blob: dfc2a8d8c62f3c3a52619f9c19712e2468bd09f3 [file] [log] [blame]
Chandler Carruth664e3542013-01-07 01:37:14 +00001//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
Alexey Bataevb271a582016-10-12 13:24:13 +000016/// About Cost Model numbers used below it's necessary to say the following:
17/// the numbers correspond to some "generic" X86 CPU instead of usage of
18/// concrete CPU model. Usually the numbers correspond to CPU where the feature
19/// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
20/// the lookups below the cost is based on Nehalem as that was the first CPU
21/// to support that feature level and thus has most likely the worst case cost.
22/// Some examples of other technologies/CPUs:
23/// SSE 3 - Pentium4 / Athlon64
24/// SSE 4.1 - Penryn
25/// SSE 4.2 - Nehalem
26/// AVX - Sandy Bridge
27/// AVX2 - Haswell
28/// AVX-512 - Xeon Phi / Skylake
29/// And some examples of instruction target dependent costs (latency)
30/// divss sqrtss rsqrtss
31/// AMD K7 11-16 19 3
32/// Piledriver 9-24 13-15 5
33/// Jaguar 14 16 2
34/// Pentium II,III 18 30 2
35/// Nehalem 7-14 7-18 3
36/// Haswell 10-13 11 5
37/// TODO: Develop and implement the target dependent cost model and
38/// specialize cost numbers for different Cost Model Targets such as throughput,
39/// code size, latency and uop count.
40//===----------------------------------------------------------------------===//
Chandler Carruth664e3542013-01-07 01:37:14 +000041
Chandler Carruth93dcdc42015-01-31 11:17:59 +000042#include "X86TargetTransformInfo.h"
Chandler Carruthd3e73552013-01-07 03:08:10 +000043#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth705b1852015-01-31 03:43:40 +000044#include "llvm/CodeGen/BasicTTIImpl.h"
Juergen Ributzkaf26beda2014-01-25 02:02:55 +000045#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000046#include "llvm/Support/Debug.h"
Renato Golind4c392e2013-01-24 23:01:00 +000047#include "llvm/Target/CostTable.h"
Chandler Carruth8a8cd2b2014-01-07 11:48:04 +000048#include "llvm/Target/TargetLowering.h"
Hans Wennborg083ca9b2015-10-06 23:24:35 +000049
Chandler Carruth664e3542013-01-07 01:37:14 +000050using namespace llvm;
51
Chandler Carruth84e68b22014-04-22 02:41:26 +000052#define DEBUG_TYPE "x86tti"
53
Chandler Carruth664e3542013-01-07 01:37:14 +000054//===----------------------------------------------------------------------===//
55//
56// X86 cost model.
57//
58//===----------------------------------------------------------------------===//
59
Chandler Carruth705b1852015-01-31 03:43:40 +000060TargetTransformInfo::PopcntSupportKind
61X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
Chandler Carruth664e3542013-01-07 01:37:14 +000062 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
63 // TODO: Currently the __builtin_popcount() implementation using SSE3
64 // instructions is inefficient. Once the problem is fixed, we should
Craig Topper0a63e1d2013-09-08 00:47:31 +000065 // call ST->hasSSE3() instead of ST->hasPOPCNT().
Chandler Carruth705b1852015-01-31 03:43:40 +000066 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
Chandler Carruth664e3542013-01-07 01:37:14 +000067}
68
Chandler Carruth705b1852015-01-31 03:43:40 +000069unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000070 if (Vector && !ST->hasSSE1())
71 return 0;
72
Adam Nemet2820a5b2014-07-09 18:22:33 +000073 if (ST->is64Bit()) {
74 if (Vector && ST->hasAVX512())
75 return 32;
Chandler Carruth664e3542013-01-07 01:37:14 +000076 return 16;
Adam Nemet2820a5b2014-07-09 18:22:33 +000077 }
Chandler Carruth664e3542013-01-07 01:37:14 +000078 return 8;
79}
80
Chandler Carruth705b1852015-01-31 03:43:40 +000081unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000082 if (Vector) {
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000083 if (ST->hasAVX512())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000084 return 512;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000085 if (ST->hasAVX())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000086 return 256;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000087 if (ST->hasSSE1())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000088 return 128;
Nadav Rotemb1791a72013-01-09 22:29:00 +000089 return 0;
90 }
91
92 if (ST->is64Bit())
93 return 64;
Nadav Rotemb1791a72013-01-09 22:29:00 +000094
Hans Wennborg083ca9b2015-10-06 23:24:35 +000095 return 32;
Nadav Rotemb1791a72013-01-09 22:29:00 +000096}
97
Wei Mi062c7442015-05-06 17:12:25 +000098unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
99 // If the loop will not be vectorized, don't interleave the loop.
100 // Let regular unroll to unroll the loop, which saves the overflow
101 // check and memory check cost.
102 if (VF == 1)
103 return 1;
104
Nadav Rotemb696c362013-01-09 01:15:42 +0000105 if (ST->isAtom())
106 return 1;
107
108 // Sandybridge and Haswell have multiple execution ports and pipelined
109 // vector units.
110 if (ST->hasAVX())
111 return 4;
112
113 return 2;
114}
115
Chandler Carruth93205eb2015-08-05 18:08:10 +0000116int X86TTIImpl::getArithmeticInstrCost(
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000117 unsigned Opcode, Type *Ty,
118 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
119 TTI::OperandValueProperties Opd1PropInfo,
120 TTI::OperandValueProperties Opd2PropInfo,
121 ArrayRef<const Value *> Args) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000122 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000123 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
Chandler Carruth664e3542013-01-07 01:37:14 +0000124
125 int ISD = TLI->InstructionOpcodeToISD(Opcode);
126 assert(ISD && "Invalid opcode");
127
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000128 static const CostTblEntry SLMCostTable[] = {
129 { ISD::MUL, MVT::v4i32, 11 }, // pmulld
130 { ISD::MUL, MVT::v8i16, 2 }, // pmullw
131 { ISD::MUL, MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
132 { ISD::FMUL, MVT::f64, 2 }, // mulsd
133 { ISD::FMUL, MVT::v2f64, 4 }, // mulpd
134 { ISD::FMUL, MVT::v4f32, 2 }, // mulps
135 { ISD::FDIV, MVT::f32, 17 }, // divss
136 { ISD::FDIV, MVT::v4f32, 39 }, // divps
137 { ISD::FDIV, MVT::f64, 32 }, // divsd
138 { ISD::FDIV, MVT::v2f64, 69 }, // divpd
139 { ISD::FADD, MVT::v2f64, 2 }, // addpd
140 { ISD::FSUB, MVT::v2f64, 2 }, // subpd
141 // v2i64/v4i64 mul is custom lowered as a series of long
142 // multiplies(3), shifts(3) and adds(2).
143 // slm muldq version throughput is 2
144 { ISD::MUL, MVT::v2i64, 11 },
145 };
146
147 if (ST->isSLM()) {
148 if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
149 // Check if the operands can be shrinked into a smaller datatype.
150 bool Op1Signed = false;
151 unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
152 bool Op2Signed = false;
153 unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
154
155 bool signedMode = Op1Signed | Op2Signed;
156 unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
157
158 if (OpMinSize <= 7)
159 return LT.first * 3; // pmullw/sext
160 if (!signedMode && OpMinSize <= 8)
161 return LT.first * 3; // pmullw/zext
162 if (OpMinSize <= 15)
163 return LT.first * 5; // pmullw/pmulhw/pshuf
164 if (!signedMode && OpMinSize <= 16)
165 return LT.first * 5; // pmullw/pmulhw/pshuf
166 }
167 if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
168 LT.second)) {
169 return LT.first * Entry->Cost;
170 }
171 }
172
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000173 if (ISD == ISD::SDIV &&
174 Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
175 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
176 // On X86, vector signed division by constants power-of-two are
177 // normally expanded to the sequence SRA + SRL + ADD + SRA.
178 // The OperandValue properties many not be same as that of previous
179 // operation;conservatively assume OP_None.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000180 int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
181 Op2Info, TargetTransformInfo::OP_None,
182 TargetTransformInfo::OP_None);
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000183 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
184 TargetTransformInfo::OP_None,
185 TargetTransformInfo::OP_None);
186 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
187 TargetTransformInfo::OP_None,
188 TargetTransformInfo::OP_None);
189
190 return Cost;
191 }
192
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000193 static const CostTblEntry AVX512BWUniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000194 { ISD::SHL, MVT::v64i8, 2 }, // psllw + pand.
195 { ISD::SRL, MVT::v64i8, 2 }, // psrlw + pand.
196 { ISD::SRA, MVT::v64i8, 4 }, // psrlw, pand, pxor, psubb.
197
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000198 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence
199 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence
200 };
201
202 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
203 ST->hasBWI()) {
204 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
205 LT.second))
206 return LT.first * Entry->Cost;
207 }
208
209 static const CostTblEntry AVX512UniformConstCostTable[] = {
Simon Pilgrimd419b732017-01-14 19:24:23 +0000210 { ISD::SRA, MVT::v2i64, 1 },
211 { ISD::SRA, MVT::v4i64, 1 },
212 { ISD::SRA, MVT::v8i64, 1 },
213
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000214 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
215 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
216 };
217
218 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
219 ST->hasAVX512()) {
220 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
221 LT.second))
222 return LT.first * Entry->Cost;
223 }
224
Craig Topper4b275762015-10-28 04:02:12 +0000225 static const CostTblEntry AVX2UniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000226 { ISD::SHL, MVT::v32i8, 2 }, // psllw + pand.
227 { ISD::SRL, MVT::v32i8, 2 }, // psrlw + pand.
228 { ISD::SRA, MVT::v32i8, 4 }, // psrlw, pand, pxor, psubb.
229
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000230 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
231
Benjamin Kramer7c372272014-04-26 14:53:05 +0000232 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
233 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
234 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
235 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
236 };
237
238 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
239 ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000240 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
241 LT.second))
242 return LT.first * Entry->Cost;
Benjamin Kramer7c372272014-04-26 14:53:05 +0000243 }
244
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000245 static const CostTblEntry SSE2UniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000246 { ISD::SHL, MVT::v16i8, 2 }, // psllw + pand.
247 { ISD::SRL, MVT::v16i8, 2 }, // psrlw + pand.
248 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
249
250 { ISD::SHL, MVT::v32i8, 4 }, // 2*(psllw + pand).
251 { ISD::SRL, MVT::v32i8, 4 }, // 2*(psrlw + pand).
252 { ISD::SRA, MVT::v32i8, 8 }, // 2*(psrlw, pand, pxor, psubb).
253
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000254 { ISD::SDIV, MVT::v16i16, 12 }, // pmulhw sequence
255 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
256 { ISD::UDIV, MVT::v16i16, 12 }, // pmulhuw sequence
257 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
258 { ISD::SDIV, MVT::v8i32, 38 }, // pmuludq sequence
259 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
260 { ISD::UDIV, MVT::v8i32, 30 }, // pmuludq sequence
261 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
262 };
263
264 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
265 ST->hasSSE2()) {
266 // pmuldq sequence.
267 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
268 return LT.first * 30;
269 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
270 return LT.first * 15;
271
272 if (const auto *Entry = CostTableLookup(SSE2UniformConstCostTable, ISD,
273 LT.second))
274 return LT.first * Entry->Cost;
275 }
276
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000277 static const CostTblEntry AVX2UniformCostTable[] = {
278 // Uniform splats are cheaper for the following instructions.
279 { ISD::SHL, MVT::v16i16, 1 }, // psllw.
280 { ISD::SRL, MVT::v16i16, 1 }, // psrlw.
281 { ISD::SRA, MVT::v16i16, 1 }, // psraw.
282 };
283
284 if (ST->hasAVX2() &&
285 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
286 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
287 if (const auto *Entry =
288 CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
289 return LT.first * Entry->Cost;
290 }
291
292 static const CostTblEntry SSE2UniformCostTable[] = {
293 // Uniform splats are cheaper for the following instructions.
294 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
295 { ISD::SHL, MVT::v4i32, 1 }, // pslld
296 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
297
298 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
299 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
300 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
301
302 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
303 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
304 };
305
306 if (ST->hasSSE2() &&
307 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
308 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
309 if (const auto *Entry =
310 CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
311 return LT.first * Entry->Cost;
312 }
313
Simon Pilgrim820e1322016-10-27 15:27:00 +0000314 static const CostTblEntry AVX512DQCostTable[] = {
315 { ISD::MUL, MVT::v2i64, 1 },
316 { ISD::MUL, MVT::v4i64, 1 },
317 { ISD::MUL, MVT::v8i64, 1 }
318 };
319
320 // Look for AVX512DQ lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000321 if (ST->hasDQI())
322 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
Simon Pilgrim820e1322016-10-27 15:27:00 +0000323 return LT.first * Entry->Cost;
Simon Pilgrim820e1322016-10-27 15:27:00 +0000324
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000325 static const CostTblEntry AVX512BWCostTable[] = {
Simon Pilgrima4109d62017-01-07 17:54:10 +0000326 { ISD::SHL, MVT::v32i16, 1 }, // vpsllvw
327 { ISD::SRL, MVT::v32i16, 1 }, // vpsrlvw
328 { ISD::SRA, MVT::v32i16, 1 }, // vpsravw
329
Simon Pilgrim5a81fef2017-01-11 10:36:51 +0000330 { ISD::SHL, MVT::v64i8, 11 }, // vpblendvb sequence.
331 { ISD::SRL, MVT::v64i8, 11 }, // vpblendvb sequence.
332 { ISD::SRA, MVT::v64i8, 24 }, // vpblendvb sequence.
333
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000334 { ISD::MUL, MVT::v64i8, 11 }, // extend/pmullw/trunc sequence.
335 { ISD::MUL, MVT::v32i8, 4 }, // extend/pmullw/trunc sequence.
336 { ISD::MUL, MVT::v16i8, 4 }, // extend/pmullw/trunc sequence.
337
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000338 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
339 { ISD::SDIV, MVT::v64i8, 64*20 },
340 { ISD::SDIV, MVT::v32i16, 32*20 },
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000341 { ISD::UDIV, MVT::v64i8, 64*20 },
Simon Pilgrimd8333372017-01-06 11:12:53 +0000342 { ISD::UDIV, MVT::v32i16, 32*20 }
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000343 };
344
345 // Look for AVX512BW lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000346 if (ST->hasBWI())
347 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000348 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000349
Craig Topper4b275762015-10-28 04:02:12 +0000350 static const CostTblEntry AVX512CostTable[] = {
Simon Pilgrimd8333372017-01-06 11:12:53 +0000351 { ISD::SHL, MVT::v16i32, 1 },
352 { ISD::SRL, MVT::v16i32, 1 },
353 { ISD::SRA, MVT::v16i32, 1 },
Simon Pilgrimd419b732017-01-14 19:24:23 +0000354
Simon Pilgrimd8333372017-01-06 11:12:53 +0000355 { ISD::SHL, MVT::v8i64, 1 },
356 { ISD::SRL, MVT::v8i64, 1 },
Simon Pilgrimd419b732017-01-14 19:24:23 +0000357
358 { ISD::SRA, MVT::v2i64, 1 },
359 { ISD::SRA, MVT::v4i64, 1 },
Simon Pilgrimd8333372017-01-06 11:12:53 +0000360 { ISD::SRA, MVT::v8i64, 1 },
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000361
Simon Pilgrimd8333372017-01-06 11:12:53 +0000362 { ISD::MUL, MVT::v32i8, 13 }, // extend/pmullw/trunc sequence.
363 { ISD::MUL, MVT::v16i8, 5 }, // extend/pmullw/trunc sequence.
364 { ISD::MUL, MVT::v16i32, 1 }, // pmulld
365 { ISD::MUL, MVT::v8i64, 8 }, // 3*pmuludq/3*shift/2*add
366
367 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
368 { ISD::SDIV, MVT::v16i32, 16*20 },
369 { ISD::SDIV, MVT::v8i64, 8*20 },
370 { ISD::UDIV, MVT::v16i32, 16*20 },
371 { ISD::UDIV, MVT::v8i64, 8*20 }
Elena Demikhovsky27012472014-09-16 07:57:37 +0000372 };
373
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000374 if (ST->hasAVX512())
Craig Topperee0c8592015-10-27 04:14:24 +0000375 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
376 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000377
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000378 static const CostTblEntry AVX2ShiftCostTable[] = {
Michael Liao70dd7f92013-03-20 22:01:10 +0000379 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
380 // customize them to detect the cases where shift amount is a scalar one.
381 { ISD::SHL, MVT::v4i32, 1 },
382 { ISD::SRL, MVT::v4i32, 1 },
383 { ISD::SRA, MVT::v4i32, 1 },
384 { ISD::SHL, MVT::v8i32, 1 },
385 { ISD::SRL, MVT::v8i32, 1 },
386 { ISD::SRA, MVT::v8i32, 1 },
387 { ISD::SHL, MVT::v2i64, 1 },
388 { ISD::SRL, MVT::v2i64, 1 },
389 { ISD::SHL, MVT::v4i64, 1 },
390 { ISD::SRL, MVT::v4i64, 1 },
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000391 };
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000392
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000393 // Look for AVX2 lowering tricks.
394 if (ST->hasAVX2()) {
395 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
396 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
397 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
398 // On AVX2, a packed v16i16 shift left by a constant build_vector
399 // is lowered into a vector multiply (vpmullw).
400 return LT.first;
401
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000402 if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000403 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000404 }
405
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000406 static const CostTblEntry XOPShiftCostTable[] = {
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000407 // 128bit shifts take 1cy, but right shifts require negation beforehand.
408 { ISD::SHL, MVT::v16i8, 1 },
409 { ISD::SRL, MVT::v16i8, 2 },
410 { ISD::SRA, MVT::v16i8, 2 },
411 { ISD::SHL, MVT::v8i16, 1 },
412 { ISD::SRL, MVT::v8i16, 2 },
413 { ISD::SRA, MVT::v8i16, 2 },
414 { ISD::SHL, MVT::v4i32, 1 },
415 { ISD::SRL, MVT::v4i32, 2 },
416 { ISD::SRA, MVT::v4i32, 2 },
417 { ISD::SHL, MVT::v2i64, 1 },
418 { ISD::SRL, MVT::v2i64, 2 },
419 { ISD::SRA, MVT::v2i64, 2 },
420 // 256bit shifts require splitting if AVX2 didn't catch them above.
421 { ISD::SHL, MVT::v32i8, 2 },
422 { ISD::SRL, MVT::v32i8, 4 },
423 { ISD::SRA, MVT::v32i8, 4 },
424 { ISD::SHL, MVT::v16i16, 2 },
425 { ISD::SRL, MVT::v16i16, 4 },
426 { ISD::SRA, MVT::v16i16, 4 },
427 { ISD::SHL, MVT::v8i32, 2 },
428 { ISD::SRL, MVT::v8i32, 4 },
429 { ISD::SRA, MVT::v8i32, 4 },
430 { ISD::SHL, MVT::v4i64, 2 },
431 { ISD::SRL, MVT::v4i64, 4 },
432 { ISD::SRA, MVT::v4i64, 4 },
433 };
434
435 // Look for XOP lowering tricks.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000436 if (ST->hasXOP())
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000437 if (const auto *Entry = CostTableLookup(XOPShiftCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000438 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000439
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000440 static const CostTblEntry SSE2UniformShiftCostTable[] = {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000441 // Uniform splats are cheaper for the following instructions.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000442 { ISD::SHL, MVT::v16i16, 2 }, // psllw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000443 { ISD::SHL, MVT::v8i32, 2 }, // pslld
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000444 { ISD::SHL, MVT::v4i64, 2 }, // psllq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000445
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000446 { ISD::SRL, MVT::v16i16, 2 }, // psrlw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000447 { ISD::SRL, MVT::v8i32, 2 }, // psrld.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000448 { ISD::SRL, MVT::v4i64, 2 }, // psrlq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000449
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000450 { ISD::SRA, MVT::v16i16, 2 }, // psraw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000451 { ISD::SRA, MVT::v8i32, 2 }, // psrad.
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000452 { ISD::SRA, MVT::v2i64, 4 }, // 2 x psrad + shuffle.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000453 { ISD::SRA, MVT::v4i64, 8 }, // 2 x psrad + shuffle.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000454 };
455
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000456 if (ST->hasSSE2() &&
457 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
458 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000459 if (const auto *Entry =
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000460 CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000461 return LT.first * Entry->Cost;
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000462 }
463
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000464 if (ISD == ISD::SHL &&
465 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
Craig Toppereda02a92015-10-25 03:15:29 +0000466 MVT VT = LT.second;
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000467 // Vector shift left by non uniform constant can be lowered
Simon Pilgrime70644d2017-01-07 21:33:00 +0000468 // into vector multiply.
469 if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
470 ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000471 ISD = ISD::MUL;
472 }
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000473
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000474 static const CostTblEntry AVX2CostTable[] = {
475 { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence.
476 { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
477
478 { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence.
479 { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
480
481 { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence.
482 { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence.
483 { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence.
484 { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence.
485
486 { ISD::SUB, MVT::v32i8, 1 }, // psubb
487 { ISD::ADD, MVT::v32i8, 1 }, // paddb
488 { ISD::SUB, MVT::v16i16, 1 }, // psubw
489 { ISD::ADD, MVT::v16i16, 1 }, // paddw
490 { ISD::SUB, MVT::v8i32, 1 }, // psubd
491 { ISD::ADD, MVT::v8i32, 1 }, // paddd
492 { ISD::SUB, MVT::v4i64, 1 }, // psubq
493 { ISD::ADD, MVT::v4i64, 1 }, // paddq
494
495 { ISD::MUL, MVT::v32i8, 17 }, // extend/pmullw/trunc sequence.
496 { ISD::MUL, MVT::v16i8, 7 }, // extend/pmullw/trunc sequence.
497 { ISD::MUL, MVT::v16i16, 1 }, // pmullw
498 { ISD::MUL, MVT::v8i32, 1 }, // pmulld
499 { ISD::MUL, MVT::v4i64, 8 }, // 3*pmuludq/3*shift/2*add
500
501 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/
502 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
503 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
504 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/
505 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
506 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
507 };
508
509 // Look for AVX2 lowering tricks for custom cases.
510 if (ST->hasAVX2())
511 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
512 return LT.first * Entry->Cost;
513
Simon Pilgrim100eae12017-01-07 17:03:51 +0000514 static const CostTblEntry AVX1CostTable[] = {
515 // We don't have to scalarize unsupported ops. We can issue two half-sized
516 // operations and we only need to extract the upper YMM half.
517 // Two ops + 1 extract + 1 insert = 4.
Simon Pilgrim72599712017-01-07 18:19:25 +0000518 { ISD::MUL, MVT::v16i16, 4 },
519 { ISD::MUL, MVT::v8i32, 4 },
520 { ISD::SUB, MVT::v32i8, 4 },
521 { ISD::ADD, MVT::v32i8, 4 },
522 { ISD::SUB, MVT::v16i16, 4 },
523 { ISD::ADD, MVT::v16i16, 4 },
524 { ISD::SUB, MVT::v8i32, 4 },
525 { ISD::ADD, MVT::v8i32, 4 },
526 { ISD::SUB, MVT::v4i64, 4 },
527 { ISD::ADD, MVT::v4i64, 4 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000528
529 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
530 // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
531 // Because we believe v4i64 to be a legal type, we must also include the
532 // extract+insert in the cost table. Therefore, the cost here is 18
533 // instead of 8.
Simon Pilgrim72599712017-01-07 18:19:25 +0000534 { ISD::MUL, MVT::v4i64, 18 },
535
536 { ISD::MUL, MVT::v32i8, 26 }, // extend/pmullw/trunc sequence.
537
538 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/
539 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
540 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
541 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/
542 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/
543 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/
544
545 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
546 { ISD::SDIV, MVT::v32i8, 32*20 },
547 { ISD::SDIV, MVT::v16i16, 16*20 },
548 { ISD::SDIV, MVT::v8i32, 8*20 },
549 { ISD::SDIV, MVT::v4i64, 4*20 },
550 { ISD::UDIV, MVT::v32i8, 32*20 },
551 { ISD::UDIV, MVT::v16i16, 16*20 },
552 { ISD::UDIV, MVT::v8i32, 8*20 },
553 { ISD::UDIV, MVT::v4i64, 4*20 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000554 };
555
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000556 if (ST->hasAVX())
Simon Pilgrim100eae12017-01-07 17:03:51 +0000557 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
558 return LT.first * Entry->Cost;
559
Simon Pilgrim5b06e4d2017-01-05 19:19:39 +0000560 static const CostTblEntry SSE42CostTable[] = {
561 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/
562 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
563 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/
564 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
565 };
566
567 if (ST->hasSSE42())
568 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
569 return LT.first * Entry->Cost;
570
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000571 static const CostTblEntry SSE41CostTable[] = {
572 { ISD::SHL, MVT::v16i8, 11 }, // pblendvb sequence.
573 { ISD::SHL, MVT::v32i8, 2*11 }, // pblendvb sequence.
574 { ISD::SHL, MVT::v8i16, 14 }, // pblendvb sequence.
575 { ISD::SHL, MVT::v16i16, 2*14 }, // pblendvb sequence.
Simon Pilgrim9681c402017-01-07 22:27:43 +0000576 { ISD::SHL, MVT::v4i32, 4 }, // pslld/paddd/cvttps2dq/pmulld
577 { ISD::SHL, MVT::v8i32, 2*4 }, // pslld/paddd/cvttps2dq/pmulld
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000578
579 { ISD::SRL, MVT::v16i8, 12 }, // pblendvb sequence.
580 { ISD::SRL, MVT::v32i8, 2*12 }, // pblendvb sequence.
581 { ISD::SRL, MVT::v8i16, 14 }, // pblendvb sequence.
582 { ISD::SRL, MVT::v16i16, 2*14 }, // pblendvb sequence.
583 { ISD::SRL, MVT::v4i32, 11 }, // Shift each lane + blend.
584 { ISD::SRL, MVT::v8i32, 2*11 }, // Shift each lane + blend.
585
586 { ISD::SRA, MVT::v16i8, 24 }, // pblendvb sequence.
587 { ISD::SRA, MVT::v32i8, 2*24 }, // pblendvb sequence.
588 { ISD::SRA, MVT::v8i16, 14 }, // pblendvb sequence.
589 { ISD::SRA, MVT::v16i16, 2*14 }, // pblendvb sequence.
590 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend.
591 { ISD::SRA, MVT::v8i32, 2*12 }, // Shift each lane + blend.
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000592
593 { ISD::MUL, MVT::v4i32, 1 } // pmulld
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000594 };
595
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000596 if (ST->hasSSE41())
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000597 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
598 return LT.first * Entry->Cost;
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000599
Craig Topper4b275762015-10-28 04:02:12 +0000600 static const CostTblEntry SSE2CostTable[] = {
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000601 // We don't correctly identify costs of casts because they are marked as
602 // custom.
Simon Pilgrim59656802015-06-11 07:46:37 +0000603 { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence.
604 { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence.
605 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000606 { ISD::SHL, MVT::v8i32, 2*2*5 }, // We optimized this using mul.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000607 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000608 { ISD::SHL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000609
610 { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence.
611 { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence.
612 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000613 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000614 { ISD::SRL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000615
616 { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence.
617 { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence.
618 { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrim86478c62015-07-29 20:31:45 +0000619 { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000620 { ISD::SRA, MVT::v4i64, 2*12 }, // srl/xor/sub sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000621
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000622 { ISD::MUL, MVT::v16i8, 12 }, // extend/pmullw/trunc sequence.
Simon Pilgrime70644d2017-01-07 21:33:00 +0000623 { ISD::MUL, MVT::v8i16, 1 }, // pmullw
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000624 { ISD::MUL, MVT::v4i32, 6 }, // 3*pmuludq/4*shuffle
Simon Pilgrima8bf9752017-01-05 19:01:50 +0000625 { ISD::MUL, MVT::v2i64, 8 }, // 3*pmuludq/3*shift/2*add
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000626
Alexey Bataevd07c7312016-10-31 12:10:53 +0000627 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/
628 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/
629 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/
630 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/
631
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000632 // It is not a good idea to vectorize division. We have to scalarize it and
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000633 // in the process we will often end up having to spilling regular
634 // registers. The overhead of division is going to dominate most kernels
635 // anyways so try hard to prevent vectorization of division - it is
636 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
637 // to hide "20 cycles" for each lane.
638 { ISD::SDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000639 { ISD::SDIV, MVT::v8i16, 8*20 },
640 { ISD::SDIV, MVT::v4i32, 4*20 },
641 { ISD::SDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000642 { ISD::UDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000643 { ISD::UDIV, MVT::v8i16, 8*20 },
644 { ISD::UDIV, MVT::v4i32, 4*20 },
645 { ISD::UDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000646 };
647
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000648 if (ST->hasSSE2())
Craig Topperee0c8592015-10-27 04:14:24 +0000649 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
650 return LT.first * Entry->Cost;
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000651
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000652 static const CostTblEntry SSE1CostTable[] = {
Alexey Bataevd07c7312016-10-31 12:10:53 +0000653 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/
654 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
655 };
656
657 if (ST->hasSSE1())
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000658 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
Alexey Bataevd07c7312016-10-31 12:10:53 +0000659 return LT.first * Entry->Cost;
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000660
Chandler Carruth664e3542013-01-07 01:37:14 +0000661 // Fallback to the default implementation.
Chandler Carruth705b1852015-01-31 03:43:40 +0000662 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
Chandler Carruth664e3542013-01-07 01:37:14 +0000663}
664
Chandler Carruth93205eb2015-08-05 18:08:10 +0000665int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
666 Type *SubTp) {
Simon Pilgrima62395a2017-01-05 14:33:32 +0000667 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
668 // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
669 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
Karthik Bhate03a25d2014-06-20 04:32:48 +0000670
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000671 // For Broadcasts we are splatting the first element from the first input
672 // register, so only need to reference that input and all the output
673 // registers are the same.
674 if (Kind == TTI::SK_Broadcast)
675 LT.first = 1;
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000676
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000677 // We are going to permute multiple sources and the result will be in multiple
678 // destinations. Providing an accurate cost only for splits where the element
679 // type remains the same.
680 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
681 MVT LegalVT = LT.second;
682 if (LegalVT.getVectorElementType().getSizeInBits() ==
683 Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
684 LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000685
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000686 unsigned VecTySize = DL.getTypeStoreSize(Tp);
687 unsigned LegalVTSize = LegalVT.getStoreSize();
688 // Number of source vectors after legalization:
689 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
690 // Number of destination vectors after legalization:
691 unsigned NumOfDests = LT.first;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000692
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000693 Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
694 LegalVT.getVectorNumElements());
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000695
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000696 unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
697 return NumOfShuffles *
698 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
699 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000700
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000701 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
702 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000703
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000704 // For 2-input shuffles, we must account for splitting the 2 inputs into many.
705 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000706 // We assume that source and destination have the same vector type.
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000707 int NumOfDests = LT.first;
708 int NumOfShufflesPerDest = LT.first * 2 - 1;
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000709 LT.first = NumOfDests * NumOfShufflesPerDest;
Karthik Bhate03a25d2014-06-20 04:32:48 +0000710 }
711
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000712 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
713 { TTI::SK_Reverse, MVT::v64i8, 1 }, // vpermb
714 { TTI::SK_Reverse, MVT::v32i8, 1 }, // vpermb
715
716 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 1 }, // vpermb
717 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 1 }, // vpermb
718
719 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 1 }, // vpermt2b
720 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 1 }, // vpermt2b
721 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 1 } // vpermt2b
722 };
723
724 if (ST->hasVBMI())
725 if (const auto *Entry =
726 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
727 return LT.first * Entry->Cost;
728
729 static const CostTblEntry AVX512BWShuffleTbl[] = {
730 { TTI::SK_Broadcast, MVT::v32i16, 1 }, // vpbroadcastw
731 { TTI::SK_Broadcast, MVT::v64i8, 1 }, // vpbroadcastb
732
733 { TTI::SK_Reverse, MVT::v32i16, 1 }, // vpermw
734 { TTI::SK_Reverse, MVT::v16i16, 1 }, // vpermw
Simon Pilgrima1b8e2c2017-01-07 15:37:50 +0000735 { TTI::SK_Reverse, MVT::v64i8, 2 }, // pshufb + vshufi64x2
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000736
737 { TTI::SK_PermuteSingleSrc, MVT::v32i16, 1 }, // vpermw
738 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 1 }, // vpermw
739 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 1 }, // vpermw
740 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 8 }, // extend to v32i16
741 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 3 }, // vpermw + zext/trunc
742
743 { TTI::SK_PermuteTwoSrc, MVT::v32i16, 1 }, // vpermt2w
744 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 1 }, // vpermt2w
745 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 1 }, // vpermt2w
746 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 3 }, // zext + vpermt2w + trunc
747 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 19 }, // 6 * v32i8 + 1
748 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 3 } // zext + vpermt2w + trunc
749 };
750
751 if (ST->hasBWI())
752 if (const auto *Entry =
753 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
754 return LT.first * Entry->Cost;
755
756 static const CostTblEntry AVX512ShuffleTbl[] = {
757 { TTI::SK_Broadcast, MVT::v8f64, 1 }, // vbroadcastpd
758 { TTI::SK_Broadcast, MVT::v16f32, 1 }, // vbroadcastps
759 { TTI::SK_Broadcast, MVT::v8i64, 1 }, // vpbroadcastq
760 { TTI::SK_Broadcast, MVT::v16i32, 1 }, // vpbroadcastd
761
762 { TTI::SK_Reverse, MVT::v8f64, 1 }, // vpermpd
763 { TTI::SK_Reverse, MVT::v16f32, 1 }, // vpermps
764 { TTI::SK_Reverse, MVT::v8i64, 1 }, // vpermq
765 { TTI::SK_Reverse, MVT::v16i32, 1 }, // vpermd
766
767 { TTI::SK_PermuteSingleSrc, MVT::v8f64, 1 }, // vpermpd
768 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 1 }, // vpermpd
769 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // vpermpd
770 { TTI::SK_PermuteSingleSrc, MVT::v16f32, 1 }, // vpermps
771 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 1 }, // vpermps
772 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // vpermps
773 { TTI::SK_PermuteSingleSrc, MVT::v8i64, 1 }, // vpermq
774 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 1 }, // vpermq
775 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // vpermq
776 { TTI::SK_PermuteSingleSrc, MVT::v16i32, 1 }, // vpermd
777 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 1 }, // vpermd
778 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 1 }, // vpermd
779 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 1 }, // pshufb
780
781 { TTI::SK_PermuteTwoSrc, MVT::v8f64, 1 }, // vpermt2pd
782 { TTI::SK_PermuteTwoSrc, MVT::v16f32, 1 }, // vpermt2ps
783 { TTI::SK_PermuteTwoSrc, MVT::v8i64, 1 }, // vpermt2q
784 { TTI::SK_PermuteTwoSrc, MVT::v16i32, 1 }, // vpermt2d
785 { TTI::SK_PermuteTwoSrc, MVT::v4f64, 1 }, // vpermt2pd
786 { TTI::SK_PermuteTwoSrc, MVT::v8f32, 1 }, // vpermt2ps
787 { TTI::SK_PermuteTwoSrc, MVT::v4i64, 1 }, // vpermt2q
788 { TTI::SK_PermuteTwoSrc, MVT::v8i32, 1 }, // vpermt2d
789 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // vpermt2pd
790 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 1 }, // vpermt2ps
791 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // vpermt2q
792 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 1 } // vpermt2d
793 };
794
795 if (ST->hasAVX512())
796 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
797 return LT.first * Entry->Cost;
798
799 static const CostTblEntry AVX2ShuffleTbl[] = {
800 { TTI::SK_Broadcast, MVT::v4f64, 1 }, // vbroadcastpd
801 { TTI::SK_Broadcast, MVT::v8f32, 1 }, // vbroadcastps
802 { TTI::SK_Broadcast, MVT::v4i64, 1 }, // vpbroadcastq
803 { TTI::SK_Broadcast, MVT::v8i32, 1 }, // vpbroadcastd
804 { TTI::SK_Broadcast, MVT::v16i16, 1 }, // vpbroadcastw
805 { TTI::SK_Broadcast, MVT::v32i8, 1 }, // vpbroadcastb
806
807 { TTI::SK_Reverse, MVT::v4f64, 1 }, // vpermpd
808 { TTI::SK_Reverse, MVT::v8f32, 1 }, // vpermps
809 { TTI::SK_Reverse, MVT::v4i64, 1 }, // vpermq
810 { TTI::SK_Reverse, MVT::v8i32, 1 }, // vpermd
811 { TTI::SK_Reverse, MVT::v16i16, 2 }, // vperm2i128 + pshufb
812 { TTI::SK_Reverse, MVT::v32i8, 2 }, // vperm2i128 + pshufb
813
814 { TTI::SK_Alternate, MVT::v16i16, 1 }, // vpblendw
815 { TTI::SK_Alternate, MVT::v32i8, 1 } // vpblendvb
816 };
817
818 if (ST->hasAVX2())
819 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
820 return LT.first * Entry->Cost;
821
822 static const CostTblEntry AVX1ShuffleTbl[] = {
823 { TTI::SK_Broadcast, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
824 { TTI::SK_Broadcast, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
825 { TTI::SK_Broadcast, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
826 { TTI::SK_Broadcast, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
827 { TTI::SK_Broadcast, MVT::v16i16, 3 }, // vpshuflw + vpshufd + vinsertf128
828 { TTI::SK_Broadcast, MVT::v32i8, 2 }, // vpshufb + vinsertf128
829
830 { TTI::SK_Reverse, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
831 { TTI::SK_Reverse, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
832 { TTI::SK_Reverse, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
833 { TTI::SK_Reverse, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
834 { TTI::SK_Reverse, MVT::v16i16, 4 }, // vextractf128 + 2*pshufb
835 // + vinsertf128
836 { TTI::SK_Reverse, MVT::v32i8, 4 }, // vextractf128 + 2*pshufb
837 // + vinsertf128
838
839 { TTI::SK_Alternate, MVT::v4i64, 1 }, // vblendpd
840 { TTI::SK_Alternate, MVT::v4f64, 1 }, // vblendpd
841 { TTI::SK_Alternate, MVT::v8i32, 1 }, // vblendps
842 { TTI::SK_Alternate, MVT::v8f32, 1 }, // vblendps
843 { TTI::SK_Alternate, MVT::v16i16, 3 }, // vpand + vpandn + vpor
844 { TTI::SK_Alternate, MVT::v32i8, 3 } // vpand + vpandn + vpor
845 };
846
847 if (ST->hasAVX())
848 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
849 return LT.first * Entry->Cost;
850
851 static const CostTblEntry SSE41ShuffleTbl[] = {
852 { TTI::SK_Alternate, MVT::v2i64, 1 }, // pblendw
853 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
854 { TTI::SK_Alternate, MVT::v4i32, 1 }, // pblendw
855 { TTI::SK_Alternate, MVT::v4f32, 1 }, // blendps
856 { TTI::SK_Alternate, MVT::v8i16, 1 }, // pblendw
857 { TTI::SK_Alternate, MVT::v16i8, 1 } // pblendvb
858 };
859
860 if (ST->hasSSE41())
861 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
862 return LT.first * Entry->Cost;
863
864 static const CostTblEntry SSSE3ShuffleTbl[] = {
865 { TTI::SK_Broadcast, MVT::v8i16, 1 }, // pshufb
866 { TTI::SK_Broadcast, MVT::v16i8, 1 }, // pshufb
867
868 { TTI::SK_Reverse, MVT::v8i16, 1 }, // pshufb
869 { TTI::SK_Reverse, MVT::v16i8, 1 }, // pshufb
870
871 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pshufb + pshufb + por
872 { TTI::SK_Alternate, MVT::v16i8, 3 } // pshufb + pshufb + por
873 };
874
875 if (ST->hasSSSE3())
876 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
877 return LT.first * Entry->Cost;
878
879 static const CostTblEntry SSE2ShuffleTbl[] = {
880 { TTI::SK_Broadcast, MVT::v2f64, 1 }, // shufpd
881 { TTI::SK_Broadcast, MVT::v2i64, 1 }, // pshufd
882 { TTI::SK_Broadcast, MVT::v4i32, 1 }, // pshufd
883 { TTI::SK_Broadcast, MVT::v8i16, 2 }, // pshuflw + pshufd
884 { TTI::SK_Broadcast, MVT::v16i8, 3 }, // unpck + pshuflw + pshufd
885
886 { TTI::SK_Reverse, MVT::v2f64, 1 }, // shufpd
887 { TTI::SK_Reverse, MVT::v2i64, 1 }, // pshufd
888 { TTI::SK_Reverse, MVT::v4i32, 1 }, // pshufd
889 { TTI::SK_Reverse, MVT::v8i16, 3 }, // pshuflw + pshufhw + pshufd
890 { TTI::SK_Reverse, MVT::v16i8, 9 }, // 2*pshuflw + 2*pshufhw
891 // + 2*pshufd + 2*unpck + packus
892
893 { TTI::SK_Alternate, MVT::v2i64, 1 }, // movsd
894 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
895 { TTI::SK_Alternate, MVT::v4i32, 2 }, // 2*shufps
896 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pand + pandn + por
897 { TTI::SK_Alternate, MVT::v16i8, 3 } // pand + pandn + por
898 };
899
900 if (ST->hasSSE2())
901 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
902 return LT.first * Entry->Cost;
903
904 static const CostTblEntry SSE1ShuffleTbl[] = {
905 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps
906 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
907 { TTI::SK_Alternate, MVT::v4f32, 2 } // 2*shufps
908 };
909
910 if (ST->hasSSE1())
911 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
912 return LT.first * Entry->Cost;
913
Chandler Carruth705b1852015-01-31 03:43:40 +0000914 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
Chandler Carruth664e3542013-01-07 01:37:14 +0000915}
916
Chandler Carruth93205eb2015-08-05 18:08:10 +0000917int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000918 int ISD = TLI->InstructionOpcodeToISD(Opcode);
919 assert(ISD && "Invalid opcode");
920
Cong Hou59898d82015-12-11 00:31:39 +0000921 // FIXME: Need a better design of the cost table to handle non-simple types of
922 // potential massive combinations (elem_num x src_type x dst_type).
923
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000924 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000925 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
926 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000927 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
928 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000929 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
930 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
931
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000932 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000933 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000934 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000935 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000936 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000937 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000938
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000939 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000940 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000941 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000942 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000943 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000944 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
945
946 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 },
947 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
948 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
949 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
950 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
951 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000952 };
953
Michael Kupersteinf0c59332016-07-11 21:39:44 +0000954 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
955 // 256-bit wide vectors.
956
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000957 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +0000958 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
959 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
960 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000961
962 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
963 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
964 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
965 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000966
967 // v16i1 -> v16i32 - load + broadcast
968 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
969 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000970 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
971 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
972 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
973 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000974 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
975 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000976 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
977 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000978
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000979 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000980 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000981 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000982 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000983 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000984 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
985 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000986 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +0000987 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
988 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000989
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000990 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000991 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000992 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000993 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
994 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 },
995 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
996 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000997 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000998 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
999 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
1000 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
1001 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001002 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001003 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001004 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
1005 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
1006 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
1007 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
1008 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001009 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001010 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
1011 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 12 },
1012 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
1013
1014 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
1015 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
1016 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
1017 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001018 };
1019
Craig Topper4b275762015-10-28 04:02:12 +00001020 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +00001021 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
1022 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001023 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
1024 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001025 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
1026 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001027 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
1028 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
1029 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
1030 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001031 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1032 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001033 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
1034 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001035 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1036 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1037
1038 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
1039 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
1040 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
1041 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
1042 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
1043 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001044
1045 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
1046 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
Quentin Colombet360460b2014-11-11 02:23:47 +00001047
1048 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001049 };
1050
Craig Topper4b275762015-10-28 04:02:12 +00001051 static const TypeConversionCostTblEntry AVXConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +00001052 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
1053 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001054 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
1055 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001056 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
1057 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001058 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 },
1059 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
1060 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1061 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001062 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
1063 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001064 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1065 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001066 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1067 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1068
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001069 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
1070 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1071 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001072 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
1073 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
1074 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001075 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001076
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001077 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001078 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001079 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
1080 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001081 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001082 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
1083 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001084 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001085 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
1086 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001087 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001088 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001089
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001090 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001091 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001092 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
1093 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001094 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001095 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
1096 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001097 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001098 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001099 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001100 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001101 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001102 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
Quentin Colombet85b904d2014-03-27 22:27:41 +00001103 // The generic code to compute the scalar overhead is currently broken.
1104 // Workaround this limitation by estimating the scalarization overhead
1105 // here. We have roughly 10 instructions per scalar element.
1106 // Multiply that by the vector width.
1107 // FIXME: remove that when PR19268 is fixed.
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001108 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 10 },
1109 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 20 },
1110 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
1111 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001112
Renato Goline1fb0592013-01-20 20:57:20 +00001113 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001114 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
Adam Nemet6dafe972014-03-30 18:07:13 +00001115 // This node is expanded into scalarized operations but BasicTTI is overly
1116 // optimistic estimating its cost. It computes 3 per element (one
1117 // vector-extract, one scalar conversion and one vector-insert). The
1118 // problem is that the inserts form a read-modify-write chain so latency
1119 // should be factored in too. Inflating the cost per element by 1.
1120 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
Adam Nemet10c4ce22014-03-31 21:54:48 +00001121 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001122
1123 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
1124 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001125 };
1126
Cong Hou59898d82015-12-11 00:31:39 +00001127 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001128 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
1129 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001130 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1131 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1132 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
1133 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001134
Cong Hou59898d82015-12-11 00:31:39 +00001135 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1136 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001137 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1138 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1139 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1140 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1141 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1142 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1143 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1144 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1145 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1146 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1147 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1148 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1149 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1150 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1151 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1152 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
Cong Hou59898d82015-12-11 00:31:39 +00001153
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001154 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 },
1155 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 },
1156 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001157 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001158 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001159 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001160 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
1161
Cong Hou59898d82015-12-11 00:31:39 +00001162 };
1163
1164 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001165 // These are somewhat magic numbers justified by looking at the output of
1166 // Intel's IACA, running some kernels and making sure when we take
1167 // legalization into account the throughput will be overestimated.
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001168 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001169 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1170 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1171 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
Sanjay Patel04b34962016-07-06 19:15:54 +00001172 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001173 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1174 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1175 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
Cong Hou59898d82015-12-11 00:31:39 +00001176
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001177 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1178 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1179 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1180 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1181 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1182 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1183 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1184 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001185
Simon Pilgrim4ddc92b2016-10-18 07:42:15 +00001186 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 3 },
1187
Cong Hou59898d82015-12-11 00:31:39 +00001188 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1189 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001190 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
1191 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 },
1192 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
1193 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 },
1194 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1195 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 },
1196 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1197 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1198 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
1199 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1200 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 },
1201 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 },
1202 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1203 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 },
1204 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1205 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 },
1206 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
1207 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1208 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001209 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001210 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
1211 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 },
Cong Hou59898d82015-12-11 00:31:39 +00001212
Cong Hou59898d82015-12-11 00:31:39 +00001213 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001214 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 },
1215 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
1216 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 },
1217 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 },
1218 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1219 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
1220 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
1221 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 },
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001222 };
1223
Chandler Carruth93205eb2015-08-05 18:08:10 +00001224 std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1225 std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001226
1227 if (ST->hasSSE2() && !ST->hasAVX()) {
Cong Hou59898d82015-12-11 00:31:39 +00001228 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
Craig Topperee0c8592015-10-27 04:14:24 +00001229 LTDest.second, LTSrc.second))
1230 return LTSrc.first * Entry->Cost;
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001231 }
1232
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001233 EVT SrcTy = TLI->getValueType(DL, Src);
1234 EVT DstTy = TLI->getValueType(DL, Dst);
1235
1236 // The function getSimpleVT only handles simple value types.
1237 if (!SrcTy.isSimple() || !DstTy.isSimple())
1238 return BaseT::getCastInstrCost(Opcode, Dst, Src);
1239
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001240 if (ST->hasDQI())
1241 if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1242 DstTy.getSimpleVT(),
1243 SrcTy.getSimpleVT()))
1244 return Entry->Cost;
1245
1246 if (ST->hasAVX512())
1247 if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1248 DstTy.getSimpleVT(),
1249 SrcTy.getSimpleVT()))
1250 return Entry->Cost;
1251
Tim Northoverf0e21612014-02-06 18:18:36 +00001252 if (ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001253 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1254 DstTy.getSimpleVT(),
1255 SrcTy.getSimpleVT()))
1256 return Entry->Cost;
Tim Northoverf0e21612014-02-06 18:18:36 +00001257 }
1258
Chandler Carruth664e3542013-01-07 01:37:14 +00001259 if (ST->hasAVX()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001260 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1261 DstTy.getSimpleVT(),
1262 SrcTy.getSimpleVT()))
1263 return Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001264 }
1265
Cong Hou59898d82015-12-11 00:31:39 +00001266 if (ST->hasSSE41()) {
1267 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1268 DstTy.getSimpleVT(),
1269 SrcTy.getSimpleVT()))
1270 return Entry->Cost;
1271 }
1272
1273 if (ST->hasSSE2()) {
1274 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1275 DstTy.getSimpleVT(),
1276 SrcTy.getSimpleVT()))
1277 return Entry->Cost;
1278 }
1279
Chandler Carruth705b1852015-01-31 03:43:40 +00001280 return BaseT::getCastInstrCost(Opcode, Dst, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001281}
1282
Chandler Carruth93205eb2015-08-05 18:08:10 +00001283int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001284 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001285 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001286
1287 MVT MTy = LT.second;
1288
1289 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1290 assert(ISD && "Invalid opcode");
1291
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001292 static const CostTblEntry SSE2CostTbl[] = {
1293 { ISD::SETCC, MVT::v2i64, 8 },
1294 { ISD::SETCC, MVT::v4i32, 1 },
1295 { ISD::SETCC, MVT::v8i16, 1 },
1296 { ISD::SETCC, MVT::v16i8, 1 },
1297 };
1298
Craig Topper4b275762015-10-28 04:02:12 +00001299 static const CostTblEntry SSE42CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001300 { ISD::SETCC, MVT::v2f64, 1 },
1301 { ISD::SETCC, MVT::v4f32, 1 },
1302 { ISD::SETCC, MVT::v2i64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001303 };
1304
Craig Topper4b275762015-10-28 04:02:12 +00001305 static const CostTblEntry AVX1CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001306 { ISD::SETCC, MVT::v4f64, 1 },
1307 { ISD::SETCC, MVT::v8f32, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001308 // AVX1 does not support 8-wide integer compare.
Renato Goline1fb0592013-01-20 20:57:20 +00001309 { ISD::SETCC, MVT::v4i64, 4 },
1310 { ISD::SETCC, MVT::v8i32, 4 },
1311 { ISD::SETCC, MVT::v16i16, 4 },
1312 { ISD::SETCC, MVT::v32i8, 4 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001313 };
1314
Craig Topper4b275762015-10-28 04:02:12 +00001315 static const CostTblEntry AVX2CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001316 { ISD::SETCC, MVT::v4i64, 1 },
1317 { ISD::SETCC, MVT::v8i32, 1 },
1318 { ISD::SETCC, MVT::v16i16, 1 },
1319 { ISD::SETCC, MVT::v32i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001320 };
1321
Craig Topper4b275762015-10-28 04:02:12 +00001322 static const CostTblEntry AVX512CostTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +00001323 { ISD::SETCC, MVT::v8i64, 1 },
1324 { ISD::SETCC, MVT::v16i32, 1 },
1325 { ISD::SETCC, MVT::v8f64, 1 },
1326 { ISD::SETCC, MVT::v16f32, 1 },
1327 };
1328
Craig Topperee0c8592015-10-27 04:14:24 +00001329 if (ST->hasAVX512())
1330 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1331 return LT.first * Entry->Cost;
Elena Demikhovsky27012472014-09-16 07:57:37 +00001332
Craig Topperee0c8592015-10-27 04:14:24 +00001333 if (ST->hasAVX2())
1334 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1335 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001336
Craig Topperee0c8592015-10-27 04:14:24 +00001337 if (ST->hasAVX())
1338 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1339 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001340
Craig Topperee0c8592015-10-27 04:14:24 +00001341 if (ST->hasSSE42())
1342 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1343 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001344
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001345 if (ST->hasSSE2())
1346 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1347 return LT.first * Entry->Cost;
1348
Chandler Carruth705b1852015-01-31 03:43:40 +00001349 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001350}
1351
Simon Pilgrim14000b32016-05-24 08:17:50 +00001352int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1353 ArrayRef<Type *> Tys, FastMathFlags FMF) {
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001354 // Costs should match the codegen from:
1355 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1356 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001357 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001358 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001359 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
Simon Pilgrim14000b32016-05-24 08:17:50 +00001360 static const CostTblEntry XOPCostTbl[] = {
1361 { ISD::BITREVERSE, MVT::v4i64, 4 },
1362 { ISD::BITREVERSE, MVT::v8i32, 4 },
1363 { ISD::BITREVERSE, MVT::v16i16, 4 },
1364 { ISD::BITREVERSE, MVT::v32i8, 4 },
1365 { ISD::BITREVERSE, MVT::v2i64, 1 },
1366 { ISD::BITREVERSE, MVT::v4i32, 1 },
1367 { ISD::BITREVERSE, MVT::v8i16, 1 },
1368 { ISD::BITREVERSE, MVT::v16i8, 1 },
1369 { ISD::BITREVERSE, MVT::i64, 3 },
1370 { ISD::BITREVERSE, MVT::i32, 3 },
1371 { ISD::BITREVERSE, MVT::i16, 3 },
1372 { ISD::BITREVERSE, MVT::i8, 3 }
1373 };
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001374 static const CostTblEntry AVX2CostTbl[] = {
1375 { ISD::BITREVERSE, MVT::v4i64, 5 },
1376 { ISD::BITREVERSE, MVT::v8i32, 5 },
1377 { ISD::BITREVERSE, MVT::v16i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001378 { ISD::BITREVERSE, MVT::v32i8, 5 },
1379 { ISD::BSWAP, MVT::v4i64, 1 },
1380 { ISD::BSWAP, MVT::v8i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001381 { ISD::BSWAP, MVT::v16i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001382 { ISD::CTLZ, MVT::v4i64, 23 },
1383 { ISD::CTLZ, MVT::v8i32, 18 },
1384 { ISD::CTLZ, MVT::v16i16, 14 },
1385 { ISD::CTLZ, MVT::v32i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001386 { ISD::CTPOP, MVT::v4i64, 7 },
1387 { ISD::CTPOP, MVT::v8i32, 11 },
1388 { ISD::CTPOP, MVT::v16i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001389 { ISD::CTPOP, MVT::v32i8, 6 },
1390 { ISD::CTTZ, MVT::v4i64, 10 },
1391 { ISD::CTTZ, MVT::v8i32, 14 },
1392 { ISD::CTTZ, MVT::v16i16, 12 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001393 { ISD::CTTZ, MVT::v32i8, 9 },
1394 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/
1395 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
1396 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
1397 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/
1398 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
1399 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001400 };
1401 static const CostTblEntry AVX1CostTbl[] = {
1402 { ISD::BITREVERSE, MVT::v4i64, 10 },
1403 { ISD::BITREVERSE, MVT::v8i32, 10 },
1404 { ISD::BITREVERSE, MVT::v16i16, 10 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001405 { ISD::BITREVERSE, MVT::v32i8, 10 },
1406 { ISD::BSWAP, MVT::v4i64, 4 },
1407 { ISD::BSWAP, MVT::v8i32, 4 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001408 { ISD::BSWAP, MVT::v16i16, 4 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001409 { ISD::CTLZ, MVT::v4i64, 46 },
1410 { ISD::CTLZ, MVT::v8i32, 36 },
1411 { ISD::CTLZ, MVT::v16i16, 28 },
1412 { ISD::CTLZ, MVT::v32i8, 18 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001413 { ISD::CTPOP, MVT::v4i64, 14 },
1414 { ISD::CTPOP, MVT::v8i32, 22 },
1415 { ISD::CTPOP, MVT::v16i16, 18 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001416 { ISD::CTPOP, MVT::v32i8, 12 },
1417 { ISD::CTTZ, MVT::v4i64, 20 },
1418 { ISD::CTTZ, MVT::v8i32, 28 },
1419 { ISD::CTTZ, MVT::v16i16, 24 },
1420 { ISD::CTTZ, MVT::v32i8, 18 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001421 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/
1422 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
1423 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
1424 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/
1425 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/
1426 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/
1427 };
1428 static const CostTblEntry SSE42CostTbl[] = {
1429 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/
1430 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001431 };
1432 static const CostTblEntry SSSE3CostTbl[] = {
1433 { ISD::BITREVERSE, MVT::v2i64, 5 },
1434 { ISD::BITREVERSE, MVT::v4i32, 5 },
1435 { ISD::BITREVERSE, MVT::v8i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001436 { ISD::BITREVERSE, MVT::v16i8, 5 },
1437 { ISD::BSWAP, MVT::v2i64, 1 },
1438 { ISD::BSWAP, MVT::v4i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001439 { ISD::BSWAP, MVT::v8i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001440 { ISD::CTLZ, MVT::v2i64, 23 },
1441 { ISD::CTLZ, MVT::v4i32, 18 },
1442 { ISD::CTLZ, MVT::v8i16, 14 },
1443 { ISD::CTLZ, MVT::v16i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001444 { ISD::CTPOP, MVT::v2i64, 7 },
1445 { ISD::CTPOP, MVT::v4i32, 11 },
1446 { ISD::CTPOP, MVT::v8i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001447 { ISD::CTPOP, MVT::v16i8, 6 },
1448 { ISD::CTTZ, MVT::v2i64, 10 },
1449 { ISD::CTTZ, MVT::v4i32, 14 },
1450 { ISD::CTTZ, MVT::v8i16, 12 },
1451 { ISD::CTTZ, MVT::v16i8, 9 }
Simon Pilgrim356e8232016-06-20 23:08:21 +00001452 };
1453 static const CostTblEntry SSE2CostTbl[] = {
1454 { ISD::BSWAP, MVT::v2i64, 7 },
1455 { ISD::BSWAP, MVT::v4i32, 7 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001456 { ISD::BSWAP, MVT::v8i16, 7 },
Simon Pilgrimd02c5522016-11-08 14:10:28 +00001457 { ISD::CTLZ, MVT::v2i64, 25 },
1458 { ISD::CTLZ, MVT::v4i32, 26 },
1459 { ISD::CTLZ, MVT::v8i16, 20 },
1460 { ISD::CTLZ, MVT::v16i8, 17 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001461 { ISD::CTPOP, MVT::v2i64, 12 },
1462 { ISD::CTPOP, MVT::v4i32, 15 },
1463 { ISD::CTPOP, MVT::v8i16, 13 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001464 { ISD::CTPOP, MVT::v16i8, 10 },
1465 { ISD::CTTZ, MVT::v2i64, 14 },
1466 { ISD::CTTZ, MVT::v4i32, 18 },
1467 { ISD::CTTZ, MVT::v8i16, 16 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001468 { ISD::CTTZ, MVT::v16i8, 13 },
1469 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/
1470 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/
1471 };
1472 static const CostTblEntry SSE1CostTbl[] = {
1473 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/
1474 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001475 };
Simon Pilgrim14000b32016-05-24 08:17:50 +00001476
1477 unsigned ISD = ISD::DELETED_NODE;
1478 switch (IID) {
1479 default:
1480 break;
1481 case Intrinsic::bitreverse:
1482 ISD = ISD::BITREVERSE;
1483 break;
Simon Pilgrim356e8232016-06-20 23:08:21 +00001484 case Intrinsic::bswap:
1485 ISD = ISD::BSWAP;
1486 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001487 case Intrinsic::ctlz:
1488 ISD = ISD::CTLZ;
1489 break;
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001490 case Intrinsic::ctpop:
1491 ISD = ISD::CTPOP;
1492 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001493 case Intrinsic::cttz:
1494 ISD = ISD::CTTZ;
1495 break;
Alexey Bataevd07c7312016-10-31 12:10:53 +00001496 case Intrinsic::sqrt:
1497 ISD = ISD::FSQRT;
1498 break;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001499 }
1500
1501 // Legalize the type.
1502 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1503 MVT MTy = LT.second;
1504
1505 // Attempt to lookup cost.
1506 if (ST->hasXOP())
1507 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
1508 return LT.first * Entry->Cost;
1509
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001510 if (ST->hasAVX2())
1511 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1512 return LT.first * Entry->Cost;
1513
1514 if (ST->hasAVX())
1515 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1516 return LT.first * Entry->Cost;
1517
Alexey Bataevd07c7312016-10-31 12:10:53 +00001518 if (ST->hasSSE42())
1519 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1520 return LT.first * Entry->Cost;
1521
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001522 if (ST->hasSSSE3())
1523 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
1524 return LT.first * Entry->Cost;
1525
Simon Pilgrim356e8232016-06-20 23:08:21 +00001526 if (ST->hasSSE2())
1527 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1528 return LT.first * Entry->Cost;
1529
Alexey Bataevd07c7312016-10-31 12:10:53 +00001530 if (ST->hasSSE1())
1531 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1532 return LT.first * Entry->Cost;
1533
Simon Pilgrim14000b32016-05-24 08:17:50 +00001534 return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF);
1535}
1536
1537int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1538 ArrayRef<Value *> Args, FastMathFlags FMF) {
1539 return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF);
1540}
1541
Chandler Carruth93205eb2015-08-05 18:08:10 +00001542int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001543 assert(Val->isVectorTy() && "This must be a vector type");
1544
Sanjay Patelaedc3472016-05-25 17:27:54 +00001545 Type *ScalarType = Val->getScalarType();
1546
Chandler Carruth664e3542013-01-07 01:37:14 +00001547 if (Index != -1U) {
1548 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001549 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
Chandler Carruth664e3542013-01-07 01:37:14 +00001550
1551 // This type is legalized to a scalar type.
1552 if (!LT.second.isVector())
1553 return 0;
1554
1555 // The type may be split. Normalize the index to the new type.
1556 unsigned Width = LT.second.getVectorNumElements();
1557 Index = Index % Width;
1558
1559 // Floating point scalars are already located in index #0.
Sanjay Patelaedc3472016-05-25 17:27:54 +00001560 if (ScalarType->isFloatingPointTy() && Index == 0)
Chandler Carruth664e3542013-01-07 01:37:14 +00001561 return 0;
1562 }
1563
Sanjay Patelaedc3472016-05-25 17:27:54 +00001564 // Add to the base cost if we know that the extracted element of a vector is
1565 // destined to be moved to and used in the integer register file.
1566 int RegisterFileMoveCost = 0;
1567 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
1568 RegisterFileMoveCost = 1;
1569
1570 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001571}
1572
Chandler Carruth93205eb2015-08-05 18:08:10 +00001573int X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001574 assert (Ty->isVectorTy() && "Can only scalarize vectors");
Chandler Carruth93205eb2015-08-05 18:08:10 +00001575 int Cost = 0;
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001576
1577 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
1578 if (Insert)
Chandler Carruth705b1852015-01-31 03:43:40 +00001579 Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001580 if (Extract)
Chandler Carruth705b1852015-01-31 03:43:40 +00001581 Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001582 }
1583
1584 return Cost;
1585}
1586
Chandler Carruth93205eb2015-08-05 18:08:10 +00001587int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1588 unsigned AddressSpace) {
Alp Tokerf907b892013-12-05 05:44:44 +00001589 // Handle non-power-of-two vectors such as <3 x float>
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001590 if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
1591 unsigned NumElem = VTy->getVectorNumElements();
1592
1593 // Handle a few common cases:
1594 // <3 x float>
1595 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
1596 // Cost = 64 bit store + extract + 32 bit store.
1597 return 3;
1598
1599 // <3 x double>
1600 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
1601 // Cost = 128 bit store + unpack + 64 bit store.
1602 return 3;
1603
Alp Tokerf907b892013-12-05 05:44:44 +00001604 // Assume that all other non-power-of-two numbers are scalarized.
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001605 if (!isPowerOf2_32(NumElem)) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001606 int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
1607 AddressSpace);
1608 int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
1609 Opcode == Instruction::Store);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001610 return NumElem * Cost + SplitCost;
1611 }
1612 }
1613
Chandler Carruth664e3542013-01-07 01:37:14 +00001614 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001615 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001616 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1617 "Invalid Opcode");
1618
1619 // Each load/store unit costs 1.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001620 int Cost = LT.first * 1;
Chandler Carruth664e3542013-01-07 01:37:14 +00001621
Sanjay Patel9f6c4d52016-03-09 22:23:33 +00001622 // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
1623 // proxy for a double-pumped AVX memory interface such as on Sandybridge.
1624 if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
1625 Cost *= 2;
Chandler Carruth664e3542013-01-07 01:37:14 +00001626
1627 return Cost;
1628}
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001629
Chandler Carruth93205eb2015-08-05 18:08:10 +00001630int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
1631 unsigned Alignment,
1632 unsigned AddressSpace) {
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001633 VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
1634 if (!SrcVTy)
1635 // To calculate scalar take the regular cost, without mask
1636 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
1637
1638 unsigned NumElem = SrcVTy->getVectorNumElements();
1639 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00001640 VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
Elena Demikhovsky20662e32015-10-19 07:43:38 +00001641 if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
1642 (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001643 !isPowerOf2_32(NumElem)) {
1644 // Scalarization
Chandler Carruth93205eb2015-08-05 18:08:10 +00001645 int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
1646 int ScalarCompareCost = getCmpSelInstrCost(
Mehdi Amini867e9142016-04-14 04:36:40 +00001647 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001648 int BranchCost = getCFInstrCost(Instruction::Br);
1649 int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001650
Chandler Carruth93205eb2015-08-05 18:08:10 +00001651 int ValueSplitCost = getScalarizationOverhead(
1652 SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
1653 int MemopCost =
Chandler Carruth705b1852015-01-31 03:43:40 +00001654 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1655 Alignment, AddressSpace);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001656 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
1657 }
1658
1659 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001660 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
Cong Houda4e8ae2015-10-28 18:15:46 +00001661 auto VT = TLI->getValueType(DL, SrcVTy);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001662 int Cost = 0;
Cong Houda4e8ae2015-10-28 18:15:46 +00001663 if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001664 LT.second.getVectorNumElements() == NumElem)
1665 // Promotion requires expand/truncate for data and a shuffle for mask.
Hans Wennborg083ca9b2015-10-06 23:24:35 +00001666 Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) +
1667 getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr);
Chandler Carruth705b1852015-01-31 03:43:40 +00001668
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001669 else if (LT.second.getVectorNumElements() > NumElem) {
1670 VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
1671 LT.second.getVectorNumElements());
1672 // Expanding requires fill mask with zeroes
Chandler Carruth705b1852015-01-31 03:43:40 +00001673 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001674 }
1675 if (!ST->hasAVX512())
1676 return Cost + LT.first*4; // Each maskmov costs 4
1677
1678 // AVX-512 masked load/store is cheapper
1679 return Cost+LT.first;
1680}
1681
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001682int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1683 const SCEV *Ptr) {
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001684 // Address computations in vectorized code with non-consecutive addresses will
1685 // likely result in more instructions compared to scalar code where the
1686 // computation can more often be merged into the index mode. The resulting
1687 // extra micro-ops can significantly decrease throughput.
1688 unsigned NumVectorInstToHideOverhead = 10;
1689
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001690 // Cost modeling of Strided Access Computation is hidden by the indexing
1691 // modes of X86 regardless of the stride value. We dont believe that there
1692 // is a difference between constant strided access in gerenal and constant
1693 // strided value which is less than or equal to 64.
1694 // Even in the case of (loop invariant) stride whose value is not known at
1695 // compile time, the address computation will not incur more than one extra
1696 // ADD instruction.
1697 if (Ty->isVectorTy() && SE) {
1698 if (!BaseT::isStridedAccess(Ptr))
1699 return NumVectorInstToHideOverhead;
1700 if (!BaseT::getConstantStrideStep(SE, Ptr))
1701 return 1;
1702 }
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001703
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001704 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001705}
Yi Jiang5c343de2013-09-19 17:48:48 +00001706
Chandler Carruth93205eb2015-08-05 18:08:10 +00001707int X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
1708 bool IsPairwise) {
Michael Liao5bf95782014-12-04 05:20:33 +00001709
Chandler Carruth93205eb2015-08-05 18:08:10 +00001710 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Michael Liao5bf95782014-12-04 05:20:33 +00001711
Yi Jiang5c343de2013-09-19 17:48:48 +00001712 MVT MTy = LT.second;
Michael Liao5bf95782014-12-04 05:20:33 +00001713
Yi Jiang5c343de2013-09-19 17:48:48 +00001714 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1715 assert(ISD && "Invalid opcode");
Michael Liao5bf95782014-12-04 05:20:33 +00001716
1717 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
1718 // and make it as the cost.
1719
Craig Topper4b275762015-10-28 04:02:12 +00001720 static const CostTblEntry SSE42CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001721 { ISD::FADD, MVT::v2f64, 2 },
1722 { ISD::FADD, MVT::v4f32, 4 },
1723 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1724 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1725 { ISD::ADD, MVT::v8i16, 5 },
1726 };
Michael Liao5bf95782014-12-04 05:20:33 +00001727
Craig Topper4b275762015-10-28 04:02:12 +00001728 static const CostTblEntry AVX1CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001729 { ISD::FADD, MVT::v4f32, 4 },
1730 { ISD::FADD, MVT::v4f64, 5 },
1731 { ISD::FADD, MVT::v8f32, 7 },
1732 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1733 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1734 { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
1735 { ISD::ADD, MVT::v8i16, 5 },
1736 { ISD::ADD, MVT::v8i32, 5 },
1737 };
1738
Craig Topper4b275762015-10-28 04:02:12 +00001739 static const CostTblEntry SSE42CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001740 { ISD::FADD, MVT::v2f64, 2 },
1741 { ISD::FADD, MVT::v4f32, 4 },
1742 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1743 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
1744 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
1745 };
Michael Liao5bf95782014-12-04 05:20:33 +00001746
Craig Topper4b275762015-10-28 04:02:12 +00001747 static const CostTblEntry AVX1CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001748 { ISD::FADD, MVT::v4f32, 3 },
1749 { ISD::FADD, MVT::v4f64, 3 },
1750 { ISD::FADD, MVT::v8f32, 4 },
1751 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1752 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
1753 { ISD::ADD, MVT::v4i64, 3 },
1754 { ISD::ADD, MVT::v8i16, 4 },
1755 { ISD::ADD, MVT::v8i32, 5 },
1756 };
Michael Liao5bf95782014-12-04 05:20:33 +00001757
Yi Jiang5c343de2013-09-19 17:48:48 +00001758 if (IsPairwise) {
Craig Topperee0c8592015-10-27 04:14:24 +00001759 if (ST->hasAVX())
1760 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
1761 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001762
Craig Topperee0c8592015-10-27 04:14:24 +00001763 if (ST->hasSSE42())
1764 if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
1765 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001766 } else {
Craig Topperee0c8592015-10-27 04:14:24 +00001767 if (ST->hasAVX())
1768 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
1769 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001770
Craig Topperee0c8592015-10-27 04:14:24 +00001771 if (ST->hasSSE42())
1772 if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
1773 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001774 }
1775
Chandler Carruth705b1852015-01-31 03:43:40 +00001776 return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
Yi Jiang5c343de2013-09-19 17:48:48 +00001777}
1778
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001779/// \brief Calculate the cost of materializing a 64-bit value. This helper
1780/// method might only calculate a fraction of a larger immediate. Therefore it
1781/// is valid to return a cost of ZERO.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001782int X86TTIImpl::getIntImmCost(int64_t Val) {
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001783 if (Val == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001784 return TTI::TCC_Free;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001785
1786 if (isInt<32>(Val))
Chandler Carruth705b1852015-01-31 03:43:40 +00001787 return TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001788
Chandler Carruth705b1852015-01-31 03:43:40 +00001789 return 2 * TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001790}
1791
Chandler Carruth93205eb2015-08-05 18:08:10 +00001792int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001793 assert(Ty->isIntegerTy());
1794
1795 unsigned BitSize = Ty->getPrimitiveSizeInBits();
1796 if (BitSize == 0)
1797 return ~0U;
1798
Juergen Ributzka43176172014-05-19 21:00:53 +00001799 // Never hoist constants larger than 128bit, because this might lead to
1800 // incorrect code generation or assertions in codegen.
1801 // Fixme: Create a cost model for types larger than i128 once the codegen
1802 // issues have been fixed.
1803 if (BitSize > 128)
Chandler Carruth705b1852015-01-31 03:43:40 +00001804 return TTI::TCC_Free;
Juergen Ributzka43176172014-05-19 21:00:53 +00001805
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001806 if (Imm == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001807 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001808
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001809 // Sign-extend all constants to a multiple of 64-bit.
1810 APInt ImmVal = Imm;
1811 if (BitSize & 0x3f)
1812 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
1813
1814 // Split the constant into 64-bit chunks and calculate the cost for each
1815 // chunk.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001816 int Cost = 0;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001817 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
1818 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
1819 int64_t Val = Tmp.getSExtValue();
1820 Cost += getIntImmCost(Val);
1821 }
Sanjay Patel4c7d0942016-04-05 19:27:39 +00001822 // We need at least one instruction to materialize the constant.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001823 return std::max(1, Cost);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001824}
1825
Chandler Carruth93205eb2015-08-05 18:08:10 +00001826int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
1827 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001828 assert(Ty->isIntegerTy());
1829
1830 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001831 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1832 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001833 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001834 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001835
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001836 unsigned ImmIdx = ~0U;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001837 switch (Opcode) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001838 default:
1839 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001840 case Instruction::GetElementPtr:
Juergen Ributzka27435b32014-04-02 21:45:36 +00001841 // Always hoist the base address of a GetElementPtr. This prevents the
1842 // creation of new constants for every base constant that gets constant
1843 // folded with the offset.
Juergen Ributzka631c4912014-03-25 18:01:25 +00001844 if (Idx == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001845 return 2 * TTI::TCC_Basic;
1846 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001847 case Instruction::Store:
1848 ImmIdx = 0;
1849 break;
Craig Topper074e8452015-12-20 18:41:54 +00001850 case Instruction::ICmp:
1851 // This is an imperfect hack to prevent constant hoisting of
1852 // compares that might be trying to check if a 64-bit value fits in
1853 // 32-bits. The backend can optimize these cases using a right shift by 32.
1854 // Ideally we would check the compare predicate here. There also other
1855 // similar immediates the backend can use shifts for.
1856 if (Idx == 1 && Imm.getBitWidth() == 64) {
1857 uint64_t ImmVal = Imm.getZExtValue();
1858 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
1859 return TTI::TCC_Free;
1860 }
1861 ImmIdx = 1;
1862 break;
Craig Topper79dd1bf2015-10-06 02:50:24 +00001863 case Instruction::And:
1864 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
1865 // by using a 32-bit operation with implicit zero extension. Detect such
1866 // immediates here as the normal path expects bit 31 to be sign extended.
1867 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
1868 return TTI::TCC_Free;
Justin Bognerb03fd122016-08-17 05:10:15 +00001869 LLVM_FALLTHROUGH;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001870 case Instruction::Add:
1871 case Instruction::Sub:
1872 case Instruction::Mul:
1873 case Instruction::UDiv:
1874 case Instruction::SDiv:
1875 case Instruction::URem:
1876 case Instruction::SRem:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001877 case Instruction::Or:
1878 case Instruction::Xor:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001879 ImmIdx = 1;
1880 break;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001881 // Always return TCC_Free for the shift value of a shift instruction.
1882 case Instruction::Shl:
1883 case Instruction::LShr:
1884 case Instruction::AShr:
1885 if (Idx == 1)
Chandler Carruth705b1852015-01-31 03:43:40 +00001886 return TTI::TCC_Free;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001887 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001888 case Instruction::Trunc:
1889 case Instruction::ZExt:
1890 case Instruction::SExt:
1891 case Instruction::IntToPtr:
1892 case Instruction::PtrToInt:
1893 case Instruction::BitCast:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001894 case Instruction::PHI:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001895 case Instruction::Call:
1896 case Instruction::Select:
1897 case Instruction::Ret:
1898 case Instruction::Load:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001899 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001900 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001901
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001902 if (Idx == ImmIdx) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001903 int NumConstants = (BitSize + 63) / 64;
1904 int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
Chandler Carruth705b1852015-01-31 03:43:40 +00001905 return (Cost <= NumConstants * TTI::TCC_Basic)
Chandler Carruth93205eb2015-08-05 18:08:10 +00001906 ? static_cast<int>(TTI::TCC_Free)
Chandler Carruth705b1852015-01-31 03:43:40 +00001907 : Cost;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001908 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001909
Chandler Carruth705b1852015-01-31 03:43:40 +00001910 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001911}
1912
Chandler Carruth93205eb2015-08-05 18:08:10 +00001913int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1914 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001915 assert(Ty->isIntegerTy());
1916
1917 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001918 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1919 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001920 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001921 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001922
1923 switch (IID) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001924 default:
1925 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001926 case Intrinsic::sadd_with_overflow:
1927 case Intrinsic::uadd_with_overflow:
1928 case Intrinsic::ssub_with_overflow:
1929 case Intrinsic::usub_with_overflow:
1930 case Intrinsic::smul_with_overflow:
1931 case Intrinsic::umul_with_overflow:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001932 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
Chandler Carruth705b1852015-01-31 03:43:40 +00001933 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001934 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001935 case Intrinsic::experimental_stackmap:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001936 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001937 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001938 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001939 case Intrinsic::experimental_patchpoint_void:
1940 case Intrinsic::experimental_patchpoint_i64:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001941 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001942 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001943 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001944 }
Chandler Carruth705b1852015-01-31 03:43:40 +00001945 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001946}
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00001947
Elena Demikhovsky54946982015-12-28 20:10:59 +00001948// Return an average cost of Gather / Scatter instruction, maybe improved later
1949int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
1950 unsigned Alignment, unsigned AddressSpace) {
1951
1952 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
1953 unsigned VF = SrcVTy->getVectorNumElements();
1954
1955 // Try to reduce index size from 64 bit (default for GEP)
1956 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
1957 // operation will use 16 x 64 indices which do not fit in a zmm and needs
1958 // to split. Also check that the base pointer is the same for all lanes,
1959 // and that there's at most one variable index.
1960 auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
1961 unsigned IndexSize = DL.getPointerSizeInBits();
1962 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1963 if (IndexSize < 64 || !GEP)
1964 return IndexSize;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001965
Elena Demikhovsky54946982015-12-28 20:10:59 +00001966 unsigned NumOfVarIndices = 0;
1967 Value *Ptrs = GEP->getPointerOperand();
1968 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
1969 return IndexSize;
1970 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
1971 if (isa<Constant>(GEP->getOperand(i)))
1972 continue;
1973 Type *IndxTy = GEP->getOperand(i)->getType();
1974 if (IndxTy->isVectorTy())
1975 IndxTy = IndxTy->getVectorElementType();
1976 if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
1977 !isa<SExtInst>(GEP->getOperand(i))) ||
1978 ++NumOfVarIndices > 1)
1979 return IndexSize; // 64
1980 }
1981 return (unsigned)32;
1982 };
1983
1984
1985 // Trying to reduce IndexSize to 32 bits for vector 16.
1986 // By default the IndexSize is equal to pointer size.
1987 unsigned IndexSize = (VF >= 16) ? getIndexSizeInBits(Ptr, DL) :
1988 DL.getPointerSizeInBits();
1989
Mehdi Amini867e9142016-04-14 04:36:40 +00001990 Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
Elena Demikhovsky54946982015-12-28 20:10:59 +00001991 IndexSize), VF);
1992 std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
1993 std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
1994 int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
1995 if (SplitFactor > 1) {
1996 // Handle splitting of vector of pointers
1997 Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
1998 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
1999 AddressSpace);
2000 }
2001
2002 // The gather / scatter cost is given by Intel architects. It is a rough
2003 // number since we are looking at one instruction in a time.
2004 const int GSOverhead = 2;
2005 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2006 Alignment, AddressSpace);
2007}
2008
2009/// Return the cost of full scalarization of gather / scatter operation.
2010///
2011/// Opcode - Load or Store instruction.
2012/// SrcVTy - The type of the data vector that should be gathered or scattered.
2013/// VariableMask - The mask is non-constant at compile time.
2014/// Alignment - Alignment for one element.
2015/// AddressSpace - pointer[s] address space.
2016///
2017int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
2018 bool VariableMask, unsigned Alignment,
2019 unsigned AddressSpace) {
2020 unsigned VF = SrcVTy->getVectorNumElements();
2021
2022 int MaskUnpackCost = 0;
2023 if (VariableMask) {
2024 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00002025 VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002026 MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
2027 int ScalarCompareCost =
Mehdi Amini867e9142016-04-14 04:36:40 +00002028 getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
Elena Demikhovsky54946982015-12-28 20:10:59 +00002029 nullptr);
2030 int BranchCost = getCFInstrCost(Instruction::Br);
2031 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
2032 }
2033
2034 // The cost of the scalar loads/stores.
2035 int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2036 Alignment, AddressSpace);
2037
2038 int InsertExtractCost = 0;
2039 if (Opcode == Instruction::Load)
2040 for (unsigned i = 0; i < VF; ++i)
2041 // Add the cost of inserting each scalar load into the vector
2042 InsertExtractCost +=
2043 getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
2044 else
2045 for (unsigned i = 0; i < VF; ++i)
2046 // Add the cost of extracting each element out of the data vector
2047 InsertExtractCost +=
2048 getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
2049
2050 return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
2051}
2052
2053/// Calculate the cost of Gather / Scatter operation
2054int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
2055 Value *Ptr, bool VariableMask,
2056 unsigned Alignment) {
2057 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
2058 unsigned VF = SrcVTy->getVectorNumElements();
2059 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2060 if (!PtrTy && Ptr->getType()->isVectorTy())
2061 PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
2062 assert(PtrTy && "Unexpected type for Ptr argument");
2063 unsigned AddressSpace = PtrTy->getAddressSpace();
2064
2065 bool Scalarize = false;
2066 if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
2067 (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
2068 Scalarize = true;
2069 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
2070 // Vector-4 of gather/scatter instruction does not exist on KNL.
2071 // We can extend it to 8 elements, but zeroing upper bits of
2072 // the mask vector will add more instructions. Right now we give the scalar
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002073 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
2074 // is better in the VariableMask case.
Elena Demikhovsky54946982015-12-28 20:10:59 +00002075 if (VF == 2 || (VF == 4 && !ST->hasVLX()))
2076 Scalarize = true;
2077
2078 if (Scalarize)
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002079 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
2080 AddressSpace);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002081
2082 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
2083}
2084
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002085bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
2086 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002087 int DataWidth = isa<PointerType>(ScalarTy) ?
2088 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002089
Igor Bregerf44b79d2016-08-02 09:15:28 +00002090 return ((DataWidth == 32 || DataWidth == 64) && ST->hasAVX()) ||
2091 ((DataWidth == 8 || DataWidth == 16) && ST->hasBWI());
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002092}
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002093
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002094bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
2095 return isLegalMaskedLoad(DataType);
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002096}
2097
Elena Demikhovsky09285852015-10-25 15:37:55 +00002098bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
2099 // This function is called now in two cases: from the Loop Vectorizer
2100 // and from the Scalarizer.
2101 // When the Loop Vectorizer asks about legality of the feature,
2102 // the vectorization factor is not calculated yet. The Loop Vectorizer
2103 // sends a scalar type and the decision is based on the width of the
2104 // scalar element.
2105 // Later on, the cost model will estimate usage this intrinsic based on
2106 // the vector type.
2107 // The Scalarizer asks again about legality. It sends a vector type.
2108 // In this case we can reject non-power-of-2 vectors.
2109 if (isa<VectorType>(DataTy) && !isPowerOf2_32(DataTy->getVectorNumElements()))
2110 return false;
2111 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002112 int DataWidth = isa<PointerType>(ScalarTy) ?
2113 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002114
2115 // AVX-512 allows gather and scatter
Igor Bregerf44b79d2016-08-02 09:15:28 +00002116 return (DataWidth == 32 || DataWidth == 64) && ST->hasAVX512();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002117}
2118
2119bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
2120 return isLegalMaskedGather(DataType);
2121}
2122
Eric Christopherd566fb12015-07-29 22:09:48 +00002123bool X86TTIImpl::areInlineCompatible(const Function *Caller,
2124 const Function *Callee) const {
Eric Christophere1002262015-07-02 01:11:50 +00002125 const TargetMachine &TM = getTLI()->getTargetMachine();
2126
2127 // Work this as a subsetting of subtarget features.
2128 const FeatureBitset &CallerBits =
2129 TM.getSubtargetImpl(*Caller)->getFeatureBits();
2130 const FeatureBitset &CalleeBits =
2131 TM.getSubtargetImpl(*Callee)->getFeatureBits();
2132
2133 // FIXME: This is likely too limiting as it will include subtarget features
2134 // that we might not care about for inlining, but it is conservatively
2135 // correct.
2136 return (CallerBits & CalleeBits) == CalleeBits;
2137}
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002138
2139bool X86TTIImpl::enableInterleavedAccessVectorization() {
2140 // TODO: We expect this to be beneficial regardless of arch,
2141 // but there are currently some unexplained performance artifacts on Atom.
2142 // As a temporary solution, disable on Atom.
2143 return !(ST->isAtom() || ST->isSLM());
2144}
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002145
2146// Get estimation for interleaved load/store operations and strided load.
2147// \p Indices contains indices for strided load.
2148// \p Factor - the factor of interleaving.
2149// AVX-512 provides 3-src shuffles that significantly reduces the cost.
2150int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
2151 unsigned Factor,
2152 ArrayRef<unsigned> Indices,
2153 unsigned Alignment,
2154 unsigned AddressSpace) {
2155
2156 // VecTy for interleave memop is <VF*Factor x Elt>.
2157 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
2158 // VecTy = <12 x i32>.
2159
2160 // Calculate the number of memory operations (NumOfMemOps), required
2161 // for load/store the VecTy.
2162 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
2163 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
2164 unsigned LegalVTSize = LegalVT.getStoreSize();
2165 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
2166
2167 // Get the cost of one memory operation.
2168 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
2169 LegalVT.getVectorNumElements());
2170 unsigned MemOpCost =
2171 getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
2172
2173 if (Opcode == Instruction::Load) {
2174 // Kind of shuffle depends on number of loaded values.
2175 // If we load the entire data in one register, we can use a 1-src shuffle.
2176 // Otherwise, we'll merge 2 sources in each operation.
2177 TTI::ShuffleKind ShuffleKind =
2178 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
2179
2180 unsigned ShuffleCost =
2181 getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
2182
2183 unsigned NumOfLoadsInInterleaveGrp =
2184 Indices.size() ? Indices.size() : Factor;
2185 Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
2186 VecTy->getVectorNumElements() / Factor);
2187 unsigned NumOfResults =
2188 getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
2189 NumOfLoadsInInterleaveGrp;
2190
2191 // About a half of the loads may be folded in shuffles when we have only
2192 // one result. If we have more than one result, we do not fold loads at all.
2193 unsigned NumOfUnfoldedLoads =
2194 NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
2195
2196 // Get a number of shuffle operations per result.
2197 unsigned NumOfShufflesPerResult =
2198 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
2199
2200 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2201 // When we have more than one destination, we need additional instructions
2202 // to keep sources.
2203 unsigned NumOfMoves = 0;
2204 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
2205 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
2206
2207 int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
2208 NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
2209
2210 return Cost;
2211 }
2212
2213 // Store.
2214 assert(Opcode == Instruction::Store &&
2215 "Expected Store Instruction at this point");
2216
2217 // There is no strided stores meanwhile. And store can't be folded in
2218 // shuffle.
2219 unsigned NumOfSources = Factor; // The number of values to be merged.
2220 unsigned ShuffleCost =
2221 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
2222 unsigned NumOfShufflesPerStore = NumOfSources - 1;
2223
2224 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2225 // We need additional instructions to keep sources.
2226 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
2227 int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
2228 NumOfMoves;
2229 return Cost;
2230}
2231
2232int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
2233 unsigned Factor,
2234 ArrayRef<unsigned> Indices,
2235 unsigned Alignment,
2236 unsigned AddressSpace) {
2237 auto isSupportedOnAVX512 = [](Type *VecTy, bool &RequiresBW) {
2238 RequiresBW = false;
2239 Type *EltTy = VecTy->getVectorElementType();
2240 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
2241 EltTy->isIntegerTy(32) || EltTy->isPointerTy())
2242 return true;
2243 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8)) {
2244 RequiresBW = true;
2245 return true;
2246 }
2247 return false;
2248 };
2249 bool RequiresBW;
2250 bool HasAVX512Solution = isSupportedOnAVX512(VecTy, RequiresBW);
2251 if (ST->hasAVX512() && HasAVX512Solution && (!RequiresBW || ST->hasBWI()))
2252 return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
2253 Alignment, AddressSpace);
2254 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2255 Alignment, AddressSpace);
2256}