blob: 6dff45f7143c7106f8b1e274fd00eb630ca0330f [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000021#include "llvm/Analysis/LoopInfo.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000022#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000023#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000024#include "llvm/IR/Constants.h"
25#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000026#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000027#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000028#include "llvm/IR/GlobalAlias.h"
29#include "llvm/IR/GlobalVariable.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/IR/Metadata.h"
34#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000035#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000036#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000037#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000038#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000039#include <algorithm>
40#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000041#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000042using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000043using namespace llvm::PatternMatch;
44
45const unsigned MaxDepth = 6;
46
Philip Reames1c292272015-03-10 22:43:20 +000047/// Enable an experimental feature to leverage information about dominating
48/// conditions to compute known bits. The individual options below control how
Benjamin Kramerdf005cb2015-08-08 18:27:36 +000049/// hard we search. The defaults are chosen to be fairly aggressive. If you
Philip Reames1c292272015-03-10 22:43:20 +000050/// run into compile time problems when testing, scale them back and report
51/// your findings.
52static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions",
53 cl::Hidden, cl::init(false));
54
55// This is expensive, so we only do it for the top level query value.
56// (TODO: evaluate cost vs profit, consider higher thresholds)
57static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth",
58 cl::Hidden, cl::init(1));
59
60/// How many dominating blocks should be scanned looking for dominating
61/// conditions?
62static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks",
63 cl::Hidden,
Igor Laevskycea9ede2015-09-29 14:57:52 +000064 cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000065
66// Controls the number of uses of the value searched for possible
67// dominating comparisons.
68static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000069 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000070
71// If true, don't consider only compares whose only use is a branch.
72static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use",
73 cl::Hidden, cl::init(false));
74
Sanjay Patelaee84212014-11-04 16:27:42 +000075/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
76/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000077static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000078 if (unsigned BitWidth = Ty->getScalarSizeInBits())
79 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000080
Mehdi Aminia28d91d2015-03-10 02:37:25 +000081 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000082}
Chris Lattner965c7692008-06-02 01:18:21 +000083
Benjamin Kramercfd8d902014-09-12 08:56:53 +000084namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000085// Simplifying using an assume can only be done in a particular control-flow
86// context (the context instruction provides that context). If an assume and
87// the context instruction are not in the same block then the DT helps in
88// figuring out if we can use it.
89struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000090 const DataLayout &DL;
Chandler Carruth66b31302015-01-04 12:03:27 +000091 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000092 const Instruction *CxtI;
93 const DominatorTree *DT;
94
Matthias Braun37e5d792016-01-28 06:29:33 +000095 /// Set of assumptions that should be excluded from further queries.
96 /// This is because of the potential for mutual recursion to cause
97 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
98 /// classic case of this is assume(x = y), which will attempt to determine
99 /// bits in x from bits in y, which will attempt to determine bits in y from
100 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
101 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
102 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
103 /// on.
104 std::array<const Value*, MaxDepth> Excluded;
105 unsigned NumExcluded;
106
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000107 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
108 const DominatorTree *DT)
Matthias Braun37e5d792016-01-28 06:29:33 +0000109 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000110
111 Query(const Query &Q, const Value *NewExcl)
Matthias Braun37e5d792016-01-28 06:29:33 +0000112 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
113 Excluded = Q.Excluded;
114 Excluded[NumExcluded++] = NewExcl;
115 assert(NumExcluded <= Excluded.size());
116 }
117
118 bool isExcluded(const Value *Value) const {
119 if (NumExcluded == 0)
120 return false;
121 auto End = Excluded.begin() + NumExcluded;
122 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000123 }
124};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000125} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000126
Sanjay Patel547e9752014-11-04 16:09:50 +0000127// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000128// the preferred context instruction (if any).
129static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
130 // If we've been provided with a context instruction, then use that (provided
131 // it has been inserted).
132 if (CxtI && CxtI->getParent())
133 return CxtI;
134
135 // If the value is really an already-inserted instruction, then use that.
136 CxtI = dyn_cast<Instruction>(V);
137 if (CxtI && CxtI->getParent())
138 return CxtI;
139
140 return nullptr;
141}
142
143static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000144 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000145
146void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000147 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000148 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000149 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000150 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
151 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000152}
153
Jingyue Wuca321902015-05-14 23:53:19 +0000154bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
155 AssumptionCache *AC, const Instruction *CxtI,
156 const DominatorTree *DT) {
157 assert(LHS->getType() == RHS->getType() &&
158 "LHS and RHS should have the same type");
159 assert(LHS->getType()->isIntOrIntVectorTy() &&
160 "LHS and RHS should be integers");
161 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
162 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
163 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
164 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
165 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
166 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
167}
168
Hal Finkel60db0582014-09-07 18:57:58 +0000169static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000170 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000171
172void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000173 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000174 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000175 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000176 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
177 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000178}
179
180static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000181 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000182
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000183bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
Chandler Carruth66b31302015-01-04 12:03:27 +0000184 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000185 const Instruction *CxtI,
186 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000187 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000188 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000189}
190
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000191static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000192
193bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
194 AssumptionCache *AC, const Instruction *CxtI,
195 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000196 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000197}
198
Jingyue Wu10fcea52015-08-20 18:27:04 +0000199bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
200 AssumptionCache *AC, const Instruction *CxtI,
201 const DominatorTree *DT) {
202 bool NonNegative, Negative;
203 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
204 return NonNegative;
205}
206
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000207static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000208
209bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
210 AssumptionCache *AC, const Instruction *CxtI,
211 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000212 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
213 safeCxtI(V1, safeCxtI(V2, CxtI)),
214 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000215}
216
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000217static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
218 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000219
220bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
221 unsigned Depth, AssumptionCache *AC,
222 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000223 return ::MaskedValueIsZero(V, Mask, Depth,
224 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000225}
226
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000227static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000228
229unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
230 unsigned Depth, AssumptionCache *AC,
231 const Instruction *CxtI,
232 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000233 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000234}
235
Jay Foada0653a32014-05-14 21:14:37 +0000236static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
237 APInt &KnownZero, APInt &KnownOne,
238 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000239 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000240 if (!Add) {
241 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
242 // We know that the top bits of C-X are clear if X contains less bits
243 // than C (i.e. no wrap-around can happen). For example, 20-X is
244 // positive if we can prove that X is >= 0 and < 16.
245 if (!CLHS->getValue().isNegative()) {
246 unsigned BitWidth = KnownZero.getBitWidth();
247 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
248 // NLZ can't be BitWidth with no sign bit
249 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000250 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000251
252 // If all of the MaskV bits are known to be zero, then we know the
253 // output top bits are zero, because we now know that the output is
254 // from [0-C].
255 if ((KnownZero2 & MaskV) == MaskV) {
256 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
257 // Top bits known zero.
258 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
259 }
260 }
261 }
262 }
263
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000264 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000265
David Majnemer97ddca32014-08-22 00:40:43 +0000266 // If an initial sequence of bits in the result is not needed, the
267 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000268 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000269 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
270 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000271
David Majnemer97ddca32014-08-22 00:40:43 +0000272 // Carry in a 1 for a subtract, rather than a 0.
273 APInt CarryIn(BitWidth, 0);
274 if (!Add) {
275 // Sum = LHS + ~RHS + 1
276 std::swap(KnownZero2, KnownOne2);
277 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000278 }
279
David Majnemer97ddca32014-08-22 00:40:43 +0000280 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
281 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
282
283 // Compute known bits of the carry.
284 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
285 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
286
287 // Compute set of known bits (where all three relevant bits are known).
288 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
289 APInt RHSKnown = KnownZero2 | KnownOne2;
290 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
291 APInt Known = LHSKnown & RHSKnown & CarryKnown;
292
293 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
294 "known bits of sum differ");
295
296 // Compute known bits of the result.
297 KnownZero = ~PossibleSumOne & Known;
298 KnownOne = PossibleSumOne & Known;
299
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000300 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000301 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000302 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000303 // Adding two non-negative numbers, or subtracting a negative number from
304 // a non-negative one, can't wrap into negative.
305 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
306 KnownZero |= APInt::getSignBit(BitWidth);
307 // Adding two negative numbers, or subtracting a non-negative number from
308 // a negative one, can't wrap into non-negative.
309 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
310 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000311 }
312 }
313}
314
Jay Foada0653a32014-05-14 21:14:37 +0000315static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
316 APInt &KnownZero, APInt &KnownOne,
317 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000318 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000319 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000320 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
321 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000322
323 bool isKnownNegative = false;
324 bool isKnownNonNegative = false;
325 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000326 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000327 if (Op0 == Op1) {
328 // The product of a number with itself is non-negative.
329 isKnownNonNegative = true;
330 } else {
331 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
332 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
333 bool isKnownNegativeOp1 = KnownOne.isNegative();
334 bool isKnownNegativeOp0 = KnownOne2.isNegative();
335 // The product of two numbers with the same sign is non-negative.
336 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
337 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
338 // The product of a negative number and a non-negative number is either
339 // negative or zero.
340 if (!isKnownNonNegative)
341 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000342 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000343 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000344 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000345 }
346 }
347
348 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000349 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000350 // More trickiness is possible, but this is sufficient for the
351 // interesting case of alignment computation.
352 KnownOne.clearAllBits();
353 unsigned TrailZ = KnownZero.countTrailingOnes() +
354 KnownZero2.countTrailingOnes();
355 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
356 KnownZero2.countLeadingOnes(),
357 BitWidth) - BitWidth;
358
359 TrailZ = std::min(TrailZ, BitWidth);
360 LeadZ = std::min(LeadZ, BitWidth);
361 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
362 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000363
364 // Only make use of no-wrap flags if we failed to compute the sign bit
365 // directly. This matters if the multiplication always overflows, in
366 // which case we prefer to follow the result of the direct computation,
367 // though as the program is invoking undefined behaviour we can choose
368 // whatever we like here.
369 if (isKnownNonNegative && !KnownOne.isNegative())
370 KnownZero.setBit(BitWidth - 1);
371 else if (isKnownNegative && !KnownZero.isNegative())
372 KnownOne.setBit(BitWidth - 1);
373}
374
Jingyue Wu37fcb592014-06-19 16:50:16 +0000375void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000376 APInt &KnownZero,
377 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000378 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000379 unsigned NumRanges = Ranges.getNumOperands() / 2;
380 assert(NumRanges >= 1);
381
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000382 KnownZero.setAllBits();
383 KnownOne.setAllBits();
384
Rafael Espindola53190532012-03-30 15:52:11 +0000385 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000386 ConstantInt *Lower =
387 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
388 ConstantInt *Upper =
389 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000390 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000391
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000392 // The first CommonPrefixBits of all values in Range are equal.
393 unsigned CommonPrefixBits =
394 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
395
396 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
397 KnownOne &= Range.getUnsignedMax() & Mask;
398 KnownZero &= ~Range.getUnsignedMax() & Mask;
399 }
Rafael Espindola53190532012-03-30 15:52:11 +0000400}
Jay Foad5a29c362014-05-15 12:12:55 +0000401
Hal Finkel60db0582014-09-07 18:57:58 +0000402static bool isEphemeralValueOf(Instruction *I, const Value *E) {
403 SmallVector<const Value *, 16> WorkSet(1, I);
404 SmallPtrSet<const Value *, 32> Visited;
405 SmallPtrSet<const Value *, 16> EphValues;
406
Hal Finkelf2199b22015-10-23 20:37:08 +0000407 // The instruction defining an assumption's condition itself is always
408 // considered ephemeral to that assumption (even if it has other
409 // non-ephemeral users). See r246696's test case for an example.
410 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
411 return true;
412
Hal Finkel60db0582014-09-07 18:57:58 +0000413 while (!WorkSet.empty()) {
414 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000415 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000416 continue;
417
418 // If all uses of this value are ephemeral, then so is this value.
Benjamin Kramer56115612015-10-24 19:30:37 +0000419 if (std::all_of(V->user_begin(), V->user_end(),
420 [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000421 if (V == E)
422 return true;
423
424 EphValues.insert(V);
425 if (const User *U = dyn_cast<User>(V))
426 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
427 J != JE; ++J) {
428 if (isSafeToSpeculativelyExecute(*J))
429 WorkSet.push_back(*J);
430 }
431 }
432 }
433
434 return false;
435}
436
437// Is this an intrinsic that cannot be speculated but also cannot trap?
438static bool isAssumeLikeIntrinsic(const Instruction *I) {
439 if (const CallInst *CI = dyn_cast<CallInst>(I))
440 if (Function *F = CI->getCalledFunction())
441 switch (F->getIntrinsicID()) {
442 default: break;
443 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
444 case Intrinsic::assume:
445 case Intrinsic::dbg_declare:
446 case Intrinsic::dbg_value:
447 case Intrinsic::invariant_start:
448 case Intrinsic::invariant_end:
449 case Intrinsic::lifetime_start:
450 case Intrinsic::lifetime_end:
451 case Intrinsic::objectsize:
452 case Intrinsic::ptr_annotation:
453 case Intrinsic::var_annotation:
454 return true;
455 }
456
457 return false;
458}
459
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000460static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
461 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000462 Instruction *Inv = cast<Instruction>(V);
463
464 // There are two restrictions on the use of an assume:
465 // 1. The assume must dominate the context (or the control flow must
466 // reach the assume whenever it reaches the context).
467 // 2. The context must not be in the assume's set of ephemeral values
468 // (otherwise we will use the assume to prove that the condition
469 // feeding the assume is trivially true, thus causing the removal of
470 // the assume).
471
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000472 if (DT) {
473 if (DT->dominates(Inv, CxtI)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000474 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000475 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000476 // The context comes first, but they're both in the same block. Make sure
477 // there is nothing in between that might interrupt the control flow.
478 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000479 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000480 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000481 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000482 return false;
483
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000484 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000485 }
486
487 return false;
488 }
489
490 // When we don't have a DT, we do a limited search...
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000491 if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000492 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000493 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000494 // Search forward from the assume until we reach the context (or the end
495 // of the block); the common case is that the assume will come first.
496 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
497 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000498 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000499 return true;
500
501 // The context must come first...
502 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000503 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000504 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000505 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000506 return false;
507
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000508 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000509 }
510
511 return false;
512}
513
514bool llvm::isValidAssumeForContext(const Instruction *I,
515 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000516 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000517 return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
Hal Finkel60db0582014-09-07 18:57:58 +0000518}
519
520template<typename LHS, typename RHS>
521inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
522 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
523m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
524 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
525}
526
527template<typename LHS, typename RHS>
528inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
529 BinaryOp_match<RHS, LHS, Instruction::And>>
530m_c_And(const LHS &L, const RHS &R) {
531 return m_CombineOr(m_And(L, R), m_And(R, L));
532}
533
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000534template<typename LHS, typename RHS>
535inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
536 BinaryOp_match<RHS, LHS, Instruction::Or>>
537m_c_Or(const LHS &L, const RHS &R) {
538 return m_CombineOr(m_Or(L, R), m_Or(R, L));
539}
540
541template<typename LHS, typename RHS>
542inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
543 BinaryOp_match<RHS, LHS, Instruction::Xor>>
544m_c_Xor(const LHS &L, const RHS &R) {
545 return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
546}
547
Philip Reames1c292272015-03-10 22:43:20 +0000548/// Compute known bits in 'V' under the assumption that the condition 'Cmp' is
549/// true (at the context instruction.) This is mostly a utility function for
550/// the prototype dominating conditions reasoning below.
551static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp,
552 APInt &KnownZero,
553 APInt &KnownOne,
Philip Reames1c292272015-03-10 22:43:20 +0000554 unsigned Depth, const Query &Q) {
555 Value *LHS = Cmp->getOperand(0);
556 Value *RHS = Cmp->getOperand(1);
557 // TODO: We could potentially be more aggressive here. This would be worth
558 // evaluating. If we can, explore commoning this code with the assume
559 // handling logic.
560 if (LHS != V && RHS != V)
561 return;
562
563 const unsigned BitWidth = KnownZero.getBitWidth();
564
565 switch (Cmp->getPredicate()) {
566 default:
567 // We know nothing from this condition
568 break;
569 // TODO: implement unsigned bound from below (known one bits)
570 // TODO: common condition check implementations with assumes
571 // TODO: implement other patterns from assume (e.g. V & B == A)
572 case ICmpInst::ICMP_SGT:
573 if (LHS == V) {
574 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000575 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
Philip Reames1c292272015-03-10 22:43:20 +0000576 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) {
577 // We know that the sign bit is zero.
578 KnownZero |= APInt::getSignBit(BitWidth);
579 }
580 }
581 break;
582 case ICmpInst::ICMP_EQ:
Jingyue Wu12b0c282015-06-15 05:46:29 +0000583 {
584 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
585 if (LHS == V)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000586 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +0000587 else if (RHS == V)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000588 computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +0000589 else
590 llvm_unreachable("missing use?");
591 KnownZero |= KnownZeroTemp;
592 KnownOne |= KnownOneTemp;
593 }
Philip Reames1c292272015-03-10 22:43:20 +0000594 break;
595 case ICmpInst::ICMP_ULE:
596 if (LHS == V) {
597 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000598 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
Philip Reames1c292272015-03-10 22:43:20 +0000599 // The known zero bits carry over
600 unsigned SignBits = KnownZeroTemp.countLeadingOnes();
601 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
602 }
603 break;
604 case ICmpInst::ICMP_ULT:
605 if (LHS == V) {
606 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000607 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
Philip Reames1c292272015-03-10 22:43:20 +0000608 // Whatever high bits in rhs are zero are known to be zero (if rhs is a
609 // power of 2, then one more).
610 unsigned SignBits = KnownZeroTemp.countLeadingOnes();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000611 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp)))
Philip Reames1c292272015-03-10 22:43:20 +0000612 SignBits++;
613 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
614 }
615 break;
616 };
617}
618
619/// Compute known bits in 'V' from conditions which are known to be true along
620/// all paths leading to the context instruction. In particular, look for
621/// cases where one branch of an interesting condition dominates the context
622/// instruction. This does not do general dataflow.
623/// NOTE: This code is EXPERIMENTAL and currently off by default.
624static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero,
625 APInt &KnownOne,
Philip Reames1c292272015-03-10 22:43:20 +0000626 unsigned Depth,
627 const Query &Q) {
628 // Need both the dominator tree and the query location to do anything useful
629 if (!Q.DT || !Q.CxtI)
630 return;
631 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI);
Philip Reames963febd2015-09-21 22:04:10 +0000632 // The context instruction might be in a statically unreachable block. If
633 // so, asking dominator queries may yield suprising results. (e.g. the block
634 // may not have a dom tree node)
635 if (!Q.DT->isReachableFromEntry(Cxt->getParent()))
636 return;
Philip Reames1c292272015-03-10 22:43:20 +0000637
638 // Avoid useless work
639 if (auto VI = dyn_cast<Instruction>(V))
640 if (VI->getParent() == Cxt->getParent())
641 return;
642
643 // Note: We currently implement two options. It's not clear which of these
644 // will survive long term, we need data for that.
645 // Option 1 - Try walking the dominator tree looking for conditions which
646 // might apply. This works well for local conditions (loop guards, etc..),
647 // but not as well for things far from the context instruction (presuming a
648 // low max blocks explored). If we can set an high enough limit, this would
649 // be all we need.
650 // Option 2 - We restrict out search to those conditions which are uses of
651 // the value we're interested in. This is independent of dom structure,
652 // but is slightly less powerful without looking through lots of use chains.
653 // It does handle conditions far from the context instruction (e.g. early
654 // function exits on entry) really well though.
655
656 // Option 1 - Search the dom tree
657 unsigned NumBlocksExplored = 0;
658 BasicBlock *Current = Cxt->getParent();
659 while (true) {
660 // Stop searching if we've gone too far up the chain
661 if (NumBlocksExplored >= DomConditionsMaxDomBlocks)
662 break;
663 NumBlocksExplored++;
664
665 if (!Q.DT->getNode(Current)->getIDom())
666 break;
667 Current = Q.DT->getNode(Current)->getIDom()->getBlock();
668 if (!Current)
669 // found function entry
670 break;
671
672 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator());
673 if (!BI || BI->isUnconditional())
674 continue;
675 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition());
676 if (!Cmp)
677 continue;
678
679 // We're looking for conditions that are guaranteed to hold at the context
680 // instruction. Finding a condition where one path dominates the context
681 // isn't enough because both the true and false cases could merge before
682 // the context instruction we're actually interested in. Instead, we need
Philip Reames963febd2015-09-21 22:04:10 +0000683 // to ensure that the taken *edge* dominates the context instruction. We
684 // know that the edge must be reachable since we started from a reachable
685 // block.
Philip Reames1c292272015-03-10 22:43:20 +0000686 BasicBlock *BB0 = BI->getSuccessor(0);
687 BasicBlockEdge Edge(BI->getParent(), BB0);
688 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
689 continue;
690
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000691 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, Depth, Q);
Philip Reames1c292272015-03-10 22:43:20 +0000692 }
693
694 // Option 2 - Search the other uses of V
695 unsigned NumUsesExplored = 0;
696 for (auto U : V->users()) {
697 // Avoid massive lists
698 if (NumUsesExplored >= DomConditionsMaxUses)
699 break;
700 NumUsesExplored++;
701 // Consider only compare instructions uniquely controlling a branch
702 ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
703 if (!Cmp)
704 continue;
705
706 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
707 continue;
708
709 for (auto *CmpU : Cmp->users()) {
710 BranchInst *BI = dyn_cast<BranchInst>(CmpU);
711 if (!BI || BI->isUnconditional())
712 continue;
713 // We're looking for conditions that are guaranteed to hold at the
714 // context instruction. Finding a condition where one path dominates
715 // the context isn't enough because both the true and false cases could
716 // merge before the context instruction we're actually interested in.
717 // Instead, we need to ensure that the taken *edge* dominates the context
718 // instruction.
719 BasicBlock *BB0 = BI->getSuccessor(0);
720 BasicBlockEdge Edge(BI->getParent(), BB0);
721 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
722 continue;
723
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000724 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, Depth, Q);
Philip Reames1c292272015-03-10 22:43:20 +0000725 }
726 }
727}
728
Hal Finkel60db0582014-09-07 18:57:58 +0000729static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000730 APInt &KnownOne, unsigned Depth,
731 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000732 // Use of assumptions is context-sensitive. If we don't have a context, we
733 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000734 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000735 return;
736
737 unsigned BitWidth = KnownZero.getBitWidth();
738
Chandler Carruth66b31302015-01-04 12:03:27 +0000739 for (auto &AssumeVH : Q.AC->assumptions()) {
740 if (!AssumeVH)
741 continue;
742 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000743 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000744 "Got assumption for the wrong function!");
Matthias Braun37e5d792016-01-28 06:29:33 +0000745 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000746 continue;
747
Philip Reames00d3b272014-11-24 23:44:28 +0000748 // Warning: This loop can end up being somewhat performance sensetive.
749 // We're running this loop for once for each value queried resulting in a
750 // runtime of ~O(#assumes * #values).
751
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000752 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
Philip Reames00d3b272014-11-24 23:44:28 +0000753 "must be an assume intrinsic");
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000754
Philip Reames00d3b272014-11-24 23:44:28 +0000755 Value *Arg = I->getArgOperand(0);
756
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000757 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000758 assert(BitWidth == 1 && "assume operand is not i1?");
759 KnownZero.clearAllBits();
760 KnownOne.setAllBits();
761 return;
762 }
763
David Majnemer9b609752014-12-12 23:59:29 +0000764 // The remaining tests are all recursive, so bail out if we hit the limit.
765 if (Depth == MaxDepth)
766 continue;
767
Hal Finkel60db0582014-09-07 18:57:58 +0000768 Value *A, *B;
769 auto m_V = m_CombineOr(m_Specific(V),
770 m_CombineOr(m_PtrToInt(m_Specific(V)),
771 m_BitCast(m_Specific(V))));
772
773 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000774 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000775 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000776 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000777 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000778 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000779 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000780 KnownZero |= RHSKnownZero;
781 KnownOne |= RHSKnownOne;
782 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000783 } else if (match(Arg,
784 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000785 Pred == ICmpInst::ICMP_EQ &&
786 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000787 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000788 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000789 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000790 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000791
792 // For those bits in the mask that are known to be one, we can propagate
793 // known bits from the RHS to V.
794 KnownZero |= RHSKnownZero & MaskKnownOne;
795 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000796 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000797 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
798 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000799 Pred == ICmpInst::ICMP_EQ &&
800 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000801 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000802 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000803 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000804 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000805
806 // For those bits in the mask that are known to be one, we can propagate
807 // inverted known bits from the RHS to V.
808 KnownZero |= RHSKnownOne & MaskKnownOne;
809 KnownOne |= RHSKnownZero & MaskKnownOne;
810 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000811 } else if (match(Arg,
812 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000813 Pred == ICmpInst::ICMP_EQ &&
814 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000815 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000816 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000817 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000818 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000819
820 // For those bits in B that are known to be zero, we can propagate known
821 // bits from the RHS to V.
822 KnownZero |= RHSKnownZero & BKnownZero;
823 KnownOne |= RHSKnownOne & BKnownZero;
824 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000825 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
826 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000827 Pred == ICmpInst::ICMP_EQ &&
828 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000829 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000830 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000831 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000832 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000833
834 // For those bits in B that are known to be zero, we can propagate
835 // inverted known bits from the RHS to V.
836 KnownZero |= RHSKnownOne & BKnownZero;
837 KnownOne |= RHSKnownZero & BKnownZero;
838 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000839 } else if (match(Arg,
840 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000841 Pred == ICmpInst::ICMP_EQ &&
842 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000843 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000844 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000845 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000846 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000847
848 // For those bits in B that are known to be zero, we can propagate known
849 // bits from the RHS to V. For those bits in B that are known to be one,
850 // we can propagate inverted known bits from the RHS to V.
851 KnownZero |= RHSKnownZero & BKnownZero;
852 KnownOne |= RHSKnownOne & BKnownZero;
853 KnownZero |= RHSKnownOne & BKnownOne;
854 KnownOne |= RHSKnownZero & BKnownOne;
855 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000856 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
857 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000858 Pred == ICmpInst::ICMP_EQ &&
859 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000860 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000861 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000862 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000863 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000864
865 // For those bits in B that are known to be zero, we can propagate
866 // inverted known bits from the RHS to V. For those bits in B that are
867 // known to be one, we can propagate known bits from the RHS to V.
868 KnownZero |= RHSKnownOne & BKnownZero;
869 KnownOne |= RHSKnownZero & BKnownZero;
870 KnownZero |= RHSKnownZero & BKnownOne;
871 KnownOne |= RHSKnownOne & BKnownOne;
872 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000873 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
874 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000875 Pred == ICmpInst::ICMP_EQ &&
876 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000877 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000878 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000879 // For those bits in RHS that are known, we can propagate them to known
880 // bits in V shifted to the right by C.
881 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
882 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
883 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000884 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
885 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000886 Pred == ICmpInst::ICMP_EQ &&
887 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000888 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000889 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000890 // For those bits in RHS that are known, we can propagate them inverted
891 // to known bits in V shifted to the right by C.
892 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
893 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
894 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000895 } else if (match(Arg,
896 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000897 m_AShr(m_V, m_ConstantInt(C))),
898 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000899 Pred == ICmpInst::ICMP_EQ &&
900 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000901 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000902 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000903 // For those bits in RHS that are known, we can propagate them to known
904 // bits in V shifted to the right by C.
905 KnownZero |= RHSKnownZero << C->getZExtValue();
906 KnownOne |= RHSKnownOne << C->getZExtValue();
907 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000908 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000909 m_LShr(m_V, m_ConstantInt(C)),
910 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000911 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000912 Pred == ICmpInst::ICMP_EQ &&
913 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000914 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000915 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000916 // For those bits in RHS that are known, we can propagate them inverted
917 // to known bits in V shifted to the right by C.
918 KnownZero |= RHSKnownOne << C->getZExtValue();
919 KnownOne |= RHSKnownZero << C->getZExtValue();
920 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000921 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000922 Pred == ICmpInst::ICMP_SGE &&
923 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000924 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000925 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000926
927 if (RHSKnownZero.isNegative()) {
928 // We know that the sign bit is zero.
929 KnownZero |= APInt::getSignBit(BitWidth);
930 }
931 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000932 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000933 Pred == ICmpInst::ICMP_SGT &&
934 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000935 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000936 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000937
938 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
939 // We know that the sign bit is zero.
940 KnownZero |= APInt::getSignBit(BitWidth);
941 }
942 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000943 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000944 Pred == ICmpInst::ICMP_SLE &&
945 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000946 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000947 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000948
949 if (RHSKnownOne.isNegative()) {
950 // We know that the sign bit is one.
951 KnownOne |= APInt::getSignBit(BitWidth);
952 }
953 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000954 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000955 Pred == ICmpInst::ICMP_SLT &&
956 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000957 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000958 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000959
960 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
961 // We know that the sign bit is one.
962 KnownOne |= APInt::getSignBit(BitWidth);
963 }
964 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000965 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000966 Pred == ICmpInst::ICMP_ULE &&
967 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000968 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000969 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000970
971 // Whatever high bits in c are zero are known to be zero.
972 KnownZero |=
973 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
974 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000975 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000976 Pred == ICmpInst::ICMP_ULT &&
977 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000978 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000979 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000980
981 // Whatever high bits in c are zero are known to be zero (if c is a power
982 // of 2, then one more).
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000983 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000984 KnownZero |=
985 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
986 else
987 KnownZero |=
988 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000989 }
990 }
991}
992
Hal Finkelf2199b22015-10-23 20:37:08 +0000993// Compute known bits from a shift operator, including those with a
994// non-constant shift amount. KnownZero and KnownOne are the outputs of this
995// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
996// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
997// functors that, given the known-zero or known-one bits respectively, and a
998// shift amount, compute the implied known-zero or known-one bits of the shift
999// operator's result respectively for that shift amount. The results from calling
1000// KZF and KOF are conservatively combined for all permitted shift amounts.
1001template <typename KZFunctor, typename KOFunctor>
1002static void computeKnownBitsFromShiftOperator(Operator *I,
1003 APInt &KnownZero, APInt &KnownOne,
1004 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001005 unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +00001006 unsigned BitWidth = KnownZero.getBitWidth();
1007
1008 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1009 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
1010
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001011 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +00001012 KnownZero = KZF(KnownZero, ShiftAmt);
1013 KnownOne = KOF(KnownOne, ShiftAmt);
1014 return;
1015 }
1016
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001017 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +00001018
1019 // Note: We cannot use KnownZero.getLimitedValue() here, because if
1020 // BitWidth > 64 and any upper bits are known, we'll end up returning the
1021 // limit value (which implies all bits are known).
1022 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
1023 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
1024
1025 // It would be more-clearly correct to use the two temporaries for this
1026 // calculation. Reusing the APInts here to prevent unnecessary allocations.
1027 KnownZero.clearAllBits(), KnownOne.clearAllBits();
1028
James Molloy493e57d2015-10-26 14:10:46 +00001029 // If we know the shifter operand is nonzero, we can sometimes infer more
1030 // known bits. However this is expensive to compute, so be lazy about it and
1031 // only compute it when absolutely necessary.
1032 Optional<bool> ShifterOperandIsNonZero;
1033
Hal Finkelf2199b22015-10-23 20:37:08 +00001034 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +00001035 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
1036 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001037 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +00001038 if (!*ShifterOperandIsNonZero)
1039 return;
1040 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001041
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001042 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +00001043
1044 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
1045 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1046 // Combine the shifted known input bits only for those shift amounts
1047 // compatible with its known constraints.
1048 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1049 continue;
1050 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1051 continue;
James Molloy493e57d2015-10-26 14:10:46 +00001052 // If we know the shifter is nonzero, we may be able to infer more known
1053 // bits. This check is sunk down as far as possible to avoid the expensive
1054 // call to isKnownNonZero if the cheaper checks above fail.
1055 if (ShiftAmt == 0) {
1056 if (!ShifterOperandIsNonZero.hasValue())
1057 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001058 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +00001059 if (*ShifterOperandIsNonZero)
1060 continue;
1061 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001062
1063 KnownZero &= KZF(KnownZero2, ShiftAmt);
1064 KnownOne &= KOF(KnownOne2, ShiftAmt);
1065 }
1066
1067 // If there are no compatible shift amounts, then we've proven that the shift
1068 // amount must be >= the BitWidth, and the result is undefined. We could
1069 // return anything we'd like, but we need to make sure the sets of known bits
1070 // stay disjoint (it should be better for some other code to actually
1071 // propagate the undef than to pick a value here using known bits).
1072 if ((KnownZero & KnownOne) != 0)
1073 KnownZero.clearAllBits(), KnownOne.clearAllBits();
1074}
1075
Jingyue Wu12b0c282015-06-15 05:46:29 +00001076static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001077 APInt &KnownOne, unsigned Depth,
1078 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001079 unsigned BitWidth = KnownZero.getBitWidth();
1080
Chris Lattner965c7692008-06-02 01:18:21 +00001081 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001082 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001083 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +00001084 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001085 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001086 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +00001087 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001088 case Instruction::And: {
1089 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001090 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
1091 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001092
Chris Lattner965c7692008-06-02 01:18:21 +00001093 // Output known-1 bits are only known if set in both the LHS & RHS.
1094 KnownOne &= KnownOne2;
1095 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1096 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +00001097
1098 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1099 // here we handle the more general case of adding any odd number by
1100 // matching the form add(x, add(x, y)) where y is odd.
1101 // TODO: This could be generalized to clearing any bit set in y where the
1102 // following bit is known to be unset in y.
1103 Value *Y = nullptr;
1104 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
1105 m_Value(Y))) ||
1106 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
1107 m_Value(Y)))) {
1108 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001109 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +00001110 if (KnownOne3.countTrailingOnes() > 0)
1111 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
1112 }
Jay Foad5a29c362014-05-15 12:12:55 +00001113 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001114 }
1115 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001116 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
1117 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001118
Chris Lattner965c7692008-06-02 01:18:21 +00001119 // Output known-0 bits are only known if clear in both the LHS & RHS.
1120 KnownZero &= KnownZero2;
1121 // Output known-1 are known to be set if set in either the LHS | RHS.
1122 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +00001123 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001124 }
1125 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001126 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
1127 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001128
Chris Lattner965c7692008-06-02 01:18:21 +00001129 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1130 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1131 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1132 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1133 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +00001134 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001135 }
1136 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +00001137 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001138 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001139 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001140 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001141 }
1142 case Instruction::UDiv: {
1143 // For the purposes of computing leading zeros we can conservatively
1144 // treat a udiv as a logical right shift by the power of 2 known to
1145 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001146 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001147 unsigned LeadZ = KnownZero2.countLeadingOnes();
1148
Jay Foad25a5e4c2010-12-01 08:53:58 +00001149 KnownOne2.clearAllBits();
1150 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001151 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001152 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1153 if (RHSUnknownLeadingOnes != BitWidth)
1154 LeadZ = std::min(BitWidth,
1155 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1156
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001157 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +00001158 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001159 }
James Molloyc5eded52016-01-14 15:49:32 +00001160 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001161 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
1162 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001163
1164 // Only known if known in both the LHS and RHS.
1165 KnownOne &= KnownOne2;
1166 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +00001167 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001168 case Instruction::FPTrunc:
1169 case Instruction::FPExt:
1170 case Instruction::FPToUI:
1171 case Instruction::FPToSI:
1172 case Instruction::SIToFP:
1173 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001174 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001175 case Instruction::PtrToInt:
1176 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +00001177 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +00001178 // FALL THROUGH and handle them the same as zext/trunc.
1179 case Instruction::ZExt:
1180 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001181 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001182
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001183 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001184 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1185 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001186 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001187
1188 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001189 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1190 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001191 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001192 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1193 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001194 // Any top bits are known to be zero.
1195 if (BitWidth > SrcBitWidth)
1196 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001197 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001198 }
1199 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001200 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Patel9115cf82015-10-08 16:56:55 +00001201 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
1202 SrcTy->isFloatingPointTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001203 // TODO: For now, not handling conversions like:
1204 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001205 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001206 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001207 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001208 }
1209 break;
1210 }
1211 case Instruction::SExt: {
1212 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001213 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001214
Jay Foad583abbc2010-12-07 08:25:19 +00001215 KnownZero = KnownZero.trunc(SrcBitWidth);
1216 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001217 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001218 KnownZero = KnownZero.zext(BitWidth);
1219 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001220
1221 // If the sign bit of the input is known set or clear, then we know the
1222 // top bits of the result.
1223 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1224 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1225 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1226 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001227 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001228 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001229 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001230 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001231 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1232 return (KnownZero << ShiftAmt) |
1233 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1234 };
1235
1236 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1237 return KnownOne << ShiftAmt;
1238 };
1239
1240 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001241 KnownZero2, KnownOne2, Depth, Q, KZF,
1242 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001243 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001244 }
1245 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001246 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001247 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1248 return APIntOps::lshr(KnownZero, ShiftAmt) |
1249 // High bits known zero.
1250 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1251 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001252
Hal Finkelf2199b22015-10-23 20:37:08 +00001253 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1254 return APIntOps::lshr(KnownOne, ShiftAmt);
1255 };
1256
1257 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001258 KnownZero2, KnownOne2, Depth, Q, KZF,
1259 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001260 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001261 }
1262 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001263 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001264 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1265 return APIntOps::ashr(KnownZero, ShiftAmt);
1266 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001267
Hal Finkelf2199b22015-10-23 20:37:08 +00001268 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1269 return APIntOps::ashr(KnownOne, ShiftAmt);
1270 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001271
Hal Finkelf2199b22015-10-23 20:37:08 +00001272 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001273 KnownZero2, KnownOne2, Depth, Q, KZF,
1274 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001275 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001276 }
Chris Lattner965c7692008-06-02 01:18:21 +00001277 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001278 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001279 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001280 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1281 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001282 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001283 }
Chris Lattner965c7692008-06-02 01:18:21 +00001284 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001285 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001286 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001287 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1288 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001289 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001290 }
1291 case Instruction::SRem:
1292 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001293 APInt RA = Rem->getValue().abs();
1294 if (RA.isPowerOf2()) {
1295 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001296 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001297 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001298
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001299 // The low bits of the first operand are unchanged by the srem.
1300 KnownZero = KnownZero2 & LowBits;
1301 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001302
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001303 // If the first operand is non-negative or has all low bits zero, then
1304 // the upper bits are all zero.
1305 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1306 KnownZero |= ~LowBits;
1307
1308 // If the first operand is negative and not all low bits are zero, then
1309 // the upper bits are all one.
1310 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1311 KnownOne |= ~LowBits;
1312
Craig Topper1bef2c82012-12-22 19:15:35 +00001313 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001314 }
1315 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001316
1317 // The sign bit is the LHS's sign bit, except when the result of the
1318 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001319 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001320 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001321 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1322 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001323 // If it's known zero, our sign bit is also zero.
1324 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001325 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001326 }
1327
Chris Lattner965c7692008-06-02 01:18:21 +00001328 break;
1329 case Instruction::URem: {
1330 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1331 APInt RA = Rem->getValue();
1332 if (RA.isPowerOf2()) {
1333 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001334 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001335 KnownZero |= ~LowBits;
1336 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001337 break;
1338 }
1339 }
1340
1341 // Since the result is less than or equal to either operand, any leading
1342 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001343 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1344 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001345
Chris Lattner4612ae12009-01-20 18:22:57 +00001346 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001347 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001348 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001349 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001350 break;
1351 }
1352
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001353 case Instruction::Alloca: {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001354 AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001355 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001356 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001357 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001358
Chris Lattner965c7692008-06-02 01:18:21 +00001359 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001360 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001361 break;
1362 }
1363 case Instruction::GetElementPtr: {
1364 // Analyze all of the subscripts of this getelementptr instruction
1365 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001366 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001367 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1368 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001369 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1370
1371 gep_type_iterator GTI = gep_type_begin(I);
1372 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1373 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001374 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001375 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001376
1377 // Handle case when index is vector zeroinitializer
1378 Constant *CIndex = cast<Constant>(Index);
1379 if (CIndex->isZeroValue())
1380 continue;
1381
1382 if (CIndex->getType()->isVectorTy())
1383 Index = CIndex->getSplatValue();
1384
Chris Lattner965c7692008-06-02 01:18:21 +00001385 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001386 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001387 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001388 TrailZ = std::min<unsigned>(TrailZ,
1389 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001390 } else {
1391 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001392 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001393 if (!IndexedTy->isSized()) {
1394 TrailZ = 0;
1395 break;
1396 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001397 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001398 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001399 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001400 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001401 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001402 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001403 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001404 }
1405 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001406
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001407 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001408 break;
1409 }
1410 case Instruction::PHI: {
1411 PHINode *P = cast<PHINode>(I);
1412 // Handle the case of a simple two-predecessor recurrence PHI.
1413 // There's a lot more that could theoretically be done here, but
1414 // this is sufficient to catch some interesting cases.
1415 if (P->getNumIncomingValues() == 2) {
1416 for (unsigned i = 0; i != 2; ++i) {
1417 Value *L = P->getIncomingValue(i);
1418 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001419 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001420 if (!LU)
1421 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001422 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001423 // Check for operations that have the property that if
1424 // both their operands have low zero bits, the result
1425 // will have low zero bits.
1426 if (Opcode == Instruction::Add ||
1427 Opcode == Instruction::Sub ||
1428 Opcode == Instruction::And ||
1429 Opcode == Instruction::Or ||
1430 Opcode == Instruction::Mul) {
1431 Value *LL = LU->getOperand(0);
1432 Value *LR = LU->getOperand(1);
1433 // Find a recurrence.
1434 if (LL == I)
1435 L = LR;
1436 else if (LR == I)
1437 L = LL;
1438 else
1439 break;
1440 // Ok, we have a PHI of the form L op= R. Check for low
1441 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001442 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001443
1444 // We need to take the minimum number of known bits
1445 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001446 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001447
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001448 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001449 std::min(KnownZero2.countTrailingOnes(),
1450 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001451 break;
1452 }
1453 }
1454 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001455
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001456 // Unreachable blocks may have zero-operand PHI nodes.
1457 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001458 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001459
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001460 // Otherwise take the unions of the known bit sets of the operands,
1461 // taking conservative care to avoid excessive recursion.
1462 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001463 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001464 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001465 break;
1466
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001467 KnownZero = APInt::getAllOnesValue(BitWidth);
1468 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001469 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001470 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001471 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001472
1473 KnownZero2 = APInt(BitWidth, 0);
1474 KnownOne2 = APInt(BitWidth, 0);
1475 // Recurse, but cap the recursion to one level, because we don't
1476 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001477 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001478 KnownZero &= KnownZero2;
1479 KnownOne &= KnownOne2;
1480 // If all bits have been ruled out, there's no need to check
1481 // more operands.
1482 if (!KnownZero && !KnownOne)
1483 break;
1484 }
1485 }
Chris Lattner965c7692008-06-02 01:18:21 +00001486 break;
1487 }
1488 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001489 case Instruction::Invoke:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001490 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001491 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jingyue Wu37fcb592014-06-19 16:50:16 +00001492 // If a range metadata is attached to this IntrinsicInst, intersect the
1493 // explicit range specified by the metadata and the implicit range of
1494 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001495 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1496 switch (II->getIntrinsicID()) {
1497 default: break;
Philip Reames675418e2015-10-06 20:20:45 +00001498 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001499 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001500 KnownZero |= KnownZero2.byteSwap();
1501 KnownOne |= KnownOne2.byteSwap();
1502 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001503 case Intrinsic::ctlz:
1504 case Intrinsic::cttz: {
1505 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001506 // If this call is undefined for 0, the result will be less than 2^n.
1507 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1508 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001509 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001510 break;
1511 }
1512 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001513 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001514 // We can bound the space the count needs. Also, bits known to be zero
1515 // can't contribute to the population.
1516 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1517 unsigned LeadingZeros =
1518 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001519 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001520 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1521 KnownOne &= ~KnownZero;
1522 // TODO: we could bound KnownOne using the lower bound on the number
1523 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001524 break;
1525 }
Sanjay Patel9115cf82015-10-08 16:56:55 +00001526 case Intrinsic::fabs: {
1527 Type *Ty = II->getType();
1528 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
1529 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
1530 break;
1531 }
Chad Rosierb3628842011-05-26 23:13:19 +00001532 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001533 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001534 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001535 }
1536 }
1537 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001538 case Instruction::ExtractValue:
1539 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1540 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1541 if (EVI->getNumIndices() != 1) break;
1542 if (EVI->getIndices()[0] == 0) {
1543 switch (II->getIntrinsicID()) {
1544 default: break;
1545 case Intrinsic::uadd_with_overflow:
1546 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001547 computeKnownBitsAddSub(true, II->getArgOperand(0),
1548 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001549 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001550 break;
1551 case Intrinsic::usub_with_overflow:
1552 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001553 computeKnownBitsAddSub(false, II->getArgOperand(0),
1554 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001555 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001556 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001557 case Intrinsic::umul_with_overflow:
1558 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001559 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001560 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1561 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001562 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001563 }
1564 }
1565 }
Chris Lattner965c7692008-06-02 01:18:21 +00001566 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001567}
1568
Artur Pilipenkod94903c2015-10-07 16:01:18 +00001569static unsigned getAlignment(const Value *V, const DataLayout &DL) {
Artur Pilipenko029d8532015-09-30 11:55:45 +00001570 unsigned Align = 0;
1571 if (auto *GO = dyn_cast<GlobalObject>(V)) {
1572 Align = GO->getAlignment();
1573 if (Align == 0) {
1574 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
Manuel Jacob5f6eaac2016-01-16 20:30:46 +00001575 Type *ObjectType = GVar->getValueType();
Artur Pilipenko029d8532015-09-30 11:55:45 +00001576 if (ObjectType->isSized()) {
1577 // If the object is defined in the current Module, we'll be giving
1578 // it the preferred alignment. Otherwise, we have to assume that it
1579 // may only have the minimum ABI alignment.
1580 if (GVar->isStrongDefinitionForLinker())
1581 Align = DL.getPreferredAlignment(GVar);
1582 else
1583 Align = DL.getABITypeAlignment(ObjectType);
1584 }
1585 }
1586 }
Artur Pilipenkod94903c2015-10-07 16:01:18 +00001587 } else if (const Argument *A = dyn_cast<Argument>(V)) {
Artur Pilipenko029d8532015-09-30 11:55:45 +00001588 Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
1589
1590 if (!Align && A->hasStructRetAttr()) {
1591 // An sret parameter has at least the ABI alignment of the return type.
1592 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
1593 if (EltTy->isSized())
1594 Align = DL.getABITypeAlignment(EltTy);
1595 }
Artur Pilipenkod94903c2015-10-07 16:01:18 +00001596 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
1597 Align = AI->getAlignment();
1598 else if (auto CS = ImmutableCallSite(V))
1599 Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex);
1600 else if (const LoadInst *LI = dyn_cast<LoadInst>(V))
1601 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
1602 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
1603 Align = CI->getLimitedValue();
1604 }
1605
Artur Pilipenko029d8532015-09-30 11:55:45 +00001606 return Align;
1607}
1608
Jingyue Wu12b0c282015-06-15 05:46:29 +00001609/// Determine which bits of V are known to be either zero or one and return
1610/// them in the KnownZero/KnownOne bit sets.
1611///
1612/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1613/// we cannot optimize based on the assumption that it is zero without changing
1614/// it to be an explicit zero. If we don't change it to zero, other code could
1615/// optimized based on the contradictory assumption that it is non-zero.
1616/// Because instcombine aggressively folds operations with undef args anyway,
1617/// this won't lose us code quality.
1618///
1619/// This function is defined on values with integer type, values with pointer
1620/// type, and vectors of integers. In the case
1621/// where V is a vector, known zero, and known one values are the
1622/// same width as the vector element, and the bit is set only if it is true
1623/// for all of the elements in the vector.
1624void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001625 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001626 assert(V && "No Value?");
1627 assert(Depth <= MaxDepth && "Limit Search Depth");
1628 unsigned BitWidth = KnownZero.getBitWidth();
1629
1630 assert((V->getType()->isIntOrIntVectorTy() ||
Sanjay Patel9115cf82015-10-08 16:56:55 +00001631 V->getType()->isFPOrFPVectorTy() ||
Jingyue Wu12b0c282015-06-15 05:46:29 +00001632 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Patel9115cf82015-10-08 16:56:55 +00001633 "Not integer, floating point, or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001634 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001635 (!V->getType()->isIntOrIntVectorTy() ||
1636 V->getType()->getScalarSizeInBits() == BitWidth) &&
1637 KnownZero.getBitWidth() == BitWidth &&
1638 KnownOne.getBitWidth() == BitWidth &&
1639 "V, KnownOne and KnownZero should have same BitWidth");
1640
1641 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1642 // We know all of the bits for a constant!
1643 KnownOne = CI->getValue();
1644 KnownZero = ~KnownOne;
1645 return;
1646 }
1647 // Null and aggregate-zero are all-zeros.
1648 if (isa<ConstantPointerNull>(V) ||
1649 isa<ConstantAggregateZero>(V)) {
1650 KnownOne.clearAllBits();
1651 KnownZero = APInt::getAllOnesValue(BitWidth);
1652 return;
1653 }
1654 // Handle a constant vector by taking the intersection of the known bits of
1655 // each element. There is no real need to handle ConstantVector here, because
1656 // we don't handle undef in any particularly useful way.
1657 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1658 // We know that CDS must be a vector of integers. Take the intersection of
1659 // each element.
1660 KnownZero.setAllBits(); KnownOne.setAllBits();
1661 APInt Elt(KnownZero.getBitWidth(), 0);
1662 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1663 Elt = CDS->getElementAsInteger(i);
1664 KnownZero &= ~Elt;
1665 KnownOne &= Elt;
1666 }
1667 return;
1668 }
1669
Jingyue Wu12b0c282015-06-15 05:46:29 +00001670 // Start out not knowing anything.
1671 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1672
1673 // Limit search depth.
1674 // All recursive calls that increase depth must come after this.
1675 if (Depth == MaxDepth)
1676 return;
1677
1678 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1679 // the bits of its aliasee.
1680 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1681 if (!GA->mayBeOverridden())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001682 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001683 return;
1684 }
1685
1686 if (Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001687 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001688
Artur Pilipenko029d8532015-09-30 11:55:45 +00001689 // Aligned pointers have trailing zeros - refine KnownZero set
1690 if (V->getType()->isPointerTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001691 unsigned Align = getAlignment(V, Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001692 if (Align)
1693 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1694 }
1695
Jingyue Wu12b0c282015-06-15 05:46:29 +00001696 // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition
1697 // strictly refines KnownZero and KnownOne. Therefore, we run them after
1698 // computeKnownBitsFromOperator.
1699
1700 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001701 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001702
1703 // Check whether there's a dominating condition which implies something about
1704 // this value at the given context.
1705 if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001706 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, Depth, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001707
1708 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001709}
1710
Sanjay Patelaee84212014-11-04 16:27:42 +00001711/// Determine whether the sign bit is known to be zero or one.
1712/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001713void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001714 unsigned Depth, const Query &Q) {
1715 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001716 if (!BitWidth) {
1717 KnownZero = false;
1718 KnownOne = false;
1719 return;
1720 }
1721 APInt ZeroBits(BitWidth, 0);
1722 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001723 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001724 KnownOne = OneBits[BitWidth - 1];
1725 KnownZero = ZeroBits[BitWidth - 1];
1726}
1727
Sanjay Patelaee84212014-11-04 16:27:42 +00001728/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001729/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001730/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001731/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001732bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001733 const Query &Q) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001734 if (Constant *C = dyn_cast<Constant>(V)) {
1735 if (C->isNullValue())
1736 return OrZero;
1737 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1738 return CI->getValue().isPowerOf2();
1739 // TODO: Handle vector constants.
1740 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001741
1742 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1743 // it is shifted off the end then the result is undefined.
1744 if (match(V, m_Shl(m_One(), m_Value())))
1745 return true;
1746
1747 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1748 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001749 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001750 return true;
1751
1752 // The remaining tests are all recursive, so bail out if we hit the limit.
1753 if (Depth++ == MaxDepth)
1754 return false;
1755
Craig Topper9f008862014-04-15 04:59:12 +00001756 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001757 // A shift left or a logical shift right of a power of two is a power of two
1758 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001759 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001760 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001761 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001762
Duncan Sandsd3951082011-01-25 09:38:29 +00001763 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001764 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001765
1766 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001767 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1768 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001769
Duncan Sandsba286d72011-10-26 20:55:21 +00001770 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1771 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001772 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1773 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001774 return true;
1775 // X & (-X) is always a power of two or zero.
1776 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1777 return true;
1778 return false;
1779 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001780
David Majnemerb7d54092013-07-30 21:01:36 +00001781 // Adding a power-of-two or zero to the same power-of-two or zero yields
1782 // either the original power-of-two, a larger power-of-two or zero.
1783 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1784 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1785 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1786 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1787 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001788 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001789 return true;
1790 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1791 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001792 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001793 return true;
1794
1795 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1796 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001797 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001798
1799 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001800 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001801 // If i8 V is a power of two or zero:
1802 // ZeroBits: 1 1 1 0 1 1 1 1
1803 // ~ZeroBits: 0 0 0 1 0 0 0 0
1804 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1805 // If OrZero isn't set, we cannot give back a zero result.
1806 // Make sure either the LHS or RHS has a bit set.
1807 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1808 return true;
1809 }
1810 }
David Majnemerbeab5672013-05-18 19:30:37 +00001811
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001812 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001813 // is a power of two only if the first operand is a power of two and not
1814 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001815 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1816 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001817 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001818 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001819 }
1820
Duncan Sandsd3951082011-01-25 09:38:29 +00001821 return false;
1822}
1823
Chandler Carruth80d3e562012-12-07 02:08:58 +00001824/// \brief Test whether a GEP's result is known to be non-null.
1825///
1826/// Uses properties inherent in a GEP to try to determine whether it is known
1827/// to be non-null.
1828///
1829/// Currently this routine does not support vector GEPs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001830static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1831 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001832 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1833 return false;
1834
1835 // FIXME: Support vector-GEPs.
1836 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1837
1838 // If the base pointer is non-null, we cannot walk to a null address with an
1839 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001840 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001841 return true;
1842
Chandler Carruth80d3e562012-12-07 02:08:58 +00001843 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1844 // If so, then the GEP cannot produce a null pointer, as doing so would
1845 // inherently violate the inbounds contract within address space zero.
1846 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1847 GTI != GTE; ++GTI) {
1848 // Struct types are easy -- they must always be indexed by a constant.
1849 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1850 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1851 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001852 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001853 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1854 if (ElementOffset > 0)
1855 return true;
1856 continue;
1857 }
1858
1859 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001860 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001861 continue;
1862
1863 // Fast path the constant operand case both for efficiency and so we don't
1864 // increment Depth when just zipping down an all-constant GEP.
1865 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1866 if (!OpC->isZero())
1867 return true;
1868 continue;
1869 }
1870
1871 // We post-increment Depth here because while isKnownNonZero increments it
1872 // as well, when we pop back up that increment won't persist. We don't want
1873 // to recurse 10k times just because we have 10k GEP operands. We don't
1874 // bail completely out because we want to handle constant GEPs regardless
1875 // of depth.
1876 if (Depth++ >= MaxDepth)
1877 continue;
1878
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001879 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001880 return true;
1881 }
1882
1883 return false;
1884}
1885
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001886/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1887/// ensure that the value it's attached to is never Value? 'RangeType' is
1888/// is the type of the value described by the range.
1889static bool rangeMetadataExcludesValue(MDNode* Ranges,
1890 const APInt& Value) {
1891 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1892 assert(NumRanges >= 1);
1893 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001894 ConstantInt *Lower =
1895 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1896 ConstantInt *Upper =
1897 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001898 ConstantRange Range(Lower->getValue(), Upper->getValue());
1899 if (Range.contains(Value))
1900 return false;
1901 }
1902 return true;
1903}
1904
Sanjay Patelaee84212014-11-04 16:27:42 +00001905/// Return true if the given value is known to be non-zero when defined.
1906/// For vectors return true if every element is known to be non-zero when
1907/// defined. Supports values with integer or pointer type and vectors of
1908/// integers.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001909bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001910 if (Constant *C = dyn_cast<Constant>(V)) {
1911 if (C->isNullValue())
1912 return false;
1913 if (isa<ConstantInt>(C))
1914 // Must be non-zero due to null test above.
1915 return true;
1916 // TODO: Handle vectors
1917 return false;
1918 }
1919
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001920 if (Instruction* I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001921 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001922 // If the possible ranges don't contain zero, then the value is
1923 // definitely non-zero.
1924 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1925 const APInt ZeroValue(Ty->getBitWidth(), 0);
1926 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1927 return true;
1928 }
1929 }
1930 }
1931
Duncan Sandsd3951082011-01-25 09:38:29 +00001932 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001933 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001934 return false;
1935
Chandler Carruth80d3e562012-12-07 02:08:58 +00001936 // Check for pointer simplifications.
1937 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001938 if (isKnownNonNull(V))
1939 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001940 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001941 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001942 return true;
1943 }
1944
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001945 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001946
1947 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001948 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001949 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001950 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001951
1952 // ext X != 0 if X != 0.
1953 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001954 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001955
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001956 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001957 // if the lowest bit is shifted off the end.
1958 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001959 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001960 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001961 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001962 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001963
Duncan Sandsd3951082011-01-25 09:38:29 +00001964 APInt KnownZero(BitWidth, 0);
1965 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001966 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001967 if (KnownOne[0])
1968 return true;
1969 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001970 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001971 // defined if the sign bit is shifted off the end.
1972 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001973 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001974 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001975 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001976 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001977
Duncan Sandsd3951082011-01-25 09:38:29 +00001978 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001979 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001980 if (XKnownNegative)
1981 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001982
1983 // If the shifter operand is a constant, and all of the bits shifted
1984 // out are known to be zero, and X is known non-zero then at least one
1985 // non-zero bit must remain.
1986 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1987 APInt KnownZero(BitWidth, 0);
1988 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001989 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001990
1991 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1992 // Is there a known one in the portion not shifted out?
1993 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1994 return true;
1995 // Are all the bits to be shifted out known zero?
1996 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001997 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001998 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001999 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002000 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00002001 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002002 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002003 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002004 // X + Y.
2005 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2006 bool XKnownNonNegative, XKnownNegative;
2007 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002008 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
2009 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002010
2011 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00002012 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00002013 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002014 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00002015 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00002016
2017 // If X and Y are both negative (as signed values) then their sum is not
2018 // zero unless both X and Y equal INT_MIN.
2019 if (BitWidth && XKnownNegative && YKnownNegative) {
2020 APInt KnownZero(BitWidth, 0);
2021 APInt KnownOne(BitWidth, 0);
2022 APInt Mask = APInt::getSignedMaxValue(BitWidth);
2023 // The sign bit of X is set. If some other bit is set then X is not equal
2024 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002025 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002026 if ((KnownOne & Mask) != 0)
2027 return true;
2028 // The sign bit of Y is set. If some other bit is set then Y is not equal
2029 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002030 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002031 if ((KnownOne & Mask) != 0)
2032 return true;
2033 }
2034
2035 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00002036 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002037 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002038 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00002039 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002040 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002041 return true;
2042 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00002043 // X * Y.
2044 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2045 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2046 // If X and Y are non-zero then so is X * Y as long as the multiplication
2047 // does not overflow.
2048 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002049 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00002050 return true;
2051 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002052 // (C ? X : Y) != 0 if X != 0 and Y != 0.
2053 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002054 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2055 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002056 return true;
2057 }
James Molloy897048b2015-09-29 14:08:45 +00002058 // PHI
2059 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
2060 // Try and detect a recurrence that monotonically increases from a
2061 // starting value, as these are common as induction variables.
2062 if (PN->getNumIncomingValues() == 2) {
2063 Value *Start = PN->getIncomingValue(0);
2064 Value *Induction = PN->getIncomingValue(1);
2065 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2066 std::swap(Start, Induction);
2067 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2068 if (!C->isZero() && !C->isNegative()) {
2069 ConstantInt *X;
2070 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2071 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2072 !X->isNegative())
2073 return true;
2074 }
2075 }
2076 }
Jun Bum Limca832662016-02-01 17:03:07 +00002077 // Check if all incoming values are non-zero constant.
2078 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
2079 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
2080 });
2081 if (AllNonZeroConstants)
2082 return true;
James Molloy897048b2015-09-29 14:08:45 +00002083 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002084
2085 if (!BitWidth) return false;
2086 APInt KnownZero(BitWidth, 0);
2087 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002088 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002089 return KnownOne != 0;
2090}
2091
James Molloy1d88d6f2015-10-22 13:18:42 +00002092/// Return true if V2 == V1 + X, where X is known non-zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002093static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002094 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2095 if (!BO || BO->getOpcode() != Instruction::Add)
2096 return false;
2097 Value *Op = nullptr;
2098 if (V2 == BO->getOperand(0))
2099 Op = BO->getOperand(1);
2100 else if (V2 == BO->getOperand(1))
2101 Op = BO->getOperand(0);
2102 else
2103 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002104 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002105}
2106
2107/// Return true if it is known that V1 != V2.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002108static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002109 if (V1->getType()->isVectorTy() || V1 == V2)
2110 return false;
2111 if (V1->getType() != V2->getType())
2112 // We can't look through casts yet.
2113 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002114 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00002115 return true;
2116
2117 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2118 // Are any known bits in V1 contradictory to known bits in V2? If V1
2119 // has a known zero where V2 has a known one, they must not be equal.
2120 auto BitWidth = Ty->getBitWidth();
2121 APInt KnownZero1(BitWidth, 0);
2122 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002123 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002124 APInt KnownZero2(BitWidth, 0);
2125 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002126 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002127
2128 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2129 if (OppositeBits.getBoolValue())
2130 return true;
2131 }
2132 return false;
2133}
2134
Sanjay Patelaee84212014-11-04 16:27:42 +00002135/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2136/// simplify operations downstream. Mask is known to be zero for bits that V
2137/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002138///
2139/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002140/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002141/// where V is a vector, the mask, known zero, and known one values are the
2142/// same width as the vector element, and the bit is set only if it is true
2143/// for all of the elements in the vector.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002144bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
2145 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00002146 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002147 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002148 return (KnownZero & Mask) == Mask;
2149}
2150
2151
2152
Sanjay Patelaee84212014-11-04 16:27:42 +00002153/// Return the number of times the sign bit of the register is replicated into
2154/// the other bits. We know that at least 1 bit is always equal to the sign bit
2155/// (itself), but other cases can give us information. For example, immediately
2156/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2157/// other, so we return 3.
Chris Lattner965c7692008-06-02 01:18:21 +00002158///
2159/// 'Op' must have a scalar integer type.
2160///
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002161unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
2162 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002163 unsigned Tmp, Tmp2;
2164 unsigned FirstAnswer = 1;
2165
Jay Foada0653a32014-05-14 21:14:37 +00002166 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002167 // below.
2168
Chris Lattner965c7692008-06-02 01:18:21 +00002169 if (Depth == 6)
2170 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002171
Dan Gohman80ca01c2009-07-17 20:47:02 +00002172 Operator *U = dyn_cast<Operator>(V);
2173 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002174 default: break;
2175 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002176 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002177 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002178
Nadav Rotemc99a3872015-03-06 00:23:58 +00002179 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002180 const APInt *Denominator;
2181 // sdiv X, C -> adds log(C) sign bits.
2182 if (match(U->getOperand(1), m_APInt(Denominator))) {
2183
2184 // Ignore non-positive denominator.
2185 if (!Denominator->isStrictlyPositive())
2186 break;
2187
2188 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002189 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002190
2191 // Add floor(log(C)) bits to the numerator bits.
2192 return std::min(TyBits, NumBits + Denominator->logBase2());
2193 }
2194 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002195 }
2196
2197 case Instruction::SRem: {
2198 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002199 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2200 // positive constant. This let us put a lower bound on the number of sign
2201 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002202 if (match(U->getOperand(1), m_APInt(Denominator))) {
2203
2204 // Ignore non-positive denominator.
2205 if (!Denominator->isStrictlyPositive())
2206 break;
2207
2208 // Calculate the incoming numerator bits. SRem by a positive constant
2209 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002210 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002211 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002212
2213 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002214 // denominator. Given that the denominator is positive, there are two
2215 // cases:
2216 //
2217 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2218 // (1 << ceilLogBase2(C)).
2219 //
2220 // 2. the numerator is negative. Then the result range is (-C,0] and
2221 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2222 //
2223 // Thus a lower bound on the number of sign bits is `TyBits -
2224 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002225
Sanjoy Dase561fee2015-03-25 22:33:53 +00002226 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002227 return std::max(NumrBits, ResBits);
2228 }
2229 break;
2230 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002231
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002232 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002233 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002234 // ashr X, C -> adds C sign bits. Vectors too.
2235 const APInt *ShAmt;
2236 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2237 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002238 if (Tmp > TyBits) Tmp = TyBits;
2239 }
2240 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002241 }
2242 case Instruction::Shl: {
2243 const APInt *ShAmt;
2244 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002245 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002246 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002247 Tmp2 = ShAmt->getZExtValue();
2248 if (Tmp2 >= TyBits || // Bad shift.
2249 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2250 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002251 }
2252 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002253 }
Chris Lattner965c7692008-06-02 01:18:21 +00002254 case Instruction::And:
2255 case Instruction::Or:
2256 case Instruction::Xor: // NOT is handled here.
2257 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002258 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002259 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002260 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002261 FirstAnswer = std::min(Tmp, Tmp2);
2262 // We computed what we know about the sign bits as our first
2263 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002264 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002265 }
2266 break;
2267
2268 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002269 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002270 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002271 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002272 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002273
Chris Lattner965c7692008-06-02 01:18:21 +00002274 case Instruction::Add:
2275 // Add can have at most one carry bit. Thus we know that the output
2276 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002277 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002278 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002279
Chris Lattner965c7692008-06-02 01:18:21 +00002280 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002281 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002282 if (CRHS->isAllOnesValue()) {
2283 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002284 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002285
Chris Lattner965c7692008-06-02 01:18:21 +00002286 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2287 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002288 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002289 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002290
Chris Lattner965c7692008-06-02 01:18:21 +00002291 // If we are subtracting one from a positive number, there is no carry
2292 // out of the result.
2293 if (KnownZero.isNegative())
2294 return Tmp;
2295 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002296
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002297 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002298 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002299 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002300
Chris Lattner965c7692008-06-02 01:18:21 +00002301 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002302 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002303 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002304
Chris Lattner965c7692008-06-02 01:18:21 +00002305 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002306 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002307 if (CLHS->isNullValue()) {
2308 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002309 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002310 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2311 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002312 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002313 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002314
Chris Lattner965c7692008-06-02 01:18:21 +00002315 // If the input is known to be positive (the sign bit is known clear),
2316 // the output of the NEG has the same number of sign bits as the input.
2317 if (KnownZero.isNegative())
2318 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002319
Chris Lattner965c7692008-06-02 01:18:21 +00002320 // Otherwise, we treat this like a SUB.
2321 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002322
Chris Lattner965c7692008-06-02 01:18:21 +00002323 // Sub can have at most one carry bit. Thus we know that the output
2324 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002325 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002326 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002327 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002328
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002329 case Instruction::PHI: {
2330 PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002331 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002332 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002333 if (NumIncomingValues > 4) break;
2334 // Unreachable blocks may have zero-operand PHI nodes.
2335 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002336
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002337 // Take the minimum of all incoming values. This can't infinitely loop
2338 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002339 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002340 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002341 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002342 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002343 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002344 }
2345 return Tmp;
2346 }
2347
Chris Lattner965c7692008-06-02 01:18:21 +00002348 case Instruction::Trunc:
2349 // FIXME: it's tricky to do anything useful for this, but it is an important
2350 // case for targets like X86.
2351 break;
2352 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002353
Chris Lattner965c7692008-06-02 01:18:21 +00002354 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2355 // use this information.
2356 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002357 APInt Mask;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002358 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002359
Chris Lattner965c7692008-06-02 01:18:21 +00002360 if (KnownZero.isNegative()) { // sign bit is 0
2361 Mask = KnownZero;
2362 } else if (KnownOne.isNegative()) { // sign bit is 1;
2363 Mask = KnownOne;
2364 } else {
2365 // Nothing known.
2366 return FirstAnswer;
2367 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002368
Chris Lattner965c7692008-06-02 01:18:21 +00002369 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2370 // the number of identical bits in the top of the input value.
2371 Mask = ~Mask;
2372 Mask <<= Mask.getBitWidth()-TyBits;
2373 // Return # leading zeros. We use 'min' here in case Val was zero before
2374 // shifting. We don't want to return '64' as for an i32 "0".
2375 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2376}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002377
Sanjay Patelaee84212014-11-04 16:27:42 +00002378/// This function computes the integer multiple of Base that equals V.
2379/// If successful, it returns true and returns the multiple in
2380/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002381/// through SExt instructions only if LookThroughSExt is true.
2382bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002383 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002384 const unsigned MaxDepth = 6;
2385
Dan Gohman6a976bb2009-11-18 00:58:27 +00002386 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002387 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002388 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002389
Chris Lattner229907c2011-07-18 04:54:35 +00002390 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002391
Dan Gohman6a976bb2009-11-18 00:58:27 +00002392 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002393
2394 if (Base == 0)
2395 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002396
Victor Hernandez47444882009-11-10 08:28:35 +00002397 if (Base == 1) {
2398 Multiple = V;
2399 return true;
2400 }
2401
2402 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2403 Constant *BaseVal = ConstantInt::get(T, Base);
2404 if (CO && CO == BaseVal) {
2405 // Multiple is 1.
2406 Multiple = ConstantInt::get(T, 1);
2407 return true;
2408 }
2409
2410 if (CI && CI->getZExtValue() % Base == 0) {
2411 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002412 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002413 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002414
Victor Hernandez47444882009-11-10 08:28:35 +00002415 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002416
Victor Hernandez47444882009-11-10 08:28:35 +00002417 Operator *I = dyn_cast<Operator>(V);
2418 if (!I) return false;
2419
2420 switch (I->getOpcode()) {
2421 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002422 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002423 if (!LookThroughSExt) return false;
2424 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002425 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002426 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2427 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002428 case Instruction::Shl:
2429 case Instruction::Mul: {
2430 Value *Op0 = I->getOperand(0);
2431 Value *Op1 = I->getOperand(1);
2432
2433 if (I->getOpcode() == Instruction::Shl) {
2434 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2435 if (!Op1CI) return false;
2436 // Turn Op0 << Op1 into Op0 * 2^Op1
2437 APInt Op1Int = Op1CI->getValue();
2438 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002439 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002440 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002441 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002442 }
2443
Craig Topper9f008862014-04-15 04:59:12 +00002444 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002445 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2446 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2447 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002448 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002449 MulC->getType()->getPrimitiveSizeInBits())
2450 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002451 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002452 MulC->getType()->getPrimitiveSizeInBits())
2453 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002454
Chris Lattner72d283c2010-09-05 17:20:46 +00002455 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2456 Multiple = ConstantExpr::getMul(MulC, Op1C);
2457 return true;
2458 }
Victor Hernandez47444882009-11-10 08:28:35 +00002459
2460 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2461 if (Mul0CI->getValue() == 1) {
2462 // V == Base * Op1, so return Op1
2463 Multiple = Op1;
2464 return true;
2465 }
2466 }
2467
Craig Topper9f008862014-04-15 04:59:12 +00002468 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002469 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2470 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2471 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002472 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002473 MulC->getType()->getPrimitiveSizeInBits())
2474 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002475 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002476 MulC->getType()->getPrimitiveSizeInBits())
2477 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002478
Chris Lattner72d283c2010-09-05 17:20:46 +00002479 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2480 Multiple = ConstantExpr::getMul(MulC, Op0C);
2481 return true;
2482 }
Victor Hernandez47444882009-11-10 08:28:35 +00002483
2484 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2485 if (Mul1CI->getValue() == 1) {
2486 // V == Base * Op0, so return Op0
2487 Multiple = Op0;
2488 return true;
2489 }
2490 }
Victor Hernandez47444882009-11-10 08:28:35 +00002491 }
2492 }
2493
2494 // We could not determine if V is a multiple of Base.
2495 return false;
2496}
2497
Sanjay Patelaee84212014-11-04 16:27:42 +00002498/// Return true if we can prove that the specified FP value is never equal to
2499/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002500///
2501/// NOTE: this function will need to be revisited when we support non-default
2502/// rounding modes!
2503///
2504bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
2505 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2506 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002507
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002508 // FIXME: Magic number! At the least, this should be given a name because it's
2509 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2510 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002511 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002512 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002513
Dan Gohman80ca01c2009-07-17 20:47:02 +00002514 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002515 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002516
2517 // Check if the nsz fast-math flag is set
2518 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2519 if (FPO->hasNoSignedZeros())
2520 return true;
2521
Chris Lattnera12a6de2008-06-02 01:29:46 +00002522 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002523 if (I->getOpcode() == Instruction::FAdd)
2524 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2525 if (CFP->isNullValue())
2526 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002527
Chris Lattnera12a6de2008-06-02 01:29:46 +00002528 // sitofp and uitofp turn into +0.0 for zero.
2529 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2530 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002531
Chris Lattnera12a6de2008-06-02 01:29:46 +00002532 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2533 // sqrt(-0.0) = -0.0, no other negative results are possible.
2534 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif1abbde32010-06-23 23:38:07 +00002535 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00002536
Chris Lattnera12a6de2008-06-02 01:29:46 +00002537 if (const CallInst *CI = dyn_cast<CallInst>(I))
2538 if (const Function *F = CI->getCalledFunction()) {
2539 if (F->isDeclaration()) {
Daniel Dunbarca414c72009-07-26 08:34:35 +00002540 // abs(x) != -0.0
2541 if (F->getName() == "abs") return true;
Dale Johannesenf6a987b2009-09-25 20:54:50 +00002542 // fabs[lf](x) != -0.0
2543 if (F->getName() == "fabs") return true;
2544 if (F->getName() == "fabsf") return true;
2545 if (F->getName() == "fabsl") return true;
2546 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2547 F->getName() == "sqrtl")
Gabor Greif1abbde32010-06-23 23:38:07 +00002548 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattnera12a6de2008-06-02 01:29:46 +00002549 }
2550 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002551
Chris Lattnera12a6de2008-06-02 01:29:46 +00002552 return false;
2553}
2554
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002555bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
2556 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2557 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2558
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002559 // FIXME: Magic number! At the least, this should be given a name because it's
2560 // used similarly in CannotBeNegativeZero(). A better fix may be to
2561 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002562 if (Depth == 6)
2563 return false; // Limit search depth.
2564
2565 const Operator *I = dyn_cast<Operator>(V);
2566 if (!I) return false;
2567
2568 switch (I->getOpcode()) {
2569 default: break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002570 // Unsigned integers are always nonnegative.
2571 case Instruction::UIToFP:
2572 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002573 case Instruction::FMul:
2574 // x*x is always non-negative or a NaN.
2575 if (I->getOperand(0) == I->getOperand(1))
2576 return true;
2577 // Fall through
2578 case Instruction::FAdd:
2579 case Instruction::FDiv:
2580 case Instruction::FRem:
2581 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2582 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002583 case Instruction::Select:
2584 return CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1) &&
2585 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002586 case Instruction::FPExt:
2587 case Instruction::FPTrunc:
2588 // Widening/narrowing never change sign.
2589 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2590 case Instruction::Call:
2591 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2592 switch (II->getIntrinsicID()) {
2593 default: break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002594 case Intrinsic::maxnum:
2595 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) ||
2596 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2597 case Intrinsic::minnum:
2598 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2599 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002600 case Intrinsic::exp:
2601 case Intrinsic::exp2:
2602 case Intrinsic::fabs:
2603 case Intrinsic::sqrt:
2604 return true;
2605 case Intrinsic::powi:
2606 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2607 // powi(x,n) is non-negative if n is even.
2608 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2609 return true;
2610 }
2611 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2612 case Intrinsic::fma:
2613 case Intrinsic::fmuladd:
2614 // x*x+y is non-negative if y is non-negative.
2615 return I->getOperand(0) == I->getOperand(1) &&
2616 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
2617 }
2618 break;
2619 }
2620 return false;
2621}
2622
Sanjay Patelaee84212014-11-04 16:27:42 +00002623/// If the specified value can be set by repeating the same byte in memory,
2624/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002625/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2626/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2627/// byte store (e.g. i16 0x1234), return null.
2628Value *llvm::isBytewiseValue(Value *V) {
2629 // All byte-wide stores are splatable, even of arbitrary variables.
2630 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002631
2632 // Handle 'null' ConstantArrayZero etc.
2633 if (Constant *C = dyn_cast<Constant>(V))
2634 if (C->isNullValue())
2635 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002636
Chris Lattner9cb10352010-12-26 20:15:01 +00002637 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002638 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002639 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2640 if (CFP->getType()->isFloatTy())
2641 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2642 if (CFP->getType()->isDoubleTy())
2643 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2644 // Don't handle long double formats, which have strange constraints.
2645 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002646
Benjamin Kramer17d90152015-02-07 19:29:02 +00002647 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002648 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002649 if (CI->getBitWidth() % 8 == 0) {
2650 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002651
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002652 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002653 return nullptr;
2654 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002655 }
2656 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002657
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002658 // A ConstantDataArray/Vector is splatable if all its members are equal and
2659 // also splatable.
2660 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2661 Value *Elt = CA->getElementAsConstant(0);
2662 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002663 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002664 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002665
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002666 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2667 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002668 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002669
Chris Lattner9cb10352010-12-26 20:15:01 +00002670 return Val;
2671 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002672
Chris Lattner9cb10352010-12-26 20:15:01 +00002673 // Conceptually, we could handle things like:
2674 // %a = zext i8 %X to i16
2675 // %b = shl i16 %a, 8
2676 // %c = or i16 %a, %b
2677 // but until there is an example that actually needs this, it doesn't seem
2678 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002679 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002680}
2681
2682
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002683// This is the recursive version of BuildSubAggregate. It takes a few different
2684// arguments. Idxs is the index within the nested struct From that we are
2685// looking at now (which is of type IndexedType). IdxSkip is the number of
2686// indices from Idxs that should be left out when inserting into the resulting
2687// struct. To is the result struct built so far, new insertvalue instructions
2688// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002689static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002690 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002691 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002692 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002693 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002694 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002695 // Save the original To argument so we can modify it
2696 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002697 // General case, the type indexed by Idxs is a struct
2698 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2699 // Process each struct element recursively
2700 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002701 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002702 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002703 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002704 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002705 if (!To) {
2706 // Couldn't find any inserted value for this index? Cleanup
2707 while (PrevTo != OrigTo) {
2708 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2709 PrevTo = Del->getAggregateOperand();
2710 Del->eraseFromParent();
2711 }
2712 // Stop processing elements
2713 break;
2714 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002715 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002716 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002717 if (To)
2718 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002719 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002720 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2721 // the struct's elements had a value that was inserted directly. In the latter
2722 // case, perhaps we can't determine each of the subelements individually, but
2723 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002724
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002725 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002726 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002727
2728 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002729 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002730
2731 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002732 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002733 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002734}
2735
2736// This helper takes a nested struct and extracts a part of it (which is again a
2737// struct) into a new value. For example, given the struct:
2738// { a, { b, { c, d }, e } }
2739// and the indices "1, 1" this returns
2740// { c, d }.
2741//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002742// It does this by inserting an insertvalue for each element in the resulting
2743// struct, as opposed to just inserting a single struct. This will only work if
2744// each of the elements of the substruct are known (ie, inserted into From by an
2745// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002746//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002747// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002748static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002749 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002750 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002751 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002752 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002753 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002754 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002755 unsigned IdxSkip = Idxs.size();
2756
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002757 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002758}
2759
Sanjay Patelaee84212014-11-04 16:27:42 +00002760/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002761/// the scalar value indexed is already around as a register, for example if it
2762/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002763///
2764/// If InsertBefore is not null, this function will duplicate (modified)
2765/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002766Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2767 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002768 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002769 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002770 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002771 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002772 // We have indices, so V should have an indexable type.
2773 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2774 "Not looking at a struct or array?");
2775 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2776 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002777
Chris Lattner67058832012-01-25 06:48:06 +00002778 if (Constant *C = dyn_cast<Constant>(V)) {
2779 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002780 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002781 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2782 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002783
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002784 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002785 // Loop the indices for the insertvalue instruction in parallel with the
2786 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002787 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002788 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2789 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002790 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002791 // We can't handle this without inserting insertvalues
2792 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002793 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002794
2795 // The requested index identifies a part of a nested aggregate. Handle
2796 // this specially. For example,
2797 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2798 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2799 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2800 // This can be changed into
2801 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2802 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2803 // which allows the unused 0,0 element from the nested struct to be
2804 // removed.
2805 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2806 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002807 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002808
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002809 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002810 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002811 // looking for, then.
2812 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002813 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002814 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002815 }
2816 // If we end up here, the indices of the insertvalue match with those
2817 // requested (though possibly only partially). Now we recursively look at
2818 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002819 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002820 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002821 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002822 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002823
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002824 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002825 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002826 // something else, we can extract from that something else directly instead.
2827 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002828
2829 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002830 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002831 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002832 SmallVector<unsigned, 5> Idxs;
2833 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002834 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002835 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002836
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002837 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002838 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002839
Craig Topper1bef2c82012-12-22 19:15:35 +00002840 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002841 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002842
Jay Foad57aa6362011-07-13 10:26:04 +00002843 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002844 }
2845 // Otherwise, we don't know (such as, extracting from a function return value
2846 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002847 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002848}
Evan Chengda3db112008-06-30 07:31:25 +00002849
Sanjay Patelaee84212014-11-04 16:27:42 +00002850/// Analyze the specified pointer to see if it can be expressed as a base
2851/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002852Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002853 const DataLayout &DL) {
2854 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002855 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002856
2857 // We walk up the defs but use a visited set to handle unreachable code. In
2858 // that case, we stop after accumulating the cycle once (not that it
2859 // matters).
2860 SmallPtrSet<Value *, 16> Visited;
2861 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002862 if (Ptr->getType()->isVectorTy())
2863 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002864
Nuno Lopes368c4d02012-12-31 20:48:35 +00002865 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002866 APInt GEPOffset(BitWidth, 0);
2867 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2868 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002869
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002870 ByteOffset += GEPOffset;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002871
Nuno Lopes368c4d02012-12-31 20:48:35 +00002872 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002873 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2874 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002875 Ptr = cast<Operator>(Ptr)->getOperand(0);
2876 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2877 if (GA->mayBeOverridden())
2878 break;
2879 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002880 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002881 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002882 }
2883 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002884 Offset = ByteOffset.getSExtValue();
2885 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002886}
2887
2888
Sanjay Patelaee84212014-11-04 16:27:42 +00002889/// This function computes the length of a null-terminated C string pointed to
2890/// by V. If successful, it returns true and returns the string in Str.
2891/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002892bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2893 uint64_t Offset, bool TrimAtNul) {
2894 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002895
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002896 // Look through bitcast instructions and geps.
2897 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002898
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002899 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002900 // offset.
2901 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Chengda3db112008-06-30 07:31:25 +00002902 // Make sure the GEP has exactly three arguments.
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002903 if (GEP->getNumOperands() != 3)
2904 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002905
Evan Chengda3db112008-06-30 07:31:25 +00002906 // Make sure the index-ee is a pointer to array of i8.
Eduard Burtescu19eb0312016-01-19 17:28:00 +00002907 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
Craig Topper9f008862014-04-15 04:59:12 +00002908 if (!AT || !AT->getElementType()->isIntegerTy(8))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002909 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002910
Evan Chengda3db112008-06-30 07:31:25 +00002911 // Check to make sure that the first operand of the GEP is an integer and
2912 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0b4df042010-04-14 22:20:45 +00002913 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Craig Topper9f008862014-04-15 04:59:12 +00002914 if (!FirstIdx || !FirstIdx->isZero())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002915 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002916
Evan Chengda3db112008-06-30 07:31:25 +00002917 // If the second index isn't a ConstantInt, then this is a variable index
2918 // into the array. If this occurs, we can't say anything meaningful about
2919 // the string.
2920 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002921 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002922 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002923 else
2924 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002925 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2926 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002927 }
Nick Lewycky46209882011-10-20 00:34:35 +00002928
Evan Chengda3db112008-06-30 07:31:25 +00002929 // The GEP instruction, constant or instruction, must reference a global
2930 // variable that is a constant and is initialized. The referenced constant
2931 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002932 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002933 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002934 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002935
Nick Lewycky46209882011-10-20 00:34:35 +00002936 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002937 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002938 // This is a degenerate case. The initializer is constant zero so the
2939 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002940 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002941 return true;
2942 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002943
Evan Chengda3db112008-06-30 07:31:25 +00002944 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002945 const ConstantDataArray *Array =
2946 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002947 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002948 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002949
Evan Chengda3db112008-06-30 07:31:25 +00002950 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002951 uint64_t NumElts = Array->getType()->getArrayNumElements();
2952
2953 // Start out with the entire array in the StringRef.
2954 Str = Array->getAsString();
2955
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002956 if (Offset > NumElts)
2957 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002958
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002959 // Skip over 'offset' bytes.
2960 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002961
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002962 if (TrimAtNul) {
2963 // Trim off the \0 and anything after it. If the array is not nul
2964 // terminated, we just return the whole end of string. The client may know
2965 // some other way that the string is length-bound.
2966 Str = Str.substr(0, Str.find('\0'));
2967 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002968 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002969}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002970
2971// These next two are very similar to the above, but also look through PHI
2972// nodes.
2973// TODO: See if we can integrate these two together.
2974
Sanjay Patelaee84212014-11-04 16:27:42 +00002975/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002976/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002977static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002978 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002979 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002980
2981 // If this is a PHI node, there are two cases: either we have already seen it
2982 // or we haven't.
2983 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002984 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002985 return ~0ULL; // already in the set.
2986
2987 // If it was new, see if all the input strings are the same length.
2988 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00002989 for (Value *IncValue : PN->incoming_values()) {
2990 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00002991 if (Len == 0) return 0; // Unknown length -> unknown.
2992
2993 if (Len == ~0ULL) continue;
2994
2995 if (Len != LenSoFar && LenSoFar != ~0ULL)
2996 return 0; // Disagree -> unknown.
2997 LenSoFar = Len;
2998 }
2999
3000 // Success, all agree.
3001 return LenSoFar;
3002 }
3003
3004 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
3005 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
3006 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
3007 if (Len1 == 0) return 0;
3008 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3009 if (Len2 == 0) return 0;
3010 if (Len1 == ~0ULL) return Len2;
3011 if (Len2 == ~0ULL) return Len1;
3012 if (Len1 != Len2) return 0;
3013 return Len1;
3014 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003015
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003016 // Otherwise, see if we can read the string.
3017 StringRef StrData;
3018 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003019 return 0;
3020
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003021 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003022}
3023
Sanjay Patelaee84212014-11-04 16:27:42 +00003024/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003025/// the specified pointer, return 'len+1'. If we can't, return 0.
3026uint64_t llvm::GetStringLength(Value *V) {
3027 if (!V->getType()->isPointerTy()) return 0;
3028
3029 SmallPtrSet<PHINode*, 32> PHIs;
3030 uint64_t Len = GetStringLengthH(V, PHIs);
3031 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3032 // an empty string as a length.
3033 return Len == ~0ULL ? 1 : Len;
3034}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003035
Adam Nemete2b885c2015-04-23 20:09:20 +00003036/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3037/// previous iteration of the loop was referring to the same object as \p PN.
3038static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
3039 // Find the loop-defined value.
3040 Loop *L = LI->getLoopFor(PN->getParent());
3041 if (PN->getNumIncomingValues() != 2)
3042 return true;
3043
3044 // Find the value from previous iteration.
3045 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3046 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3047 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3048 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3049 return true;
3050
3051 // If a new pointer is loaded in the loop, the pointer references a different
3052 // object in every iteration. E.g.:
3053 // for (i)
3054 // int *p = a[i];
3055 // ...
3056 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3057 if (!L->isLoopInvariant(Load->getPointerOperand()))
3058 return false;
3059 return true;
3060}
3061
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003062Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3063 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003064 if (!V->getType()->isPointerTy())
3065 return V;
3066 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3067 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3068 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003069 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3070 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003071 V = cast<Operator>(V)->getOperand(0);
3072 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3073 if (GA->mayBeOverridden())
3074 return V;
3075 V = GA->getAliasee();
3076 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00003077 // See if InstructionSimplify knows any relevant tricks.
3078 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00003079 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003080 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003081 V = Simplified;
3082 continue;
3083 }
3084
Dan Gohmana4fcd242010-12-15 20:02:24 +00003085 return V;
3086 }
3087 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3088 }
3089 return V;
3090}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003091
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003092void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003093 const DataLayout &DL, LoopInfo *LI,
3094 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003095 SmallPtrSet<Value *, 4> Visited;
3096 SmallVector<Value *, 4> Worklist;
3097 Worklist.push_back(V);
3098 do {
3099 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003100 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003101
David Blaikie70573dc2014-11-19 07:49:26 +00003102 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003103 continue;
3104
3105 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3106 Worklist.push_back(SI->getTrueValue());
3107 Worklist.push_back(SI->getFalseValue());
3108 continue;
3109 }
3110
3111 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003112 // If this PHI changes the underlying object in every iteration of the
3113 // loop, don't look through it. Consider:
3114 // int **A;
3115 // for (i) {
3116 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3117 // Curr = A[i];
3118 // *Prev, *Curr;
3119 //
3120 // Prev is tracking Curr one iteration behind so they refer to different
3121 // underlying objects.
3122 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3123 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003124 for (Value *IncValue : PN->incoming_values())
3125 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003126 continue;
3127 }
3128
3129 Objects.push_back(P);
3130 } while (!Worklist.empty());
3131}
3132
Sanjay Patelaee84212014-11-04 16:27:42 +00003133/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003134bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003135 for (const User *U : V->users()) {
3136 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003137 if (!II) return false;
3138
3139 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3140 II->getIntrinsicID() != Intrinsic::lifetime_end)
3141 return false;
3142 }
3143 return true;
3144}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003145
Philip Reames5461d452015-04-23 17:36:48 +00003146static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset,
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003147 Type *Ty, const DataLayout &DL,
3148 const Instruction *CtxI,
3149 const DominatorTree *DT,
3150 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00003151 assert(Offset.isNonNegative() && "offset can't be negative");
3152 assert(Ty->isSized() && "must be sized");
3153
3154 APInt DerefBytes(Offset.getBitWidth(), 0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003155 bool CheckForNonNull = false;
Philip Reames5461d452015-04-23 17:36:48 +00003156 if (const Argument *A = dyn_cast<Argument>(BV)) {
3157 DerefBytes = A->getDereferenceableBytes();
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003158 if (!DerefBytes.getBoolValue()) {
3159 DerefBytes = A->getDereferenceableOrNullBytes();
3160 CheckForNonNull = true;
3161 }
Philip Reames5461d452015-04-23 17:36:48 +00003162 } else if (auto CS = ImmutableCallSite(BV)) {
3163 DerefBytes = CS.getDereferenceableBytes(0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003164 if (!DerefBytes.getBoolValue()) {
3165 DerefBytes = CS.getDereferenceableOrNullBytes(0);
3166 CheckForNonNull = true;
3167 }
Sanjoy Dasf9995472015-05-19 20:10:19 +00003168 } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) {
3169 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
3170 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
3171 DerefBytes = CI->getLimitedValue();
3172 }
3173 if (!DerefBytes.getBoolValue()) {
3174 if (MDNode *MD =
3175 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
3176 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
3177 DerefBytes = CI->getLimitedValue();
3178 }
3179 CheckForNonNull = true;
3180 }
Philip Reames5461d452015-04-23 17:36:48 +00003181 }
3182
3183 if (DerefBytes.getBoolValue())
3184 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003185 if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI))
3186 return true;
3187
Philip Reames5461d452015-04-23 17:36:48 +00003188 return false;
3189}
3190
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003191static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL,
3192 const Instruction *CtxI,
3193 const DominatorTree *DT,
3194 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00003195 Type *VTy = V->getType();
3196 Type *Ty = VTy->getPointerElementType();
3197 if (!Ty->isSized())
3198 return false;
3199
3200 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003201 return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI);
Philip Reames5461d452015-04-23 17:36:48 +00003202}
3203
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003204static bool isAligned(const Value *Base, APInt Offset, unsigned Align,
3205 const DataLayout &DL) {
Artur Pilipenkoffd13282015-10-09 15:58:26 +00003206 APInt BaseAlign(Offset.getBitWidth(), getAlignment(Base, DL));
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003207
3208 if (!BaseAlign) {
3209 Type *Ty = Base->getType()->getPointerElementType();
Michael Zolotukhin0c979882015-12-21 20:38:18 +00003210 if (!Ty->isSized())
3211 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003212 BaseAlign = DL.getABITypeAlignment(Ty);
3213 }
3214
3215 APInt Alignment(Offset.getBitWidth(), Align);
3216
3217 assert(Alignment.isPowerOf2() && "must be a power of 2!");
3218 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
3219}
3220
3221static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
Michael Zolotukhin0c979882015-12-21 20:38:18 +00003222 Type *Ty = Base->getType();
3223 assert(Ty->isSized() && "must be sized");
3224 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003225 return isAligned(Base, Offset, Align, DL);
3226}
3227
Philip Reames5461d452015-04-23 17:36:48 +00003228/// Test if V is always a pointer to allocated and suitably aligned memory for
3229/// a simple load or store.
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003230static bool isDereferenceableAndAlignedPointer(
3231 const Value *V, unsigned Align, const DataLayout &DL,
3232 const Instruction *CtxI, const DominatorTree *DT,
3233 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) {
Philip Reames5461d452015-04-23 17:36:48 +00003234 // Note that it is not safe to speculate into a malloc'd region because
3235 // malloc may return null.
3236
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003237 // These are obviously ok if aligned.
3238 if (isa<AllocaInst>(V))
3239 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003240
3241 // It's not always safe to follow a bitcast, for example:
3242 // bitcast i8* (alloca i8) to i32*
3243 // would result in a 4-byte load from a 1-byte alloca. However,
3244 // if we're casting from a pointer from a type of larger size
3245 // to a type of smaller size (or the same size), and the alignment
3246 // is at least as large as for the resulting pointer type, then
3247 // we can look through the bitcast.
3248 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
3249 Type *STy = BC->getSrcTy()->getPointerElementType(),
3250 *DTy = BC->getDestTy()->getPointerElementType();
3251 if (STy->isSized() && DTy->isSized() &&
3252 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
3253 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003254 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL,
3255 CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003256 }
3257
3258 // Global variables which can't collapse to null are ok.
3259 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003260 if (!GV->hasExternalWeakLinkage())
3261 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003262
3263 // byval arguments are okay.
3264 if (const Argument *A = dyn_cast<Argument>(V))
3265 if (A->hasByValAttr())
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003266 return isAligned(V, Align, DL);
3267
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003268 if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003269 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003270
3271 // For GEPs, determine if the indexing lands within the allocated object.
3272 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Eduard Burtescu19eb0312016-01-19 17:28:00 +00003273 Type *Ty = GEP->getResultElementType();
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003274 const Value *Base = GEP->getPointerOperand();
3275
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003276 // Conservatively require that the base pointer be fully dereferenceable
3277 // and aligned.
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003278 if (!Visited.insert(Base).second)
Philip Reames5461d452015-04-23 17:36:48 +00003279 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003280 if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI,
3281 Visited))
Philip Reames5461d452015-04-23 17:36:48 +00003282 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003283
Eduard Burtescu19eb0312016-01-19 17:28:00 +00003284 APInt Offset(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003285 if (!GEP->accumulateConstantOffset(DL, Offset))
3286 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003287
3288 // Check if the load is within the bounds of the underlying object
3289 // and offset is aligned.
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003290 uint64_t LoadSize = DL.getTypeStoreSize(Ty);
Eduard Burtescu19eb0312016-01-19 17:28:00 +00003291 Type *BaseType = GEP->getSourceElementType();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003292 assert(isPowerOf2_32(Align) && "must be a power of 2!");
3293 return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) &&
3294 !(Offset & APInt(Offset.getBitWidth(), Align-1));
Philip Reames5461d452015-04-23 17:36:48 +00003295 }
3296
3297 // For gc.relocate, look through relocations
Manuel Jacob83eefa62016-01-05 04:03:00 +00003298 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
3299 return isDereferenceableAndAlignedPointer(
3300 RelocateInst->getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003301
3302 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003303 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL,
3304 CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003305
3306 // If we don't know, assume the worst.
3307 return false;
3308}
3309
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003310bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
3311 const DataLayout &DL,
3312 const Instruction *CtxI,
3313 const DominatorTree *DT,
3314 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00003315 // When dereferenceability information is provided by a dereferenceable
3316 // attribute, we know exactly how many bytes are dereferenceable. If we can
3317 // determine the exact offset to the attributed variable, we can use that
3318 // information here.
3319 Type *VTy = V->getType();
3320 Type *Ty = VTy->getPointerElementType();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003321
3322 // Require ABI alignment for loads without alignment specification
3323 if (Align == 0)
3324 Align = DL.getABITypeAlignment(Ty);
3325
Philip Reames5461d452015-04-23 17:36:48 +00003326 if (Ty->isSized()) {
3327 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
3328 const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003329
Philip Reames5461d452015-04-23 17:36:48 +00003330 if (Offset.isNonNegative())
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003331 if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) &&
3332 isAligned(BV, Offset, Align, DL))
Philip Reames5461d452015-04-23 17:36:48 +00003333 return true;
3334 }
3335
3336 SmallPtrSet<const Value *, 32> Visited;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003337 return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI,
3338 Visited);
3339}
3340
3341bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
3342 const Instruction *CtxI,
3343 const DominatorTree *DT,
3344 const TargetLibraryInfo *TLI) {
3345 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI);
Philip Reames5461d452015-04-23 17:36:48 +00003346}
3347
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003348bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3349 const Instruction *CtxI,
3350 const DominatorTree *DT,
3351 const TargetLibraryInfo *TLI) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003352 const Operator *Inst = dyn_cast<Operator>(V);
3353 if (!Inst)
3354 return false;
3355
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003356 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3357 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3358 if (C->canTrap())
3359 return false;
3360
3361 switch (Inst->getOpcode()) {
3362 default:
3363 return true;
3364 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003365 case Instruction::URem: {
3366 // x / y is undefined if y == 0.
3367 const APInt *V;
3368 if (match(Inst->getOperand(1), m_APInt(V)))
3369 return *V != 0;
3370 return false;
3371 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003372 case Instruction::SDiv:
3373 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003374 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003375 const APInt *Numerator, *Denominator;
3376 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3377 return false;
3378 // We cannot hoist this division if the denominator is 0.
3379 if (*Denominator == 0)
3380 return false;
3381 // It's safe to hoist if the denominator is not 0 or -1.
3382 if (*Denominator != -1)
3383 return true;
3384 // At this point we know that the denominator is -1. It is safe to hoist as
3385 // long we know that the numerator is not INT_MIN.
3386 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3387 return !Numerator->isMinSignedValue();
3388 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003389 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003390 }
3391 case Instruction::Load: {
3392 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003393 if (!LI->isUnordered() ||
3394 // Speculative load may create a race that did not exist in the source.
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003395 LI->getParent()->getParent()->hasFnAttribute(
3396 Attribute::SanitizeThread) ||
3397 // Speculative load may load data from dirty regions.
3398 LI->getParent()->getParent()->hasFnAttribute(
3399 Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003400 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003401 const DataLayout &DL = LI->getModule()->getDataLayout();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003402 return isDereferenceableAndAlignedPointer(
3403 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003404 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003405 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003406 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3407 switch (II->getIntrinsicID()) {
3408 // These synthetic intrinsics have no side-effects and just mark
3409 // information about their operands.
3410 // FIXME: There are other no-op synthetic instructions that potentially
3411 // should be considered at least *safe* to speculate...
3412 case Intrinsic::dbg_declare:
3413 case Intrinsic::dbg_value:
3414 return true;
3415
3416 case Intrinsic::bswap:
3417 case Intrinsic::ctlz:
3418 case Intrinsic::ctpop:
3419 case Intrinsic::cttz:
3420 case Intrinsic::objectsize:
3421 case Intrinsic::sadd_with_overflow:
3422 case Intrinsic::smul_with_overflow:
3423 case Intrinsic::ssub_with_overflow:
3424 case Intrinsic::uadd_with_overflow:
3425 case Intrinsic::umul_with_overflow:
3426 case Intrinsic::usub_with_overflow:
3427 return true;
3428 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
3429 // errno like libm sqrt would.
3430 case Intrinsic::sqrt:
3431 case Intrinsic::fma:
3432 case Intrinsic::fmuladd:
3433 case Intrinsic::fabs:
3434 case Intrinsic::minnum:
3435 case Intrinsic::maxnum:
3436 return true;
3437 // TODO: some fp intrinsics are marked as having the same error handling
3438 // as libm. They're safe to speculate when they won't error.
3439 // TODO: are convert_{from,to}_fp16 safe?
3440 // TODO: can we list target-specific intrinsics here?
3441 default: break;
3442 }
3443 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003444 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003445 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003446 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003447 case Instruction::VAArg:
3448 case Instruction::Alloca:
3449 case Instruction::Invoke:
3450 case Instruction::PHI:
3451 case Instruction::Store:
3452 case Instruction::Ret:
3453 case Instruction::Br:
3454 case Instruction::IndirectBr:
3455 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003456 case Instruction::Unreachable:
3457 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003458 case Instruction::AtomicRMW:
3459 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003460 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003461 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003462 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003463 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003464 case Instruction::CatchRet:
3465 case Instruction::CleanupPad:
3466 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003467 return false; // Misc instructions which have effects
3468 }
3469}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003470
Quentin Colombet6443cce2015-08-06 18:44:34 +00003471bool llvm::mayBeMemoryDependent(const Instruction &I) {
3472 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3473}
3474
Sanjay Patelaee84212014-11-04 16:27:42 +00003475/// Return true if we know that the specified value is never null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003476bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Chen Li0d043b52015-09-14 18:10:43 +00003477 assert(V->getType()->isPointerTy() && "V must be pointer type");
3478
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003479 // Alloca never returns null, malloc might.
3480 if (isa<AllocaInst>(V)) return true;
3481
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003482 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003483 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003484 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003485
Pete Cooper6b716212015-08-27 03:16:29 +00003486 // A global variable in address space 0 is non null unless extern weak.
3487 // Other address spaces may have null as a valid address for a global,
3488 // so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003489 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Pete Cooper6b716212015-08-27 03:16:29 +00003490 return !GV->hasExternalWeakLinkage() &&
3491 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003492
Philip Reamescdb72f32014-10-20 22:40:55 +00003493 // A Load tagged w/nonnull metadata is never null.
3494 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003495 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003496
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003497 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003498 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003499 return true;
3500
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003501 return false;
3502}
David Majnemer491331a2015-01-02 07:29:43 +00003503
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003504static bool isKnownNonNullFromDominatingCondition(const Value *V,
3505 const Instruction *CtxI,
3506 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003507 assert(V->getType()->isPointerTy() && "V must be pointer type");
3508
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003509 unsigned NumUsesExplored = 0;
3510 for (auto U : V->users()) {
3511 // Avoid massive lists
3512 if (NumUsesExplored >= DomConditionsMaxUses)
3513 break;
3514 NumUsesExplored++;
3515 // Consider only compare instructions uniquely controlling a branch
3516 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
3517 if (!Cmp)
3518 continue;
3519
3520 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
3521 continue;
3522
3523 for (auto *CmpU : Cmp->users()) {
3524 const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
3525 if (!BI)
3526 continue;
3527
3528 assert(BI->isConditional() && "uses a comparison!");
3529
3530 BasicBlock *NonNullSuccessor = nullptr;
3531 CmpInst::Predicate Pred;
3532
3533 if (match(const_cast<ICmpInst*>(Cmp),
3534 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
3535 if (Pred == ICmpInst::ICMP_EQ)
3536 NonNullSuccessor = BI->getSuccessor(1);
3537 else if (Pred == ICmpInst::ICMP_NE)
3538 NonNullSuccessor = BI->getSuccessor(0);
3539 }
3540
3541 if (NonNullSuccessor) {
3542 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3543 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3544 return true;
3545 }
3546 }
3547 }
3548
3549 return false;
3550}
3551
3552bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3553 const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3554 if (isKnownNonNull(V, TLI))
3555 return true;
3556
3557 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3558}
3559
David Majnemer491331a2015-01-02 07:29:43 +00003560OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003561 const DataLayout &DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00003562 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003563 const Instruction *CxtI,
3564 const DominatorTree *DT) {
3565 // Multiplying n * m significant bits yields a result of n + m significant
3566 // bits. If the total number of significant bits does not exceed the
3567 // result bit width (minus 1), there is no overflow.
3568 // This means if we have enough leading zero bits in the operands
3569 // we can guarantee that the result does not overflow.
3570 // Ref: "Hacker's Delight" by Henry Warren
3571 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3572 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003573 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003574 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003575 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003576 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3577 DT);
3578 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3579 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003580 // Note that underestimating the number of zero bits gives a more
3581 // conservative answer.
3582 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3583 RHSKnownZero.countLeadingOnes();
3584 // First handle the easy case: if we have enough zero bits there's
3585 // definitely no overflow.
3586 if (ZeroBits >= BitWidth)
3587 return OverflowResult::NeverOverflows;
3588
3589 // Get the largest possible values for each operand.
3590 APInt LHSMax = ~LHSKnownZero;
3591 APInt RHSMax = ~RHSKnownZero;
3592
3593 // We know the multiply operation doesn't overflow if the maximum values for
3594 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003595 bool MaxOverflow;
3596 LHSMax.umul_ov(RHSMax, MaxOverflow);
3597 if (!MaxOverflow)
3598 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003599
David Majnemerc8a576b2015-01-02 07:29:47 +00003600 // We know it always overflows if multiplying the smallest possible values for
3601 // the operands also results in overflow.
3602 bool MinOverflow;
3603 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3604 if (MinOverflow)
3605 return OverflowResult::AlwaysOverflows;
3606
3607 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003608}
David Majnemer5310c1e2015-01-07 00:39:50 +00003609
3610OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003611 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003612 AssumptionCache *AC,
3613 const Instruction *CxtI,
3614 const DominatorTree *DT) {
3615 bool LHSKnownNonNegative, LHSKnownNegative;
3616 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3617 AC, CxtI, DT);
3618 if (LHSKnownNonNegative || LHSKnownNegative) {
3619 bool RHSKnownNonNegative, RHSKnownNegative;
3620 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3621 AC, CxtI, DT);
3622
3623 if (LHSKnownNegative && RHSKnownNegative) {
3624 // The sign bit is set in both cases: this MUST overflow.
3625 // Create a simple add instruction, and insert it into the struct.
3626 return OverflowResult::AlwaysOverflows;
3627 }
3628
3629 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3630 // The sign bit is clear in both cases: this CANNOT overflow.
3631 // Create a simple add instruction, and insert it into the struct.
3632 return OverflowResult::NeverOverflows;
3633 }
3634 }
3635
3636 return OverflowResult::MayOverflow;
3637}
James Molloy71b91c22015-05-11 14:42:20 +00003638
Jingyue Wu10fcea52015-08-20 18:27:04 +00003639static OverflowResult computeOverflowForSignedAdd(
3640 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3641 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3642 if (Add && Add->hasNoSignedWrap()) {
3643 return OverflowResult::NeverOverflows;
3644 }
3645
3646 bool LHSKnownNonNegative, LHSKnownNegative;
3647 bool RHSKnownNonNegative, RHSKnownNegative;
3648 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3649 AC, CxtI, DT);
3650 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3651 AC, CxtI, DT);
3652
3653 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3654 (LHSKnownNegative && RHSKnownNonNegative)) {
3655 // The sign bits are opposite: this CANNOT overflow.
3656 return OverflowResult::NeverOverflows;
3657 }
3658
3659 // The remaining code needs Add to be available. Early returns if not so.
3660 if (!Add)
3661 return OverflowResult::MayOverflow;
3662
3663 // If the sign of Add is the same as at least one of the operands, this add
3664 // CANNOT overflow. This is particularly useful when the sum is
3665 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3666 // operands.
3667 bool LHSOrRHSKnownNonNegative =
3668 (LHSKnownNonNegative || RHSKnownNonNegative);
3669 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3670 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3671 bool AddKnownNonNegative, AddKnownNegative;
3672 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3673 /*Depth=*/0, AC, CxtI, DT);
3674 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3675 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3676 return OverflowResult::NeverOverflows;
3677 }
3678 }
3679
3680 return OverflowResult::MayOverflow;
3681}
3682
3683OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3684 const DataLayout &DL,
3685 AssumptionCache *AC,
3686 const Instruction *CxtI,
3687 const DominatorTree *DT) {
3688 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3689 Add, DL, AC, CxtI, DT);
3690}
3691
3692OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3693 const DataLayout &DL,
3694 AssumptionCache *AC,
3695 const Instruction *CxtI,
3696 const DominatorTree *DT) {
3697 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3698}
3699
Jingyue Wu42f1d672015-07-28 18:22:40 +00003700bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3701 // FIXME: This conservative implementation can be relaxed. E.g. most
3702 // atomic operations are guaranteed to terminate on most platforms
3703 // and most functions terminate.
3704
3705 return !I->isAtomic() && // atomics may never succeed on some platforms
3706 !isa<CallInst>(I) && // could throw and might not terminate
3707 !isa<InvokeInst>(I) && // might not terminate and could throw to
3708 // non-successor (see bug 24185 for details).
3709 !isa<ResumeInst>(I) && // has no successors
3710 !isa<ReturnInst>(I); // has no successors
3711}
3712
3713bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3714 const Loop *L) {
3715 // The loop header is guaranteed to be executed for every iteration.
3716 //
3717 // FIXME: Relax this constraint to cover all basic blocks that are
3718 // guaranteed to be executed at every iteration.
3719 if (I->getParent() != L->getHeader()) return false;
3720
3721 for (const Instruction &LI : *L->getHeader()) {
3722 if (&LI == I) return true;
3723 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3724 }
3725 llvm_unreachable("Instruction not contained in its own parent basic block.");
3726}
3727
3728bool llvm::propagatesFullPoison(const Instruction *I) {
3729 switch (I->getOpcode()) {
3730 case Instruction::Add:
3731 case Instruction::Sub:
3732 case Instruction::Xor:
3733 case Instruction::Trunc:
3734 case Instruction::BitCast:
3735 case Instruction::AddrSpaceCast:
3736 // These operations all propagate poison unconditionally. Note that poison
3737 // is not any particular value, so xor or subtraction of poison with
3738 // itself still yields poison, not zero.
3739 return true;
3740
3741 case Instruction::AShr:
3742 case Instruction::SExt:
3743 // For these operations, one bit of the input is replicated across
3744 // multiple output bits. A replicated poison bit is still poison.
3745 return true;
3746
3747 case Instruction::Shl: {
3748 // Left shift *by* a poison value is poison. The number of
3749 // positions to shift is unsigned, so no negative values are
3750 // possible there. Left shift by zero places preserves poison. So
3751 // it only remains to consider left shift of poison by a positive
3752 // number of places.
3753 //
3754 // A left shift by a positive number of places leaves the lowest order bit
3755 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3756 // make the poison operand violate that flag, yielding a fresh full-poison
3757 // value.
3758 auto *OBO = cast<OverflowingBinaryOperator>(I);
3759 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3760 }
3761
3762 case Instruction::Mul: {
3763 // A multiplication by zero yields a non-poison zero result, so we need to
3764 // rule out zero as an operand. Conservatively, multiplication by a
3765 // non-zero constant is not multiplication by zero.
3766 //
3767 // Multiplication by a non-zero constant can leave some bits
3768 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3769 // order bit unpoisoned. So we need to consider that.
3770 //
3771 // Multiplication by 1 preserves poison. If the multiplication has a
3772 // no-wrap flag, then we can make the poison operand violate that flag
3773 // when multiplied by any integer other than 0 and 1.
3774 auto *OBO = cast<OverflowingBinaryOperator>(I);
3775 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3776 for (Value *V : OBO->operands()) {
3777 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3778 // A ConstantInt cannot yield poison, so we can assume that it is
3779 // the other operand that is poison.
3780 return !CI->isZero();
3781 }
3782 }
3783 }
3784 return false;
3785 }
3786
3787 case Instruction::GetElementPtr:
3788 // A GEP implicitly represents a sequence of additions, subtractions,
3789 // truncations, sign extensions and multiplications. The multiplications
3790 // are by the non-zero sizes of some set of types, so we do not have to be
3791 // concerned with multiplication by zero. If the GEP is in-bounds, then
3792 // these operations are implicitly no-signed-wrap so poison is propagated
3793 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3794 return cast<GEPOperator>(I)->isInBounds();
3795
3796 default:
3797 return false;
3798 }
3799}
3800
3801const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3802 switch (I->getOpcode()) {
3803 case Instruction::Store:
3804 return cast<StoreInst>(I)->getPointerOperand();
3805
3806 case Instruction::Load:
3807 return cast<LoadInst>(I)->getPointerOperand();
3808
3809 case Instruction::AtomicCmpXchg:
3810 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3811
3812 case Instruction::AtomicRMW:
3813 return cast<AtomicRMWInst>(I)->getPointerOperand();
3814
3815 case Instruction::UDiv:
3816 case Instruction::SDiv:
3817 case Instruction::URem:
3818 case Instruction::SRem:
3819 return I->getOperand(1);
3820
3821 default:
3822 return nullptr;
3823 }
3824}
3825
3826bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3827 // We currently only look for uses of poison values within the same basic
3828 // block, as that makes it easier to guarantee that the uses will be
3829 // executed given that PoisonI is executed.
3830 //
3831 // FIXME: Expand this to consider uses beyond the same basic block. To do
3832 // this, look out for the distinction between post-dominance and strong
3833 // post-dominance.
3834 const BasicBlock *BB = PoisonI->getParent();
3835
3836 // Set of instructions that we have proved will yield poison if PoisonI
3837 // does.
3838 SmallSet<const Value *, 16> YieldsPoison;
3839 YieldsPoison.insert(PoisonI);
3840
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003841 for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end();
3842 I != E; ++I) {
3843 if (&*I != PoisonI) {
3844 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I);
Jingyue Wu42f1d672015-07-28 18:22:40 +00003845 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true;
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003846 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
3847 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003848 }
3849
3850 // Mark poison that propagates from I through uses of I.
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003851 if (YieldsPoison.count(&*I)) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00003852 for (const User *User : I->users()) {
3853 const Instruction *UserI = cast<Instruction>(User);
3854 if (UserI->getParent() == BB && propagatesFullPoison(UserI))
3855 YieldsPoison.insert(User);
3856 }
3857 }
3858 }
3859 return false;
3860}
3861
James Molloy134bec22015-08-11 09:12:57 +00003862static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3863 if (FMF.noNaNs())
3864 return true;
3865
3866 if (auto *C = dyn_cast<ConstantFP>(V))
3867 return !C->isNaN();
3868 return false;
3869}
3870
3871static bool isKnownNonZero(Value *V) {
3872 if (auto *C = dyn_cast<ConstantFP>(V))
3873 return !C->isZero();
3874 return false;
3875}
3876
3877static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3878 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003879 Value *CmpLHS, Value *CmpRHS,
3880 Value *TrueVal, Value *FalseVal,
3881 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003882 LHS = CmpLHS;
3883 RHS = CmpRHS;
3884
James Molloy134bec22015-08-11 09:12:57 +00003885 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3886 // return inconsistent results between implementations.
3887 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3888 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3889 // Therefore we behave conservatively and only proceed if at least one of the
3890 // operands is known to not be zero, or if we don't care about signed zeroes.
3891 switch (Pred) {
3892 default: break;
3893 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3894 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3895 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3896 !isKnownNonZero(CmpRHS))
3897 return {SPF_UNKNOWN, SPNB_NA, false};
3898 }
3899
3900 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3901 bool Ordered = false;
3902
3903 // When given one NaN and one non-NaN input:
3904 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3905 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3906 // ordered comparison fails), which could be NaN or non-NaN.
3907 // so here we discover exactly what NaN behavior is required/accepted.
3908 if (CmpInst::isFPPredicate(Pred)) {
3909 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3910 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3911
3912 if (LHSSafe && RHSSafe) {
3913 // Both operands are known non-NaN.
3914 NaNBehavior = SPNB_RETURNS_ANY;
3915 } else if (CmpInst::isOrdered(Pred)) {
3916 // An ordered comparison will return false when given a NaN, so it
3917 // returns the RHS.
3918 Ordered = true;
3919 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003920 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003921 NaNBehavior = SPNB_RETURNS_NAN;
3922 else if (RHSSafe)
3923 NaNBehavior = SPNB_RETURNS_OTHER;
3924 else
3925 // Completely unsafe.
3926 return {SPF_UNKNOWN, SPNB_NA, false};
3927 } else {
3928 Ordered = false;
3929 // An unordered comparison will return true when given a NaN, so it
3930 // returns the LHS.
3931 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003932 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003933 NaNBehavior = SPNB_RETURNS_OTHER;
3934 else if (RHSSafe)
3935 NaNBehavior = SPNB_RETURNS_NAN;
3936 else
3937 // Completely unsafe.
3938 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003939 }
3940 }
3941
James Molloy71b91c22015-05-11 14:42:20 +00003942 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003943 std::swap(CmpLHS, CmpRHS);
3944 Pred = CmpInst::getSwappedPredicate(Pred);
3945 if (NaNBehavior == SPNB_RETURNS_NAN)
3946 NaNBehavior = SPNB_RETURNS_OTHER;
3947 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3948 NaNBehavior = SPNB_RETURNS_NAN;
3949 Ordered = !Ordered;
3950 }
3951
3952 // ([if]cmp X, Y) ? X : Y
3953 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003954 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003955 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003956 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003957 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003958 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003959 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003960 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003961 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003962 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00003963 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3964 case FCmpInst::FCMP_UGT:
3965 case FCmpInst::FCMP_UGE:
3966 case FCmpInst::FCMP_OGT:
3967 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3968 case FCmpInst::FCMP_ULT:
3969 case FCmpInst::FCMP_ULE:
3970 case FCmpInst::FCMP_OLT:
3971 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00003972 }
3973 }
3974
3975 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3976 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3977 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3978
3979 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3980 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3981 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003982 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003983 }
3984
3985 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3986 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3987 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003988 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003989 }
3990 }
3991
3992 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3993 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3994 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() &&
3995 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3996 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3997 LHS = TrueVal;
3998 RHS = FalseVal;
James Molloy134bec22015-08-11 09:12:57 +00003999 return {SPF_SMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004000 }
4001 }
4002 }
4003
4004 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
4005
James Molloy134bec22015-08-11 09:12:57 +00004006 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004007}
James Molloy270ef8c2015-05-15 16:04:50 +00004008
James Molloy569cea62015-09-02 17:25:25 +00004009static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4010 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00004011 CastInst *CI = dyn_cast<CastInst>(V1);
4012 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00004013 CastInst *CI2 = dyn_cast<CastInst>(V2);
4014 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00004015 return nullptr;
4016 *CastOp = CI->getOpcode();
4017
James Molloy569cea62015-09-02 17:25:25 +00004018 if (CI2) {
4019 // If V1 and V2 are both the same cast from the same type, we can look
4020 // through V1.
4021 if (CI2->getOpcode() == CI->getOpcode() &&
4022 CI2->getSrcTy() == CI->getSrcTy())
4023 return CI2->getOperand(0);
4024 return nullptr;
4025 } else if (!C) {
4026 return nullptr;
4027 }
4028
James Molloy2b21a7c2015-05-20 18:41:25 +00004029 if (isa<SExtInst>(CI) && CmpI->isSigned()) {
4030 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
4031 // This is only valid if the truncated value can be sign-extended
4032 // back to the original value.
4033 if (ConstantExpr::getSExt(T, C->getType()) == C)
4034 return T;
4035 return nullptr;
4036 }
4037 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
James Molloy270ef8c2015-05-15 16:04:50 +00004038 return ConstantExpr::getTrunc(C, CI->getSrcTy());
4039
4040 if (isa<TruncInst>(CI))
4041 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
4042
James Molloy134bec22015-08-11 09:12:57 +00004043 if (isa<FPToUIInst>(CI))
4044 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
4045
4046 if (isa<FPToSIInst>(CI))
4047 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
4048
4049 if (isa<UIToFPInst>(CI))
4050 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
4051
4052 if (isa<SIToFPInst>(CI))
4053 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
4054
4055 if (isa<FPTruncInst>(CI))
4056 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
4057
4058 if (isa<FPExtInst>(CI))
4059 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
4060
James Molloy270ef8c2015-05-15 16:04:50 +00004061 return nullptr;
4062}
4063
James Molloy134bec22015-08-11 09:12:57 +00004064SelectPatternResult llvm::matchSelectPattern(Value *V,
James Molloy270ef8c2015-05-15 16:04:50 +00004065 Value *&LHS, Value *&RHS,
4066 Instruction::CastOps *CastOp) {
4067 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004068 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004069
James Molloy134bec22015-08-11 09:12:57 +00004070 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4071 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004072
James Molloy134bec22015-08-11 09:12:57 +00004073 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004074 Value *CmpLHS = CmpI->getOperand(0);
4075 Value *CmpRHS = CmpI->getOperand(1);
4076 Value *TrueVal = SI->getTrueValue();
4077 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004078 FastMathFlags FMF;
4079 if (isa<FPMathOperator>(CmpI))
4080 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004081
4082 // Bail out early.
4083 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004084 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004085
4086 // Deal with type mismatches.
4087 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004088 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004089 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004090 cast<CastInst>(TrueVal)->getOperand(0), C,
4091 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004092 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004093 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004094 C, cast<CastInst>(FalseVal)->getOperand(0),
4095 LHS, RHS);
4096 }
James Molloy134bec22015-08-11 09:12:57 +00004097 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004098 LHS, RHS);
4099}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004100
4101ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
4102 const unsigned NumRanges = Ranges.getNumOperands() / 2;
4103 assert(NumRanges >= 1 && "Must have at least one range!");
4104 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
4105
4106 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
4107 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
4108
4109 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
4110
4111 for (unsigned i = 1; i < NumRanges; ++i) {
4112 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
4113 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
4114
4115 // Note: unionWith will potentially create a range that contains values not
4116 // contained in any of the original N ranges.
4117 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
4118 }
4119
4120 return CR;
4121}
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004122
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004123/// Return true if "icmp Pred LHS RHS" is always true.
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004124static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
4125 const DataLayout &DL, unsigned Depth,
4126 AssumptionCache *AC, const Instruction *CxtI,
4127 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004128 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004129 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4130 return true;
4131
4132 switch (Pred) {
4133 default:
4134 return false;
4135
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004136 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004137 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004138
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004139 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004140 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004141 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004142 return false;
4143 }
4144
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004145 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004146 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004147
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004148 // LHS u<= LHS +_{nuw} C for any C
4149 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004150 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004151
4152 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
4153 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
4154 const APInt *&CA, const APInt *&CB) {
4155 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4156 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4157 return true;
4158
4159 // If X & C == 0 then (X | C) == X +_{nuw} C
4160 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4161 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4162 unsigned BitWidth = CA->getBitWidth();
4163 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4164 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4165
4166 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4167 return true;
4168 }
4169
4170 return false;
4171 };
4172
4173 Value *X;
4174 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004175 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4176 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004177
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004178 return false;
4179 }
4180 }
4181}
4182
4183/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
4184/// ALHS ARHS" is true.
4185static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS,
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004186 Value *ARHS, Value *BLHS, Value *BRHS,
4187 const DataLayout &DL, unsigned Depth,
4188 AssumptionCache *AC, const Instruction *CxtI,
4189 const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004190 switch (Pred) {
4191 default:
4192 return false;
4193
4194 case CmpInst::ICMP_SLT:
4195 case CmpInst::ICMP_SLE:
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004196 return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4197 DT) &&
4198 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI,
4199 DT);
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004200
4201 case CmpInst::ICMP_ULT:
4202 case CmpInst::ICMP_ULE:
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004203 return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4204 DT) &&
4205 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI,
4206 DT);
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004207 }
4208}
4209
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004210bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL,
4211 unsigned Depth, AssumptionCache *AC,
4212 const Instruction *CxtI,
4213 const DominatorTree *DT) {
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004214 assert(LHS->getType() == RHS->getType() && "mismatched type");
4215 Type *OpTy = LHS->getType();
4216 assert(OpTy->getScalarType()->isIntegerTy(1));
4217
4218 // LHS ==> RHS by definition
4219 if (LHS == RHS) return true;
4220
4221 if (OpTy->isVectorTy())
4222 // TODO: extending the code below to handle vectors
4223 return false;
4224 assert(OpTy->isIntegerTy(1) && "implied by above");
4225
4226 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004227 Value *ALHS, *ARHS;
4228 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004229
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004230 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4231 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
4232 return false;
4233
4234 if (APred == BPred)
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004235 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4236 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004237
4238 return false;
4239}