).first;
1624}
1625
1626static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1627 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1628 // Any additional optimization in this function should be recorded
1629 // in the cost tables.
1630 EVT VT = Op.getValueType();
1631 SDLoc dl(Op);
1632 SDValue In = Op.getOperand(0);
1633 EVT InVT = In.getValueType();
1634
Tim Northoveref0d7602014-06-15 09:27:06 +00001635 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1636 MVT CastVT =
1637 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
1638 InVT.getVectorNumElements());
1639 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001640 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
Tim Northover3b0846e2014-05-24 12:50:23 +00001641 }
1642
Tim Northoveref0d7602014-06-15 09:27:06 +00001643 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1644 unsigned CastOpc =
1645 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1646 EVT CastVT = VT.changeVectorElementTypeToInteger();
1647 In = DAG.getNode(CastOpc, dl, CastVT, In);
1648 return DAG.getNode(Op.getOpcode(), dl, VT, In);
Tim Northover3b0846e2014-05-24 12:50:23 +00001649 }
1650
Tim Northoveref0d7602014-06-15 09:27:06 +00001651 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001652}
1653
1654SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
1655 SelectionDAG &DAG) const {
1656 if (Op.getValueType().isVector())
1657 return LowerVectorINT_TO_FP(Op, DAG);
1658
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +00001659 // f16 conversions are promoted to f32.
1660 if (Op.getValueType() == MVT::f16) {
1661 SDLoc dl(Op);
1662 return DAG.getNode(
1663 ISD::FP_ROUND, dl, MVT::f16,
1664 DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001665 DAG.getIntPtrConstant(0, dl));
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +00001666 }
1667
Tim Northover3b0846e2014-05-24 12:50:23 +00001668 // i128 conversions are libcalls.
1669 if (Op.getOperand(0).getValueType() == MVT::i128)
1670 return SDValue();
1671
1672 // Other conversions are legal, unless it's to the completely software-based
1673 // fp128.
1674 if (Op.getValueType() != MVT::f128)
1675 return Op;
1676
1677 RTLIB::Libcall LC;
1678 if (Op.getOpcode() == ISD::SINT_TO_FP)
1679 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1680 else
1681 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1682
1683 return LowerF128Call(Op, DAG, LC);
1684}
1685
1686SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
1687 SelectionDAG &DAG) const {
1688 // For iOS, we want to call an alternative entry point: __sincos_stret,
1689 // which returns the values in two S / D registers.
1690 SDLoc dl(Op);
1691 SDValue Arg = Op.getOperand(0);
1692 EVT ArgVT = Arg.getValueType();
1693 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1694
1695 ArgListTy Args;
1696 ArgListEntry Entry;
1697
1698 Entry.Node = Arg;
1699 Entry.Ty = ArgTy;
1700 Entry.isSExt = false;
1701 Entry.isZExt = false;
1702 Args.push_back(Entry);
1703
1704 const char *LibcallName =
1705 (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
1706 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
1707
Reid Kleckner343c3952014-11-20 23:51:47 +00001708 StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
Tim Northover3b0846e2014-05-24 12:50:23 +00001709 TargetLowering::CallLoweringInfo CLI(DAG);
1710 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
Juergen Ributzka3bd03c72014-07-01 22:01:54 +00001711 .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00001712
1713 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1714 return CallResult.first;
1715}
1716
Tim Northoverf8bfe212014-07-18 13:07:05 +00001717static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
1718 if (Op.getValueType() != MVT::f16)
1719 return SDValue();
1720
1721 assert(Op.getOperand(0).getValueType() == MVT::i16);
1722 SDLoc DL(Op);
1723
1724 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
1725 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
1726 return SDValue(
1727 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001728 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
Tim Northoverf8bfe212014-07-18 13:07:05 +00001729 0);
1730}
1731
Chad Rosierd9d0f862014-10-08 02:31:24 +00001732static EVT getExtensionTo64Bits(const EVT &OrigVT) {
1733 if (OrigVT.getSizeInBits() >= 64)
1734 return OrigVT;
1735
1736 assert(OrigVT.isSimple() && "Expecting a simple value type");
1737
1738 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
1739 switch (OrigSimpleTy) {
1740 default: llvm_unreachable("Unexpected Vector Type");
1741 case MVT::v2i8:
1742 case MVT::v2i16:
1743 return MVT::v2i32;
1744 case MVT::v4i8:
1745 return MVT::v4i16;
1746 }
1747}
1748
1749static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
1750 const EVT &OrigTy,
1751 const EVT &ExtTy,
1752 unsigned ExtOpcode) {
1753 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
1754 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
1755 // 64-bits we need to insert a new extension so that it will be 64-bits.
1756 assert(ExtTy.is128BitVector() && "Unexpected extension size");
1757 if (OrigTy.getSizeInBits() >= 64)
1758 return N;
1759
1760 // Must extend size to at least 64 bits to be used as an operand for VMULL.
1761 EVT NewVT = getExtensionTo64Bits(OrigTy);
1762
1763 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
1764}
1765
1766static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
1767 bool isSigned) {
1768 EVT VT = N->getValueType(0);
1769
1770 if (N->getOpcode() != ISD::BUILD_VECTOR)
1771 return false;
1772
1773 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1774 SDNode *Elt = N->getOperand(i).getNode();
1775 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
1776 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1777 unsigned HalfSize = EltSize / 2;
1778 if (isSigned) {
1779 if (!isIntN(HalfSize, C->getSExtValue()))
1780 return false;
1781 } else {
1782 if (!isUIntN(HalfSize, C->getZExtValue()))
1783 return false;
1784 }
1785 continue;
1786 }
1787 return false;
1788 }
1789
1790 return true;
1791}
1792
1793static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
1794 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
1795 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
1796 N->getOperand(0)->getValueType(0),
1797 N->getValueType(0),
1798 N->getOpcode());
1799
1800 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
1801 EVT VT = N->getValueType(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001802 SDLoc dl(N);
Chad Rosierd9d0f862014-10-08 02:31:24 +00001803 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
1804 unsigned NumElts = VT.getVectorNumElements();
1805 MVT TruncVT = MVT::getIntegerVT(EltSize);
1806 SmallVector<SDValue, 8> Ops;
1807 for (unsigned i = 0; i != NumElts; ++i) {
1808 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
1809 const APInt &CInt = C->getAPIntValue();
1810 // Element types smaller than 32 bits are not legal, so use i32 elements.
1811 // The values are implicitly truncated so sext vs. zext doesn't matter.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001812 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
Chad Rosierd9d0f862014-10-08 02:31:24 +00001813 }
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001814 return DAG.getNode(ISD::BUILD_VECTOR, dl,
Chad Rosierd9d0f862014-10-08 02:31:24 +00001815 MVT::getVectorVT(TruncVT, NumElts), Ops);
1816}
1817
1818static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
1819 if (N->getOpcode() == ISD::SIGN_EXTEND)
1820 return true;
1821 if (isExtendedBUILD_VECTOR(N, DAG, true))
1822 return true;
1823 return false;
1824}
1825
1826static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
1827 if (N->getOpcode() == ISD::ZERO_EXTEND)
1828 return true;
1829 if (isExtendedBUILD_VECTOR(N, DAG, false))
1830 return true;
1831 return false;
1832}
1833
1834static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
1835 unsigned Opcode = N->getOpcode();
1836 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
1837 SDNode *N0 = N->getOperand(0).getNode();
1838 SDNode *N1 = N->getOperand(1).getNode();
1839 return N0->hasOneUse() && N1->hasOneUse() &&
1840 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
1841 }
1842 return false;
1843}
1844
1845static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
1846 unsigned Opcode = N->getOpcode();
1847 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
1848 SDNode *N0 = N->getOperand(0).getNode();
1849 SDNode *N1 = N->getOperand(1).getNode();
1850 return N0->hasOneUse() && N1->hasOneUse() &&
1851 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
1852 }
1853 return false;
1854}
1855
1856static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
1857 // Multiplications are only custom-lowered for 128-bit vectors so that
1858 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
1859 EVT VT = Op.getValueType();
1860 assert(VT.is128BitVector() && VT.isInteger() &&
1861 "unexpected type for custom-lowering ISD::MUL");
1862 SDNode *N0 = Op.getOperand(0).getNode();
1863 SDNode *N1 = Op.getOperand(1).getNode();
1864 unsigned NewOpc = 0;
1865 bool isMLA = false;
1866 bool isN0SExt = isSignExtended(N0, DAG);
1867 bool isN1SExt = isSignExtended(N1, DAG);
1868 if (isN0SExt && isN1SExt)
1869 NewOpc = AArch64ISD::SMULL;
1870 else {
1871 bool isN0ZExt = isZeroExtended(N0, DAG);
1872 bool isN1ZExt = isZeroExtended(N1, DAG);
1873 if (isN0ZExt && isN1ZExt)
1874 NewOpc = AArch64ISD::UMULL;
1875 else if (isN1SExt || isN1ZExt) {
1876 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
1877 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
1878 if (isN1SExt && isAddSubSExt(N0, DAG)) {
1879 NewOpc = AArch64ISD::SMULL;
1880 isMLA = true;
1881 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
1882 NewOpc = AArch64ISD::UMULL;
1883 isMLA = true;
1884 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
1885 std::swap(N0, N1);
1886 NewOpc = AArch64ISD::UMULL;
1887 isMLA = true;
1888 }
1889 }
1890
1891 if (!NewOpc) {
1892 if (VT == MVT::v2i64)
1893 // Fall through to expand this. It is not legal.
1894 return SDValue();
1895 else
1896 // Other vector multiplications are legal.
1897 return Op;
1898 }
1899 }
1900
1901 // Legalize to a S/UMULL instruction
1902 SDLoc DL(Op);
1903 SDValue Op0;
1904 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
1905 if (!isMLA) {
1906 Op0 = skipExtensionForVectorMULL(N0, DAG);
1907 assert(Op0.getValueType().is64BitVector() &&
1908 Op1.getValueType().is64BitVector() &&
1909 "unexpected types for extended operands to VMULL");
1910 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
1911 }
1912 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
1913 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
1914 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
1915 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
1916 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
1917 EVT Op1VT = Op1.getValueType();
1918 return DAG.getNode(N0->getOpcode(), DL, VT,
1919 DAG.getNode(NewOpc, DL, VT,
1920 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
1921 DAG.getNode(NewOpc, DL, VT,
1922 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
1923}
Tim Northoverf8bfe212014-07-18 13:07:05 +00001924
Tim Northover3b0846e2014-05-24 12:50:23 +00001925SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
1926 SelectionDAG &DAG) const {
1927 switch (Op.getOpcode()) {
1928 default:
1929 llvm_unreachable("unimplemented operand");
1930 return SDValue();
Tim Northoverf8bfe212014-07-18 13:07:05 +00001931 case ISD::BITCAST:
1932 return LowerBITCAST(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00001933 case ISD::GlobalAddress:
1934 return LowerGlobalAddress(Op, DAG);
1935 case ISD::GlobalTLSAddress:
1936 return LowerGlobalTLSAddress(Op, DAG);
1937 case ISD::SETCC:
1938 return LowerSETCC(Op, DAG);
1939 case ISD::BR_CC:
1940 return LowerBR_CC(Op, DAG);
1941 case ISD::SELECT:
1942 return LowerSELECT(Op, DAG);
1943 case ISD::SELECT_CC:
1944 return LowerSELECT_CC(Op, DAG);
1945 case ISD::JumpTable:
1946 return LowerJumpTable(Op, DAG);
1947 case ISD::ConstantPool:
1948 return LowerConstantPool(Op, DAG);
1949 case ISD::BlockAddress:
1950 return LowerBlockAddress(Op, DAG);
1951 case ISD::VASTART:
1952 return LowerVASTART(Op, DAG);
1953 case ISD::VACOPY:
1954 return LowerVACOPY(Op, DAG);
1955 case ISD::VAARG:
1956 return LowerVAARG(Op, DAG);
1957 case ISD::ADDC:
1958 case ISD::ADDE:
1959 case ISD::SUBC:
1960 case ISD::SUBE:
1961 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
1962 case ISD::SADDO:
1963 case ISD::UADDO:
1964 case ISD::SSUBO:
1965 case ISD::USUBO:
1966 case ISD::SMULO:
1967 case ISD::UMULO:
1968 return LowerXALUO(Op, DAG);
1969 case ISD::FADD:
1970 return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
1971 case ISD::FSUB:
1972 return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
1973 case ISD::FMUL:
1974 return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
1975 case ISD::FDIV:
1976 return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
1977 case ISD::FP_ROUND:
1978 return LowerFP_ROUND(Op, DAG);
1979 case ISD::FP_EXTEND:
1980 return LowerFP_EXTEND(Op, DAG);
1981 case ISD::FRAMEADDR:
1982 return LowerFRAMEADDR(Op, DAG);
1983 case ISD::RETURNADDR:
1984 return LowerRETURNADDR(Op, DAG);
1985 case ISD::INSERT_VECTOR_ELT:
1986 return LowerINSERT_VECTOR_ELT(Op, DAG);
1987 case ISD::EXTRACT_VECTOR_ELT:
1988 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
1989 case ISD::BUILD_VECTOR:
1990 return LowerBUILD_VECTOR(Op, DAG);
1991 case ISD::VECTOR_SHUFFLE:
1992 return LowerVECTOR_SHUFFLE(Op, DAG);
1993 case ISD::EXTRACT_SUBVECTOR:
1994 return LowerEXTRACT_SUBVECTOR(Op, DAG);
1995 case ISD::SRA:
1996 case ISD::SRL:
1997 case ISD::SHL:
1998 return LowerVectorSRA_SRL_SHL(Op, DAG);
1999 case ISD::SHL_PARTS:
2000 return LowerShiftLeftParts(Op, DAG);
2001 case ISD::SRL_PARTS:
2002 case ISD::SRA_PARTS:
2003 return LowerShiftRightParts(Op, DAG);
2004 case ISD::CTPOP:
2005 return LowerCTPOP(Op, DAG);
2006 case ISD::FCOPYSIGN:
2007 return LowerFCOPYSIGN(Op, DAG);
2008 case ISD::AND:
2009 return LowerVectorAND(Op, DAG);
2010 case ISD::OR:
2011 return LowerVectorOR(Op, DAG);
2012 case ISD::XOR:
2013 return LowerXOR(Op, DAG);
2014 case ISD::PREFETCH:
2015 return LowerPREFETCH(Op, DAG);
2016 case ISD::SINT_TO_FP:
2017 case ISD::UINT_TO_FP:
2018 return LowerINT_TO_FP(Op, DAG);
2019 case ISD::FP_TO_SINT:
2020 case ISD::FP_TO_UINT:
2021 return LowerFP_TO_INT(Op, DAG);
2022 case ISD::FSINCOS:
2023 return LowerFSINCOS(Op, DAG);
Chad Rosierd9d0f862014-10-08 02:31:24 +00002024 case ISD::MUL:
2025 return LowerMUL(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00002026 }
2027}
2028
2029/// getFunctionAlignment - Return the Log2 alignment of this function.
2030unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
2031 return 2;
2032}
2033
2034//===----------------------------------------------------------------------===//
2035// Calling Convention Implementation
2036//===----------------------------------------------------------------------===//
2037
2038#include "AArch64GenCallingConv.inc"
2039
Robin Morisset039781e2014-08-29 21:53:01 +00002040/// Selects the correct CCAssignFn for a given CallingConvention value.
Tim Northover3b0846e2014-05-24 12:50:23 +00002041CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2042 bool IsVarArg) const {
2043 switch (CC) {
2044 default:
2045 llvm_unreachable("Unsupported calling convention.");
2046 case CallingConv::WebKit_JS:
2047 return CC_AArch64_WebKit_JS;
Greg Fitzgeraldfa78d082015-01-19 17:40:05 +00002048 case CallingConv::GHC:
2049 return CC_AArch64_GHC;
Tim Northover3b0846e2014-05-24 12:50:23 +00002050 case CallingConv::C:
2051 case CallingConv::Fast:
2052 if (!Subtarget->isTargetDarwin())
2053 return CC_AArch64_AAPCS;
2054 return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
2055 }
2056}
2057
2058SDValue AArch64TargetLowering::LowerFormalArguments(
2059 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2060 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2061 SmallVectorImpl<SDValue> &InVals) const {
2062 MachineFunction &MF = DAG.getMachineFunction();
2063 MachineFrameInfo *MFI = MF.getFrameInfo();
2064
2065 // Assign locations to all of the incoming arguments.
2066 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002067 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2068 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002069
2070 // At this point, Ins[].VT may already be promoted to i32. To correctly
2071 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2072 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2073 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
2074 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
2075 // LocVT.
2076 unsigned NumArgs = Ins.size();
2077 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2078 unsigned CurArgIdx = 0;
2079 for (unsigned i = 0; i != NumArgs; ++i) {
2080 MVT ValVT = Ins[i].VT;
Andrew Trick05938a52015-02-16 18:10:47 +00002081 if (Ins[i].isOrigArg()) {
2082 std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
2083 CurArgIdx = Ins[i].getOrigArgIndex();
Tim Northover3b0846e2014-05-24 12:50:23 +00002084
Andrew Trick05938a52015-02-16 18:10:47 +00002085 // Get type of the original argument.
2086 EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true);
2087 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
2088 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2089 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2090 ValVT = MVT::i8;
2091 else if (ActualMVT == MVT::i16)
2092 ValVT = MVT::i16;
2093 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002094 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2095 bool Res =
Tim Northover47e003c2014-05-26 17:21:53 +00002096 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002097 assert(!Res && "Call operand has unhandled type");
2098 (void)Res;
2099 }
2100 assert(ArgLocs.size() == Ins.size());
2101 SmallVector<SDValue, 16> ArgValues;
2102 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2103 CCValAssign &VA = ArgLocs[i];
2104
2105 if (Ins[i].Flags.isByVal()) {
2106 // Byval is used for HFAs in the PCS, but the system should work in a
2107 // non-compliant manner for larger structs.
2108 EVT PtrTy = getPointerTy();
2109 int Size = Ins[i].Flags.getByValSize();
2110 unsigned NumRegs = (Size + 7) / 8;
2111
2112 // FIXME: This works on big-endian for composite byvals, which are the common
2113 // case. It should also work for fundamental types too.
2114 unsigned FrameIdx =
2115 MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
2116 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
2117 InVals.push_back(FrameIdxN);
2118
2119 continue;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002120 }
2121
2122 if (VA.isRegLoc()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00002123 // Arguments stored in registers.
2124 EVT RegVT = VA.getLocVT();
2125
2126 SDValue ArgValue;
2127 const TargetRegisterClass *RC;
2128
2129 if (RegVT == MVT::i32)
2130 RC = &AArch64::GPR32RegClass;
2131 else if (RegVT == MVT::i64)
2132 RC = &AArch64::GPR64RegClass;
Oliver Stannard6eda6ff2014-07-11 13:33:46 +00002133 else if (RegVT == MVT::f16)
2134 RC = &AArch64::FPR16RegClass;
Tim Northover3b0846e2014-05-24 12:50:23 +00002135 else if (RegVT == MVT::f32)
2136 RC = &AArch64::FPR32RegClass;
2137 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
2138 RC = &AArch64::FPR64RegClass;
2139 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
2140 RC = &AArch64::FPR128RegClass;
2141 else
2142 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2143
2144 // Transform the arguments in physical registers into virtual ones.
2145 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2146 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2147
2148 // If this is an 8, 16 or 32-bit value, it is really passed promoted
2149 // to 64 bits. Insert an assert[sz]ext to capture this, then
2150 // truncate to the right size.
2151 switch (VA.getLocInfo()) {
2152 default:
2153 llvm_unreachable("Unknown loc info!");
2154 case CCValAssign::Full:
2155 break;
2156 case CCValAssign::BCvt:
2157 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
2158 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002159 case CCValAssign::AExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002160 case CCValAssign::SExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002161 case CCValAssign::ZExt:
Tim Northover47e003c2014-05-26 17:21:53 +00002162 // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
2163 // nodes after our lowering.
2164 assert(RegVT == Ins[i].VT && "incorrect register location selected");
Tim Northover3b0846e2014-05-24 12:50:23 +00002165 break;
2166 }
2167
2168 InVals.push_back(ArgValue);
2169
2170 } else { // VA.isRegLoc()
2171 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
2172 unsigned ArgOffset = VA.getLocMemOffset();
Amara Emerson82da7d02014-08-15 14:29:57 +00002173 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002174
2175 uint32_t BEAlign = 0;
Tim Northover293d4142014-12-03 17:49:26 +00002176 if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
2177 !Ins[i].Flags.isInConsecutiveRegs())
Tim Northover3b0846e2014-05-24 12:50:23 +00002178 BEAlign = 8 - ArgSize;
2179
2180 int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
2181
2182 // Create load nodes to retrieve arguments from the stack.
2183 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2184 SDValue ArgValue;
2185
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002186 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
Tim Northover47e003c2014-05-26 17:21:53 +00002187 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002188 MVT MemVT = VA.getValVT();
2189
Tim Northover47e003c2014-05-26 17:21:53 +00002190 switch (VA.getLocInfo()) {
2191 default:
2192 break;
Tim Northover6890add2014-06-03 13:54:53 +00002193 case CCValAssign::BCvt:
2194 MemVT = VA.getLocVT();
2195 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002196 case CCValAssign::SExt:
2197 ExtType = ISD::SEXTLOAD;
2198 break;
2199 case CCValAssign::ZExt:
2200 ExtType = ISD::ZEXTLOAD;
2201 break;
2202 case CCValAssign::AExt:
2203 ExtType = ISD::EXTLOAD;
2204 break;
Tim Northover3b0846e2014-05-24 12:50:23 +00002205 }
2206
Tim Northover6890add2014-06-03 13:54:53 +00002207 ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN,
Tim Northover47e003c2014-05-26 17:21:53 +00002208 MachinePointerInfo::getFixedStack(FI),
Benjamin Kramer2e52f022014-10-04 22:44:29 +00002209 MemVT, false, false, false, 0);
Tim Northover47e003c2014-05-26 17:21:53 +00002210
Tim Northover3b0846e2014-05-24 12:50:23 +00002211 InVals.push_back(ArgValue);
2212 }
2213 }
2214
2215 // varargs
2216 if (isVarArg) {
2217 if (!Subtarget->isTargetDarwin()) {
2218 // The AAPCS variadic function ABI is identical to the non-variadic
2219 // one. As a result there may be more arguments in registers and we should
2220 // save them for future reference.
2221 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
2222 }
2223
2224 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2225 // This will point to the next argument passed via stack.
2226 unsigned StackOffset = CCInfo.getNextStackOffset();
2227 // We currently pass all varargs at 8-byte alignment.
2228 StackOffset = ((StackOffset + 7) & ~7);
2229 AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
2230 }
2231
2232 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2233 unsigned StackArgSize = CCInfo.getNextStackOffset();
2234 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2235 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
2236 // This is a non-standard ABI so by fiat I say we're allowed to make full
2237 // use of the stack area to be popped, which must be aligned to 16 bytes in
2238 // any case:
2239 StackArgSize = RoundUpToAlignment(StackArgSize, 16);
2240
2241 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
2242 // a multiple of 16.
2243 FuncInfo->setArgumentStackToRestore(StackArgSize);
2244
2245 // This realignment carries over to the available bytes below. Our own
2246 // callers will guarantee the space is free by giving an aligned value to
2247 // CALLSEQ_START.
2248 }
2249 // Even if we're not expected to free up the space, it's useful to know how
2250 // much is there while considering tail calls (because we can reuse it).
2251 FuncInfo->setBytesInStackArgArea(StackArgSize);
2252
2253 return Chain;
2254}
2255
2256void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
2257 SelectionDAG &DAG, SDLoc DL,
2258 SDValue &Chain) const {
2259 MachineFunction &MF = DAG.getMachineFunction();
2260 MachineFrameInfo *MFI = MF.getFrameInfo();
2261 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2262
2263 SmallVector<SDValue, 8> MemOps;
2264
2265 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
2266 AArch64::X3, AArch64::X4, AArch64::X5,
2267 AArch64::X6, AArch64::X7 };
2268 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
Tim Northover3b6b7ca2015-02-21 02:11:17 +00002269 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
Tim Northover3b0846e2014-05-24 12:50:23 +00002270
2271 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
2272 int GPRIdx = 0;
2273 if (GPRSaveSize != 0) {
2274 GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
2275
2276 SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
2277
2278 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
2279 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
2280 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
2281 SDValue Store =
2282 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2283 MachinePointerInfo::getStack(i * 8), false, false, 0);
2284 MemOps.push_back(Store);
2285 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002286 DAG.getConstant(8, DL, getPointerTy()));
Tim Northover3b0846e2014-05-24 12:50:23 +00002287 }
2288 }
2289 FuncInfo->setVarArgsGPRIndex(GPRIdx);
2290 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
2291
2292 if (Subtarget->hasFPARMv8()) {
2293 static const MCPhysReg FPRArgRegs[] = {
2294 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
2295 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
2296 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
Tim Northover3b6b7ca2015-02-21 02:11:17 +00002297 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
Tim Northover3b0846e2014-05-24 12:50:23 +00002298
2299 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
2300 int FPRIdx = 0;
2301 if (FPRSaveSize != 0) {
2302 FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
2303
2304 SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
2305
2306 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
2307 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
2308 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
2309
2310 SDValue Store =
2311 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2312 MachinePointerInfo::getStack(i * 16), false, false, 0);
2313 MemOps.push_back(Store);
2314 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002315 DAG.getConstant(16, DL, getPointerTy()));
Tim Northover3b0846e2014-05-24 12:50:23 +00002316 }
2317 }
2318 FuncInfo->setVarArgsFPRIndex(FPRIdx);
2319 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
2320 }
2321
2322 if (!MemOps.empty()) {
2323 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2324 }
2325}
2326
2327/// LowerCallResult - Lower the result values of a call into the
2328/// appropriate copies out of appropriate physical registers.
2329SDValue AArch64TargetLowering::LowerCallResult(
2330 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2331 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2332 SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2333 SDValue ThisVal) const {
2334 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2335 ? RetCC_AArch64_WebKit_JS
2336 : RetCC_AArch64_AAPCS;
2337 // Assign locations to each value returned by this call.
2338 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002339 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2340 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002341 CCInfo.AnalyzeCallResult(Ins, RetCC);
2342
2343 // Copy all of the result registers out of their specified physreg.
2344 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2345 CCValAssign VA = RVLocs[i];
2346
2347 // Pass 'this' value directly from the argument to return value, to avoid
2348 // reg unit interference
2349 if (i == 0 && isThisReturn) {
2350 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
2351 "unexpected return calling convention register assignment");
2352 InVals.push_back(ThisVal);
2353 continue;
2354 }
2355
2356 SDValue Val =
2357 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2358 Chain = Val.getValue(1);
2359 InFlag = Val.getValue(2);
2360
2361 switch (VA.getLocInfo()) {
2362 default:
2363 llvm_unreachable("Unknown loc info!");
2364 case CCValAssign::Full:
2365 break;
2366 case CCValAssign::BCvt:
2367 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2368 break;
2369 }
2370
2371 InVals.push_back(Val);
2372 }
2373
2374 return Chain;
2375}
2376
2377bool AArch64TargetLowering::isEligibleForTailCallOptimization(
2378 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2379 bool isCalleeStructRet, bool isCallerStructRet,
2380 const SmallVectorImpl<ISD::OutputArg> &Outs,
2381 const SmallVectorImpl<SDValue> &OutVals,
2382 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2383 // For CallingConv::C this function knows whether the ABI needs
2384 // changing. That's not true for other conventions so they will have to opt in
2385 // manually.
2386 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
2387 return false;
2388
2389 const MachineFunction &MF = DAG.getMachineFunction();
2390 const Function *CallerF = MF.getFunction();
2391 CallingConv::ID CallerCC = CallerF->getCallingConv();
2392 bool CCMatch = CallerCC == CalleeCC;
2393
2394 // Byval parameters hand the function a pointer directly into the stack area
2395 // we want to reuse during a tail call. Working around this *is* possible (see
2396 // X86) but less efficient and uglier in LowerCall.
2397 for (Function::const_arg_iterator i = CallerF->arg_begin(),
2398 e = CallerF->arg_end();
2399 i != e; ++i)
2400 if (i->hasByValAttr())
2401 return false;
2402
2403 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2404 if (IsTailCallConvention(CalleeCC) && CCMatch)
2405 return true;
2406 return false;
2407 }
2408
Oliver Stannard12993dd2014-08-18 12:42:15 +00002409 // Externally-defined functions with weak linkage should not be
2410 // tail-called on AArch64 when the OS does not support dynamic
2411 // pre-emption of symbols, as the AAELF spec requires normal calls
2412 // to undefined weak functions to be replaced with a NOP or jump to the
2413 // next instruction. The behaviour of branch instructions in this
2414 // situation (as used for tail calls) is implementation-defined, so we
2415 // cannot rely on the linker replacing the tail call with a return.
2416 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2417 const GlobalValue *GV = G->getGlobal();
Saleem Abdulrasool67f72992015-01-03 21:35:00 +00002418 const Triple TT(getTargetMachine().getTargetTriple());
2419 if (GV->hasExternalWeakLinkage() &&
2420 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
Oliver Stannard12993dd2014-08-18 12:42:15 +00002421 return false;
2422 }
2423
Tim Northover3b0846e2014-05-24 12:50:23 +00002424 // Now we search for cases where we can use a tail call without changing the
2425 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
2426 // concept.
2427
2428 // I want anyone implementing a new calling convention to think long and hard
2429 // about this assert.
2430 assert((!isVarArg || CalleeCC == CallingConv::C) &&
2431 "Unexpected variadic calling convention");
2432
2433 if (isVarArg && !Outs.empty()) {
2434 // At least two cases here: if caller is fastcc then we can't have any
2435 // memory arguments (we'd be expected to clean up the stack afterwards). If
2436 // caller is C then we could potentially use its argument area.
2437
2438 // FIXME: for now we take the most conservative of these in both cases:
2439 // disallow all variadic memory operands.
2440 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002441 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2442 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002443
2444 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
2445 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2446 if (!ArgLocs[i].isRegLoc())
2447 return false;
2448 }
2449
2450 // If the calling conventions do not match, then we'd better make sure the
2451 // results are returned in the same way as what the caller expects.
2452 if (!CCMatch) {
2453 SmallVector<CCValAssign, 16> RVLocs1;
Eric Christopherb5217502014-08-06 18:45:26 +00002454 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
2455 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002456 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
2457
2458 SmallVector<CCValAssign, 16> RVLocs2;
Eric Christopherb5217502014-08-06 18:45:26 +00002459 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
2460 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002461 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
2462
2463 if (RVLocs1.size() != RVLocs2.size())
2464 return false;
2465 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2466 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2467 return false;
2468 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2469 return false;
2470 if (RVLocs1[i].isRegLoc()) {
2471 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2472 return false;
2473 } else {
2474 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2475 return false;
2476 }
2477 }
2478 }
2479
2480 // Nothing more to check if the callee is taking no arguments
2481 if (Outs.empty())
2482 return true;
2483
2484 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002485 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2486 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002487
2488 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2489
2490 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2491
2492 // If the stack arguments for this call would fit into our own save area then
2493 // the call can be made tail.
2494 return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
2495}
2496
2497SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2498 SelectionDAG &DAG,
2499 MachineFrameInfo *MFI,
2500 int ClobberedFI) const {
2501 SmallVector<SDValue, 8> ArgChains;
2502 int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2503 int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2504
2505 // Include the original chain at the beginning of the list. When this is
2506 // used by target LowerCall hooks, this helps legalize find the
2507 // CALLSEQ_BEGIN node.
2508 ArgChains.push_back(Chain);
2509
2510 // Add a chain value for each stack argument corresponding
2511 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2512 UE = DAG.getEntryNode().getNode()->use_end();
2513 U != UE; ++U)
2514 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2515 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2516 if (FI->getIndex() < 0) {
2517 int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2518 int64_t InLastByte = InFirstByte;
2519 InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2520
2521 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2522 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2523 ArgChains.push_back(SDValue(L, 1));
2524 }
2525
2526 // Build a tokenfactor for all the chains.
2527 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2528}
2529
2530bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2531 bool TailCallOpt) const {
2532 return CallCC == CallingConv::Fast && TailCallOpt;
2533}
2534
2535bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2536 return CallCC == CallingConv::Fast;
2537}
2538
2539/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2540/// and add input and output parameter nodes.
2541SDValue
2542AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2543 SmallVectorImpl<SDValue> &InVals) const {
2544 SelectionDAG &DAG = CLI.DAG;
2545 SDLoc &DL = CLI.DL;
2546 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2547 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2548 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2549 SDValue Chain = CLI.Chain;
2550 SDValue Callee = CLI.Callee;
2551 bool &IsTailCall = CLI.IsTailCall;
2552 CallingConv::ID CallConv = CLI.CallConv;
2553 bool IsVarArg = CLI.IsVarArg;
2554
2555 MachineFunction &MF = DAG.getMachineFunction();
2556 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2557 bool IsThisReturn = false;
2558
2559 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2560 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2561 bool IsSibCall = false;
2562
2563 if (IsTailCall) {
2564 // Check if it's really possible to do a tail call.
2565 IsTailCall = isEligibleForTailCallOptimization(
2566 Callee, CallConv, IsVarArg, IsStructRet,
2567 MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
2568 if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2569 report_fatal_error("failed to perform tail call elimination on a call "
2570 "site marked musttail");
2571
2572 // A sibling call is one where we're under the usual C ABI and not planning
2573 // to change that but can still do a tail call:
2574 if (!TailCallOpt && IsTailCall)
2575 IsSibCall = true;
2576
2577 if (IsTailCall)
2578 ++NumTailCalls;
2579 }
2580
2581 // Analyze operands of the call, assigning locations to each operand.
2582 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002583 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
2584 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002585
2586 if (IsVarArg) {
2587 // Handle fixed and variable vector arguments differently.
2588 // Variable vector arguments always go into memory.
2589 unsigned NumArgs = Outs.size();
2590
2591 for (unsigned i = 0; i != NumArgs; ++i) {
2592 MVT ArgVT = Outs[i].VT;
2593 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2594 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2595 /*IsVarArg=*/ !Outs[i].IsFixed);
2596 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2597 assert(!Res && "Call operand has unhandled type");
2598 (void)Res;
2599 }
2600 } else {
2601 // At this point, Outs[].VT may already be promoted to i32. To correctly
2602 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2603 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2604 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2605 // we use a special version of AnalyzeCallOperands to pass in ValVT and
2606 // LocVT.
2607 unsigned NumArgs = Outs.size();
2608 for (unsigned i = 0; i != NumArgs; ++i) {
2609 MVT ValVT = Outs[i].VT;
2610 // Get type of the original argument.
2611 EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
2612 /*AllowUnknown*/ true);
2613 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2614 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2615 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
Tim Northover3b0846e2014-05-24 12:50:23 +00002616 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
Tim Northover47e003c2014-05-26 17:21:53 +00002617 ValVT = MVT::i8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002618 else if (ActualMVT == MVT::i16)
Tim Northover47e003c2014-05-26 17:21:53 +00002619 ValVT = MVT::i16;
Tim Northover3b0846e2014-05-24 12:50:23 +00002620
2621 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
Tim Northover47e003c2014-05-26 17:21:53 +00002622 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002623 assert(!Res && "Call operand has unhandled type");
2624 (void)Res;
2625 }
2626 }
2627
2628 // Get a count of how many bytes are to be pushed on the stack.
2629 unsigned NumBytes = CCInfo.getNextStackOffset();
2630
2631 if (IsSibCall) {
2632 // Since we're not changing the ABI to make this a tail call, the memory
2633 // operands are already available in the caller's incoming argument space.
2634 NumBytes = 0;
2635 }
2636
2637 // FPDiff is the byte offset of the call's argument area from the callee's.
2638 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2639 // by this amount for a tail call. In a sibling call it must be 0 because the
2640 // caller will deallocate the entire stack and the callee still expects its
2641 // arguments to begin at SP+0. Completely unused for non-tail calls.
2642 int FPDiff = 0;
2643
2644 if (IsTailCall && !IsSibCall) {
2645 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
2646
2647 // Since callee will pop argument stack as a tail call, we must keep the
2648 // popped size 16-byte aligned.
2649 NumBytes = RoundUpToAlignment(NumBytes, 16);
2650
2651 // FPDiff will be negative if this tail call requires more space than we
2652 // would automatically have in our incoming argument space. Positive if we
2653 // can actually shrink the stack.
2654 FPDiff = NumReusableBytes - NumBytes;
2655
2656 // The stack pointer must be 16-byte aligned at all times it's used for a
2657 // memory operation, which in practice means at *all* times and in
2658 // particular across call boundaries. Therefore our own arguments started at
2659 // a 16-byte aligned SP and the delta applied for the tail call should
2660 // satisfy the same constraint.
2661 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
2662 }
2663
2664 // Adjust the stack pointer for the new arguments...
2665 // These operations are automatically eliminated by the prolog/epilog pass
2666 if (!IsSibCall)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002667 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, DL,
2668 true),
2669 DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00002670
2671 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy());
2672
2673 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2674 SmallVector<SDValue, 8> MemOpChains;
2675
2676 // Walk the register/memloc assignments, inserting copies/loads.
2677 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2678 ++i, ++realArgIdx) {
2679 CCValAssign &VA = ArgLocs[i];
2680 SDValue Arg = OutVals[realArgIdx];
2681 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2682
2683 // Promote the value if needed.
2684 switch (VA.getLocInfo()) {
2685 default:
2686 llvm_unreachable("Unknown loc info!");
2687 case CCValAssign::Full:
2688 break;
2689 case CCValAssign::SExt:
2690 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2691 break;
2692 case CCValAssign::ZExt:
2693 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2694 break;
2695 case CCValAssign::AExt:
Tim Northover68ae5032014-05-26 17:22:07 +00002696 if (Outs[realArgIdx].ArgVT == MVT::i1) {
2697 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
2698 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2699 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
2700 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002701 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2702 break;
2703 case CCValAssign::BCvt:
2704 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2705 break;
2706 case CCValAssign::FPExt:
2707 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2708 break;
2709 }
2710
2711 if (VA.isRegLoc()) {
2712 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
2713 assert(VA.getLocVT() == MVT::i64 &&
2714 "unexpected calling convention register assignment");
2715 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
2716 "unexpected use of 'returned'");
2717 IsThisReturn = true;
2718 }
2719 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2720 } else {
2721 assert(VA.isMemLoc());
2722
2723 SDValue DstAddr;
2724 MachinePointerInfo DstInfo;
2725
2726 // FIXME: This works on big-endian for composite byvals, which are the
2727 // common case. It should also work for fundamental types too.
2728 uint32_t BEAlign = 0;
2729 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
Amara Emerson82da7d02014-08-15 14:29:57 +00002730 : VA.getValVT().getSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00002731 OpSize = (OpSize + 7) / 8;
Tim Northover293d4142014-12-03 17:49:26 +00002732 if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
2733 !Flags.isInConsecutiveRegs()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00002734 if (OpSize < 8)
2735 BEAlign = 8 - OpSize;
2736 }
2737 unsigned LocMemOffset = VA.getLocMemOffset();
2738 int32_t Offset = LocMemOffset + BEAlign;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002739 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00002740 PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2741
2742 if (IsTailCall) {
2743 Offset = Offset + FPDiff;
2744 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2745
2746 DstAddr = DAG.getFrameIndex(FI, getPointerTy());
2747 DstInfo = MachinePointerInfo::getFixedStack(FI);
2748
2749 // Make sure any stack arguments overlapping with where we're storing
2750 // are loaded before this eventual operation. Otherwise they'll be
2751 // clobbered.
2752 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
2753 } else {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002754 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00002755
2756 DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2757 DstInfo = MachinePointerInfo::getStack(LocMemOffset);
2758 }
2759
2760 if (Outs[i].Flags.isByVal()) {
2761 SDValue SizeNode =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002762 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00002763 SDValue Cpy = DAG.getMemcpy(
2764 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
Krzysztof Parzyszeka46c36b2015-04-13 17:16:45 +00002765 /*isVol = */ false, /*AlwaysInline = */ false,
2766 /*isTailCall = */ false,
2767 DstInfo, MachinePointerInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +00002768
2769 MemOpChains.push_back(Cpy);
2770 } else {
2771 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
2772 // promoted to a legal register type i32, we should truncate Arg back to
2773 // i1/i8/i16.
Tim Northover6890add2014-06-03 13:54:53 +00002774 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
2775 VA.getValVT() == MVT::i16)
2776 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
Tim Northover3b0846e2014-05-24 12:50:23 +00002777
2778 SDValue Store =
2779 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
2780 MemOpChains.push_back(Store);
2781 }
2782 }
2783 }
2784
2785 if (!MemOpChains.empty())
2786 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2787
2788 // Build a sequence of copy-to-reg nodes chained together with token chain
2789 // and flag operands which copy the outgoing args into the appropriate regs.
2790 SDValue InFlag;
2791 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2792 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
2793 RegsToPass[i].second, InFlag);
2794 InFlag = Chain.getValue(1);
2795 }
2796
2797 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2798 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2799 // node so that legalize doesn't hack it.
2800 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
2801 Subtarget->isTargetMachO()) {
2802 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2803 const GlobalValue *GV = G->getGlobal();
2804 bool InternalLinkage = GV->hasInternalLinkage();
2805 if (InternalLinkage)
2806 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2807 else {
2808 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0,
2809 AArch64II::MO_GOT);
2810 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2811 }
2812 } else if (ExternalSymbolSDNode *S =
2813 dyn_cast<ExternalSymbolSDNode>(Callee)) {
2814 const char *Sym = S->getSymbol();
2815 Callee =
2816 DAG.getTargetExternalSymbol(Sym, getPointerTy(), AArch64II::MO_GOT);
2817 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2818 }
2819 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2820 const GlobalValue *GV = G->getGlobal();
2821 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2822 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2823 const char *Sym = S->getSymbol();
2824 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0);
2825 }
2826
2827 // We don't usually want to end the call-sequence here because we would tidy
2828 // the frame up *after* the call, however in the ABI-changing tail-call case
2829 // we've carefully laid out the parameters so that when sp is reset they'll be
2830 // in the correct location.
2831 if (IsTailCall && !IsSibCall) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002832 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
2833 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00002834 InFlag = Chain.getValue(1);
2835 }
2836
2837 std::vector<SDValue> Ops;
2838 Ops.push_back(Chain);
2839 Ops.push_back(Callee);
2840
2841 if (IsTailCall) {
2842 // Each tail call may have to adjust the stack by a different amount, so
2843 // this information must travel along with the operation for eventual
2844 // consumption by emitEpilogue.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002845 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00002846 }
2847
2848 // Add argument registers to the end of the list so that they are known live
2849 // into the call.
2850 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2851 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2852 RegsToPass[i].second.getValueType()));
2853
2854 // Add a register mask operand representing the call-preserved registers.
2855 const uint32_t *Mask;
Eric Christopher905f12d2015-01-29 00:19:42 +00002856 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00002857 if (IsThisReturn) {
2858 // For 'this' returns, use the X0-preserving mask if applicable
Eric Christopher9deb75d2015-03-11 22:42:13 +00002859 Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00002860 if (!Mask) {
2861 IsThisReturn = false;
Eric Christopher9deb75d2015-03-11 22:42:13 +00002862 Mask = TRI->getCallPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00002863 }
2864 } else
Eric Christopher9deb75d2015-03-11 22:42:13 +00002865 Mask = TRI->getCallPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00002866
2867 assert(Mask && "Missing call preserved mask for calling convention");
2868 Ops.push_back(DAG.getRegisterMask(Mask));
2869
2870 if (InFlag.getNode())
2871 Ops.push_back(InFlag);
2872
2873 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2874
2875 // If we're doing a tall call, use a TC_RETURN here rather than an
2876 // actual call instruction.
Arnold Schwaighoferf54b73d2015-05-08 23:52:00 +00002877 if (IsTailCall) {
2878 MF.getFrameInfo()->setHasTailCall();
Tim Northover3b0846e2014-05-24 12:50:23 +00002879 return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
Arnold Schwaighoferf54b73d2015-05-08 23:52:00 +00002880 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002881
2882 // Returns a chain and a flag for retval copy to use.
2883 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
2884 InFlag = Chain.getValue(1);
2885
2886 uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
2887 ? RoundUpToAlignment(NumBytes, 16)
2888 : 0;
2889
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002890 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
2891 DAG.getIntPtrConstant(CalleePopBytes, DL, true),
Tim Northover3b0846e2014-05-24 12:50:23 +00002892 InFlag, DL);
2893 if (!Ins.empty())
2894 InFlag = Chain.getValue(1);
2895
2896 // Handle result values, copying them out of physregs into vregs that we
2897 // return.
2898 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2899 InVals, IsThisReturn,
2900 IsThisReturn ? OutVals[0] : SDValue());
2901}
2902
2903bool AArch64TargetLowering::CanLowerReturn(
2904 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
2905 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2906 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2907 ? RetCC_AArch64_WebKit_JS
2908 : RetCC_AArch64_AAPCS;
2909 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002910 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
Tim Northover3b0846e2014-05-24 12:50:23 +00002911 return CCInfo.CheckReturn(Outs, RetCC);
2912}
2913
2914SDValue
2915AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2916 bool isVarArg,
2917 const SmallVectorImpl<ISD::OutputArg> &Outs,
2918 const SmallVectorImpl<SDValue> &OutVals,
2919 SDLoc DL, SelectionDAG &DAG) const {
2920 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2921 ? RetCC_AArch64_WebKit_JS
2922 : RetCC_AArch64_AAPCS;
2923 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002924 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2925 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002926 CCInfo.AnalyzeReturn(Outs, RetCC);
2927
2928 // Copy the result values into the output registers.
2929 SDValue Flag;
2930 SmallVector<SDValue, 4> RetOps(1, Chain);
2931 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
2932 ++i, ++realRVLocIdx) {
2933 CCValAssign &VA = RVLocs[i];
2934 assert(VA.isRegLoc() && "Can only return in registers!");
2935 SDValue Arg = OutVals[realRVLocIdx];
2936
2937 switch (VA.getLocInfo()) {
2938 default:
2939 llvm_unreachable("Unknown loc info!");
2940 case CCValAssign::Full:
Tim Northover68ae5032014-05-26 17:22:07 +00002941 if (Outs[i].ArgVT == MVT::i1) {
2942 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
2943 // value. This is strictly redundant on Darwin (which uses "zeroext
2944 // i1"), but will be optimised out before ISel.
2945 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2946 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2947 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002948 break;
2949 case CCValAssign::BCvt:
2950 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2951 break;
2952 }
2953
2954 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2955 Flag = Chain.getValue(1);
2956 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2957 }
2958
2959 RetOps[0] = Chain; // Update chain.
2960
2961 // Add the flag if we have it.
2962 if (Flag.getNode())
2963 RetOps.push_back(Flag);
2964
2965 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
2966}
2967
2968//===----------------------------------------------------------------------===//
2969// Other Lowering Code
2970//===----------------------------------------------------------------------===//
2971
2972SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
2973 SelectionDAG &DAG) const {
2974 EVT PtrVT = getPointerTy();
2975 SDLoc DL(Op);
Asiri Rathnayake369c0302014-09-10 13:54:38 +00002976 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
2977 const GlobalValue *GV = GN->getGlobal();
Tim Northover3b0846e2014-05-24 12:50:23 +00002978 unsigned char OpFlags =
2979 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
2980
2981 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
2982 "unexpected offset in global node");
2983
2984 // This also catched the large code model case for Darwin.
2985 if ((OpFlags & AArch64II::MO_GOT) != 0) {
2986 SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2987 // FIXME: Once remat is capable of dealing with instructions with register
2988 // operands, expand this into two nodes instead of using a wrapper node.
2989 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
2990 }
2991
Asiri Rathnayake369c0302014-09-10 13:54:38 +00002992 if ((OpFlags & AArch64II::MO_CONSTPOOL) != 0) {
2993 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
2994 "use of MO_CONSTPOOL only supported on small model");
2995 SDValue Hi = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, AArch64II::MO_PAGE);
2996 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
2997 unsigned char LoFlags = AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
2998 SDValue Lo = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, LoFlags);
2999 SDValue PoolAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3000 SDValue GlobalAddr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), PoolAddr,
3001 MachinePointerInfo::getConstantPool(),
3002 /*isVolatile=*/ false,
3003 /*isNonTemporal=*/ true,
3004 /*isInvariant=*/ true, 8);
3005 if (GN->getOffset() != 0)
3006 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalAddr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003007 DAG.getConstant(GN->getOffset(), DL, PtrVT));
Asiri Rathnayake369c0302014-09-10 13:54:38 +00003008 return GlobalAddr;
3009 }
3010
Tim Northover3b0846e2014-05-24 12:50:23 +00003011 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3012 const unsigned char MO_NC = AArch64II::MO_NC;
3013 return DAG.getNode(
3014 AArch64ISD::WrapperLarge, DL, PtrVT,
3015 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
3016 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3017 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3018 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3019 } else {
3020 // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
3021 // the only correct model on Darwin.
3022 SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3023 OpFlags | AArch64II::MO_PAGE);
3024 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
3025 SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
3026
3027 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3028 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3029 }
3030}
3031
3032/// \brief Convert a TLS address reference into the correct sequence of loads
3033/// and calls to compute the variable's address (for Darwin, currently) and
3034/// return an SDValue containing the final node.
3035
3036/// Darwin only has one TLS scheme which must be capable of dealing with the
3037/// fully general situation, in the worst case. This means:
3038/// + "extern __thread" declaration.
3039/// + Defined in a possibly unknown dynamic library.
3040///
3041/// The general system is that each __thread variable has a [3 x i64] descriptor
3042/// which contains information used by the runtime to calculate the address. The
3043/// only part of this the compiler needs to know about is the first xword, which
3044/// contains a function pointer that must be called with the address of the
3045/// entire descriptor in "x0".
3046///
3047/// Since this descriptor may be in a different unit, in general even the
3048/// descriptor must be accessed via an indirect load. The "ideal" code sequence
3049/// is:
3050/// adrp x0, _var@TLVPPAGE
3051/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
3052/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
3053/// ; the function pointer
3054/// blr x1 ; Uses descriptor address in x0
3055/// ; Address of _var is now in x0.
3056///
3057/// If the address of _var's descriptor *is* known to the linker, then it can
3058/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
3059/// a slight efficiency gain.
3060SDValue
3061AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
3062 SelectionDAG &DAG) const {
3063 assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
3064
3065 SDLoc DL(Op);
3066 MVT PtrVT = getPointerTy();
3067 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3068
3069 SDValue TLVPAddr =
3070 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3071 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
3072
3073 // The first entry in the descriptor is a function pointer that we must call
3074 // to obtain the address of the variable.
3075 SDValue Chain = DAG.getEntryNode();
3076 SDValue FuncTLVGet =
3077 DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(),
3078 false, true, true, 8);
3079 Chain = FuncTLVGet.getValue(1);
3080
3081 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3082 MFI->setAdjustsStack(true);
3083
3084 // TLS calls preserve all registers except those that absolutely must be
3085 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3086 // silly).
Eric Christopher6c901622015-01-28 03:51:33 +00003087 const uint32_t *Mask =
Eric Christopher905f12d2015-01-29 00:19:42 +00003088 Subtarget->getRegisterInfo()->getTLSCallPreservedMask();
Tim Northover3b0846e2014-05-24 12:50:23 +00003089
3090 // Finally, we can make the call. This is just a degenerate version of a
3091 // normal AArch64 call node: x0 takes the address of the descriptor, and
3092 // returns the address of the variable in this thread.
3093 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
3094 Chain =
3095 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3096 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
3097 DAG.getRegisterMask(Mask), Chain.getValue(1));
3098 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
3099}
3100
3101/// When accessing thread-local variables under either the general-dynamic or
3102/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
3103/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
Kristof Beylsaea84612015-03-04 09:12:08 +00003104/// is a function pointer to carry out the resolution.
Tim Northover3b0846e2014-05-24 12:50:23 +00003105///
Kristof Beylsaea84612015-03-04 09:12:08 +00003106/// The sequence is:
3107/// adrp x0, :tlsdesc:var
3108/// ldr x1, [x0, #:tlsdesc_lo12:var]
3109/// add x0, x0, #:tlsdesc_lo12:var
3110/// .tlsdesccall var
3111/// blr x1
3112/// (TPIDR_EL0 offset now in x0)
Tim Northover3b0846e2014-05-24 12:50:23 +00003113///
Kristof Beylsaea84612015-03-04 09:12:08 +00003114/// The above sequence must be produced unscheduled, to enable the linker to
3115/// optimize/relax this sequence.
3116/// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
3117/// above sequence, and expanded really late in the compilation flow, to ensure
3118/// the sequence is produced as per above.
3119SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr, SDLoc DL,
3120 SelectionDAG &DAG) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00003121 EVT PtrVT = getPointerTy();
3122
Kristof Beylsaea84612015-03-04 09:12:08 +00003123 SDValue Chain = DAG.getEntryNode();
Tim Northover3b0846e2014-05-24 12:50:23 +00003124 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Kristof Beylsaea84612015-03-04 09:12:08 +00003125
3126 SmallVector<SDValue, 2> Ops;
3127 Ops.push_back(Chain);
3128 Ops.push_back(SymAddr);
3129
3130 Chain = DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, Ops);
3131 SDValue Glue = Chain.getValue(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003132
3133 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
3134}
3135
3136SDValue
3137AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
3138 SelectionDAG &DAG) const {
3139 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
3140 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3141 "ELF TLS only supported in small memory model");
Kristof Beylsaea84612015-03-04 09:12:08 +00003142 // Different choices can be made for the maximum size of the TLS area for a
3143 // module. For the small address model, the default TLS size is 16MiB and the
3144 // maximum TLS size is 4GiB.
3145 // FIXME: add -mtls-size command line option and make it control the 16MiB
3146 // vs. 4GiB code sequence generation.
Tim Northover3b0846e2014-05-24 12:50:23 +00003147 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3148
3149 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
Kristof Beylsaea84612015-03-04 09:12:08 +00003150 if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
3151 if (Model == TLSModel::LocalDynamic)
3152 Model = TLSModel::GeneralDynamic;
3153 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003154
3155 SDValue TPOff;
3156 EVT PtrVT = getPointerTy();
3157 SDLoc DL(Op);
3158 const GlobalValue *GV = GA->getGlobal();
3159
3160 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
3161
3162 if (Model == TLSModel::LocalExec) {
3163 SDValue HiVar = DAG.getTargetGlobalAddress(
Kristof Beylsaea84612015-03-04 09:12:08 +00003164 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
Tim Northover3b0846e2014-05-24 12:50:23 +00003165 SDValue LoVar = DAG.getTargetGlobalAddress(
3166 GV, DL, PtrVT, 0,
Kristof Beylsaea84612015-03-04 09:12:08 +00003167 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
Tim Northover3b0846e2014-05-24 12:50:23 +00003168
Kristof Beylsaea84612015-03-04 09:12:08 +00003169 SDValue TPWithOff_lo =
3170 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003171 HiVar,
3172 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003173 0);
3174 SDValue TPWithOff =
3175 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003176 LoVar,
3177 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003178 0);
3179 return TPWithOff;
Tim Northover3b0846e2014-05-24 12:50:23 +00003180 } else if (Model == TLSModel::InitialExec) {
3181 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3182 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
3183 } else if (Model == TLSModel::LocalDynamic) {
3184 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
3185 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
3186 // the beginning of the module's TLS region, followed by a DTPREL offset
3187 // calculation.
3188
3189 // These accesses will need deduplicating if there's more than one.
3190 AArch64FunctionInfo *MFI =
3191 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3192 MFI->incNumLocalDynamicTLSAccesses();
3193
Tim Northover3b0846e2014-05-24 12:50:23 +00003194 // The call needs a relocation too for linker relaxation. It doesn't make
3195 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3196 // the address.
3197 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
3198 AArch64II::MO_TLS);
3199
3200 // Now we can calculate the offset from TPIDR_EL0 to this module's
3201 // thread-local area.
Kristof Beylsaea84612015-03-04 09:12:08 +00003202 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00003203
3204 // Now use :dtprel_whatever: operations to calculate this variable's offset
3205 // in its thread-storage area.
3206 SDValue HiVar = DAG.getTargetGlobalAddress(
Kristof Beylsaea84612015-03-04 09:12:08 +00003207 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
Tim Northover3b0846e2014-05-24 12:50:23 +00003208 SDValue LoVar = DAG.getTargetGlobalAddress(
3209 GV, DL, MVT::i64, 0,
Tim Northover3b0846e2014-05-24 12:50:23 +00003210 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3211
Kristof Beylsaea84612015-03-04 09:12:08 +00003212 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003213 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003214 0);
3215 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003216 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003217 0);
3218 } else if (Model == TLSModel::GeneralDynamic) {
Tim Northover3b0846e2014-05-24 12:50:23 +00003219 // The call needs a relocation too for linker relaxation. It doesn't make
3220 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3221 // the address.
3222 SDValue SymAddr =
3223 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3224
3225 // Finally we can make a call to calculate the offset from tpidr_el0.
Kristof Beylsaea84612015-03-04 09:12:08 +00003226 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00003227 } else
3228 llvm_unreachable("Unsupported ELF TLS access model");
3229
3230 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
3231}
3232
3233SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
3234 SelectionDAG &DAG) const {
3235 if (Subtarget->isTargetDarwin())
3236 return LowerDarwinGlobalTLSAddress(Op, DAG);
3237 else if (Subtarget->isTargetELF())
3238 return LowerELFGlobalTLSAddress(Op, DAG);
3239
3240 llvm_unreachable("Unexpected platform trying to use TLS");
3241}
3242SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3243 SDValue Chain = Op.getOperand(0);
3244 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3245 SDValue LHS = Op.getOperand(2);
3246 SDValue RHS = Op.getOperand(3);
3247 SDValue Dest = Op.getOperand(4);
3248 SDLoc dl(Op);
3249
3250 // Handle f128 first, since lowering it will result in comparing the return
3251 // value of a libcall against zero, which is just what the rest of LowerBR_CC
3252 // is expecting to deal with.
3253 if (LHS.getValueType() == MVT::f128) {
3254 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3255
3256 // If softenSetCCOperands returned a scalar, we need to compare the result
3257 // against zero to select between true and false values.
3258 if (!RHS.getNode()) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003259 RHS = DAG.getConstant(0, dl, LHS.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00003260 CC = ISD::SETNE;
3261 }
3262 }
3263
3264 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
3265 // instruction.
3266 unsigned Opc = LHS.getOpcode();
3267 if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) &&
3268 cast<ConstantSDNode>(RHS)->isOne() &&
3269 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3270 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3271 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
3272 "Unexpected condition code.");
3273 // Only lower legal XALUO ops.
3274 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
3275 return SDValue();
3276
3277 // The actual operation with overflow check.
3278 AArch64CC::CondCode OFCC;
3279 SDValue Value, Overflow;
3280 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
3281
3282 if (CC == ISD::SETNE)
3283 OFCC = getInvertedCondCode(OFCC);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003284 SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003285
Ahmed Bougachadf956a22015-02-06 23:15:39 +00003286 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3287 Overflow);
Tim Northover3b0846e2014-05-24 12:50:23 +00003288 }
3289
3290 if (LHS.getValueType().isInteger()) {
3291 assert((LHS.getValueType() == RHS.getValueType()) &&
3292 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3293
3294 // If the RHS of the comparison is zero, we can potentially fold this
3295 // to a specialized branch.
3296 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
3297 if (RHSC && RHSC->getZExtValue() == 0) {
3298 if (CC == ISD::SETEQ) {
3299 // See if we can use a TBZ to fold in an AND as well.
3300 // TBZ has a smaller branch displacement than CBZ. If the offset is
3301 // out of bounds, a late MI-layer pass rewrites branches.
3302 // 403.gcc is an example that hits this case.
3303 if (LHS.getOpcode() == ISD::AND &&
3304 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3305 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3306 SDValue Test = LHS.getOperand(0);
3307 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003308 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003309 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3310 Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003311 }
3312
3313 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
3314 } else if (CC == ISD::SETNE) {
3315 // See if we can use a TBZ to fold in an AND as well.
3316 // TBZ has a smaller branch displacement than CBZ. If the offset is
3317 // out of bounds, a late MI-layer pass rewrites branches.
3318 // 403.gcc is an example that hits this case.
3319 if (LHS.getOpcode() == ISD::AND &&
3320 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3321 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3322 SDValue Test = LHS.getOperand(0);
3323 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003324 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003325 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3326 Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003327 }
3328
3329 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
Chad Rosier579c02c2014-08-01 14:48:56 +00003330 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
3331 // Don't combine AND since emitComparison converts the AND to an ANDS
3332 // (a.k.a. TST) and the test in the test bit and branch instruction
3333 // becomes redundant. This would also increase register pressure.
3334 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3335 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003336 DAG.getConstant(Mask, dl, MVT::i64), Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003337 }
3338 }
Chad Rosier579c02c2014-08-01 14:48:56 +00003339 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
3340 LHS.getOpcode() != ISD::AND) {
3341 // Don't combine AND since emitComparison converts the AND to an ANDS
3342 // (a.k.a. TST) and the test in the test bit and branch instruction
3343 // becomes redundant. This would also increase register pressure.
3344 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3345 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003346 DAG.getConstant(Mask, dl, MVT::i64), Dest);
Chad Rosier579c02c2014-08-01 14:48:56 +00003347 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003348
3349 SDValue CCVal;
3350 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3351 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3352 Cmp);
3353 }
3354
3355 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3356
3357 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3358 // clean. Some of them require two branches to implement.
3359 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3360 AArch64CC::CondCode CC1, CC2;
3361 changeFPCCToAArch64CC(CC, CC1, CC2);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003362 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003363 SDValue BR1 =
3364 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
3365 if (CC2 != AArch64CC::AL) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003366 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003367 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
3368 Cmp);
3369 }
3370
3371 return BR1;
3372}
3373
3374SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
3375 SelectionDAG &DAG) const {
3376 EVT VT = Op.getValueType();
3377 SDLoc DL(Op);
3378
3379 SDValue In1 = Op.getOperand(0);
3380 SDValue In2 = Op.getOperand(1);
3381 EVT SrcVT = In2.getValueType();
3382 if (SrcVT != VT) {
3383 if (SrcVT == MVT::f32 && VT == MVT::f64)
3384 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
3385 else if (SrcVT == MVT::f64 && VT == MVT::f32)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003386 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2,
3387 DAG.getIntPtrConstant(0, DL));
Tim Northover3b0846e2014-05-24 12:50:23 +00003388 else
3389 // FIXME: Src type is different, bail out for now. Can VT really be a
3390 // vector type?
3391 return SDValue();
3392 }
3393
3394 EVT VecVT;
3395 EVT EltVT;
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003396 uint64_t EltMask;
3397 SDValue VecVal1, VecVal2;
Tim Northover3b0846e2014-05-24 12:50:23 +00003398 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
3399 EltVT = MVT::i32;
3400 VecVT = MVT::v4i32;
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003401 EltMask = 0x80000000ULL;
Tim Northover3b0846e2014-05-24 12:50:23 +00003402
3403 if (!VT.isVector()) {
3404 VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3405 DAG.getUNDEF(VecVT), In1);
3406 VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3407 DAG.getUNDEF(VecVT), In2);
3408 } else {
3409 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3410 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3411 }
3412 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
3413 EltVT = MVT::i64;
3414 VecVT = MVT::v2i64;
3415
3416 // We want to materialize a mask with the the high bit set, but the AdvSIMD
3417 // immediate moves cannot materialize that in a single instruction for
3418 // 64-bit elements. Instead, materialize zero and then negate it.
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003419 EltMask = 0;
Tim Northover3b0846e2014-05-24 12:50:23 +00003420
3421 if (!VT.isVector()) {
3422 VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3423 DAG.getUNDEF(VecVT), In1);
3424 VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3425 DAG.getUNDEF(VecVT), In2);
3426 } else {
3427 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3428 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3429 }
3430 } else {
3431 llvm_unreachable("Invalid type for copysign!");
3432 }
3433
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003434 SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00003435
3436 // If we couldn't materialize the mask above, then the mask vector will be
3437 // the zero vector, and we need to negate it here.
3438 if (VT == MVT::f64 || VT == MVT::v2f64) {
3439 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3440 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3441 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3442 }
3443
3444 SDValue Sel =
3445 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3446
3447 if (VT == MVT::f32)
3448 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3449 else if (VT == MVT::f64)
3450 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3451 else
3452 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3453}
3454
3455SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00003456 if (DAG.getMachineFunction().getFunction()->hasFnAttribute(
3457 Attribute::NoImplicitFloat))
Tim Northover3b0846e2014-05-24 12:50:23 +00003458 return SDValue();
3459
Weiming Zhao7a2d1562014-11-19 00:29:14 +00003460 if (!Subtarget->hasNEON())
3461 return SDValue();
3462
Tim Northover3b0846e2014-05-24 12:50:23 +00003463 // While there is no integer popcount instruction, it can
3464 // be more efficiently lowered to the following sequence that uses
3465 // AdvSIMD registers/instructions as long as the copies to/from
3466 // the AdvSIMD registers are cheap.
3467 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
3468 // CNT V0.8B, V0.8B // 8xbyte pop-counts
3469 // ADDV B0, V0.8B // sum 8xbyte pop-counts
3470 // UMOV X0, V0.B[0] // copy byte result back to integer reg
3471 SDValue Val = Op.getOperand(0);
3472 SDLoc DL(Op);
3473 EVT VT = Op.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00003474
Hao Liue0335d72015-01-30 02:13:53 +00003475 if (VT == MVT::i32)
3476 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
3477 Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
Tim Northover3b0846e2014-05-24 12:50:23 +00003478
Hao Liue0335d72015-01-30 02:13:53 +00003479 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
Tim Northover3b0846e2014-05-24 12:50:23 +00003480 SDValue UaddLV = DAG.getNode(
3481 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003482 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
Tim Northover3b0846e2014-05-24 12:50:23 +00003483
3484 if (VT == MVT::i64)
3485 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3486 return UaddLV;
3487}
3488
3489SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3490
3491 if (Op.getValueType().isVector())
3492 return LowerVSETCC(Op, DAG);
3493
3494 SDValue LHS = Op.getOperand(0);
3495 SDValue RHS = Op.getOperand(1);
3496 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3497 SDLoc dl(Op);
3498
3499 // We chose ZeroOrOneBooleanContents, so use zero and one.
3500 EVT VT = Op.getValueType();
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003501 SDValue TVal = DAG.getConstant(1, dl, VT);
3502 SDValue FVal = DAG.getConstant(0, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00003503
3504 // Handle f128 first, since one possible outcome is a normal integer
3505 // comparison which gets picked up by the next if statement.
3506 if (LHS.getValueType() == MVT::f128) {
3507 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3508
3509 // If softenSetCCOperands returned a scalar, use it.
3510 if (!RHS.getNode()) {
3511 assert(LHS.getValueType() == Op.getValueType() &&
3512 "Unexpected setcc expansion!");
3513 return LHS;
3514 }
3515 }
3516
3517 if (LHS.getValueType().isInteger()) {
3518 SDValue CCVal;
3519 SDValue Cmp =
3520 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3521
3522 // Note that we inverted the condition above, so we reverse the order of
3523 // the true and false operands here. This will allow the setcc to be
3524 // matched to a single CSINC instruction.
3525 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3526 }
3527
3528 // Now we know we're dealing with FP values.
3529 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3530
3531 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3532 // and do the comparison.
3533 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3534
3535 AArch64CC::CondCode CC1, CC2;
3536 changeFPCCToAArch64CC(CC, CC1, CC2);
3537 if (CC2 == AArch64CC::AL) {
3538 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003539 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003540
3541 // Note that we inverted the condition above, so we reverse the order of
3542 // the true and false operands here. This will allow the setcc to be
3543 // matched to a single CSINC instruction.
3544 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3545 } else {
3546 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3547 // totally clean. Some of them require two CSELs to implement. As is in
3548 // this case, we emit the first CSEL and then emit a second using the output
3549 // of the first as the RHS. We're effectively OR'ing the two CC's together.
3550
3551 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003552 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003553 SDValue CS1 =
3554 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3555
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003556 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003557 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3558 }
3559}
3560
3561/// A SELECT_CC operation is really some kind of max or min if both values being
3562/// compared are, in some sense, equal to the results in either case. However,
3563/// it is permissible to compare f32 values and produce directly extended f64
3564/// values.
3565///
3566/// Extending the comparison operands would also be allowed, but is less likely
3567/// to happen in practice since their use is right here. Note that truncate
3568/// operations would *not* be semantically equivalent.
3569static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) {
3570 if (Cmp == Result)
Artyom Skrobova70dfe12015-05-14 12:59:46 +00003571 return (Cmp.getValueType() == MVT::f32 ||
3572 Cmp.getValueType() == MVT::f64);
Tim Northover3b0846e2014-05-24 12:50:23 +00003573
3574 ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp);
3575 ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result);
3576 if (CCmp && CResult && Cmp.getValueType() == MVT::f32 &&
3577 Result.getValueType() == MVT::f64) {
3578 bool Lossy;
3579 APFloat CmpVal = CCmp->getValueAPF();
3580 CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy);
3581 return CResult->getValueAPF().bitwiseIsEqual(CmpVal);
3582 }
3583
3584 return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp;
3585}
3586
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003587SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
3588 SDValue RHS, SDValue TVal,
3589 SDValue FVal, SDLoc dl,
Tim Northover3b0846e2014-05-24 12:50:23 +00003590 SelectionDAG &DAG) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00003591 // Handle f128 first, because it will result in a comparison of some RTLIB
3592 // call result against zero.
3593 if (LHS.getValueType() == MVT::f128) {
3594 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3595
3596 // If softenSetCCOperands returned a scalar, we need to compare the result
3597 // against zero to select between true and false values.
3598 if (!RHS.getNode()) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003599 RHS = DAG.getConstant(0, dl, LHS.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00003600 CC = ISD::SETNE;
3601 }
3602 }
3603
3604 // Handle integers first.
3605 if (LHS.getValueType().isInteger()) {
3606 assert((LHS.getValueType() == RHS.getValueType()) &&
3607 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3608
3609 unsigned Opcode = AArch64ISD::CSEL;
3610
3611 // If both the TVal and the FVal are constants, see if we can swap them in
3612 // order to for a CSINV or CSINC out of them.
3613 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3614 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3615
3616 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3617 std::swap(TVal, FVal);
3618 std::swap(CTVal, CFVal);
3619 CC = ISD::getSetCCInverse(CC, true);
3620 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3621 std::swap(TVal, FVal);
3622 std::swap(CTVal, CFVal);
3623 CC = ISD::getSetCCInverse(CC, true);
3624 } else if (TVal.getOpcode() == ISD::XOR) {
3625 // If TVal is a NOT we want to swap TVal and FVal so that we can match
3626 // with a CSINV rather than a CSEL.
3627 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1));
3628
3629 if (CVal && CVal->isAllOnesValue()) {
3630 std::swap(TVal, FVal);
3631 std::swap(CTVal, CFVal);
3632 CC = ISD::getSetCCInverse(CC, true);
3633 }
3634 } else if (TVal.getOpcode() == ISD::SUB) {
3635 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3636 // that we can match with a CSNEG rather than a CSEL.
3637 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0));
3638
3639 if (CVal && CVal->isNullValue()) {
3640 std::swap(TVal, FVal);
3641 std::swap(CTVal, CFVal);
3642 CC = ISD::getSetCCInverse(CC, true);
3643 }
3644 } else if (CTVal && CFVal) {
3645 const int64_t TrueVal = CTVal->getSExtValue();
3646 const int64_t FalseVal = CFVal->getSExtValue();
3647 bool Swap = false;
3648
3649 // If both TVal and FVal are constants, see if FVal is the
3650 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
3651 // instead of a CSEL in that case.
3652 if (TrueVal == ~FalseVal) {
3653 Opcode = AArch64ISD::CSINV;
3654 } else if (TrueVal == -FalseVal) {
3655 Opcode = AArch64ISD::CSNEG;
3656 } else if (TVal.getValueType() == MVT::i32) {
3657 // If our operands are only 32-bit wide, make sure we use 32-bit
3658 // arithmetic for the check whether we can use CSINC. This ensures that
3659 // the addition in the check will wrap around properly in case there is
3660 // an overflow (which would not be the case if we do the check with
3661 // 64-bit arithmetic).
3662 const uint32_t TrueVal32 = CTVal->getZExtValue();
3663 const uint32_t FalseVal32 = CFVal->getZExtValue();
3664
3665 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
3666 Opcode = AArch64ISD::CSINC;
3667
3668 if (TrueVal32 > FalseVal32) {
3669 Swap = true;
3670 }
3671 }
3672 // 64-bit check whether we can use CSINC.
3673 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
3674 Opcode = AArch64ISD::CSINC;
3675
3676 if (TrueVal > FalseVal) {
3677 Swap = true;
3678 }
3679 }
3680
3681 // Swap TVal and FVal if necessary.
3682 if (Swap) {
3683 std::swap(TVal, FVal);
3684 std::swap(CTVal, CFVal);
3685 CC = ISD::getSetCCInverse(CC, true);
3686 }
3687
3688 if (Opcode != AArch64ISD::CSEL) {
3689 // Drop FVal since we can get its value by simply inverting/negating
3690 // TVal.
3691 FVal = TVal;
3692 }
3693 }
3694
3695 SDValue CCVal;
3696 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3697
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003698 EVT VT = TVal.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00003699 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
3700 }
3701
3702 // Now we know we're dealing with FP values.
3703 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3704 assert(LHS.getValueType() == RHS.getValueType());
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003705 EVT VT = TVal.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00003706 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3707
3708 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3709 // clean. Some of them require two CSELs to implement.
3710 AArch64CC::CondCode CC1, CC2;
3711 changeFPCCToAArch64CC(CC, CC1, CC2);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003712 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003713 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3714
3715 // If we need a second CSEL, emit it, using the output of the first as the
3716 // RHS. We're effectively OR'ing the two CC's together.
3717 if (CC2 != AArch64CC::AL) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003718 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003719 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3720 }
3721
3722 // Otherwise, return the output of the first CSEL.
3723 return CS1;
3724}
3725
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003726SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
3727 SelectionDAG &DAG) const {
3728 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3729 SDValue LHS = Op.getOperand(0);
3730 SDValue RHS = Op.getOperand(1);
3731 SDValue TVal = Op.getOperand(2);
3732 SDValue FVal = Op.getOperand(3);
3733 SDLoc DL(Op);
3734 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
3735}
3736
3737SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
3738 SelectionDAG &DAG) const {
3739 SDValue CCVal = Op->getOperand(0);
3740 SDValue TVal = Op->getOperand(1);
3741 SDValue FVal = Op->getOperand(2);
3742 SDLoc DL(Op);
3743
3744 unsigned Opc = CCVal.getOpcode();
3745 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
3746 // instruction.
3747 if (CCVal.getResNo() == 1 &&
3748 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3749 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3750 // Only lower legal XALUO ops.
3751 if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
3752 return SDValue();
3753
3754 AArch64CC::CondCode OFCC;
3755 SDValue Value, Overflow;
3756 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003757 SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003758
3759 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
3760 CCVal, Overflow);
3761 }
3762
3763 // Lower it the same way as we would lower a SELECT_CC node.
3764 ISD::CondCode CC;
3765 SDValue LHS, RHS;
3766 if (CCVal.getOpcode() == ISD::SETCC) {
3767 LHS = CCVal.getOperand(0);
3768 RHS = CCVal.getOperand(1);
3769 CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
3770 } else {
3771 LHS = CCVal;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003772 RHS = DAG.getConstant(0, DL, CCVal.getValueType());
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003773 CC = ISD::SETNE;
3774 }
3775 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
3776}
3777
Tim Northover3b0846e2014-05-24 12:50:23 +00003778SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
3779 SelectionDAG &DAG) const {
3780 // Jump table entries as PC relative offsets. No additional tweaking
3781 // is necessary here. Just get the address of the jump table.
3782 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3783 EVT PtrVT = getPointerTy();
3784 SDLoc DL(Op);
3785
3786 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3787 !Subtarget->isTargetMachO()) {
3788 const unsigned char MO_NC = AArch64II::MO_NC;
3789 return DAG.getNode(
3790 AArch64ISD::WrapperLarge, DL, PtrVT,
3791 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
3792 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
3793 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
3794 DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3795 AArch64II::MO_G0 | MO_NC));
3796 }
3797
3798 SDValue Hi =
3799 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
3800 SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3801 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3802 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3803 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3804}
3805
3806SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
3807 SelectionDAG &DAG) const {
3808 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3809 EVT PtrVT = getPointerTy();
3810 SDLoc DL(Op);
3811
3812 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3813 // Use the GOT for the large code model on iOS.
3814 if (Subtarget->isTargetMachO()) {
3815 SDValue GotAddr = DAG.getTargetConstantPool(
3816 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3817 AArch64II::MO_GOT);
3818 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3819 }
3820
3821 const unsigned char MO_NC = AArch64II::MO_NC;
3822 return DAG.getNode(
3823 AArch64ISD::WrapperLarge, DL, PtrVT,
3824 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3825 CP->getOffset(), AArch64II::MO_G3),
3826 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3827 CP->getOffset(), AArch64II::MO_G2 | MO_NC),
3828 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3829 CP->getOffset(), AArch64II::MO_G1 | MO_NC),
3830 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3831 CP->getOffset(), AArch64II::MO_G0 | MO_NC));
3832 } else {
3833 // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
3834 // ELF, the only valid one on Darwin.
3835 SDValue Hi =
3836 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3837 CP->getOffset(), AArch64II::MO_PAGE);
3838 SDValue Lo = DAG.getTargetConstantPool(
3839 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3840 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3841
3842 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3843 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3844 }
3845}
3846
3847SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
3848 SelectionDAG &DAG) const {
3849 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3850 EVT PtrVT = getPointerTy();
3851 SDLoc DL(Op);
3852 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3853 !Subtarget->isTargetMachO()) {
3854 const unsigned char MO_NC = AArch64II::MO_NC;
3855 return DAG.getNode(
3856 AArch64ISD::WrapperLarge, DL, PtrVT,
3857 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
3858 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3859 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3860 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3861 } else {
3862 SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
3863 SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
3864 AArch64II::MO_NC);
3865 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3866 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3867 }
3868}
3869
3870SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
3871 SelectionDAG &DAG) const {
3872 AArch64FunctionInfo *FuncInfo =
3873 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3874
3875 SDLoc DL(Op);
3876 SDValue FR =
3877 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3878 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3879 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3880 MachinePointerInfo(SV), false, false, 0);
3881}
3882
3883SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
3884 SelectionDAG &DAG) const {
3885 // The layout of the va_list struct is specified in the AArch64 Procedure Call
3886 // Standard, section B.3.
3887 MachineFunction &MF = DAG.getMachineFunction();
3888 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3889 SDLoc DL(Op);
3890
3891 SDValue Chain = Op.getOperand(0);
3892 SDValue VAList = Op.getOperand(1);
3893 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3894 SmallVector<SDValue, 4> MemOps;
3895
3896 // void *__stack at offset 0
3897 SDValue Stack =
3898 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3899 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
3900 MachinePointerInfo(SV), false, false, 8));
3901
3902 // void *__gr_top at offset 8
3903 int GPRSize = FuncInfo->getVarArgsGPRSize();
3904 if (GPRSize > 0) {
3905 SDValue GRTop, GRTopAddr;
3906
3907 GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003908 DAG.getConstant(8, DL, getPointerTy()));
Tim Northover3b0846e2014-05-24 12:50:23 +00003909
3910 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy());
3911 GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003912 DAG.getConstant(GPRSize, DL, getPointerTy()));
Tim Northover3b0846e2014-05-24 12:50:23 +00003913
3914 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
3915 MachinePointerInfo(SV, 8), false, false, 8));
3916 }
3917
3918 // void *__vr_top at offset 16
3919 int FPRSize = FuncInfo->getVarArgsFPRSize();
3920 if (FPRSize > 0) {
3921 SDValue VRTop, VRTopAddr;
3922 VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003923 DAG.getConstant(16, DL, getPointerTy()));
Tim Northover3b0846e2014-05-24 12:50:23 +00003924
3925 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy());
3926 VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003927 DAG.getConstant(FPRSize, DL, getPointerTy()));
Tim Northover3b0846e2014-05-24 12:50:23 +00003928
3929 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
3930 MachinePointerInfo(SV, 16), false, false, 8));
3931 }
3932
3933 // int __gr_offs at offset 24
3934 SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003935 DAG.getConstant(24, DL, getPointerTy()));
3936 MemOps.push_back(DAG.getStore(Chain, DL,
3937 DAG.getConstant(-GPRSize, DL, MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00003938 GROffsAddr, MachinePointerInfo(SV, 24), false,
3939 false, 4));
3940
3941 // int __vr_offs at offset 28
3942 SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003943 DAG.getConstant(28, DL, getPointerTy()));
3944 MemOps.push_back(DAG.getStore(Chain, DL,
3945 DAG.getConstant(-FPRSize, DL, MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00003946 VROffsAddr, MachinePointerInfo(SV, 28), false,
3947 false, 4));
3948
3949 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3950}
3951
3952SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
3953 SelectionDAG &DAG) const {
3954 return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
3955 : LowerAAPCS_VASTART(Op, DAG);
3956}
3957
3958SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
3959 SelectionDAG &DAG) const {
3960 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
3961 // pointer.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003962 SDLoc DL(Op);
Tim Northover3b0846e2014-05-24 12:50:23 +00003963 unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
3964 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3965 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3966
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003967 return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1),
3968 Op.getOperand(2),
3969 DAG.getConstant(VaListSize, DL, MVT::i32),
Krzysztof Parzyszeka46c36b2015-04-13 17:16:45 +00003970 8, false, false, false, MachinePointerInfo(DestSV),
Tim Northover3b0846e2014-05-24 12:50:23 +00003971 MachinePointerInfo(SrcSV));
3972}
3973
3974SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3975 assert(Subtarget->isTargetDarwin() &&
3976 "automatic va_arg instruction only works on Darwin");
3977
3978 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3979 EVT VT = Op.getValueType();
3980 SDLoc DL(Op);
3981 SDValue Chain = Op.getOperand(0);
3982 SDValue Addr = Op.getOperand(1);
3983 unsigned Align = Op.getConstantOperandVal(3);
3984
3985 SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr,
3986 MachinePointerInfo(V), false, false, false, 0);
3987 Chain = VAList.getValue(1);
3988
3989 if (Align > 8) {
3990 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
3991 VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003992 DAG.getConstant(Align - 1, DL, getPointerTy()));
Tim Northover3b0846e2014-05-24 12:50:23 +00003993 VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003994 DAG.getConstant(-(int64_t)Align, DL, getPointerTy()));
Tim Northover3b0846e2014-05-24 12:50:23 +00003995 }
3996
3997 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
3998 uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
3999
4000 // Scalar integer and FP values smaller than 64 bits are implicitly extended
4001 // up to 64 bits. At the very least, we have to increase the striding of the
4002 // vaargs list to match this, and for FP values we need to introduce
4003 // FP_ROUND nodes as well.
4004 if (VT.isInteger() && !VT.isVector())
4005 ArgSize = 8;
4006 bool NeedFPTrunc = false;
4007 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
4008 ArgSize = 8;
4009 NeedFPTrunc = true;
4010 }
4011
4012 // Increment the pointer, VAList, to the next vaarg
4013 SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004014 DAG.getConstant(ArgSize, DL, getPointerTy()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004015 // Store the incremented VAList to the legalized pointer
4016 SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
4017 false, false, 0);
4018
4019 // Load the actual argument out of the pointer VAList
4020 if (NeedFPTrunc) {
4021 // Load the value as an f64.
4022 SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
4023 MachinePointerInfo(), false, false, false, 0);
4024 // Round the value down to an f32.
4025 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004026 DAG.getIntPtrConstant(1, DL));
Tim Northover3b0846e2014-05-24 12:50:23 +00004027 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
4028 // Merge the rounded value with the chain output of the load.
4029 return DAG.getMergeValues(Ops, DL);
4030 }
4031
4032 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
4033 false, false, 0);
4034}
4035
4036SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
4037 SelectionDAG &DAG) const {
4038 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4039 MFI->setFrameAddressIsTaken(true);
4040
4041 EVT VT = Op.getValueType();
4042 SDLoc DL(Op);
4043 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4044 SDValue FrameAddr =
4045 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
4046 while (Depth--)
4047 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
4048 MachinePointerInfo(), false, false, false, 0);
4049 return FrameAddr;
4050}
4051
4052// FIXME? Maybe this could be a TableGen attribute on some registers and
4053// this table could be generated automatically from RegInfo.
4054unsigned AArch64TargetLowering::getRegisterByName(const char* RegName,
4055 EVT VT) const {
4056 unsigned Reg = StringSwitch<unsigned>(RegName)
4057 .Case("sp", AArch64::SP)
4058 .Default(0);
4059 if (Reg)
4060 return Reg;
4061 report_fatal_error("Invalid register name global variable");
4062}
4063
4064SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
4065 SelectionDAG &DAG) const {
4066 MachineFunction &MF = DAG.getMachineFunction();
4067 MachineFrameInfo *MFI = MF.getFrameInfo();
4068 MFI->setReturnAddressIsTaken(true);
4069
4070 EVT VT = Op.getValueType();
4071 SDLoc DL(Op);
4072 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4073 if (Depth) {
4074 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004075 SDValue Offset = DAG.getConstant(8, DL, getPointerTy());
Tim Northover3b0846e2014-05-24 12:50:23 +00004076 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4077 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4078 MachinePointerInfo(), false, false, false, 0);
4079 }
4080
4081 // Return LR, which contains the return address. Mark it an implicit live-in.
4082 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
4083 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4084}
4085
4086/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4087/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4088SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
4089 SelectionDAG &DAG) const {
4090 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4091 EVT VT = Op.getValueType();
4092 unsigned VTBits = VT.getSizeInBits();
4093 SDLoc dl(Op);
4094 SDValue ShOpLo = Op.getOperand(0);
4095 SDValue ShOpHi = Op.getOperand(1);
4096 SDValue ShAmt = Op.getOperand(2);
4097 SDValue ARMcc;
4098 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4099
4100 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4101
4102 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004103 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
Tim Northover3b0846e2014-05-24 12:50:23 +00004104 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4105 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004106 DAG.getConstant(VTBits, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004107 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4108
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004109 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00004110 ISD::SETGE, dl, DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004111 SDValue CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00004112
4113 SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4114 SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4115 SDValue Lo =
4116 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4117
4118 // AArch64 shifts larger than the register width are wrapped rather than
4119 // clamped, so we can't just emit "hi >> x".
4120 SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4121 SDValue TrueValHi = Opc == ISD::SRA
4122 ? DAG.getNode(Opc, dl, VT, ShOpHi,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004123 DAG.getConstant(VTBits - 1, dl,
4124 MVT::i64))
4125 : DAG.getConstant(0, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004126 SDValue Hi =
4127 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp);
4128
4129 SDValue Ops[2] = { Lo, Hi };
4130 return DAG.getMergeValues(Ops, dl);
4131}
4132
4133/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4134/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4135SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
4136 SelectionDAG &DAG) const {
4137 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4138 EVT VT = Op.getValueType();
4139 unsigned VTBits = VT.getSizeInBits();
4140 SDLoc dl(Op);
4141 SDValue ShOpLo = Op.getOperand(0);
4142 SDValue ShOpHi = Op.getOperand(1);
4143 SDValue ShAmt = Op.getOperand(2);
4144 SDValue ARMcc;
4145
4146 assert(Op.getOpcode() == ISD::SHL_PARTS);
4147 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004148 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
Tim Northover3b0846e2014-05-24 12:50:23 +00004149 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4150 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004151 DAG.getConstant(VTBits, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004152 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4153 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4154
4155 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4156
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004157 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00004158 ISD::SETGE, dl, DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004159 SDValue CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00004160 SDValue Hi =
4161 DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp);
4162
4163 // AArch64 shifts of larger than register sizes are wrapped rather than
4164 // clamped, so we can't just emit "lo << a" if a is too big.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004165 SDValue TrueValLo = DAG.getConstant(0, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004166 SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4167 SDValue Lo =
4168 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4169
4170 SDValue Ops[2] = { Lo, Hi };
4171 return DAG.getMergeValues(Ops, dl);
4172}
4173
4174bool AArch64TargetLowering::isOffsetFoldingLegal(
4175 const GlobalAddressSDNode *GA) const {
4176 // The AArch64 target doesn't support folding offsets into global addresses.
4177 return false;
4178}
4179
4180bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4181 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
4182 // FIXME: We should be able to handle f128 as well with a clever lowering.
4183 if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
4184 return true;
4185
4186 if (VT == MVT::f64)
4187 return AArch64_AM::getFP64Imm(Imm) != -1;
4188 else if (VT == MVT::f32)
4189 return AArch64_AM::getFP32Imm(Imm) != -1;
4190 return false;
4191}
4192
4193//===----------------------------------------------------------------------===//
4194// AArch64 Optimization Hooks
4195//===----------------------------------------------------------------------===//
4196
4197//===----------------------------------------------------------------------===//
4198// AArch64 Inline Assembly Support
4199//===----------------------------------------------------------------------===//
4200
4201// Table of Constraints
4202// TODO: This is the current set of constraints supported by ARM for the
4203// compiler, not all of them may make sense, e.g. S may be difficult to support.
4204//
4205// r - A general register
4206// w - An FP/SIMD register of some size in the range v0-v31
4207// x - An FP/SIMD register of some size in the range v0-v15
4208// I - Constant that can be used with an ADD instruction
4209// J - Constant that can be used with a SUB instruction
4210// K - Constant that can be used with a 32-bit logical instruction
4211// L - Constant that can be used with a 64-bit logical instruction
4212// M - Constant that can be used as a 32-bit MOV immediate
4213// N - Constant that can be used as a 64-bit MOV immediate
4214// Q - A memory reference with base register and no offset
4215// S - A symbolic address
4216// Y - Floating point constant zero
4217// Z - Integer constant zero
4218//
4219// Note that general register operands will be output using their 64-bit x
4220// register name, whatever the size of the variable, unless the asm operand
4221// is prefixed by the %w modifier. Floating-point and SIMD register operands
4222// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
4223// %q modifier.
4224
4225/// getConstraintType - Given a constraint letter, return the type of
4226/// constraint it is for this target.
4227AArch64TargetLowering::ConstraintType
4228AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
4229 if (Constraint.size() == 1) {
4230 switch (Constraint[0]) {
4231 default:
4232 break;
4233 case 'z':
4234 return C_Other;
4235 case 'x':
4236 case 'w':
4237 return C_RegisterClass;
4238 // An address with a single base register. Due to the way we
4239 // currently handle addresses it is the same as 'r'.
4240 case 'Q':
4241 return C_Memory;
4242 }
4243 }
4244 return TargetLowering::getConstraintType(Constraint);
4245}
4246
4247/// Examine constraint type and operand type and determine a weight value.
4248/// This object must already have been set up with the operand type
4249/// and the current alternative constraint selected.
4250TargetLowering::ConstraintWeight
4251AArch64TargetLowering::getSingleConstraintMatchWeight(
4252 AsmOperandInfo &info, const char *constraint) const {
4253 ConstraintWeight weight = CW_Invalid;
4254 Value *CallOperandVal = info.CallOperandVal;
4255 // If we don't have a value, we can't do a match,
4256 // but allow it at the lowest weight.
4257 if (!CallOperandVal)
4258 return CW_Default;
4259 Type *type = CallOperandVal->getType();
4260 // Look at the constraint type.
4261 switch (*constraint) {
4262 default:
4263 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
4264 break;
4265 case 'x':
4266 case 'w':
4267 if (type->isFloatingPointTy() || type->isVectorTy())
4268 weight = CW_Register;
4269 break;
4270 case 'z':
4271 weight = CW_Constant;
4272 break;
4273 }
4274 return weight;
4275}
4276
4277std::pair<unsigned, const TargetRegisterClass *>
4278AArch64TargetLowering::getRegForInlineAsmConstraint(
Eric Christopher11e4df72015-02-26 22:38:43 +00004279 const TargetRegisterInfo *TRI, const std::string &Constraint,
4280 MVT VT) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004281 if (Constraint.size() == 1) {
4282 switch (Constraint[0]) {
4283 case 'r':
4284 if (VT.getSizeInBits() == 64)
4285 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
4286 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
4287 case 'w':
4288 if (VT == MVT::f32)
4289 return std::make_pair(0U, &AArch64::FPR32RegClass);
4290 if (VT.getSizeInBits() == 64)
4291 return std::make_pair(0U, &AArch64::FPR64RegClass);
4292 if (VT.getSizeInBits() == 128)
4293 return std::make_pair(0U, &AArch64::FPR128RegClass);
4294 break;
4295 // The instructions that this constraint is designed for can
4296 // only take 128-bit registers so just use that regclass.
4297 case 'x':
4298 if (VT.getSizeInBits() == 128)
4299 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
4300 break;
4301 }
4302 }
4303 if (StringRef("{cc}").equals_lower(Constraint))
4304 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
4305
4306 // Use the default implementation in TargetLowering to convert the register
4307 // constraint into a member of a register class.
4308 std::pair<unsigned, const TargetRegisterClass *> Res;
Eric Christopher11e4df72015-02-26 22:38:43 +00004309 Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004310
4311 // Not found as a standard register?
4312 if (!Res.second) {
4313 unsigned Size = Constraint.size();
4314 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
4315 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
4316 const std::string Reg =
4317 std::string(&Constraint[2], &Constraint[Size - 1]);
4318 int RegNo = atoi(Reg.c_str());
4319 if (RegNo >= 0 && RegNo <= 31) {
4320 // v0 - v31 are aliases of q0 - q31.
4321 // By default we'll emit v0-v31 for this unless there's a modifier where
4322 // we'll emit the correct register as well.
4323 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
4324 Res.second = &AArch64::FPR128RegClass;
4325 }
4326 }
4327 }
4328
4329 return Res;
4330}
4331
4332/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4333/// vector. If it is invalid, don't add anything to Ops.
4334void AArch64TargetLowering::LowerAsmOperandForConstraint(
4335 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
4336 SelectionDAG &DAG) const {
4337 SDValue Result;
4338
4339 // Currently only support length 1 constraints.
4340 if (Constraint.length() != 1)
4341 return;
4342
4343 char ConstraintLetter = Constraint[0];
4344 switch (ConstraintLetter) {
4345 default:
4346 break;
4347
4348 // This set of constraints deal with valid constants for various instructions.
4349 // Validate and return a target constant for them if we can.
4350 case 'z': {
4351 // 'z' maps to xzr or wzr so it needs an input of 0.
4352 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4353 if (!C || C->getZExtValue() != 0)
4354 return;
4355
4356 if (Op.getValueType() == MVT::i64)
4357 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
4358 else
4359 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
4360 break;
4361 }
4362
4363 case 'I':
4364 case 'J':
4365 case 'K':
4366 case 'L':
4367 case 'M':
4368 case 'N':
4369 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4370 if (!C)
4371 return;
4372
4373 // Grab the value and do some validation.
4374 uint64_t CVal = C->getZExtValue();
4375 switch (ConstraintLetter) {
4376 // The I constraint applies only to simple ADD or SUB immediate operands:
4377 // i.e. 0 to 4095 with optional shift by 12
4378 // The J constraint applies only to ADD or SUB immediates that would be
4379 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
4380 // instruction [or vice versa], in other words -1 to -4095 with optional
4381 // left shift by 12.
4382 case 'I':
4383 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
4384 break;
4385 return;
4386 case 'J': {
4387 uint64_t NVal = -C->getSExtValue();
Tim Northover2c46beb2014-07-27 07:10:29 +00004388 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
4389 CVal = C->getSExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004390 break;
Tim Northover2c46beb2014-07-27 07:10:29 +00004391 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004392 return;
4393 }
4394 // The K and L constraints apply *only* to logical immediates, including
4395 // what used to be the MOVI alias for ORR (though the MOVI alias has now
4396 // been removed and MOV should be used). So these constraints have to
4397 // distinguish between bit patterns that are valid 32-bit or 64-bit
4398 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4399 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4400 // versa.
4401 case 'K':
4402 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4403 break;
4404 return;
4405 case 'L':
4406 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4407 break;
4408 return;
4409 // The M and N constraints are a superset of K and L respectively, for use
4410 // with the MOV (immediate) alias. As well as the logical immediates they
4411 // also match 32 or 64-bit immediates that can be loaded either using a
4412 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4413 // (M) or 64-bit 0x1234000000000000 (N) etc.
4414 // As a note some of this code is liberally stolen from the asm parser.
4415 case 'M': {
4416 if (!isUInt<32>(CVal))
4417 return;
4418 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4419 break;
4420 if ((CVal & 0xFFFF) == CVal)
4421 break;
4422 if ((CVal & 0xFFFF0000ULL) == CVal)
4423 break;
4424 uint64_t NCVal = ~(uint32_t)CVal;
4425 if ((NCVal & 0xFFFFULL) == NCVal)
4426 break;
4427 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4428 break;
4429 return;
4430 }
4431 case 'N': {
4432 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4433 break;
4434 if ((CVal & 0xFFFFULL) == CVal)
4435 break;
4436 if ((CVal & 0xFFFF0000ULL) == CVal)
4437 break;
4438 if ((CVal & 0xFFFF00000000ULL) == CVal)
4439 break;
4440 if ((CVal & 0xFFFF000000000000ULL) == CVal)
4441 break;
4442 uint64_t NCVal = ~CVal;
4443 if ((NCVal & 0xFFFFULL) == NCVal)
4444 break;
4445 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4446 break;
4447 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4448 break;
4449 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4450 break;
4451 return;
4452 }
4453 default:
4454 return;
4455 }
4456
4457 // All assembler immediates are 64-bit integers.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004458 Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00004459 break;
4460 }
4461
4462 if (Result.getNode()) {
4463 Ops.push_back(Result);
4464 return;
4465 }
4466
4467 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4468}
4469
4470//===----------------------------------------------------------------------===//
4471// AArch64 Advanced SIMD Support
4472//===----------------------------------------------------------------------===//
4473
4474/// WidenVector - Given a value in the V64 register class, produce the
4475/// equivalent value in the V128 register class.
4476static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4477 EVT VT = V64Reg.getValueType();
4478 unsigned NarrowSize = VT.getVectorNumElements();
4479 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4480 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4481 SDLoc DL(V64Reg);
4482
4483 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004484 V64Reg, DAG.getConstant(0, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00004485}
4486
4487/// getExtFactor - Determine the adjustment factor for the position when
4488/// generating an "extract from vector registers" instruction.
4489static unsigned getExtFactor(SDValue &V) {
4490 EVT EltType = V.getValueType().getVectorElementType();
4491 return EltType.getSizeInBits() / 8;
4492}
4493
4494/// NarrowVector - Given a value in the V128 register class, produce the
4495/// equivalent value in the V64 register class.
4496static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4497 EVT VT = V128Reg.getValueType();
4498 unsigned WideSize = VT.getVectorNumElements();
4499 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4500 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4501 SDLoc DL(V128Reg);
4502
4503 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4504}
4505
4506// Gather data to see if the operation can be modelled as a
4507// shuffle in combination with VEXTs.
4508SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4509 SelectionDAG &DAG) const {
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004510 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00004511 SDLoc dl(Op);
4512 EVT VT = Op.getValueType();
4513 unsigned NumElts = VT.getVectorNumElements();
4514
Tim Northover7324e842014-07-24 15:39:55 +00004515 struct ShuffleSourceInfo {
4516 SDValue Vec;
4517 unsigned MinElt;
4518 unsigned MaxElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004519
Tim Northover7324e842014-07-24 15:39:55 +00004520 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
4521 // be compatible with the shuffle we intend to construct. As a result
4522 // ShuffleVec will be some sliding window into the original Vec.
4523 SDValue ShuffleVec;
4524
4525 // Code should guarantee that element i in Vec starts at element "WindowBase
4526 // + i * WindowScale in ShuffleVec".
4527 int WindowBase;
4528 int WindowScale;
4529
4530 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
4531 ShuffleSourceInfo(SDValue Vec)
4532 : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
4533 WindowScale(1) {}
4534 };
4535
4536 // First gather all vectors used as an immediate source for this BUILD_VECTOR
4537 // node.
4538 SmallVector<ShuffleSourceInfo, 2> Sources;
Tim Northover3b0846e2014-05-24 12:50:23 +00004539 for (unsigned i = 0; i < NumElts; ++i) {
4540 SDValue V = Op.getOperand(i);
4541 if (V.getOpcode() == ISD::UNDEF)
4542 continue;
4543 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4544 // A shuffle can only come from building a vector from various
4545 // elements of other vectors.
4546 return SDValue();
4547 }
4548
Tim Northover7324e842014-07-24 15:39:55 +00004549 // Add this element source to the list if it's not already there.
Tim Northover3b0846e2014-05-24 12:50:23 +00004550 SDValue SourceVec = V.getOperand(0);
Tim Northover7324e842014-07-24 15:39:55 +00004551 auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
4552 if (Source == Sources.end())
James Molloyf497d552014-10-17 17:06:31 +00004553 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
Tim Northover3b0846e2014-05-24 12:50:23 +00004554
Tim Northover7324e842014-07-24 15:39:55 +00004555 // Update the minimum and maximum lane number seen.
4556 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4557 Source->MinElt = std::min(Source->MinElt, EltNo);
4558 Source->MaxElt = std::max(Source->MaxElt, EltNo);
Tim Northover3b0846e2014-05-24 12:50:23 +00004559 }
4560
4561 // Currently only do something sane when at most two source vectors
Tim Northover7324e842014-07-24 15:39:55 +00004562 // are involved.
4563 if (Sources.size() > 2)
Tim Northover3b0846e2014-05-24 12:50:23 +00004564 return SDValue();
4565
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004566 // Find out the smallest element size among result and two sources, and use
4567 // it as element size to build the shuffle_vector.
4568 EVT SmallestEltTy = VT.getVectorElementType();
Tim Northover7324e842014-07-24 15:39:55 +00004569 for (auto &Source : Sources) {
4570 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004571 if (SrcEltTy.bitsLT(SmallestEltTy)) {
4572 SmallestEltTy = SrcEltTy;
4573 }
4574 }
4575 unsigned ResMultiplier =
4576 VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004577 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
4578 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00004579
Tim Northover7324e842014-07-24 15:39:55 +00004580 // If the source vector is too wide or too narrow, we may nevertheless be able
4581 // to construct a compatible shuffle either by concatenating it with UNDEF or
4582 // extracting a suitable range of elements.
4583 for (auto &Src : Sources) {
4584 EVT SrcVT = Src.ShuffleVec.getValueType();
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004585
Tim Northover7324e842014-07-24 15:39:55 +00004586 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
Tim Northover3b0846e2014-05-24 12:50:23 +00004587 continue;
Tim Northover7324e842014-07-24 15:39:55 +00004588
4589 // This stage of the search produces a source with the same element type as
4590 // the original, but with a total width matching the BUILD_VECTOR output.
4591 EVT EltVT = SrcVT.getVectorElementType();
James Molloyf497d552014-10-17 17:06:31 +00004592 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
4593 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
Tim Northover7324e842014-07-24 15:39:55 +00004594
4595 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
4596 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004597 // We can pad out the smaller vector for free, so if it's part of a
4598 // shuffle...
Tim Northover7324e842014-07-24 15:39:55 +00004599 Src.ShuffleVec =
4600 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
4601 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004602 continue;
4603 }
4604
Tim Northover7324e842014-07-24 15:39:55 +00004605 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004606
James Molloyf497d552014-10-17 17:06:31 +00004607 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004608 // Span too large for a VEXT to cope
4609 return SDValue();
4610 }
4611
James Molloyf497d552014-10-17 17:06:31 +00004612 if (Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004613 // The extraction can just take the second half
Tim Northover7324e842014-07-24 15:39:55 +00004614 Src.ShuffleVec =
4615 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004616 DAG.getConstant(NumSrcElts, dl, MVT::i64));
James Molloyf497d552014-10-17 17:06:31 +00004617 Src.WindowBase = -NumSrcElts;
4618 } else if (Src.MaxElt < NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004619 // The extraction can just take the first half
Tim Northover5e84fe32014-12-06 00:33:37 +00004620 Src.ShuffleVec =
4621 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004622 DAG.getConstant(0, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004623 } else {
4624 // An actual VEXT is needed
Tim Northover5e84fe32014-12-06 00:33:37 +00004625 SDValue VEXTSrc1 =
4626 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004627 DAG.getConstant(0, dl, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00004628 SDValue VEXTSrc2 =
4629 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004630 DAG.getConstant(NumSrcElts, dl, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00004631 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
4632
4633 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004634 VEXTSrc2,
4635 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover7324e842014-07-24 15:39:55 +00004636 Src.WindowBase = -Src.MinElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004637 }
4638 }
4639
Tim Northover7324e842014-07-24 15:39:55 +00004640 // Another possible incompatibility occurs from the vector element types. We
4641 // can fix this by bitcasting the source vectors to the same type we intend
4642 // for the shuffle.
4643 for (auto &Src : Sources) {
4644 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
4645 if (SrcEltTy == SmallestEltTy)
4646 continue;
4647 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
4648 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
4649 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
4650 Src.WindowBase *= Src.WindowScale;
4651 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004652
Tim Northover7324e842014-07-24 15:39:55 +00004653 // Final sanity check before we try to actually produce a shuffle.
4654 DEBUG(
4655 for (auto Src : Sources)
4656 assert(Src.ShuffleVec.getValueType() == ShuffleVT);
4657 );
4658
4659 // The stars all align, our next step is to produce the mask for the shuffle.
4660 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
4661 int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004662 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004663 SDValue Entry = Op.getOperand(i);
Tim Northover7324e842014-07-24 15:39:55 +00004664 if (Entry.getOpcode() == ISD::UNDEF)
4665 continue;
Tim Northover3b0846e2014-05-24 12:50:23 +00004666
Tim Northover7324e842014-07-24 15:39:55 +00004667 auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
4668 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
4669
4670 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
4671 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
4672 // segment.
4673 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
4674 int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
4675 VT.getVectorElementType().getSizeInBits());
4676 int LanesDefined = BitsDefined / BitsPerShuffleLane;
4677
4678 // This source is expected to fill ResMultiplier lanes of the final shuffle,
4679 // starting at the appropriate offset.
4680 int *LaneMask = &Mask[i * ResMultiplier];
4681
4682 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
4683 ExtractBase += NumElts * (Src - Sources.begin());
4684 for (int j = 0; j < LanesDefined; ++j)
4685 LaneMask[j] = ExtractBase + j;
Tim Northover3b0846e2014-05-24 12:50:23 +00004686 }
4687
4688 // Final check before we try to produce nonsense...
Tim Northover7324e842014-07-24 15:39:55 +00004689 if (!isShuffleMaskLegal(Mask, ShuffleVT))
4690 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004691
Tim Northover7324e842014-07-24 15:39:55 +00004692 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
4693 for (unsigned i = 0; i < Sources.size(); ++i)
4694 ShuffleOps[i] = Sources[i].ShuffleVec;
4695
4696 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
4697 ShuffleOps[1], &Mask[0]);
4698 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
Tim Northover3b0846e2014-05-24 12:50:23 +00004699}
4700
4701// check if an EXT instruction can handle the shuffle mask when the
4702// vector sources of the shuffle are the same.
4703static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4704 unsigned NumElts = VT.getVectorNumElements();
4705
4706 // Assume that the first shuffle index is not UNDEF. Fail if it is.
4707 if (M[0] < 0)
4708 return false;
4709
4710 Imm = M[0];
4711
4712 // If this is a VEXT shuffle, the immediate value is the index of the first
4713 // element. The other shuffle indices must be the successive elements after
4714 // the first one.
4715 unsigned ExpectedElt = Imm;
4716 for (unsigned i = 1; i < NumElts; ++i) {
4717 // Increment the expected index. If it wraps around, just follow it
4718 // back to index zero and keep going.
4719 ++ExpectedElt;
4720 if (ExpectedElt == NumElts)
4721 ExpectedElt = 0;
4722
4723 if (M[i] < 0)
4724 continue; // ignore UNDEF indices
4725 if (ExpectedElt != static_cast<unsigned>(M[i]))
4726 return false;
4727 }
4728
4729 return true;
4730}
4731
4732// check if an EXT instruction can handle the shuffle mask when the
4733// vector sources of the shuffle are different.
4734static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
4735 unsigned &Imm) {
4736 // Look for the first non-undef element.
4737 const int *FirstRealElt = std::find_if(M.begin(), M.end(),
4738 [](int Elt) {return Elt >= 0;});
4739
4740 // Benefit form APInt to handle overflow when calculating expected element.
4741 unsigned NumElts = VT.getVectorNumElements();
4742 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
4743 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
4744 // The following shuffle indices must be the successive elements after the
4745 // first real element.
4746 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
4747 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
4748 if (FirstWrongElt != M.end())
4749 return false;
4750
4751 // The index of an EXT is the first element if it is not UNDEF.
4752 // Watch out for the beginning UNDEFs. The EXT index should be the expected
4753 // value of the first element. E.g.
4754 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
4755 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
4756 // ExpectedElt is the last mask index plus 1.
4757 Imm = ExpectedElt.getZExtValue();
4758
4759 // There are two difference cases requiring to reverse input vectors.
4760 // For example, for vector <4 x i32> we have the following cases,
4761 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
4762 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
4763 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
4764 // to reverse two input vectors.
4765 if (Imm < NumElts)
4766 ReverseEXT = true;
4767 else
4768 Imm -= NumElts;
4769
4770 return true;
4771}
4772
4773/// isREVMask - Check if a vector shuffle corresponds to a REV
4774/// instruction with the specified blocksize. (The order of the elements
4775/// within each block of the vector is reversed.)
4776static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4777 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
4778 "Only possible block sizes for REV are: 16, 32, 64");
4779
4780 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4781 if (EltSz == 64)
4782 return false;
4783
4784 unsigned NumElts = VT.getVectorNumElements();
4785 unsigned BlockElts = M[0] + 1;
4786 // If the first shuffle index is UNDEF, be optimistic.
4787 if (M[0] < 0)
4788 BlockElts = BlockSize / EltSz;
4789
4790 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4791 return false;
4792
4793 for (unsigned i = 0; i < NumElts; ++i) {
4794 if (M[i] < 0)
4795 continue; // ignore UNDEF indices
4796 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
4797 return false;
4798 }
4799
4800 return true;
4801}
4802
4803static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4804 unsigned NumElts = VT.getVectorNumElements();
4805 WhichResult = (M[0] == 0 ? 0 : 1);
4806 unsigned Idx = WhichResult * NumElts / 2;
4807 for (unsigned i = 0; i != NumElts; i += 2) {
4808 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4809 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
4810 return false;
4811 Idx += 1;
4812 }
4813
4814 return true;
4815}
4816
4817static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4818 unsigned NumElts = VT.getVectorNumElements();
4819 WhichResult = (M[0] == 0 ? 0 : 1);
4820 for (unsigned i = 0; i != NumElts; ++i) {
4821 if (M[i] < 0)
4822 continue; // ignore UNDEF indices
4823 if ((unsigned)M[i] != 2 * i + WhichResult)
4824 return false;
4825 }
4826
4827 return true;
4828}
4829
4830static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4831 unsigned NumElts = VT.getVectorNumElements();
4832 WhichResult = (M[0] == 0 ? 0 : 1);
4833 for (unsigned i = 0; i < NumElts; i += 2) {
4834 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4835 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
4836 return false;
4837 }
4838 return true;
4839}
4840
4841/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
4842/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4843/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4844static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4845 unsigned NumElts = VT.getVectorNumElements();
4846 WhichResult = (M[0] == 0 ? 0 : 1);
4847 unsigned Idx = WhichResult * NumElts / 2;
4848 for (unsigned i = 0; i != NumElts; i += 2) {
4849 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4850 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
4851 return false;
4852 Idx += 1;
4853 }
4854
4855 return true;
4856}
4857
4858/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
4859/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4860/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4861static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4862 unsigned Half = VT.getVectorNumElements() / 2;
4863 WhichResult = (M[0] == 0 ? 0 : 1);
4864 for (unsigned j = 0; j != 2; ++j) {
4865 unsigned Idx = WhichResult;
4866 for (unsigned i = 0; i != Half; ++i) {
4867 int MIdx = M[i + j * Half];
4868 if (MIdx >= 0 && (unsigned)MIdx != Idx)
4869 return false;
4870 Idx += 2;
4871 }
4872 }
4873
4874 return true;
4875}
4876
4877/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
4878/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4879/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4880static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4881 unsigned NumElts = VT.getVectorNumElements();
4882 WhichResult = (M[0] == 0 ? 0 : 1);
4883 for (unsigned i = 0; i < NumElts; i += 2) {
4884 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4885 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
4886 return false;
4887 }
4888 return true;
4889}
4890
4891static bool isINSMask(ArrayRef<int> M, int NumInputElements,
4892 bool &DstIsLeft, int &Anomaly) {
4893 if (M.size() != static_cast<size_t>(NumInputElements))
4894 return false;
4895
4896 int NumLHSMatch = 0, NumRHSMatch = 0;
4897 int LastLHSMismatch = -1, LastRHSMismatch = -1;
4898
4899 for (int i = 0; i < NumInputElements; ++i) {
4900 if (M[i] == -1) {
4901 ++NumLHSMatch;
4902 ++NumRHSMatch;
4903 continue;
4904 }
4905
4906 if (M[i] == i)
4907 ++NumLHSMatch;
4908 else
4909 LastLHSMismatch = i;
4910
4911 if (M[i] == i + NumInputElements)
4912 ++NumRHSMatch;
4913 else
4914 LastRHSMismatch = i;
4915 }
4916
4917 if (NumLHSMatch == NumInputElements - 1) {
4918 DstIsLeft = true;
4919 Anomaly = LastLHSMismatch;
4920 return true;
4921 } else if (NumRHSMatch == NumInputElements - 1) {
4922 DstIsLeft = false;
4923 Anomaly = LastRHSMismatch;
4924 return true;
4925 }
4926
4927 return false;
4928}
4929
4930static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
4931 if (VT.getSizeInBits() != 128)
4932 return false;
4933
4934 unsigned NumElts = VT.getVectorNumElements();
4935
4936 for (int I = 0, E = NumElts / 2; I != E; I++) {
4937 if (Mask[I] != I)
4938 return false;
4939 }
4940
4941 int Offset = NumElts / 2;
4942 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
4943 if (Mask[I] != I + SplitLHS * Offset)
4944 return false;
4945 }
4946
4947 return true;
4948}
4949
4950static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
4951 SDLoc DL(Op);
4952 EVT VT = Op.getValueType();
4953 SDValue V0 = Op.getOperand(0);
4954 SDValue V1 = Op.getOperand(1);
4955 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
4956
4957 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
4958 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
4959 return SDValue();
4960
4961 bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
4962
4963 if (!isConcatMask(Mask, VT, SplitV0))
4964 return SDValue();
4965
4966 EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
4967 VT.getVectorNumElements() / 2);
4968 if (SplitV0) {
4969 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004970 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004971 }
4972 if (V1.getValueType().getSizeInBits() == 128) {
4973 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004974 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004975 }
4976 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
4977}
4978
4979/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4980/// the specified operations to build the shuffle.
4981static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4982 SDValue RHS, SelectionDAG &DAG,
4983 SDLoc dl) {
4984 unsigned OpNum = (PFEntry >> 26) & 0x0F;
4985 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
4986 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
4987
4988 enum {
4989 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4990 OP_VREV,
4991 OP_VDUP0,
4992 OP_VDUP1,
4993 OP_VDUP2,
4994 OP_VDUP3,
4995 OP_VEXT1,
4996 OP_VEXT2,
4997 OP_VEXT3,
4998 OP_VUZPL, // VUZP, left result
4999 OP_VUZPR, // VUZP, right result
5000 OP_VZIPL, // VZIP, left result
5001 OP_VZIPR, // VZIP, right result
5002 OP_VTRNL, // VTRN, left result
5003 OP_VTRNR // VTRN, right result
5004 };
5005
5006 if (OpNum == OP_COPY) {
5007 if (LHSID == (1 * 9 + 2) * 9 + 3)
5008 return LHS;
5009 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
5010 return RHS;
5011 }
5012
5013 SDValue OpLHS, OpRHS;
5014 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5015 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5016 EVT VT = OpLHS.getValueType();
5017
5018 switch (OpNum) {
5019 default:
5020 llvm_unreachable("Unknown shuffle opcode!");
5021 case OP_VREV:
5022 // VREV divides the vector in half and swaps within the half.
5023 if (VT.getVectorElementType() == MVT::i32 ||
5024 VT.getVectorElementType() == MVT::f32)
5025 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
5026 // vrev <4 x i16> -> REV32
Oliver Stannard89d15422014-08-27 16:16:04 +00005027 if (VT.getVectorElementType() == MVT::i16 ||
5028 VT.getVectorElementType() == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005029 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
5030 // vrev <4 x i8> -> REV16
5031 assert(VT.getVectorElementType() == MVT::i8);
5032 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
5033 case OP_VDUP0:
5034 case OP_VDUP1:
5035 case OP_VDUP2:
5036 case OP_VDUP3: {
5037 EVT EltTy = VT.getVectorElementType();
5038 unsigned Opcode;
5039 if (EltTy == MVT::i8)
5040 Opcode = AArch64ISD::DUPLANE8;
Ahmed Bougacha941420d2015-04-16 23:57:07 +00005041 else if (EltTy == MVT::i16 || EltTy == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005042 Opcode = AArch64ISD::DUPLANE16;
5043 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
5044 Opcode = AArch64ISD::DUPLANE32;
5045 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
5046 Opcode = AArch64ISD::DUPLANE64;
5047 else
5048 llvm_unreachable("Invalid vector element type?");
5049
5050 if (VT.getSizeInBits() == 64)
5051 OpLHS = WidenVector(OpLHS, DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005052 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005053 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
5054 }
5055 case OP_VEXT1:
5056 case OP_VEXT2:
5057 case OP_VEXT3: {
5058 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
5059 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005060 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005061 }
5062 case OP_VUZPL:
5063 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
5064 OpRHS);
5065 case OP_VUZPR:
5066 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
5067 OpRHS);
5068 case OP_VZIPL:
5069 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
5070 OpRHS);
5071 case OP_VZIPR:
5072 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
5073 OpRHS);
5074 case OP_VTRNL:
5075 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
5076 OpRHS);
5077 case OP_VTRNR:
5078 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
5079 OpRHS);
5080 }
5081}
5082
5083static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
5084 SelectionDAG &DAG) {
5085 // Check to see if we can use the TBL instruction.
5086 SDValue V1 = Op.getOperand(0);
5087 SDValue V2 = Op.getOperand(1);
5088 SDLoc DL(Op);
5089
5090 EVT EltVT = Op.getValueType().getVectorElementType();
5091 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
5092
5093 SmallVector<SDValue, 8> TBLMask;
5094 for (int Val : ShuffleMask) {
5095 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
5096 unsigned Offset = Byte + Val * BytesPerElt;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005097 TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005098 }
5099 }
5100
5101 MVT IndexVT = MVT::v8i8;
5102 unsigned IndexLen = 8;
5103 if (Op.getValueType().getSizeInBits() == 128) {
5104 IndexVT = MVT::v16i8;
5105 IndexLen = 16;
5106 }
5107
5108 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
5109 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
5110
5111 SDValue Shuffle;
5112 if (V2.getNode()->getOpcode() == ISD::UNDEF) {
5113 if (IndexLen == 8)
5114 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
5115 Shuffle = DAG.getNode(
5116 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005117 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
Tim Northover3b0846e2014-05-24 12:50:23 +00005118 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5119 makeArrayRef(TBLMask.data(), IndexLen)));
5120 } else {
5121 if (IndexLen == 8) {
5122 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
5123 Shuffle = DAG.getNode(
5124 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005125 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
Tim Northover3b0846e2014-05-24 12:50:23 +00005126 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5127 makeArrayRef(TBLMask.data(), IndexLen)));
5128 } else {
5129 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
5130 // cannot currently represent the register constraints on the input
5131 // table registers.
5132 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
5133 // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5134 // &TBLMask[0], IndexLen));
5135 Shuffle = DAG.getNode(
5136 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005137 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32),
5138 V1Cst, V2Cst,
Tim Northover3b0846e2014-05-24 12:50:23 +00005139 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5140 makeArrayRef(TBLMask.data(), IndexLen)));
5141 }
5142 }
5143 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
5144}
5145
5146static unsigned getDUPLANEOp(EVT EltType) {
5147 if (EltType == MVT::i8)
5148 return AArch64ISD::DUPLANE8;
Oliver Stannard89d15422014-08-27 16:16:04 +00005149 if (EltType == MVT::i16 || EltType == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005150 return AArch64ISD::DUPLANE16;
5151 if (EltType == MVT::i32 || EltType == MVT::f32)
5152 return AArch64ISD::DUPLANE32;
5153 if (EltType == MVT::i64 || EltType == MVT::f64)
5154 return AArch64ISD::DUPLANE64;
5155
5156 llvm_unreachable("Invalid vector element type?");
5157}
5158
5159SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5160 SelectionDAG &DAG) const {
5161 SDLoc dl(Op);
5162 EVT VT = Op.getValueType();
5163
5164 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5165
5166 // Convert shuffles that are directly supported on NEON to target-specific
5167 // DAG nodes, instead of keeping them as shuffles and matching them again
5168 // during code selection. This is more efficient and avoids the possibility
5169 // of inconsistencies between legalization and selection.
5170 ArrayRef<int> ShuffleMask = SVN->getMask();
5171
5172 SDValue V1 = Op.getOperand(0);
5173 SDValue V2 = Op.getOperand(1);
5174
5175 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
5176 V1.getValueType().getSimpleVT())) {
5177 int Lane = SVN->getSplatIndex();
5178 // If this is undef splat, generate it via "just" vdup, if possible.
5179 if (Lane == -1)
5180 Lane = 0;
5181
5182 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
5183 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
5184 V1.getOperand(0));
5185 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
5186 // constant. If so, we can just reference the lane's definition directly.
5187 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
5188 !isa<ConstantSDNode>(V1.getOperand(Lane)))
5189 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
5190
5191 // Otherwise, duplicate from the lane of the input vector.
5192 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
5193
5194 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
5195 // to make a vector of the same size as this SHUFFLE. We can ignore the
5196 // extract entirely, and canonicalise the concat using WidenVector.
5197 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
5198 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
5199 V1 = V1.getOperand(0);
5200 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
5201 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
5202 Lane -= Idx * VT.getVectorNumElements() / 2;
5203 V1 = WidenVector(V1.getOperand(Idx), DAG);
5204 } else if (VT.getSizeInBits() == 64)
5205 V1 = WidenVector(V1, DAG);
5206
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005207 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00005208 }
5209
5210 if (isREVMask(ShuffleMask, VT, 64))
5211 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
5212 if (isREVMask(ShuffleMask, VT, 32))
5213 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
5214 if (isREVMask(ShuffleMask, VT, 16))
5215 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
5216
5217 bool ReverseEXT = false;
5218 unsigned Imm;
5219 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
5220 if (ReverseEXT)
5221 std::swap(V1, V2);
5222 Imm *= getExtFactor(V1);
5223 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005224 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005225 } else if (V2->getOpcode() == ISD::UNDEF &&
5226 isSingletonEXTMask(ShuffleMask, VT, Imm)) {
5227 Imm *= getExtFactor(V1);
5228 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005229 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005230 }
5231
5232 unsigned WhichResult;
5233 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
5234 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5235 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5236 }
5237 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
5238 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5239 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5240 }
5241 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
5242 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5243 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5244 }
5245
5246 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5247 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5248 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5249 }
5250 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5251 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5252 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5253 }
5254 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5255 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5256 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5257 }
5258
5259 SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
5260 if (Concat.getNode())
5261 return Concat;
5262
5263 bool DstIsLeft;
5264 int Anomaly;
5265 int NumInputElements = V1.getValueType().getVectorNumElements();
5266 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
5267 SDValue DstVec = DstIsLeft ? V1 : V2;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005268 SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005269
5270 SDValue SrcVec = V1;
5271 int SrcLane = ShuffleMask[Anomaly];
5272 if (SrcLane >= NumInputElements) {
5273 SrcVec = V2;
5274 SrcLane -= VT.getVectorNumElements();
5275 }
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005276 SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005277
5278 EVT ScalarVT = VT.getVectorElementType();
Oliver Stannard89d15422014-08-27 16:16:04 +00005279
5280 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00005281 ScalarVT = MVT::i32;
5282
5283 return DAG.getNode(
5284 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5285 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
5286 DstLaneV);
5287 }
5288
5289 // If the shuffle is not directly supported and it has 4 elements, use
5290 // the PerfectShuffle-generated table to synthesize it from other shuffles.
5291 unsigned NumElts = VT.getVectorNumElements();
5292 if (NumElts == 4) {
5293 unsigned PFIndexes[4];
5294 for (unsigned i = 0; i != 4; ++i) {
5295 if (ShuffleMask[i] < 0)
5296 PFIndexes[i] = 8;
5297 else
5298 PFIndexes[i] = ShuffleMask[i];
5299 }
5300
5301 // Compute the index in the perfect shuffle table.
5302 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5303 PFIndexes[2] * 9 + PFIndexes[3];
5304 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5305 unsigned Cost = (PFEntry >> 30);
5306
5307 if (Cost <= 4)
5308 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5309 }
5310
5311 return GenerateTBL(Op, ShuffleMask, DAG);
5312}
5313
5314static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
5315 APInt &UndefBits) {
5316 EVT VT = BVN->getValueType(0);
5317 APInt SplatBits, SplatUndef;
5318 unsigned SplatBitSize;
5319 bool HasAnyUndefs;
5320 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5321 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
5322
5323 for (unsigned i = 0; i < NumSplats; ++i) {
5324 CnstBits <<= SplatBitSize;
5325 UndefBits <<= SplatBitSize;
5326 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
5327 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
5328 }
5329
5330 return true;
5331 }
5332
5333 return false;
5334}
5335
5336SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
5337 SelectionDAG &DAG) const {
5338 BuildVectorSDNode *BVN =
5339 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5340 SDValue LHS = Op.getOperand(0);
5341 SDLoc dl(Op);
5342 EVT VT = Op.getValueType();
5343
5344 if (!BVN)
5345 return Op;
5346
5347 APInt CnstBits(VT.getSizeInBits(), 0);
5348 APInt UndefBits(VT.getSizeInBits(), 0);
5349 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5350 // We only have BIC vector immediate instruction, which is and-not.
5351 CnstBits = ~CnstBits;
5352
5353 // We make use of a little bit of goto ickiness in order to avoid having to
5354 // duplicate the immediate matching logic for the undef toggled case.
5355 bool SecondTry = false;
5356 AttemptModImm:
5357
5358 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5359 CnstBits = CnstBits.zextOrTrunc(64);
5360 uint64_t CnstVal = CnstBits.getZExtValue();
5361
5362 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5363 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5364 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5365 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005366 DAG.getConstant(CnstVal, dl, MVT::i32),
5367 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005368 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005369 }
5370
5371 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5372 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5373 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5374 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005375 DAG.getConstant(CnstVal, dl, MVT::i32),
5376 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005377 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005378 }
5379
5380 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5381 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5382 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5383 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005384 DAG.getConstant(CnstVal, dl, MVT::i32),
5385 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005386 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005387 }
5388
5389 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5390 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5391 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5392 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005393 DAG.getConstant(CnstVal, dl, MVT::i32),
5394 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005395 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005396 }
5397
5398 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5399 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5400 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5401 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005402 DAG.getConstant(CnstVal, dl, MVT::i32),
5403 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005404 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005405 }
5406
5407 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5408 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5409 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5410 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005411 DAG.getConstant(CnstVal, dl, MVT::i32),
5412 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005413 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005414 }
5415 }
5416
5417 if (SecondTry)
5418 goto FailedModImm;
5419 SecondTry = true;
5420 CnstBits = ~UndefBits;
5421 goto AttemptModImm;
5422 }
5423
5424// We can always fall back to a non-immediate AND.
5425FailedModImm:
5426 return Op;
5427}
5428
5429// Specialized code to quickly find if PotentialBVec is a BuildVector that
5430// consists of only the same constant int value, returned in reference arg
5431// ConstVal
5432static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
5433 uint64_t &ConstVal) {
5434 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
5435 if (!Bvec)
5436 return false;
5437 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
5438 if (!FirstElt)
5439 return false;
5440 EVT VT = Bvec->getValueType(0);
5441 unsigned NumElts = VT.getVectorNumElements();
5442 for (unsigned i = 1; i < NumElts; ++i)
5443 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
5444 return false;
5445 ConstVal = FirstElt->getZExtValue();
5446 return true;
5447}
5448
5449static unsigned getIntrinsicID(const SDNode *N) {
5450 unsigned Opcode = N->getOpcode();
5451 switch (Opcode) {
5452 default:
5453 return Intrinsic::not_intrinsic;
5454 case ISD::INTRINSIC_WO_CHAIN: {
5455 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5456 if (IID < Intrinsic::num_intrinsics)
5457 return IID;
5458 return Intrinsic::not_intrinsic;
5459 }
5460 }
5461}
5462
5463// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5464// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5465// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5466// Also, logical shift right -> sri, with the same structure.
5467static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5468 EVT VT = N->getValueType(0);
5469
5470 if (!VT.isVector())
5471 return SDValue();
5472
5473 SDLoc DL(N);
5474
5475 // Is the first op an AND?
5476 const SDValue And = N->getOperand(0);
5477 if (And.getOpcode() != ISD::AND)
5478 return SDValue();
5479
5480 // Is the second op an shl or lshr?
5481 SDValue Shift = N->getOperand(1);
5482 // This will have been turned into: AArch64ISD::VSHL vector, #shift
5483 // or AArch64ISD::VLSHR vector, #shift
5484 unsigned ShiftOpc = Shift.getOpcode();
5485 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5486 return SDValue();
5487 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5488
5489 // Is the shift amount constant?
5490 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5491 if (!C2node)
5492 return SDValue();
5493
5494 // Is the and mask vector all constant?
5495 uint64_t C1;
5496 if (!isAllConstantBuildVector(And.getOperand(1), C1))
5497 return SDValue();
5498
5499 // Is C1 == ~C2, taking into account how much one can shift elements of a
5500 // particular size?
5501 uint64_t C2 = C2node->getZExtValue();
5502 unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5503 if (C2 > ElemSizeInBits)
5504 return SDValue();
5505 unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5506 if ((C1 & ElemMask) != (~C2 & ElemMask))
5507 return SDValue();
5508
5509 SDValue X = And.getOperand(0);
5510 SDValue Y = Shift.getOperand(0);
5511
5512 unsigned Intrin =
5513 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5514 SDValue ResultSLI =
5515 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005516 DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
5517 Shift.getOperand(1));
Tim Northover3b0846e2014-05-24 12:50:23 +00005518
5519 DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5520 DEBUG(N->dump(&DAG));
5521 DEBUG(dbgs() << "into: \n");
5522 DEBUG(ResultSLI->dump(&DAG));
5523
5524 ++NumShiftInserts;
5525 return ResultSLI;
5526}
5527
5528SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5529 SelectionDAG &DAG) const {
5530 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5531 if (EnableAArch64SlrGeneration) {
5532 SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
5533 if (Res.getNode())
5534 return Res;
5535 }
5536
5537 BuildVectorSDNode *BVN =
5538 dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5539 SDValue LHS = Op.getOperand(1);
5540 SDLoc dl(Op);
5541 EVT VT = Op.getValueType();
5542
5543 // OR commutes, so try swapping the operands.
5544 if (!BVN) {
5545 LHS = Op.getOperand(0);
5546 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5547 }
5548 if (!BVN)
5549 return Op;
5550
5551 APInt CnstBits(VT.getSizeInBits(), 0);
5552 APInt UndefBits(VT.getSizeInBits(), 0);
5553 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5554 // We make use of a little bit of goto ickiness in order to avoid having to
5555 // duplicate the immediate matching logic for the undef toggled case.
5556 bool SecondTry = false;
5557 AttemptModImm:
5558
5559 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5560 CnstBits = CnstBits.zextOrTrunc(64);
5561 uint64_t CnstVal = CnstBits.getZExtValue();
5562
5563 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5564 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5565 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5566 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005567 DAG.getConstant(CnstVal, dl, MVT::i32),
5568 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005569 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005570 }
5571
5572 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5573 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5574 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5575 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005576 DAG.getConstant(CnstVal, dl, MVT::i32),
5577 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005578 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005579 }
5580
5581 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5582 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5583 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5584 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005585 DAG.getConstant(CnstVal, dl, MVT::i32),
5586 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005587 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005588 }
5589
5590 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5591 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5592 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5593 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005594 DAG.getConstant(CnstVal, dl, MVT::i32),
5595 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005596 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005597 }
5598
5599 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5600 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5601 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5602 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005603 DAG.getConstant(CnstVal, dl, MVT::i32),
5604 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005605 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005606 }
5607
5608 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5609 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5610 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5611 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005612 DAG.getConstant(CnstVal, dl, MVT::i32),
5613 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005614 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005615 }
5616 }
5617
5618 if (SecondTry)
5619 goto FailedModImm;
5620 SecondTry = true;
5621 CnstBits = UndefBits;
5622 goto AttemptModImm;
5623 }
5624
5625// We can always fall back to a non-immediate OR.
5626FailedModImm:
5627 return Op;
5628}
5629
Kevin Qin4473c192014-07-07 02:45:40 +00005630// Normalize the operands of BUILD_VECTOR. The value of constant operands will
5631// be truncated to fit element width.
5632static SDValue NormalizeBuildVector(SDValue Op,
5633 SelectionDAG &DAG) {
5634 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00005635 SDLoc dl(Op);
5636 EVT VT = Op.getValueType();
Kevin Qin4473c192014-07-07 02:45:40 +00005637 EVT EltTy= VT.getVectorElementType();
5638
5639 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
5640 return Op;
5641
5642 SmallVector<SDValue, 16> Ops;
5643 for (unsigned I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
5644 SDValue Lane = Op.getOperand(I);
5645 if (Lane.getOpcode() == ISD::Constant) {
5646 APInt LowBits(EltTy.getSizeInBits(),
5647 cast<ConstantSDNode>(Lane)->getZExtValue());
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005648 Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
Kevin Qin4473c192014-07-07 02:45:40 +00005649 }
5650 Ops.push_back(Lane);
5651 }
5652 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5653}
5654
5655SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
5656 SelectionDAG &DAG) const {
5657 SDLoc dl(Op);
5658 EVT VT = Op.getValueType();
5659 Op = NormalizeBuildVector(Op, DAG);
5660 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
Tim Northover3b0846e2014-05-24 12:50:23 +00005661
5662 APInt CnstBits(VT.getSizeInBits(), 0);
5663 APInt UndefBits(VT.getSizeInBits(), 0);
5664 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5665 // We make use of a little bit of goto ickiness in order to avoid having to
5666 // duplicate the immediate matching logic for the undef toggled case.
5667 bool SecondTry = false;
5668 AttemptModImm:
5669
5670 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5671 CnstBits = CnstBits.zextOrTrunc(64);
5672 uint64_t CnstVal = CnstBits.getZExtValue();
5673
5674 // Certain magic vector constants (used to express things like NOT
5675 // and NEG) are passed through unmodified. This allows codegen patterns
5676 // for these operations to match. Special-purpose patterns will lower
5677 // these immediates to MOVIs if it proves necessary.
5678 if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
5679 return Op;
5680
5681 // The many faces of MOVI...
5682 if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
5683 CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
5684 if (VT.getSizeInBits() == 128) {
5685 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005686 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005687 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005688 }
5689
5690 // Support the V64 version via subregister insertion.
5691 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005692 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005693 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005694 }
5695
5696 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5697 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5698 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5699 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005700 DAG.getConstant(CnstVal, dl, MVT::i32),
5701 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005702 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005703 }
5704
5705 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5706 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5707 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5708 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005709 DAG.getConstant(CnstVal, dl, MVT::i32),
5710 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005711 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005712 }
5713
5714 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5715 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5716 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5717 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005718 DAG.getConstant(CnstVal, dl, MVT::i32),
5719 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005720 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005721 }
5722
5723 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5724 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5725 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5726 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005727 DAG.getConstant(CnstVal, dl, MVT::i32),
5728 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005729 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005730 }
5731
5732 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5733 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5734 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5735 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005736 DAG.getConstant(CnstVal, dl, MVT::i32),
5737 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005738 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005739 }
5740
5741 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5742 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5743 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5744 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005745 DAG.getConstant(CnstVal, dl, MVT::i32),
5746 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005747 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005748 }
5749
5750 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5751 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5752 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5753 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005754 DAG.getConstant(CnstVal, dl, MVT::i32),
5755 DAG.getConstant(264, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005756 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005757 }
5758
5759 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5760 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5761 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5762 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005763 DAG.getConstant(CnstVal, dl, MVT::i32),
5764 DAG.getConstant(272, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005765 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005766 }
5767
5768 if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
5769 CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
5770 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
5771 SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005772 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005773 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005774 }
5775
5776 // The few faces of FMOV...
5777 if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
5778 CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
5779 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
5780 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005781 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005782 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005783 }
5784
5785 if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
5786 VT.getSizeInBits() == 128) {
5787 CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
5788 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005789 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005790 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005791 }
5792
5793 // The many faces of MVNI...
5794 CnstVal = ~CnstVal;
5795 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5796 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5797 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5798 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005799 DAG.getConstant(CnstVal, dl, MVT::i32),
5800 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005801 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005802 }
5803
5804 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5805 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5806 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5807 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005808 DAG.getConstant(CnstVal, dl, MVT::i32),
5809 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005810 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005811 }
5812
5813 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5814 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5815 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5816 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005817 DAG.getConstant(CnstVal, dl, MVT::i32),
5818 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005819 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005820 }
5821
5822 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5823 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5824 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5825 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005826 DAG.getConstant(CnstVal, dl, MVT::i32),
5827 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005828 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005829 }
5830
5831 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5832 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5833 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5834 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005835 DAG.getConstant(CnstVal, dl, MVT::i32),
5836 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005837 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005838 }
5839
5840 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5841 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5842 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5843 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005844 DAG.getConstant(CnstVal, dl, MVT::i32),
5845 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005846 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005847 }
5848
5849 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5850 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5851 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5852 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005853 DAG.getConstant(CnstVal, dl, MVT::i32),
5854 DAG.getConstant(264, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005855 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005856 }
5857
5858 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5859 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5860 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5861 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005862 DAG.getConstant(CnstVal, dl, MVT::i32),
5863 DAG.getConstant(272, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005864 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005865 }
5866 }
5867
5868 if (SecondTry)
5869 goto FailedModImm;
5870 SecondTry = true;
5871 CnstBits = UndefBits;
5872 goto AttemptModImm;
5873 }
5874FailedModImm:
5875
5876 // Scan through the operands to find some interesting properties we can
5877 // exploit:
5878 // 1) If only one value is used, we can use a DUP, or
5879 // 2) if only the low element is not undef, we can just insert that, or
5880 // 3) if only one constant value is used (w/ some non-constant lanes),
5881 // we can splat the constant value into the whole vector then fill
5882 // in the non-constant lanes.
5883 // 4) FIXME: If different constant values are used, but we can intelligently
5884 // select the values we'll be overwriting for the non-constant
5885 // lanes such that we can directly materialize the vector
5886 // some other way (MOVI, e.g.), we can be sneaky.
5887 unsigned NumElts = VT.getVectorNumElements();
5888 bool isOnlyLowElement = true;
5889 bool usesOnlyOneValue = true;
5890 bool usesOnlyOneConstantValue = true;
5891 bool isConstant = true;
5892 unsigned NumConstantLanes = 0;
5893 SDValue Value;
5894 SDValue ConstantValue;
5895 for (unsigned i = 0; i < NumElts; ++i) {
5896 SDValue V = Op.getOperand(i);
5897 if (V.getOpcode() == ISD::UNDEF)
5898 continue;
5899 if (i > 0)
5900 isOnlyLowElement = false;
5901 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
5902 isConstant = false;
5903
5904 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
5905 ++NumConstantLanes;
5906 if (!ConstantValue.getNode())
5907 ConstantValue = V;
5908 else if (ConstantValue != V)
5909 usesOnlyOneConstantValue = false;
5910 }
5911
5912 if (!Value.getNode())
5913 Value = V;
5914 else if (V != Value)
5915 usesOnlyOneValue = false;
5916 }
5917
5918 if (!Value.getNode())
5919 return DAG.getUNDEF(VT);
5920
5921 if (isOnlyLowElement)
5922 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
5923
5924 // Use DUP for non-constant splats. For f32 constant splats, reduce to
5925 // i32 and try again.
5926 if (usesOnlyOneValue) {
5927 if (!isConstant) {
5928 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5929 Value.getValueType() != VT)
5930 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
5931
5932 // This is actually a DUPLANExx operation, which keeps everything vectory.
5933
5934 // DUPLANE works on 128-bit vectors, widen it if necessary.
5935 SDValue Lane = Value.getOperand(1);
5936 Value = Value.getOperand(0);
5937 if (Value.getValueType().getSizeInBits() == 64)
5938 Value = WidenVector(Value, DAG);
5939
5940 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
5941 return DAG.getNode(Opcode, dl, VT, Value, Lane);
5942 }
5943
5944 if (VT.getVectorElementType().isFloatingPoint()) {
5945 SmallVector<SDValue, 8> Ops;
Pirama Arumuga Nainar12aeefc2015-03-17 23:10:29 +00005946 EVT EltTy = VT.getVectorElementType();
5947 assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
5948 "Unsupported floating-point vector type");
5949 MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00005950 for (unsigned i = 0; i < NumElts; ++i)
5951 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
5952 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
5953 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
5954 Val = LowerBUILD_VECTOR(Val, DAG);
5955 if (Val.getNode())
5956 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5957 }
5958 }
5959
5960 // If there was only one constant value used and for more than one lane,
5961 // start by splatting that value, then replace the non-constant lanes. This
5962 // is better than the default, which will perform a separate initialization
5963 // for each lane.
5964 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
5965 SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
5966 // Now insert the non-constant lanes.
5967 for (unsigned i = 0; i < NumElts; ++i) {
5968 SDValue V = Op.getOperand(i);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005969 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005970 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
5971 // Note that type legalization likely mucked about with the VT of the
5972 // source operand, so we may have to convert it here before inserting.
5973 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
5974 }
5975 }
5976 return Val;
5977 }
5978
5979 // If all elements are constants and the case above didn't get hit, fall back
5980 // to the default expansion, which will generate a load from the constant
5981 // pool.
5982 if (isConstant)
5983 return SDValue();
5984
5985 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
5986 if (NumElts >= 4) {
5987 SDValue shuffle = ReconstructShuffle(Op, DAG);
5988 if (shuffle != SDValue())
5989 return shuffle;
5990 }
5991
5992 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
5993 // know the default expansion would otherwise fall back on something even
5994 // worse. For a vector with one or two non-undef values, that's
5995 // scalar_to_vector for the elements followed by a shuffle (provided the
5996 // shuffle is valid for the target) and materialization element by element
5997 // on the stack followed by a load for everything else.
5998 if (!isConstant && !usesOnlyOneValue) {
5999 SDValue Vec = DAG.getUNDEF(VT);
6000 SDValue Op0 = Op.getOperand(0);
6001 unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
6002 unsigned i = 0;
6003 // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
6004 // a) Avoid a RMW dependency on the full vector register, and
6005 // b) Allow the register coalescer to fold away the copy if the
6006 // value is already in an S or D register.
6007 if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) {
6008 unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
6009 MachineSDNode *N =
6010 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006011 DAG.getTargetConstant(SubIdx, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00006012 Vec = SDValue(N, 0);
6013 ++i;
6014 }
6015 for (; i < NumElts; ++i) {
6016 SDValue V = Op.getOperand(i);
6017 if (V.getOpcode() == ISD::UNDEF)
6018 continue;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006019 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00006020 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6021 }
6022 return Vec;
6023 }
6024
6025 // Just use the default expansion. We failed to find a better alternative.
6026 return SDValue();
6027}
6028
6029SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
6030 SelectionDAG &DAG) const {
6031 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
6032
Tim Northovere4b8e132014-07-15 10:00:26 +00006033 // Check for non-constant or out of range lane.
6034 EVT VT = Op.getOperand(0).getValueType();
6035 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
6036 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006037 return SDValue();
6038
Tim Northover3b0846e2014-05-24 12:50:23 +00006039
6040 // Insertion/extraction are legal for V128 types.
6041 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006042 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6043 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006044 return Op;
6045
6046 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006047 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006048 return SDValue();
6049
6050 // For V64 types, we perform insertion by expanding the value
6051 // to a V128 type and perform the insertion on that.
6052 SDLoc DL(Op);
6053 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6054 EVT WideTy = WideVec.getValueType();
6055
6056 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
6057 Op.getOperand(1), Op.getOperand(2));
6058 // Re-narrow the resultant vector.
6059 return NarrowVector(Node, DAG);
6060}
6061
6062SDValue
6063AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6064 SelectionDAG &DAG) const {
6065 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
6066
Tim Northovere4b8e132014-07-15 10:00:26 +00006067 // Check for non-constant or out of range lane.
6068 EVT VT = Op.getOperand(0).getValueType();
6069 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6070 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006071 return SDValue();
6072
Tim Northover3b0846e2014-05-24 12:50:23 +00006073
6074 // Insertion/extraction are legal for V128 types.
6075 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006076 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6077 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006078 return Op;
6079
6080 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006081 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006082 return SDValue();
6083
6084 // For V64 types, we perform extraction by expanding the value
6085 // to a V128 type and perform the extraction on that.
6086 SDLoc DL(Op);
6087 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6088 EVT WideTy = WideVec.getValueType();
6089
6090 EVT ExtrTy = WideTy.getVectorElementType();
6091 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
6092 ExtrTy = MVT::i32;
6093
6094 // For extractions, we just return the result directly.
6095 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
6096 Op.getOperand(1));
6097}
6098
6099SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
6100 SelectionDAG &DAG) const {
6101 EVT VT = Op.getOperand(0).getValueType();
6102 SDLoc dl(Op);
6103 // Just in case...
6104 if (!VT.isVector())
6105 return SDValue();
6106
6107 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6108 if (!Cst)
6109 return SDValue();
6110 unsigned Val = Cst->getZExtValue();
6111
6112 unsigned Size = Op.getValueType().getSizeInBits();
6113 if (Val == 0) {
6114 switch (Size) {
6115 case 8:
6116 return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(),
6117 Op.getOperand(0));
6118 case 16:
6119 return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(),
6120 Op.getOperand(0));
6121 case 32:
6122 return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(),
6123 Op.getOperand(0));
6124 case 64:
6125 return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(),
6126 Op.getOperand(0));
6127 default:
6128 llvm_unreachable("Unexpected vector type in extract_subvector!");
6129 }
6130 }
6131 // If this is extracting the upper 64-bits of a 128-bit vector, we match
6132 // that directly.
6133 if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
6134 return Op;
6135
6136 return SDValue();
6137}
6138
6139bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6140 EVT VT) const {
6141 if (VT.getVectorNumElements() == 4 &&
6142 (VT.is128BitVector() || VT.is64BitVector())) {
6143 unsigned PFIndexes[4];
6144 for (unsigned i = 0; i != 4; ++i) {
6145 if (M[i] < 0)
6146 PFIndexes[i] = 8;
6147 else
6148 PFIndexes[i] = M[i];
6149 }
6150
6151 // Compute the index in the perfect shuffle table.
6152 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6153 PFIndexes[2] * 9 + PFIndexes[3];
6154 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6155 unsigned Cost = (PFEntry >> 30);
6156
6157 if (Cost <= 4)
6158 return true;
6159 }
6160
6161 bool DummyBool;
6162 int DummyInt;
6163 unsigned DummyUnsigned;
6164
6165 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
6166 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
6167 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
6168 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
6169 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
6170 isZIPMask(M, VT, DummyUnsigned) ||
6171 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
6172 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
6173 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
6174 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
6175 isConcatMask(M, VT, VT.getSizeInBits() == 128));
6176}
6177
6178/// getVShiftImm - Check if this is a valid build_vector for the immediate
6179/// operand of a vector shift operation, where all the elements of the
6180/// build_vector must have the same constant integer value.
6181static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6182 // Ignore bit_converts.
6183 while (Op.getOpcode() == ISD::BITCAST)
6184 Op = Op.getOperand(0);
6185 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6186 APInt SplatBits, SplatUndef;
6187 unsigned SplatBitSize;
6188 bool HasAnyUndefs;
6189 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6190 HasAnyUndefs, ElementBits) ||
6191 SplatBitSize > ElementBits)
6192 return false;
6193 Cnt = SplatBits.getSExtValue();
6194 return true;
6195}
6196
6197/// isVShiftLImm - Check if this is a valid build_vector for the immediate
6198/// operand of a vector shift left operation. That value must be in the range:
6199/// 0 <= Value < ElementBits for a left shift; or
6200/// 0 <= Value <= ElementBits for a long left shift.
6201static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6202 assert(VT.isVector() && "vector shift count is not a vector type");
6203 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6204 if (!getVShiftImm(Op, ElementBits, Cnt))
6205 return false;
6206 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6207}
6208
6209/// isVShiftRImm - Check if this is a valid build_vector for the immediate
6210/// operand of a vector shift right operation. For a shift opcode, the value
6211/// is positive, but for an intrinsic the value count must be negative. The
6212/// absolute value must be in the range:
6213/// 1 <= |Value| <= ElementBits for a right shift; or
6214/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
6215static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6216 int64_t &Cnt) {
6217 assert(VT.isVector() && "vector shift count is not a vector type");
6218 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6219 if (!getVShiftImm(Op, ElementBits, Cnt))
6220 return false;
6221 if (isIntrinsic)
6222 Cnt = -Cnt;
6223 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6224}
6225
6226SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
6227 SelectionDAG &DAG) const {
6228 EVT VT = Op.getValueType();
6229 SDLoc DL(Op);
6230 int64_t Cnt;
6231
6232 if (!Op.getOperand(1).getValueType().isVector())
6233 return Op;
6234 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6235
6236 switch (Op.getOpcode()) {
6237 default:
6238 llvm_unreachable("unexpected shift opcode");
6239
6240 case ISD::SHL:
6241 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006242 return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
6243 DAG.getConstant(Cnt, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00006244 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006245 DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
6246 MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00006247 Op.getOperand(0), Op.getOperand(1));
6248 case ISD::SRA:
6249 case ISD::SRL:
6250 // Right shift immediate
6251 if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) &&
6252 Cnt < EltSize) {
6253 unsigned Opc =
6254 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006255 return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
6256 DAG.getConstant(Cnt, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00006257 }
6258
6259 // Right shift register. Note, there is not a shift right register
6260 // instruction, but the shift left register instruction takes a signed
6261 // value, where negative numbers specify a right shift.
6262 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
6263 : Intrinsic::aarch64_neon_ushl;
6264 // negate the shift amount
6265 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
6266 SDValue NegShiftLeft =
6267 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006268 DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
6269 NegShift);
Tim Northover3b0846e2014-05-24 12:50:23 +00006270 return NegShiftLeft;
6271 }
6272
6273 return SDValue();
6274}
6275
6276static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
6277 AArch64CC::CondCode CC, bool NoNans, EVT VT,
6278 SDLoc dl, SelectionDAG &DAG) {
6279 EVT SrcVT = LHS.getValueType();
Tim Northover45aa89c2015-02-08 00:50:47 +00006280 assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
6281 "function only supposed to emit natural comparisons");
Tim Northover3b0846e2014-05-24 12:50:23 +00006282
6283 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
6284 APInt CnstBits(VT.getSizeInBits(), 0);
6285 APInt UndefBits(VT.getSizeInBits(), 0);
6286 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
6287 bool IsZero = IsCnst && (CnstBits == 0);
6288
6289 if (SrcVT.getVectorElementType().isFloatingPoint()) {
6290 switch (CC) {
6291 default:
6292 return SDValue();
6293 case AArch64CC::NE: {
6294 SDValue Fcmeq;
6295 if (IsZero)
6296 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6297 else
6298 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6299 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
6300 }
6301 case AArch64CC::EQ:
6302 if (IsZero)
6303 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6304 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6305 case AArch64CC::GE:
6306 if (IsZero)
6307 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
6308 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
6309 case AArch64CC::GT:
6310 if (IsZero)
6311 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
6312 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
6313 case AArch64CC::LS:
6314 if (IsZero)
6315 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
6316 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
6317 case AArch64CC::LT:
6318 if (!NoNans)
6319 return SDValue();
6320 // If we ignore NaNs then we can use to the MI implementation.
6321 // Fallthrough.
6322 case AArch64CC::MI:
6323 if (IsZero)
6324 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
6325 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
6326 }
6327 }
6328
6329 switch (CC) {
6330 default:
6331 return SDValue();
6332 case AArch64CC::NE: {
6333 SDValue Cmeq;
6334 if (IsZero)
6335 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6336 else
6337 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6338 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
6339 }
6340 case AArch64CC::EQ:
6341 if (IsZero)
6342 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6343 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6344 case AArch64CC::GE:
6345 if (IsZero)
6346 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
6347 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
6348 case AArch64CC::GT:
6349 if (IsZero)
6350 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
6351 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
6352 case AArch64CC::LE:
6353 if (IsZero)
6354 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
6355 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
6356 case AArch64CC::LS:
6357 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
6358 case AArch64CC::LO:
6359 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
6360 case AArch64CC::LT:
6361 if (IsZero)
6362 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
6363 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
6364 case AArch64CC::HI:
6365 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
6366 case AArch64CC::HS:
6367 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
6368 }
6369}
6370
6371SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
6372 SelectionDAG &DAG) const {
6373 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6374 SDValue LHS = Op.getOperand(0);
6375 SDValue RHS = Op.getOperand(1);
Tim Northover45aa89c2015-02-08 00:50:47 +00006376 EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
Tim Northover3b0846e2014-05-24 12:50:23 +00006377 SDLoc dl(Op);
6378
6379 if (LHS.getValueType().getVectorElementType().isInteger()) {
6380 assert(LHS.getValueType() == RHS.getValueType());
6381 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
Tim Northover45aa89c2015-02-08 00:50:47 +00006382 SDValue Cmp =
6383 EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
6384 return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00006385 }
6386
6387 assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
6388 LHS.getValueType().getVectorElementType() == MVT::f64);
6389
6390 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
6391 // clean. Some of them require two branches to implement.
6392 AArch64CC::CondCode CC1, CC2;
6393 bool ShouldInvert;
6394 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
6395
6396 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
6397 SDValue Cmp =
Tim Northover45aa89c2015-02-08 00:50:47 +00006398 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00006399 if (!Cmp.getNode())
6400 return SDValue();
6401
6402 if (CC2 != AArch64CC::AL) {
6403 SDValue Cmp2 =
Tim Northover45aa89c2015-02-08 00:50:47 +00006404 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00006405 if (!Cmp2.getNode())
6406 return SDValue();
6407
Tim Northover45aa89c2015-02-08 00:50:47 +00006408 Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
Tim Northover3b0846e2014-05-24 12:50:23 +00006409 }
6410
Tim Northover45aa89c2015-02-08 00:50:47 +00006411 Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
6412
Tim Northover3b0846e2014-05-24 12:50:23 +00006413 if (ShouldInvert)
6414 return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
6415
6416 return Cmp;
6417}
6418
6419/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6420/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
6421/// specified in the intrinsic calls.
6422bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6423 const CallInst &I,
6424 unsigned Intrinsic) const {
6425 switch (Intrinsic) {
6426 case Intrinsic::aarch64_neon_ld2:
6427 case Intrinsic::aarch64_neon_ld3:
6428 case Intrinsic::aarch64_neon_ld4:
6429 case Intrinsic::aarch64_neon_ld1x2:
6430 case Intrinsic::aarch64_neon_ld1x3:
6431 case Intrinsic::aarch64_neon_ld1x4:
6432 case Intrinsic::aarch64_neon_ld2lane:
6433 case Intrinsic::aarch64_neon_ld3lane:
6434 case Intrinsic::aarch64_neon_ld4lane:
6435 case Intrinsic::aarch64_neon_ld2r:
6436 case Intrinsic::aarch64_neon_ld3r:
6437 case Intrinsic::aarch64_neon_ld4r: {
6438 Info.opc = ISD::INTRINSIC_W_CHAIN;
6439 // Conservatively set memVT to the entire set of vectors loaded.
6440 uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
6441 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6442 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6443 Info.offset = 0;
6444 Info.align = 0;
6445 Info.vol = false; // volatile loads with NEON intrinsics not supported
6446 Info.readMem = true;
6447 Info.writeMem = false;
6448 return true;
6449 }
6450 case Intrinsic::aarch64_neon_st2:
6451 case Intrinsic::aarch64_neon_st3:
6452 case Intrinsic::aarch64_neon_st4:
6453 case Intrinsic::aarch64_neon_st1x2:
6454 case Intrinsic::aarch64_neon_st1x3:
6455 case Intrinsic::aarch64_neon_st1x4:
6456 case Intrinsic::aarch64_neon_st2lane:
6457 case Intrinsic::aarch64_neon_st3lane:
6458 case Intrinsic::aarch64_neon_st4lane: {
6459 Info.opc = ISD::INTRINSIC_VOID;
6460 // Conservatively set memVT to the entire set of vectors stored.
6461 unsigned NumElts = 0;
6462 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6463 Type *ArgTy = I.getArgOperand(ArgI)->getType();
6464 if (!ArgTy->isVectorTy())
6465 break;
6466 NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
6467 }
6468 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6469 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6470 Info.offset = 0;
6471 Info.align = 0;
6472 Info.vol = false; // volatile stores with NEON intrinsics not supported
6473 Info.readMem = false;
6474 Info.writeMem = true;
6475 return true;
6476 }
6477 case Intrinsic::aarch64_ldaxr:
6478 case Intrinsic::aarch64_ldxr: {
6479 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
6480 Info.opc = ISD::INTRINSIC_W_CHAIN;
6481 Info.memVT = MVT::getVT(PtrTy->getElementType());
6482 Info.ptrVal = I.getArgOperand(0);
6483 Info.offset = 0;
6484 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6485 Info.vol = true;
6486 Info.readMem = true;
6487 Info.writeMem = false;
6488 return true;
6489 }
6490 case Intrinsic::aarch64_stlxr:
6491 case Intrinsic::aarch64_stxr: {
6492 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6493 Info.opc = ISD::INTRINSIC_W_CHAIN;
6494 Info.memVT = MVT::getVT(PtrTy->getElementType());
6495 Info.ptrVal = I.getArgOperand(1);
6496 Info.offset = 0;
6497 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6498 Info.vol = true;
6499 Info.readMem = false;
6500 Info.writeMem = true;
6501 return true;
6502 }
6503 case Intrinsic::aarch64_ldaxp:
6504 case Intrinsic::aarch64_ldxp: {
6505 Info.opc = ISD::INTRINSIC_W_CHAIN;
6506 Info.memVT = MVT::i128;
6507 Info.ptrVal = I.getArgOperand(0);
6508 Info.offset = 0;
6509 Info.align = 16;
6510 Info.vol = true;
6511 Info.readMem = true;
6512 Info.writeMem = false;
6513 return true;
6514 }
6515 case Intrinsic::aarch64_stlxp:
6516 case Intrinsic::aarch64_stxp: {
6517 Info.opc = ISD::INTRINSIC_W_CHAIN;
6518 Info.memVT = MVT::i128;
6519 Info.ptrVal = I.getArgOperand(2);
6520 Info.offset = 0;
6521 Info.align = 16;
6522 Info.vol = true;
6523 Info.readMem = false;
6524 Info.writeMem = true;
6525 return true;
6526 }
6527 default:
6528 break;
6529 }
6530
6531 return false;
6532}
6533
6534// Truncations from 64-bit GPR to 32-bit GPR is free.
6535bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6536 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6537 return false;
6538 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6539 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006540 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006541}
6542bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006543 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006544 return false;
6545 unsigned NumBits1 = VT1.getSizeInBits();
6546 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006547 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006548}
6549
Chad Rosier54390052015-02-23 19:15:16 +00006550/// Check if it is profitable to hoist instruction in then/else to if.
6551/// Not profitable if I and it's user can form a FMA instruction
6552/// because we prefer FMSUB/FMADD.
6553bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
6554 if (I->getOpcode() != Instruction::FMul)
6555 return true;
6556
6557 if (I->getNumUses() != 1)
6558 return true;
6559
6560 Instruction *User = I->user_back();
6561
6562 if (User &&
6563 !(User->getOpcode() == Instruction::FSub ||
6564 User->getOpcode() == Instruction::FAdd))
6565 return true;
6566
6567 const TargetOptions &Options = getTargetMachine().Options;
6568 EVT VT = getValueType(User->getOperand(0)->getType());
6569
6570 if (isFMAFasterThanFMulAndFAdd(VT) &&
6571 isOperationLegalOrCustom(ISD::FMA, VT) &&
6572 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath))
6573 return false;
6574
6575 return true;
6576}
6577
Tim Northover3b0846e2014-05-24 12:50:23 +00006578// All 32-bit GPR operations implicitly zero the high-half of the corresponding
6579// 64-bit GPR.
6580bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6581 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6582 return false;
6583 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6584 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006585 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006586}
6587bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006588 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006589 return false;
6590 unsigned NumBits1 = VT1.getSizeInBits();
6591 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006592 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006593}
6594
6595bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6596 EVT VT1 = Val.getValueType();
6597 if (isZExtFree(VT1, VT2)) {
6598 return true;
6599 }
6600
6601 if (Val.getOpcode() != ISD::LOAD)
6602 return false;
6603
6604 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
Hao Liu40914502014-05-29 09:19:07 +00006605 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
6606 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
6607 VT1.getSizeInBits() <= 32);
Tim Northover3b0846e2014-05-24 12:50:23 +00006608}
6609
Quentin Colombet6843ac42015-03-31 20:52:32 +00006610bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
6611 if (isa<FPExtInst>(Ext))
6612 return false;
6613
6614 // Vector types are next free.
6615 if (Ext->getType()->isVectorTy())
6616 return false;
6617
6618 for (const Use &U : Ext->uses()) {
6619 // The extension is free if we can fold it with a left shift in an
6620 // addressing mode or an arithmetic operation: add, sub, and cmp.
6621
6622 // Is there a shift?
6623 const Instruction *Instr = cast<Instruction>(U.getUser());
6624
6625 // Is this a constant shift?
6626 switch (Instr->getOpcode()) {
6627 case Instruction::Shl:
6628 if (!isa<ConstantInt>(Instr->getOperand(1)))
6629 return false;
6630 break;
6631 case Instruction::GetElementPtr: {
6632 gep_type_iterator GTI = gep_type_begin(Instr);
6633 std::advance(GTI, U.getOperandNo());
6634 Type *IdxTy = *GTI;
6635 // This extension will end up with a shift because of the scaling factor.
6636 // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
6637 // Get the shift amount based on the scaling factor:
6638 // log2(sizeof(IdxTy)) - log2(8).
6639 uint64_t ShiftAmt =
6640 countTrailingZeros(getDataLayout()->getTypeStoreSizeInBits(IdxTy)) - 3;
6641 // Is the constant foldable in the shift of the addressing mode?
6642 // I.e., shift amount is between 1 and 4 inclusive.
6643 if (ShiftAmt == 0 || ShiftAmt > 4)
6644 return false;
6645 break;
6646 }
6647 case Instruction::Trunc:
6648 // Check if this is a noop.
6649 // trunc(sext ty1 to ty2) to ty1.
6650 if (Instr->getType() == Ext->getOperand(0)->getType())
6651 continue;
6652 // FALL THROUGH.
6653 default:
6654 return false;
6655 }
6656
6657 // At this point we can use the bfm family, so this extension is free
6658 // for that use.
6659 }
6660 return true;
6661}
6662
Tim Northover3b0846e2014-05-24 12:50:23 +00006663bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
6664 unsigned &RequiredAligment) const {
6665 if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
6666 return false;
6667 // Cyclone supports unaligned accesses.
6668 RequiredAligment = 0;
6669 unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
6670 return NumBits == 32 || NumBits == 64;
6671}
6672
6673bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
6674 unsigned &RequiredAligment) const {
6675 if (!LoadedType.isSimple() ||
6676 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
6677 return false;
6678 // Cyclone supports unaligned accesses.
6679 RequiredAligment = 0;
6680 unsigned NumBits = LoadedType.getSizeInBits();
6681 return NumBits == 32 || NumBits == 64;
6682}
6683
6684static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
6685 unsigned AlignCheck) {
6686 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
6687 (DstAlign == 0 || DstAlign % AlignCheck == 0));
6688}
6689
6690EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
6691 unsigned SrcAlign, bool IsMemset,
6692 bool ZeroMemset,
6693 bool MemcpyStrSrc,
6694 MachineFunction &MF) const {
6695 // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
6696 // instruction to materialize the v2i64 zero and one store (with restrictive
6697 // addressing mode). Just do two i64 store of zero-registers.
6698 bool Fast;
6699 const Function *F = MF.getFunction();
6700 if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00006701 !F->hasFnAttribute(Attribute::NoImplicitFloat) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00006702 (memOpAlign(SrcAlign, DstAlign, 16) ||
Matt Arsenault6f2a5262014-07-27 17:46:40 +00006703 (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
Tim Northover3b0846e2014-05-24 12:50:23 +00006704 return MVT::f128;
6705
Lang Hames90333852015-04-09 03:40:33 +00006706 if (Size >= 8 &&
6707 (memOpAlign(SrcAlign, DstAlign, 8) ||
6708 (allowsMisalignedMemoryAccesses(MVT::i64, 0, 1, &Fast) && Fast)))
6709 return MVT::i64;
6710
6711 if (Size >= 4 &&
6712 (memOpAlign(SrcAlign, DstAlign, 4) ||
6713 (allowsMisalignedMemoryAccesses(MVT::i32, 0, 1, &Fast) && Fast)))
Lang Hames522bf132015-04-09 05:34:57 +00006714 return MVT::i32;
Lang Hames90333852015-04-09 03:40:33 +00006715
6716 return MVT::Other;
Tim Northover3b0846e2014-05-24 12:50:23 +00006717}
6718
6719// 12-bit optionally shifted immediates are legal for adds.
6720bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
6721 if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
6722 return true;
6723 return false;
6724}
6725
6726// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
6727// immediates is the same as for an add or a sub.
6728bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
6729 if (Immed < 0)
6730 Immed *= -1;
6731 return isLegalAddImmediate(Immed);
6732}
6733
6734/// isLegalAddressingMode - Return true if the addressing mode represented
6735/// by AM is legal for this target, for a load/store of the specified type.
6736bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6737 Type *Ty) const {
6738 // AArch64 has five basic addressing modes:
6739 // reg
6740 // reg + 9-bit signed offset
6741 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
6742 // reg1 + reg2
6743 // reg + SIZE_IN_BYTES * reg
6744
6745 // No global is ever allowed as a base.
6746 if (AM.BaseGV)
6747 return false;
6748
6749 // No reg+reg+imm addressing.
6750 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
6751 return false;
6752
6753 // check reg + imm case:
6754 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
6755 uint64_t NumBytes = 0;
6756 if (Ty->isSized()) {
6757 uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
6758 NumBytes = NumBits / 8;
6759 if (!isPowerOf2_64(NumBits))
6760 NumBytes = 0;
6761 }
6762
6763 if (!AM.Scale) {
6764 int64_t Offset = AM.BaseOffs;
6765
6766 // 9-bit signed offset
6767 if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
6768 return true;
6769
6770 // 12-bit unsigned offset
6771 unsigned shift = Log2_64(NumBytes);
6772 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
6773 // Must be a multiple of NumBytes (NumBytes is a power of 2)
6774 (Offset >> shift) << shift == Offset)
6775 return true;
6776 return false;
6777 }
6778
6779 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
6780
6781 if (!AM.Scale || AM.Scale == 1 ||
6782 (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
6783 return true;
6784 return false;
6785}
6786
6787int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM,
6788 Type *Ty) const {
6789 // Scaling factors are not free at all.
6790 // Operands | Rt Latency
6791 // -------------------------------------------
6792 // Rt, [Xn, Xm] | 4
6793 // -------------------------------------------
6794 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
6795 // Rt, [Xn, Wm, <extend> #imm] |
6796 if (isLegalAddressingMode(AM, Ty))
6797 // Scale represents reg2 * scale, thus account for 1 if
6798 // it is not equal to 0 or 1.
6799 return AM.Scale != 0 && AM.Scale != 1;
6800 return -1;
6801}
6802
6803bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
6804 VT = VT.getScalarType();
6805
6806 if (!VT.isSimple())
6807 return false;
6808
6809 switch (VT.getSimpleVT().SimpleTy) {
6810 case MVT::f32:
6811 case MVT::f64:
6812 return true;
6813 default:
6814 break;
6815 }
6816
6817 return false;
6818}
6819
6820const MCPhysReg *
6821AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
6822 // LR is a callee-save register, but we must treat it as clobbered by any call
6823 // site. Hence we include LR in the scratch registers, which are in turn added
6824 // as implicit-defs for stackmaps and patchpoints.
6825 static const MCPhysReg ScratchRegs[] = {
6826 AArch64::X16, AArch64::X17, AArch64::LR, 0
6827 };
6828 return ScratchRegs;
6829}
6830
6831bool
6832AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
6833 EVT VT = N->getValueType(0);
6834 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
6835 // it with shift to let it be lowered to UBFX.
6836 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
6837 isa<ConstantSDNode>(N->getOperand(1))) {
6838 uint64_t TruncMask = N->getConstantOperandVal(1);
6839 if (isMask_64(TruncMask) &&
6840 N->getOperand(0).getOpcode() == ISD::SRL &&
6841 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
6842 return false;
6843 }
6844 return true;
6845}
6846
6847bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
6848 Type *Ty) const {
6849 assert(Ty->isIntegerTy());
6850
6851 unsigned BitSize = Ty->getPrimitiveSizeInBits();
6852 if (BitSize == 0)
6853 return false;
6854
6855 int64_t Val = Imm.getSExtValue();
6856 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
6857 return true;
6858
6859 if ((int64_t)Val < 0)
6860 Val = ~Val;
6861 if (BitSize == 32)
6862 Val &= (1LL << 32) - 1;
6863
6864 unsigned LZ = countLeadingZeros((uint64_t)Val);
6865 unsigned Shift = (63 - LZ) / 16;
6866 // MOVZ is free so return true for one or fewer MOVK.
David Blaikie186d2cb2015-03-24 16:24:01 +00006867 return Shift < 3;
Tim Northover3b0846e2014-05-24 12:50:23 +00006868}
6869
6870// Generate SUBS and CSEL for integer abs.
6871static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
6872 EVT VT = N->getValueType(0);
6873
6874 SDValue N0 = N->getOperand(0);
6875 SDValue N1 = N->getOperand(1);
6876 SDLoc DL(N);
6877
6878 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
6879 // and change it to SUB and CSEL.
6880 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
6881 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
6882 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
6883 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
6884 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006885 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
Tim Northover3b0846e2014-05-24 12:50:23 +00006886 N0.getOperand(0));
6887 // Generate SUBS & CSEL.
6888 SDValue Cmp =
6889 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006890 N0.getOperand(0), DAG.getConstant(0, DL, VT));
Tim Northover3b0846e2014-05-24 12:50:23 +00006891 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006892 DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00006893 SDValue(Cmp.getNode(), 1));
6894 }
6895 return SDValue();
6896}
6897
6898// performXorCombine - Attempts to handle integer ABS.
6899static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
6900 TargetLowering::DAGCombinerInfo &DCI,
6901 const AArch64Subtarget *Subtarget) {
6902 if (DCI.isBeforeLegalizeOps())
6903 return SDValue();
6904
6905 return performIntegerAbsCombine(N, DAG);
6906}
6907
Chad Rosier17020f92014-07-23 14:57:52 +00006908SDValue
6909AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
6910 SelectionDAG &DAG,
6911 std::vector<SDNode *> *Created) const {
6912 // fold (sdiv X, pow2)
6913 EVT VT = N->getValueType(0);
6914 if ((VT != MVT::i32 && VT != MVT::i64) ||
6915 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
6916 return SDValue();
6917
6918 SDLoc DL(N);
6919 SDValue N0 = N->getOperand(0);
6920 unsigned Lg2 = Divisor.countTrailingZeros();
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006921 SDValue Zero = DAG.getConstant(0, DL, VT);
6922 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
Chad Rosier17020f92014-07-23 14:57:52 +00006923
6924 // Add (N0 < 0) ? Pow2 - 1 : 0;
6925 SDValue CCVal;
6926 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
6927 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
6928 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
6929
6930 if (Created) {
6931 Created->push_back(Cmp.getNode());
6932 Created->push_back(Add.getNode());
6933 Created->push_back(CSel.getNode());
6934 }
6935
6936 // Divide by pow2.
6937 SDValue SRA =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006938 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
Chad Rosier17020f92014-07-23 14:57:52 +00006939
6940 // If we're dividing by a positive value, we're done. Otherwise, we must
6941 // negate the result.
6942 if (Divisor.isNonNegative())
6943 return SRA;
6944
6945 if (Created)
6946 Created->push_back(SRA.getNode());
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006947 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
Chad Rosier17020f92014-07-23 14:57:52 +00006948}
6949
Tim Northover3b0846e2014-05-24 12:50:23 +00006950static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
6951 TargetLowering::DAGCombinerInfo &DCI,
6952 const AArch64Subtarget *Subtarget) {
6953 if (DCI.isBeforeLegalizeOps())
6954 return SDValue();
6955
6956 // Multiplication of a power of two plus/minus one can be done more
6957 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
6958 // future CPUs have a cheaper MADD instruction, this may need to be
6959 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
6960 // 64-bit is 5 cycles, so this is always a win.
6961 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6962 APInt Value = C->getAPIntValue();
6963 EVT VT = N->getValueType(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006964 SDLoc DL(N);
Chad Rosiere6b87612014-06-30 14:51:14 +00006965 if (Value.isNonNegative()) {
6966 // (mul x, 2^N + 1) => (add (shl x, N), x)
6967 APInt VM1 = Value - 1;
6968 if (VM1.isPowerOf2()) {
6969 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006970 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
6971 DAG.getConstant(VM1.logBase2(), DL, MVT::i64));
6972 return DAG.getNode(ISD::ADD, DL, VT, ShiftedVal,
Chad Rosiere6b87612014-06-30 14:51:14 +00006973 N->getOperand(0));
6974 }
6975 // (mul x, 2^N - 1) => (sub (shl x, N), x)
6976 APInt VP1 = Value + 1;
6977 if (VP1.isPowerOf2()) {
6978 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006979 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
6980 DAG.getConstant(VP1.logBase2(), DL, MVT::i64));
6981 return DAG.getNode(ISD::SUB, DL, VT, ShiftedVal,
Chad Rosiere6b87612014-06-30 14:51:14 +00006982 N->getOperand(0));
6983 }
6984 } else {
Chad Rosier8e38f302015-03-03 17:31:01 +00006985 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
6986 APInt VNP1 = -Value + 1;
6987 if (VNP1.isPowerOf2()) {
6988 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006989 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
6990 DAG.getConstant(VNP1.logBase2(), DL, MVT::i64));
6991 return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0),
Chad Rosier8e38f302015-03-03 17:31:01 +00006992 ShiftedVal);
6993 }
Chad Rosiere6b87612014-06-30 14:51:14 +00006994 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
6995 APInt VNM1 = -Value - 1;
6996 if (VNM1.isPowerOf2()) {
6997 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006998 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
6999 DAG.getConstant(VNM1.logBase2(), DL, MVT::i64));
Chad Rosiere6b87612014-06-30 14:51:14 +00007000 SDValue Add =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007001 DAG.getNode(ISD::ADD, DL, VT, ShiftedVal, N->getOperand(0));
7002 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Add);
Chad Rosiere6b87612014-06-30 14:51:14 +00007003 }
Chad Rosierd96e9f12014-06-09 01:25:51 +00007004 }
Tim Northover3b0846e2014-05-24 12:50:23 +00007005 }
7006 return SDValue();
7007}
7008
Jim Grosbachf7502c42014-07-18 00:40:52 +00007009static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
7010 SelectionDAG &DAG) {
7011 // Take advantage of vector comparisons producing 0 or -1 in each lane to
7012 // optimize away operation when it's from a constant.
7013 //
7014 // The general transformation is:
7015 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
7016 // AND(VECTOR_CMP(x,y), constant2)
7017 // constant2 = UNARYOP(constant)
7018
Jim Grosbach8f6f0852014-07-23 20:41:38 +00007019 // Early exit if this isn't a vector operation, the operand of the
7020 // unary operation isn't a bitwise AND, or if the sizes of the operations
7021 // aren't the same.
Jim Grosbachf7502c42014-07-18 00:40:52 +00007022 EVT VT = N->getValueType(0);
7023 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
Jim Grosbach8f6f0852014-07-23 20:41:38 +00007024 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
7025 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
Jim Grosbachf7502c42014-07-18 00:40:52 +00007026 return SDValue();
7027
Jim Grosbach724e4382014-07-23 20:41:43 +00007028 // Now check that the other operand of the AND is a constant. We could
Jim Grosbachf7502c42014-07-18 00:40:52 +00007029 // make the transformation for non-constant splats as well, but it's unclear
7030 // that would be a benefit as it would not eliminate any operations, just
7031 // perform one more step in scalar code before moving to the vector unit.
7032 if (BuildVectorSDNode *BV =
7033 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
Jim Grosbach724e4382014-07-23 20:41:43 +00007034 // Bail out if the vector isn't a constant.
7035 if (!BV->isConstant())
Jim Grosbachf7502c42014-07-18 00:40:52 +00007036 return SDValue();
7037
7038 // Everything checks out. Build up the new and improved node.
7039 SDLoc DL(N);
7040 EVT IntVT = BV->getValueType(0);
7041 // Create a new constant of the appropriate type for the transformed
7042 // DAG.
7043 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
7044 // The AND node needs bitcasts to/from an integer vector type around it.
7045 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
7046 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
7047 N->getOperand(0)->getOperand(0), MaskConst);
7048 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
7049 return Res;
7050 }
7051
7052 return SDValue();
7053}
7054
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00007055static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
7056 const AArch64Subtarget *Subtarget) {
Jim Grosbachf7502c42014-07-18 00:40:52 +00007057 // First try to optimize away the conversion when it's conditionally from
7058 // a constant. Vectors only.
7059 SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG);
7060 if (Res != SDValue())
7061 return Res;
7062
Tim Northover3b0846e2014-05-24 12:50:23 +00007063 EVT VT = N->getValueType(0);
7064 if (VT != MVT::f32 && VT != MVT::f64)
7065 return SDValue();
Jim Grosbachf7502c42014-07-18 00:40:52 +00007066
Tim Northover3b0846e2014-05-24 12:50:23 +00007067 // Only optimize when the source and destination types have the same width.
7068 if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
7069 return SDValue();
7070
7071 // If the result of an integer load is only used by an integer-to-float
7072 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
7073 // This eliminates an "integer-to-vector-move UOP and improve throughput.
7074 SDValue N0 = N->getOperand(0);
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00007075 if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
Tim Northover3b0846e2014-05-24 12:50:23 +00007076 // Do not change the width of a volatile load.
7077 !cast<LoadSDNode>(N0)->isVolatile()) {
7078 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7079 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
7080 LN0->getPointerInfo(), LN0->isVolatile(),
7081 LN0->isNonTemporal(), LN0->isInvariant(),
7082 LN0->getAlignment());
7083
7084 // Make sure successors of the original load stay after it by updating them
7085 // to use the new Chain.
7086 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
7087
7088 unsigned Opcode =
7089 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
7090 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
7091 }
7092
7093 return SDValue();
7094}
7095
7096/// An EXTR instruction is made up of two shifts, ORed together. This helper
7097/// searches for and classifies those shifts.
7098static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
7099 bool &FromHi) {
7100 if (N.getOpcode() == ISD::SHL)
7101 FromHi = false;
7102 else if (N.getOpcode() == ISD::SRL)
7103 FromHi = true;
7104 else
7105 return false;
7106
7107 if (!isa<ConstantSDNode>(N.getOperand(1)))
7108 return false;
7109
7110 ShiftAmount = N->getConstantOperandVal(1);
7111 Src = N->getOperand(0);
7112 return true;
7113}
7114
7115/// EXTR instruction extracts a contiguous chunk of bits from two existing
7116/// registers viewed as a high/low pair. This function looks for the pattern:
7117/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
7118/// EXTR. Can't quite be done in TableGen because the two immediates aren't
7119/// independent.
7120static SDValue tryCombineToEXTR(SDNode *N,
7121 TargetLowering::DAGCombinerInfo &DCI) {
7122 SelectionDAG &DAG = DCI.DAG;
7123 SDLoc DL(N);
7124 EVT VT = N->getValueType(0);
7125
7126 assert(N->getOpcode() == ISD::OR && "Unexpected root");
7127
7128 if (VT != MVT::i32 && VT != MVT::i64)
7129 return SDValue();
7130
7131 SDValue LHS;
7132 uint32_t ShiftLHS = 0;
7133 bool LHSFromHi = 0;
7134 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
7135 return SDValue();
7136
7137 SDValue RHS;
7138 uint32_t ShiftRHS = 0;
7139 bool RHSFromHi = 0;
7140 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
7141 return SDValue();
7142
7143 // If they're both trying to come from the high part of the register, they're
7144 // not really an EXTR.
7145 if (LHSFromHi == RHSFromHi)
7146 return SDValue();
7147
7148 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
7149 return SDValue();
7150
7151 if (LHSFromHi) {
7152 std::swap(LHS, RHS);
7153 std::swap(ShiftLHS, ShiftRHS);
7154 }
7155
7156 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007157 DAG.getConstant(ShiftRHS, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007158}
7159
7160static SDValue tryCombineToBSL(SDNode *N,
7161 TargetLowering::DAGCombinerInfo &DCI) {
7162 EVT VT = N->getValueType(0);
7163 SelectionDAG &DAG = DCI.DAG;
7164 SDLoc DL(N);
7165
7166 if (!VT.isVector())
7167 return SDValue();
7168
7169 SDValue N0 = N->getOperand(0);
7170 if (N0.getOpcode() != ISD::AND)
7171 return SDValue();
7172
7173 SDValue N1 = N->getOperand(1);
7174 if (N1.getOpcode() != ISD::AND)
7175 return SDValue();
7176
7177 // We only have to look for constant vectors here since the general, variable
7178 // case can be handled in TableGen.
7179 unsigned Bits = VT.getVectorElementType().getSizeInBits();
7180 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
7181 for (int i = 1; i >= 0; --i)
7182 for (int j = 1; j >= 0; --j) {
7183 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
7184 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
7185 if (!BVN0 || !BVN1)
7186 continue;
7187
7188 bool FoundMatch = true;
7189 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
7190 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
7191 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
7192 if (!CN0 || !CN1 ||
7193 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
7194 FoundMatch = false;
7195 break;
7196 }
7197 }
7198
7199 if (FoundMatch)
7200 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
7201 N0->getOperand(1 - i), N1->getOperand(1 - j));
7202 }
7203
7204 return SDValue();
7205}
7206
7207static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
7208 const AArch64Subtarget *Subtarget) {
7209 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
7210 if (!EnableAArch64ExtrGeneration)
7211 return SDValue();
7212 SelectionDAG &DAG = DCI.DAG;
7213 EVT VT = N->getValueType(0);
7214
7215 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7216 return SDValue();
7217
7218 SDValue Res = tryCombineToEXTR(N, DCI);
7219 if (Res.getNode())
7220 return Res;
7221
7222 Res = tryCombineToBSL(N, DCI);
7223 if (Res.getNode())
7224 return Res;
7225
7226 return SDValue();
7227}
7228
7229static SDValue performBitcastCombine(SDNode *N,
7230 TargetLowering::DAGCombinerInfo &DCI,
7231 SelectionDAG &DAG) {
7232 // Wait 'til after everything is legalized to try this. That way we have
7233 // legal vector types and such.
7234 if (DCI.isBeforeLegalizeOps())
7235 return SDValue();
7236
7237 // Remove extraneous bitcasts around an extract_subvector.
7238 // For example,
7239 // (v4i16 (bitconvert
7240 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
7241 // becomes
7242 // (extract_subvector ((v8i16 ...), (i64 4)))
7243
7244 // Only interested in 64-bit vectors as the ultimate result.
7245 EVT VT = N->getValueType(0);
7246 if (!VT.isVector())
7247 return SDValue();
7248 if (VT.getSimpleVT().getSizeInBits() != 64)
7249 return SDValue();
7250 // Is the operand an extract_subvector starting at the beginning or halfway
7251 // point of the vector? A low half may also come through as an
7252 // EXTRACT_SUBREG, so look for that, too.
7253 SDValue Op0 = N->getOperand(0);
7254 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
7255 !(Op0->isMachineOpcode() &&
7256 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
7257 return SDValue();
7258 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
7259 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
7260 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
7261 return SDValue();
7262 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
7263 if (idx != AArch64::dsub)
7264 return SDValue();
7265 // The dsub reference is equivalent to a lane zero subvector reference.
7266 idx = 0;
7267 }
7268 // Look through the bitcast of the input to the extract.
7269 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
7270 return SDValue();
7271 SDValue Source = Op0->getOperand(0)->getOperand(0);
7272 // If the source type has twice the number of elements as our destination
7273 // type, we know this is an extract of the high or low half of the vector.
7274 EVT SVT = Source->getValueType(0);
7275 if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
7276 return SDValue();
7277
7278 DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
7279
7280 // Create the simplified form to just extract the low or high half of the
7281 // vector directly rather than bothering with the bitcasts.
7282 SDLoc dl(N);
7283 unsigned NumElements = VT.getVectorNumElements();
7284 if (idx) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007285 SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00007286 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
7287 } else {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007288 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00007289 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
7290 Source, SubReg),
7291 0);
7292 }
7293}
7294
7295static SDValue performConcatVectorsCombine(SDNode *N,
7296 TargetLowering::DAGCombinerInfo &DCI,
7297 SelectionDAG &DAG) {
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007298 SDLoc dl(N);
7299 EVT VT = N->getValueType(0);
7300 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
7301
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00007302 // Optimize concat_vectors of truncated vectors, where the intermediate
7303 // type is illegal, to avoid said illegality, e.g.,
7304 // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
7305 // (v2i16 (truncate (v2i64)))))
7306 // ->
Ahmed Bougachae6bb09a2015-03-21 01:08:39 +00007307 // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
7308 // (v4i32 (bitcast (v2i64))),
7309 // <0, 2, 4, 6>)))
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00007310 // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
7311 // on both input and result type, so we might generate worse code.
7312 // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
7313 if (N->getNumOperands() == 2 &&
7314 N0->getOpcode() == ISD::TRUNCATE &&
7315 N1->getOpcode() == ISD::TRUNCATE) {
7316 SDValue N00 = N0->getOperand(0);
7317 SDValue N10 = N1->getOperand(0);
7318 EVT N00VT = N00.getValueType();
7319
7320 if (N00VT == N10.getValueType() &&
7321 (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
7322 N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
Ahmed Bougachae6bb09a2015-03-21 01:08:39 +00007323 MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
7324 SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
7325 for (size_t i = 0; i < Mask.size(); ++i)
7326 Mask[i] = i * 2;
7327 return DAG.getNode(ISD::TRUNCATE, dl, VT,
7328 DAG.getVectorShuffle(
7329 MidVT, dl,
7330 DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
7331 DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00007332 }
7333 }
7334
Tim Northover3b0846e2014-05-24 12:50:23 +00007335 // Wait 'til after everything is legalized to try this. That way we have
7336 // legal vector types and such.
7337 if (DCI.isBeforeLegalizeOps())
7338 return SDValue();
7339
Tim Northover3b0846e2014-05-24 12:50:23 +00007340 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
7341 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
7342 // canonicalise to that.
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007343 if (N0 == N1 && VT.getVectorNumElements() == 2) {
Tim Northover3b0846e2014-05-24 12:50:23 +00007344 assert(VT.getVectorElementType().getSizeInBits() == 64);
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007345 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007346 DAG.getConstant(0, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007347 }
7348
7349 // Canonicalise concat_vectors so that the right-hand vector has as few
7350 // bit-casts as possible before its real operation. The primary matching
7351 // destination for these operations will be the narrowing "2" instructions,
7352 // which depend on the operation being performed on this right-hand vector.
7353 // For example,
7354 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
7355 // becomes
7356 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
7357
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007358 if (N1->getOpcode() != ISD::BITCAST)
Tim Northover3b0846e2014-05-24 12:50:23 +00007359 return SDValue();
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007360 SDValue RHS = N1->getOperand(0);
Tim Northover3b0846e2014-05-24 12:50:23 +00007361 MVT RHSTy = RHS.getValueType().getSimpleVT();
7362 // If the RHS is not a vector, this is not the pattern we're looking for.
7363 if (!RHSTy.isVector())
7364 return SDValue();
7365
7366 DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
7367
7368 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
7369 RHSTy.getVectorNumElements() * 2);
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007370 return DAG.getNode(ISD::BITCAST, dl, VT,
7371 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
7372 DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
7373 RHS));
Tim Northover3b0846e2014-05-24 12:50:23 +00007374}
7375
7376static SDValue tryCombineFixedPointConvert(SDNode *N,
7377 TargetLowering::DAGCombinerInfo &DCI,
7378 SelectionDAG &DAG) {
7379 // Wait 'til after everything is legalized to try this. That way we have
7380 // legal vector types and such.
7381 if (DCI.isBeforeLegalizeOps())
7382 return SDValue();
7383 // Transform a scalar conversion of a value from a lane extract into a
7384 // lane extract of a vector conversion. E.g., from foo1 to foo2:
7385 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
7386 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
7387 //
7388 // The second form interacts better with instruction selection and the
7389 // register allocator to avoid cross-class register copies that aren't
7390 // coalescable due to a lane reference.
7391
7392 // Check the operand and see if it originates from a lane extract.
7393 SDValue Op1 = N->getOperand(1);
7394 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7395 // Yep, no additional predication needed. Perform the transform.
7396 SDValue IID = N->getOperand(0);
7397 SDValue Shift = N->getOperand(2);
7398 SDValue Vec = Op1.getOperand(0);
7399 SDValue Lane = Op1.getOperand(1);
7400 EVT ResTy = N->getValueType(0);
7401 EVT VecResTy;
7402 SDLoc DL(N);
7403
7404 // The vector width should be 128 bits by the time we get here, even
7405 // if it started as 64 bits (the extract_vector handling will have
7406 // done so).
7407 assert(Vec.getValueType().getSizeInBits() == 128 &&
7408 "unexpected vector size on extract_vector_elt!");
7409 if (Vec.getValueType() == MVT::v4i32)
7410 VecResTy = MVT::v4f32;
7411 else if (Vec.getValueType() == MVT::v2i64)
7412 VecResTy = MVT::v2f64;
7413 else
Craig Topper2a30d782014-06-18 05:05:13 +00007414 llvm_unreachable("unexpected vector type!");
Tim Northover3b0846e2014-05-24 12:50:23 +00007415
7416 SDValue Convert =
7417 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
7418 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
7419 }
7420 return SDValue();
7421}
7422
7423// AArch64 high-vector "long" operations are formed by performing the non-high
7424// version on an extract_subvector of each operand which gets the high half:
7425//
7426// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
7427//
7428// However, there are cases which don't have an extract_high explicitly, but
7429// have another operation that can be made compatible with one for free. For
7430// example:
7431//
7432// (dupv64 scalar) --> (extract_high (dup128 scalar))
7433//
7434// This routine does the actual conversion of such DUPs, once outer routines
7435// have determined that everything else is in order.
7436static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
7437 // We can handle most types of duplicate, but the lane ones have an extra
7438 // operand saying *which* lane, so we need to know.
7439 bool IsDUPLANE;
7440 switch (N.getOpcode()) {
7441 case AArch64ISD::DUP:
7442 IsDUPLANE = false;
7443 break;
7444 case AArch64ISD::DUPLANE8:
7445 case AArch64ISD::DUPLANE16:
7446 case AArch64ISD::DUPLANE32:
7447 case AArch64ISD::DUPLANE64:
7448 IsDUPLANE = true;
7449 break;
7450 default:
7451 return SDValue();
7452 }
7453
7454 MVT NarrowTy = N.getSimpleValueType();
7455 if (!NarrowTy.is64BitVector())
7456 return SDValue();
7457
7458 MVT ElementTy = NarrowTy.getVectorElementType();
7459 unsigned NumElems = NarrowTy.getVectorNumElements();
7460 MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2);
7461
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007462 SDLoc dl(N);
Tim Northover3b0846e2014-05-24 12:50:23 +00007463 SDValue NewDUP;
7464 if (IsDUPLANE)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007465 NewDUP = DAG.getNode(N.getOpcode(), dl, NewDUPVT, N.getOperand(0),
Tim Northover3b0846e2014-05-24 12:50:23 +00007466 N.getOperand(1));
7467 else
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007468 NewDUP = DAG.getNode(AArch64ISD::DUP, dl, NewDUPVT, N.getOperand(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00007469
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007470 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy, NewDUP,
7471 DAG.getConstant(NumElems, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007472}
7473
7474static bool isEssentiallyExtractSubvector(SDValue N) {
7475 if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
7476 return true;
7477
7478 return N.getOpcode() == ISD::BITCAST &&
7479 N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
7480}
7481
7482/// \brief Helper structure to keep track of ISD::SET_CC operands.
7483struct GenericSetCCInfo {
7484 const SDValue *Opnd0;
7485 const SDValue *Opnd1;
7486 ISD::CondCode CC;
7487};
7488
7489/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
7490struct AArch64SetCCInfo {
7491 const SDValue *Cmp;
7492 AArch64CC::CondCode CC;
7493};
7494
7495/// \brief Helper structure to keep track of SetCC information.
7496union SetCCInfo {
7497 GenericSetCCInfo Generic;
7498 AArch64SetCCInfo AArch64;
7499};
7500
7501/// \brief Helper structure to be able to read SetCC information. If set to
7502/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
7503/// GenericSetCCInfo.
7504struct SetCCInfoAndKind {
7505 SetCCInfo Info;
7506 bool IsAArch64;
7507};
7508
7509/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
7510/// an
7511/// AArch64 lowered one.
7512/// \p SetCCInfo is filled accordingly.
7513/// \post SetCCInfo is meanginfull only when this function returns true.
7514/// \return True when Op is a kind of SET_CC operation.
7515static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
7516 // If this is a setcc, this is straight forward.
7517 if (Op.getOpcode() == ISD::SETCC) {
7518 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
7519 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
7520 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7521 SetCCInfo.IsAArch64 = false;
7522 return true;
7523 }
7524 // Otherwise, check if this is a matching csel instruction.
7525 // In other words:
7526 // - csel 1, 0, cc
7527 // - csel 0, 1, !cc
7528 if (Op.getOpcode() != AArch64ISD::CSEL)
7529 return false;
7530 // Set the information about the operands.
7531 // TODO: we want the operands of the Cmp not the csel
7532 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
7533 SetCCInfo.IsAArch64 = true;
7534 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
7535 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
7536
7537 // Check that the operands matches the constraints:
7538 // (1) Both operands must be constants.
7539 // (2) One must be 1 and the other must be 0.
7540 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
7541 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7542
7543 // Check (1).
7544 if (!TValue || !FValue)
7545 return false;
7546
7547 // Check (2).
7548 if (!TValue->isOne()) {
7549 // Update the comparison when we are interested in !cc.
7550 std::swap(TValue, FValue);
7551 SetCCInfo.Info.AArch64.CC =
7552 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
7553 }
7554 return TValue->isOne() && FValue->isNullValue();
7555}
7556
7557// Returns true if Op is setcc or zext of setcc.
7558static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
7559 if (isSetCC(Op, Info))
7560 return true;
7561 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
7562 isSetCC(Op->getOperand(0), Info));
7563}
7564
7565// The folding we want to perform is:
7566// (add x, [zext] (setcc cc ...) )
7567// -->
7568// (csel x, (add x, 1), !cc ...)
7569//
7570// The latter will get matched to a CSINC instruction.
7571static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
7572 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
7573 SDValue LHS = Op->getOperand(0);
7574 SDValue RHS = Op->getOperand(1);
7575 SetCCInfoAndKind InfoAndKind;
7576
7577 // If neither operand is a SET_CC, give up.
7578 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
7579 std::swap(LHS, RHS);
7580 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
7581 return SDValue();
7582 }
7583
7584 // FIXME: This could be generatized to work for FP comparisons.
7585 EVT CmpVT = InfoAndKind.IsAArch64
7586 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
7587 : InfoAndKind.Info.Generic.Opnd0->getValueType();
7588 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
7589 return SDValue();
7590
7591 SDValue CCVal;
7592 SDValue Cmp;
7593 SDLoc dl(Op);
7594 if (InfoAndKind.IsAArch64) {
7595 CCVal = DAG.getConstant(
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007596 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
7597 MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00007598 Cmp = *InfoAndKind.Info.AArch64.Cmp;
7599 } else
7600 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
7601 *InfoAndKind.Info.Generic.Opnd1,
7602 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
7603 CCVal, DAG, dl);
7604
7605 EVT VT = Op->getValueType(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007606 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
Tim Northover3b0846e2014-05-24 12:50:23 +00007607 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
7608}
7609
7610// The basic add/sub long vector instructions have variants with "2" on the end
7611// which act on the high-half of their inputs. They are normally matched by
7612// patterns like:
7613//
7614// (add (zeroext (extract_high LHS)),
7615// (zeroext (extract_high RHS)))
7616// -> uaddl2 vD, vN, vM
7617//
7618// However, if one of the extracts is something like a duplicate, this
7619// instruction can still be used profitably. This function puts the DAG into a
7620// more appropriate form for those patterns to trigger.
7621static SDValue performAddSubLongCombine(SDNode *N,
7622 TargetLowering::DAGCombinerInfo &DCI,
7623 SelectionDAG &DAG) {
7624 if (DCI.isBeforeLegalizeOps())
7625 return SDValue();
7626
7627 MVT VT = N->getSimpleValueType(0);
7628 if (!VT.is128BitVector()) {
7629 if (N->getOpcode() == ISD::ADD)
7630 return performSetccAddFolding(N, DAG);
7631 return SDValue();
7632 }
7633
7634 // Make sure both branches are extended in the same way.
7635 SDValue LHS = N->getOperand(0);
7636 SDValue RHS = N->getOperand(1);
7637 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
7638 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
7639 LHS.getOpcode() != RHS.getOpcode())
7640 return SDValue();
7641
7642 unsigned ExtType = LHS.getOpcode();
7643
7644 // It's not worth doing if at least one of the inputs isn't already an
7645 // extract, but we don't know which it'll be so we have to try both.
7646 if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
7647 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
7648 if (!RHS.getNode())
7649 return SDValue();
7650
7651 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
7652 } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
7653 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
7654 if (!LHS.getNode())
7655 return SDValue();
7656
7657 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
7658 }
7659
7660 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
7661}
7662
7663// Massage DAGs which we can use the high-half "long" operations on into
7664// something isel will recognize better. E.g.
7665//
7666// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
7667// (aarch64_neon_umull (extract_high (v2i64 vec)))
7668// (extract_high (v2i64 (dup128 scalar)))))
7669//
7670static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
7671 TargetLowering::DAGCombinerInfo &DCI,
7672 SelectionDAG &DAG) {
7673 if (DCI.isBeforeLegalizeOps())
7674 return SDValue();
7675
7676 SDValue LHS = N->getOperand(1);
7677 SDValue RHS = N->getOperand(2);
7678 assert(LHS.getValueType().is64BitVector() &&
7679 RHS.getValueType().is64BitVector() &&
7680 "unexpected shape for long operation");
7681
7682 // Either node could be a DUP, but it's not worth doing both of them (you'd
7683 // just as well use the non-high version) so look for a corresponding extract
7684 // operation on the other "wing".
7685 if (isEssentiallyExtractSubvector(LHS)) {
7686 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
7687 if (!RHS.getNode())
7688 return SDValue();
7689 } else if (isEssentiallyExtractSubvector(RHS)) {
7690 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
7691 if (!LHS.getNode())
7692 return SDValue();
7693 }
7694
7695 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
7696 N->getOperand(0), LHS, RHS);
7697}
7698
7699static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
7700 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
7701 unsigned ElemBits = ElemTy.getSizeInBits();
7702
7703 int64_t ShiftAmount;
7704 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
7705 APInt SplatValue, SplatUndef;
7706 unsigned SplatBitSize;
7707 bool HasAnyUndefs;
7708 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
7709 HasAnyUndefs, ElemBits) ||
7710 SplatBitSize != ElemBits)
7711 return SDValue();
7712
7713 ShiftAmount = SplatValue.getSExtValue();
7714 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
7715 ShiftAmount = CVN->getSExtValue();
7716 } else
7717 return SDValue();
7718
7719 unsigned Opcode;
7720 bool IsRightShift;
7721 switch (IID) {
7722 default:
7723 llvm_unreachable("Unknown shift intrinsic");
7724 case Intrinsic::aarch64_neon_sqshl:
7725 Opcode = AArch64ISD::SQSHL_I;
7726 IsRightShift = false;
7727 break;
7728 case Intrinsic::aarch64_neon_uqshl:
7729 Opcode = AArch64ISD::UQSHL_I;
7730 IsRightShift = false;
7731 break;
7732 case Intrinsic::aarch64_neon_srshl:
7733 Opcode = AArch64ISD::SRSHR_I;
7734 IsRightShift = true;
7735 break;
7736 case Intrinsic::aarch64_neon_urshl:
7737 Opcode = AArch64ISD::URSHR_I;
7738 IsRightShift = true;
7739 break;
7740 case Intrinsic::aarch64_neon_sqshlu:
7741 Opcode = AArch64ISD::SQSHLU_I;
7742 IsRightShift = false;
7743 break;
7744 }
7745
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007746 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
7747 SDLoc dl(N);
7748 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
7749 DAG.getConstant(-ShiftAmount, dl, MVT::i32));
7750 } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
7751 SDLoc dl(N);
7752 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
7753 DAG.getConstant(ShiftAmount, dl, MVT::i32));
7754 }
Tim Northover3b0846e2014-05-24 12:50:23 +00007755
7756 return SDValue();
7757}
7758
7759// The CRC32[BH] instructions ignore the high bits of their data operand. Since
7760// the intrinsics must be legal and take an i32, this means there's almost
7761// certainly going to be a zext in the DAG which we can eliminate.
7762static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
7763 SDValue AndN = N->getOperand(2);
7764 if (AndN.getOpcode() != ISD::AND)
7765 return SDValue();
7766
7767 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
7768 if (!CMask || CMask->getZExtValue() != Mask)
7769 return SDValue();
7770
7771 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
7772 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
7773}
7774
Ahmed Bougachafab58922015-03-10 20:45:38 +00007775static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
7776 SelectionDAG &DAG) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007777 SDLoc dl(N);
7778 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
7779 DAG.getNode(Opc, dl,
Ahmed Bougachafab58922015-03-10 20:45:38 +00007780 N->getOperand(1).getSimpleValueType(),
7781 N->getOperand(1)),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007782 DAG.getConstant(0, dl, MVT::i64));
Ahmed Bougachafab58922015-03-10 20:45:38 +00007783}
7784
Tim Northover3b0846e2014-05-24 12:50:23 +00007785static SDValue performIntrinsicCombine(SDNode *N,
7786 TargetLowering::DAGCombinerInfo &DCI,
7787 const AArch64Subtarget *Subtarget) {
7788 SelectionDAG &DAG = DCI.DAG;
7789 unsigned IID = getIntrinsicID(N);
7790 switch (IID) {
7791 default:
7792 break;
7793 case Intrinsic::aarch64_neon_vcvtfxs2fp:
7794 case Intrinsic::aarch64_neon_vcvtfxu2fp:
7795 return tryCombineFixedPointConvert(N, DCI, DAG);
7796 break;
Ahmed Bougachafab58922015-03-10 20:45:38 +00007797 case Intrinsic::aarch64_neon_saddv:
7798 return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
7799 case Intrinsic::aarch64_neon_uaddv:
7800 return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
7801 case Intrinsic::aarch64_neon_sminv:
7802 return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
7803 case Intrinsic::aarch64_neon_uminv:
7804 return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
7805 case Intrinsic::aarch64_neon_smaxv:
7806 return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
7807 case Intrinsic::aarch64_neon_umaxv:
7808 return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00007809 case Intrinsic::aarch64_neon_fmax:
7810 return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0),
7811 N->getOperand(1), N->getOperand(2));
7812 case Intrinsic::aarch64_neon_fmin:
7813 return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0),
7814 N->getOperand(1), N->getOperand(2));
7815 case Intrinsic::aarch64_neon_smull:
7816 case Intrinsic::aarch64_neon_umull:
7817 case Intrinsic::aarch64_neon_pmull:
7818 case Intrinsic::aarch64_neon_sqdmull:
7819 return tryCombineLongOpWithDup(IID, N, DCI, DAG);
7820 case Intrinsic::aarch64_neon_sqshl:
7821 case Intrinsic::aarch64_neon_uqshl:
7822 case Intrinsic::aarch64_neon_sqshlu:
7823 case Intrinsic::aarch64_neon_srshl:
7824 case Intrinsic::aarch64_neon_urshl:
7825 return tryCombineShiftImm(IID, N, DAG);
7826 case Intrinsic::aarch64_crc32b:
7827 case Intrinsic::aarch64_crc32cb:
7828 return tryCombineCRC32(0xff, N, DAG);
7829 case Intrinsic::aarch64_crc32h:
7830 case Intrinsic::aarch64_crc32ch:
7831 return tryCombineCRC32(0xffff, N, DAG);
7832 }
7833 return SDValue();
7834}
7835
7836static SDValue performExtendCombine(SDNode *N,
7837 TargetLowering::DAGCombinerInfo &DCI,
7838 SelectionDAG &DAG) {
7839 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
7840 // we can convert that DUP into another extract_high (of a bigger DUP), which
7841 // helps the backend to decide that an sabdl2 would be useful, saving a real
7842 // extract_high operation.
7843 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
7844 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
7845 SDNode *ABDNode = N->getOperand(0).getNode();
7846 unsigned IID = getIntrinsicID(ABDNode);
7847 if (IID == Intrinsic::aarch64_neon_sabd ||
7848 IID == Intrinsic::aarch64_neon_uabd) {
7849 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
7850 if (!NewABD.getNode())
7851 return SDValue();
7852
7853 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
7854 NewABD);
7855 }
7856 }
7857
7858 // This is effectively a custom type legalization for AArch64.
7859 //
7860 // Type legalization will split an extend of a small, legal, type to a larger
7861 // illegal type by first splitting the destination type, often creating
7862 // illegal source types, which then get legalized in isel-confusing ways,
7863 // leading to really terrible codegen. E.g.,
7864 // %result = v8i32 sext v8i8 %value
7865 // becomes
7866 // %losrc = extract_subreg %value, ...
7867 // %hisrc = extract_subreg %value, ...
7868 // %lo = v4i32 sext v4i8 %losrc
7869 // %hi = v4i32 sext v4i8 %hisrc
7870 // Things go rapidly downhill from there.
7871 //
7872 // For AArch64, the [sz]ext vector instructions can only go up one element
7873 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
7874 // take two instructions.
7875 //
7876 // This implies that the most efficient way to do the extend from v8i8
7877 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
7878 // the normal splitting to happen for the v8i16->v8i32.
7879
7880 // This is pre-legalization to catch some cases where the default
7881 // type legalization will create ill-tempered code.
7882 if (!DCI.isBeforeLegalizeOps())
7883 return SDValue();
7884
7885 // We're only interested in cleaning things up for non-legal vector types
7886 // here. If both the source and destination are legal, things will just
7887 // work naturally without any fiddling.
7888 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7889 EVT ResVT = N->getValueType(0);
7890 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
7891 return SDValue();
7892 // If the vector type isn't a simple VT, it's beyond the scope of what
7893 // we're worried about here. Let legalization do its thing and hope for
7894 // the best.
Jim Grosbachec2b0d02014-08-28 22:08:28 +00007895 SDValue Src = N->getOperand(0);
7896 EVT SrcVT = Src->getValueType(0);
7897 if (!ResVT.isSimple() || !SrcVT.isSimple())
Tim Northover3b0846e2014-05-24 12:50:23 +00007898 return SDValue();
7899
Tim Northover3b0846e2014-05-24 12:50:23 +00007900 // If the source VT is a 64-bit vector, we can play games and get the
7901 // better results we want.
7902 if (SrcVT.getSizeInBits() != 64)
7903 return SDValue();
7904
7905 unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
7906 unsigned ElementCount = SrcVT.getVectorNumElements();
7907 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
7908 SDLoc DL(N);
7909 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
7910
7911 // Now split the rest of the operation into two halves, each with a 64
7912 // bit source.
7913 EVT LoVT, HiVT;
7914 SDValue Lo, Hi;
7915 unsigned NumElements = ResVT.getVectorNumElements();
7916 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
7917 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
7918 ResVT.getVectorElementType(), NumElements / 2);
7919
7920 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
7921 LoVT.getVectorNumElements());
7922 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007923 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007924 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007925 DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007926 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
7927 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
7928
7929 // Now combine the parts back together so we still have a single result
7930 // like the combiner expects.
7931 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
7932}
7933
7934/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
7935/// value. The load store optimizer pass will merge them to store pair stores.
7936/// This has better performance than a splat of the scalar followed by a split
7937/// vector store. Even if the stores are not merged it is four stores vs a dup,
7938/// followed by an ext.b and two stores.
7939static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
7940 SDValue StVal = St->getValue();
7941 EVT VT = StVal.getValueType();
7942
7943 // Don't replace floating point stores, they possibly won't be transformed to
7944 // stp because of the store pair suppress pass.
7945 if (VT.isFloatingPoint())
7946 return SDValue();
7947
7948 // Check for insert vector elements.
7949 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
7950 return SDValue();
7951
7952 // We can express a splat as store pair(s) for 2 or 4 elements.
7953 unsigned NumVecElts = VT.getVectorNumElements();
7954 if (NumVecElts != 4 && NumVecElts != 2)
7955 return SDValue();
7956 SDValue SplatVal = StVal.getOperand(1);
7957 unsigned RemainInsertElts = NumVecElts - 1;
7958
7959 // Check that this is a splat.
7960 while (--RemainInsertElts) {
7961 SDValue NextInsertElt = StVal.getOperand(0);
7962 if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
7963 return SDValue();
7964 if (NextInsertElt.getOperand(1) != SplatVal)
7965 return SDValue();
7966 StVal = NextInsertElt;
7967 }
7968 unsigned OrigAlignment = St->getAlignment();
7969 unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
7970 unsigned Alignment = std::min(OrigAlignment, EltOffset);
7971
7972 // Create scalar stores. This is at least as good as the code sequence for a
7973 // split unaligned store wich is a dup.s, ext.b, and two stores.
7974 // Most of the time the three stores should be replaced by store pair
7975 // instructions (stp).
7976 SDLoc DL(St);
7977 SDValue BasePtr = St->getBasePtr();
7978 SDValue NewST1 =
7979 DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
7980 St->isVolatile(), St->isNonTemporal(), St->getAlignment());
7981
7982 unsigned Offset = EltOffset;
7983 while (--NumVecElts) {
7984 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007985 DAG.getConstant(Offset, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007986 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
7987 St->getPointerInfo(), St->isVolatile(),
7988 St->isNonTemporal(), Alignment);
7989 Offset += EltOffset;
7990 }
7991 return NewST1;
7992}
7993
7994static SDValue performSTORECombine(SDNode *N,
7995 TargetLowering::DAGCombinerInfo &DCI,
7996 SelectionDAG &DAG,
7997 const AArch64Subtarget *Subtarget) {
7998 if (!DCI.isBeforeLegalize())
7999 return SDValue();
8000
8001 StoreSDNode *S = cast<StoreSDNode>(N);
8002 if (S->isVolatile())
8003 return SDValue();
8004
8005 // Cyclone has bad performance on unaligned 16B stores when crossing line and
Sanjay Patel08efcd92015-01-28 22:37:32 +00008006 // page boundaries. We want to split such stores.
Tim Northover3b0846e2014-05-24 12:50:23 +00008007 if (!Subtarget->isCyclone())
8008 return SDValue();
8009
8010 // Don't split at Oz.
8011 MachineFunction &MF = DAG.getMachineFunction();
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00008012 bool IsMinSize = MF.getFunction()->hasFnAttribute(Attribute::MinSize);
Tim Northover3b0846e2014-05-24 12:50:23 +00008013 if (IsMinSize)
8014 return SDValue();
8015
8016 SDValue StVal = S->getValue();
8017 EVT VT = StVal.getValueType();
8018
8019 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
8020 // those up regresses performance on micro-benchmarks and olden/bh.
8021 if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
8022 return SDValue();
8023
8024 // Split unaligned 16B stores. They are terrible for performance.
8025 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
8026 // extensions can use this to mark that it does not want splitting to happen
8027 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
8028 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
8029 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
8030 S->getAlignment() <= 2)
8031 return SDValue();
8032
8033 // If we get a splat of a scalar convert this vector store to a store of
8034 // scalars. They will be merged into store pairs thereby removing two
8035 // instructions.
8036 SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S);
8037 if (ReplacedSplat != SDValue())
8038 return ReplacedSplat;
8039
8040 SDLoc DL(S);
8041 unsigned NumElts = VT.getVectorNumElements() / 2;
8042 // Split VT into two.
8043 EVT HalfVT =
8044 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
8045 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008046 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008047 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008048 DAG.getConstant(NumElts, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008049 SDValue BasePtr = S->getBasePtr();
8050 SDValue NewST1 =
8051 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
8052 S->isVolatile(), S->isNonTemporal(), S->getAlignment());
8053 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008054 DAG.getConstant(8, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008055 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
8056 S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
8057 S->getAlignment());
8058}
8059
8060/// Target-specific DAG combine function for post-increment LD1 (lane) and
8061/// post-increment LD1R.
8062static SDValue performPostLD1Combine(SDNode *N,
8063 TargetLowering::DAGCombinerInfo &DCI,
8064 bool IsLaneOp) {
8065 if (DCI.isBeforeLegalizeOps())
8066 return SDValue();
8067
8068 SelectionDAG &DAG = DCI.DAG;
8069 EVT VT = N->getValueType(0);
8070
8071 unsigned LoadIdx = IsLaneOp ? 1 : 0;
8072 SDNode *LD = N->getOperand(LoadIdx).getNode();
8073 // If it is not LOAD, can not do such combine.
8074 if (LD->getOpcode() != ISD::LOAD)
8075 return SDValue();
8076
8077 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
8078 EVT MemVT = LoadSDN->getMemoryVT();
8079 // Check if memory operand is the same type as the vector element.
8080 if (MemVT != VT.getVectorElementType())
8081 return SDValue();
8082
8083 // Check if there are other uses. If so, do not combine as it will introduce
8084 // an extra load.
8085 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
8086 ++UI) {
8087 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
8088 continue;
8089 if (*UI != N)
8090 return SDValue();
8091 }
8092
8093 SDValue Addr = LD->getOperand(1);
8094 SDValue Vector = N->getOperand(0);
8095 // Search for a use of the address operand that is an increment.
8096 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
8097 Addr.getNode()->use_end(); UI != UE; ++UI) {
8098 SDNode *User = *UI;
8099 if (User->getOpcode() != ISD::ADD
8100 || UI.getUse().getResNo() != Addr.getResNo())
8101 continue;
8102
8103 // Check that the add is independent of the load. Otherwise, folding it
8104 // would create a cycle.
8105 if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
8106 continue;
8107 // Also check that add is not used in the vector operand. This would also
8108 // create a cycle.
8109 if (User->isPredecessorOf(Vector.getNode()))
8110 continue;
8111
8112 // If the increment is a constant, it must match the memory ref size.
8113 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8114 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8115 uint32_t IncVal = CInc->getZExtValue();
8116 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
8117 if (IncVal != NumBytes)
8118 continue;
8119 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
8120 }
8121
Ahmed Bougacha2448ef52015-04-17 21:02:30 +00008122 // Finally, check that the vector doesn't depend on the load.
8123 // Again, this would create a cycle.
8124 // The load depending on the vector is fine, as that's the case for the
8125 // LD1*post we'll eventually generate anyway.
8126 if (LoadSDN->isPredecessorOf(Vector.getNode()))
8127 continue;
8128
Tim Northover3b0846e2014-05-24 12:50:23 +00008129 SmallVector<SDValue, 8> Ops;
8130 Ops.push_back(LD->getOperand(0)); // Chain
8131 if (IsLaneOp) {
8132 Ops.push_back(Vector); // The vector to be inserted
8133 Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
8134 }
8135 Ops.push_back(Addr);
8136 Ops.push_back(Inc);
8137
8138 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
Craig Toppere1d12942014-08-27 05:25:25 +00008139 SDVTList SDTys = DAG.getVTList(Tys);
Tim Northover3b0846e2014-05-24 12:50:23 +00008140 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
8141 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
8142 MemVT,
8143 LoadSDN->getMemOperand());
8144
8145 // Update the uses.
Ahmed Bougacha4c2b0782015-02-19 23:13:10 +00008146 SmallVector<SDValue, 2> NewResults;
Tim Northover3b0846e2014-05-24 12:50:23 +00008147 NewResults.push_back(SDValue(LD, 0)); // The result of load
8148 NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
8149 DCI.CombineTo(LD, NewResults);
8150 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
8151 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
8152
8153 break;
8154 }
8155 return SDValue();
8156}
8157
8158/// Target-specific DAG combine function for NEON load/store intrinsics
8159/// to merge base address updates.
8160static SDValue performNEONPostLDSTCombine(SDNode *N,
8161 TargetLowering::DAGCombinerInfo &DCI,
8162 SelectionDAG &DAG) {
8163 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8164 return SDValue();
8165
8166 unsigned AddrOpIdx = N->getNumOperands() - 1;
8167 SDValue Addr = N->getOperand(AddrOpIdx);
8168
8169 // Search for a use of the address operand that is an increment.
8170 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
8171 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
8172 SDNode *User = *UI;
8173 if (User->getOpcode() != ISD::ADD ||
8174 UI.getUse().getResNo() != Addr.getResNo())
8175 continue;
8176
8177 // Check that the add is independent of the load/store. Otherwise, folding
8178 // it would create a cycle.
8179 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
8180 continue;
8181
8182 // Find the new opcode for the updating load/store.
8183 bool IsStore = false;
8184 bool IsLaneOp = false;
8185 bool IsDupOp = false;
8186 unsigned NewOpc = 0;
8187 unsigned NumVecs = 0;
8188 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8189 switch (IntNo) {
8190 default: llvm_unreachable("unexpected intrinsic for Neon base update");
8191 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
8192 NumVecs = 2; break;
8193 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
8194 NumVecs = 3; break;
8195 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
8196 NumVecs = 4; break;
8197 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
8198 NumVecs = 2; IsStore = true; break;
8199 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
8200 NumVecs = 3; IsStore = true; break;
8201 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
8202 NumVecs = 4; IsStore = true; break;
8203 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
8204 NumVecs = 2; break;
8205 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
8206 NumVecs = 3; break;
8207 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
8208 NumVecs = 4; break;
8209 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
8210 NumVecs = 2; IsStore = true; break;
8211 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
8212 NumVecs = 3; IsStore = true; break;
8213 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
8214 NumVecs = 4; IsStore = true; break;
8215 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
8216 NumVecs = 2; IsDupOp = true; break;
8217 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
8218 NumVecs = 3; IsDupOp = true; break;
8219 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
8220 NumVecs = 4; IsDupOp = true; break;
8221 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
8222 NumVecs = 2; IsLaneOp = true; break;
8223 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
8224 NumVecs = 3; IsLaneOp = true; break;
8225 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
8226 NumVecs = 4; IsLaneOp = true; break;
8227 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
8228 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
8229 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
8230 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
8231 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
8232 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
8233 }
8234
8235 EVT VecTy;
8236 if (IsStore)
8237 VecTy = N->getOperand(2).getValueType();
8238 else
8239 VecTy = N->getValueType(0);
8240
8241 // If the increment is a constant, it must match the memory ref size.
8242 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8243 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8244 uint32_t IncVal = CInc->getZExtValue();
8245 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
8246 if (IsLaneOp || IsDupOp)
8247 NumBytes /= VecTy.getVectorNumElements();
8248 if (IncVal != NumBytes)
8249 continue;
8250 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
8251 }
8252 SmallVector<SDValue, 8> Ops;
8253 Ops.push_back(N->getOperand(0)); // Incoming chain
8254 // Load lane and store have vector list as input.
8255 if (IsLaneOp || IsStore)
8256 for (unsigned i = 2; i < AddrOpIdx; ++i)
8257 Ops.push_back(N->getOperand(i));
8258 Ops.push_back(Addr); // Base register
8259 Ops.push_back(Inc);
8260
8261 // Return Types.
8262 EVT Tys[6];
8263 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
8264 unsigned n;
8265 for (n = 0; n < NumResultVecs; ++n)
8266 Tys[n] = VecTy;
8267 Tys[n++] = MVT::i64; // Type of write back register
8268 Tys[n] = MVT::Other; // Type of the chain
Craig Toppere1d12942014-08-27 05:25:25 +00008269 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
Tim Northover3b0846e2014-05-24 12:50:23 +00008270
8271 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
8272 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
8273 MemInt->getMemoryVT(),
8274 MemInt->getMemOperand());
8275
8276 // Update the uses.
8277 std::vector<SDValue> NewResults;
8278 for (unsigned i = 0; i < NumResultVecs; ++i) {
8279 NewResults.push_back(SDValue(UpdN.getNode(), i));
8280 }
8281 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
8282 DCI.CombineTo(N, NewResults);
8283 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
8284
8285 break;
8286 }
8287 return SDValue();
8288}
8289
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008290// Checks to see if the value is the prescribed width and returns information
8291// about its extension mode.
8292static
8293bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
8294 ExtType = ISD::NON_EXTLOAD;
8295 switch(V.getNode()->getOpcode()) {
8296 default:
8297 return false;
8298 case ISD::LOAD: {
8299 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
8300 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
8301 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
8302 ExtType = LoadNode->getExtensionType();
8303 return true;
8304 }
8305 return false;
8306 }
8307 case ISD::AssertSext: {
8308 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
8309 if ((TypeNode->getVT() == MVT::i8 && width == 8)
8310 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
8311 ExtType = ISD::SEXTLOAD;
8312 return true;
8313 }
8314 return false;
8315 }
8316 case ISD::AssertZext: {
8317 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
8318 if ((TypeNode->getVT() == MVT::i8 && width == 8)
8319 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
8320 ExtType = ISD::ZEXTLOAD;
8321 return true;
8322 }
8323 return false;
8324 }
8325 case ISD::Constant:
8326 case ISD::TargetConstant: {
Reid Kleckner39ad7c92014-08-29 22:14:26 +00008327 if (std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
Aaron Ballman8ca53882014-09-02 12:19:02 +00008328 1LL << (width - 1))
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008329 return true;
8330 return false;
8331 }
8332 }
8333
8334 return true;
8335}
8336
8337// This function does a whole lot of voodoo to determine if the tests are
8338// equivalent without and with a mask. Essentially what happens is that given a
8339// DAG resembling:
8340//
8341// +-------------+ +-------------+ +-------------+ +-------------+
8342// | Input | | AddConstant | | CompConstant| | CC |
8343// +-------------+ +-------------+ +-------------+ +-------------+
8344// | | | |
8345// V V | +----------+
8346// +-------------+ +----+ | |
8347// | ADD | |0xff| | |
8348// +-------------+ +----+ | |
8349// | | | |
8350// V V | |
8351// +-------------+ | |
8352// | AND | | |
8353// +-------------+ | |
8354// | | |
8355// +-----+ | |
8356// | | |
8357// V V V
8358// +-------------+
8359// | CMP |
8360// +-------------+
8361//
8362// The AND node may be safely removed for some combinations of inputs. In
8363// particular we need to take into account the extension type of the Input,
8364// the exact values of AddConstant, CompConstant, and CC, along with the nominal
8365// width of the input (this can work for any width inputs, the above graph is
8366// specific to 8 bits.
8367//
8368// The specific equations were worked out by generating output tables for each
8369// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
8370// problem was simplified by working with 4 bit inputs, which means we only
8371// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
8372// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
8373// patterns present in both extensions (0,7). For every distinct set of
8374// AddConstant and CompConstants bit patterns we can consider the masked and
8375// unmasked versions to be equivalent if the result of this function is true for
8376// all 16 distinct bit patterns of for the current extension type of Input (w0).
8377//
8378// sub w8, w0, w1
8379// and w10, w8, #0x0f
8380// cmp w8, w2
8381// cset w9, AArch64CC
8382// cmp w10, w2
8383// cset w11, AArch64CC
8384// cmp w9, w11
8385// cset w0, eq
8386// ret
8387//
8388// Since the above function shows when the outputs are equivalent it defines
8389// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
8390// would be expensive to run during compiles. The equations below were written
8391// in a test harness that confirmed they gave equivalent outputs to the above
8392// for all inputs function, so they can be used determine if the removal is
8393// legal instead.
8394//
8395// isEquivalentMaskless() is the code for testing if the AND can be removed
8396// factored out of the DAG recognition as the DAG can take several forms.
8397
8398static
8399bool isEquivalentMaskless(unsigned CC, unsigned width,
8400 ISD::LoadExtType ExtType, signed AddConstant,
8401 signed CompConstant) {
8402 // By being careful about our equations and only writing the in term
8403 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
8404 // make them generally applicable to all bit widths.
8405 signed MaxUInt = (1 << width);
8406
8407 // For the purposes of these comparisons sign extending the type is
8408 // equivalent to zero extending the add and displacing it by half the integer
8409 // width. Provided we are careful and make sure our equations are valid over
8410 // the whole range we can just adjust the input and avoid writing equations
8411 // for sign extended inputs.
8412 if (ExtType == ISD::SEXTLOAD)
8413 AddConstant -= (1 << (width-1));
8414
8415 switch(CC) {
8416 case AArch64CC::LE:
8417 case AArch64CC::GT: {
8418 if ((AddConstant == 0) ||
8419 (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
8420 (AddConstant >= 0 && CompConstant < 0) ||
8421 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
8422 return true;
8423 } break;
8424 case AArch64CC::LT:
8425 case AArch64CC::GE: {
8426 if ((AddConstant == 0) ||
8427 (AddConstant >= 0 && CompConstant <= 0) ||
8428 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
8429 return true;
8430 } break;
8431 case AArch64CC::HI:
8432 case AArch64CC::LS: {
8433 if ((AddConstant >= 0 && CompConstant < 0) ||
8434 (AddConstant <= 0 && CompConstant >= -1 &&
8435 CompConstant < AddConstant + MaxUInt))
8436 return true;
8437 } break;
8438 case AArch64CC::PL:
8439 case AArch64CC::MI: {
8440 if ((AddConstant == 0) ||
8441 (AddConstant > 0 && CompConstant <= 0) ||
8442 (AddConstant < 0 && CompConstant <= AddConstant))
8443 return true;
8444 } break;
8445 case AArch64CC::LO:
8446 case AArch64CC::HS: {
8447 if ((AddConstant >= 0 && CompConstant <= 0) ||
8448 (AddConstant <= 0 && CompConstant >= 0 &&
8449 CompConstant <= AddConstant + MaxUInt))
8450 return true;
8451 } break;
8452 case AArch64CC::EQ:
8453 case AArch64CC::NE: {
8454 if ((AddConstant > 0 && CompConstant < 0) ||
8455 (AddConstant < 0 && CompConstant >= 0 &&
8456 CompConstant < AddConstant + MaxUInt) ||
8457 (AddConstant >= 0 && CompConstant >= 0 &&
8458 CompConstant >= AddConstant) ||
8459 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
8460
8461 return true;
8462 } break;
8463 case AArch64CC::VS:
8464 case AArch64CC::VC:
8465 case AArch64CC::AL:
8466 case AArch64CC::NV:
8467 return true;
8468 case AArch64CC::Invalid:
8469 break;
8470 }
8471
8472 return false;
8473}
8474
8475static
8476SDValue performCONDCombine(SDNode *N,
8477 TargetLowering::DAGCombinerInfo &DCI,
8478 SelectionDAG &DAG, unsigned CCIndex,
8479 unsigned CmpIndex) {
8480 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
8481 SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
8482 unsigned CondOpcode = SubsNode->getOpcode();
8483
8484 if (CondOpcode != AArch64ISD::SUBS)
8485 return SDValue();
8486
8487 // There is a SUBS feeding this condition. Is it fed by a mask we can
8488 // use?
8489
8490 SDNode *AndNode = SubsNode->getOperand(0).getNode();
8491 unsigned MaskBits = 0;
8492
8493 if (AndNode->getOpcode() != ISD::AND)
8494 return SDValue();
8495
8496 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
8497 uint32_t CNV = CN->getZExtValue();
8498 if (CNV == 255)
8499 MaskBits = 8;
8500 else if (CNV == 65535)
8501 MaskBits = 16;
8502 }
8503
8504 if (!MaskBits)
8505 return SDValue();
8506
8507 SDValue AddValue = AndNode->getOperand(0);
8508
8509 if (AddValue.getOpcode() != ISD::ADD)
8510 return SDValue();
8511
8512 // The basic dag structure is correct, grab the inputs and validate them.
8513
8514 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
8515 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
8516 SDValue SubsInputValue = SubsNode->getOperand(1);
8517
8518 // The mask is present and the provenance of all the values is a smaller type,
8519 // lets see if the mask is superfluous.
8520
8521 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
8522 !isa<ConstantSDNode>(SubsInputValue.getNode()))
8523 return SDValue();
8524
8525 ISD::LoadExtType ExtType;
8526
8527 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
8528 !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
8529 !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
8530 return SDValue();
8531
8532 if(!isEquivalentMaskless(CC, MaskBits, ExtType,
8533 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
8534 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
8535 return SDValue();
8536
8537 // The AND is not necessary, remove it.
8538
8539 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
8540 SubsNode->getValueType(1));
8541 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
8542
8543 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
8544 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
8545
8546 return SDValue(N, 0);
8547}
8548
Tim Northover3b0846e2014-05-24 12:50:23 +00008549// Optimize compare with zero and branch.
8550static SDValue performBRCONDCombine(SDNode *N,
8551 TargetLowering::DAGCombinerInfo &DCI,
8552 SelectionDAG &DAG) {
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008553 SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3);
8554 if (NV.getNode())
8555 N = NV.getNode();
Tim Northover3b0846e2014-05-24 12:50:23 +00008556 SDValue Chain = N->getOperand(0);
8557 SDValue Dest = N->getOperand(1);
8558 SDValue CCVal = N->getOperand(2);
8559 SDValue Cmp = N->getOperand(3);
8560
8561 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
8562 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
8563 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
8564 return SDValue();
8565
8566 unsigned CmpOpc = Cmp.getOpcode();
8567 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
8568 return SDValue();
8569
8570 // Only attempt folding if there is only one use of the flag and no use of the
8571 // value.
8572 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
8573 return SDValue();
8574
8575 SDValue LHS = Cmp.getOperand(0);
8576 SDValue RHS = Cmp.getOperand(1);
8577
8578 assert(LHS.getValueType() == RHS.getValueType() &&
8579 "Expected the value type to be the same for both operands!");
8580 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
8581 return SDValue();
8582
8583 if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue())
8584 std::swap(LHS, RHS);
8585
8586 if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue())
8587 return SDValue();
8588
8589 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
8590 LHS.getOpcode() == ISD::SRL)
8591 return SDValue();
8592
8593 // Fold the compare into the branch instruction.
8594 SDValue BR;
8595 if (CC == AArch64CC::EQ)
8596 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
8597 else
8598 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
8599
8600 // Do not add new nodes to DAG combiner worklist.
8601 DCI.CombineTo(N, BR, false);
8602
8603 return SDValue();
8604}
8605
8606// vselect (v1i1 setcc) ->
8607// vselect (v1iXX setcc) (XX is the size of the compared operand type)
8608// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
8609// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
8610// such VSELECT.
8611static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
8612 SDValue N0 = N->getOperand(0);
8613 EVT CCVT = N0.getValueType();
8614
8615 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
8616 CCVT.getVectorElementType() != MVT::i1)
8617 return SDValue();
8618
8619 EVT ResVT = N->getValueType(0);
8620 EVT CmpVT = N0.getOperand(0).getValueType();
8621 // Only combine when the result type is of the same size as the compared
8622 // operands.
8623 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
8624 return SDValue();
8625
8626 SDValue IfTrue = N->getOperand(1);
8627 SDValue IfFalse = N->getOperand(2);
8628 SDValue SetCC =
8629 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
8630 N0.getOperand(0), N0.getOperand(1),
8631 cast<CondCodeSDNode>(N0.getOperand(2))->get());
8632 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
8633 IfTrue, IfFalse);
8634}
8635
8636/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
8637/// the compare-mask instructions rather than going via NZCV, even if LHS and
8638/// RHS are really scalar. This replaces any scalar setcc in the above pattern
8639/// with a vector one followed by a DUP shuffle on the result.
Ahmed Bougachac004c602015-04-27 21:43:12 +00008640static SDValue performSelectCombine(SDNode *N,
8641 TargetLowering::DAGCombinerInfo &DCI) {
8642 SelectionDAG &DAG = DCI.DAG;
Tim Northover3b0846e2014-05-24 12:50:23 +00008643 SDValue N0 = N->getOperand(0);
8644 EVT ResVT = N->getValueType(0);
Tim Northover3c0915e2014-08-29 15:34:58 +00008645
Ahmed Bougachac004c602015-04-27 21:43:12 +00008646 if (N0.getOpcode() != ISD::SETCC)
Tim Northover3c0915e2014-08-29 15:34:58 +00008647 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00008648
Ahmed Bougachac004c602015-04-27 21:43:12 +00008649 // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
8650 // scalar SetCCResultType. We also don't expect vectors, because we assume
8651 // that selects fed by vector SETCCs are canonicalized to VSELECT.
8652 assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
8653 "Scalar-SETCC feeding SELECT has unexpected result type!");
8654
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008655 // If NumMaskElts == 0, the comparison is larger than select result. The
8656 // largest real NEON comparison is 64-bits per lane, which means the result is
8657 // at most 32-bits and an illegal vector. Just bail out for now.
Tim Northover3c0915e2014-08-29 15:34:58 +00008658 EVT SrcVT = N0.getOperand(0).getValueType();
Ahmed Bougachad0ce0582014-12-01 20:59:00 +00008659
8660 // Don't try to do this optimization when the setcc itself has i1 operands.
8661 // There are no legal vectors of i1, so this would be pointless.
8662 if (SrcVT == MVT::i1)
8663 return SDValue();
8664
Tim Northover3c0915e2014-08-29 15:34:58 +00008665 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008666 if (!ResVT.isVector() || NumMaskElts == 0)
Tim Northover3b0846e2014-05-24 12:50:23 +00008667 return SDValue();
8668
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008669 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00008670 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
8671
Ahmed Bougacha89bba612015-04-27 21:01:20 +00008672 // Also bail out if the vector CCVT isn't the same size as ResVT.
8673 // This can happen if the SETCC operand size doesn't divide the ResVT size
8674 // (e.g., f64 vs v3f32).
8675 if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
8676 return SDValue();
8677
Ahmed Bougachac004c602015-04-27 21:43:12 +00008678 // Make sure we didn't create illegal types, if we're not supposed to.
8679 assert(DCI.isBeforeLegalize() ||
8680 DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
8681
Tim Northover3b0846e2014-05-24 12:50:23 +00008682 // First perform a vector comparison, where lane 0 is the one we're interested
8683 // in.
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008684 SDLoc DL(N0);
Tim Northover3b0846e2014-05-24 12:50:23 +00008685 SDValue LHS =
8686 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
8687 SDValue RHS =
8688 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
8689 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
8690
8691 // Now duplicate the comparison mask we want across all other lanes.
8692 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
8693 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008694 Mask = DAG.getNode(ISD::BITCAST, DL,
8695 ResVT.changeVectorElementTypeToInteger(), Mask);
Tim Northover3b0846e2014-05-24 12:50:23 +00008696
8697 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
8698}
8699
Artyom Skrobova70dfe12015-05-14 12:59:46 +00008700/// performSelectCCCombine - Target-specific DAG combining for ISD::SELECT_CC
8701/// to match FMIN/FMAX patterns.
8702static SDValue performSelectCCCombine(SDNode *N, SelectionDAG &DAG) {
8703 // Try to use FMIN/FMAX instructions for FP selects like "x < y ? x : y".
8704 // Unless the NoNaNsFPMath option is set, be careful about NaNs:
8705 // vmax/vmin return NaN if either operand is a NaN;
8706 // only do the transformation when it matches that behavior.
8707
8708 SDValue CondLHS = N->getOperand(0);
8709 SDValue CondRHS = N->getOperand(1);
8710 SDValue LHS = N->getOperand(2);
8711 SDValue RHS = N->getOperand(3);
8712 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
8713
8714 unsigned Opcode;
8715 bool IsReversed;
8716 if (selectCCOpsAreFMaxCompatible(CondLHS, LHS) &&
8717 selectCCOpsAreFMaxCompatible(CondRHS, RHS)) {
8718 IsReversed = false; // x CC y ? x : y
8719 } else if (selectCCOpsAreFMaxCompatible(CondRHS, LHS) &&
8720 selectCCOpsAreFMaxCompatible(CondLHS, RHS)) {
8721 IsReversed = true ; // x CC y ? y : x
8722 } else {
8723 return SDValue();
8724 }
8725
8726 bool IsUnordered = false, IsOrEqual;
8727 switch (CC) {
8728 default:
8729 return SDValue();
8730 case ISD::SETULT:
8731 case ISD::SETULE:
8732 IsUnordered = true;
8733 case ISD::SETOLT:
8734 case ISD::SETOLE:
8735 case ISD::SETLT:
8736 case ISD::SETLE:
8737 IsOrEqual = (CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE);
8738 Opcode = IsReversed ? AArch64ISD::FMAX : AArch64ISD::FMIN;
8739 break;
8740
8741 case ISD::SETUGT:
8742 case ISD::SETUGE:
8743 IsUnordered = true;
8744 case ISD::SETOGT:
8745 case ISD::SETOGE:
8746 case ISD::SETGT:
8747 case ISD::SETGE:
8748 IsOrEqual = (CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE);
8749 Opcode = IsReversed ? AArch64ISD::FMIN : AArch64ISD::FMAX;
8750 break;
8751 }
8752
8753 // If LHS is NaN, an ordered comparison will be false and the result will be
8754 // the RHS, but FMIN(NaN, RHS) = FMAX(NaN, RHS) = NaN. Avoid this by checking
8755 // that LHS != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
8756 if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
8757 return SDValue();
8758
8759 // For xxx-or-equal comparisons, "+0 <= -0" and "-0 >= +0" will both be true,
8760 // but FMIN will return -0, and FMAX will return +0. So FMIN/FMAX can only be
8761 // used for unsafe math or if one of the operands is known to be nonzero.
8762 if (IsOrEqual && !DAG.getTarget().Options.UnsafeFPMath &&
8763 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8764 return SDValue();
8765
8766 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), LHS, RHS);
8767}
8768
Tim Northover3b0846e2014-05-24 12:50:23 +00008769SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
8770 DAGCombinerInfo &DCI) const {
8771 SelectionDAG &DAG = DCI.DAG;
8772 switch (N->getOpcode()) {
8773 default:
8774 break;
8775 case ISD::ADD:
8776 case ISD::SUB:
8777 return performAddSubLongCombine(N, DCI, DAG);
8778 case ISD::XOR:
8779 return performXorCombine(N, DAG, DCI, Subtarget);
8780 case ISD::MUL:
8781 return performMulCombine(N, DAG, DCI, Subtarget);
8782 case ISD::SINT_TO_FP:
8783 case ISD::UINT_TO_FP:
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00008784 return performIntToFpCombine(N, DAG, Subtarget);
Tim Northover3b0846e2014-05-24 12:50:23 +00008785 case ISD::OR:
8786 return performORCombine(N, DCI, Subtarget);
8787 case ISD::INTRINSIC_WO_CHAIN:
8788 return performIntrinsicCombine(N, DCI, Subtarget);
8789 case ISD::ANY_EXTEND:
8790 case ISD::ZERO_EXTEND:
8791 case ISD::SIGN_EXTEND:
8792 return performExtendCombine(N, DCI, DAG);
8793 case ISD::BITCAST:
8794 return performBitcastCombine(N, DCI, DAG);
8795 case ISD::CONCAT_VECTORS:
8796 return performConcatVectorsCombine(N, DCI, DAG);
8797 case ISD::SELECT:
Ahmed Bougachac004c602015-04-27 21:43:12 +00008798 return performSelectCombine(N, DCI);
Tim Northover3b0846e2014-05-24 12:50:23 +00008799 case ISD::VSELECT:
8800 return performVSelectCombine(N, DCI.DAG);
Artyom Skrobova70dfe12015-05-14 12:59:46 +00008801 case ISD::SELECT_CC:
8802 return performSelectCCCombine(N, DCI.DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00008803 case ISD::STORE:
8804 return performSTORECombine(N, DCI, DAG, Subtarget);
8805 case AArch64ISD::BRCOND:
8806 return performBRCONDCombine(N, DCI, DAG);
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008807 case AArch64ISD::CSEL:
8808 return performCONDCombine(N, DCI, DAG, 2, 3);
Tim Northover3b0846e2014-05-24 12:50:23 +00008809 case AArch64ISD::DUP:
8810 return performPostLD1Combine(N, DCI, false);
8811 case ISD::INSERT_VECTOR_ELT:
8812 return performPostLD1Combine(N, DCI, true);
8813 case ISD::INTRINSIC_VOID:
8814 case ISD::INTRINSIC_W_CHAIN:
8815 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
8816 case Intrinsic::aarch64_neon_ld2:
8817 case Intrinsic::aarch64_neon_ld3:
8818 case Intrinsic::aarch64_neon_ld4:
8819 case Intrinsic::aarch64_neon_ld1x2:
8820 case Intrinsic::aarch64_neon_ld1x3:
8821 case Intrinsic::aarch64_neon_ld1x4:
8822 case Intrinsic::aarch64_neon_ld2lane:
8823 case Intrinsic::aarch64_neon_ld3lane:
8824 case Intrinsic::aarch64_neon_ld4lane:
8825 case Intrinsic::aarch64_neon_ld2r:
8826 case Intrinsic::aarch64_neon_ld3r:
8827 case Intrinsic::aarch64_neon_ld4r:
8828 case Intrinsic::aarch64_neon_st2:
8829 case Intrinsic::aarch64_neon_st3:
8830 case Intrinsic::aarch64_neon_st4:
8831 case Intrinsic::aarch64_neon_st1x2:
8832 case Intrinsic::aarch64_neon_st1x3:
8833 case Intrinsic::aarch64_neon_st1x4:
8834 case Intrinsic::aarch64_neon_st2lane:
8835 case Intrinsic::aarch64_neon_st3lane:
8836 case Intrinsic::aarch64_neon_st4lane:
8837 return performNEONPostLDSTCombine(N, DCI, DAG);
8838 default:
8839 break;
8840 }
8841 }
8842 return SDValue();
8843}
8844
8845// Check if the return value is used as only a return value, as otherwise
8846// we can't perform a tail-call. In particular, we need to check for
8847// target ISD nodes that are returns and any other "odd" constructs
8848// that the generic analysis code won't necessarily catch.
8849bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
8850 SDValue &Chain) const {
8851 if (N->getNumValues() != 1)
8852 return false;
8853 if (!N->hasNUsesOfValue(1, 0))
8854 return false;
8855
8856 SDValue TCChain = Chain;
8857 SDNode *Copy = *N->use_begin();
8858 if (Copy->getOpcode() == ISD::CopyToReg) {
8859 // If the copy has a glue operand, we conservatively assume it isn't safe to
8860 // perform a tail call.
8861 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
8862 MVT::Glue)
8863 return false;
8864 TCChain = Copy->getOperand(0);
8865 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
8866 return false;
8867
8868 bool HasRet = false;
8869 for (SDNode *Node : Copy->uses()) {
8870 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
8871 return false;
8872 HasRet = true;
8873 }
8874
8875 if (!HasRet)
8876 return false;
8877
8878 Chain = TCChain;
8879 return true;
8880}
8881
8882// Return whether the an instruction can potentially be optimized to a tail
8883// call. This will cause the optimizers to attempt to move, or duplicate,
8884// return instructions to help enable tail call optimizations for this
8885// instruction.
8886bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
8887 if (!CI->isTailCall())
8888 return false;
8889
8890 return true;
8891}
8892
8893bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
8894 SDValue &Offset,
8895 ISD::MemIndexedMode &AM,
8896 bool &IsInc,
8897 SelectionDAG &DAG) const {
8898 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
8899 return false;
8900
8901 Base = Op->getOperand(0);
8902 // All of the indexed addressing mode instructions take a signed
8903 // 9 bit immediate offset.
8904 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
8905 int64_t RHSC = (int64_t)RHS->getZExtValue();
8906 if (RHSC >= 256 || RHSC <= -256)
8907 return false;
8908 IsInc = (Op->getOpcode() == ISD::ADD);
8909 Offset = Op->getOperand(1);
8910 return true;
8911 }
8912 return false;
8913}
8914
8915bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8916 SDValue &Offset,
8917 ISD::MemIndexedMode &AM,
8918 SelectionDAG &DAG) const {
8919 EVT VT;
8920 SDValue Ptr;
8921 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8922 VT = LD->getMemoryVT();
8923 Ptr = LD->getBasePtr();
8924 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8925 VT = ST->getMemoryVT();
8926 Ptr = ST->getBasePtr();
8927 } else
8928 return false;
8929
8930 bool IsInc;
8931 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
8932 return false;
8933 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
8934 return true;
8935}
8936
8937bool AArch64TargetLowering::getPostIndexedAddressParts(
8938 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
8939 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
8940 EVT VT;
8941 SDValue Ptr;
8942 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8943 VT = LD->getMemoryVT();
8944 Ptr = LD->getBasePtr();
8945 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8946 VT = ST->getMemoryVT();
8947 Ptr = ST->getBasePtr();
8948 } else
8949 return false;
8950
8951 bool IsInc;
8952 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
8953 return false;
8954 // Post-indexing updates the base, so it's not a valid transform
8955 // if that's not the same as the load's pointer.
8956 if (Ptr != Base)
8957 return false;
8958 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
8959 return true;
8960}
8961
Tim Northoverf8bfe212014-07-18 13:07:05 +00008962static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
8963 SelectionDAG &DAG) {
Tim Northoverf8bfe212014-07-18 13:07:05 +00008964 SDLoc DL(N);
8965 SDValue Op = N->getOperand(0);
Ahmed Bougacha87946322014-12-01 20:52:32 +00008966
8967 if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
8968 return;
8969
Tim Northoverf8bfe212014-07-18 13:07:05 +00008970 Op = SDValue(
8971 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
8972 DAG.getUNDEF(MVT::i32), Op,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008973 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
Tim Northoverf8bfe212014-07-18 13:07:05 +00008974 0);
8975 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
8976 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
8977}
8978
Tim Northover3b0846e2014-05-24 12:50:23 +00008979void AArch64TargetLowering::ReplaceNodeResults(
8980 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
8981 switch (N->getOpcode()) {
8982 default:
8983 llvm_unreachable("Don't know how to custom expand this");
Tim Northoverf8bfe212014-07-18 13:07:05 +00008984 case ISD::BITCAST:
8985 ReplaceBITCASTResults(N, Results, DAG);
8986 return;
Tim Northover3b0846e2014-05-24 12:50:23 +00008987 case ISD::FP_TO_UINT:
8988 case ISD::FP_TO_SINT:
8989 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
8990 // Let normal code take care of it by not adding anything to Results.
8991 return;
8992 }
8993}
8994
Akira Hatanakae5b6e0d2014-07-25 19:31:34 +00008995bool AArch64TargetLowering::useLoadStackGuardNode() const {
8996 return true;
8997}
8998
Hao Liu44e5d7a2014-11-21 06:39:58 +00008999bool AArch64TargetLowering::combineRepeatedFPDivisors(unsigned NumUsers) const {
9000 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
9001 // reciprocal if there are three or more FDIVs.
9002 return NumUsers > 2;
9003}
9004
Chandler Carruth9d010ff2014-07-03 00:23:43 +00009005TargetLoweringBase::LegalizeTypeAction
9006AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
9007 MVT SVT = VT.getSimpleVT();
9008 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
9009 // v4i16, v2i32 instead of to promote.
9010 if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
9011 || SVT == MVT::v1f32)
9012 return TypeWidenVector;
9013
9014 return TargetLoweringBase::getPreferredVectorAction(VT);
9015}
9016
Robin Morisseted3d48f2014-09-03 21:29:59 +00009017// Loads and stores less than 128-bits are already atomic; ones above that
9018// are doomed anyway, so defer to the default libcall and blame the OS when
9019// things go wrong.
9020bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
9021 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
9022 return Size == 128;
9023}
9024
9025// Loads and stores less than 128-bits are already atomic; ones above that
9026// are doomed anyway, so defer to the default libcall and blame the OS when
9027// things go wrong.
9028bool AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
9029 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
9030 return Size == 128;
9031}
9032
9033// For the real atomic operations, we have ldxr/stxr up to 128 bits,
JF Bastienf14889e2015-03-04 15:47:57 +00009034TargetLoweringBase::AtomicRMWExpansionKind
9035AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
Robin Morisseted3d48f2014-09-03 21:29:59 +00009036 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
JF Bastienf14889e2015-03-04 15:47:57 +00009037 return Size <= 128 ? AtomicRMWExpansionKind::LLSC
9038 : AtomicRMWExpansionKind::None;
Robin Morisseted3d48f2014-09-03 21:29:59 +00009039}
9040
Robin Morisset25c8e312014-09-17 00:06:58 +00009041bool AArch64TargetLowering::hasLoadLinkedStoreConditional() const {
9042 return true;
9043}
9044
Tim Northover3b0846e2014-05-24 12:50:23 +00009045Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
9046 AtomicOrdering Ord) const {
9047 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9048 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
Robin Morissetb155f522014-08-18 16:48:58 +00009049 bool IsAcquire = isAtLeastAcquire(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00009050
9051 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
9052 // intrinsic must return {i64, i64} and we have to recombine them into a
9053 // single i128 here.
9054 if (ValTy->getPrimitiveSizeInBits() == 128) {
9055 Intrinsic::ID Int =
9056 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
9057 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
9058
9059 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
9060 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
9061
9062 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
9063 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
9064 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
9065 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
9066 return Builder.CreateOr(
9067 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
9068 }
9069
9070 Type *Tys[] = { Addr->getType() };
9071 Intrinsic::ID Int =
9072 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
9073 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
9074
9075 return Builder.CreateTruncOrBitCast(
9076 Builder.CreateCall(Ldxr, Addr),
9077 cast<PointerType>(Addr->getType())->getElementType());
9078}
9079
9080Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
9081 Value *Val, Value *Addr,
9082 AtomicOrdering Ord) const {
9083 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Robin Morissetb155f522014-08-18 16:48:58 +00009084 bool IsRelease = isAtLeastRelease(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00009085
9086 // Since the intrinsics must have legal type, the i128 intrinsics take two
9087 // parameters: "i64, i64". We must marshal Val into the appropriate form
9088 // before the call.
9089 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
9090 Intrinsic::ID Int =
9091 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
9092 Function *Stxr = Intrinsic::getDeclaration(M, Int);
9093 Type *Int64Ty = Type::getInt64Ty(M->getContext());
9094
9095 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
9096 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
9097 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
9098 return Builder.CreateCall3(Stxr, Lo, Hi, Addr);
9099 }
9100
9101 Intrinsic::ID Int =
9102 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
9103 Type *Tys[] = { Addr->getType() };
9104 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
9105
9106 return Builder.CreateCall2(
9107 Stxr, Builder.CreateZExtOrBitCast(
9108 Val, Stxr->getFunctionType()->getParamType(0)),
9109 Addr);
9110}
Tim Northover3c55cca2014-11-27 21:02:42 +00009111
9112bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
9113 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
9114 return Ty->isArrayTy();
9115}