blob: 17b13802e1d8bf923fa8c0e72bd98fc3e5d4e74f [file] [log] [blame]
Adam Nemet04563272015-02-01 16:56:15 +00001//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The implementation for the loop memory dependence that was originally
11// developed for the loop vectorizer.
12//
13//===----------------------------------------------------------------------===//
14
Chandler Carruth3bab7e12017-01-11 09:43:56 +000015#include "llvm/Analysis/LoopAccessAnalysis.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000016#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/EquivalenceClasses.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000020#include "llvm/ADT/PointerIntPair.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000021#include "llvm/ADT/STLExtras.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000022#include "llvm/ADT/SetVector.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/SmallSet.h"
25#include "llvm/ADT/SmallVector.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000026#include "llvm/ADT/iterator_range.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000027#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Analysis/AliasSetTracker.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000029#include "llvm/Analysis/LoopAnalysisManager.h"
Adam Nemet04563272015-02-01 16:56:15 +000030#include "llvm/Analysis/LoopInfo.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000031#include "llvm/Analysis/MemoryLocation.h"
Adam Nemet0965da22017-10-09 23:19:02 +000032#include "llvm/Analysis/OptimizationRemarkEmitter.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000033#include "llvm/Analysis/ScalarEvolution.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000034#include "llvm/Analysis/ScalarEvolutionExpander.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000035#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000036#include "llvm/Analysis/TargetLibraryInfo.h"
Adam Nemet04563272015-02-01 16:56:15 +000037#include "llvm/Analysis/ValueTracking.h"
Adam Nemetf45594c2016-07-01 00:09:02 +000038#include "llvm/Analysis/VectorUtils.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000039#include "llvm/IR/BasicBlock.h"
40#include "llvm/IR/Constants.h"
41#include "llvm/IR/DataLayout.h"
42#include "llvm/IR/DebugLoc.h"
43#include "llvm/IR/DerivedTypes.h"
44#include "llvm/IR/DiagnosticInfo.h"
Adam Nemet04563272015-02-01 16:56:15 +000045#include "llvm/IR/Dominators.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000046#include "llvm/IR/Function.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000047#include "llvm/IR/IRBuilder.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000048#include "llvm/IR/InstrTypes.h"
49#include "llvm/IR/Instruction.h"
50#include "llvm/IR/Instructions.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000051#include "llvm/IR/Operator.h"
Xinliang David Li8a021312016-07-02 21:18:40 +000052#include "llvm/IR/PassManager.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000053#include "llvm/IR/Type.h"
54#include "llvm/IR/Value.h"
55#include "llvm/IR/ValueHandle.h"
56#include "llvm/Pass.h"
57#include "llvm/Support/Casting.h"
58#include "llvm/Support/CommandLine.h"
Adam Nemet04563272015-02-01 16:56:15 +000059#include "llvm/Support/Debug.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000060#include "llvm/Support/ErrorHandling.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000061#include "llvm/Support/raw_ostream.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000062#include <algorithm>
63#include <cassert>
64#include <cstdint>
65#include <cstdlib>
66#include <iterator>
67#include <utility>
68#include <vector>
69
Adam Nemet04563272015-02-01 16:56:15 +000070using namespace llvm;
71
Adam Nemet339f42b2015-02-19 19:15:07 +000072#define DEBUG_TYPE "loop-accesses"
Adam Nemet04563272015-02-01 16:56:15 +000073
Adam Nemetf219c642015-02-19 19:14:52 +000074static cl::opt<unsigned, true>
75VectorizationFactor("force-vector-width", cl::Hidden,
76 cl::desc("Sets the SIMD width. Zero is autoselect."),
77 cl::location(VectorizerParams::VectorizationFactor));
Adam Nemet1d862af2015-02-26 04:39:09 +000078unsigned VectorizerParams::VectorizationFactor;
Adam Nemetf219c642015-02-19 19:14:52 +000079
80static cl::opt<unsigned, true>
81VectorizationInterleave("force-vector-interleave", cl::Hidden,
82 cl::desc("Sets the vectorization interleave count. "
83 "Zero is autoselect."),
84 cl::location(
85 VectorizerParams::VectorizationInterleave));
Adam Nemet1d862af2015-02-26 04:39:09 +000086unsigned VectorizerParams::VectorizationInterleave;
Adam Nemetf219c642015-02-19 19:14:52 +000087
Adam Nemet1d862af2015-02-26 04:39:09 +000088static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
89 "runtime-memory-check-threshold", cl::Hidden,
90 cl::desc("When performing memory disambiguation checks at runtime do not "
91 "generate more than this number of comparisons (default = 8)."),
92 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
93unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
Adam Nemetf219c642015-02-19 19:14:52 +000094
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000095/// The maximum iterations used to merge memory checks
Silviu Baranga1b6b50a2015-07-08 09:16:33 +000096static cl::opt<unsigned> MemoryCheckMergeThreshold(
97 "memory-check-merge-threshold", cl::Hidden,
98 cl::desc("Maximum number of comparisons done when trying to merge "
99 "runtime memory checks. (default = 100)"),
100 cl::init(100));
101
Adam Nemetf219c642015-02-19 19:14:52 +0000102/// Maximum SIMD width.
103const unsigned VectorizerParams::MaxVectorWidth = 64;
104
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000105/// We collect dependences up to this threshold.
Adam Nemeta2df7502015-11-03 21:39:52 +0000106static cl::opt<unsigned>
107 MaxDependences("max-dependences", cl::Hidden,
108 cl::desc("Maximum number of dependences collected by "
109 "loop-access analysis (default = 100)"),
110 cl::init(100));
Adam Nemet9c926572015-03-10 17:40:37 +0000111
Adam Nemeta9f09c62016-06-17 22:35:41 +0000112/// This enables versioning on the strides of symbolically striding memory
113/// accesses in code like the following.
114/// for (i = 0; i < N; ++i)
115/// A[i * Stride1] += B[i * Stride2] ...
116///
117/// Will be roughly translated to
118/// if (Stride1 == 1 && Stride2 == 1) {
119/// for (i = 0; i < N; i+=4)
120/// A[i:i+3] += ...
121/// } else
122/// ...
123static cl::opt<bool> EnableMemAccessVersioning(
124 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
125 cl::desc("Enable symbolic stride memory access versioning"));
126
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000127/// Enable store-to-load forwarding conflict detection. This option can
Matthew Simpson37ec5f92016-05-16 17:00:56 +0000128/// be disabled for correctness testing.
129static cl::opt<bool> EnableForwardingConflictDetection(
130 "store-to-load-forwarding-conflict-detection", cl::Hidden,
Matthew Simpsona250dc92016-05-16 14:14:49 +0000131 cl::desc("Enable conflict detection in loop-access analysis"),
132 cl::init(true));
133
Adam Nemetf219c642015-02-19 19:14:52 +0000134bool VectorizerParams::isInterleaveForced() {
135 return ::VectorizationInterleave.getNumOccurrences() > 0;
136}
137
Adam Nemet04563272015-02-01 16:56:15 +0000138Value *llvm::stripIntegerCast(Value *V) {
David Majnemer8b401012016-07-12 20:31:46 +0000139 if (auto *CI = dyn_cast<CastInst>(V))
Adam Nemet04563272015-02-01 16:56:15 +0000140 if (CI->getOperand(0)->getType()->isIntegerTy())
141 return CI->getOperand(0);
142 return V;
143}
144
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000145const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
Adam Nemet8bc61df2015-02-24 00:41:59 +0000146 const ValueToValueMap &PtrToStride,
Adam Nemet04563272015-02-01 16:56:15 +0000147 Value *Ptr, Value *OrigPtr) {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000148 const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000149
150 // If there is an entry in the map return the SCEV of the pointer with the
151 // symbolic stride replaced by one.
Adam Nemet8bc61df2015-02-24 00:41:59 +0000152 ValueToValueMap::const_iterator SI =
153 PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000154 if (SI != PtrToStride.end()) {
155 Value *StrideVal = SI->second;
156
157 // Strip casts.
158 StrideVal = stripIntegerCast(StrideVal);
159
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000160 ScalarEvolution *SE = PSE.getSE();
Silviu Barangae3c05342015-11-02 14:41:02 +0000161 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
162 const auto *CT =
163 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
164
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000165 PSE.addPredicate(*SE->getEqualPredicate(U, CT));
166 auto *Expr = PSE.getSCEV(Ptr);
Silviu Barangae3c05342015-11-02 14:41:02 +0000167
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000168 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
169 << " by: " << *Expr << "\n");
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000170 return Expr;
Adam Nemet04563272015-02-01 16:56:15 +0000171 }
172
173 // Otherwise, just return the SCEV of the original pointer.
Silviu Barangae3c05342015-11-02 14:41:02 +0000174 return OrigSCEV;
Adam Nemet04563272015-02-01 16:56:15 +0000175}
176
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000177/// Calculate Start and End points of memory access.
178/// Let's assume A is the first access and B is a memory access on N-th loop
179/// iteration. Then B is calculated as:
180/// B = A + Step*N .
181/// Step value may be positive or negative.
182/// N is a calculated back-edge taken count:
183/// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
184/// Start and End points are calculated in the following way:
185/// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
186/// where SizeOfElt is the size of single memory access in bytes.
187///
188/// There is no conflict when the intervals are disjoint:
189/// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
Adam Nemet7cdebac2015-07-14 22:32:44 +0000190void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
191 unsigned DepSetId, unsigned ASId,
Silviu Barangae3c05342015-11-02 14:41:02 +0000192 const ValueToValueMap &Strides,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000193 PredicatedScalarEvolution &PSE) {
Adam Nemet04563272015-02-01 16:56:15 +0000194 // Get the stride replaced scev.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000195 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000196 ScalarEvolution *SE = PSE.getSE();
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000197
Adam Nemet279784f2016-03-24 04:28:47 +0000198 const SCEV *ScStart;
199 const SCEV *ScEnd;
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000200
Adam Nemet59a65502016-03-24 05:15:24 +0000201 if (SE->isLoopInvariant(Sc, Lp))
Adam Nemet279784f2016-03-24 04:28:47 +0000202 ScStart = ScEnd = Sc;
Adam Nemet279784f2016-03-24 04:28:47 +0000203 else {
204 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
205 assert(AR && "Invalid addrec expression");
Silviu Baranga6f444df2016-04-08 14:29:09 +0000206 const SCEV *Ex = PSE.getBackedgeTakenCount();
Adam Nemet279784f2016-03-24 04:28:47 +0000207
208 ScStart = AR->getStart();
209 ScEnd = AR->evaluateAtIteration(Ex, *SE);
210 const SCEV *Step = AR->getStepRecurrence(*SE);
211
212 // For expressions with negative step, the upper bound is ScStart and the
213 // lower bound is ScEnd.
David Majnemer8b401012016-07-12 20:31:46 +0000214 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
Adam Nemet279784f2016-03-24 04:28:47 +0000215 if (CStep->getValue()->isNegative())
216 std::swap(ScStart, ScEnd);
217 } else {
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000218 // Fallback case: the step is not constant, but we can still
Adam Nemet279784f2016-03-24 04:28:47 +0000219 // get the upper and lower bounds of the interval by using min/max
220 // expressions.
221 ScStart = SE->getUMinExpr(ScStart, ScEnd);
222 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
223 }
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000224 // Add the size of the pointed element to ScEnd.
225 unsigned EltSize =
226 Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8;
227 const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize);
228 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000229 }
230
231 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000232}
233
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000234SmallVector<RuntimePointerChecking::PointerCheck, 4>
Adam Nemet38530882015-08-09 20:06:06 +0000235RuntimePointerChecking::generateChecks() const {
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000236 SmallVector<PointerCheck, 4> Checks;
237
Adam Nemet7c52e052015-07-27 19:38:50 +0000238 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
239 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
240 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
241 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000242
Adam Nemet38530882015-08-09 20:06:06 +0000243 if (needsChecking(CGI, CGJ))
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000244 Checks.push_back(std::make_pair(&CGI, &CGJ));
245 }
246 }
247 return Checks;
248}
249
Adam Nemet15840392015-08-07 22:44:15 +0000250void RuntimePointerChecking::generateChecks(
251 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
252 assert(Checks.empty() && "Checks is not empty");
253 groupChecks(DepCands, UseDependencies);
254 Checks = generateChecks();
255}
256
Adam Nemet651a5a22015-08-09 20:06:08 +0000257bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
258 const CheckingPtrGroup &N) const {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000259 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
260 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
Adam Nemet651a5a22015-08-09 20:06:08 +0000261 if (needsChecking(M.Members[I], N.Members[J]))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000262 return true;
263 return false;
264}
265
266/// Compare \p I and \p J and return the minimum.
267/// Return nullptr in case we couldn't find an answer.
268static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
269 ScalarEvolution *SE) {
270 const SCEV *Diff = SE->getMinusSCEV(J, I);
271 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
272
273 if (!C)
274 return nullptr;
275 if (C->getValue()->isNegative())
276 return J;
277 return I;
278}
279
Adam Nemet7cdebac2015-07-14 22:32:44 +0000280bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000281 const SCEV *Start = RtCheck.Pointers[Index].Start;
282 const SCEV *End = RtCheck.Pointers[Index].End;
283
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000284 // Compare the starts and ends with the known minimum and maximum
285 // of this set. We need to know how we compare against the min/max
286 // of the set in order to be able to emit memchecks.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000287 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000288 if (!Min0)
289 return false;
290
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000291 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000292 if (!Min1)
293 return false;
294
295 // Update the low bound expression if we've found a new min value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000296 if (Min0 == Start)
297 Low = Start;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000298
299 // Update the high bound expression if we've found a new max value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000300 if (Min1 != End)
301 High = End;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000302
303 Members.push_back(Index);
304 return true;
305}
306
Adam Nemet7cdebac2015-07-14 22:32:44 +0000307void RuntimePointerChecking::groupChecks(
308 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000309 // We build the groups from dependency candidates equivalence classes
310 // because:
311 // - We know that pointers in the same equivalence class share
312 // the same underlying object and therefore there is a chance
313 // that we can compare pointers
314 // - We wouldn't be able to merge two pointers for which we need
315 // to emit a memcheck. The classes in DepCands are already
316 // conveniently built such that no two pointers in the same
317 // class need checking against each other.
318
319 // We use the following (greedy) algorithm to construct the groups
320 // For every pointer in the equivalence class:
321 // For each existing group:
322 // - if the difference between this pointer and the min/max bounds
323 // of the group is a constant, then make the pointer part of the
324 // group and update the min/max bounds of that group as required.
325
326 CheckingGroups.clear();
327
Silviu Baranga48250602015-07-28 13:44:08 +0000328 // If we need to check two pointers to the same underlying object
329 // with a non-constant difference, we shouldn't perform any pointer
330 // grouping with those pointers. This is because we can easily get
331 // into cases where the resulting check would return false, even when
332 // the accesses are safe.
333 //
334 // The following example shows this:
335 // for (i = 0; i < 1000; ++i)
336 // a[5000 + i * m] = a[i] + a[i + 9000]
337 //
338 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
339 // (0, 10000) which is always false. However, if m is 1, there is no
340 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
341 // us to perform an accurate check in this case.
342 //
343 // The above case requires that we have an UnknownDependence between
344 // accesses to the same underlying object. This cannot happen unless
345 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
346 // is also false. In this case we will use the fallback path and create
347 // separate checking groups for all pointers.
Mehdi Aminiafd13512015-11-05 05:49:43 +0000348
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000349 // If we don't have the dependency partitions, construct a new
Silviu Baranga48250602015-07-28 13:44:08 +0000350 // checking pointer group for each pointer. This is also required
351 // for correctness, because in this case we can have checking between
352 // pointers to the same underlying object.
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000353 if (!UseDependencies) {
354 for (unsigned I = 0; I < Pointers.size(); ++I)
355 CheckingGroups.push_back(CheckingPtrGroup(I, *this));
356 return;
357 }
358
359 unsigned TotalComparisons = 0;
360
361 DenseMap<Value *, unsigned> PositionMap;
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000362 for (unsigned Index = 0; Index < Pointers.size(); ++Index)
363 PositionMap[Pointers[Index].PointerValue] = Index;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000364
Silviu Barangace3877f2015-07-09 15:18:25 +0000365 // We need to keep track of what pointers we've already seen so we
366 // don't process them twice.
367 SmallSet<unsigned, 2> Seen;
368
Sanjay Patele4b9f502015-12-07 19:21:39 +0000369 // Go through all equivalence classes, get the "pointer check groups"
Silviu Barangace3877f2015-07-09 15:18:25 +0000370 // and add them to the overall solution. We use the order in which accesses
371 // appear in 'Pointers' to enforce determinism.
372 for (unsigned I = 0; I < Pointers.size(); ++I) {
373 // We've seen this pointer before, and therefore already processed
374 // its equivalence class.
375 if (Seen.count(I))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000376 continue;
377
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000378 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
379 Pointers[I].IsWritePtr);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000380
Silviu Barangace3877f2015-07-09 15:18:25 +0000381 SmallVector<CheckingPtrGroup, 2> Groups;
382 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
383
Silviu Barangaa647c302015-07-13 14:48:24 +0000384 // Because DepCands is constructed by visiting accesses in the order in
385 // which they appear in alias sets (which is deterministic) and the
386 // iteration order within an equivalence class member is only dependent on
387 // the order in which unions and insertions are performed on the
388 // equivalence class, the iteration order is deterministic.
Silviu Barangace3877f2015-07-09 15:18:25 +0000389 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000390 MI != ME; ++MI) {
391 unsigned Pointer = PositionMap[MI->getPointer()];
392 bool Merged = false;
Silviu Barangace3877f2015-07-09 15:18:25 +0000393 // Mark this pointer as seen.
394 Seen.insert(Pointer);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000395
396 // Go through all the existing sets and see if we can find one
397 // which can include this pointer.
398 for (CheckingPtrGroup &Group : Groups) {
399 // Don't perform more than a certain amount of comparisons.
400 // This should limit the cost of grouping the pointers to something
401 // reasonable. If we do end up hitting this threshold, the algorithm
402 // will create separate groups for all remaining pointers.
403 if (TotalComparisons > MemoryCheckMergeThreshold)
404 break;
405
406 TotalComparisons++;
407
408 if (Group.addPointer(Pointer)) {
409 Merged = true;
410 break;
411 }
412 }
413
414 if (!Merged)
415 // We couldn't add this pointer to any existing set or the threshold
416 // for the number of comparisons has been reached. Create a new group
417 // to hold the current pointer.
418 Groups.push_back(CheckingPtrGroup(Pointer, *this));
419 }
420
421 // We've computed the grouped checks for this partition.
422 // Save the results and continue with the next one.
423 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
424 }
Adam Nemet04563272015-02-01 16:56:15 +0000425}
426
Adam Nemet041e6de2015-07-16 02:48:05 +0000427bool RuntimePointerChecking::arePointersInSamePartition(
428 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
429 unsigned PtrIdx2) {
430 return (PtrToPartition[PtrIdx1] != -1 &&
431 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
432}
433
Adam Nemet651a5a22015-08-09 20:06:08 +0000434bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000435 const PointerInfo &PointerI = Pointers[I];
436 const PointerInfo &PointerJ = Pointers[J];
437
Adam Nemeta8945b72015-02-18 03:43:58 +0000438 // No need to check if two readonly pointers intersect.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000439 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
Adam Nemeta8945b72015-02-18 03:43:58 +0000440 return false;
441
442 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000443 if (PointerI.DependencySetId == PointerJ.DependencySetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000444 return false;
445
446 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000447 if (PointerI.AliasSetId != PointerJ.AliasSetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000448 return false;
449
450 return true;
451}
452
Adam Nemet54f0b832015-07-27 23:54:41 +0000453void RuntimePointerChecking::printChecks(
454 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
455 unsigned Depth) const {
456 unsigned N = 0;
457 for (const auto &Check : Checks) {
458 const auto &First = Check.first->Members, &Second = Check.second->Members;
459
460 OS.indent(Depth) << "Check " << N++ << ":\n";
461
462 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
463 for (unsigned K = 0; K < First.size(); ++K)
464 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
465
466 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
467 for (unsigned K = 0; K < Second.size(); ++K)
468 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
469 }
470}
471
Adam Nemet3a91e942015-08-07 19:44:48 +0000472void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
Adam Nemete91cc6e2015-02-19 19:15:19 +0000473
474 OS.indent(Depth) << "Run-time memory checks:\n";
Adam Nemet15840392015-08-07 22:44:15 +0000475 printChecks(OS, Checks, Depth);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000476
477 OS.indent(Depth) << "Grouped accesses:\n";
478 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
Adam Nemet54f0b832015-07-27 23:54:41 +0000479 const auto &CG = CheckingGroups[I];
480
481 OS.indent(Depth + 2) << "Group " << &CG << ":\n";
482 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
483 << ")\n";
484 for (unsigned J = 0; J < CG.Members.size(); ++J) {
485 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000486 << "\n";
487 }
488 }
Adam Nemete91cc6e2015-02-19 19:15:19 +0000489}
490
Adam Nemet04563272015-02-01 16:56:15 +0000491namespace {
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +0000492
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000493/// Analyses memory accesses in a loop.
Adam Nemet04563272015-02-01 16:56:15 +0000494///
495/// Checks whether run time pointer checks are needed and builds sets for data
496/// dependence checking.
497class AccessAnalysis {
498public:
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000499 /// Read or write access location.
Adam Nemet04563272015-02-01 16:56:15 +0000500 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
Amjad Aboud5448e982017-03-08 05:09:10 +0000501 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
Adam Nemet04563272015-02-01 16:56:15 +0000502
Adam Nemete2b885c2015-04-23 20:09:20 +0000503 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000504 MemoryDepChecker::DepCandidates &DA,
505 PredicatedScalarEvolution &PSE)
Silviu Barangae3c05342015-11-02 14:41:02 +0000506 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000507 PSE(PSE) {}
Adam Nemet04563272015-02-01 16:56:15 +0000508
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000509 /// Register a load and whether it is only read from.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000510 void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
Adam Nemet04563272015-02-01 16:56:15 +0000511 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000512 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000513 Accesses.insert(MemAccessInfo(Ptr, false));
514 if (IsReadOnly)
515 ReadOnlyPtr.insert(Ptr);
516 }
517
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000518 /// Register a store.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000519 void addStore(MemoryLocation &Loc) {
Adam Nemet04563272015-02-01 16:56:15 +0000520 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000521 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000522 Accesses.insert(MemAccessInfo(Ptr, true));
523 }
524
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000525 /// Check if we can emit a run-time no-alias check for \p Access.
Silviu Barangaac920f72017-09-12 07:48:22 +0000526 ///
527 /// Returns true if we can emit a run-time no alias check for \p Access.
528 /// If we can check this access, this also adds it to a dependence set and
529 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
530 /// we will attempt to use additional run-time checks in order to get
531 /// the bounds of the pointer.
532 bool createCheckForAccess(RuntimePointerChecking &RtCheck,
533 MemAccessInfo Access,
534 const ValueToValueMap &Strides,
535 DenseMap<Value *, unsigned> &DepSetId,
536 Loop *TheLoop, unsigned &RunningDepId,
537 unsigned ASId, bool ShouldCheckStride,
538 bool Assume);
539
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000540 /// Check whether we can check the pointers at runtime for
Adam Nemetee614742015-07-09 22:17:38 +0000541 /// non-intersection.
542 ///
543 /// Returns true if we need no check or if we do and we can generate them
544 /// (i.e. the pointers have computable bounds).
Adam Nemet7cdebac2015-07-14 22:32:44 +0000545 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
546 Loop *TheLoop, const ValueToValueMap &Strides,
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000547 bool ShouldCheckWrap = false);
Adam Nemet04563272015-02-01 16:56:15 +0000548
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000549 /// Goes over all memory accesses, checks whether a RT check is needed
Adam Nemet04563272015-02-01 16:56:15 +0000550 /// and builds sets of dependent accesses.
551 void buildDependenceSets() {
552 processMemAccesses();
553 }
554
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000555 /// Initial processing of memory accesses determined that we need to
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000556 /// perform dependency checking.
557 ///
558 /// Note that this can later be cleared if we retry memcheck analysis without
559 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
Adam Nemet04563272015-02-01 16:56:15 +0000560 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000561
562 /// We decided that no dependence analysis would be used. Reset the state.
563 void resetDepChecks(MemoryDepChecker &DepChecker) {
564 CheckDeps.clear();
Adam Nemeta2df7502015-11-03 21:39:52 +0000565 DepChecker.clearDependences();
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000566 }
Adam Nemet04563272015-02-01 16:56:15 +0000567
Amjad Aboud5448e982017-03-08 05:09:10 +0000568 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
Adam Nemet04563272015-02-01 16:56:15 +0000569
570private:
571 typedef SetVector<MemAccessInfo> PtrAccessSet;
572
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000573 /// Go over all memory access and check whether runtime pointer checks
Adam Nemetb41d2d32015-07-09 06:47:21 +0000574 /// are needed and build sets of dependency check candidates.
Adam Nemet04563272015-02-01 16:56:15 +0000575 void processMemAccesses();
576
577 /// Set of all accesses.
578 PtrAccessSet Accesses;
579
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000580 const DataLayout &DL;
581
Amjad Aboud5448e982017-03-08 05:09:10 +0000582 /// List of accesses that need a further dependence check.
583 MemAccessInfoList CheckDeps;
Adam Nemet04563272015-02-01 16:56:15 +0000584
585 /// Set of pointers that are read only.
586 SmallPtrSet<Value*, 16> ReadOnlyPtr;
587
Adam Nemet04563272015-02-01 16:56:15 +0000588 /// An alias set tracker to partition the access set by underlying object and
589 //intrinsic property (such as TBAA metadata).
590 AliasSetTracker AST;
591
Adam Nemete2b885c2015-04-23 20:09:20 +0000592 LoopInfo *LI;
593
Adam Nemet04563272015-02-01 16:56:15 +0000594 /// Sets of potentially dependent accesses - members of one set share an
595 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
596 /// dependence check.
Adam Nemetdee666b2015-03-10 17:40:34 +0000597 MemoryDepChecker::DepCandidates &DepCands;
Adam Nemet04563272015-02-01 16:56:15 +0000598
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000599 /// Initial processing of memory accesses determined that we may need
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000600 /// to add memchecks. Perform the analysis to determine the necessary checks.
601 ///
602 /// Note that, this is different from isDependencyCheckNeeded. When we retry
603 /// memcheck analysis without dependency checking
604 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
605 /// while this remains set if we have potentially dependent accesses.
606 bool IsRTCheckAnalysisNeeded;
Silviu Barangae3c05342015-11-02 14:41:02 +0000607
608 /// The SCEV predicate containing all the SCEV-related assumptions.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000609 PredicatedScalarEvolution &PSE;
Adam Nemet04563272015-02-01 16:56:15 +0000610};
611
612} // end anonymous namespace
613
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000614/// Check whether a pointer can participate in a runtime bounds check.
Silviu Barangaac920f72017-09-12 07:48:22 +0000615/// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
616/// by adding run-time checks (overflow checks) if necessary.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000617static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
Silviu Barangae3c05342015-11-02 14:41:02 +0000618 const ValueToValueMap &Strides, Value *Ptr,
Silviu Barangaac920f72017-09-12 07:48:22 +0000619 Loop *L, bool Assume) {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000620 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Adam Nemet279784f2016-03-24 04:28:47 +0000621
622 // The bounds for loop-invariant pointer is trivial.
623 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
624 return true;
625
Adam Nemet04563272015-02-01 16:56:15 +0000626 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
Silviu Barangaac920f72017-09-12 07:48:22 +0000627
628 if (!AR && Assume)
629 AR = PSE.getAsAddRec(Ptr);
630
Adam Nemet04563272015-02-01 16:56:15 +0000631 if (!AR)
632 return false;
633
634 return AR->isAffine();
635}
636
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000637/// Check whether a pointer address cannot wrap.
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000638static bool isNoWrap(PredicatedScalarEvolution &PSE,
639 const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
640 const SCEV *PtrScev = PSE.getSCEV(Ptr);
641 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
642 return true;
643
David Majnemer7afb46d2016-07-07 06:24:36 +0000644 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
Silviu Barangaac920f72017-09-12 07:48:22 +0000645 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
646 return true;
647
648 return false;
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000649}
650
Silviu Barangaac920f72017-09-12 07:48:22 +0000651bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
652 MemAccessInfo Access,
653 const ValueToValueMap &StridesMap,
654 DenseMap<Value *, unsigned> &DepSetId,
655 Loop *TheLoop, unsigned &RunningDepId,
656 unsigned ASId, bool ShouldCheckWrap,
657 bool Assume) {
658 Value *Ptr = Access.getPointer();
659
660 if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume))
661 return false;
662
663 // When we run after a failing dependency check we have to make sure
664 // we don't have wrapping pointers.
665 if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) {
666 auto *Expr = PSE.getSCEV(Ptr);
667 if (!Assume || !isa<SCEVAddRecExpr>(Expr))
668 return false;
669 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
670 }
671
672 // The id of the dependence set.
673 unsigned DepId;
674
675 if (isDependencyCheckNeeded()) {
676 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
677 unsigned &LeaderId = DepSetId[Leader];
678 if (!LeaderId)
679 LeaderId = RunningDepId++;
680 DepId = LeaderId;
681 } else
682 // Each access has its own dependence set.
683 DepId = RunningDepId++;
684
685 bool IsWrite = Access.getInt();
686 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000687 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
Silviu Barangaac920f72017-09-12 07:48:22 +0000688
689 return true;
690 }
691
Adam Nemet7cdebac2015-07-14 22:32:44 +0000692bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
693 ScalarEvolution *SE, Loop *TheLoop,
694 const ValueToValueMap &StridesMap,
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000695 bool ShouldCheckWrap) {
Adam Nemet04563272015-02-01 16:56:15 +0000696 // Find pointers with computable bounds. We are going to use this information
697 // to place a runtime bound check.
698 bool CanDoRT = true;
699
Adam Nemetee614742015-07-09 22:17:38 +0000700 bool NeedRTCheck = false;
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000701 if (!IsRTCheckAnalysisNeeded) return true;
Silviu Baranga98a13712015-06-08 10:27:06 +0000702
Adam Nemet04563272015-02-01 16:56:15 +0000703 bool IsDepCheckNeeded = isDependencyCheckNeeded();
Adam Nemet04563272015-02-01 16:56:15 +0000704
705 // We assign a consecutive id to access from different alias sets.
706 // Accesses between different groups doesn't need to be checked.
707 unsigned ASId = 1;
708 for (auto &AS : AST) {
Adam Nemet424edc62015-07-08 22:58:48 +0000709 int NumReadPtrChecks = 0;
710 int NumWritePtrChecks = 0;
Silviu Barangaac920f72017-09-12 07:48:22 +0000711 bool CanDoAliasSetRT = true;
Adam Nemet424edc62015-07-08 22:58:48 +0000712
Adam Nemet04563272015-02-01 16:56:15 +0000713 // We assign consecutive id to access from different dependence sets.
714 // Accesses within the same set don't need a runtime check.
715 unsigned RunningDepId = 1;
716 DenseMap<Value *, unsigned> DepSetId;
717
Silviu Barangaac920f72017-09-12 07:48:22 +0000718 SmallVector<MemAccessInfo, 4> Retries;
719
Adam Nemet04563272015-02-01 16:56:15 +0000720 for (auto A : AS) {
721 Value *Ptr = A.getValue();
722 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
723 MemAccessInfo Access(Ptr, IsWrite);
724
Adam Nemet424edc62015-07-08 22:58:48 +0000725 if (IsWrite)
726 ++NumWritePtrChecks;
727 else
728 ++NumReadPtrChecks;
729
Silviu Barangaac920f72017-09-12 07:48:22 +0000730 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop,
731 RunningDepId, ASId, ShouldCheckWrap, false)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000732 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
Silviu Barangaac920f72017-09-12 07:48:22 +0000733 Retries.push_back(Access);
734 CanDoAliasSetRT = false;
Adam Nemet04563272015-02-01 16:56:15 +0000735 }
736 }
737
Adam Nemet424edc62015-07-08 22:58:48 +0000738 // If we have at least two writes or one write and a read then we need to
739 // check them. But there is no need to checks if there is only one
740 // dependence set for this alias set.
741 //
742 // Note that this function computes CanDoRT and NeedRTCheck independently.
743 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
744 // for which we couldn't find the bounds but we don't actually need to emit
745 // any checks so it does not matter.
Silviu Barangaac920f72017-09-12 07:48:22 +0000746 bool NeedsAliasSetRTCheck = false;
747 if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2))
748 NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 ||
749 (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1));
Adam Nemet424edc62015-07-08 22:58:48 +0000750
Silviu Barangaac920f72017-09-12 07:48:22 +0000751 // We need to perform run-time alias checks, but some pointers had bounds
752 // that couldn't be checked.
753 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
754 // Reset the CanDoSetRt flag and retry all accesses that have failed.
755 // We know that we need these checks, so we can now be more aggressive
756 // and add further checks if required (overflow checks).
757 CanDoAliasSetRT = true;
758 for (auto Access : Retries)
759 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId,
760 TheLoop, RunningDepId, ASId,
761 ShouldCheckWrap, /*Assume=*/true)) {
762 CanDoAliasSetRT = false;
763 break;
764 }
765 }
766
767 CanDoRT &= CanDoAliasSetRT;
768 NeedRTCheck |= NeedsAliasSetRTCheck;
Adam Nemet04563272015-02-01 16:56:15 +0000769 ++ASId;
770 }
771
772 // If the pointers that we would use for the bounds comparison have different
773 // address spaces, assume the values aren't directly comparable, so we can't
774 // use them for the runtime check. We also have to assume they could
775 // overlap. In the future there should be metadata for whether address spaces
776 // are disjoint.
777 unsigned NumPointers = RtCheck.Pointers.size();
778 for (unsigned i = 0; i < NumPointers; ++i) {
779 for (unsigned j = i + 1; j < NumPointers; ++j) {
780 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000781 if (RtCheck.Pointers[i].DependencySetId ==
782 RtCheck.Pointers[j].DependencySetId)
Adam Nemet04563272015-02-01 16:56:15 +0000783 continue;
784 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000785 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
Adam Nemet04563272015-02-01 16:56:15 +0000786 continue;
787
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000788 Value *PtrI = RtCheck.Pointers[i].PointerValue;
789 Value *PtrJ = RtCheck.Pointers[j].PointerValue;
Adam Nemet04563272015-02-01 16:56:15 +0000790
791 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
792 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
793 if (ASi != ASj) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000794 LLVM_DEBUG(
795 dbgs() << "LAA: Runtime check would require comparison between"
796 " different address spaces\n");
Adam Nemet04563272015-02-01 16:56:15 +0000797 return false;
798 }
799 }
800 }
801
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000802 if (NeedRTCheck && CanDoRT)
Adam Nemet15840392015-08-07 22:44:15 +0000803 RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000804
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000805 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
806 << " pointer comparisons.\n");
Adam Nemetee614742015-07-09 22:17:38 +0000807
808 RtCheck.Need = NeedRTCheck;
809
810 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
811 if (!CanDoRTIfNeeded)
812 RtCheck.reset();
813 return CanDoRTIfNeeded;
Adam Nemet04563272015-02-01 16:56:15 +0000814}
815
816void AccessAnalysis::processMemAccesses() {
817 // We process the set twice: first we process read-write pointers, last we
818 // process read-only pointers. This allows us to skip dependence tests for
819 // read-only pointers.
820
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000821 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
822 LLVM_DEBUG(dbgs() << " AST: "; AST.dump());
823 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
824 LLVM_DEBUG({
Adam Nemet04563272015-02-01 16:56:15 +0000825 for (auto A : Accesses)
826 dbgs() << "\t" << *A.getPointer() << " (" <<
827 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
828 "read-only" : "read")) << ")\n";
829 });
830
831 // The AliasSetTracker has nicely partitioned our pointers by metadata
832 // compatibility and potential for underlying-object overlap. As a result, we
833 // only need to check for potential pointer dependencies within each alias
834 // set.
835 for (auto &AS : AST) {
836 // Note that both the alias-set tracker and the alias sets themselves used
837 // linked lists internally and so the iteration order here is deterministic
838 // (matching the original instruction order within each set).
839
840 bool SetHasWrite = false;
841
842 // Map of pointers to last access encountered.
843 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
844 UnderlyingObjToAccessMap ObjToLastAccess;
845
846 // Set of access to check after all writes have been processed.
847 PtrAccessSet DeferredAccesses;
848
849 // Iterate over each alias set twice, once to process read/write pointers,
850 // and then to process read-only pointers.
851 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
852 bool UseDeferred = SetIteration > 0;
853 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
854
855 for (auto AV : AS) {
856 Value *Ptr = AV.getValue();
857
858 // For a single memory access in AliasSetTracker, Accesses may contain
859 // both read and write, and they both need to be handled for CheckDeps.
860 for (auto AC : S) {
861 if (AC.getPointer() != Ptr)
862 continue;
863
864 bool IsWrite = AC.getInt();
865
866 // If we're using the deferred access set, then it contains only
867 // reads.
868 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
869 if (UseDeferred && !IsReadOnlyPtr)
870 continue;
871 // Otherwise, the pointer must be in the PtrAccessSet, either as a
872 // read or a write.
873 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
874 S.count(MemAccessInfo(Ptr, false))) &&
875 "Alias-set pointer not in the access set?");
876
877 MemAccessInfo Access(Ptr, IsWrite);
878 DepCands.insert(Access);
879
880 // Memorize read-only pointers for later processing and skip them in
881 // the first round (they need to be checked after we have seen all
882 // write pointers). Note: we also mark pointer that are not
883 // consecutive as "read-only" pointers (so that we check
884 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
885 if (!UseDeferred && IsReadOnlyPtr) {
886 DeferredAccesses.insert(Access);
887 continue;
888 }
889
890 // If this is a write - check other reads and writes for conflicts. If
891 // this is a read only check other writes for conflicts (but only if
892 // there is no other write to the ptr - this is an optimization to
893 // catch "a[i] = a[i] + " without having to do a dependence check).
894 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
Amjad Aboud5448e982017-03-08 05:09:10 +0000895 CheckDeps.push_back(Access);
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000896 IsRTCheckAnalysisNeeded = true;
Adam Nemet04563272015-02-01 16:56:15 +0000897 }
898
899 if (IsWrite)
900 SetHasWrite = true;
901
902 // Create sets of pointers connected by a shared alias set and
903 // underlying object.
904 typedef SmallVector<Value *, 16> ValueVector;
905 ValueVector TempObjects;
Adam Nemete2b885c2015-04-23 20:09:20 +0000906
907 GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000908 LLVM_DEBUG(dbgs()
909 << "Underlying objects for pointer " << *Ptr << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000910 for (Value *UnderlyingObj : TempObjects) {
Mehdi Aminiafd13512015-11-05 05:49:43 +0000911 // nullptr never alias, don't join sets for pointer that have "null"
912 // in their UnderlyingObjects list.
913 if (isa<ConstantPointerNull>(UnderlyingObj))
914 continue;
915
Adam Nemet04563272015-02-01 16:56:15 +0000916 UnderlyingObjToAccessMap::iterator Prev =
917 ObjToLastAccess.find(UnderlyingObj);
918 if (Prev != ObjToLastAccess.end())
919 DepCands.unionSets(Access, Prev->second);
920
921 ObjToLastAccess[UnderlyingObj] = Access;
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000922 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000923 }
924 }
925 }
926 }
927 }
928}
929
Adam Nemet04563272015-02-01 16:56:15 +0000930static bool isInBoundsGep(Value *Ptr) {
931 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
932 return GEP->isInBounds();
933 return false;
934}
935
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000936/// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
Adam Nemetc4866d22015-06-26 17:25:43 +0000937/// i.e. monotonically increasing/decreasing.
938static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000939 PredicatedScalarEvolution &PSE, const Loop *L) {
Adam Nemetc4866d22015-06-26 17:25:43 +0000940 // FIXME: This should probably only return true for NUW.
941 if (AR->getNoWrapFlags(SCEV::NoWrapMask))
942 return true;
943
944 // Scalar evolution does not propagate the non-wrapping flags to values that
945 // are derived from a non-wrapping induction variable because non-wrapping
946 // could be flow-sensitive.
947 //
948 // Look through the potentially overflowing instruction to try to prove
949 // non-wrapping for the *specific* value of Ptr.
950
951 // The arithmetic implied by an inbounds GEP can't overflow.
952 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
953 if (!GEP || !GEP->isInBounds())
954 return false;
955
956 // Make sure there is only one non-const index and analyze that.
957 Value *NonConstIndex = nullptr;
David Majnemer8b401012016-07-12 20:31:46 +0000958 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
959 if (!isa<ConstantInt>(Index)) {
Adam Nemetc4866d22015-06-26 17:25:43 +0000960 if (NonConstIndex)
961 return false;
David Majnemer8b401012016-07-12 20:31:46 +0000962 NonConstIndex = Index;
Adam Nemetc4866d22015-06-26 17:25:43 +0000963 }
964 if (!NonConstIndex)
965 // The recurrence is on the pointer, ignore for now.
966 return false;
967
968 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
969 // AddRec using a NSW operation.
970 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
971 if (OBO->hasNoSignedWrap() &&
972 // Assume constant for other the operand so that the AddRec can be
973 // easily found.
974 isa<ConstantInt>(OBO->getOperand(1))) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000975 auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
Adam Nemetc4866d22015-06-26 17:25:43 +0000976
977 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
978 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
979 }
980
981 return false;
982}
983
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000984/// Check whether the access through \p Ptr has a constant stride.
David Majnemer7afb46d2016-07-07 06:24:36 +0000985int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
986 const Loop *Lp, const ValueToValueMap &StridesMap,
Elena Demikhovsky5f8cc0c2016-09-18 13:56:08 +0000987 bool Assume, bool ShouldCheckWrap) {
Craig Toppere3dcce92015-08-01 22:20:21 +0000988 Type *Ty = Ptr->getType();
Adam Nemet04563272015-02-01 16:56:15 +0000989 assert(Ty->isPointerTy() && "Unexpected non-ptr");
990
991 // Make sure that the pointer does not point to aggregate types.
Craig Toppere3dcce92015-08-01 22:20:21 +0000992 auto *PtrTy = cast<PointerType>(Ty);
Adam Nemet04563272015-02-01 16:56:15 +0000993 if (PtrTy->getElementType()->isAggregateType()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000994 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
995 << *Ptr << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000996 return 0;
997 }
998
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000999 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
Adam Nemet04563272015-02-01 16:56:15 +00001000
1001 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001002 if (Assume && !AR)
Silviu Barangad68ed852016-03-23 15:29:30 +00001003 AR = PSE.getAsAddRec(Ptr);
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001004
Adam Nemet04563272015-02-01 16:56:15 +00001005 if (!AR) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001006 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1007 << " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +00001008 return 0;
1009 }
1010
1011 // The accesss function must stride over the innermost loop.
1012 if (Lp != AR->getLoop()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001013 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1014 << *Ptr << " SCEV: " << *AR << "\n");
Kyle Butta02ce982016-01-08 01:55:13 +00001015 return 0;
Adam Nemet04563272015-02-01 16:56:15 +00001016 }
1017
1018 // The address calculation must not wrap. Otherwise, a dependence could be
1019 // inverted.
1020 // An inbounds getelementptr that is a AddRec with a unit stride
1021 // cannot wrap per definition. The unit stride requirement is checked later.
1022 // An getelementptr without an inbounds attribute and unit stride would have
1023 // to access the pointer value "0" which is undefined behavior in address
1024 // space 0, therefore we can also vectorize this case.
1025 bool IsInBoundsGEP = isInBoundsGep(Ptr);
Elena Demikhovsky5f8cc0c2016-09-18 13:56:08 +00001026 bool IsNoWrapAddRec = !ShouldCheckWrap ||
1027 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
1028 isNoWrapAddRec(Ptr, AR, PSE, Lp);
Adam Nemet04563272015-02-01 16:56:15 +00001029 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
1030 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001031 if (Assume) {
1032 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1033 IsNoWrapAddRec = true;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001034 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
1035 << "LAA: Pointer: " << *Ptr << "\n"
1036 << "LAA: SCEV: " << *AR << "\n"
1037 << "LAA: Added an overflow assumption\n");
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001038 } else {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001039 LLVM_DEBUG(
1040 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1041 << *Ptr << " SCEV: " << *AR << "\n");
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001042 return 0;
1043 }
Adam Nemet04563272015-02-01 16:56:15 +00001044 }
1045
1046 // Check the step is constant.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001047 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
Adam Nemet04563272015-02-01 16:56:15 +00001048
Adam Nemet943befe2015-07-09 00:03:22 +00001049 // Calculate the pointer stride and check if it is constant.
Adam Nemet04563272015-02-01 16:56:15 +00001050 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1051 if (!C) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001052 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1053 << " SCEV: " << *AR << "\n");
Adam Nemet04563272015-02-01 16:56:15 +00001054 return 0;
1055 }
1056
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001057 auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1058 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001059 const APInt &APStepVal = C->getAPInt();
Adam Nemet04563272015-02-01 16:56:15 +00001060
1061 // Huge step value - give up.
1062 if (APStepVal.getBitWidth() > 64)
1063 return 0;
1064
1065 int64_t StepVal = APStepVal.getSExtValue();
1066
1067 // Strided access.
1068 int64_t Stride = StepVal / Size;
1069 int64_t Rem = StepVal % Size;
1070 if (Rem)
1071 return 0;
1072
1073 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1074 // know we can't "wrap around the address space". In case of address space
1075 // zero we know that this won't happen without triggering undefined behavior.
1076 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001077 Stride != 1 && Stride != -1) {
1078 if (Assume) {
1079 // We can avoid this case by adding a run-time check.
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001080 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1081 << "inbouds or in address space 0 may wrap:\n"
1082 << "LAA: Pointer: " << *Ptr << "\n"
1083 << "LAA: SCEV: " << *AR << "\n"
1084 << "LAA: Added an overflow assumption\n");
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001085 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1086 } else
1087 return 0;
1088 }
Adam Nemet04563272015-02-01 16:56:15 +00001089
1090 return Stride;
1091}
1092
Alexey Bataev428e9d92018-04-03 17:14:47 +00001093bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
1094 ScalarEvolution &SE,
1095 SmallVectorImpl<unsigned> &SortedIndices) {
1096 assert(llvm::all_of(
1097 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1098 "Expected list of pointer operands.");
1099 SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs;
1100 OffValPairs.reserve(VL.size());
1101
1102 // Walk over the pointers, and map each of them to an offset relative to
1103 // first pointer in the array.
1104 Value *Ptr0 = VL[0];
1105 const SCEV *Scev0 = SE.getSCEV(Ptr0);
1106 Value *Obj0 = GetUnderlyingObject(Ptr0, DL);
1107
1108 llvm::SmallSet<int64_t, 4> Offsets;
1109 for (auto *Ptr : VL) {
1110 // TODO: Outline this code as a special, more time consuming, version of
1111 // computeConstantDifference() function.
1112 if (Ptr->getType()->getPointerAddressSpace() !=
1113 Ptr0->getType()->getPointerAddressSpace())
1114 return false;
1115 // If a pointer refers to a different underlying object, bail - the
1116 // pointers are by definition incomparable.
1117 Value *CurrObj = GetUnderlyingObject(Ptr, DL);
1118 if (CurrObj != Obj0)
1119 return false;
1120
1121 const SCEV *Scev = SE.getSCEV(Ptr);
1122 const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0));
1123 // The pointers may not have a constant offset from each other, or SCEV
1124 // may just not be smart enough to figure out they do. Regardless,
1125 // there's nothing we can do.
1126 if (!Diff)
1127 return false;
1128
1129 // Check if the pointer with the same offset is found.
1130 int64_t Offset = Diff->getAPInt().getSExtValue();
1131 if (!Offsets.insert(Offset).second)
1132 return false;
1133 OffValPairs.emplace_back(Offset, Ptr);
1134 }
1135 SortedIndices.clear();
1136 SortedIndices.resize(VL.size());
1137 std::iota(SortedIndices.begin(), SortedIndices.end(), 0);
1138
1139 // Sort the memory accesses and keep the order of their uses in UseOrder.
1140 std::stable_sort(SortedIndices.begin(), SortedIndices.end(),
1141 [&OffValPairs](unsigned Left, unsigned Right) {
1142 return OffValPairs[Left].first < OffValPairs[Right].first;
1143 });
1144
1145 // Check if the order is consecutive already.
1146 if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) {
1147 return I == SortedIndices[I];
1148 }))
1149 SortedIndices.clear();
1150
1151 return true;
1152}
1153
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001154/// Take the address space operand from the Load/Store instruction.
1155/// Returns -1 if this is not a valid Load/Store instruction.
1156static unsigned getAddressSpaceOperand(Value *I) {
1157 if (LoadInst *L = dyn_cast<LoadInst>(I))
1158 return L->getPointerAddressSpace();
1159 if (StoreInst *S = dyn_cast<StoreInst>(I))
1160 return S->getPointerAddressSpace();
1161 return -1;
1162}
1163
1164/// Returns true if the memory operations \p A and \p B are consecutive.
1165bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1166 ScalarEvolution &SE, bool CheckType) {
Renato Golin038ede22018-03-09 21:05:58 +00001167 Value *PtrA = getLoadStorePointerOperand(A);
1168 Value *PtrB = getLoadStorePointerOperand(B);
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001169 unsigned ASA = getAddressSpaceOperand(A);
1170 unsigned ASB = getAddressSpaceOperand(B);
1171
1172 // Check that the address spaces match and that the pointers are valid.
1173 if (!PtrA || !PtrB || (ASA != ASB))
1174 return false;
1175
1176 // Make sure that A and B are different pointers.
1177 if (PtrA == PtrB)
1178 return false;
1179
1180 // Make sure that A and B have the same type if required.
Chad Rosier83a12032016-08-31 18:37:52 +00001181 if (CheckType && PtrA->getType() != PtrB->getType())
1182 return false;
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001183
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001184 unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001185 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001186 APInt Size(IdxWidth, DL.getTypeStoreSize(Ty));
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001187
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001188 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001189 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1190 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1191
1192 // OffsetDelta = OffsetB - OffsetA;
1193 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1194 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1195 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1196 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1197 const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1198 // Check if they are based on the same pointer. That makes the offsets
1199 // sufficient.
1200 if (PtrA == PtrB)
1201 return OffsetDelta == Size;
1202
1203 // Compute the necessary base pointer delta to have the necessary final delta
1204 // equal to the size.
1205 // BaseDelta = Size - OffsetDelta;
1206 const SCEV *SizeSCEV = SE.getConstant(Size);
1207 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1208
1209 // Otherwise compute the distance with SCEV between the base pointers.
1210 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1211 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1212 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1213 return X == PtrSCEVB;
1214}
1215
Adam Nemet9c926572015-03-10 17:40:37 +00001216bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1217 switch (Type) {
1218 case NoDep:
1219 case Forward:
1220 case BackwardVectorizable:
1221 return true;
1222
1223 case Unknown:
1224 case ForwardButPreventsForwarding:
1225 case Backward:
1226 case BackwardVectorizableButPreventsForwarding:
1227 return false;
1228 }
David Majnemerd388e932015-03-10 20:23:29 +00001229 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001230}
1231
Adam Nemet397f5822015-11-03 23:50:03 +00001232bool MemoryDepChecker::Dependence::isBackward() const {
Adam Nemet9c926572015-03-10 17:40:37 +00001233 switch (Type) {
1234 case NoDep:
1235 case Forward:
1236 case ForwardButPreventsForwarding:
Adam Nemet397f5822015-11-03 23:50:03 +00001237 case Unknown:
Adam Nemet9c926572015-03-10 17:40:37 +00001238 return false;
1239
Adam Nemet9c926572015-03-10 17:40:37 +00001240 case BackwardVectorizable:
1241 case Backward:
1242 case BackwardVectorizableButPreventsForwarding:
1243 return true;
1244 }
David Majnemerd388e932015-03-10 20:23:29 +00001245 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001246}
1247
Adam Nemet397f5822015-11-03 23:50:03 +00001248bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1249 return isBackward() || Type == Unknown;
1250}
1251
1252bool MemoryDepChecker::Dependence::isForward() const {
1253 switch (Type) {
1254 case Forward:
1255 case ForwardButPreventsForwarding:
1256 return true;
1257
1258 case NoDep:
1259 case Unknown:
1260 case BackwardVectorizable:
1261 case Backward:
1262 case BackwardVectorizableButPreventsForwarding:
1263 return false;
1264 }
1265 llvm_unreachable("unexpected DepType!");
1266}
1267
David Majnemer7afb46d2016-07-07 06:24:36 +00001268bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1269 uint64_t TypeByteSize) {
Adam Nemet04563272015-02-01 16:56:15 +00001270 // If loads occur at a distance that is not a multiple of a feasible vector
1271 // factor store-load forwarding does not take place.
1272 // Positive dependences might cause troubles because vectorizing them might
1273 // prevent store-load forwarding making vectorized code run a lot slower.
1274 // a[i] = a[i-3] ^ a[i-8];
1275 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1276 // hence on your typical architecture store-load forwarding does not take
1277 // place. Vectorizing in such cases does not make sense.
1278 // Store-load forwarding distance.
Adam Nemet884d3132016-05-16 16:57:47 +00001279
1280 // After this many iterations store-to-load forwarding conflicts should not
1281 // cause any slowdowns.
David Majnemer7afb46d2016-07-07 06:24:36 +00001282 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
Adam Nemet04563272015-02-01 16:56:15 +00001283 // Maximum vector factor.
David Majnemer7afb46d2016-07-07 06:24:36 +00001284 uint64_t MaxVFWithoutSLForwardIssues = std::min(
Adam Nemet2c34ab52016-05-12 21:41:53 +00001285 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
Adam Nemet04563272015-02-01 16:56:15 +00001286
Adam Nemet884d3132016-05-16 16:57:47 +00001287 // Compute the smallest VF at which the store and load would be misaligned.
David Majnemer7afb46d2016-07-07 06:24:36 +00001288 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
Adam Nemet9b5852a2016-05-16 16:57:42 +00001289 VF *= 2) {
Adam Nemet884d3132016-05-16 16:57:47 +00001290 // If the number of vector iteration between the store and the load are
1291 // small we could incur conflicts.
1292 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
Adam Nemet9b5852a2016-05-16 16:57:42 +00001293 MaxVFWithoutSLForwardIssues = (VF >>= 1);
Adam Nemet04563272015-02-01 16:56:15 +00001294 break;
1295 }
1296 }
1297
Adam Nemet9b5852a2016-05-16 16:57:42 +00001298 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001299 LLVM_DEBUG(
1300 dbgs() << "LAA: Distance " << Distance
1301 << " that could cause a store-load forwarding conflict\n");
Adam Nemet04563272015-02-01 16:56:15 +00001302 return true;
1303 }
1304
1305 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
Adam Nemetf219c642015-02-19 19:14:52 +00001306 MaxVFWithoutSLForwardIssues !=
Adam Nemet9b5852a2016-05-16 16:57:42 +00001307 VectorizerParams::MaxVectorWidth * TypeByteSize)
Adam Nemet04563272015-02-01 16:56:15 +00001308 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1309 return false;
1310}
1311
Dorit Nuzmaneac89d72017-02-12 09:32:53 +00001312/// Given a non-constant (unknown) dependence-distance \p Dist between two
1313/// memory accesses, that have the same stride whose absolute value is given
1314/// in \p Stride, and that have the same type size \p TypeByteSize,
1315/// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1316/// possible to prove statically that the dependence distance is larger
1317/// than the range that the accesses will travel through the execution of
1318/// the loop. If so, return true; false otherwise. This is useful for
1319/// example in loops such as the following (PR31098):
1320/// for (i = 0; i < D; ++i) {
1321/// = out[i];
1322/// out[i+D] =
1323/// }
1324static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1325 const SCEV &BackedgeTakenCount,
1326 const SCEV &Dist, uint64_t Stride,
1327 uint64_t TypeByteSize) {
1328
1329 // If we can prove that
1330 // (**) |Dist| > BackedgeTakenCount * Step
1331 // where Step is the absolute stride of the memory accesses in bytes,
1332 // then there is no dependence.
1333 //
1334 // Ratioanle:
1335 // We basically want to check if the absolute distance (|Dist/Step|)
1336 // is >= the loop iteration count (or > BackedgeTakenCount).
1337 // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1338 // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1339 // that the dependence distance is >= VF; This is checked elsewhere.
1340 // But in some cases we can prune unknown dependence distances early, and
1341 // even before selecting the VF, and without a runtime test, by comparing
1342 // the distance against the loop iteration count. Since the vectorized code
1343 // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1344 // also guarantees that distance >= VF.
1345 //
1346 const uint64_t ByteStride = Stride * TypeByteSize;
1347 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1348 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1349
1350 const SCEV *CastedDist = &Dist;
1351 const SCEV *CastedProduct = Product;
1352 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType());
1353 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType());
1354
1355 // The dependence distance can be positive/negative, so we sign extend Dist;
1356 // The multiplication of the absolute stride in bytes and the
1357 // backdgeTakenCount is non-negative, so we zero extend Product.
1358 if (DistTypeSize > ProductTypeSize)
1359 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1360 else
1361 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1362
1363 // Is Dist - (BackedgeTakenCount * Step) > 0 ?
1364 // (If so, then we have proven (**) because |Dist| >= Dist)
1365 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1366 if (SE.isKnownPositive(Minus))
1367 return true;
1368
1369 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ?
1370 // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1371 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1372 Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1373 if (SE.isKnownPositive(Minus))
1374 return true;
1375
1376 return false;
1377}
1378
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001379/// Check the dependence for two accesses with the same stride \p Stride.
Hao Liu751004a2015-06-08 04:48:37 +00001380/// \p Distance is the positive distance and \p TypeByteSize is type size in
1381/// bytes.
1382///
1383/// \returns true if they are independent.
David Majnemer7afb46d2016-07-07 06:24:36 +00001384static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1385 uint64_t TypeByteSize) {
Hao Liu751004a2015-06-08 04:48:37 +00001386 assert(Stride > 1 && "The stride must be greater than 1");
1387 assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1388 assert(Distance > 0 && "The distance must be non-zero");
1389
1390 // Skip if the distance is not multiple of type byte size.
1391 if (Distance % TypeByteSize)
1392 return false;
1393
David Majnemer7afb46d2016-07-07 06:24:36 +00001394 uint64_t ScaledDist = Distance / TypeByteSize;
Hao Liu751004a2015-06-08 04:48:37 +00001395
1396 // No dependence if the scaled distance is not multiple of the stride.
1397 // E.g.
1398 // for (i = 0; i < 1024 ; i += 4)
1399 // A[i+2] = A[i] + 1;
1400 //
1401 // Two accesses in memory (scaled distance is 2, stride is 4):
1402 // | A[0] | | | | A[4] | | | |
1403 // | | | A[2] | | | | A[6] | |
1404 //
1405 // E.g.
1406 // for (i = 0; i < 1024 ; i += 3)
1407 // A[i+4] = A[i] + 1;
1408 //
1409 // Two accesses in memory (scaled distance is 4, stride is 3):
1410 // | A[0] | | | A[3] | | | A[6] | | |
1411 // | | | | | A[4] | | | A[7] | |
1412 return ScaledDist % Stride;
1413}
1414
Adam Nemet9c926572015-03-10 17:40:37 +00001415MemoryDepChecker::Dependence::DepType
1416MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1417 const MemAccessInfo &B, unsigned BIdx,
1418 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001419 assert (AIdx < BIdx && "Must pass arguments in program order");
1420
1421 Value *APtr = A.getPointer();
1422 Value *BPtr = B.getPointer();
1423 bool AIsWrite = A.getInt();
1424 bool BIsWrite = B.getInt();
1425
1426 // Two reads are independent.
1427 if (!AIsWrite && !BIsWrite)
Adam Nemet9c926572015-03-10 17:40:37 +00001428 return Dependence::NoDep;
Adam Nemet04563272015-02-01 16:56:15 +00001429
1430 // We cannot check pointers in different address spaces.
1431 if (APtr->getType()->getPointerAddressSpace() !=
1432 BPtr->getType()->getPointerAddressSpace())
Adam Nemet9c926572015-03-10 17:40:37 +00001433 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001434
David Majnemer7afb46d2016-07-07 06:24:36 +00001435 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1436 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
Adam Nemet04563272015-02-01 16:56:15 +00001437
Silviu Barangaadf4b732016-05-10 12:28:49 +00001438 const SCEV *Src = PSE.getSCEV(APtr);
1439 const SCEV *Sink = PSE.getSCEV(BPtr);
Adam Nemet04563272015-02-01 16:56:15 +00001440
1441 // If the induction step is negative we have to invert source and sink of the
1442 // dependence.
1443 if (StrideAPtr < 0) {
Adam Nemet04563272015-02-01 16:56:15 +00001444 std::swap(APtr, BPtr);
1445 std::swap(Src, Sink);
1446 std::swap(AIsWrite, BIsWrite);
1447 std::swap(AIdx, BIdx);
1448 std::swap(StrideAPtr, StrideBPtr);
1449 }
1450
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001451 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
Adam Nemet04563272015-02-01 16:56:15 +00001452
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001453 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1454 << "(Induction step: " << StrideAPtr << ")\n");
1455 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1456 << *InstMap[BIdx] << ": " << *Dist << "\n");
Adam Nemet04563272015-02-01 16:56:15 +00001457
Adam Nemet943befe2015-07-09 00:03:22 +00001458 // Need accesses with constant stride. We don't want to vectorize
Adam Nemet04563272015-02-01 16:56:15 +00001459 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1460 // the address space.
1461 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001462 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001463 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001464 }
1465
Dorit Nuzmaneac89d72017-02-12 09:32:53 +00001466 Type *ATy = APtr->getType()->getPointerElementType();
1467 Type *BTy = BPtr->getType()->getPointerElementType();
1468 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1469 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1470 uint64_t Stride = std::abs(StrideAPtr);
Adam Nemet04563272015-02-01 16:56:15 +00001471 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1472 if (!C) {
Dorit Nuzmaneac89d72017-02-12 09:32:53 +00001473 if (TypeByteSize == DL.getTypeAllocSize(BTy) &&
1474 isSafeDependenceDistance(DL, *(PSE.getSE()),
1475 *(PSE.getBackedgeTakenCount()), *Dist, Stride,
1476 TypeByteSize))
1477 return Dependence::NoDep;
1478
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001479 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
Adam Nemet04563272015-02-01 16:56:15 +00001480 ShouldRetryWithRuntimeCheck = true;
Adam Nemet9c926572015-03-10 17:40:37 +00001481 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001482 }
1483
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001484 const APInt &Val = C->getAPInt();
Matthew Simpson6feebe92016-05-19 15:37:19 +00001485 int64_t Distance = Val.getSExtValue();
Matthew Simpson6feebe92016-05-19 15:37:19 +00001486
1487 // Attempt to prove strided accesses independent.
1488 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1489 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001490 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
Matthew Simpson6feebe92016-05-19 15:37:19 +00001491 return Dependence::NoDep;
1492 }
1493
1494 // Negative distances are not plausible dependencies.
Adam Nemet04563272015-02-01 16:56:15 +00001495 if (Val.isNegative()) {
1496 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001497 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001498 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
Adam Nemetb8486e52016-03-01 00:50:08 +00001499 ATy != BTy)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001500 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001501 return Dependence::ForwardButPreventsForwarding;
Adam Nemetb8486e52016-03-01 00:50:08 +00001502 }
Adam Nemet04563272015-02-01 16:56:15 +00001503
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001504 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001505 return Dependence::Forward;
Adam Nemet04563272015-02-01 16:56:15 +00001506 }
1507
1508 // Write to the same location with the same size.
1509 // Could be improved to assert type sizes are the same (i32 == float, etc).
1510 if (Val == 0) {
1511 if (ATy == BTy)
Adam Nemetd7037c52015-11-03 20:13:43 +00001512 return Dependence::Forward;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001513 LLVM_DEBUG(
1514 dbgs() << "LAA: Zero dependence difference but different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001515 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001516 }
1517
1518 assert(Val.isStrictlyPositive() && "Expect a positive value");
1519
Adam Nemet04563272015-02-01 16:56:15 +00001520 if (ATy != BTy) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001521 LLVM_DEBUG(
1522 dbgs()
1523 << "LAA: ReadWrite-Write positive dependency with different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001524 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001525 }
1526
Adam Nemet04563272015-02-01 16:56:15 +00001527 // Bail out early if passed-in parameters make vectorization not feasible.
Adam Nemetf219c642015-02-19 19:14:52 +00001528 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1529 VectorizerParams::VectorizationFactor : 1);
1530 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1531 VectorizerParams::VectorizationInterleave : 1);
Hao Liu751004a2015-06-08 04:48:37 +00001532 // The minimum number of iterations for a vectorized/unrolled version.
1533 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
Adam Nemet04563272015-02-01 16:56:15 +00001534
Hao Liu751004a2015-06-08 04:48:37 +00001535 // It's not vectorizable if the distance is smaller than the minimum distance
1536 // needed for a vectroized/unrolled version. Vectorizing one iteration in
1537 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1538 // TypeByteSize (No need to plus the last gap distance).
1539 //
1540 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1541 // foo(int *A) {
1542 // int *B = (int *)((char *)A + 14);
1543 // for (i = 0 ; i < 1024 ; i += 2)
1544 // B[i] = A[i] + 1;
1545 // }
1546 //
1547 // Two accesses in memory (stride is 2):
1548 // | A[0] | | A[2] | | A[4] | | A[6] | |
1549 // | B[0] | | B[2] | | B[4] |
1550 //
1551 // Distance needs for vectorizing iterations except the last iteration:
1552 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1553 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1554 //
1555 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1556 // 12, which is less than distance.
1557 //
1558 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1559 // the minimum distance needed is 28, which is greater than distance. It is
1560 // not safe to do vectorization.
David Majnemer7afb46d2016-07-07 06:24:36 +00001561 uint64_t MinDistanceNeeded =
Hao Liu751004a2015-06-08 04:48:37 +00001562 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
David Majnemer7afb46d2016-07-07 06:24:36 +00001563 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001564 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
1565 << Distance << '\n');
Hao Liu751004a2015-06-08 04:48:37 +00001566 return Dependence::Backward;
1567 }
1568
1569 // Unsafe if the minimum distance needed is greater than max safe distance.
1570 if (MinDistanceNeeded > MaxSafeDepDistBytes) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001571 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
1572 << MinDistanceNeeded << " size in bytes");
Adam Nemet9c926572015-03-10 17:40:37 +00001573 return Dependence::Backward;
Adam Nemet04563272015-02-01 16:56:15 +00001574 }
1575
Adam Nemet9cc0c392015-02-26 17:58:48 +00001576 // Positive distance bigger than max vectorization factor.
Hao Liu751004a2015-06-08 04:48:37 +00001577 // FIXME: Should use max factor instead of max distance in bytes, which could
1578 // not handle different types.
1579 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1580 // void foo (int *A, char *B) {
1581 // for (unsigned i = 0; i < 1024; i++) {
1582 // A[i+2] = A[i] + 1;
1583 // B[i+2] = B[i] + 1;
1584 // }
1585 // }
1586 //
1587 // This case is currently unsafe according to the max safe distance. If we
1588 // analyze the two accesses on array B, the max safe dependence distance
1589 // is 2. Then we analyze the accesses on array A, the minimum distance needed
1590 // is 8, which is less than 2 and forbidden vectorization, But actually
1591 // both A and B could be vectorized by 2 iterations.
1592 MaxSafeDepDistBytes =
David Majnemer7afb46d2016-07-07 06:24:36 +00001593 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
Adam Nemet04563272015-02-01 16:56:15 +00001594
1595 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001596 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001597 couldPreventStoreLoadForward(Distance, TypeByteSize))
Adam Nemet9c926572015-03-10 17:40:37 +00001598 return Dependence::BackwardVectorizableButPreventsForwarding;
Adam Nemet04563272015-02-01 16:56:15 +00001599
Alon Kom682cfc12017-09-14 07:40:02 +00001600 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001601 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1602 << " with max VF = " << MaxVF << '\n');
Alon Kom682cfc12017-09-14 07:40:02 +00001603 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
1604 MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits);
Adam Nemet9c926572015-03-10 17:40:37 +00001605 return Dependence::BackwardVectorizable;
Adam Nemet04563272015-02-01 16:56:15 +00001606}
1607
Adam Nemetdee666b2015-03-10 17:40:34 +00001608bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
Amjad Aboud5448e982017-03-08 05:09:10 +00001609 MemAccessInfoList &CheckDeps,
Adam Nemet8bc61df2015-02-24 00:41:59 +00001610 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001611
David Majnemer7afb46d2016-07-07 06:24:36 +00001612 MaxSafeDepDistBytes = -1;
Amjad Aboud5448e982017-03-08 05:09:10 +00001613 SmallPtrSet<MemAccessInfo, 8> Visited;
1614 for (MemAccessInfo CurAccess : CheckDeps) {
1615 if (Visited.count(CurAccess))
1616 continue;
Adam Nemet04563272015-02-01 16:56:15 +00001617
1618 // Get the relevant memory access set.
1619 EquivalenceClasses<MemAccessInfo>::iterator I =
1620 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1621
1622 // Check accesses within this set.
Richard Trieu7a083812016-02-18 22:09:30 +00001623 EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1624 AccessSets.member_begin(I);
1625 EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1626 AccessSets.member_end();
Adam Nemet04563272015-02-01 16:56:15 +00001627
1628 // Check every access pair.
1629 while (AI != AE) {
Amjad Aboud5448e982017-03-08 05:09:10 +00001630 Visited.insert(*AI);
Adam Nemet04563272015-02-01 16:56:15 +00001631 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1632 while (OI != AE) {
1633 // Check every accessing instruction pair in program order.
1634 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1635 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1636 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1637 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
Adam Nemet9c926572015-03-10 17:40:37 +00001638 auto A = std::make_pair(&*AI, *I1);
1639 auto B = std::make_pair(&*OI, *I2);
1640
1641 assert(*I1 != *I2);
1642 if (*I1 > *I2)
1643 std::swap(A, B);
1644
1645 Dependence::DepType Type =
1646 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1647 SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1648
Adam Nemeta2df7502015-11-03 21:39:52 +00001649 // Gather dependences unless we accumulated MaxDependences
Adam Nemet9c926572015-03-10 17:40:37 +00001650 // dependences. In that case return as soon as we find the first
1651 // unsafe dependence. This puts a limit on this quadratic
1652 // algorithm.
Adam Nemeta2df7502015-11-03 21:39:52 +00001653 if (RecordDependences) {
1654 if (Type != Dependence::NoDep)
1655 Dependences.push_back(Dependence(A.second, B.second, Type));
Adam Nemet9c926572015-03-10 17:40:37 +00001656
Adam Nemeta2df7502015-11-03 21:39:52 +00001657 if (Dependences.size() >= MaxDependences) {
1658 RecordDependences = false;
1659 Dependences.clear();
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001660 LLVM_DEBUG(dbgs()
1661 << "Too many dependences, stopped recording\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001662 }
1663 }
Adam Nemeta2df7502015-11-03 21:39:52 +00001664 if (!RecordDependences && !SafeForVectorization)
Adam Nemet04563272015-02-01 16:56:15 +00001665 return false;
1666 }
1667 ++OI;
1668 }
1669 AI++;
1670 }
1671 }
Adam Nemet9c926572015-03-10 17:40:37 +00001672
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001673 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001674 return SafeForVectorization;
Adam Nemet04563272015-02-01 16:56:15 +00001675}
1676
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001677SmallVector<Instruction *, 4>
1678MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1679 MemAccessInfo Access(Ptr, isWrite);
1680 auto &IndexVector = Accesses.find(Access)->second;
1681
1682 SmallVector<Instruction *, 4> Insts;
David Majnemer2d006e72016-08-12 04:32:42 +00001683 transform(IndexVector,
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001684 std::back_inserter(Insts),
1685 [&](unsigned Idx) { return this->InstMap[Idx]; });
1686 return Insts;
1687}
1688
Adam Nemet58913d62015-03-10 17:40:43 +00001689const char *MemoryDepChecker::Dependence::DepName[] = {
1690 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1691 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1692
1693void MemoryDepChecker::Dependence::print(
1694 raw_ostream &OS, unsigned Depth,
1695 const SmallVectorImpl<Instruction *> &Instrs) const {
1696 OS.indent(Depth) << DepName[Type] << ":\n";
1697 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1698 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1699}
1700
Adam Nemet929c38e2015-02-19 19:15:10 +00001701bool LoopAccessInfo::canAnalyzeLoop() {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001702 // We need to have a loop header.
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001703 LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
1704 << TheLoop->getHeader()->getParent()->getName() << ": "
1705 << TheLoop->getHeader()->getName() << '\n');
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001706
Adam Nemetd8968f02016-01-18 21:16:33 +00001707 // We can only analyze innermost loops.
Adam Nemet929c38e2015-02-19 19:15:10 +00001708 if (!TheLoop->empty()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001709 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001710 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
Adam Nemet929c38e2015-02-19 19:15:10 +00001711 return false;
1712 }
1713
1714 // We must have a single backedge.
1715 if (TheLoop->getNumBackEdges() != 1) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001716 LLVM_DEBUG(
1717 dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001718 recordAnalysis("CFGNotUnderstood")
1719 << "loop control flow is not understood by analyzer";
Adam Nemet929c38e2015-02-19 19:15:10 +00001720 return false;
1721 }
1722
1723 // We must have a single exiting block.
1724 if (!TheLoop->getExitingBlock()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001725 LLVM_DEBUG(
1726 dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001727 recordAnalysis("CFGNotUnderstood")
1728 << "loop control flow is not understood by analyzer";
Adam Nemet929c38e2015-02-19 19:15:10 +00001729 return false;
1730 }
1731
1732 // We only handle bottom-tested loops, i.e. loop in which the condition is
1733 // checked at the end of each iteration. With that we can assume that all
1734 // instructions in the loop are executed the same number of times.
1735 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001736 LLVM_DEBUG(
1737 dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001738 recordAnalysis("CFGNotUnderstood")
1739 << "loop control flow is not understood by analyzer";
Adam Nemet929c38e2015-02-19 19:15:10 +00001740 return false;
1741 }
1742
Adam Nemet929c38e2015-02-19 19:15:10 +00001743 // ScalarEvolution needs to be able to find the exit count.
Xinliang David Li94734ee2016-07-01 05:59:55 +00001744 const SCEV *ExitCount = PSE->getBackedgeTakenCount();
1745 if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001746 recordAnalysis("CantComputeNumberOfIterations")
1747 << "could not determine number of loop iterations";
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001748 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001749 return false;
1750 }
1751
1752 return true;
1753}
1754
Adam Nemetb49d9a52016-07-13 22:36:27 +00001755void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
Adam Nemet7da74ab2016-07-13 22:36:35 +00001756 const TargetLibraryInfo *TLI,
1757 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001758 typedef SmallPtrSet<Value*, 16> ValueSet;
1759
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001760 // Holds the Load and Store instructions.
1761 SmallVector<LoadInst *, 16> Loads;
1762 SmallVector<StoreInst *, 16> Stores;
Adam Nemet04563272015-02-01 16:56:15 +00001763
1764 // Holds all the different accesses in the loop.
1765 unsigned NumReads = 0;
1766 unsigned NumReadWrites = 0;
1767
Xinliang David Lice030ac2016-06-22 23:20:59 +00001768 PtrRtChecking->Pointers.clear();
1769 PtrRtChecking->Need = false;
Adam Nemet04563272015-02-01 16:56:15 +00001770
1771 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
Adam Nemet04563272015-02-01 16:56:15 +00001772
1773 // For each block.
David Majnemer8b401012016-07-12 20:31:46 +00001774 for (BasicBlock *BB : TheLoop->blocks()) {
Adam Nemet04563272015-02-01 16:56:15 +00001775 // Scan the BB and collect legal loads and stores.
David Majnemer8b401012016-07-12 20:31:46 +00001776 for (Instruction &I : *BB) {
Adam Nemet04563272015-02-01 16:56:15 +00001777 // If this is a load, save it. If this instruction can read from memory
1778 // but is not a load, then we quit. Notice that we don't handle function
1779 // calls that read or write.
David Majnemer8b401012016-07-12 20:31:46 +00001780 if (I.mayReadFromMemory()) {
Adam Nemet04563272015-02-01 16:56:15 +00001781 // Many math library functions read the rounding mode. We will only
1782 // vectorize a loop if it contains known function calls that don't set
1783 // the flag. Therefore, it is safe to ignore this read from memory.
David Majnemer8b401012016-07-12 20:31:46 +00001784 auto *Call = dyn_cast<CallInst>(&I);
David Majnemerb4b27232016-04-19 19:10:21 +00001785 if (Call && getVectorIntrinsicIDForCall(Call, TLI))
Adam Nemet04563272015-02-01 16:56:15 +00001786 continue;
1787
Michael Zolotukhin9b3cf602015-03-17 19:46:50 +00001788 // If the function has an explicit vectorized counterpart, we can safely
1789 // assume that it can be vectorized.
1790 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1791 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1792 continue;
1793
David Majnemer8b401012016-07-12 20:31:46 +00001794 auto *Ld = dyn_cast<LoadInst>(&I);
Adam Nemet04563272015-02-01 16:56:15 +00001795 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001796 recordAnalysis("NonSimpleLoad", Ld)
1797 << "read with atomic ordering or volatile read";
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001798 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001799 CanVecMem = false;
1800 return;
Adam Nemet04563272015-02-01 16:56:15 +00001801 }
1802 NumLoads++;
1803 Loads.push_back(Ld);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001804 DepChecker->addAccess(Ld);
Adam Nemeta9f09c62016-06-17 22:35:41 +00001805 if (EnableMemAccessVersioning)
Adam Nemetc953bb92016-06-16 22:57:55 +00001806 collectStridedAccess(Ld);
Adam Nemet04563272015-02-01 16:56:15 +00001807 continue;
1808 }
1809
1810 // Save 'store' instructions. Abort if other instructions write to memory.
David Majnemer8b401012016-07-12 20:31:46 +00001811 if (I.mayWriteToMemory()) {
1812 auto *St = dyn_cast<StoreInst>(&I);
Adam Nemet04563272015-02-01 16:56:15 +00001813 if (!St) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001814 recordAnalysis("CantVectorizeInstruction", St)
1815 << "instruction cannot be vectorized";
Adam Nemet436018c2015-02-19 19:15:00 +00001816 CanVecMem = false;
1817 return;
Adam Nemet04563272015-02-01 16:56:15 +00001818 }
1819 if (!St->isSimple() && !IsAnnotatedParallel) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001820 recordAnalysis("NonSimpleStore", St)
1821 << "write with atomic ordering or volatile write";
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001822 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001823 CanVecMem = false;
1824 return;
Adam Nemet04563272015-02-01 16:56:15 +00001825 }
1826 NumStores++;
1827 Stores.push_back(St);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001828 DepChecker->addAccess(St);
Adam Nemeta9f09c62016-06-17 22:35:41 +00001829 if (EnableMemAccessVersioning)
Adam Nemetc953bb92016-06-16 22:57:55 +00001830 collectStridedAccess(St);
Adam Nemet04563272015-02-01 16:56:15 +00001831 }
1832 } // Next instr.
1833 } // Next block.
1834
1835 // Now we have two lists that hold the loads and the stores.
1836 // Next, we find the pointers that they use.
1837
1838 // Check if we see any stores. If there are no stores, then we don't
1839 // care if the pointers are *restrict*.
1840 if (!Stores.size()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001841 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001842 CanVecMem = true;
1843 return;
Adam Nemet04563272015-02-01 16:56:15 +00001844 }
1845
Adam Nemetdee666b2015-03-10 17:40:34 +00001846 MemoryDepChecker::DepCandidates DependentAccesses;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001847 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
Xinliang David Li94734ee2016-07-01 05:59:55 +00001848 AA, LI, DependentAccesses, *PSE);
Adam Nemet04563272015-02-01 16:56:15 +00001849
1850 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1851 // multiple times on the same object. If the ptr is accessed twice, once
1852 // for read and once for write, it will only appear once (on the write
1853 // list). This is okay, since we are going to check for conflicts between
1854 // writes and between reads and writes, but not between reads and reads.
1855 ValueSet Seen;
1856
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001857 for (StoreInst *ST : Stores) {
1858 Value *Ptr = ST->getPointerOperand();
Adam Nemetce482502015-04-08 17:48:40 +00001859 // Check for store to loop invariant address.
1860 StoreToLoopInvariantAddress |= isUniform(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +00001861 // If we did *not* see this pointer before, insert it to the read-write
1862 // list. At this phase it is only a 'write' list.
1863 if (Seen.insert(Ptr).second) {
1864 ++NumReadWrites;
1865
Chandler Carruthac80dc72015-06-17 07:18:54 +00001866 MemoryLocation Loc = MemoryLocation::get(ST);
Adam Nemet04563272015-02-01 16:56:15 +00001867 // The TBAA metadata could have a control dependency on the predication
1868 // condition, so we cannot rely on it when determining whether or not we
1869 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001870 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001871 Loc.AATags.TBAA = nullptr;
1872
1873 Accesses.addStore(Loc);
1874 }
1875 }
1876
1877 if (IsAnnotatedParallel) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001878 LLVM_DEBUG(
1879 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
1880 << "checks.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001881 CanVecMem = true;
1882 return;
Adam Nemet04563272015-02-01 16:56:15 +00001883 }
1884
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001885 for (LoadInst *LD : Loads) {
1886 Value *Ptr = LD->getPointerOperand();
Adam Nemet04563272015-02-01 16:56:15 +00001887 // If we did *not* see this pointer before, insert it to the
1888 // read list. If we *did* see it before, then it is already in
1889 // the read-write list. This allows us to vectorize expressions
1890 // such as A[i] += x; Because the address of A[i] is a read-write
1891 // pointer. This only works if the index of A[i] is consecutive.
1892 // If the address of i is unknown (for example A[B[i]]) then we may
1893 // read a few words, modify, and write a few words, and some of the
1894 // words may be written to the same address.
1895 bool IsReadOnlyPtr = false;
Adam Nemet139ffba2016-06-16 08:27:03 +00001896 if (Seen.insert(Ptr).second ||
Xinliang David Li94734ee2016-07-01 05:59:55 +00001897 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
Adam Nemet04563272015-02-01 16:56:15 +00001898 ++NumReads;
1899 IsReadOnlyPtr = true;
1900 }
1901
Chandler Carruthac80dc72015-06-17 07:18:54 +00001902 MemoryLocation Loc = MemoryLocation::get(LD);
Adam Nemet04563272015-02-01 16:56:15 +00001903 // The TBAA metadata could have a control dependency on the predication
1904 // condition, so we cannot rely on it when determining whether or not we
1905 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001906 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001907 Loc.AATags.TBAA = nullptr;
1908
1909 Accesses.addLoad(Loc, IsReadOnlyPtr);
1910 }
1911
1912 // If we write (or read-write) to a single destination and there are no
1913 // other reads in this loop then is it safe to vectorize.
1914 if (NumReadWrites == 1 && NumReads == 0) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001915 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001916 CanVecMem = true;
1917 return;
Adam Nemet04563272015-02-01 16:56:15 +00001918 }
1919
1920 // Build dependence sets and check whether we need a runtime pointer bounds
1921 // check.
1922 Accesses.buildDependenceSets();
Adam Nemet04563272015-02-01 16:56:15 +00001923
1924 // Find pointers with computable bounds. We are going to use this information
1925 // to place a runtime bound check.
Xinliang David Li94734ee2016-07-01 05:59:55 +00001926 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
Adam Nemet139ffba2016-06-16 08:27:03 +00001927 TheLoop, SymbolicStrides);
Adam Nemetee614742015-07-09 22:17:38 +00001928 if (!CanDoRTIfNeeded) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001929 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001930 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1931 << "the array bounds.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001932 CanVecMem = false;
1933 return;
Adam Nemet04563272015-02-01 16:56:15 +00001934 }
1935
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001936 LLVM_DEBUG(
1937 dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
Adam Nemet04563272015-02-01 16:56:15 +00001938
Adam Nemet436018c2015-02-19 19:15:00 +00001939 CanVecMem = true;
Adam Nemet04563272015-02-01 16:56:15 +00001940 if (Accesses.isDependencyCheckNeeded()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001941 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
Xinliang David Lice030ac2016-06-22 23:20:59 +00001942 CanVecMem = DepChecker->areDepsSafe(
Adam Nemet139ffba2016-06-16 08:27:03 +00001943 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001944 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
Adam Nemet04563272015-02-01 16:56:15 +00001945
Xinliang David Lice030ac2016-06-22 23:20:59 +00001946 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001947 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
Adam Nemet04563272015-02-01 16:56:15 +00001948
1949 // Clear the dependency checks. We assume they are not needed.
Xinliang David Lice030ac2016-06-22 23:20:59 +00001950 Accesses.resetDepChecks(*DepChecker);
Adam Nemet04563272015-02-01 16:56:15 +00001951
Xinliang David Lice030ac2016-06-22 23:20:59 +00001952 PtrRtChecking->reset();
1953 PtrRtChecking->Need = true;
Adam Nemet04563272015-02-01 16:56:15 +00001954
Xinliang David Li94734ee2016-07-01 05:59:55 +00001955 auto *SE = PSE->getSE();
Xinliang David Lice030ac2016-06-22 23:20:59 +00001956 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
Adam Nemet139ffba2016-06-16 08:27:03 +00001957 SymbolicStrides, true);
Silviu Baranga98a13712015-06-08 10:27:06 +00001958
Adam Nemet949e91a2015-03-10 19:12:41 +00001959 // Check that we found the bounds for the pointer.
Adam Nemetee614742015-07-09 22:17:38 +00001960 if (!CanDoRTIfNeeded) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001961 recordAnalysis("CantCheckMemDepsAtRunTime")
1962 << "cannot check memory dependencies at runtime";
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001963 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001964 CanVecMem = false;
1965 return;
1966 }
1967
Adam Nemet04563272015-02-01 16:56:15 +00001968 CanVecMem = true;
1969 }
1970 }
1971
Adam Nemet4bb90a72015-03-10 21:47:39 +00001972 if (CanVecMem)
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001973 LLVM_DEBUG(
1974 dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
1975 << (PtrRtChecking->Need ? "" : " don't")
1976 << " need runtime memory checks.\n");
Adam Nemet4bb90a72015-03-10 21:47:39 +00001977 else {
Adam Nemet877ccee2016-09-30 00:01:30 +00001978 recordAnalysis("UnsafeMemDep")
Adam Nemet0a77dfa2016-05-09 23:03:44 +00001979 << "unsafe dependent memory operations in loop. Use "
1980 "#pragma loop distribute(enable) to allow loop distribution "
1981 "to attempt to isolate the offending operations into a separate "
Adam Nemet877ccee2016-09-30 00:01:30 +00001982 "loop";
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001983 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
Adam Nemet4bb90a72015-03-10 21:47:39 +00001984 }
Adam Nemet04563272015-02-01 16:56:15 +00001985}
1986
Adam Nemet01abb2c2015-02-18 03:43:19 +00001987bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1988 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001989 assert(TheLoop->contains(BB) && "Unknown block used");
1990
1991 // Blocks that do not dominate the latch need predication.
1992 BasicBlock* Latch = TheLoop->getLoopLatch();
1993 return !DT->dominates(BB, Latch);
1994}
1995
Adam Nemet877ccee2016-09-30 00:01:30 +00001996OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
1997 Instruction *I) {
Adam Nemetc9228532015-02-19 19:14:56 +00001998 assert(!Report && "Multiple reports generated");
Adam Nemet877ccee2016-09-30 00:01:30 +00001999
2000 Value *CodeRegion = TheLoop->getHeader();
2001 DebugLoc DL = TheLoop->getStartLoc();
2002
2003 if (I) {
2004 CodeRegion = I->getParent();
2005 // If there is no debug location attached to the instruction, revert back to
2006 // using the loop's.
2007 if (I->getDebugLoc())
2008 DL = I->getDebugLoc();
2009 }
2010
2011 Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2012 CodeRegion);
2013 return *Report;
Adam Nemet04563272015-02-01 16:56:15 +00002014}
2015
Adam Nemet57ac7662015-02-19 19:15:21 +00002016bool LoopAccessInfo::isUniform(Value *V) const {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +00002017 auto *SE = PSE->getSE();
2018 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
2019 // never considered uniform.
2020 // TODO: Is this really what we want? Even without FP SCEV, we may want some
2021 // trivially loop-invariant FP values to be considered uniform.
2022 if (!SE->isSCEVable(V->getType()))
2023 return false;
2024 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
Adam Nemet04563272015-02-01 16:56:15 +00002025}
Adam Nemet7206d7a2015-02-06 18:31:04 +00002026
2027// FIXME: this function is currently a duplicate of the one in
2028// LoopVectorize.cpp.
2029static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
2030 Instruction *Loc) {
2031 if (FirstInst)
2032 return FirstInst;
2033 if (Instruction *I = dyn_cast<Instruction>(V))
2034 return I->getParent() == Loc->getParent() ? I : nullptr;
2035 return nullptr;
2036}
2037
Benjamin Kramer039b1042015-10-28 13:54:36 +00002038namespace {
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00002039
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00002040/// IR Values for the lower and upper bounds of a pointer evolution. We
Adam Nemet4e533ef2015-08-21 23:19:57 +00002041/// need to use value-handles because SCEV expansion can invalidate previously
2042/// expanded values. Thus expansion of a pointer can invalidate the bounds for
2043/// a previous one.
Adam Nemet1da7df32015-07-26 05:32:14 +00002044struct PointerBounds {
Adam Nemet4e533ef2015-08-21 23:19:57 +00002045 TrackingVH<Value> Start;
2046 TrackingVH<Value> End;
Adam Nemet1da7df32015-07-26 05:32:14 +00002047};
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00002048
Benjamin Kramer039b1042015-10-28 13:54:36 +00002049} // end anonymous namespace
Adam Nemet7206d7a2015-02-06 18:31:04 +00002050
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00002051/// Expand code for the lower and upper bound of the pointer group \p CG
Adam Nemet1da7df32015-07-26 05:32:14 +00002052/// in \p TheLoop. \return the values for the bounds.
2053static PointerBounds
2054expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
2055 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
2056 const RuntimePointerChecking &PtrRtChecking) {
2057 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
2058 const SCEV *Sc = SE->getSCEV(Ptr);
2059
Keno Fischer92f377b2016-12-05 21:25:03 +00002060 unsigned AS = Ptr->getType()->getPointerAddressSpace();
2061 LLVMContext &Ctx = Loc->getContext();
2062
2063 // Use this type for pointer arithmetic.
2064 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
2065
Adam Nemet1da7df32015-07-26 05:32:14 +00002066 if (SE->isLoopInvariant(Sc, TheLoop)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002067 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
2068 << *Ptr << "\n");
Keno Fischer92f377b2016-12-05 21:25:03 +00002069 // Ptr could be in the loop body. If so, expand a new one at the correct
2070 // location.
2071 Instruction *Inst = dyn_cast<Instruction>(Ptr);
2072 Value *NewPtr = (Inst && TheLoop->contains(Inst))
2073 ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
2074 : Ptr;
James Molloy37dd4d72017-04-05 09:24:26 +00002075 // We must return a half-open range, which means incrementing Sc.
2076 const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
2077 Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
2078 return {NewPtr, NewPtrPlusOne};
Adam Nemet1da7df32015-07-26 05:32:14 +00002079 } else {
Adam Nemet1da7df32015-07-26 05:32:14 +00002080 Value *Start = nullptr, *End = nullptr;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002081 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
Adam Nemet1da7df32015-07-26 05:32:14 +00002082 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
2083 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002084 LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
2085 << "\n");
Adam Nemet1da7df32015-07-26 05:32:14 +00002086 return {Start, End};
2087 }
2088}
2089
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00002090/// Turns a collection of checks into a collection of expanded upper and
Adam Nemet1da7df32015-07-26 05:32:14 +00002091/// lower bounds for both pointers in the check.
2092static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
2093 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
2094 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
2095 const RuntimePointerChecking &PtrRtChecking) {
2096 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
2097
2098 // Here we're relying on the SCEV Expander's cache to only emit code for the
2099 // same bounds once.
David Majnemer2d006e72016-08-12 04:32:42 +00002100 transform(
2101 PointerChecks, std::back_inserter(ChecksWithBounds),
Adam Nemet1da7df32015-07-26 05:32:14 +00002102 [&](const RuntimePointerChecking::PointerCheck &Check) {
NAKAMURA Takumi94abbbd2015-07-27 01:35:30 +00002103 PointerBounds
2104 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
2105 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
2106 return std::make_pair(First, Second);
Adam Nemet1da7df32015-07-26 05:32:14 +00002107 });
2108
2109 return ChecksWithBounds;
2110}
2111
Adam Nemet5b0a4792015-08-11 00:09:37 +00002112std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
Adam Nemet1da7df32015-07-26 05:32:14 +00002113 Instruction *Loc,
2114 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
2115 const {
Adam Nemet1824e412016-07-13 22:18:51 +00002116 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
Xinliang David Li94734ee2016-07-01 05:59:55 +00002117 auto *SE = PSE->getSE();
Adam Nemet1824e412016-07-13 22:18:51 +00002118 SCEVExpander Exp(*SE, DL, "induction");
Adam Nemet1da7df32015-07-26 05:32:14 +00002119 auto ExpandedChecks =
Xinliang David Lice030ac2016-06-22 23:20:59 +00002120 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
Adam Nemet7206d7a2015-02-06 18:31:04 +00002121
2122 LLVMContext &Ctx = Loc->getContext();
Adam Nemet7206d7a2015-02-06 18:31:04 +00002123 Instruction *FirstInst = nullptr;
Adam Nemet7206d7a2015-02-06 18:31:04 +00002124 IRBuilder<> ChkBuilder(Loc);
2125 // Our instructions might fold to a constant.
2126 Value *MemoryRuntimeCheck = nullptr;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00002127
Adam Nemet1da7df32015-07-26 05:32:14 +00002128 for (const auto &Check : ExpandedChecks) {
2129 const PointerBounds &A = Check.first, &B = Check.second;
Adam Nemetcdb791c2015-08-19 17:24:36 +00002130 // Check if two pointers (A and B) conflict where conflict is computed as:
2131 // start(A) <= end(B) && start(B) <= end(A)
Adam Nemet1da7df32015-07-26 05:32:14 +00002132 unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
2133 unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
Adam Nemet7206d7a2015-02-06 18:31:04 +00002134
Adam Nemet1da7df32015-07-26 05:32:14 +00002135 assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
2136 (AS1 == A.End->getType()->getPointerAddressSpace()) &&
2137 "Trying to bounds check pointers with different address spaces");
Adam Nemet7206d7a2015-02-06 18:31:04 +00002138
Adam Nemet1da7df32015-07-26 05:32:14 +00002139 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
2140 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
Adam Nemet7206d7a2015-02-06 18:31:04 +00002141
Adam Nemet1da7df32015-07-26 05:32:14 +00002142 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
2143 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
2144 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
2145 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
Adam Nemet7206d7a2015-02-06 18:31:04 +00002146
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +00002147 // [A|B].Start points to the first accessed byte under base [A|B].
2148 // [A|B].End points to the last accessed byte, plus one.
2149 // There is no conflict when the intervals are disjoint:
2150 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
2151 //
2152 // bound0 = (B.Start < A.End)
2153 // bound1 = (A.Start < B.End)
2154 // IsConflict = bound0 & bound1
2155 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
Adam Nemet1da7df32015-07-26 05:32:14 +00002156 FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +00002157 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
Adam Nemet1da7df32015-07-26 05:32:14 +00002158 FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
2159 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
2160 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2161 if (MemoryRuntimeCheck) {
2162 IsConflict =
2163 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
Adam Nemet7206d7a2015-02-06 18:31:04 +00002164 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
Adam Nemet7206d7a2015-02-06 18:31:04 +00002165 }
Adam Nemet1da7df32015-07-26 05:32:14 +00002166 MemoryRuntimeCheck = IsConflict;
Adam Nemet7206d7a2015-02-06 18:31:04 +00002167 }
2168
Adam Nemet90fec842015-04-02 17:51:57 +00002169 if (!MemoryRuntimeCheck)
2170 return std::make_pair(nullptr, nullptr);
2171
Adam Nemet7206d7a2015-02-06 18:31:04 +00002172 // We have to do this trickery because the IRBuilder might fold the check to a
2173 // constant expression in which case there is no Instruction anchored in a
2174 // the block.
2175 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
2176 ConstantInt::getTrue(Ctx));
2177 ChkBuilder.Insert(Check, "memcheck.conflict");
2178 FirstInst = getFirstInst(FirstInst, Check, Loc);
2179 return std::make_pair(FirstInst, Check);
2180}
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002181
Adam Nemet5b0a4792015-08-11 00:09:37 +00002182std::pair<Instruction *, Instruction *>
2183LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
Xinliang David Lice030ac2016-06-22 23:20:59 +00002184 if (!PtrRtChecking->Need)
Adam Nemet1da7df32015-07-26 05:32:14 +00002185 return std::make_pair(nullptr, nullptr);
2186
Xinliang David Lice030ac2016-06-22 23:20:59 +00002187 return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
Adam Nemet1da7df32015-07-26 05:32:14 +00002188}
2189
Adam Nemetc953bb92016-06-16 22:57:55 +00002190void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2191 Value *Ptr = nullptr;
2192 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
2193 Ptr = LI->getPointerOperand();
2194 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
2195 Ptr = SI->getPointerOperand();
2196 else
2197 return;
2198
Xinliang David Li94734ee2016-07-01 05:59:55 +00002199 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
Adam Nemetc953bb92016-06-16 22:57:55 +00002200 if (!Stride)
2201 return;
2202
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002203 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2204 "versioning:");
2205 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
Dorit Nuzmaneb13dd32017-11-05 16:53:15 +00002206
2207 // Avoid adding the "Stride == 1" predicate when we know that
2208 // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2209 // or zero iteration loop, as Trip-Count <= Stride == 1.
2210 //
2211 // TODO: We are currently not making a very informed decision on when it is
2212 // beneficial to apply stride versioning. It might make more sense that the
2213 // users of this analysis (such as the vectorizer) will trigger it, based on
2214 // their specific cost considerations; For example, in cases where stride
2215 // versioning does not help resolving memory accesses/dependences, the
2216 // vectorizer should evaluate the cost of the runtime test, and the benefit
2217 // of various possible stride specializations, considering the alternatives
2218 // of using gather/scatters (if available).
2219
2220 const SCEV *StrideExpr = PSE->getSCEV(Stride);
2221 const SCEV *BETakenCount = PSE->getBackedgeTakenCount();
2222
2223 // Match the types so we can compare the stride and the BETakenCount.
2224 // The Stride can be positive/negative, so we sign extend Stride;
2225 // The backdgeTakenCount is non-negative, so we zero extend BETakenCount.
2226 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2227 uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType());
2228 uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType());
2229 const SCEV *CastedStride = StrideExpr;
2230 const SCEV *CastedBECount = BETakenCount;
2231 ScalarEvolution *SE = PSE->getSE();
2232 if (BETypeSize >= StrideTypeSize)
2233 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
2234 else
2235 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
2236 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2237 // Since TripCount == BackEdgeTakenCount + 1, checking:
2238 // "Stride >= TripCount" is equivalent to checking:
2239 // Stride - BETakenCount > 0
2240 if (SE->isKnownPositive(StrideMinusBETaken)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002241 LLVM_DEBUG(
2242 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2243 "Stride==1 predicate will imply that the loop executes "
2244 "at most once.\n");
Dorit Nuzmaneb13dd32017-11-05 16:53:15 +00002245 return;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002246 }
2247 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.");
Dorit Nuzmaneb13dd32017-11-05 16:53:15 +00002248
Adam Nemetc953bb92016-06-16 22:57:55 +00002249 SymbolicStrides[Ptr] = Stride;
2250 StrideSet.insert(Stride);
2251}
2252
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002253LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002254 const TargetLibraryInfo *TLI, AliasAnalysis *AA,
Adam Nemeta9f09c62016-06-17 22:35:41 +00002255 DominatorTree *DT, LoopInfo *LI)
Xinliang David Li94734ee2016-07-01 05:59:55 +00002256 : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)),
Xinliang David Lice030ac2016-06-22 23:20:59 +00002257 PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)),
Xinliang David Li94734ee2016-07-01 05:59:55 +00002258 DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
Adam Nemet7da74ab2016-07-13 22:36:35 +00002259 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
2260 StoreToLoopInvariantAddress(false) {
Adam Nemet929c38e2015-02-19 19:15:10 +00002261 if (canAnalyzeLoop())
Adam Nemet7da74ab2016-07-13 22:36:35 +00002262 analyzeLoop(AA, LI, TLI, DT);
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002263}
2264
Adam Nemete91cc6e2015-02-19 19:15:19 +00002265void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2266 if (CanVecMem) {
Adam Nemet4ad38b62016-05-13 22:49:09 +00002267 OS.indent(Depth) << "Memory dependences are safe";
David Majnemer7afb46d2016-07-07 06:24:36 +00002268 if (MaxSafeDepDistBytes != -1ULL)
Adam Nemetc62e5542016-05-13 22:49:13 +00002269 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2270 << " bytes";
Xinliang David Lice030ac2016-06-22 23:20:59 +00002271 if (PtrRtChecking->Need)
Adam Nemet4ad38b62016-05-13 22:49:09 +00002272 OS << " with run-time checks";
2273 OS << "\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00002274 }
2275
2276 if (Report)
Adam Nemet877ccee2016-09-30 00:01:30 +00002277 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00002278
Xinliang David Lice030ac2016-06-22 23:20:59 +00002279 if (auto *Dependences = DepChecker->getDependences()) {
Adam Nemeta2df7502015-11-03 21:39:52 +00002280 OS.indent(Depth) << "Dependences:\n";
2281 for (auto &Dep : *Dependences) {
Xinliang David Lice030ac2016-06-22 23:20:59 +00002282 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
Adam Nemet58913d62015-03-10 17:40:43 +00002283 OS << "\n";
2284 }
2285 } else
Adam Nemeta2df7502015-11-03 21:39:52 +00002286 OS.indent(Depth) << "Too many dependences, not recorded\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00002287
2288 // List the pair of accesses need run-time checks to prove independence.
Xinliang David Lice030ac2016-06-22 23:20:59 +00002289 PtrRtChecking->print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00002290 OS << "\n";
Adam Nemetc3384322015-05-18 15:36:57 +00002291
2292 OS.indent(Depth) << "Store to invariant address was "
2293 << (StoreToLoopInvariantAddress ? "" : "not ")
2294 << "found in loop.\n";
Silviu Barangae3c05342015-11-02 14:41:02 +00002295
2296 OS.indent(Depth) << "SCEV assumptions:\n";
Xinliang David Li94734ee2016-07-01 05:59:55 +00002297 PSE->getUnionPredicate().print(OS, Depth);
Silviu Barangab77365b2016-04-14 16:08:45 +00002298
2299 OS << "\n";
2300
2301 OS.indent(Depth) << "Expressions re-written:\n";
Xinliang David Li94734ee2016-07-01 05:59:55 +00002302 PSE->print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00002303}
2304
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002305const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002306 auto &LAI = LoopAccessInfoMap[L];
2307
Adam Nemet1824e412016-07-13 22:18:51 +00002308 if (!LAI)
2309 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
2310
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002311 return *LAI.get();
2312}
2313
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002314void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
2315 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
Xinliang David Liecde1c72016-06-09 03:22:39 +00002316
Adam Nemete91cc6e2015-02-19 19:15:19 +00002317 for (Loop *TopLevelLoop : *LI)
2318 for (Loop *L : depth_first(TopLevelLoop)) {
2319 OS.indent(2) << L->getHeader()->getName() << ":\n";
Adam Nemetbdbc5222016-06-16 08:26:56 +00002320 auto &LAI = LAA.getInfo(L);
Adam Nemete91cc6e2015-02-19 19:15:19 +00002321 LAI.print(OS, 4);
2322 }
2323}
2324
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002325bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
Xinliang David Liecde1c72016-06-09 03:22:39 +00002326 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002327 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
Xinliang David Liecde1c72016-06-09 03:22:39 +00002328 TLI = TLIP ? &TLIP->getTLI() : nullptr;
2329 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2330 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2331 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002332
2333 return false;
2334}
2335
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002336void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002337 AU.addRequired<ScalarEvolutionWrapperPass>();
Chandler Carruth7b560d42015-09-09 17:55:00 +00002338 AU.addRequired<AAResultsWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002339 AU.addRequired<DominatorTreeWrapperPass>();
Adam Nemete91cc6e2015-02-19 19:15:19 +00002340 AU.addRequired<LoopInfoWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002341
2342 AU.setPreservesAll();
2343}
2344
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002345char LoopAccessLegacyAnalysis::ID = 0;
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002346static const char laa_name[] = "Loop Access Analysis";
2347#define LAA_NAME "loop-accesses"
2348
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002349INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
Chandler Carruth7b560d42015-09-09 17:55:00 +00002350INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002351INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002352INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Adam Nemete91cc6e2015-02-19 19:15:19 +00002353INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002354INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002355
Chandler Carruthdab4eae2016-11-23 17:53:26 +00002356AnalysisKey LoopAccessAnalysis::Key;
Xinliang David Li8a021312016-07-02 21:18:40 +00002357
Chandler Carruth410eaeb2017-01-11 06:23:21 +00002358LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2359 LoopStandardAnalysisResults &AR) {
2360 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
Xinliang David Li8a021312016-07-02 21:18:40 +00002361}
2362
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002363namespace llvm {
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00002364
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002365 Pass *createLAAPass() {
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002366 return new LoopAccessLegacyAnalysis();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002367 }
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00002368
2369} // end namespace llvm