blob: 78b127d47141bb9b081dbd70e7d1e3a2b7d6174f [file] [log] [blame]
Jia Liub22310f2012-02-18 12:03:15 +00001//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
Misha Brukmanc88330a2005-04-21 23:38:14 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanc88330a2005-04-21 23:38:14 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerd92fb002002-10-25 22:55:53 +00009//
Chris Lattnerb4d58d72003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattnerd92fb002002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner27d24792002-10-29 21:05:24 +000014#include "X86InstrInfo.h"
Chris Lattner0d808742002-12-03 05:42:53 +000015#include "X86.h"
Evan Chengc8c172e2006-05-30 21:45:53 +000016#include "X86InstrBuilder.h"
Owen Anderson6bb0c522008-01-04 23:57:37 +000017#include "X86MachineFunctionInfo.h"
Evan Chengc8c172e2006-05-30 21:45:53 +000018#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
Owen Andersone2f23a32007-09-07 04:06:50 +000020#include "llvm/ADT/STLExtras.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000021#include "llvm/CodeGen/LiveVariables.h"
Dan Gohmancc78cdf2008-12-03 05:21:24 +000022#include "llvm/CodeGen/MachineConstantPool.h"
Hans Wennborg789acfb2012-06-01 16:27:21 +000023#include "llvm/CodeGen/MachineDominators.h"
Owen Anderson6bb0c522008-01-04 23:57:37 +000024#include "llvm/CodeGen/MachineFrameInfo.h"
Evan Chengc8c172e2006-05-30 21:45:53 +000025#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattnera10fff52007-12-31 04:13:23 +000026#include "llvm/CodeGen/MachineRegisterInfo.h"
Andrew Trick153ebe62013-10-31 22:11:56 +000027#include "llvm/CodeGen/StackMaps.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000028#include "llvm/IR/DerivedTypes.h"
Eric Christopher79cc1e32014-09-02 22:28:02 +000029#include "llvm/IR/Function.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/LLVMContext.h"
Craig Topperb25fda92012-03-17 18:46:09 +000031#include "llvm/MC/MCAsmInfo.h"
Tom Roeder44cb65f2014-06-05 19:29:43 +000032#include "llvm/MC/MCExpr.h"
Chris Lattner6a5e7062010-04-26 23:37:21 +000033#include "llvm/MC/MCInst.h"
Owen Anderson2a3be7b2008-01-07 01:35:02 +000034#include "llvm/Support/CommandLine.h"
David Greened589daf2010-01-05 01:29:29 +000035#include "llvm/Support/Debug.h"
Torok Edwin6dd27302009-07-08 18:01:40 +000036#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
Evan Chenge95f3912007-09-25 01:57:46 +000038#include "llvm/Target/TargetOptions.h"
David Greene70fdd572009-11-12 20:55:29 +000039#include <limits>
40
Chandler Carruthd174b722014-04-22 02:03:14 +000041using namespace llvm;
42
Chandler Carruthe96dd892014-04-21 22:55:11 +000043#define DEBUG_TYPE "x86-instr-info"
44
Juergen Ributzkad12ccbd2013-11-19 00:57:56 +000045#define GET_INSTRINFO_CTOR_DTOR
Evan Cheng1e210d02011-06-28 20:07:07 +000046#include "X86GenInstrInfo.inc"
47
Chris Lattnera6f074f2009-08-23 03:41:05 +000048static cl::opt<bool>
49NoFusing("disable-spill-fusing",
50 cl::desc("Disable fusing of spill code into instructions"));
51static cl::opt<bool>
52PrintFailedFusing("print-failed-fuse-candidates",
53 cl::desc("Print instructions that the allocator wants to"
54 " fuse, but the X86 backend currently can't"),
55 cl::Hidden);
56static cl::opt<bool>
57ReMatPICStubLoad("remat-pic-stub-load",
58 cl::desc("Re-materialize load from stub in PIC mode"),
59 cl::init(false), cl::Hidden);
Owen Anderson2a3be7b2008-01-07 01:35:02 +000060
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +000061enum {
62 // Select which memory operand is being unfolded.
Craig Topper1cac50b2012-06-23 08:01:18 +000063 // (stored in bits 0 - 3)
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +000064 TB_INDEX_0 = 0,
65 TB_INDEX_1 = 1,
66 TB_INDEX_2 = 2,
Elena Demikhovsky602f3a22012-05-31 09:20:20 +000067 TB_INDEX_3 = 3,
Robert Khasanov79fb7292014-12-18 12:28:22 +000068 TB_INDEX_4 = 4,
Craig Topper1cac50b2012-06-23 08:01:18 +000069 TB_INDEX_MASK = 0xf,
70
71 // Do not insert the reverse map (MemOp -> RegOp) into the table.
72 // This may be needed because there is a many -> one mapping.
73 TB_NO_REVERSE = 1 << 4,
74
75 // Do not insert the forward map (RegOp -> MemOp) into the table.
76 // This is needed for Native Client, which prohibits branch
77 // instructions from using a memory operand.
78 TB_NO_FORWARD = 1 << 5,
79
80 TB_FOLDED_LOAD = 1 << 6,
81 TB_FOLDED_STORE = 1 << 7,
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +000082
83 // Minimum alignment required for load/store.
84 // Used for RegOp->MemOp conversion.
85 // (stored in bits 8 - 15)
86 TB_ALIGN_SHIFT = 8,
87 TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT,
88 TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT,
89 TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT,
Elena Demikhovskycf5b1452013-08-11 07:55:09 +000090 TB_ALIGN_64 = 64 << TB_ALIGN_SHIFT,
Craig Topper1cac50b2012-06-23 08:01:18 +000091 TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +000092};
93
Sanjay Patele951a382015-02-17 22:38:06 +000094struct X86MemoryFoldTableEntry {
Craig Topper2dac9622012-03-09 07:45:21 +000095 uint16_t RegOp;
96 uint16_t MemOp;
Craig Topper1cac50b2012-06-23 08:01:18 +000097 uint16_t Flags;
Craig Topper2dac9622012-03-09 07:45:21 +000098};
99
Juergen Ributzkad12ccbd2013-11-19 00:57:56 +0000100// Pin the vtable to this file.
101void X86InstrInfo::anchor() {}
102
Eric Christopher6c786a12014-06-10 22:34:31 +0000103X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
104 : X86GenInstrInfo(
Pavel Chupinbe9f1212014-09-22 13:11:35 +0000105 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32),
106 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32)),
Eric Christophered6a4462015-03-12 17:54:19 +0000107 Subtarget(STI), RI(STI.getTargetTriple()) {
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +0000108
Sanjay Patele951a382015-02-17 22:38:06 +0000109 static const X86MemoryFoldTableEntry MemoryFoldTable2Addr[] = {
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000110 { X86::ADC32ri, X86::ADC32mi, 0 },
111 { X86::ADC32ri8, X86::ADC32mi8, 0 },
112 { X86::ADC32rr, X86::ADC32mr, 0 },
113 { X86::ADC64ri32, X86::ADC64mi32, 0 },
114 { X86::ADC64ri8, X86::ADC64mi8, 0 },
115 { X86::ADC64rr, X86::ADC64mr, 0 },
116 { X86::ADD16ri, X86::ADD16mi, 0 },
117 { X86::ADD16ri8, X86::ADD16mi8, 0 },
118 { X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE },
119 { X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE },
120 { X86::ADD16rr, X86::ADD16mr, 0 },
121 { X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE },
122 { X86::ADD32ri, X86::ADD32mi, 0 },
123 { X86::ADD32ri8, X86::ADD32mi8, 0 },
124 { X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE },
125 { X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE },
126 { X86::ADD32rr, X86::ADD32mr, 0 },
127 { X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE },
128 { X86::ADD64ri32, X86::ADD64mi32, 0 },
129 { X86::ADD64ri8, X86::ADD64mi8, 0 },
130 { X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE },
131 { X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE },
132 { X86::ADD64rr, X86::ADD64mr, 0 },
133 { X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE },
134 { X86::ADD8ri, X86::ADD8mi, 0 },
135 { X86::ADD8rr, X86::ADD8mr, 0 },
136 { X86::AND16ri, X86::AND16mi, 0 },
137 { X86::AND16ri8, X86::AND16mi8, 0 },
138 { X86::AND16rr, X86::AND16mr, 0 },
139 { X86::AND32ri, X86::AND32mi, 0 },
140 { X86::AND32ri8, X86::AND32mi8, 0 },
141 { X86::AND32rr, X86::AND32mr, 0 },
142 { X86::AND64ri32, X86::AND64mi32, 0 },
143 { X86::AND64ri8, X86::AND64mi8, 0 },
144 { X86::AND64rr, X86::AND64mr, 0 },
145 { X86::AND8ri, X86::AND8mi, 0 },
146 { X86::AND8rr, X86::AND8mr, 0 },
147 { X86::DEC16r, X86::DEC16m, 0 },
148 { X86::DEC32r, X86::DEC32m, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000149 { X86::DEC64r, X86::DEC64m, 0 },
150 { X86::DEC8r, X86::DEC8m, 0 },
151 { X86::INC16r, X86::INC16m, 0 },
152 { X86::INC32r, X86::INC32m, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000153 { X86::INC64r, X86::INC64m, 0 },
154 { X86::INC8r, X86::INC8m, 0 },
155 { X86::NEG16r, X86::NEG16m, 0 },
156 { X86::NEG32r, X86::NEG32m, 0 },
157 { X86::NEG64r, X86::NEG64m, 0 },
158 { X86::NEG8r, X86::NEG8m, 0 },
159 { X86::NOT16r, X86::NOT16m, 0 },
160 { X86::NOT32r, X86::NOT32m, 0 },
161 { X86::NOT64r, X86::NOT64m, 0 },
162 { X86::NOT8r, X86::NOT8m, 0 },
163 { X86::OR16ri, X86::OR16mi, 0 },
164 { X86::OR16ri8, X86::OR16mi8, 0 },
165 { X86::OR16rr, X86::OR16mr, 0 },
166 { X86::OR32ri, X86::OR32mi, 0 },
167 { X86::OR32ri8, X86::OR32mi8, 0 },
168 { X86::OR32rr, X86::OR32mr, 0 },
169 { X86::OR64ri32, X86::OR64mi32, 0 },
170 { X86::OR64ri8, X86::OR64mi8, 0 },
171 { X86::OR64rr, X86::OR64mr, 0 },
172 { X86::OR8ri, X86::OR8mi, 0 },
173 { X86::OR8rr, X86::OR8mr, 0 },
174 { X86::ROL16r1, X86::ROL16m1, 0 },
175 { X86::ROL16rCL, X86::ROL16mCL, 0 },
176 { X86::ROL16ri, X86::ROL16mi, 0 },
177 { X86::ROL32r1, X86::ROL32m1, 0 },
178 { X86::ROL32rCL, X86::ROL32mCL, 0 },
179 { X86::ROL32ri, X86::ROL32mi, 0 },
180 { X86::ROL64r1, X86::ROL64m1, 0 },
181 { X86::ROL64rCL, X86::ROL64mCL, 0 },
182 { X86::ROL64ri, X86::ROL64mi, 0 },
183 { X86::ROL8r1, X86::ROL8m1, 0 },
184 { X86::ROL8rCL, X86::ROL8mCL, 0 },
185 { X86::ROL8ri, X86::ROL8mi, 0 },
186 { X86::ROR16r1, X86::ROR16m1, 0 },
187 { X86::ROR16rCL, X86::ROR16mCL, 0 },
188 { X86::ROR16ri, X86::ROR16mi, 0 },
189 { X86::ROR32r1, X86::ROR32m1, 0 },
190 { X86::ROR32rCL, X86::ROR32mCL, 0 },
191 { X86::ROR32ri, X86::ROR32mi, 0 },
192 { X86::ROR64r1, X86::ROR64m1, 0 },
193 { X86::ROR64rCL, X86::ROR64mCL, 0 },
194 { X86::ROR64ri, X86::ROR64mi, 0 },
195 { X86::ROR8r1, X86::ROR8m1, 0 },
196 { X86::ROR8rCL, X86::ROR8mCL, 0 },
197 { X86::ROR8ri, X86::ROR8mi, 0 },
198 { X86::SAR16r1, X86::SAR16m1, 0 },
199 { X86::SAR16rCL, X86::SAR16mCL, 0 },
200 { X86::SAR16ri, X86::SAR16mi, 0 },
201 { X86::SAR32r1, X86::SAR32m1, 0 },
202 { X86::SAR32rCL, X86::SAR32mCL, 0 },
203 { X86::SAR32ri, X86::SAR32mi, 0 },
204 { X86::SAR64r1, X86::SAR64m1, 0 },
205 { X86::SAR64rCL, X86::SAR64mCL, 0 },
206 { X86::SAR64ri, X86::SAR64mi, 0 },
207 { X86::SAR8r1, X86::SAR8m1, 0 },
208 { X86::SAR8rCL, X86::SAR8mCL, 0 },
209 { X86::SAR8ri, X86::SAR8mi, 0 },
210 { X86::SBB32ri, X86::SBB32mi, 0 },
211 { X86::SBB32ri8, X86::SBB32mi8, 0 },
212 { X86::SBB32rr, X86::SBB32mr, 0 },
213 { X86::SBB64ri32, X86::SBB64mi32, 0 },
214 { X86::SBB64ri8, X86::SBB64mi8, 0 },
215 { X86::SBB64rr, X86::SBB64mr, 0 },
216 { X86::SHL16rCL, X86::SHL16mCL, 0 },
217 { X86::SHL16ri, X86::SHL16mi, 0 },
218 { X86::SHL32rCL, X86::SHL32mCL, 0 },
219 { X86::SHL32ri, X86::SHL32mi, 0 },
220 { X86::SHL64rCL, X86::SHL64mCL, 0 },
221 { X86::SHL64ri, X86::SHL64mi, 0 },
222 { X86::SHL8rCL, X86::SHL8mCL, 0 },
223 { X86::SHL8ri, X86::SHL8mi, 0 },
224 { X86::SHLD16rrCL, X86::SHLD16mrCL, 0 },
225 { X86::SHLD16rri8, X86::SHLD16mri8, 0 },
226 { X86::SHLD32rrCL, X86::SHLD32mrCL, 0 },
227 { X86::SHLD32rri8, X86::SHLD32mri8, 0 },
228 { X86::SHLD64rrCL, X86::SHLD64mrCL, 0 },
229 { X86::SHLD64rri8, X86::SHLD64mri8, 0 },
230 { X86::SHR16r1, X86::SHR16m1, 0 },
231 { X86::SHR16rCL, X86::SHR16mCL, 0 },
232 { X86::SHR16ri, X86::SHR16mi, 0 },
233 { X86::SHR32r1, X86::SHR32m1, 0 },
234 { X86::SHR32rCL, X86::SHR32mCL, 0 },
235 { X86::SHR32ri, X86::SHR32mi, 0 },
236 { X86::SHR64r1, X86::SHR64m1, 0 },
237 { X86::SHR64rCL, X86::SHR64mCL, 0 },
238 { X86::SHR64ri, X86::SHR64mi, 0 },
239 { X86::SHR8r1, X86::SHR8m1, 0 },
240 { X86::SHR8rCL, X86::SHR8mCL, 0 },
241 { X86::SHR8ri, X86::SHR8mi, 0 },
242 { X86::SHRD16rrCL, X86::SHRD16mrCL, 0 },
243 { X86::SHRD16rri8, X86::SHRD16mri8, 0 },
244 { X86::SHRD32rrCL, X86::SHRD32mrCL, 0 },
245 { X86::SHRD32rri8, X86::SHRD32mri8, 0 },
246 { X86::SHRD64rrCL, X86::SHRD64mrCL, 0 },
247 { X86::SHRD64rri8, X86::SHRD64mri8, 0 },
248 { X86::SUB16ri, X86::SUB16mi, 0 },
249 { X86::SUB16ri8, X86::SUB16mi8, 0 },
250 { X86::SUB16rr, X86::SUB16mr, 0 },
251 { X86::SUB32ri, X86::SUB32mi, 0 },
252 { X86::SUB32ri8, X86::SUB32mi8, 0 },
253 { X86::SUB32rr, X86::SUB32mr, 0 },
254 { X86::SUB64ri32, X86::SUB64mi32, 0 },
255 { X86::SUB64ri8, X86::SUB64mi8, 0 },
256 { X86::SUB64rr, X86::SUB64mr, 0 },
257 { X86::SUB8ri, X86::SUB8mi, 0 },
258 { X86::SUB8rr, X86::SUB8mr, 0 },
259 { X86::XOR16ri, X86::XOR16mi, 0 },
260 { X86::XOR16ri8, X86::XOR16mi8, 0 },
261 { X86::XOR16rr, X86::XOR16mr, 0 },
262 { X86::XOR32ri, X86::XOR32mi, 0 },
263 { X86::XOR32ri8, X86::XOR32mi8, 0 },
264 { X86::XOR32rr, X86::XOR32mr, 0 },
265 { X86::XOR64ri32, X86::XOR64mi32, 0 },
266 { X86::XOR64ri8, X86::XOR64mi8, 0 },
267 { X86::XOR64rr, X86::XOR64mr, 0 },
268 { X86::XOR8ri, X86::XOR8mi, 0 },
269 { X86::XOR8rr, X86::XOR8mr, 0 }
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000270 };
271
Sanjay Patele951a382015-02-17 22:38:06 +0000272 for (unsigned i = 0, e = array_lengthof(MemoryFoldTable2Addr); i != e; ++i) {
273 unsigned RegOp = MemoryFoldTable2Addr[i].RegOp;
274 unsigned MemOp = MemoryFoldTable2Addr[i].MemOp;
275 unsigned Flags = MemoryFoldTable2Addr[i].Flags;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000276 AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
277 RegOp, MemOp,
278 // Index 0, folded load and store, no alignment requirement.
279 Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000280 }
281
Sanjay Patele951a382015-02-17 22:38:06 +0000282 static const X86MemoryFoldTableEntry MemoryFoldTable0[] = {
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000283 { X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD },
284 { X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD },
285 { X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD },
286 { X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD },
287 { X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000288 { X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD },
289 { X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD },
290 { X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD },
291 { X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD },
292 { X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD },
293 { X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD },
294 { X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD },
295 { X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD },
296 { X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD },
297 { X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD },
298 { X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD },
299 { X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD },
300 { X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD },
301 { X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD },
302 { X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD },
Craig Topperd09a9af2012-12-26 01:47:12 +0000303 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000304 { X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD },
305 { X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD },
306 { X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD },
307 { X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD },
308 { X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD },
309 { X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD },
310 { X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD },
311 { X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD },
312 { X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD },
313 { X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD },
314 { X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE },
315 { X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE },
316 { X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE },
317 { X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE },
318 { X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE },
319 { X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE },
320 { X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE },
321 { X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE },
322 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
323 { X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
324 { X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
325 { X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000326 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE },
327 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE },
328 { X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE },
329 { X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE },
330 { X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE },
331 { X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000332 { X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD },
333 { X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD },
334 { X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD },
335 { X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +0000336 { X86::PEXTRDrr, X86::PEXTRDmr, TB_FOLDED_STORE },
337 { X86::PEXTRQrr, X86::PEXTRQmr, TB_FOLDED_STORE },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000338 { X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE },
339 { X86::SETAr, X86::SETAm, TB_FOLDED_STORE },
340 { X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE },
341 { X86::SETBr, X86::SETBm, TB_FOLDED_STORE },
342 { X86::SETEr, X86::SETEm, TB_FOLDED_STORE },
343 { X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE },
344 { X86::SETGr, X86::SETGm, TB_FOLDED_STORE },
345 { X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE },
346 { X86::SETLr, X86::SETLm, TB_FOLDED_STORE },
347 { X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE },
348 { X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE },
349 { X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE },
350 { X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE },
351 { X86::SETOr, X86::SETOm, TB_FOLDED_STORE },
352 { X86::SETPr, X86::SETPm, TB_FOLDED_STORE },
353 { X86::SETSr, X86::SETSm, TB_FOLDED_STORE },
354 { X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD },
355 { X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD },
Reid Klecknera580b6e2015-01-30 21:03:31 +0000356 { X86::TAILJMPr64_REX, X86::TAILJMPm64_REX, TB_FOLDED_LOAD },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000357 { X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD },
358 { X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD },
359 { X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000360 { X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD },
Simon Pilgrimd142ab72015-02-10 13:22:57 +0000361
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000362 // AVX 128-bit versions of foldable instructions
Craig Topperd09a9af2012-12-26 01:47:12 +0000363 { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE },
Craig Topperd78429f2012-01-14 18:14:53 +0000364 { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000365 { X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
366 { X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
367 { X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
368 { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE },
369 { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
370 { X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE },
371 { X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE },
372 { X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE },
373 { X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +0000374 { X86::VPEXTRDrr, X86::VPEXTRDmr, TB_FOLDED_STORE },
375 { X86::VPEXTRQrr, X86::VPEXTRQmr, TB_FOLDED_STORE },
Simon Pilgrimd142ab72015-02-10 13:22:57 +0000376
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000377 // AVX 256-bit foldable instructions
Craig Topperd78429f2012-01-14 18:14:53 +0000378 { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000379 { X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
380 { X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
381 { X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
382 { X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE },
Elena Demikhovsky534015e2013-09-02 07:12:29 +0000383 { X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE },
Simon Pilgrimd142ab72015-02-10 13:22:57 +0000384
Elena Demikhovsky534015e2013-09-02 07:12:29 +0000385 // AVX-512 foldable instructions
Robert Khasanov3c30c4b2014-08-06 15:40:34 +0000386 { X86::VMOVPDI2DIZrr, X86::VMOVPDI2DIZmr, TB_FOLDED_STORE },
387 { X86::VMOVAPDZrr, X86::VMOVAPDZmr, TB_FOLDED_STORE | TB_ALIGN_64 },
388 { X86::VMOVAPSZrr, X86::VMOVAPSZmr, TB_FOLDED_STORE | TB_ALIGN_64 },
389 { X86::VMOVDQA32Zrr, X86::VMOVDQA32Zmr, TB_FOLDED_STORE | TB_ALIGN_64 },
390 { X86::VMOVDQA64Zrr, X86::VMOVDQA64Zmr, TB_FOLDED_STORE | TB_ALIGN_64 },
391 { X86::VMOVUPDZrr, X86::VMOVUPDZmr, TB_FOLDED_STORE },
392 { X86::VMOVUPSZrr, X86::VMOVUPSZmr, TB_FOLDED_STORE },
Robert Khasanov6d62c022014-09-26 09:48:50 +0000393 { X86::VMOVDQU8Zrr, X86::VMOVDQU8Zmr, TB_FOLDED_STORE },
394 { X86::VMOVDQU16Zrr, X86::VMOVDQU16Zmr, TB_FOLDED_STORE },
Robert Khasanov3c30c4b2014-08-06 15:40:34 +0000395 { X86::VMOVDQU32Zrr, X86::VMOVDQU32Zmr, TB_FOLDED_STORE },
Robert Khasanov6d62c022014-09-26 09:48:50 +0000396 { X86::VMOVDQU64Zrr, X86::VMOVDQU64Zmr, TB_FOLDED_STORE },
Simon Pilgrimd142ab72015-02-10 13:22:57 +0000397
Robert Khasanov6d62c022014-09-26 09:48:50 +0000398 // AVX-512 foldable instructions (256-bit versions)
399 { X86::VMOVAPDZ256rr, X86::VMOVAPDZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
400 { X86::VMOVAPSZ256rr, X86::VMOVAPSZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
401 { X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
402 { X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
403 { X86::VMOVUPDZ256rr, X86::VMOVUPDZ256mr, TB_FOLDED_STORE },
404 { X86::VMOVUPSZ256rr, X86::VMOVUPSZ256mr, TB_FOLDED_STORE },
405 { X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256mr, TB_FOLDED_STORE },
406 { X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256mr, TB_FOLDED_STORE },
407 { X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256mr, TB_FOLDED_STORE },
408 { X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256mr, TB_FOLDED_STORE },
Simon Pilgrimd142ab72015-02-10 13:22:57 +0000409
Robert Khasanov6d62c022014-09-26 09:48:50 +0000410 // AVX-512 foldable instructions (128-bit versions)
411 { X86::VMOVAPDZ128rr, X86::VMOVAPDZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
412 { X86::VMOVAPSZ128rr, X86::VMOVAPSZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
413 { X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
414 { X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
415 { X86::VMOVUPDZ128rr, X86::VMOVUPDZ128mr, TB_FOLDED_STORE },
416 { X86::VMOVUPSZ128rr, X86::VMOVUPSZ128mr, TB_FOLDED_STORE },
417 { X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128mr, TB_FOLDED_STORE },
418 { X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128mr, TB_FOLDED_STORE },
419 { X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128mr, TB_FOLDED_STORE },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000420 { X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128mr, TB_FOLDED_STORE },
Simon Pilgrimd142ab72015-02-10 13:22:57 +0000421
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000422 // F16C foldable instructions
423 { X86::VCVTPS2PHrr, X86::VCVTPS2PHmr, TB_FOLDED_STORE },
424 { X86::VCVTPS2PHYrr, X86::VCVTPS2PHYmr, TB_FOLDED_STORE }
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000425 };
426
Sanjay Patele951a382015-02-17 22:38:06 +0000427 for (unsigned i = 0, e = array_lengthof(MemoryFoldTable0); i != e; ++i) {
428 unsigned RegOp = MemoryFoldTable0[i].RegOp;
429 unsigned MemOp = MemoryFoldTable0[i].MemOp;
430 unsigned Flags = MemoryFoldTable0[i].Flags;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000431 AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
432 RegOp, MemOp, TB_INDEX_0 | Flags);
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000433 }
434
Sanjay Patele951a382015-02-17 22:38:06 +0000435 static const X86MemoryFoldTableEntry MemoryFoldTable1[] = {
Simon Pilgrim3a771802015-06-07 18:34:25 +0000436 { X86::BSF16rr, X86::BSF16rm, 0 },
437 { X86::BSF32rr, X86::BSF32rm, 0 },
438 { X86::BSF64rr, X86::BSF64rm, 0 },
439 { X86::BSR16rr, X86::BSR16rm, 0 },
440 { X86::BSR32rr, X86::BSR32rm, 0 },
441 { X86::BSR64rr, X86::BSR64rm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000442 { X86::CMP16rr, X86::CMP16rm, 0 },
443 { X86::CMP32rr, X86::CMP32rm, 0 },
444 { X86::CMP64rr, X86::CMP64rm, 0 },
445 { X86::CMP8rr, X86::CMP8rm, 0 },
446 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
447 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
448 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
449 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
450 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
451 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
452 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
453 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
454 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
455 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000456 { X86::IMUL16rri, X86::IMUL16rmi, 0 },
457 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
458 { X86::IMUL32rri, X86::IMUL32rmi, 0 },
459 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
460 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
461 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
462 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
463 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000464 { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 },
465 { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 },
Craig Topper11913052012-06-15 07:02:58 +0000466 { X86::CVTSS2SI64rr, X86::CVTSS2SI64rm, 0 },
467 { X86::CVTSS2SIrr, X86::CVTSS2SIrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000468 { X86::CVTDQ2PDrr, X86::CVTDQ2PDrm, TB_ALIGN_16 },
Simon Pilgrim1fc483d2014-11-05 22:28:25 +0000469 { X86::CVTDQ2PSrr, X86::CVTDQ2PSrm, TB_ALIGN_16 },
Simon Pilgrim615ab8e2014-11-06 22:15:41 +0000470 { X86::CVTPD2DQrr, X86::CVTPD2DQrm, TB_ALIGN_16 },
Simon Pilgrimbf1e0792014-12-16 22:30:10 +0000471 { X86::CVTPD2PSrr, X86::CVTPD2PSrm, TB_ALIGN_16 },
Simon Pilgrim615ab8e2014-11-06 22:15:41 +0000472 { X86::CVTPS2DQrr, X86::CVTPS2DQrm, TB_ALIGN_16 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000473 { X86::CVTPS2PDrr, X86::CVTPS2PDrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000474 { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 },
475 { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 },
476 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
477 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
478 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
479 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
480 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
481 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000482 { X86::MOV16rr, X86::MOV16rm, 0 },
483 { X86::MOV32rr, X86::MOV32rm, 0 },
484 { X86::MOV64rr, X86::MOV64rm, 0 },
485 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
486 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
487 { X86::MOV8rr, X86::MOV8rm, 0 },
488 { X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 },
489 { X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000490 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
491 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
492 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
493 { X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000494 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 },
495 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 },
496 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
497 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
498 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
499 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
500 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
501 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
502 { X86::MOVUPDrr, X86::MOVUPDrm, TB_ALIGN_16 },
503 { X86::MOVUPSrr, X86::MOVUPSrm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000504 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
505 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, TB_ALIGN_16 },
506 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
507 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
508 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
509 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
Craig Topper182b00a2011-11-14 08:07:55 +0000510 { X86::PABSBrr128, X86::PABSBrm128, TB_ALIGN_16 },
511 { X86::PABSDrr128, X86::PABSDrm128, TB_ALIGN_16 },
512 { X86::PABSWrr128, X86::PABSWrm128, TB_ALIGN_16 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +0000513 { X86::PCMPESTRIrr, X86::PCMPESTRIrm, TB_ALIGN_16 },
514 { X86::PCMPESTRM128rr, X86::PCMPESTRM128rm, TB_ALIGN_16 },
515 { X86::PCMPISTRIrr, X86::PCMPISTRIrm, TB_ALIGN_16 },
516 { X86::PCMPISTRM128rr, X86::PCMPISTRM128rm, TB_ALIGN_16 },
517 { X86::PHMINPOSUWrr128, X86::PHMINPOSUWrm128, TB_ALIGN_16 },
518 { X86::PMOVSXBDrr, X86::PMOVSXBDrm, TB_ALIGN_16 },
519 { X86::PMOVSXBQrr, X86::PMOVSXBQrm, TB_ALIGN_16 },
520 { X86::PMOVSXBWrr, X86::PMOVSXBWrm, TB_ALIGN_16 },
521 { X86::PMOVSXDQrr, X86::PMOVSXDQrm, TB_ALIGN_16 },
522 { X86::PMOVSXWDrr, X86::PMOVSXWDrm, TB_ALIGN_16 },
523 { X86::PMOVSXWQrr, X86::PMOVSXWQrm, TB_ALIGN_16 },
524 { X86::PMOVZXBDrr, X86::PMOVZXBDrm, TB_ALIGN_16 },
525 { X86::PMOVZXBQrr, X86::PMOVZXBQrm, TB_ALIGN_16 },
526 { X86::PMOVZXBWrr, X86::PMOVZXBWrm, TB_ALIGN_16 },
527 { X86::PMOVZXDQrr, X86::PMOVZXDQrm, TB_ALIGN_16 },
528 { X86::PMOVZXWDrr, X86::PMOVZXWDrm, TB_ALIGN_16 },
529 { X86::PMOVZXWQrr, X86::PMOVZXWQrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000530 { X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 },
531 { X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 },
532 { X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +0000533 { X86::PTESTrr, X86::PTESTrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000534 { X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 },
Sanjay Patela9f6d352015-05-07 15:48:53 +0000535 { X86::RCPSSr, X86::RCPSSm, 0 },
536 { X86::RCPSSr_Int, X86::RCPSSm_Int, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000537 { X86::ROUNDPDr, X86::ROUNDPDm, TB_ALIGN_16 },
538 { X86::ROUNDPSr, X86::ROUNDPSm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000539 { X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000540 { X86::RSQRTSSr, X86::RSQRTSSm, 0 },
541 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
542 { X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000543 { X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000544 { X86::SQRTSDr, X86::SQRTSDm, 0 },
545 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
546 { X86::SQRTSSr, X86::SQRTSSm, 0 },
547 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
548 { X86::TEST16rr, X86::TEST16rm, 0 },
549 { X86::TEST32rr, X86::TEST32rm, 0 },
550 { X86::TEST64rr, X86::TEST64rm, 0 },
551 { X86::TEST8rr, X86::TEST8rm, 0 },
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000552 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000553 { X86::UCOMISDrr, X86::UCOMISDrm, 0 },
554 { X86::UCOMISSrr, X86::UCOMISSrm, 0 },
Simon Pilgrimd142ab72015-02-10 13:22:57 +0000555
Bruno Cardoso Lopesab7afa92015-02-25 15:14:02 +0000556 // MMX version of foldable instructions
557 { X86::MMX_CVTPD2PIirr, X86::MMX_CVTPD2PIirm, 0 },
558 { X86::MMX_CVTPI2PDirr, X86::MMX_CVTPI2PDirm, 0 },
559 { X86::MMX_CVTPS2PIirr, X86::MMX_CVTPS2PIirm, 0 },
560 { X86::MMX_CVTTPD2PIirr, X86::MMX_CVTTPD2PIirm, 0 },
561 { X86::MMX_CVTTPS2PIirr, X86::MMX_CVTTPS2PIirm, 0 },
562 { X86::MMX_MOVD64to64rr, X86::MMX_MOVQ64rm, 0 },
563 { X86::MMX_PABSBrr64, X86::MMX_PABSBrm64, 0 },
564 { X86::MMX_PABSDrr64, X86::MMX_PABSDrm64, 0 },
565 { X86::MMX_PABSWrr64, X86::MMX_PABSWrm64, 0 },
566 { X86::MMX_PSHUFWri, X86::MMX_PSHUFWmi, 0 },
567
Simon Pilgrim8dba5da2015-04-03 11:50:30 +0000568 // 3DNow! version of foldable instructions
569 { X86::PF2IDrr, X86::PF2IDrm, 0 },
570 { X86::PF2IWrr, X86::PF2IWrm, 0 },
571 { X86::PFRCPrr, X86::PFRCPrm, 0 },
572 { X86::PFRSQRTrr, X86::PFRSQRTrm, 0 },
573 { X86::PI2FDrr, X86::PI2FDrm, 0 },
574 { X86::PI2FWrr, X86::PI2FWrm, 0 },
575 { X86::PSWAPDrr, X86::PSWAPDrm, 0 },
576
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000577 // AVX 128-bit versions of foldable instructions
578 { X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, 0 },
579 { X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000580 { X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 },
581 { X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 },
Craig Topper11913052012-06-15 07:02:58 +0000582 { X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 },
583 { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
Pete Cooper8bbce762012-06-14 22:12:58 +0000584 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 },
Craig Topper11913052012-06-15 07:02:58 +0000585 { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm, 0 },
586 { X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 },
587 { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
588 { X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 },
589 { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm, 0 },
590 { X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, 0 },
591 { X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, 0 },
592 { X86::VCVTSS2SI64rr, X86::VCVTSS2SI64rm, 0 },
593 { X86::VCVTSS2SIrr, X86::VCVTSS2SIrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000594 { X86::VCVTDQ2PDrr, X86::VCVTDQ2PDrm, 0 },
Simon Pilgrim1fc483d2014-11-05 22:28:25 +0000595 { X86::VCVTDQ2PSrr, X86::VCVTDQ2PSrm, 0 },
Simon Pilgrim615ab8e2014-11-06 22:15:41 +0000596 { X86::VCVTPD2DQrr, X86::VCVTPD2DQXrm, 0 },
Simon Pilgrimbf1e0792014-12-16 22:30:10 +0000597 { X86::VCVTPD2PSrr, X86::VCVTPD2PSXrm, 0 },
Simon Pilgrim615ab8e2014-11-06 22:15:41 +0000598 { X86::VCVTPS2DQrr, X86::VCVTPS2DQrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000599 { X86::VCVTPS2PDrr, X86::VCVTPS2PDrm, 0 },
Simon Pilgrim615ab8e2014-11-06 22:15:41 +0000600 { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQXrm, 0 },
601 { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000602 { X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 },
603 { X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 },
604 { X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 },
605 { X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 },
606 { X86::VMOVDDUPrr, X86::VMOVDDUPrm, 0 },
607 { X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 },
608 { X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 },
609 { X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 },
Simon Pilgrim7e6d5732015-01-22 22:39:59 +0000610 { X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, 0 },
611 { X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, 0 },
Craig Topperb2922162012-12-26 02:14:19 +0000612 { X86::VMOVUPDrr, X86::VMOVUPDrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000613 { X86::VMOVUPSrr, X86::VMOVUPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000614 { X86::VMOVZQI2PQIrr, X86::VMOVZQI2PQIrm, 0 },
615 { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm, TB_ALIGN_16 },
Craig Topper81d1e592012-12-26 02:44:47 +0000616 { X86::VPABSBrr128, X86::VPABSBrm128, 0 },
617 { X86::VPABSDrr128, X86::VPABSDrm128, 0 },
618 { X86::VPABSWrr128, X86::VPABSWrm128, 0 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +0000619 { X86::VPCMPESTRIrr, X86::VPCMPESTRIrm, 0 },
620 { X86::VPCMPESTRM128rr, X86::VPCMPESTRM128rm, 0 },
621 { X86::VPCMPISTRIrr, X86::VPCMPISTRIrm, 0 },
622 { X86::VPCMPISTRM128rr, X86::VPCMPISTRM128rm, 0 },
623 { X86::VPHMINPOSUWrr128, X86::VPHMINPOSUWrm128, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000624 { X86::VPERMILPDri, X86::VPERMILPDmi, 0 },
625 { X86::VPERMILPSri, X86::VPERMILPSmi, 0 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +0000626 { X86::VPMOVSXBDrr, X86::VPMOVSXBDrm, 0 },
627 { X86::VPMOVSXBQrr, X86::VPMOVSXBQrm, 0 },
628 { X86::VPMOVSXBWrr, X86::VPMOVSXBWrm, 0 },
629 { X86::VPMOVSXDQrr, X86::VPMOVSXDQrm, 0 },
630 { X86::VPMOVSXWDrr, X86::VPMOVSXWDrm, 0 },
631 { X86::VPMOVSXWQrr, X86::VPMOVSXWQrm, 0 },
632 { X86::VPMOVZXBDrr, X86::VPMOVZXBDrm, 0 },
633 { X86::VPMOVZXBQrr, X86::VPMOVZXBQrm, 0 },
634 { X86::VPMOVZXBWrr, X86::VPMOVZXBWrm, 0 },
635 { X86::VPMOVZXDQrr, X86::VPMOVZXDQrm, 0 },
636 { X86::VPMOVZXWDrr, X86::VPMOVZXWDrm, 0 },
637 { X86::VPMOVZXWQrr, X86::VPMOVZXWQrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000638 { X86::VPSHUFDri, X86::VPSHUFDmi, 0 },
639 { X86::VPSHUFHWri, X86::VPSHUFHWmi, 0 },
640 { X86::VPSHUFLWri, X86::VPSHUFLWmi, 0 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +0000641 { X86::VPTESTrr, X86::VPTESTrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000642 { X86::VRCPPSr, X86::VRCPPSm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000643 { X86::VROUNDPDr, X86::VROUNDPDm, 0 },
644 { X86::VROUNDPSr, X86::VROUNDPSm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000645 { X86::VRSQRTPSr, X86::VRSQRTPSm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000646 { X86::VSQRTPDr, X86::VSQRTPDm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000647 { X86::VSQRTPSr, X86::VSQRTPSm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000648 { X86::VTESTPDrr, X86::VTESTPDrm, 0 },
649 { X86::VTESTPSrr, X86::VTESTPSrm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000650 { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000651 { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 },
Nadav Rotemee3552f2012-07-15 12:26:30 +0000652
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000653 // AVX 256-bit foldable instructions
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000654 { X86::VCVTDQ2PDYrr, X86::VCVTDQ2PDYrm, 0 },
Simon Pilgrim1fc483d2014-11-05 22:28:25 +0000655 { X86::VCVTDQ2PSYrr, X86::VCVTDQ2PSYrm, 0 },
Simon Pilgrim615ab8e2014-11-06 22:15:41 +0000656 { X86::VCVTPD2DQYrr, X86::VCVTPD2DQYrm, 0 },
Simon Pilgrimbf1e0792014-12-16 22:30:10 +0000657 { X86::VCVTPD2PSYrr, X86::VCVTPD2PSYrm, 0 },
Simon Pilgrim615ab8e2014-11-06 22:15:41 +0000658 { X86::VCVTPS2DQYrr, X86::VCVTPS2DQYrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000659 { X86::VCVTPS2PDYrr, X86::VCVTPS2PDYrm, 0 },
Simon Pilgrim615ab8e2014-11-06 22:15:41 +0000660 { X86::VCVTTPD2DQYrr, X86::VCVTTPD2DQYrm, 0 },
661 { X86::VCVTTPS2DQYrr, X86::VCVTTPS2DQYrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000662 { X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 },
663 { X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 },
Simon Pilgrim7e6d5732015-01-22 22:39:59 +0000664 { X86::VMOVDDUPYrr, X86::VMOVDDUPYrm, 0 },
Craig Toppera875b7c2012-01-19 08:50:38 +0000665 { X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_32 },
Simon Pilgrim7e6d5732015-01-22 22:39:59 +0000666 { X86::VMOVSLDUPYrr, X86::VMOVSLDUPYrm, 0 },
667 { X86::VMOVSHDUPYrr, X86::VMOVSHDUPYrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000668 { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 },
Craig Topper182b00a2011-11-14 08:07:55 +0000669 { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000670 { X86::VPERMILPDYri, X86::VPERMILPDYmi, 0 },
671 { X86::VPERMILPSYri, X86::VPERMILPSYmi, 0 },
Simon Pilgrima2618672015-02-07 21:44:06 +0000672 { X86::VPTESTYrr, X86::VPTESTYrm, 0 },
Simon Pilgrima6367262014-10-25 08:11:20 +0000673 { X86::VRCPPSYr, X86::VRCPPSYm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000674 { X86::VROUNDYPDr, X86::VROUNDYPDm, 0 },
675 { X86::VROUNDYPSr, X86::VROUNDYPSm, 0 },
Simon Pilgrima6367262014-10-25 08:11:20 +0000676 { X86::VRSQRTPSYr, X86::VRSQRTPSYm, 0 },
677 { X86::VSQRTPDYr, X86::VSQRTPDYm, 0 },
678 { X86::VSQRTPSYr, X86::VSQRTPSYm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000679 { X86::VTESTPDYrr, X86::VTESTPDYrm, 0 },
680 { X86::VTESTPSYrr, X86::VTESTPSYrm, 0 },
Nadav Rotemee3552f2012-07-15 12:26:30 +0000681
Craig Topper182b00a2011-11-14 08:07:55 +0000682 // AVX2 foldable instructions
Sanjay Patel1a20fdf2015-02-17 22:09:54 +0000683
684 // VBROADCASTS{SD}rr register instructions were an AVX2 addition while the
685 // VBROADCASTS{SD}rm memory instructions were available from AVX1.
686 // TB_NO_REVERSE prevents unfolding from introducing an illegal instruction
687 // on AVX1 targets. The VPBROADCAST instructions are all AVX2 instructions
688 // so they don't need an equivalent limitation.
Simon Pilgrimd11b0132015-02-08 17:13:54 +0000689 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrm, TB_NO_REVERSE },
690 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm, TB_NO_REVERSE },
691 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm, TB_NO_REVERSE },
Craig Topper81d1e592012-12-26 02:44:47 +0000692 { X86::VPABSBrr256, X86::VPABSBrm256, 0 },
693 { X86::VPABSDrr256, X86::VPABSDrm256, 0 },
694 { X86::VPABSWrr256, X86::VPABSWrm256, 0 },
Simon Pilgrimd142ab72015-02-10 13:22:57 +0000695 { X86::VPBROADCASTBrr, X86::VPBROADCASTBrm, 0 },
696 { X86::VPBROADCASTBYrr, X86::VPBROADCASTBYrm, 0 },
697 { X86::VPBROADCASTDrr, X86::VPBROADCASTDrm, 0 },
698 { X86::VPBROADCASTDYrr, X86::VPBROADCASTDYrm, 0 },
699 { X86::VPBROADCASTQrr, X86::VPBROADCASTQrm, 0 },
700 { X86::VPBROADCASTQYrr, X86::VPBROADCASTQYrm, 0 },
701 { X86::VPBROADCASTWrr, X86::VPBROADCASTWrm, 0 },
702 { X86::VPBROADCASTWYrr, X86::VPBROADCASTWYrm, 0 },
703 { X86::VPERMPDYri, X86::VPERMPDYmi, 0 },
704 { X86::VPERMQYri, X86::VPERMQYmi, 0 },
705 { X86::VPMOVSXBDYrr, X86::VPMOVSXBDYrm, 0 },
706 { X86::VPMOVSXBQYrr, X86::VPMOVSXBQYrm, 0 },
707 { X86::VPMOVSXBWYrr, X86::VPMOVSXBWYrm, 0 },
708 { X86::VPMOVSXDQYrr, X86::VPMOVSXDQYrm, 0 },
709 { X86::VPMOVSXWDYrr, X86::VPMOVSXWDYrm, 0 },
710 { X86::VPMOVSXWQYrr, X86::VPMOVSXWQYrm, 0 },
711 { X86::VPMOVZXBDYrr, X86::VPMOVZXBDYrm, 0 },
712 { X86::VPMOVZXBQYrr, X86::VPMOVZXBQYrm, 0 },
713 { X86::VPMOVZXBWYrr, X86::VPMOVZXBWYrm, 0 },
714 { X86::VPMOVZXDQYrr, X86::VPMOVZXDQYrm, 0 },
715 { X86::VPMOVZXWDYrr, X86::VPMOVZXWDYrm, 0 },
716 { X86::VPMOVZXWQYrr, X86::VPMOVZXWQYrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000717 { X86::VPSHUFDYri, X86::VPSHUFDYmi, 0 },
718 { X86::VPSHUFHWYri, X86::VPSHUFHWYmi, 0 },
719 { X86::VPSHUFLWYri, X86::VPSHUFLWYmi, 0 },
Michael Liao2de86af2012-09-26 08:24:51 +0000720
Simon Pilgrimcd322542015-02-10 12:57:17 +0000721 // XOP foldable instructions
722 { X86::VFRCZPDrr, X86::VFRCZPDrm, 0 },
723 { X86::VFRCZPDrrY, X86::VFRCZPDrmY, 0 },
724 { X86::VFRCZPSrr, X86::VFRCZPSrm, 0 },
725 { X86::VFRCZPSrrY, X86::VFRCZPSrmY, 0 },
726 { X86::VFRCZSDrr, X86::VFRCZSDrm, 0 },
727 { X86::VFRCZSSrr, X86::VFRCZSSrm, 0 },
728 { X86::VPHADDBDrr, X86::VPHADDBDrm, 0 },
729 { X86::VPHADDBQrr, X86::VPHADDBQrm, 0 },
730 { X86::VPHADDBWrr, X86::VPHADDBWrm, 0 },
731 { X86::VPHADDDQrr, X86::VPHADDDQrm, 0 },
732 { X86::VPHADDWDrr, X86::VPHADDWDrm, 0 },
733 { X86::VPHADDWQrr, X86::VPHADDWQrm, 0 },
734 { X86::VPHADDUBDrr, X86::VPHADDUBDrm, 0 },
735 { X86::VPHADDUBQrr, X86::VPHADDUBQrm, 0 },
736 { X86::VPHADDUBWrr, X86::VPHADDUBWrm, 0 },
737 { X86::VPHADDUDQrr, X86::VPHADDUDQrm, 0 },
738 { X86::VPHADDUWDrr, X86::VPHADDUWDrm, 0 },
739 { X86::VPHADDUWQrr, X86::VPHADDUWQrm, 0 },
740 { X86::VPHSUBBWrr, X86::VPHSUBBWrm, 0 },
741 { X86::VPHSUBDQrr, X86::VPHSUBDQrm, 0 },
742 { X86::VPHSUBWDrr, X86::VPHSUBWDrm, 0 },
743 { X86::VPROTBri, X86::VPROTBmi, 0 },
744 { X86::VPROTBrr, X86::VPROTBmr, 0 },
745 { X86::VPROTDri, X86::VPROTDmi, 0 },
746 { X86::VPROTDrr, X86::VPROTDmr, 0 },
747 { X86::VPROTQri, X86::VPROTQmi, 0 },
748 { X86::VPROTQrr, X86::VPROTQmr, 0 },
749 { X86::VPROTWri, X86::VPROTWmi, 0 },
750 { X86::VPROTWrr, X86::VPROTWmr, 0 },
751 { X86::VPSHABrr, X86::VPSHABmr, 0 },
752 { X86::VPSHADrr, X86::VPSHADmr, 0 },
753 { X86::VPSHAQrr, X86::VPSHAQmr, 0 },
754 { X86::VPSHAWrr, X86::VPSHAWmr, 0 },
755 { X86::VPSHLBrr, X86::VPSHLBmr, 0 },
756 { X86::VPSHLDrr, X86::VPSHLDmr, 0 },
757 { X86::VPSHLQrr, X86::VPSHLQmr, 0 },
758 { X86::VPSHLWrr, X86::VPSHLWmr, 0 },
759
Craig Topperc81e2942013-10-05 20:20:51 +0000760 // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions
Craig Topperf924a582012-12-17 05:02:29 +0000761 { X86::BEXTR32rr, X86::BEXTR32rm, 0 },
762 { X86::BEXTR64rr, X86::BEXTR64rm, 0 },
Craig Topperc81e2942013-10-05 20:20:51 +0000763 { X86::BEXTRI32ri, X86::BEXTRI32mi, 0 },
764 { X86::BEXTRI64ri, X86::BEXTRI64mi, 0 },
765 { X86::BLCFILL32rr, X86::BLCFILL32rm, 0 },
766 { X86::BLCFILL64rr, X86::BLCFILL64rm, 0 },
767 { X86::BLCI32rr, X86::BLCI32rm, 0 },
768 { X86::BLCI64rr, X86::BLCI64rm, 0 },
769 { X86::BLCIC32rr, X86::BLCIC32rm, 0 },
770 { X86::BLCIC64rr, X86::BLCIC64rm, 0 },
771 { X86::BLCMSK32rr, X86::BLCMSK32rm, 0 },
772 { X86::BLCMSK64rr, X86::BLCMSK64rm, 0 },
773 { X86::BLCS32rr, X86::BLCS32rm, 0 },
774 { X86::BLCS64rr, X86::BLCS64rm, 0 },
775 { X86::BLSFILL32rr, X86::BLSFILL32rm, 0 },
776 { X86::BLSFILL64rr, X86::BLSFILL64rm, 0 },
Craig Topperf924a582012-12-17 05:02:29 +0000777 { X86::BLSI32rr, X86::BLSI32rm, 0 },
778 { X86::BLSI64rr, X86::BLSI64rm, 0 },
Craig Topperc81e2942013-10-05 20:20:51 +0000779 { X86::BLSIC32rr, X86::BLSIC32rm, 0 },
780 { X86::BLSIC64rr, X86::BLSIC64rm, 0 },
Craig Topperf924a582012-12-17 05:02:29 +0000781 { X86::BLSMSK32rr, X86::BLSMSK32rm, 0 },
782 { X86::BLSMSK64rr, X86::BLSMSK64rm, 0 },
783 { X86::BLSR32rr, X86::BLSR32rm, 0 },
784 { X86::BLSR64rr, X86::BLSR64rm, 0 },
785 { X86::BZHI32rr, X86::BZHI32rm, 0 },
786 { X86::BZHI64rr, X86::BZHI64rm, 0 },
787 { X86::LZCNT16rr, X86::LZCNT16rm, 0 },
788 { X86::LZCNT32rr, X86::LZCNT32rm, 0 },
789 { X86::LZCNT64rr, X86::LZCNT64rm, 0 },
790 { X86::POPCNT16rr, X86::POPCNT16rm, 0 },
791 { X86::POPCNT32rr, X86::POPCNT32rm, 0 },
792 { X86::POPCNT64rr, X86::POPCNT64rm, 0 },
Michael Liao2de86af2012-09-26 08:24:51 +0000793 { X86::RORX32ri, X86::RORX32mi, 0 },
794 { X86::RORX64ri, X86::RORX64mi, 0 },
Michael Liao2b425e12012-09-26 08:26:25 +0000795 { X86::SARX32rr, X86::SARX32rm, 0 },
796 { X86::SARX64rr, X86::SARX64rm, 0 },
797 { X86::SHRX32rr, X86::SHRX32rm, 0 },
798 { X86::SHRX64rr, X86::SHRX64rm, 0 },
799 { X86::SHLX32rr, X86::SHLX32rm, 0 },
800 { X86::SHLX64rr, X86::SHLX64rm, 0 },
Craig Topperc81e2942013-10-05 20:20:51 +0000801 { X86::T1MSKC32rr, X86::T1MSKC32rm, 0 },
802 { X86::T1MSKC64rr, X86::T1MSKC64rm, 0 },
Craig Topperf924a582012-12-17 05:02:29 +0000803 { X86::TZCNT16rr, X86::TZCNT16rm, 0 },
804 { X86::TZCNT32rr, X86::TZCNT32rm, 0 },
805 { X86::TZCNT64rr, X86::TZCNT64rm, 0 },
Craig Topperc81e2942013-10-05 20:20:51 +0000806 { X86::TZMSK32rr, X86::TZMSK32rm, 0 },
807 { X86::TZMSK64rr, X86::TZMSK64rm, 0 },
Elena Demikhovsky534015e2013-09-02 07:12:29 +0000808
809 // AVX-512 foldable instructions
810 { X86::VMOV64toPQIZrr, X86::VMOVQI2PQIZrm, 0 },
811 { X86::VMOVDI2SSZrr, X86::VMOVDI2SSZrm, 0 },
Robert Khasanov3c30c4b2014-08-06 15:40:34 +0000812 { X86::VMOVAPDZrr, X86::VMOVAPDZrm, TB_ALIGN_64 },
813 { X86::VMOVAPSZrr, X86::VMOVAPSZrm, TB_ALIGN_64 },
Robert Khasanov7ca7df02014-08-04 14:35:15 +0000814 { X86::VMOVDQA32Zrr, X86::VMOVDQA32Zrm, TB_ALIGN_64 },
815 { X86::VMOVDQA64Zrr, X86::VMOVDQA64Zrm, TB_ALIGN_64 },
Robert Khasanov6d62c022014-09-26 09:48:50 +0000816 { X86::VMOVDQU8Zrr, X86::VMOVDQU8Zrm, 0 },
817 { X86::VMOVDQU16Zrr, X86::VMOVDQU16Zrm, 0 },
Robert Khasanov7ca7df02014-08-04 14:35:15 +0000818 { X86::VMOVDQU32Zrr, X86::VMOVDQU32Zrm, 0 },
819 { X86::VMOVDQU64Zrr, X86::VMOVDQU64Zrm, 0 },
Robert Khasanov3c30c4b2014-08-06 15:40:34 +0000820 { X86::VMOVUPDZrr, X86::VMOVUPDZrm, 0 },
821 { X86::VMOVUPSZrr, X86::VMOVUPSZrm, 0 },
Elena Demikhovskybb2f6b72014-03-27 09:45:08 +0000822 { X86::VPABSDZrr, X86::VPABSDZrm, 0 },
823 { X86::VPABSQZrr, X86::VPABSQZrm, 0 },
Robert Khasanov8e8c3992014-12-09 18:45:30 +0000824 { X86::VBROADCASTSSZr, X86::VBROADCASTSSZm, TB_NO_REVERSE },
825 { X86::VBROADCASTSDZr, X86::VBROADCASTSDZm, TB_NO_REVERSE },
Simon Pilgrimd142ab72015-02-10 13:22:57 +0000826
Robert Khasanov6d62c022014-09-26 09:48:50 +0000827 // AVX-512 foldable instructions (256-bit versions)
828 { X86::VMOVAPDZ256rr, X86::VMOVAPDZ256rm, TB_ALIGN_32 },
829 { X86::VMOVAPSZ256rr, X86::VMOVAPSZ256rm, TB_ALIGN_32 },
830 { X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256rm, TB_ALIGN_32 },
831 { X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256rm, TB_ALIGN_32 },
832 { X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256rm, 0 },
833 { X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256rm, 0 },
834 { X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256rm, 0 },
835 { X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256rm, 0 },
836 { X86::VMOVUPDZ256rr, X86::VMOVUPDZ256rm, 0 },
837 { X86::VMOVUPSZ256rr, X86::VMOVUPSZ256rm, 0 },
Robert Khasanov8e8c3992014-12-09 18:45:30 +0000838 { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256m, TB_NO_REVERSE },
839 { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256m, TB_NO_REVERSE },
Simon Pilgrimd142ab72015-02-10 13:22:57 +0000840
Robert Khasanov6d62c022014-09-26 09:48:50 +0000841 // AVX-512 foldable instructions (256-bit versions)
842 { X86::VMOVAPDZ128rr, X86::VMOVAPDZ128rm, TB_ALIGN_16 },
843 { X86::VMOVAPSZ128rr, X86::VMOVAPSZ128rm, TB_ALIGN_16 },
844 { X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128rm, TB_ALIGN_16 },
845 { X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128rm, TB_ALIGN_16 },
846 { X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128rm, 0 },
847 { X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128rm, 0 },
848 { X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128rm, 0 },
849 { X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128rm, 0 },
850 { X86::VMOVUPDZ128rr, X86::VMOVUPDZ128rm, 0 },
851 { X86::VMOVUPSZ128rr, X86::VMOVUPSZ128rm, 0 },
Robert Khasanov8e8c3992014-12-09 18:45:30 +0000852 { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128m, TB_NO_REVERSE },
Simon Pilgrimcd322542015-02-10 12:57:17 +0000853
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000854 // F16C foldable instructions
855 { X86::VCVTPH2PSrr, X86::VCVTPH2PSrm, 0 },
856 { X86::VCVTPH2PSYrr, X86::VCVTPH2PSYrm, 0 },
Simon Pilgrimcd322542015-02-10 12:57:17 +0000857
Craig Topper514f02c2013-09-17 06:50:11 +0000858 // AES foldable instructions
859 { X86::AESIMCrr, X86::AESIMCrm, TB_ALIGN_16 },
860 { X86::AESKEYGENASSIST128rr, X86::AESKEYGENASSIST128rm, TB_ALIGN_16 },
Simon Pilgrim295eaad2015-02-12 20:01:03 +0000861 { X86::VAESIMCrr, X86::VAESIMCrm, 0 },
862 { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, 0 }
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000863 };
864
Sanjay Patele951a382015-02-17 22:38:06 +0000865 for (unsigned i = 0, e = array_lengthof(MemoryFoldTable1); i != e; ++i) {
866 unsigned RegOp = MemoryFoldTable1[i].RegOp;
867 unsigned MemOp = MemoryFoldTable1[i].MemOp;
868 unsigned Flags = MemoryFoldTable1[i].Flags;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000869 AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
870 RegOp, MemOp,
871 // Index 1, folded load
872 Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000873 }
874
Sanjay Patele951a382015-02-17 22:38:06 +0000875 static const X86MemoryFoldTableEntry MemoryFoldTable2[] = {
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000876 { X86::ADC32rr, X86::ADC32rm, 0 },
877 { X86::ADC64rr, X86::ADC64rm, 0 },
878 { X86::ADD16rr, X86::ADD16rm, 0 },
879 { X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE },
880 { X86::ADD32rr, X86::ADD32rm, 0 },
881 { X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE },
882 { X86::ADD64rr, X86::ADD64rm, 0 },
883 { X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE },
884 { X86::ADD8rr, X86::ADD8rm, 0 },
885 { X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 },
886 { X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 },
887 { X86::ADDSDrr, X86::ADDSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000888 { X86::ADDSDrr_Int, X86::ADDSDrm_Int, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000889 { X86::ADDSSrr, X86::ADDSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000890 { X86::ADDSSrr_Int, X86::ADDSSrm_Int, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000891 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 },
892 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 },
893 { X86::AND16rr, X86::AND16rm, 0 },
894 { X86::AND32rr, X86::AND32rm, 0 },
895 { X86::AND64rr, X86::AND64rm, 0 },
896 { X86::AND8rr, X86::AND8rm, 0 },
897 { X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 },
898 { X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 },
899 { X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 },
900 { X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 },
Craig Topperd78429f2012-01-14 18:14:53 +0000901 { X86::BLENDPDrri, X86::BLENDPDrmi, TB_ALIGN_16 },
902 { X86::BLENDPSrri, X86::BLENDPSrmi, TB_ALIGN_16 },
903 { X86::BLENDVPDrr0, X86::BLENDVPDrm0, TB_ALIGN_16 },
904 { X86::BLENDVPSrr0, X86::BLENDVPSrm0, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000905 { X86::CMOVA16rr, X86::CMOVA16rm, 0 },
906 { X86::CMOVA32rr, X86::CMOVA32rm, 0 },
907 { X86::CMOVA64rr, X86::CMOVA64rm, 0 },
908 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
909 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
910 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
911 { X86::CMOVB16rr, X86::CMOVB16rm, 0 },
912 { X86::CMOVB32rr, X86::CMOVB32rm, 0 },
913 { X86::CMOVB64rr, X86::CMOVB64rm, 0 },
914 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
915 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
916 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
917 { X86::CMOVE16rr, X86::CMOVE16rm, 0 },
918 { X86::CMOVE32rr, X86::CMOVE32rm, 0 },
919 { X86::CMOVE64rr, X86::CMOVE64rm, 0 },
920 { X86::CMOVG16rr, X86::CMOVG16rm, 0 },
921 { X86::CMOVG32rr, X86::CMOVG32rm, 0 },
922 { X86::CMOVG64rr, X86::CMOVG64rm, 0 },
923 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
924 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
925 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
926 { X86::CMOVL16rr, X86::CMOVL16rm, 0 },
927 { X86::CMOVL32rr, X86::CMOVL32rm, 0 },
928 { X86::CMOVL64rr, X86::CMOVL64rm, 0 },
929 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
930 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
931 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
932 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
933 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
934 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
935 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
936 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
937 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
938 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
939 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
940 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
941 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
942 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
943 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
944 { X86::CMOVO16rr, X86::CMOVO16rm, 0 },
945 { X86::CMOVO32rr, X86::CMOVO32rm, 0 },
946 { X86::CMOVO64rr, X86::CMOVO64rm, 0 },
947 { X86::CMOVP16rr, X86::CMOVP16rm, 0 },
948 { X86::CMOVP32rr, X86::CMOVP32rm, 0 },
949 { X86::CMOVP64rr, X86::CMOVP64rm, 0 },
950 { X86::CMOVS16rr, X86::CMOVS16rm, 0 },
951 { X86::CMOVS32rr, X86::CMOVS32rm, 0 },
952 { X86::CMOVS64rr, X86::CMOVS64rm, 0 },
953 { X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 },
954 { X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 },
955 { X86::CMPSDrr, X86::CMPSDrm, 0 },
956 { X86::CMPSSrr, X86::CMPSSrm, 0 },
Simon Pilgrim01846222015-04-03 14:24:40 +0000957 { X86::CRC32r32r32, X86::CRC32r32m32, 0 },
958 { X86::CRC32r64r64, X86::CRC32r64m64, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000959 { X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 },
960 { X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 },
961 { X86::DIVSDrr, X86::DIVSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000962 { X86::DIVSDrr_Int, X86::DIVSDrm_Int, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000963 { X86::DIVSSrr, X86::DIVSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000964 { X86::DIVSSrr_Int, X86::DIVSSrm_Int, 0 },
965 { X86::DPPDrri, X86::DPPDrmi, TB_ALIGN_16 },
966 { X86::DPPSrri, X86::DPPSrmi, TB_ALIGN_16 },
Sanjay Patelb811c1d2015-02-17 20:08:21 +0000967
968 // FIXME: We should not be folding Fs* scalar loads into vector
969 // instructions because the vector instructions require vector-sized
970 // loads. Lowering should create vector-sized instructions (the Fv*
971 // variants below) to allow load folding.
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000972 { X86::FsANDNPDrr, X86::FsANDNPDrm, TB_ALIGN_16 },
973 { X86::FsANDNPSrr, X86::FsANDNPSrm, TB_ALIGN_16 },
974 { X86::FsANDPDrr, X86::FsANDPDrm, TB_ALIGN_16 },
975 { X86::FsANDPSrr, X86::FsANDPSrm, TB_ALIGN_16 },
976 { X86::FsORPDrr, X86::FsORPDrm, TB_ALIGN_16 },
977 { X86::FsORPSrr, X86::FsORPSrm, TB_ALIGN_16 },
978 { X86::FsXORPDrr, X86::FsXORPDrm, TB_ALIGN_16 },
979 { X86::FsXORPSrr, X86::FsXORPSrm, TB_ALIGN_16 },
Sanjay Patelb811c1d2015-02-17 20:08:21 +0000980
981 { X86::FvANDNPDrr, X86::FvANDNPDrm, TB_ALIGN_16 },
982 { X86::FvANDNPSrr, X86::FvANDNPSrm, TB_ALIGN_16 },
983 { X86::FvANDPDrr, X86::FvANDPDrm, TB_ALIGN_16 },
984 { X86::FvANDPSrr, X86::FvANDPSrm, TB_ALIGN_16 },
985 { X86::FvORPDrr, X86::FvORPDrm, TB_ALIGN_16 },
986 { X86::FvORPSrr, X86::FvORPSrm, TB_ALIGN_16 },
987 { X86::FvXORPDrr, X86::FvXORPDrm, TB_ALIGN_16 },
988 { X86::FvXORPSrr, X86::FvXORPSrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000989 { X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 },
990 { X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 },
991 { X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 },
992 { X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 },
993 { X86::IMUL16rr, X86::IMUL16rm, 0 },
994 { X86::IMUL32rr, X86::IMUL32rm, 0 },
995 { X86::IMUL64rr, X86::IMUL64rm, 0 },
996 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
997 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
Manman Ren959acb12012-08-13 18:29:41 +0000998 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
999 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
1000 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
1001 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
1002 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
1003 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001004 { X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001005 { X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001006 { X86::MAXSDrr, X86::MAXSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001007 { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001008 { X86::MAXSSrr, X86::MAXSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001009 { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001010 { X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001011 { X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001012 { X86::MINSDrr, X86::MINSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001013 { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001014 { X86::MINSSrr, X86::MINSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001015 { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 },
Craig Topper182b00a2011-11-14 08:07:55 +00001016 { X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001017 { X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 },
1018 { X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 },
1019 { X86::MULSDrr, X86::MULSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001020 { X86::MULSDrr_Int, X86::MULSDrm_Int, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001021 { X86::MULSSrr, X86::MULSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001022 { X86::MULSSrr_Int, X86::MULSSrm_Int, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001023 { X86::OR16rr, X86::OR16rm, 0 },
1024 { X86::OR32rr, X86::OR32rm, 0 },
1025 { X86::OR64rr, X86::OR64rm, 0 },
1026 { X86::OR8rr, X86::OR8rm, 0 },
1027 { X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 },
1028 { X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 },
1029 { X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 },
1030 { X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +00001031 { X86::PACKUSDWrr, X86::PACKUSDWrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001032 { X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 },
1033 { X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 },
1034 { X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 },
1035 { X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 },
1036 { X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 },
1037 { X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +00001038 { X86::PADDUSBrr, X86::PADDUSBrm, TB_ALIGN_16 },
1039 { X86::PADDUSWrr, X86::PADDUSWrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001040 { X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +00001041 { X86::PALIGNR128rr, X86::PALIGNR128rm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001042 { X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 },
1043 { X86::PANDrr, X86::PANDrm, TB_ALIGN_16 },
1044 { X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 },
1045 { X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +00001046 { X86::PBLENDVBrr0, X86::PBLENDVBrm0, TB_ALIGN_16 },
Craig Topperd78429f2012-01-14 18:14:53 +00001047 { X86::PBLENDWrri, X86::PBLENDWrmi, TB_ALIGN_16 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +00001048 { X86::PCLMULQDQrr, X86::PCLMULQDQrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001049 { X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 },
1050 { X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +00001051 { X86::PCMPEQQrr, X86::PCMPEQQrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001052 { X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 },
1053 { X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 },
1054 { X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +00001055 { X86::PCMPGTQrr, X86::PCMPGTQrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001056 { X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 },
Craig Topperce4f9c52012-01-25 05:37:32 +00001057 { X86::PHADDDrr, X86::PHADDDrm, TB_ALIGN_16 },
1058 { X86::PHADDWrr, X86::PHADDWrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +00001059 { X86::PHADDSWrr128, X86::PHADDSWrm128, TB_ALIGN_16 },
Craig Topperce4f9c52012-01-25 05:37:32 +00001060 { X86::PHSUBDrr, X86::PHSUBDrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +00001061 { X86::PHSUBSWrr128, X86::PHSUBSWrm128, TB_ALIGN_16 },
Craig Topperce4f9c52012-01-25 05:37:32 +00001062 { X86::PHSUBWrr, X86::PHSUBWrm, TB_ALIGN_16 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +00001063 { X86::PINSRBrr, X86::PINSRBrm, 0 },
1064 { X86::PINSRDrr, X86::PINSRDrm, 0 },
1065 { X86::PINSRQrr, X86::PINSRQrm, 0 },
1066 { X86::PINSRWrri, X86::PINSRWrmi, 0 },
Craig Topper182b00a2011-11-14 08:07:55 +00001067 { X86::PMADDUBSWrr128, X86::PMADDUBSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001068 { X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 },
1069 { X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 },
1070 { X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 },
1071 { X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 },
1072 { X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 },
Benjamin Kramer4669d182012-12-21 14:04:55 +00001073 { X86::PMINSBrr, X86::PMINSBrm, TB_ALIGN_16 },
1074 { X86::PMINSDrr, X86::PMINSDrm, TB_ALIGN_16 },
1075 { X86::PMINUDrr, X86::PMINUDrm, TB_ALIGN_16 },
1076 { X86::PMINUWrr, X86::PMINUWrm, TB_ALIGN_16 },
1077 { X86::PMAXSBrr, X86::PMAXSBrm, TB_ALIGN_16 },
1078 { X86::PMAXSDrr, X86::PMAXSDrm, TB_ALIGN_16 },
1079 { X86::PMAXUDrr, X86::PMAXUDrm, TB_ALIGN_16 },
1080 { X86::PMAXUWrr, X86::PMAXUWrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001081 { X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +00001082 { X86::PMULHRSWrr128, X86::PMULHRSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001083 { X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 },
1084 { X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 },
1085 { X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 },
1086 { X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 },
1087 { X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 },
1088 { X86::PORrr, X86::PORrm, TB_ALIGN_16 },
1089 { X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 },
Craig Topper78349002012-01-25 06:43:11 +00001090 { X86::PSHUFBrr, X86::PSHUFBrm, TB_ALIGN_16 },
1091 { X86::PSIGNBrr, X86::PSIGNBrm, TB_ALIGN_16 },
1092 { X86::PSIGNWrr, X86::PSIGNWrm, TB_ALIGN_16 },
1093 { X86::PSIGNDrr, X86::PSIGNDrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001094 { X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 },
1095 { X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 },
1096 { X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 },
1097 { X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 },
1098 { X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 },
1099 { X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 },
1100 { X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 },
1101 { X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 },
1102 { X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 },
1103 { X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +00001104 { X86::PSUBQrr, X86::PSUBQrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001105 { X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 },
1106 { X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +00001107 { X86::PSUBUSBrr, X86::PSUBUSBrm, TB_ALIGN_16 },
1108 { X86::PSUBUSWrr, X86::PSUBUSWrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001109 { X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 },
1110 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 },
1111 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 },
1112 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 },
1113 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 },
1114 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 },
1115 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 },
1116 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 },
1117 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 },
1118 { X86::PXORrr, X86::PXORrm, TB_ALIGN_16 },
1119 { X86::SBB32rr, X86::SBB32rm, 0 },
1120 { X86::SBB64rr, X86::SBB64rm, 0 },
1121 { X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 },
1122 { X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 },
1123 { X86::SUB16rr, X86::SUB16rm, 0 },
1124 { X86::SUB32rr, X86::SUB32rm, 0 },
1125 { X86::SUB64rr, X86::SUB64rm, 0 },
1126 { X86::SUB8rr, X86::SUB8rm, 0 },
1127 { X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 },
1128 { X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 },
1129 { X86::SUBSDrr, X86::SUBSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001130 { X86::SUBSDrr_Int, X86::SUBSDrm_Int, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001131 { X86::SUBSSrr, X86::SUBSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001132 { X86::SUBSSrr_Int, X86::SUBSSrm_Int, 0 },
Owen Anderson2a3be7b2008-01-07 01:35:02 +00001133 // FIXME: TEST*rr -> swapped operand of TEST*mr.
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001134 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 },
1135 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 },
1136 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 },
1137 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 },
1138 { X86::XOR16rr, X86::XOR16rm, 0 },
1139 { X86::XOR32rr, X86::XOR32rm, 0 },
1140 { X86::XOR64rr, X86::XOR64rm, 0 },
1141 { X86::XOR8rr, X86::XOR8rm, 0 },
1142 { X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001143 { X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 },
Simon Pilgrimcd322542015-02-10 12:57:17 +00001144
Bruno Cardoso Lopesab7afa92015-02-25 15:14:02 +00001145 // MMX version of foldable instructions
1146 { X86::MMX_CVTPI2PSirr, X86::MMX_CVTPI2PSirm, 0 },
1147 { X86::MMX_PACKSSDWirr, X86::MMX_PACKSSDWirm, 0 },
1148 { X86::MMX_PACKSSWBirr, X86::MMX_PACKSSWBirm, 0 },
1149 { X86::MMX_PACKUSWBirr, X86::MMX_PACKUSWBirm, 0 },
1150 { X86::MMX_PADDBirr, X86::MMX_PADDBirm, 0 },
1151 { X86::MMX_PADDDirr, X86::MMX_PADDDirm, 0 },
1152 { X86::MMX_PADDQirr, X86::MMX_PADDQirm, 0 },
1153 { X86::MMX_PADDSBirr, X86::MMX_PADDSBirm, 0 },
1154 { X86::MMX_PADDSWirr, X86::MMX_PADDSWirm, 0 },
1155 { X86::MMX_PADDUSBirr, X86::MMX_PADDUSBirm, 0 },
1156 { X86::MMX_PADDUSWirr, X86::MMX_PADDUSWirm, 0 },
1157 { X86::MMX_PADDWirr, X86::MMX_PADDWirm, 0 },
1158 { X86::MMX_PALIGNR64irr, X86::MMX_PALIGNR64irm, 0 },
1159 { X86::MMX_PANDNirr, X86::MMX_PANDNirm, 0 },
1160 { X86::MMX_PANDirr, X86::MMX_PANDirm, 0 },
1161 { X86::MMX_PAVGBirr, X86::MMX_PAVGBirm, 0 },
1162 { X86::MMX_PAVGWirr, X86::MMX_PAVGWirm, 0 },
1163 { X86::MMX_PCMPEQBirr, X86::MMX_PCMPEQBirm, 0 },
1164 { X86::MMX_PCMPEQDirr, X86::MMX_PCMPEQDirm, 0 },
1165 { X86::MMX_PCMPEQWirr, X86::MMX_PCMPEQWirm, 0 },
1166 { X86::MMX_PCMPGTBirr, X86::MMX_PCMPGTBirm, 0 },
1167 { X86::MMX_PCMPGTDirr, X86::MMX_PCMPGTDirm, 0 },
1168 { X86::MMX_PCMPGTWirr, X86::MMX_PCMPGTWirm, 0 },
1169 { X86::MMX_PHADDSWrr64, X86::MMX_PHADDSWrm64, 0 },
1170 { X86::MMX_PHADDWrr64, X86::MMX_PHADDWrm64, 0 },
1171 { X86::MMX_PHADDrr64, X86::MMX_PHADDrm64, 0 },
1172 { X86::MMX_PHSUBDrr64, X86::MMX_PHSUBDrm64, 0 },
1173 { X86::MMX_PHSUBSWrr64, X86::MMX_PHSUBSWrm64, 0 },
1174 { X86::MMX_PHSUBWrr64, X86::MMX_PHSUBWrm64, 0 },
1175 { X86::MMX_PINSRWirri, X86::MMX_PINSRWirmi, 0 },
1176 { X86::MMX_PMADDUBSWrr64, X86::MMX_PMADDUBSWrm64, 0 },
1177 { X86::MMX_PMADDWDirr, X86::MMX_PMADDWDirm, 0 },
1178 { X86::MMX_PMAXSWirr, X86::MMX_PMAXSWirm, 0 },
1179 { X86::MMX_PMAXUBirr, X86::MMX_PMAXUBirm, 0 },
1180 { X86::MMX_PMINSWirr, X86::MMX_PMINSWirm, 0 },
1181 { X86::MMX_PMINUBirr, X86::MMX_PMINUBirm, 0 },
1182 { X86::MMX_PMULHRSWrr64, X86::MMX_PMULHRSWrm64, 0 },
1183 { X86::MMX_PMULHUWirr, X86::MMX_PMULHUWirm, 0 },
1184 { X86::MMX_PMULHWirr, X86::MMX_PMULHWirm, 0 },
1185 { X86::MMX_PMULLWirr, X86::MMX_PMULLWirm, 0 },
1186 { X86::MMX_PMULUDQirr, X86::MMX_PMULUDQirm, 0 },
1187 { X86::MMX_PORirr, X86::MMX_PORirm, 0 },
1188 { X86::MMX_PSADBWirr, X86::MMX_PSADBWirm, 0 },
1189 { X86::MMX_PSHUFBrr64, X86::MMX_PSHUFBrm64, 0 },
1190 { X86::MMX_PSIGNBrr64, X86::MMX_PSIGNBrm64, 0 },
1191 { X86::MMX_PSIGNDrr64, X86::MMX_PSIGNDrm64, 0 },
1192 { X86::MMX_PSIGNWrr64, X86::MMX_PSIGNWrm64, 0 },
1193 { X86::MMX_PSLLDrr, X86::MMX_PSLLDrm, 0 },
1194 { X86::MMX_PSLLQrr, X86::MMX_PSLLQrm, 0 },
1195 { X86::MMX_PSLLWrr, X86::MMX_PSLLWrm, 0 },
1196 { X86::MMX_PSRADrr, X86::MMX_PSRADrm, 0 },
1197 { X86::MMX_PSRAWrr, X86::MMX_PSRAWrm, 0 },
1198 { X86::MMX_PSRLDrr, X86::MMX_PSRLDrm, 0 },
1199 { X86::MMX_PSRLQrr, X86::MMX_PSRLQrm, 0 },
1200 { X86::MMX_PSRLWrr, X86::MMX_PSRLWrm, 0 },
1201 { X86::MMX_PSUBBirr, X86::MMX_PSUBBirm, 0 },
1202 { X86::MMX_PSUBDirr, X86::MMX_PSUBDirm, 0 },
1203 { X86::MMX_PSUBQirr, X86::MMX_PSUBQirm, 0 },
1204 { X86::MMX_PSUBSBirr, X86::MMX_PSUBSBirm, 0 },
1205 { X86::MMX_PSUBSWirr, X86::MMX_PSUBSWirm, 0 },
1206 { X86::MMX_PSUBUSBirr, X86::MMX_PSUBUSBirm, 0 },
1207 { X86::MMX_PSUBUSWirr, X86::MMX_PSUBUSWirm, 0 },
1208 { X86::MMX_PSUBWirr, X86::MMX_PSUBWirm, 0 },
1209 { X86::MMX_PUNPCKHBWirr, X86::MMX_PUNPCKHBWirm, 0 },
1210 { X86::MMX_PUNPCKHDQirr, X86::MMX_PUNPCKHDQirm, 0 },
1211 { X86::MMX_PUNPCKHWDirr, X86::MMX_PUNPCKHWDirm, 0 },
1212 { X86::MMX_PUNPCKLBWirr, X86::MMX_PUNPCKLBWirm, 0 },
1213 { X86::MMX_PUNPCKLDQirr, X86::MMX_PUNPCKLDQirm, 0 },
1214 { X86::MMX_PUNPCKLWDirr, X86::MMX_PUNPCKLWDirm, 0 },
1215 { X86::MMX_PXORirr, X86::MMX_PXORirm, 0 },
1216
Simon Pilgrim8dba5da2015-04-03 11:50:30 +00001217 // 3DNow! version of foldable instructions
1218 { X86::PAVGUSBrr, X86::PAVGUSBrm, 0 },
1219 { X86::PFACCrr, X86::PFACCrm, 0 },
1220 { X86::PFADDrr, X86::PFADDrm, 0 },
1221 { X86::PFCMPEQrr, X86::PFCMPEQrm, 0 },
1222 { X86::PFCMPGErr, X86::PFCMPGErm, 0 },
1223 { X86::PFCMPGTrr, X86::PFCMPGTrm, 0 },
1224 { X86::PFMAXrr, X86::PFMAXrm, 0 },
1225 { X86::PFMINrr, X86::PFMINrm, 0 },
1226 { X86::PFMULrr, X86::PFMULrm, 0 },
1227 { X86::PFNACCrr, X86::PFNACCrm, 0 },
1228 { X86::PFPNACCrr, X86::PFPNACCrm, 0 },
1229 { X86::PFRCPIT1rr, X86::PFRCPIT1rm, 0 },
1230 { X86::PFRCPIT2rr, X86::PFRCPIT2rm, 0 },
1231 { X86::PFRSQIT1rr, X86::PFRSQIT1rm, 0 },
1232 { X86::PFSUBrr, X86::PFSUBrm, 0 },
1233 { X86::PFSUBRrr, X86::PFSUBRrm, 0 },
1234 { X86::PMULHRWrr, X86::PMULHRWrm, 0 },
1235
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001236 // AVX 128-bit versions of foldable instructions
1237 { X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 },
1238 { X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, 0 },
1239 { X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 },
1240 { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 },
1241 { X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 },
1242 { X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 },
1243 { X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 },
1244 { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 },
1245 { X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 },
1246 { X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 },
Craig Toppercaef1c52012-12-26 00:35:47 +00001247 { X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 },
1248 { X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001249 { X86::VRCPSSr, X86::VRCPSSm, 0 },
Sanjay Patela9f6d352015-05-07 15:48:53 +00001250 { X86::VRCPSSr_Int, X86::VRCPSSm_Int, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001251 { X86::VRSQRTSSr, X86::VRSQRTSSm, 0 },
Sanjay Patela9f6d352015-05-07 15:48:53 +00001252 { X86::VRSQRTSSr_Int, X86::VRSQRTSSm_Int, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001253 { X86::VSQRTSDr, X86::VSQRTSDm, 0 },
Sanjay Patela9f6d352015-05-07 15:48:53 +00001254 { X86::VSQRTSDr_Int, X86::VSQRTSDm_Int, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001255 { X86::VSQRTSSr, X86::VSQRTSSm, 0 },
Sanjay Patela9f6d352015-05-07 15:48:53 +00001256 { X86::VSQRTSSr_Int, X86::VSQRTSSm_Int, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001257 { X86::VADDPDrr, X86::VADDPDrm, 0 },
1258 { X86::VADDPSrr, X86::VADDPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001259 { X86::VADDSDrr, X86::VADDSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001260 { X86::VADDSDrr_Int, X86::VADDSDrm_Int, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001261 { X86::VADDSSrr, X86::VADDSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001262 { X86::VADDSSrr_Int, X86::VADDSSrm_Int, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001263 { X86::VADDSUBPDrr, X86::VADDSUBPDrm, 0 },
1264 { X86::VADDSUBPSrr, X86::VADDSUBPSrm, 0 },
1265 { X86::VANDNPDrr, X86::VANDNPDrm, 0 },
1266 { X86::VANDNPSrr, X86::VANDNPSrm, 0 },
1267 { X86::VANDPDrr, X86::VANDPDrm, 0 },
1268 { X86::VANDPSrr, X86::VANDPSrm, 0 },
1269 { X86::VBLENDPDrri, X86::VBLENDPDrmi, 0 },
1270 { X86::VBLENDPSrri, X86::VBLENDPSrmi, 0 },
1271 { X86::VBLENDVPDrr, X86::VBLENDVPDrm, 0 },
1272 { X86::VBLENDVPSrr, X86::VBLENDVPSrm, 0 },
1273 { X86::VCMPPDrri, X86::VCMPPDrmi, 0 },
1274 { X86::VCMPPSrri, X86::VCMPPSrmi, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001275 { X86::VCMPSDrr, X86::VCMPSDrm, 0 },
1276 { X86::VCMPSSrr, X86::VCMPSSrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001277 { X86::VDIVPDrr, X86::VDIVPDrm, 0 },
1278 { X86::VDIVPSrr, X86::VDIVPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001279 { X86::VDIVSDrr, X86::VDIVSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001280 { X86::VDIVSDrr_Int, X86::VDIVSDrm_Int, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001281 { X86::VDIVSSrr, X86::VDIVSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001282 { X86::VDIVSSrr_Int, X86::VDIVSSrm_Int, 0 },
1283 { X86::VDPPDrri, X86::VDPPDrmi, 0 },
1284 { X86::VDPPSrri, X86::VDPPSrmi, 0 },
Sanjay Patelb811c1d2015-02-17 20:08:21 +00001285 // Do not fold VFs* loads because there are no scalar load variants for
1286 // these instructions. When folded, the load is required to be 128-bits, so
1287 // the load size would not match.
1288 { X86::VFvANDNPDrr, X86::VFvANDNPDrm, 0 },
1289 { X86::VFvANDNPSrr, X86::VFvANDNPSrm, 0 },
1290 { X86::VFvANDPDrr, X86::VFvANDPDrm, 0 },
1291 { X86::VFvANDPSrr, X86::VFvANDPSrm, 0 },
1292 { X86::VFvORPDrr, X86::VFvORPDrm, 0 },
1293 { X86::VFvORPSrr, X86::VFvORPSrm, 0 },
1294 { X86::VFvXORPDrr, X86::VFvXORPDrm, 0 },
1295 { X86::VFvXORPSrr, X86::VFvXORPSrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +00001296 { X86::VHADDPDrr, X86::VHADDPDrm, 0 },
1297 { X86::VHADDPSrr, X86::VHADDPSrm, 0 },
1298 { X86::VHSUBPDrr, X86::VHSUBPDrm, 0 },
1299 { X86::VHSUBPSrr, X86::VHSUBPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001300 { X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, 0 },
1301 { X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +00001302 { X86::VMAXPDrr, X86::VMAXPDrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +00001303 { X86::VMAXPSrr, X86::VMAXPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001304 { X86::VMAXSDrr, X86::VMAXSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001305 { X86::VMAXSDrr_Int, X86::VMAXSDrm_Int, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001306 { X86::VMAXSSrr, X86::VMAXSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001307 { X86::VMAXSSrr_Int, X86::VMAXSSrm_Int, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +00001308 { X86::VMINPDrr, X86::VMINPDrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +00001309 { X86::VMINPSrr, X86::VMINPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001310 { X86::VMINSDrr, X86::VMINSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001311 { X86::VMINSDrr_Int, X86::VMINSDrm_Int, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001312 { X86::VMINSSrr, X86::VMINSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001313 { X86::VMINSSrr_Int, X86::VMINSSrm_Int, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +00001314 { X86::VMPSADBWrri, X86::VMPSADBWrmi, 0 },
1315 { X86::VMULPDrr, X86::VMULPDrm, 0 },
1316 { X86::VMULPSrr, X86::VMULPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001317 { X86::VMULSDrr, X86::VMULSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001318 { X86::VMULSDrr_Int, X86::VMULSDrm_Int, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001319 { X86::VMULSSrr, X86::VMULSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001320 { X86::VMULSSrr_Int, X86::VMULSSrm_Int, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001321 { X86::VORPDrr, X86::VORPDrm, 0 },
1322 { X86::VORPSrr, X86::VORPSrm, 0 },
1323 { X86::VPACKSSDWrr, X86::VPACKSSDWrm, 0 },
1324 { X86::VPACKSSWBrr, X86::VPACKSSWBrm, 0 },
1325 { X86::VPACKUSDWrr, X86::VPACKUSDWrm, 0 },
1326 { X86::VPACKUSWBrr, X86::VPACKUSWBrm, 0 },
1327 { X86::VPADDBrr, X86::VPADDBrm, 0 },
1328 { X86::VPADDDrr, X86::VPADDDrm, 0 },
1329 { X86::VPADDQrr, X86::VPADDQrm, 0 },
1330 { X86::VPADDSBrr, X86::VPADDSBrm, 0 },
1331 { X86::VPADDSWrr, X86::VPADDSWrm, 0 },
1332 { X86::VPADDUSBrr, X86::VPADDUSBrm, 0 },
1333 { X86::VPADDUSWrr, X86::VPADDUSWrm, 0 },
1334 { X86::VPADDWrr, X86::VPADDWrm, 0 },
1335 { X86::VPALIGNR128rr, X86::VPALIGNR128rm, 0 },
1336 { X86::VPANDNrr, X86::VPANDNrm, 0 },
1337 { X86::VPANDrr, X86::VPANDrm, 0 },
1338 { X86::VPAVGBrr, X86::VPAVGBrm, 0 },
1339 { X86::VPAVGWrr, X86::VPAVGWrm, 0 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +00001340 { X86::VPBLENDVBrr, X86::VPBLENDVBrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001341 { X86::VPBLENDWrri, X86::VPBLENDWrmi, 0 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +00001342 { X86::VPCLMULQDQrr, X86::VPCLMULQDQrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001343 { X86::VPCMPEQBrr, X86::VPCMPEQBrm, 0 },
1344 { X86::VPCMPEQDrr, X86::VPCMPEQDrm, 0 },
1345 { X86::VPCMPEQQrr, X86::VPCMPEQQrm, 0 },
1346 { X86::VPCMPEQWrr, X86::VPCMPEQWrm, 0 },
1347 { X86::VPCMPGTBrr, X86::VPCMPGTBrm, 0 },
1348 { X86::VPCMPGTDrr, X86::VPCMPGTDrm, 0 },
1349 { X86::VPCMPGTQrr, X86::VPCMPGTQrm, 0 },
1350 { X86::VPCMPGTWrr, X86::VPCMPGTWrm, 0 },
1351 { X86::VPHADDDrr, X86::VPHADDDrm, 0 },
1352 { X86::VPHADDSWrr128, X86::VPHADDSWrm128, 0 },
1353 { X86::VPHADDWrr, X86::VPHADDWrm, 0 },
1354 { X86::VPHSUBDrr, X86::VPHSUBDrm, 0 },
1355 { X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, 0 },
1356 { X86::VPHSUBWrr, X86::VPHSUBWrm, 0 },
1357 { X86::VPERMILPDrr, X86::VPERMILPDrm, 0 },
1358 { X86::VPERMILPSrr, X86::VPERMILPSrm, 0 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +00001359 { X86::VPINSRBrr, X86::VPINSRBrm, 0 },
1360 { X86::VPINSRDrr, X86::VPINSRDrm, 0 },
1361 { X86::VPINSRQrr, X86::VPINSRQrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001362 { X86::VPINSRWrri, X86::VPINSRWrmi, 0 },
1363 { X86::VPMADDUBSWrr128, X86::VPMADDUBSWrm128, 0 },
1364 { X86::VPMADDWDrr, X86::VPMADDWDrm, 0 },
1365 { X86::VPMAXSWrr, X86::VPMAXSWrm, 0 },
1366 { X86::VPMAXUBrr, X86::VPMAXUBrm, 0 },
1367 { X86::VPMINSWrr, X86::VPMINSWrm, 0 },
1368 { X86::VPMINUBrr, X86::VPMINUBrm, 0 },
1369 { X86::VPMINSBrr, X86::VPMINSBrm, 0 },
1370 { X86::VPMINSDrr, X86::VPMINSDrm, 0 },
1371 { X86::VPMINUDrr, X86::VPMINUDrm, 0 },
1372 { X86::VPMINUWrr, X86::VPMINUWrm, 0 },
1373 { X86::VPMAXSBrr, X86::VPMAXSBrm, 0 },
1374 { X86::VPMAXSDrr, X86::VPMAXSDrm, 0 },
1375 { X86::VPMAXUDrr, X86::VPMAXUDrm, 0 },
1376 { X86::VPMAXUWrr, X86::VPMAXUWrm, 0 },
1377 { X86::VPMULDQrr, X86::VPMULDQrm, 0 },
1378 { X86::VPMULHRSWrr128, X86::VPMULHRSWrm128, 0 },
1379 { X86::VPMULHUWrr, X86::VPMULHUWrm, 0 },
1380 { X86::VPMULHWrr, X86::VPMULHWrm, 0 },
1381 { X86::VPMULLDrr, X86::VPMULLDrm, 0 },
1382 { X86::VPMULLWrr, X86::VPMULLWrm, 0 },
1383 { X86::VPMULUDQrr, X86::VPMULUDQrm, 0 },
1384 { X86::VPORrr, X86::VPORrm, 0 },
1385 { X86::VPSADBWrr, X86::VPSADBWrm, 0 },
1386 { X86::VPSHUFBrr, X86::VPSHUFBrm, 0 },
1387 { X86::VPSIGNBrr, X86::VPSIGNBrm, 0 },
1388 { X86::VPSIGNWrr, X86::VPSIGNWrm, 0 },
1389 { X86::VPSIGNDrr, X86::VPSIGNDrm, 0 },
1390 { X86::VPSLLDrr, X86::VPSLLDrm, 0 },
1391 { X86::VPSLLQrr, X86::VPSLLQrm, 0 },
1392 { X86::VPSLLWrr, X86::VPSLLWrm, 0 },
1393 { X86::VPSRADrr, X86::VPSRADrm, 0 },
1394 { X86::VPSRAWrr, X86::VPSRAWrm, 0 },
1395 { X86::VPSRLDrr, X86::VPSRLDrm, 0 },
1396 { X86::VPSRLQrr, X86::VPSRLQrm, 0 },
1397 { X86::VPSRLWrr, X86::VPSRLWrm, 0 },
1398 { X86::VPSUBBrr, X86::VPSUBBrm, 0 },
1399 { X86::VPSUBDrr, X86::VPSUBDrm, 0 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +00001400 { X86::VPSUBQrr, X86::VPSUBQrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001401 { X86::VPSUBSBrr, X86::VPSUBSBrm, 0 },
1402 { X86::VPSUBSWrr, X86::VPSUBSWrm, 0 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +00001403 { X86::VPSUBUSBrr, X86::VPSUBUSBrm, 0 },
1404 { X86::VPSUBUSWrr, X86::VPSUBUSWrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001405 { X86::VPSUBWrr, X86::VPSUBWrm, 0 },
1406 { X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, 0 },
1407 { X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, 0 },
1408 { X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, 0 },
1409 { X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, 0 },
1410 { X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, 0 },
1411 { X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, 0 },
1412 { X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, 0 },
1413 { X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, 0 },
1414 { X86::VPXORrr, X86::VPXORrm, 0 },
1415 { X86::VSHUFPDrri, X86::VSHUFPDrmi, 0 },
1416 { X86::VSHUFPSrri, X86::VSHUFPSrmi, 0 },
1417 { X86::VSUBPDrr, X86::VSUBPDrm, 0 },
1418 { X86::VSUBPSrr, X86::VSUBPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001419 { X86::VSUBSDrr, X86::VSUBSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001420 { X86::VSUBSDrr_Int, X86::VSUBSDrm_Int, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001421 { X86::VSUBSSrr, X86::VSUBSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001422 { X86::VSUBSSrr_Int, X86::VSUBSSrm_Int, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001423 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, 0 },
1424 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, 0 },
1425 { X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, 0 },
1426 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, 0 },
1427 { X86::VXORPDrr, X86::VXORPDrm, 0 },
1428 { X86::VXORPSrr, X86::VXORPSrm, 0 },
Simon Pilgrimcd322542015-02-10 12:57:17 +00001429
Craig Topperd78429f2012-01-14 18:14:53 +00001430 // AVX 256-bit foldable instructions
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001431 { X86::VADDPDYrr, X86::VADDPDYrm, 0 },
1432 { X86::VADDPSYrr, X86::VADDPSYrm, 0 },
1433 { X86::VADDSUBPDYrr, X86::VADDSUBPDYrm, 0 },
1434 { X86::VADDSUBPSYrr, X86::VADDSUBPSYrm, 0 },
1435 { X86::VANDNPDYrr, X86::VANDNPDYrm, 0 },
1436 { X86::VANDNPSYrr, X86::VANDNPSYrm, 0 },
1437 { X86::VANDPDYrr, X86::VANDPDYrm, 0 },
1438 { X86::VANDPSYrr, X86::VANDPSYrm, 0 },
1439 { X86::VBLENDPDYrri, X86::VBLENDPDYrmi, 0 },
1440 { X86::VBLENDPSYrri, X86::VBLENDPSYrmi, 0 },
1441 { X86::VBLENDVPDYrr, X86::VBLENDVPDYrm, 0 },
1442 { X86::VBLENDVPSYrr, X86::VBLENDVPSYrm, 0 },
1443 { X86::VCMPPDYrri, X86::VCMPPDYrmi, 0 },
1444 { X86::VCMPPSYrri, X86::VCMPPSYrmi, 0 },
1445 { X86::VDIVPDYrr, X86::VDIVPDYrm, 0 },
1446 { X86::VDIVPSYrr, X86::VDIVPSYrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001447 { X86::VDPPSYrri, X86::VDPPSYrmi, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001448 { X86::VHADDPDYrr, X86::VHADDPDYrm, 0 },
1449 { X86::VHADDPSYrr, X86::VHADDPSYrm, 0 },
1450 { X86::VHSUBPDYrr, X86::VHSUBPDYrm, 0 },
1451 { X86::VHSUBPSYrr, X86::VHSUBPSYrm, 0 },
1452 { X86::VINSERTF128rr, X86::VINSERTF128rm, 0 },
1453 { X86::VMAXPDYrr, X86::VMAXPDYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001454 { X86::VMAXPSYrr, X86::VMAXPSYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001455 { X86::VMINPDYrr, X86::VMINPDYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001456 { X86::VMINPSYrr, X86::VMINPSYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001457 { X86::VMULPDYrr, X86::VMULPDYrm, 0 },
1458 { X86::VMULPSYrr, X86::VMULPSYrm, 0 },
1459 { X86::VORPDYrr, X86::VORPDYrm, 0 },
1460 { X86::VORPSYrr, X86::VORPSYrm, 0 },
1461 { X86::VPERM2F128rr, X86::VPERM2F128rm, 0 },
1462 { X86::VPERMILPDYrr, X86::VPERMILPDYrm, 0 },
1463 { X86::VPERMILPSYrr, X86::VPERMILPSYrm, 0 },
1464 { X86::VSHUFPDYrri, X86::VSHUFPDYrmi, 0 },
1465 { X86::VSHUFPSYrri, X86::VSHUFPSYrmi, 0 },
1466 { X86::VSUBPDYrr, X86::VSUBPDYrm, 0 },
1467 { X86::VSUBPSYrr, X86::VSUBPSYrm, 0 },
1468 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrm, 0 },
1469 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrm, 0 },
1470 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrm, 0 },
1471 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, 0 },
1472 { X86::VXORPDYrr, X86::VXORPDYrm, 0 },
1473 { X86::VXORPSYrr, X86::VXORPSYrm, 0 },
Simon Pilgrimcd322542015-02-10 12:57:17 +00001474
Craig Topper182b00a2011-11-14 08:07:55 +00001475 // AVX2 foldable instructions
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001476 { X86::VINSERTI128rr, X86::VINSERTI128rm, 0 },
1477 { X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, 0 },
1478 { X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, 0 },
1479 { X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, 0 },
1480 { X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, 0 },
1481 { X86::VPADDBYrr, X86::VPADDBYrm, 0 },
1482 { X86::VPADDDYrr, X86::VPADDDYrm, 0 },
1483 { X86::VPADDQYrr, X86::VPADDQYrm, 0 },
1484 { X86::VPADDSBYrr, X86::VPADDSBYrm, 0 },
1485 { X86::VPADDSWYrr, X86::VPADDSWYrm, 0 },
1486 { X86::VPADDUSBYrr, X86::VPADDUSBYrm, 0 },
1487 { X86::VPADDUSWYrr, X86::VPADDUSWYrm, 0 },
1488 { X86::VPADDWYrr, X86::VPADDWYrm, 0 },
1489 { X86::VPALIGNR256rr, X86::VPALIGNR256rm, 0 },
1490 { X86::VPANDNYrr, X86::VPANDNYrm, 0 },
1491 { X86::VPANDYrr, X86::VPANDYrm, 0 },
1492 { X86::VPAVGBYrr, X86::VPAVGBYrm, 0 },
1493 { X86::VPAVGWYrr, X86::VPAVGWYrm, 0 },
1494 { X86::VPBLENDDrri, X86::VPBLENDDrmi, 0 },
1495 { X86::VPBLENDDYrri, X86::VPBLENDDYrmi, 0 },
Simon Pilgrimd142ab72015-02-10 13:22:57 +00001496 { X86::VPBLENDVBYrr, X86::VPBLENDVBYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001497 { X86::VPBLENDWYrri, X86::VPBLENDWYrmi, 0 },
1498 { X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, 0 },
1499 { X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, 0 },
1500 { X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, 0 },
1501 { X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, 0 },
1502 { X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, 0 },
1503 { X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, 0 },
1504 { X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, 0 },
1505 { X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, 0 },
1506 { X86::VPERM2I128rr, X86::VPERM2I128rm, 0 },
1507 { X86::VPERMDYrr, X86::VPERMDYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001508 { X86::VPERMPSYrr, X86::VPERMPSYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001509 { X86::VPHADDDYrr, X86::VPHADDDYrm, 0 },
1510 { X86::VPHADDSWrr256, X86::VPHADDSWrm256, 0 },
1511 { X86::VPHADDWYrr, X86::VPHADDWYrm, 0 },
1512 { X86::VPHSUBDYrr, X86::VPHSUBDYrm, 0 },
1513 { X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, 0 },
1514 { X86::VPHSUBWYrr, X86::VPHSUBWYrm, 0 },
1515 { X86::VPMADDUBSWrr256, X86::VPMADDUBSWrm256, 0 },
1516 { X86::VPMADDWDYrr, X86::VPMADDWDYrm, 0 },
1517 { X86::VPMAXSWYrr, X86::VPMAXSWYrm, 0 },
1518 { X86::VPMAXUBYrr, X86::VPMAXUBYrm, 0 },
1519 { X86::VPMINSWYrr, X86::VPMINSWYrm, 0 },
1520 { X86::VPMINUBYrr, X86::VPMINUBYrm, 0 },
1521 { X86::VPMINSBYrr, X86::VPMINSBYrm, 0 },
1522 { X86::VPMINSDYrr, X86::VPMINSDYrm, 0 },
1523 { X86::VPMINUDYrr, X86::VPMINUDYrm, 0 },
1524 { X86::VPMINUWYrr, X86::VPMINUWYrm, 0 },
1525 { X86::VPMAXSBYrr, X86::VPMAXSBYrm, 0 },
1526 { X86::VPMAXSDYrr, X86::VPMAXSDYrm, 0 },
1527 { X86::VPMAXUDYrr, X86::VPMAXUDYrm, 0 },
1528 { X86::VPMAXUWYrr, X86::VPMAXUWYrm, 0 },
1529 { X86::VMPSADBWYrri, X86::VMPSADBWYrmi, 0 },
1530 { X86::VPMULDQYrr, X86::VPMULDQYrm, 0 },
1531 { X86::VPMULHRSWrr256, X86::VPMULHRSWrm256, 0 },
1532 { X86::VPMULHUWYrr, X86::VPMULHUWYrm, 0 },
1533 { X86::VPMULHWYrr, X86::VPMULHWYrm, 0 },
1534 { X86::VPMULLDYrr, X86::VPMULLDYrm, 0 },
1535 { X86::VPMULLWYrr, X86::VPMULLWYrm, 0 },
1536 { X86::VPMULUDQYrr, X86::VPMULUDQYrm, 0 },
1537 { X86::VPORYrr, X86::VPORYrm, 0 },
1538 { X86::VPSADBWYrr, X86::VPSADBWYrm, 0 },
1539 { X86::VPSHUFBYrr, X86::VPSHUFBYrm, 0 },
1540 { X86::VPSIGNBYrr, X86::VPSIGNBYrm, 0 },
1541 { X86::VPSIGNWYrr, X86::VPSIGNWYrm, 0 },
1542 { X86::VPSIGNDYrr, X86::VPSIGNDYrm, 0 },
1543 { X86::VPSLLDYrr, X86::VPSLLDYrm, 0 },
1544 { X86::VPSLLQYrr, X86::VPSLLQYrm, 0 },
1545 { X86::VPSLLWYrr, X86::VPSLLWYrm, 0 },
1546 { X86::VPSLLVDrr, X86::VPSLLVDrm, 0 },
1547 { X86::VPSLLVDYrr, X86::VPSLLVDYrm, 0 },
1548 { X86::VPSLLVQrr, X86::VPSLLVQrm, 0 },
1549 { X86::VPSLLVQYrr, X86::VPSLLVQYrm, 0 },
1550 { X86::VPSRADYrr, X86::VPSRADYrm, 0 },
1551 { X86::VPSRAWYrr, X86::VPSRAWYrm, 0 },
1552 { X86::VPSRAVDrr, X86::VPSRAVDrm, 0 },
1553 { X86::VPSRAVDYrr, X86::VPSRAVDYrm, 0 },
1554 { X86::VPSRLDYrr, X86::VPSRLDYrm, 0 },
1555 { X86::VPSRLQYrr, X86::VPSRLQYrm, 0 },
1556 { X86::VPSRLWYrr, X86::VPSRLWYrm, 0 },
1557 { X86::VPSRLVDrr, X86::VPSRLVDrm, 0 },
1558 { X86::VPSRLVDYrr, X86::VPSRLVDYrm, 0 },
1559 { X86::VPSRLVQrr, X86::VPSRLVQrm, 0 },
1560 { X86::VPSRLVQYrr, X86::VPSRLVQYrm, 0 },
1561 { X86::VPSUBBYrr, X86::VPSUBBYrm, 0 },
1562 { X86::VPSUBDYrr, X86::VPSUBDYrm, 0 },
Simon Pilgrimd142ab72015-02-10 13:22:57 +00001563 { X86::VPSUBQYrr, X86::VPSUBQYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001564 { X86::VPSUBSBYrr, X86::VPSUBSBYrm, 0 },
1565 { X86::VPSUBSWYrr, X86::VPSUBSWYrm, 0 },
Simon Pilgrimd142ab72015-02-10 13:22:57 +00001566 { X86::VPSUBUSBYrr, X86::VPSUBUSBYrm, 0 },
1567 { X86::VPSUBUSWYrr, X86::VPSUBUSWYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001568 { X86::VPSUBWYrr, X86::VPSUBWYrm, 0 },
1569 { X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, 0 },
1570 { X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, 0 },
1571 { X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, 0 },
1572 { X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, 0 },
1573 { X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, 0 },
1574 { X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, 0 },
1575 { X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, 0 },
1576 { X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, 0 },
1577 { X86::VPXORYrr, X86::VPXORYrm, 0 },
Craig Topper908e6852012-08-31 23:10:34 +00001578
1579 // FMA4 foldable patterns
Simon Pilgrim616fe502015-06-22 21:49:41 +00001580 { X86::VFMADDSS4rr, X86::VFMADDSS4mr, TB_ALIGN_NONE },
1581 { X86::VFMADDSD4rr, X86::VFMADDSD4mr, TB_ALIGN_NONE },
1582 { X86::VFMADDPS4rr, X86::VFMADDPS4mr, TB_ALIGN_NONE },
1583 { X86::VFMADDPD4rr, X86::VFMADDPD4mr, TB_ALIGN_NONE },
1584 { X86::VFMADDPS4rrY, X86::VFMADDPS4mrY, TB_ALIGN_NONE },
1585 { X86::VFMADDPD4rrY, X86::VFMADDPD4mrY, TB_ALIGN_NONE },
1586 { X86::VFNMADDSS4rr, X86::VFNMADDSS4mr, TB_ALIGN_NONE },
1587 { X86::VFNMADDSD4rr, X86::VFNMADDSD4mr, TB_ALIGN_NONE },
1588 { X86::VFNMADDPS4rr, X86::VFNMADDPS4mr, TB_ALIGN_NONE },
1589 { X86::VFNMADDPD4rr, X86::VFNMADDPD4mr, TB_ALIGN_NONE },
1590 { X86::VFNMADDPS4rrY, X86::VFNMADDPS4mrY, TB_ALIGN_NONE },
1591 { X86::VFNMADDPD4rrY, X86::VFNMADDPD4mrY, TB_ALIGN_NONE },
1592 { X86::VFMSUBSS4rr, X86::VFMSUBSS4mr, TB_ALIGN_NONE },
1593 { X86::VFMSUBSD4rr, X86::VFMSUBSD4mr, TB_ALIGN_NONE },
1594 { X86::VFMSUBPS4rr, X86::VFMSUBPS4mr, TB_ALIGN_NONE },
1595 { X86::VFMSUBPD4rr, X86::VFMSUBPD4mr, TB_ALIGN_NONE },
1596 { X86::VFMSUBPS4rrY, X86::VFMSUBPS4mrY, TB_ALIGN_NONE },
1597 { X86::VFMSUBPD4rrY, X86::VFMSUBPD4mrY, TB_ALIGN_NONE },
1598 { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4mr, TB_ALIGN_NONE },
1599 { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4mr, TB_ALIGN_NONE },
1600 { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4mr, TB_ALIGN_NONE },
1601 { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4mr, TB_ALIGN_NONE },
1602 { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4mrY, TB_ALIGN_NONE },
1603 { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4mrY, TB_ALIGN_NONE },
1604 { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4mr, TB_ALIGN_NONE },
1605 { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4mr, TB_ALIGN_NONE },
1606 { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4mrY, TB_ALIGN_NONE },
1607 { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4mrY, TB_ALIGN_NONE },
1608 { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4mr, TB_ALIGN_NONE },
1609 { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4mr, TB_ALIGN_NONE },
1610 { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4mrY, TB_ALIGN_NONE },
1611 { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4mrY, TB_ALIGN_NONE },
Michael Liaof9f7b552012-09-26 08:22:37 +00001612
Simon Pilgrimcd322542015-02-10 12:57:17 +00001613 // XOP foldable instructions
1614 { X86::VPCMOVrr, X86::VPCMOVmr, 0 },
1615 { X86::VPCMOVrrY, X86::VPCMOVmrY, 0 },
1616 { X86::VPCOMBri, X86::VPCOMBmi, 0 },
1617 { X86::VPCOMDri, X86::VPCOMDmi, 0 },
1618 { X86::VPCOMQri, X86::VPCOMQmi, 0 },
1619 { X86::VPCOMWri, X86::VPCOMWmi, 0 },
1620 { X86::VPCOMUBri, X86::VPCOMUBmi, 0 },
1621 { X86::VPCOMUDri, X86::VPCOMUDmi, 0 },
1622 { X86::VPCOMUQri, X86::VPCOMUQmi, 0 },
1623 { X86::VPCOMUWri, X86::VPCOMUWmi, 0 },
1624 { X86::VPERMIL2PDrr, X86::VPERMIL2PDmr, 0 },
1625 { X86::VPERMIL2PDrrY, X86::VPERMIL2PDmrY, 0 },
1626 { X86::VPERMIL2PSrr, X86::VPERMIL2PSmr, 0 },
1627 { X86::VPERMIL2PSrrY, X86::VPERMIL2PSmrY, 0 },
1628 { X86::VPMACSDDrr, X86::VPMACSDDrm, 0 },
1629 { X86::VPMACSDQHrr, X86::VPMACSDQHrm, 0 },
1630 { X86::VPMACSDQLrr, X86::VPMACSDQLrm, 0 },
1631 { X86::VPMACSSDDrr, X86::VPMACSSDDrm, 0 },
1632 { X86::VPMACSSDQHrr, X86::VPMACSSDQHrm, 0 },
1633 { X86::VPMACSSDQLrr, X86::VPMACSSDQLrm, 0 },
1634 { X86::VPMACSSWDrr, X86::VPMACSSWDrm, 0 },
1635 { X86::VPMACSSWWrr, X86::VPMACSSWWrm, 0 },
1636 { X86::VPMACSWDrr, X86::VPMACSWDrm, 0 },
1637 { X86::VPMACSWWrr, X86::VPMACSWWrm, 0 },
1638 { X86::VPMADCSSWDrr, X86::VPMADCSSWDrm, 0 },
1639 { X86::VPMADCSWDrr, X86::VPMADCSWDrm, 0 },
1640 { X86::VPPERMrr, X86::VPPERMmr, 0 },
1641 { X86::VPROTBrr, X86::VPROTBrm, 0 },
1642 { X86::VPROTDrr, X86::VPROTDrm, 0 },
1643 { X86::VPROTQrr, X86::VPROTQrm, 0 },
1644 { X86::VPROTWrr, X86::VPROTWrm, 0 },
1645 { X86::VPSHABrr, X86::VPSHABrm, 0 },
1646 { X86::VPSHADrr, X86::VPSHADrm, 0 },
1647 { X86::VPSHAQrr, X86::VPSHAQrm, 0 },
1648 { X86::VPSHAWrr, X86::VPSHAWrm, 0 },
1649 { X86::VPSHLBrr, X86::VPSHLBrm, 0 },
1650 { X86::VPSHLDrr, X86::VPSHLDrm, 0 },
1651 { X86::VPSHLQrr, X86::VPSHLQrm, 0 },
1652 { X86::VPSHLWrr, X86::VPSHLWrm, 0 },
1653
Michael Liaof9f7b552012-09-26 08:22:37 +00001654 // BMI/BMI2 foldable instructions
Craig Topperf924a582012-12-17 05:02:29 +00001655 { X86::ANDN32rr, X86::ANDN32rm, 0 },
1656 { X86::ANDN64rr, X86::ANDN64rm, 0 },
Michael Liaof9f7b552012-09-26 08:22:37 +00001657 { X86::MULX32rr, X86::MULX32rm, 0 },
1658 { X86::MULX64rr, X86::MULX64rm, 0 },
Craig Topperf924a582012-12-17 05:02:29 +00001659 { X86::PDEP32rr, X86::PDEP32rm, 0 },
1660 { X86::PDEP64rr, X86::PDEP64rm, 0 },
1661 { X86::PEXT32rr, X86::PEXT32rm, 0 },
1662 { X86::PEXT64rr, X86::PEXT64rm, 0 },
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00001663
1664 // AVX-512 foldable instructions
Elena Demikhovsky534015e2013-09-02 07:12:29 +00001665 { X86::VADDPSZrr, X86::VADDPSZrm, 0 },
1666 { X86::VADDPDZrr, X86::VADDPDZrm, 0 },
1667 { X86::VSUBPSZrr, X86::VSUBPSZrm, 0 },
1668 { X86::VSUBPDZrr, X86::VSUBPDZrm, 0 },
1669 { X86::VMULPSZrr, X86::VMULPSZrm, 0 },
1670 { X86::VMULPDZrr, X86::VMULPDZrm, 0 },
1671 { X86::VDIVPSZrr, X86::VDIVPSZrm, 0 },
1672 { X86::VDIVPDZrr, X86::VDIVPDZrm, 0 },
1673 { X86::VMINPSZrr, X86::VMINPSZrm, 0 },
1674 { X86::VMINPDZrr, X86::VMINPDZrm, 0 },
1675 { X86::VMAXPSZrr, X86::VMAXPSZrm, 0 },
1676 { X86::VMAXPDZrr, X86::VMAXPDZrm, 0 },
Elena Demikhovskybb2f6b72014-03-27 09:45:08 +00001677 { X86::VPADDDZrr, X86::VPADDDZrm, 0 },
1678 { X86::VPADDQZrr, X86::VPADDQZrm, 0 },
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00001679 { X86::VPERMPDZri, X86::VPERMPDZmi, 0 },
1680 { X86::VPERMPSZrr, X86::VPERMPSZrm, 0 },
Elena Demikhovskybb2f6b72014-03-27 09:45:08 +00001681 { X86::VPMAXSDZrr, X86::VPMAXSDZrm, 0 },
1682 { X86::VPMAXSQZrr, X86::VPMAXSQZrm, 0 },
1683 { X86::VPMAXUDZrr, X86::VPMAXUDZrm, 0 },
1684 { X86::VPMAXUQZrr, X86::VPMAXUQZrm, 0 },
1685 { X86::VPMINSDZrr, X86::VPMINSDZrm, 0 },
1686 { X86::VPMINSQZrr, X86::VPMINSQZrm, 0 },
1687 { X86::VPMINUDZrr, X86::VPMINUDZrm, 0 },
1688 { X86::VPMINUQZrr, X86::VPMINUQZrm, 0 },
1689 { X86::VPMULDQZrr, X86::VPMULDQZrm, 0 },
Elena Demikhovsky534015e2013-09-02 07:12:29 +00001690 { X86::VPSLLVDZrr, X86::VPSLLVDZrm, 0 },
1691 { X86::VPSLLVQZrr, X86::VPSLLVQZrm, 0 },
1692 { X86::VPSRAVDZrr, X86::VPSRAVDZrm, 0 },
1693 { X86::VPSRLVDZrr, X86::VPSRLVDZrm, 0 },
1694 { X86::VPSRLVQZrr, X86::VPSRLVQZrm, 0 },
Elena Demikhovskybb2f6b72014-03-27 09:45:08 +00001695 { X86::VPSUBDZrr, X86::VPSUBDZrm, 0 },
1696 { X86::VPSUBQZrr, X86::VPSUBQZrm, 0 },
Elena Demikhovsky534015e2013-09-02 07:12:29 +00001697 { X86::VSHUFPDZrri, X86::VSHUFPDZrmi, 0 },
1698 { X86::VSHUFPSZrri, X86::VSHUFPSZrmi, 0 },
Igor Breger00d9f842015-06-08 14:03:17 +00001699 { X86::VALIGNQZrri, X86::VALIGNQZrmi, 0 },
1700 { X86::VALIGNDZrri, X86::VALIGNDZrmi, 0 },
Elena Demikhovskybb2f6b72014-03-27 09:45:08 +00001701 { X86::VPMULUDQZrr, X86::VPMULUDQZrm, 0 },
Robert Khasanov8e8c3992014-12-09 18:45:30 +00001702 { X86::VBROADCASTSSZrkz, X86::VBROADCASTSSZmkz, TB_NO_REVERSE },
1703 { X86::VBROADCASTSDZrkz, X86::VBROADCASTSDZmkz, TB_NO_REVERSE },
1704
1705 // AVX-512{F,VL} foldable instructions
1706 { X86::VBROADCASTSSZ256rkz, X86::VBROADCASTSSZ256mkz, TB_NO_REVERSE },
1707 { X86::VBROADCASTSDZ256rkz, X86::VBROADCASTSDZ256mkz, TB_NO_REVERSE },
1708 { X86::VBROADCASTSSZ128rkz, X86::VBROADCASTSSZ128mkz, TB_NO_REVERSE },
Craig Topper514f02c2013-09-17 06:50:11 +00001709
Robert Khasanov79fb7292014-12-18 12:28:22 +00001710 // AVX-512{F,VL} foldable instructions
1711 { X86::VADDPDZ128rr, X86::VADDPDZ128rm, 0 },
1712 { X86::VADDPDZ256rr, X86::VADDPDZ256rm, 0 },
1713 { X86::VADDPSZ128rr, X86::VADDPSZ128rm, 0 },
1714 { X86::VADDPSZ256rr, X86::VADDPSZ256rm, 0 },
1715
Craig Topper514f02c2013-09-17 06:50:11 +00001716 // AES foldable instructions
1717 { X86::AESDECLASTrr, X86::AESDECLASTrm, TB_ALIGN_16 },
1718 { X86::AESDECrr, X86::AESDECrm, TB_ALIGN_16 },
1719 { X86::AESENCLASTrr, X86::AESENCLASTrm, TB_ALIGN_16 },
1720 { X86::AESENCrr, X86::AESENCrm, TB_ALIGN_16 },
Craig Topperf7e92f12015-02-10 05:10:50 +00001721 { X86::VAESDECLASTrr, X86::VAESDECLASTrm, 0 },
1722 { X86::VAESDECrr, X86::VAESDECrm, 0 },
1723 { X86::VAESENCLASTrr, X86::VAESENCLASTrm, 0 },
1724 { X86::VAESENCrr, X86::VAESENCrm, 0 },
Craig Topper514f02c2013-09-17 06:50:11 +00001725
1726 // SHA foldable instructions
1727 { X86::SHA1MSG1rr, X86::SHA1MSG1rm, TB_ALIGN_16 },
1728 { X86::SHA1MSG2rr, X86::SHA1MSG2rm, TB_ALIGN_16 },
1729 { X86::SHA1NEXTErr, X86::SHA1NEXTErm, TB_ALIGN_16 },
1730 { X86::SHA1RNDS4rri, X86::SHA1RNDS4rmi, TB_ALIGN_16 },
1731 { X86::SHA256MSG1rr, X86::SHA256MSG1rm, TB_ALIGN_16 },
1732 { X86::SHA256MSG2rr, X86::SHA256MSG2rm, TB_ALIGN_16 },
Simon Pilgrimcd322542015-02-10 12:57:17 +00001733 { X86::SHA256RNDS2rr, X86::SHA256RNDS2rm, TB_ALIGN_16 }
Owen Anderson2a3be7b2008-01-07 01:35:02 +00001734 };
1735
Sanjay Patele951a382015-02-17 22:38:06 +00001736 for (unsigned i = 0, e = array_lengthof(MemoryFoldTable2); i != e; ++i) {
1737 unsigned RegOp = MemoryFoldTable2[i].RegOp;
1738 unsigned MemOp = MemoryFoldTable2[i].MemOp;
1739 unsigned Flags = MemoryFoldTable2[i].Flags;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001740 AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
1741 RegOp, MemOp,
1742 // Index 2, folded load
1743 Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00001744 }
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001745
Sanjay Patele951a382015-02-17 22:38:06 +00001746 static const X86MemoryFoldTableEntry MemoryFoldTable3[] = {
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001747 // FMA foldable instructions
Lang Hamesc2c75132014-04-02 22:06:16 +00001748 { X86::VFMADDSSr231r, X86::VFMADDSSr231m, TB_ALIGN_NONE },
1749 { X86::VFMADDSDr231r, X86::VFMADDSDr231m, TB_ALIGN_NONE },
1750 { X86::VFMADDSSr132r, X86::VFMADDSSr132m, TB_ALIGN_NONE },
1751 { X86::VFMADDSDr132r, X86::VFMADDSDr132m, TB_ALIGN_NONE },
1752 { X86::VFMADDSSr213r, X86::VFMADDSSr213m, TB_ALIGN_NONE },
1753 { X86::VFMADDSDr213r, X86::VFMADDSDr213m, TB_ALIGN_NONE },
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001754
Lang Hamesc2c75132014-04-02 22:06:16 +00001755 { X86::VFMADDPSr231r, X86::VFMADDPSr231m, TB_ALIGN_NONE },
1756 { X86::VFMADDPDr231r, X86::VFMADDPDr231m, TB_ALIGN_NONE },
1757 { X86::VFMADDPSr132r, X86::VFMADDPSr132m, TB_ALIGN_NONE },
1758 { X86::VFMADDPDr132r, X86::VFMADDPDr132m, TB_ALIGN_NONE },
1759 { X86::VFMADDPSr213r, X86::VFMADDPSr213m, TB_ALIGN_NONE },
1760 { X86::VFMADDPDr213r, X86::VFMADDPDr213m, TB_ALIGN_NONE },
1761 { X86::VFMADDPSr231rY, X86::VFMADDPSr231mY, TB_ALIGN_NONE },
1762 { X86::VFMADDPDr231rY, X86::VFMADDPDr231mY, TB_ALIGN_NONE },
1763 { X86::VFMADDPSr132rY, X86::VFMADDPSr132mY, TB_ALIGN_NONE },
1764 { X86::VFMADDPDr132rY, X86::VFMADDPDr132mY, TB_ALIGN_NONE },
1765 { X86::VFMADDPSr213rY, X86::VFMADDPSr213mY, TB_ALIGN_NONE },
1766 { X86::VFMADDPDr213rY, X86::VFMADDPDr213mY, TB_ALIGN_NONE },
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001767
Lang Hamesc2c75132014-04-02 22:06:16 +00001768 { X86::VFNMADDSSr231r, X86::VFNMADDSSr231m, TB_ALIGN_NONE },
1769 { X86::VFNMADDSDr231r, X86::VFNMADDSDr231m, TB_ALIGN_NONE },
1770 { X86::VFNMADDSSr132r, X86::VFNMADDSSr132m, TB_ALIGN_NONE },
1771 { X86::VFNMADDSDr132r, X86::VFNMADDSDr132m, TB_ALIGN_NONE },
1772 { X86::VFNMADDSSr213r, X86::VFNMADDSSr213m, TB_ALIGN_NONE },
1773 { X86::VFNMADDSDr213r, X86::VFNMADDSDr213m, TB_ALIGN_NONE },
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001774
Lang Hamesc2c75132014-04-02 22:06:16 +00001775 { X86::VFNMADDPSr231r, X86::VFNMADDPSr231m, TB_ALIGN_NONE },
1776 { X86::VFNMADDPDr231r, X86::VFNMADDPDr231m, TB_ALIGN_NONE },
1777 { X86::VFNMADDPSr132r, X86::VFNMADDPSr132m, TB_ALIGN_NONE },
1778 { X86::VFNMADDPDr132r, X86::VFNMADDPDr132m, TB_ALIGN_NONE },
1779 { X86::VFNMADDPSr213r, X86::VFNMADDPSr213m, TB_ALIGN_NONE },
1780 { X86::VFNMADDPDr213r, X86::VFNMADDPDr213m, TB_ALIGN_NONE },
1781 { X86::VFNMADDPSr231rY, X86::VFNMADDPSr231mY, TB_ALIGN_NONE },
1782 { X86::VFNMADDPDr231rY, X86::VFNMADDPDr231mY, TB_ALIGN_NONE },
1783 { X86::VFNMADDPSr132rY, X86::VFNMADDPSr132mY, TB_ALIGN_NONE },
1784 { X86::VFNMADDPDr132rY, X86::VFNMADDPDr132mY, TB_ALIGN_NONE },
1785 { X86::VFNMADDPSr213rY, X86::VFNMADDPSr213mY, TB_ALIGN_NONE },
1786 { X86::VFNMADDPDr213rY, X86::VFNMADDPDr213mY, TB_ALIGN_NONE },
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001787
Lang Hamesc2c75132014-04-02 22:06:16 +00001788 { X86::VFMSUBSSr231r, X86::VFMSUBSSr231m, TB_ALIGN_NONE },
1789 { X86::VFMSUBSDr231r, X86::VFMSUBSDr231m, TB_ALIGN_NONE },
1790 { X86::VFMSUBSSr132r, X86::VFMSUBSSr132m, TB_ALIGN_NONE },
1791 { X86::VFMSUBSDr132r, X86::VFMSUBSDr132m, TB_ALIGN_NONE },
1792 { X86::VFMSUBSSr213r, X86::VFMSUBSSr213m, TB_ALIGN_NONE },
1793 { X86::VFMSUBSDr213r, X86::VFMSUBSDr213m, TB_ALIGN_NONE },
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001794
Lang Hamesc2c75132014-04-02 22:06:16 +00001795 { X86::VFMSUBPSr231r, X86::VFMSUBPSr231m, TB_ALIGN_NONE },
1796 { X86::VFMSUBPDr231r, X86::VFMSUBPDr231m, TB_ALIGN_NONE },
1797 { X86::VFMSUBPSr132r, X86::VFMSUBPSr132m, TB_ALIGN_NONE },
1798 { X86::VFMSUBPDr132r, X86::VFMSUBPDr132m, TB_ALIGN_NONE },
1799 { X86::VFMSUBPSr213r, X86::VFMSUBPSr213m, TB_ALIGN_NONE },
1800 { X86::VFMSUBPDr213r, X86::VFMSUBPDr213m, TB_ALIGN_NONE },
1801 { X86::VFMSUBPSr231rY, X86::VFMSUBPSr231mY, TB_ALIGN_NONE },
1802 { X86::VFMSUBPDr231rY, X86::VFMSUBPDr231mY, TB_ALIGN_NONE },
1803 { X86::VFMSUBPSr132rY, X86::VFMSUBPSr132mY, TB_ALIGN_NONE },
1804 { X86::VFMSUBPDr132rY, X86::VFMSUBPDr132mY, TB_ALIGN_NONE },
1805 { X86::VFMSUBPSr213rY, X86::VFMSUBPSr213mY, TB_ALIGN_NONE },
1806 { X86::VFMSUBPDr213rY, X86::VFMSUBPDr213mY, TB_ALIGN_NONE },
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001807
Lang Hamesc2c75132014-04-02 22:06:16 +00001808 { X86::VFNMSUBSSr231r, X86::VFNMSUBSSr231m, TB_ALIGN_NONE },
1809 { X86::VFNMSUBSDr231r, X86::VFNMSUBSDr231m, TB_ALIGN_NONE },
1810 { X86::VFNMSUBSSr132r, X86::VFNMSUBSSr132m, TB_ALIGN_NONE },
1811 { X86::VFNMSUBSDr132r, X86::VFNMSUBSDr132m, TB_ALIGN_NONE },
1812 { X86::VFNMSUBSSr213r, X86::VFNMSUBSSr213m, TB_ALIGN_NONE },
1813 { X86::VFNMSUBSDr213r, X86::VFNMSUBSDr213m, TB_ALIGN_NONE },
Craig Topper2e127b52012-06-01 05:48:39 +00001814
Lang Hamesc2c75132014-04-02 22:06:16 +00001815 { X86::VFNMSUBPSr231r, X86::VFNMSUBPSr231m, TB_ALIGN_NONE },
1816 { X86::VFNMSUBPDr231r, X86::VFNMSUBPDr231m, TB_ALIGN_NONE },
1817 { X86::VFNMSUBPSr132r, X86::VFNMSUBPSr132m, TB_ALIGN_NONE },
1818 { X86::VFNMSUBPDr132r, X86::VFNMSUBPDr132m, TB_ALIGN_NONE },
1819 { X86::VFNMSUBPSr213r, X86::VFNMSUBPSr213m, TB_ALIGN_NONE },
1820 { X86::VFNMSUBPDr213r, X86::VFNMSUBPDr213m, TB_ALIGN_NONE },
1821 { X86::VFNMSUBPSr231rY, X86::VFNMSUBPSr231mY, TB_ALIGN_NONE },
1822 { X86::VFNMSUBPDr231rY, X86::VFNMSUBPDr231mY, TB_ALIGN_NONE },
1823 { X86::VFNMSUBPSr132rY, X86::VFNMSUBPSr132mY, TB_ALIGN_NONE },
1824 { X86::VFNMSUBPDr132rY, X86::VFNMSUBPDr132mY, TB_ALIGN_NONE },
1825 { X86::VFNMSUBPSr213rY, X86::VFNMSUBPSr213mY, TB_ALIGN_NONE },
1826 { X86::VFNMSUBPDr213rY, X86::VFNMSUBPDr213mY, TB_ALIGN_NONE },
Craig Topper3cb14302012-06-04 07:08:21 +00001827
Lang Hamesc2c75132014-04-02 22:06:16 +00001828 { X86::VFMADDSUBPSr231r, X86::VFMADDSUBPSr231m, TB_ALIGN_NONE },
1829 { X86::VFMADDSUBPDr231r, X86::VFMADDSUBPDr231m, TB_ALIGN_NONE },
1830 { X86::VFMADDSUBPSr132r, X86::VFMADDSUBPSr132m, TB_ALIGN_NONE },
1831 { X86::VFMADDSUBPDr132r, X86::VFMADDSUBPDr132m, TB_ALIGN_NONE },
1832 { X86::VFMADDSUBPSr213r, X86::VFMADDSUBPSr213m, TB_ALIGN_NONE },
1833 { X86::VFMADDSUBPDr213r, X86::VFMADDSUBPDr213m, TB_ALIGN_NONE },
1834 { X86::VFMADDSUBPSr231rY, X86::VFMADDSUBPSr231mY, TB_ALIGN_NONE },
1835 { X86::VFMADDSUBPDr231rY, X86::VFMADDSUBPDr231mY, TB_ALIGN_NONE },
1836 { X86::VFMADDSUBPSr132rY, X86::VFMADDSUBPSr132mY, TB_ALIGN_NONE },
1837 { X86::VFMADDSUBPDr132rY, X86::VFMADDSUBPDr132mY, TB_ALIGN_NONE },
1838 { X86::VFMADDSUBPSr213rY, X86::VFMADDSUBPSr213mY, TB_ALIGN_NONE },
1839 { X86::VFMADDSUBPDr213rY, X86::VFMADDSUBPDr213mY, TB_ALIGN_NONE },
Craig Topper3cb14302012-06-04 07:08:21 +00001840
Lang Hamesc2c75132014-04-02 22:06:16 +00001841 { X86::VFMSUBADDPSr231r, X86::VFMSUBADDPSr231m, TB_ALIGN_NONE },
1842 { X86::VFMSUBADDPDr231r, X86::VFMSUBADDPDr231m, TB_ALIGN_NONE },
1843 { X86::VFMSUBADDPSr132r, X86::VFMSUBADDPSr132m, TB_ALIGN_NONE },
1844 { X86::VFMSUBADDPDr132r, X86::VFMSUBADDPDr132m, TB_ALIGN_NONE },
1845 { X86::VFMSUBADDPSr213r, X86::VFMSUBADDPSr213m, TB_ALIGN_NONE },
1846 { X86::VFMSUBADDPDr213r, X86::VFMSUBADDPDr213m, TB_ALIGN_NONE },
1847 { X86::VFMSUBADDPSr231rY, X86::VFMSUBADDPSr231mY, TB_ALIGN_NONE },
1848 { X86::VFMSUBADDPDr231rY, X86::VFMSUBADDPDr231mY, TB_ALIGN_NONE },
1849 { X86::VFMSUBADDPSr132rY, X86::VFMSUBADDPSr132mY, TB_ALIGN_NONE },
1850 { X86::VFMSUBADDPDr132rY, X86::VFMSUBADDPDr132mY, TB_ALIGN_NONE },
1851 { X86::VFMSUBADDPSr213rY, X86::VFMSUBADDPSr213mY, TB_ALIGN_NONE },
1852 { X86::VFMSUBADDPDr213rY, X86::VFMSUBADDPDr213mY, TB_ALIGN_NONE },
Craig Topper908e6852012-08-31 23:10:34 +00001853
1854 // FMA4 foldable patterns
Simon Pilgrim616fe502015-06-22 21:49:41 +00001855 { X86::VFMADDSS4rr, X86::VFMADDSS4rm, TB_ALIGN_NONE },
1856 { X86::VFMADDSD4rr, X86::VFMADDSD4rm, TB_ALIGN_NONE },
1857 { X86::VFMADDPS4rr, X86::VFMADDPS4rm, TB_ALIGN_NONE },
1858 { X86::VFMADDPD4rr, X86::VFMADDPD4rm, TB_ALIGN_NONE },
1859 { X86::VFMADDPS4rrY, X86::VFMADDPS4rmY, TB_ALIGN_NONE },
1860 { X86::VFMADDPD4rrY, X86::VFMADDPD4rmY, TB_ALIGN_NONE },
1861 { X86::VFNMADDSS4rr, X86::VFNMADDSS4rm, TB_ALIGN_NONE },
1862 { X86::VFNMADDSD4rr, X86::VFNMADDSD4rm, TB_ALIGN_NONE },
1863 { X86::VFNMADDPS4rr, X86::VFNMADDPS4rm, TB_ALIGN_NONE },
1864 { X86::VFNMADDPD4rr, X86::VFNMADDPD4rm, TB_ALIGN_NONE },
1865 { X86::VFNMADDPS4rrY, X86::VFNMADDPS4rmY, TB_ALIGN_NONE },
1866 { X86::VFNMADDPD4rrY, X86::VFNMADDPD4rmY, TB_ALIGN_NONE },
1867 { X86::VFMSUBSS4rr, X86::VFMSUBSS4rm, TB_ALIGN_NONE },
1868 { X86::VFMSUBSD4rr, X86::VFMSUBSD4rm, TB_ALIGN_NONE },
1869 { X86::VFMSUBPS4rr, X86::VFMSUBPS4rm, TB_ALIGN_NONE },
1870 { X86::VFMSUBPD4rr, X86::VFMSUBPD4rm, TB_ALIGN_NONE },
1871 { X86::VFMSUBPS4rrY, X86::VFMSUBPS4rmY, TB_ALIGN_NONE },
1872 { X86::VFMSUBPD4rrY, X86::VFMSUBPD4rmY, TB_ALIGN_NONE },
1873 { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4rm, TB_ALIGN_NONE },
1874 { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4rm, TB_ALIGN_NONE },
1875 { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4rm, TB_ALIGN_NONE },
1876 { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4rm, TB_ALIGN_NONE },
1877 { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4rmY, TB_ALIGN_NONE },
1878 { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4rmY, TB_ALIGN_NONE },
1879 { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4rm, TB_ALIGN_NONE },
1880 { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4rm, TB_ALIGN_NONE },
1881 { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4rmY, TB_ALIGN_NONE },
1882 { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4rmY, TB_ALIGN_NONE },
1883 { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4rm, TB_ALIGN_NONE },
1884 { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4rm, TB_ALIGN_NONE },
1885 { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4rmY, TB_ALIGN_NONE },
1886 { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4rmY, TB_ALIGN_NONE },
Simon Pilgrimcd322542015-02-10 12:57:17 +00001887
1888 // XOP foldable instructions
1889 { X86::VPCMOVrr, X86::VPCMOVrm, 0 },
1890 { X86::VPCMOVrrY, X86::VPCMOVrmY, 0 },
1891 { X86::VPERMIL2PDrr, X86::VPERMIL2PDrm, 0 },
1892 { X86::VPERMIL2PDrrY, X86::VPERMIL2PDrmY, 0 },
1893 { X86::VPERMIL2PSrr, X86::VPERMIL2PSrm, 0 },
1894 { X86::VPERMIL2PSrrY, X86::VPERMIL2PSrmY, 0 },
1895 { X86::VPPERMrr, X86::VPPERMrm, 0 },
1896
Elena Demikhovsky2e408ae2013-10-06 13:11:09 +00001897 // AVX-512 VPERMI instructions with 3 source operands.
1898 { X86::VPERMI2Drr, X86::VPERMI2Drm, 0 },
1899 { X86::VPERMI2Qrr, X86::VPERMI2Qrm, 0 },
1900 { X86::VPERMI2PSrr, X86::VPERMI2PSrm, 0 },
1901 { X86::VPERMI2PDrr, X86::VPERMI2PDrm, 0 },
Elena Demikhovsky172a27c2014-01-08 10:54:22 +00001902 { X86::VBLENDMPDZrr, X86::VBLENDMPDZrm, 0 },
1903 { X86::VBLENDMPSZrr, X86::VBLENDMPSZrm, 0 },
1904 { X86::VPBLENDMDZrr, X86::VPBLENDMDZrm, 0 },
Robert Khasanov8e8c3992014-12-09 18:45:30 +00001905 { X86::VPBLENDMQZrr, X86::VPBLENDMQZrm, 0 },
1906 { X86::VBROADCASTSSZrk, X86::VBROADCASTSSZmk, TB_NO_REVERSE },
1907 { X86::VBROADCASTSDZrk, X86::VBROADCASTSDZmk, TB_NO_REVERSE },
1908 { X86::VBROADCASTSSZ256rk, X86::VBROADCASTSSZ256mk, TB_NO_REVERSE },
1909 { X86::VBROADCASTSDZ256rk, X86::VBROADCASTSDZ256mk, TB_NO_REVERSE },
Robert Khasanov79fb7292014-12-18 12:28:22 +00001910 { X86::VBROADCASTSSZ128rk, X86::VBROADCASTSSZ128mk, TB_NO_REVERSE },
1911 // AVX-512 arithmetic instructions
1912 { X86::VADDPSZrrkz, X86::VADDPSZrmkz, 0 },
1913 { X86::VADDPDZrrkz, X86::VADDPDZrmkz, 0 },
1914 { X86::VSUBPSZrrkz, X86::VSUBPSZrmkz, 0 },
1915 { X86::VSUBPDZrrkz, X86::VSUBPDZrmkz, 0 },
1916 { X86::VMULPSZrrkz, X86::VMULPSZrmkz, 0 },
1917 { X86::VMULPDZrrkz, X86::VMULPDZrmkz, 0 },
1918 { X86::VDIVPSZrrkz, X86::VDIVPSZrmkz, 0 },
1919 { X86::VDIVPDZrrkz, X86::VDIVPDZrmkz, 0 },
1920 { X86::VMINPSZrrkz, X86::VMINPSZrmkz, 0 },
1921 { X86::VMINPDZrrkz, X86::VMINPDZrmkz, 0 },
1922 { X86::VMAXPSZrrkz, X86::VMAXPSZrmkz, 0 },
1923 { X86::VMAXPDZrrkz, X86::VMAXPDZrmkz, 0 },
1924 // AVX-512{F,VL} arithmetic instructions 256-bit
1925 { X86::VADDPSZ256rrkz, X86::VADDPSZ256rmkz, 0 },
1926 { X86::VADDPDZ256rrkz, X86::VADDPDZ256rmkz, 0 },
1927 { X86::VSUBPSZ256rrkz, X86::VSUBPSZ256rmkz, 0 },
1928 { X86::VSUBPDZ256rrkz, X86::VSUBPDZ256rmkz, 0 },
1929 { X86::VMULPSZ256rrkz, X86::VMULPSZ256rmkz, 0 },
1930 { X86::VMULPDZ256rrkz, X86::VMULPDZ256rmkz, 0 },
1931 { X86::VDIVPSZ256rrkz, X86::VDIVPSZ256rmkz, 0 },
1932 { X86::VDIVPDZ256rrkz, X86::VDIVPDZ256rmkz, 0 },
1933 { X86::VMINPSZ256rrkz, X86::VMINPSZ256rmkz, 0 },
1934 { X86::VMINPDZ256rrkz, X86::VMINPDZ256rmkz, 0 },
1935 { X86::VMAXPSZ256rrkz, X86::VMAXPSZ256rmkz, 0 },
1936 { X86::VMAXPDZ256rrkz, X86::VMAXPDZ256rmkz, 0 },
1937 // AVX-512{F,VL} arithmetic instructions 128-bit
1938 { X86::VADDPSZ128rrkz, X86::VADDPSZ128rmkz, 0 },
1939 { X86::VADDPDZ128rrkz, X86::VADDPDZ128rmkz, 0 },
1940 { X86::VSUBPSZ128rrkz, X86::VSUBPSZ128rmkz, 0 },
1941 { X86::VSUBPDZ128rrkz, X86::VSUBPDZ128rmkz, 0 },
1942 { X86::VMULPSZ128rrkz, X86::VMULPSZ128rmkz, 0 },
1943 { X86::VMULPDZ128rrkz, X86::VMULPDZ128rmkz, 0 },
1944 { X86::VDIVPSZ128rrkz, X86::VDIVPSZ128rmkz, 0 },
1945 { X86::VDIVPDZ128rrkz, X86::VDIVPDZ128rmkz, 0 },
1946 { X86::VMINPSZ128rrkz, X86::VMINPSZ128rmkz, 0 },
1947 { X86::VMINPDZ128rrkz, X86::VMINPDZ128rmkz, 0 },
1948 { X86::VMAXPSZ128rrkz, X86::VMAXPSZ128rmkz, 0 },
1949 { X86::VMAXPDZ128rrkz, X86::VMAXPDZ128rmkz, 0 }
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001950 };
1951
Sanjay Patele951a382015-02-17 22:38:06 +00001952 for (unsigned i = 0, e = array_lengthof(MemoryFoldTable3); i != e; ++i) {
1953 unsigned RegOp = MemoryFoldTable3[i].RegOp;
1954 unsigned MemOp = MemoryFoldTable3[i].MemOp;
1955 unsigned Flags = MemoryFoldTable3[i].Flags;
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001956 AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
1957 RegOp, MemOp,
1958 // Index 3, folded load
1959 Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
1960 }
1961
Sanjay Patele951a382015-02-17 22:38:06 +00001962 static const X86MemoryFoldTableEntry MemoryFoldTable4[] = {
Robert Khasanov79fb7292014-12-18 12:28:22 +00001963 // AVX-512 foldable instructions
1964 { X86::VADDPSZrrk, X86::VADDPSZrmk, 0 },
1965 { X86::VADDPDZrrk, X86::VADDPDZrmk, 0 },
1966 { X86::VSUBPSZrrk, X86::VSUBPSZrmk, 0 },
1967 { X86::VSUBPDZrrk, X86::VSUBPDZrmk, 0 },
1968 { X86::VMULPSZrrk, X86::VMULPSZrmk, 0 },
1969 { X86::VMULPDZrrk, X86::VMULPDZrmk, 0 },
1970 { X86::VDIVPSZrrk, X86::VDIVPSZrmk, 0 },
1971 { X86::VDIVPDZrrk, X86::VDIVPDZrmk, 0 },
1972 { X86::VMINPSZrrk, X86::VMINPSZrmk, 0 },
1973 { X86::VMINPDZrrk, X86::VMINPDZrmk, 0 },
1974 { X86::VMAXPSZrrk, X86::VMAXPSZrmk, 0 },
1975 { X86::VMAXPDZrrk, X86::VMAXPDZrmk, 0 },
1976 // AVX-512{F,VL} foldable instructions 256-bit
1977 { X86::VADDPSZ256rrk, X86::VADDPSZ256rmk, 0 },
1978 { X86::VADDPDZ256rrk, X86::VADDPDZ256rmk, 0 },
1979 { X86::VSUBPSZ256rrk, X86::VSUBPSZ256rmk, 0 },
1980 { X86::VSUBPDZ256rrk, X86::VSUBPDZ256rmk, 0 },
1981 { X86::VMULPSZ256rrk, X86::VMULPSZ256rmk, 0 },
1982 { X86::VMULPDZ256rrk, X86::VMULPDZ256rmk, 0 },
1983 { X86::VDIVPSZ256rrk, X86::VDIVPSZ256rmk, 0 },
1984 { X86::VDIVPDZ256rrk, X86::VDIVPDZ256rmk, 0 },
1985 { X86::VMINPSZ256rrk, X86::VMINPSZ256rmk, 0 },
1986 { X86::VMINPDZ256rrk, X86::VMINPDZ256rmk, 0 },
1987 { X86::VMAXPSZ256rrk, X86::VMAXPSZ256rmk, 0 },
1988 { X86::VMAXPDZ256rrk, X86::VMAXPDZ256rmk, 0 },
1989 // AVX-512{F,VL} foldable instructions 128-bit
1990 { X86::VADDPSZ128rrk, X86::VADDPSZ128rmk, 0 },
1991 { X86::VADDPDZ128rrk, X86::VADDPDZ128rmk, 0 },
1992 { X86::VSUBPSZ128rrk, X86::VSUBPSZ128rmk, 0 },
1993 { X86::VSUBPDZ128rrk, X86::VSUBPDZ128rmk, 0 },
1994 { X86::VMULPSZ128rrk, X86::VMULPSZ128rmk, 0 },
1995 { X86::VMULPDZ128rrk, X86::VMULPDZ128rmk, 0 },
1996 { X86::VDIVPSZ128rrk, X86::VDIVPSZ128rmk, 0 },
1997 { X86::VDIVPDZ128rrk, X86::VDIVPDZ128rmk, 0 },
1998 { X86::VMINPSZ128rrk, X86::VMINPSZ128rmk, 0 },
1999 { X86::VMINPDZ128rrk, X86::VMINPDZ128rmk, 0 },
2000 { X86::VMAXPSZ128rrk, X86::VMAXPSZ128rmk, 0 },
2001 { X86::VMAXPDZ128rrk, X86::VMAXPDZ128rmk, 0 }
2002 };
2003
Sanjay Patele951a382015-02-17 22:38:06 +00002004 for (unsigned i = 0, e = array_lengthof(MemoryFoldTable4); i != e; ++i) {
2005 unsigned RegOp = MemoryFoldTable4[i].RegOp;
2006 unsigned MemOp = MemoryFoldTable4[i].MemOp;
2007 unsigned Flags = MemoryFoldTable4[i].Flags;
Robert Khasanov79fb7292014-12-18 12:28:22 +00002008 AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable,
2009 RegOp, MemOp,
2010 // Index 4, folded load
2011 Flags | TB_INDEX_4 | TB_FOLDED_LOAD);
2012 }
Chris Lattnerd92fb002002-10-25 22:55:53 +00002013}
2014
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00002015void
2016X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
2017 MemOp2RegOpTableType &M2RTable,
2018 unsigned RegOp, unsigned MemOp, unsigned Flags) {
2019 if ((Flags & TB_NO_FORWARD) == 0) {
2020 assert(!R2MTable.count(RegOp) && "Duplicate entry!");
2021 R2MTable[RegOp] = std::make_pair(MemOp, Flags);
2022 }
2023 if ((Flags & TB_NO_REVERSE) == 0) {
2024 assert(!M2RTable.count(MemOp) &&
2025 "Duplicated entries in unfolding maps?");
2026 M2RTable[MemOp] = std::make_pair(RegOp, Flags);
2027 }
2028}
2029
Evan Cheng42166152010-01-12 00:09:37 +00002030bool
Evan Cheng30bebff2010-01-13 00:30:23 +00002031X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
2032 unsigned &SrcReg, unsigned &DstReg,
2033 unsigned &SubIdx) const {
Evan Cheng42166152010-01-12 00:09:37 +00002034 switch (MI.getOpcode()) {
2035 default: break;
2036 case X86::MOVSX16rr8:
2037 case X86::MOVZX16rr8:
2038 case X86::MOVSX32rr8:
2039 case X86::MOVZX32rr8:
2040 case X86::MOVSX64rr8:
Eric Christopher6c786a12014-06-10 22:34:31 +00002041 if (!Subtarget.is64Bit())
Evan Chengceb5a4e2010-01-13 08:01:32 +00002042 // It's not always legal to reference the low 8-bit of the larger
2043 // register in 32-bit mode.
2044 return false;
Evan Cheng42166152010-01-12 00:09:37 +00002045 case X86::MOVSX32rr16:
2046 case X86::MOVZX32rr16:
2047 case X86::MOVSX64rr16:
Tim Northover04eb4232013-05-30 10:43:18 +00002048 case X86::MOVSX64rr32: {
Evan Cheng42166152010-01-12 00:09:37 +00002049 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
2050 // Be conservative.
2051 return false;
Evan Cheng42166152010-01-12 00:09:37 +00002052 SrcReg = MI.getOperand(1).getReg();
2053 DstReg = MI.getOperand(0).getReg();
Evan Cheng42166152010-01-12 00:09:37 +00002054 switch (MI.getOpcode()) {
Craig Topper4bc3e5a2012-08-21 08:16:16 +00002055 default: llvm_unreachable("Unreachable!");
Evan Cheng42166152010-01-12 00:09:37 +00002056 case X86::MOVSX16rr8:
2057 case X86::MOVZX16rr8:
2058 case X86::MOVSX32rr8:
2059 case X86::MOVZX32rr8:
2060 case X86::MOVSX64rr8:
Jakob Stoklund Olesen396c8802010-05-25 17:04:16 +00002061 SubIdx = X86::sub_8bit;
Evan Cheng42166152010-01-12 00:09:37 +00002062 break;
2063 case X86::MOVSX32rr16:
2064 case X86::MOVZX32rr16:
2065 case X86::MOVSX64rr16:
Jakob Stoklund Olesen396c8802010-05-25 17:04:16 +00002066 SubIdx = X86::sub_16bit;
Evan Cheng42166152010-01-12 00:09:37 +00002067 break;
2068 case X86::MOVSX64rr32:
Jakob Stoklund Olesen396c8802010-05-25 17:04:16 +00002069 SubIdx = X86::sub_32bit;
Evan Cheng42166152010-01-12 00:09:37 +00002070 break;
2071 }
Evan Cheng30bebff2010-01-13 00:30:23 +00002072 return true;
Evan Cheng42166152010-01-12 00:09:37 +00002073 }
2074 }
Evan Cheng30bebff2010-01-13 00:30:23 +00002075 return false;
Evan Cheng42166152010-01-12 00:09:37 +00002076}
2077
Michael Kuperstein13fbd452015-02-01 16:56:04 +00002078int X86InstrInfo::getSPAdjust(const MachineInstr *MI) const {
2079 const MachineFunction *MF = MI->getParent()->getParent();
2080 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2081
2082 if (MI->getOpcode() == getCallFrameSetupOpcode() ||
2083 MI->getOpcode() == getCallFrameDestroyOpcode()) {
2084 unsigned StackAlign = TFI->getStackAlignment();
Simon Pilgrimcd322542015-02-10 12:57:17 +00002085 int SPAdj = (MI->getOperand(0).getImm() + StackAlign - 1) / StackAlign *
Michael Kuperstein13fbd452015-02-01 16:56:04 +00002086 StackAlign;
2087
2088 SPAdj -= MI->getOperand(1).getImm();
2089
2090 if (MI->getOpcode() == getCallFrameSetupOpcode())
2091 return SPAdj;
2092 else
2093 return -SPAdj;
2094 }
Simon Pilgrimcd322542015-02-10 12:57:17 +00002095
2096 // To know whether a call adjusts the stack, we need information
Michael Kuperstein13fbd452015-02-01 16:56:04 +00002097 // that is bound to the following ADJCALLSTACKUP pseudo.
2098 // Look for the next ADJCALLSTACKUP that follows the call.
2099 if (MI->isCall()) {
2100 const MachineBasicBlock* MBB = MI->getParent();
2101 auto I = ++MachineBasicBlock::const_iterator(MI);
2102 for (auto E = MBB->end(); I != E; ++I) {
2103 if (I->getOpcode() == getCallFrameDestroyOpcode() ||
2104 I->isCall())
2105 break;
2106 }
2107
2108 // If we could not find a frame destroy opcode, then it has already
2109 // been simplified, so we don't care.
2110 if (I->getOpcode() != getCallFrameDestroyOpcode())
2111 return 0;
2112
2113 return -(I->getOperand(1).getImm());
2114 }
2115
2116 // Currently handle only PUSHes we can reasonably expect to see
2117 // in call sequences
2118 switch (MI->getOpcode()) {
Simon Pilgrimcd322542015-02-10 12:57:17 +00002119 default:
Michael Kuperstein13fbd452015-02-01 16:56:04 +00002120 return 0;
2121 case X86::PUSH32i8:
2122 case X86::PUSH32r:
2123 case X86::PUSH32rmm:
2124 case X86::PUSH32rmr:
2125 case X86::PUSHi32:
2126 return 4;
2127 }
2128}
2129
Sanjay Patel203ee502015-02-17 21:55:20 +00002130/// Return true and the FrameIndex if the specified
David Greene70fdd572009-11-12 20:55:29 +00002131/// operand and follow operands form a reference to the stack frame.
2132bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
2133 int &FrameIndex) const {
Craig Topper646f64f2014-05-06 07:04:32 +00002134 if (MI->getOperand(Op+X86::AddrBaseReg).isFI() &&
2135 MI->getOperand(Op+X86::AddrScaleAmt).isImm() &&
2136 MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
2137 MI->getOperand(Op+X86::AddrDisp).isImm() &&
2138 MI->getOperand(Op+X86::AddrScaleAmt).getImm() == 1 &&
2139 MI->getOperand(Op+X86::AddrIndexReg).getReg() == 0 &&
2140 MI->getOperand(Op+X86::AddrDisp).getImm() == 0) {
2141 FrameIndex = MI->getOperand(Op+X86::AddrBaseReg).getIndex();
David Greene70fdd572009-11-12 20:55:29 +00002142 return true;
2143 }
2144 return false;
2145}
2146
David Greene2f4c3742009-11-13 00:29:53 +00002147static bool isFrameLoadOpcode(int Opcode) {
2148 switch (Opcode) {
David Blaikie46a9f012012-01-20 21:51:11 +00002149 default:
2150 return false;
Chris Lattnerbb53acd2006-02-02 20:12:32 +00002151 case X86::MOV8rm:
2152 case X86::MOV16rm:
2153 case X86::MOV32rm:
Evan Cheng11b0a5d2006-09-08 06:48:29 +00002154 case X86::MOV64rm:
Dale Johannesen3d7008c2007-07-04 21:07:47 +00002155 case X86::LD_Fp64m:
Chris Lattnerbb53acd2006-02-02 20:12:32 +00002156 case X86::MOVSSrm:
2157 case X86::MOVSDrm:
Chris Lattnerbfc2c682006-04-18 16:44:51 +00002158 case X86::MOVAPSrm:
2159 case X86::MOVAPDrm:
Dan Gohmanbdc0f8b2009-01-09 02:40:34 +00002160 case X86::MOVDQArm:
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00002161 case X86::VMOVSSrm:
2162 case X86::VMOVSDrm:
2163 case X86::VMOVAPSrm:
2164 case X86::VMOVAPDrm:
2165 case X86::VMOVDQArm:
Simon Pilgrim9c1e4122014-11-18 23:38:19 +00002166 case X86::VMOVUPSYrm:
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00002167 case X86::VMOVAPSYrm:
Simon Pilgrim9c1e4122014-11-18 23:38:19 +00002168 case X86::VMOVUPDYrm:
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00002169 case X86::VMOVAPDYrm:
Simon Pilgrim9c1e4122014-11-18 23:38:19 +00002170 case X86::VMOVDQUYrm:
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00002171 case X86::VMOVDQAYrm:
Bill Wendlinge7b2a862007-04-03 06:00:37 +00002172 case X86::MMX_MOVD64rm:
2173 case X86::MMX_MOVQ64rm:
Elena Demikhovskya5d38a32014-01-23 14:27:26 +00002174 case X86::VMOVAPSZrm:
2175 case X86::VMOVUPSZrm:
David Greene2f4c3742009-11-13 00:29:53 +00002176 return true;
David Greene2f4c3742009-11-13 00:29:53 +00002177 }
David Greene2f4c3742009-11-13 00:29:53 +00002178}
2179
2180static bool isFrameStoreOpcode(int Opcode) {
2181 switch (Opcode) {
2182 default: break;
2183 case X86::MOV8mr:
2184 case X86::MOV16mr:
2185 case X86::MOV32mr:
2186 case X86::MOV64mr:
2187 case X86::ST_FpP64m:
2188 case X86::MOVSSmr:
2189 case X86::MOVSDmr:
2190 case X86::MOVAPSmr:
2191 case X86::MOVAPDmr:
2192 case X86::MOVDQAmr:
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00002193 case X86::VMOVSSmr:
2194 case X86::VMOVSDmr:
2195 case X86::VMOVAPSmr:
2196 case X86::VMOVAPDmr:
2197 case X86::VMOVDQAmr:
Simon Pilgrim9c1e4122014-11-18 23:38:19 +00002198 case X86::VMOVUPSYmr:
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00002199 case X86::VMOVAPSYmr:
Simon Pilgrim9c1e4122014-11-18 23:38:19 +00002200 case X86::VMOVUPDYmr:
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00002201 case X86::VMOVAPDYmr:
Simon Pilgrim9c1e4122014-11-18 23:38:19 +00002202 case X86::VMOVDQUYmr:
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00002203 case X86::VMOVDQAYmr:
Elena Demikhovskya5d38a32014-01-23 14:27:26 +00002204 case X86::VMOVUPSZmr:
2205 case X86::VMOVAPSZmr:
David Greene2f4c3742009-11-13 00:29:53 +00002206 case X86::MMX_MOVD64mr:
2207 case X86::MMX_MOVQ64mr:
2208 case X86::MMX_MOVNTQmr:
2209 return true;
2210 }
2211 return false;
2212}
2213
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00002214unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
David Greene2f4c3742009-11-13 00:29:53 +00002215 int &FrameIndex) const {
2216 if (isFrameLoadOpcode(MI->getOpcode()))
Jakob Stoklund Olesen96a890a2010-07-27 04:17:01 +00002217 if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
Chris Lattnerbb53acd2006-02-02 20:12:32 +00002218 return MI->getOperand(0).getReg();
David Greene2f4c3742009-11-13 00:29:53 +00002219 return 0;
2220}
2221
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00002222unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
David Greene2f4c3742009-11-13 00:29:53 +00002223 int &FrameIndex) const {
2224 if (isFrameLoadOpcode(MI->getOpcode())) {
2225 unsigned Reg;
2226 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
2227 return Reg;
David Greene70fdd572009-11-12 20:55:29 +00002228 // Check for post-frame index elimination operations
David Greene0508e432009-12-04 22:38:46 +00002229 const MachineMemOperand *Dummy;
2230 return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
Chris Lattnerbb53acd2006-02-02 20:12:32 +00002231 }
2232 return 0;
2233}
2234
Dan Gohman0b273252008-11-18 19:49:32 +00002235unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Chris Lattnerbb53acd2006-02-02 20:12:32 +00002236 int &FrameIndex) const {
David Greene2f4c3742009-11-13 00:29:53 +00002237 if (isFrameStoreOpcode(MI->getOpcode()))
Jakob Stoklund Olesen96a890a2010-07-27 04:17:01 +00002238 if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
2239 isFrameOperand(MI, 0, FrameIndex))
Chris Lattnerec536272010-07-08 22:41:28 +00002240 return MI->getOperand(X86::AddrNumOperands).getReg();
David Greene2f4c3742009-11-13 00:29:53 +00002241 return 0;
2242}
2243
2244unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
2245 int &FrameIndex) const {
2246 if (isFrameStoreOpcode(MI->getOpcode())) {
2247 unsigned Reg;
2248 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
2249 return Reg;
David Greene70fdd572009-11-12 20:55:29 +00002250 // Check for post-frame index elimination operations
David Greene0508e432009-12-04 22:38:46 +00002251 const MachineMemOperand *Dummy;
2252 return hasStoreToStackSlot(MI, Dummy, FrameIndex);
Chris Lattnerbb53acd2006-02-02 20:12:32 +00002253 }
2254 return 0;
2255}
2256
Sanjay Patel203ee502015-02-17 21:55:20 +00002257/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
Dan Gohman3b460302008-07-07 23:14:23 +00002258static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Jakob Stoklund Olesen3b9a4422012-08-08 00:40:47 +00002259 // Don't waste compile time scanning use-def chains of physregs.
2260 if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
2261 return false;
Evan Cheng308e5642008-03-27 01:45:11 +00002262 bool isPICBase = false;
Owen Anderson16c6bf42014-03-13 23:12:04 +00002263 for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
2264 E = MRI.def_instr_end(); I != E; ++I) {
2265 MachineInstr *DefMI = &*I;
Evan Cheng308e5642008-03-27 01:45:11 +00002266 if (DefMI->getOpcode() != X86::MOVPC32r)
2267 return false;
2268 assert(!isPICBase && "More than one PIC base?");
2269 isPICBase = true;
2270 }
2271 return isPICBase;
2272}
Evan Cheng1973a462008-03-31 07:54:19 +00002273
Bill Wendling1e117682008-05-12 20:54:26 +00002274bool
Dan Gohmane919de52009-10-10 00:34:18 +00002275X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
2276 AliasAnalysis *AA) const {
Dan Gohman4a4a8eb2007-06-14 20:50:44 +00002277 switch (MI->getOpcode()) {
2278 default: break;
Craig Toppera0cabf12012-08-21 08:17:07 +00002279 case X86::MOV8rm:
2280 case X86::MOV16rm:
2281 case X86::MOV32rm:
2282 case X86::MOV64rm:
2283 case X86::LD_Fp64m:
2284 case X86::MOVSSrm:
2285 case X86::MOVSDrm:
2286 case X86::MOVAPSrm:
2287 case X86::MOVUPSrm:
2288 case X86::MOVAPDrm:
2289 case X86::MOVDQArm:
Craig Topper922f10a2012-12-06 06:49:16 +00002290 case X86::MOVDQUrm:
Craig Toppera0cabf12012-08-21 08:17:07 +00002291 case X86::VMOVSSrm:
2292 case X86::VMOVSDrm:
2293 case X86::VMOVAPSrm:
2294 case X86::VMOVUPSrm:
2295 case X86::VMOVAPDrm:
2296 case X86::VMOVDQArm:
Craig Topper922f10a2012-12-06 06:49:16 +00002297 case X86::VMOVDQUrm:
Craig Toppera0cabf12012-08-21 08:17:07 +00002298 case X86::VMOVAPSYrm:
2299 case X86::VMOVUPSYrm:
2300 case X86::VMOVAPDYrm:
2301 case X86::VMOVDQAYrm:
Craig Topper922f10a2012-12-06 06:49:16 +00002302 case X86::VMOVDQUYrm:
Craig Toppera0cabf12012-08-21 08:17:07 +00002303 case X86::MMX_MOVD64rm:
2304 case X86::MMX_MOVQ64rm:
2305 case X86::FsVMOVAPSrm:
2306 case X86::FsVMOVAPDrm:
2307 case X86::FsMOVAPSrm:
2308 case X86::FsMOVAPDrm: {
2309 // Loads from constant pools are trivially rematerializable.
Craig Topper646f64f2014-05-06 07:04:32 +00002310 if (MI->getOperand(1+X86::AddrBaseReg).isReg() &&
2311 MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
2312 MI->getOperand(1+X86::AddrIndexReg).isReg() &&
2313 MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
Craig Toppera0cabf12012-08-21 08:17:07 +00002314 MI->isInvariantLoad(AA)) {
Craig Topper646f64f2014-05-06 07:04:32 +00002315 unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
Craig Toppera0cabf12012-08-21 08:17:07 +00002316 if (BaseReg == 0 || BaseReg == X86::RIP)
2317 return true;
2318 // Allow re-materialization of PIC load.
Craig Topper646f64f2014-05-06 07:04:32 +00002319 if (!ReMatPICStubLoad && MI->getOperand(1+X86::AddrDisp).isGlobal())
Craig Toppera0cabf12012-08-21 08:17:07 +00002320 return false;
2321 const MachineFunction &MF = *MI->getParent()->getParent();
2322 const MachineRegisterInfo &MRI = MF.getRegInfo();
2323 return regIsPICBase(BaseReg, MRI);
Evan Cheng94ba37f2008-02-22 09:25:47 +00002324 }
Craig Toppera0cabf12012-08-21 08:17:07 +00002325 return false;
2326 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00002327
Craig Toppera0cabf12012-08-21 08:17:07 +00002328 case X86::LEA32r:
2329 case X86::LEA64r: {
Craig Topper646f64f2014-05-06 07:04:32 +00002330 if (MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
2331 MI->getOperand(1+X86::AddrIndexReg).isReg() &&
2332 MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
2333 !MI->getOperand(1+X86::AddrDisp).isReg()) {
Craig Toppera0cabf12012-08-21 08:17:07 +00002334 // lea fi#, lea GV, etc. are all rematerializable.
Craig Topper646f64f2014-05-06 07:04:32 +00002335 if (!MI->getOperand(1+X86::AddrBaseReg).isReg())
Craig Toppera0cabf12012-08-21 08:17:07 +00002336 return true;
Craig Topper646f64f2014-05-06 07:04:32 +00002337 unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
Craig Toppera0cabf12012-08-21 08:17:07 +00002338 if (BaseReg == 0)
2339 return true;
2340 // Allow re-materialization of lea PICBase + x.
2341 const MachineFunction &MF = *MI->getParent()->getParent();
2342 const MachineRegisterInfo &MRI = MF.getRegInfo();
2343 return regIsPICBase(BaseReg, MRI);
2344 }
2345 return false;
2346 }
Dan Gohman4a4a8eb2007-06-14 20:50:44 +00002347 }
Evan Cheng29e62a52008-03-27 01:41:09 +00002348
Dan Gohmane8c1e422007-06-26 00:48:07 +00002349 // All other instructions marked M_REMATERIALIZABLE are always trivially
2350 // rematerializable.
2351 return true;
Dan Gohman4a4a8eb2007-06-14 20:50:44 +00002352}
2353
Alexey Volkov6226de62014-05-20 08:55:50 +00002354bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
2355 MachineBasicBlock::iterator I) const {
Evan Chengb6dee6e2010-03-23 20:35:45 +00002356 MachineBasicBlock::iterator E = MBB.end();
2357
Evan Cheng3f2ceac2008-06-24 07:10:51 +00002358 // For compile time consideration, if we are not able to determine the
Dan Gohman0be8c2b2009-10-14 00:08:59 +00002359 // safety after visiting 4 instructions in each direction, we will assume
2360 // it's not safe.
2361 MachineBasicBlock::iterator Iter = I;
Jakob Stoklund Olesenf08354d2011-09-02 23:52:52 +00002362 for (unsigned i = 0; Iter != E && i < 4; ++i) {
Evan Cheng3f2ceac2008-06-24 07:10:51 +00002363 bool SeenDef = false;
Dan Gohman0be8c2b2009-10-14 00:08:59 +00002364 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
2365 MachineOperand &MO = Iter->getOperand(j);
Jakob Stoklund Olesen4519fd02012-02-09 00:17:22 +00002366 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
2367 SeenDef = true;
Dan Gohman0d1e9a82008-10-03 15:45:36 +00002368 if (!MO.isReg())
Evan Cheng3f2ceac2008-06-24 07:10:51 +00002369 continue;
2370 if (MO.getReg() == X86::EFLAGS) {
2371 if (MO.isUse())
2372 return false;
2373 SeenDef = true;
2374 }
2375 }
2376
2377 if (SeenDef)
2378 // This instruction defines EFLAGS, no need to look any further.
2379 return true;
Dan Gohman0be8c2b2009-10-14 00:08:59 +00002380 ++Iter;
Evan Chengb6dee6e2010-03-23 20:35:45 +00002381 // Skip over DBG_VALUE.
2382 while (Iter != E && Iter->isDebugValue())
2383 ++Iter;
Jakob Stoklund Olesenf08354d2011-09-02 23:52:52 +00002384 }
Dan Gohmanc8354582008-10-21 03:24:31 +00002385
Jakob Stoklund Olesenf08354d2011-09-02 23:52:52 +00002386 // It is safe to clobber EFLAGS at the end of a block of no successor has it
2387 // live in.
2388 if (Iter == E) {
2389 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
2390 SE = MBB.succ_end(); SI != SE; ++SI)
2391 if ((*SI)->isLiveIn(X86::EFLAGS))
2392 return false;
2393 return true;
Dan Gohman0be8c2b2009-10-14 00:08:59 +00002394 }
2395
Evan Chengb6dee6e2010-03-23 20:35:45 +00002396 MachineBasicBlock::iterator B = MBB.begin();
Dan Gohman0be8c2b2009-10-14 00:08:59 +00002397 Iter = I;
2398 for (unsigned i = 0; i < 4; ++i) {
2399 // If we make it to the beginning of the block, it's safe to clobber
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00002400 // EFLAGS iff EFLAGS is not live-in.
Evan Chengb6dee6e2010-03-23 20:35:45 +00002401 if (Iter == B)
Dan Gohman0be8c2b2009-10-14 00:08:59 +00002402 return !MBB.isLiveIn(X86::EFLAGS);
2403
2404 --Iter;
Evan Chengb6dee6e2010-03-23 20:35:45 +00002405 // Skip over DBG_VALUE.
2406 while (Iter != B && Iter->isDebugValue())
2407 --Iter;
2408
Dan Gohman0be8c2b2009-10-14 00:08:59 +00002409 bool SawKill = false;
2410 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
2411 MachineOperand &MO = Iter->getOperand(j);
Jakob Stoklund Olesen4519fd02012-02-09 00:17:22 +00002412 // A register mask may clobber EFLAGS, but we should still look for a
2413 // live EFLAGS def.
2414 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
2415 SawKill = true;
Dan Gohman0be8c2b2009-10-14 00:08:59 +00002416 if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
2417 if (MO.isDef()) return MO.isDead();
2418 if (MO.isKill()) SawKill = true;
2419 }
2420 }
2421
2422 if (SawKill)
2423 // This instruction kills EFLAGS and doesn't redefine it, so
2424 // there's no need to look further.
Dan Gohmanc8354582008-10-21 03:24:31 +00002425 return true;
Evan Cheng3f2ceac2008-06-24 07:10:51 +00002426 }
2427
2428 // Conservative answer.
2429 return false;
2430}
2431
Evan Chenged6e34f2008-03-31 20:40:39 +00002432void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
2433 MachineBasicBlock::iterator I,
Evan Cheng84517442009-07-16 09:20:10 +00002434 unsigned DestReg, unsigned SubIdx,
Evan Cheng6ad7da92009-11-14 02:55:43 +00002435 const MachineInstr *Orig,
Jakob Stoklund Olesena8ad9772010-06-02 22:47:25 +00002436 const TargetRegisterInfo &TRI) const {
Tim Northover64ec0ff2013-05-30 13:19:42 +00002437 // MOV32r0 is implemented with a xor which clobbers condition code.
2438 // Re-materialize it as movri instructions to avoid side effects.
Evan Cheng84517442009-07-16 09:20:10 +00002439 unsigned Opc = Orig->getOpcode();
Tim Northover64ec0ff2013-05-30 13:19:42 +00002440 if (Opc == X86::MOV32r0 && !isSafeToClobberEFLAGS(MBB, I)) {
2441 DebugLoc DL = Orig->getDebugLoc();
2442 BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0))
2443 .addImm(0);
2444 } else {
Dan Gohman3b460302008-07-07 23:14:23 +00002445 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Chenged6e34f2008-03-31 20:40:39 +00002446 MBB.insert(I, MI);
Evan Chenged6e34f2008-03-31 20:40:39 +00002447 }
Evan Cheng147cb762008-04-16 23:44:44 +00002448
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00002449 MachineInstr *NewMI = std::prev(I);
Jakob Stoklund Olesena8ad9772010-06-02 22:47:25 +00002450 NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
Evan Chenged6e34f2008-03-31 20:40:39 +00002451}
2452
Sanjay Patel203ee502015-02-17 21:55:20 +00002453/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
Evan Chenga8a9c152007-10-05 08:04:01 +00002454static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chenga8a9c152007-10-05 08:04:01 +00002455 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2456 MachineOperand &MO = MI->getOperand(i);
Dan Gohman0d1e9a82008-10-03 15:45:36 +00002457 if (MO.isReg() && MO.isDef() &&
Evan Chenga8a9c152007-10-05 08:04:01 +00002458 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
2459 return true;
2460 }
2461 }
2462 return false;
2463}
2464
Sanjay Patel203ee502015-02-17 21:55:20 +00002465/// Check whether the shift count for a machine operand is non-zero.
David Majnemer7ea2a522013-05-22 08:13:02 +00002466inline static unsigned getTruncatedShiftCount(MachineInstr *MI,
2467 unsigned ShiftAmtOperandIdx) {
2468 // The shift count is six bits with the REX.W prefix and five bits without.
2469 unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
2470 unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm();
2471 return Imm & ShiftCountMask;
2472}
2473
Sanjay Patel203ee502015-02-17 21:55:20 +00002474/// Check whether the given shift count is appropriate
David Majnemer7ea2a522013-05-22 08:13:02 +00002475/// can be represented by a LEA instruction.
2476inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
2477 // Left shift instructions can be transformed into load-effective-address
2478 // instructions if we can encode them appropriately.
2479 // A LEA instruction utilizes a SIB byte to encode it's scale factor.
2480 // The SIB.scale field is two bits wide which means that we can encode any
2481 // shift amount less than 4.
2482 return ShAmt < 4 && ShAmt > 0;
2483}
2484
Tim Northover6833e3f2013-06-10 20:43:49 +00002485bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
2486 unsigned Opc, bool AllowSP,
2487 unsigned &NewSrc, bool &isKill, bool &isUndef,
2488 MachineOperand &ImplicitOp) const {
2489 MachineFunction &MF = *MI->getParent()->getParent();
2490 const TargetRegisterClass *RC;
2491 if (AllowSP) {
2492 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
2493 } else {
2494 RC = Opc != X86::LEA32r ?
2495 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
2496 }
2497 unsigned SrcReg = Src.getReg();
2498
2499 // For both LEA64 and LEA32 the register already has essentially the right
2500 // type (32-bit or 64-bit) we may just need to forbid SP.
2501 if (Opc != X86::LEA64_32r) {
2502 NewSrc = SrcReg;
2503 isKill = Src.isKill();
2504 isUndef = Src.isUndef();
2505
2506 if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
2507 !MF.getRegInfo().constrainRegClass(NewSrc, RC))
2508 return false;
2509
2510 return true;
2511 }
2512
2513 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
2514 // another we need to add 64-bit registers to the final MI.
2515 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
2516 ImplicitOp = Src;
2517 ImplicitOp.setImplicit();
2518
2519 NewSrc = getX86SubSuperRegister(Src.getReg(), MVT::i64);
2520 MachineBasicBlock::LivenessQueryResult LQR =
2521 MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI);
2522
2523 switch (LQR) {
2524 case MachineBasicBlock::LQR_Unknown:
2525 // We can't give sane liveness flags to the instruction, abandon LEA
2526 // formation.
2527 return false;
2528 case MachineBasicBlock::LQR_Live:
2529 isKill = MI->killsRegister(SrcReg);
2530 isUndef = false;
2531 break;
2532 default:
2533 // The physreg itself is dead, so we have to use it as an <undef>.
2534 isKill = false;
2535 isUndef = true;
2536 break;
2537 }
2538 } else {
2539 // Virtual register of the wrong class, we have to create a temporary 64-bit
2540 // vreg to feed into the LEA.
2541 NewSrc = MF.getRegInfo().createVirtualRegister(RC);
2542 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
2543 get(TargetOpcode::COPY))
2544 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
2545 .addOperand(Src);
2546
2547 // Which is obviously going to be dead after we're done with it.
2548 isKill = true;
2549 isUndef = false;
2550 }
2551
2552 // We've set all the parameters without issue.
2553 return true;
2554}
2555
Sanjay Patel203ee502015-02-17 21:55:20 +00002556/// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit
2557/// LEA to form 3-address code by promoting to a 32-bit superregister and then
2558/// truncating back down to a 16-bit subregister.
Evan Cheng766a73f2009-12-11 06:01:48 +00002559MachineInstr *
2560X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
2561 MachineFunction::iterator &MFI,
2562 MachineBasicBlock::iterator &MBBI,
2563 LiveVariables *LV) const {
2564 MachineInstr *MI = MBBI;
2565 unsigned Dest = MI->getOperand(0).getReg();
2566 unsigned Src = MI->getOperand(1).getReg();
2567 bool isDead = MI->getOperand(0).isDead();
2568 bool isKill = MI->getOperand(1).isKill();
2569
Evan Cheng766a73f2009-12-11 06:01:48 +00002570 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng766a73f2009-12-11 06:01:48 +00002571 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Tim Northover6833e3f2013-06-10 20:43:49 +00002572 unsigned Opc, leaInReg;
Eric Christopher6c786a12014-06-10 22:34:31 +00002573 if (Subtarget.is64Bit()) {
Tim Northover6833e3f2013-06-10 20:43:49 +00002574 Opc = X86::LEA64_32r;
2575 leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
2576 } else {
2577 Opc = X86::LEA32r;
2578 leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
2579 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00002580
Evan Cheng766a73f2009-12-11 06:01:48 +00002581 // Build and insert into an implicit UNDEF value. This is OK because
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00002582 // well be shifting and then extracting the lower 16-bits.
Evan Cheng26fdd722009-12-12 20:03:14 +00002583 // This has the potential to cause partial register stall. e.g.
Evan Cheng3974c8d2009-12-12 18:55:26 +00002584 // movw (%rbp,%rcx,2), %dx
2585 // leal -65(%rdx), %esi
Evan Cheng26fdd722009-12-12 20:03:14 +00002586 // But testing has shown this *does* help performance in 64-bit mode (at
2587 // least on modern x86 machines).
Evan Cheng766a73f2009-12-11 06:01:48 +00002588 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
2589 MachineInstr *InsMI =
Jakob Stoklund Olesena1e883d2010-07-08 16:40:15 +00002590 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
2591 .addReg(leaInReg, RegState::Define, X86::sub_16bit)
2592 .addReg(Src, getKillRegState(isKill));
Evan Cheng766a73f2009-12-11 06:01:48 +00002593
2594 MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
2595 get(Opc), leaOutReg);
2596 switch (MIOpc) {
Craig Topper4bc3e5a2012-08-21 08:16:16 +00002597 default: llvm_unreachable("Unreachable!");
Evan Cheng766a73f2009-12-11 06:01:48 +00002598 case X86::SHL16ri: {
2599 unsigned ShAmt = MI->getOperand(2).getImm();
2600 MIB.addReg(0).addImm(1 << ShAmt)
Chris Lattnerf4693072010-07-08 23:46:44 +00002601 .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
Evan Cheng766a73f2009-12-11 06:01:48 +00002602 break;
2603 }
2604 case X86::INC16r:
Chris Lattnerf4693072010-07-08 23:46:44 +00002605 addRegOffset(MIB, leaInReg, true, 1);
Evan Cheng766a73f2009-12-11 06:01:48 +00002606 break;
2607 case X86::DEC16r:
Chris Lattnerf4693072010-07-08 23:46:44 +00002608 addRegOffset(MIB, leaInReg, true, -1);
Evan Cheng766a73f2009-12-11 06:01:48 +00002609 break;
2610 case X86::ADD16ri:
2611 case X86::ADD16ri8:
Chris Lattnerdd774772010-10-08 03:57:25 +00002612 case X86::ADD16ri_DB:
2613 case X86::ADD16ri8_DB:
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00002614 addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
Evan Cheng766a73f2009-12-11 06:01:48 +00002615 break;
Chris Lattner626656a2010-10-08 03:54:52 +00002616 case X86::ADD16rr:
2617 case X86::ADD16rr_DB: {
Evan Cheng766a73f2009-12-11 06:01:48 +00002618 unsigned Src2 = MI->getOperand(2).getReg();
2619 bool isKill2 = MI->getOperand(2).isKill();
2620 unsigned leaInReg2 = 0;
Craig Topper062a2ba2014-04-25 05:30:21 +00002621 MachineInstr *InsMI2 = nullptr;
Evan Cheng766a73f2009-12-11 06:01:48 +00002622 if (Src == Src2) {
2623 // ADD16rr %reg1028<kill>, %reg1028
2624 // just a single insert_subreg.
2625 addRegReg(MIB, leaInReg, true, leaInReg, false);
2626 } else {
Eric Christopher6c786a12014-06-10 22:34:31 +00002627 if (Subtarget.is64Bit())
Tim Northover6833e3f2013-06-10 20:43:49 +00002628 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
2629 else
2630 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
Evan Cheng766a73f2009-12-11 06:01:48 +00002631 // Build and insert into an implicit UNDEF value. This is OK because
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00002632 // well be shifting and then extracting the lower 16-bits.
Evan Cheng7fae11b2011-12-14 02:11:42 +00002633 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
Evan Cheng766a73f2009-12-11 06:01:48 +00002634 InsMI2 =
Evan Cheng7fae11b2011-12-14 02:11:42 +00002635 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
Jakob Stoklund Olesena1e883d2010-07-08 16:40:15 +00002636 .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
2637 .addReg(Src2, getKillRegState(isKill2));
Evan Cheng766a73f2009-12-11 06:01:48 +00002638 addRegReg(MIB, leaInReg, true, leaInReg2, true);
2639 }
2640 if (LV && isKill2 && InsMI2)
2641 LV->replaceKillInstruction(Src2, MI, InsMI2);
2642 break;
2643 }
2644 }
2645
2646 MachineInstr *NewMI = MIB;
2647 MachineInstr *ExtMI =
Jakob Stoklund Olesen00264622010-07-08 16:40:22 +00002648 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
Evan Cheng766a73f2009-12-11 06:01:48 +00002649 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
Jakob Stoklund Olesen00264622010-07-08 16:40:22 +00002650 .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
Evan Cheng766a73f2009-12-11 06:01:48 +00002651
2652 if (LV) {
2653 // Update live variables
2654 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
2655 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
2656 if (isKill)
2657 LV->replaceKillInstruction(Src, MI, InsMI);
2658 if (isDead)
2659 LV->replaceKillInstruction(Dest, MI, ExtMI);
2660 }
2661
2662 return ExtMI;
2663}
2664
Sanjay Patel203ee502015-02-17 21:55:20 +00002665/// This method must be implemented by targets that
Chris Lattnerb7782d72005-01-02 02:37:07 +00002666/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
2667/// may be able to convert a two-address instruction into a true
2668/// three-address instruction on demand. This allows the X86 target (for
2669/// example) to convert ADD and SHL instructions into LEA instructions if they
2670/// would require register copies due to two-addressness.
2671///
2672/// This method returns a null pointer if the transformation cannot be
2673/// performed, otherwise it returns the new instruction.
2674///
Evan Cheng07fc1072006-12-01 21:52:41 +00002675MachineInstr *
2676X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
2677 MachineBasicBlock::iterator &MBBI,
Owen Anderson30cc0282008-07-02 23:41:07 +00002678 LiveVariables *LV) const {
Evan Cheng07fc1072006-12-01 21:52:41 +00002679 MachineInstr *MI = MBBI;
David Majnemer7ea2a522013-05-22 08:13:02 +00002680
2681 // The following opcodes also sets the condition code register(s). Only
2682 // convert them to equivalent lea if the condition code register def's
2683 // are dead!
2684 if (hasLiveCondCodeDef(MI))
Craig Topper062a2ba2014-04-25 05:30:21 +00002685 return nullptr;
David Majnemer7ea2a522013-05-22 08:13:02 +00002686
Dan Gohman3b460302008-07-07 23:14:23 +00002687 MachineFunction &MF = *MI->getParent()->getParent();
Chris Lattnerb7782d72005-01-02 02:37:07 +00002688 // All instructions input are two-addr instructions. Get the known operands.
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002689 const MachineOperand &Dest = MI->getOperand(0);
2690 const MachineOperand &Src = MI->getOperand(1);
Chris Lattnerb7782d72005-01-02 02:37:07 +00002691
Craig Topper062a2ba2014-04-25 05:30:21 +00002692 MachineInstr *NewMI = nullptr;
Evan Cheng07fc1072006-12-01 21:52:41 +00002693 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
Chris Lattner3e1d9172007-03-20 06:08:29 +00002694 // we have better subtarget support, enable the 16-bit LEA generation here.
Evan Cheng26fdd722009-12-12 20:03:14 +00002695 // 16-bit LEA is also slow on Core2.
Evan Cheng07fc1072006-12-01 21:52:41 +00002696 bool DisableLEA16 = true;
Eric Christopher6c786a12014-06-10 22:34:31 +00002697 bool is64Bit = Subtarget.is64Bit();
Evan Cheng07fc1072006-12-01 21:52:41 +00002698
Evan Chengfa2c8282007-10-05 20:34:26 +00002699 unsigned MIOpc = MI->getOpcode();
2700 switch (MIOpc) {
Craig Topper39354e12015-01-07 08:10:38 +00002701 default: return nullptr;
Chris Lattnerbcd38852007-03-28 18:12:31 +00002702 case X86::SHL64ri: {
Evan Cheng483e1ce2007-09-14 21:48:26 +00002703 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
David Majnemer7ea2a522013-05-22 08:13:02 +00002704 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
Craig Topper062a2ba2014-04-25 05:30:21 +00002705 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
Evan Cheng7d98a482008-07-03 09:09:37 +00002706
Jakob Stoklund Olesenb19bae42010-10-07 00:07:26 +00002707 // LEA can't handle RSP.
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002708 if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
2709 !MF.getRegInfo().constrainRegClass(Src.getReg(),
2710 &X86::GR64_NOSPRegClass))
Craig Topper062a2ba2014-04-25 05:30:21 +00002711 return nullptr;
Jakob Stoklund Olesenb19bae42010-10-07 00:07:26 +00002712
Bill Wendling27b508d2009-02-11 21:51:19 +00002713 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002714 .addOperand(Dest)
2715 .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
Chris Lattnerbcd38852007-03-28 18:12:31 +00002716 break;
2717 }
Chris Lattner3e1d9172007-03-20 06:08:29 +00002718 case X86::SHL32ri: {
Evan Cheng483e1ce2007-09-14 21:48:26 +00002719 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
David Majnemer7ea2a522013-05-22 08:13:02 +00002720 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
Craig Topper062a2ba2014-04-25 05:30:21 +00002721 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
Evan Cheng7d98a482008-07-03 09:09:37 +00002722
Tim Northover6833e3f2013-06-10 20:43:49 +00002723 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2724
Jakob Stoklund Olesenb19bae42010-10-07 00:07:26 +00002725 // LEA can't handle ESP.
Tim Northover6833e3f2013-06-10 20:43:49 +00002726 bool isKill, isUndef;
2727 unsigned SrcReg;
2728 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2729 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2730 SrcReg, isKill, isUndef, ImplicitOp))
Craig Topper062a2ba2014-04-25 05:30:21 +00002731 return nullptr;
Jakob Stoklund Olesenb19bae42010-10-07 00:07:26 +00002732
Tim Northover6833e3f2013-06-10 20:43:49 +00002733 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002734 .addOperand(Dest)
Tim Northover6833e3f2013-06-10 20:43:49 +00002735 .addReg(0).addImm(1 << ShAmt)
2736 .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
2737 .addImm(0).addReg(0);
2738 if (ImplicitOp.getReg() != 0)
2739 MIB.addOperand(ImplicitOp);
2740 NewMI = MIB;
2741
Chris Lattner3e1d9172007-03-20 06:08:29 +00002742 break;
2743 }
2744 case X86::SHL16ri: {
Evan Cheng483e1ce2007-09-14 21:48:26 +00002745 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
David Majnemer7ea2a522013-05-22 08:13:02 +00002746 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
Craig Topper062a2ba2014-04-25 05:30:21 +00002747 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
Evan Cheng7d98a482008-07-03 09:09:37 +00002748
Evan Cheng766a73f2009-12-11 06:01:48 +00002749 if (DisableLEA16)
Craig Topper062a2ba2014-04-25 05:30:21 +00002750 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : nullptr;
Evan Cheng766a73f2009-12-11 06:01:48 +00002751 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002752 .addOperand(Dest)
2753 .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
Chris Lattner3e1d9172007-03-20 06:08:29 +00002754 break;
Evan Cheng66f849b2006-05-30 20:26:50 +00002755 }
Craig Topper39354e12015-01-07 08:10:38 +00002756 case X86::INC64r:
2757 case X86::INC32r: {
2758 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
2759 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
2760 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
2761 bool isKill, isUndef;
2762 unsigned SrcReg;
2763 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2764 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2765 SrcReg, isKill, isUndef, ImplicitOp))
2766 return nullptr;
Evan Cheng66f849b2006-05-30 20:26:50 +00002767
Craig Topper39354e12015-01-07 08:10:38 +00002768 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2769 .addOperand(Dest)
2770 .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef));
2771 if (ImplicitOp.getReg() != 0)
2772 MIB.addOperand(ImplicitOp);
Jakob Stoklund Olesenb19bae42010-10-07 00:07:26 +00002773
Craig Topper39354e12015-01-07 08:10:38 +00002774 NewMI = addOffset(MIB, 1);
2775 break;
Evan Chengfa2c8282007-10-05 20:34:26 +00002776 }
Craig Topper39354e12015-01-07 08:10:38 +00002777 case X86::INC16r:
2778 if (DisableLEA16)
2779 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2780 : nullptr;
2781 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
2782 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2783 .addOperand(Dest).addOperand(Src), 1);
2784 break;
2785 case X86::DEC64r:
2786 case X86::DEC32r: {
2787 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2788 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
2789 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
2790
2791 bool isKill, isUndef;
2792 unsigned SrcReg;
2793 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2794 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2795 SrcReg, isKill, isUndef, ImplicitOp))
2796 return nullptr;
2797
2798 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2799 .addOperand(Dest)
2800 .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2801 if (ImplicitOp.getReg() != 0)
2802 MIB.addOperand(ImplicitOp);
2803
2804 NewMI = addOffset(MIB, -1);
2805
2806 break;
2807 }
2808 case X86::DEC16r:
2809 if (DisableLEA16)
2810 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2811 : nullptr;
2812 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2813 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2814 .addOperand(Dest).addOperand(Src), -1);
2815 break;
2816 case X86::ADD64rr:
2817 case X86::ADD64rr_DB:
2818 case X86::ADD32rr:
2819 case X86::ADD32rr_DB: {
2820 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2821 unsigned Opc;
2822 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
2823 Opc = X86::LEA64r;
2824 else
2825 Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2826
2827 bool isKill, isUndef;
2828 unsigned SrcReg;
2829 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2830 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2831 SrcReg, isKill, isUndef, ImplicitOp))
2832 return nullptr;
2833
2834 const MachineOperand &Src2 = MI->getOperand(2);
2835 bool isKill2, isUndef2;
2836 unsigned SrcReg2;
2837 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
2838 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
2839 SrcReg2, isKill2, isUndef2, ImplicitOp2))
2840 return nullptr;
2841
2842 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2843 .addOperand(Dest);
2844 if (ImplicitOp.getReg() != 0)
2845 MIB.addOperand(ImplicitOp);
2846 if (ImplicitOp2.getReg() != 0)
2847 MIB.addOperand(ImplicitOp2);
2848
2849 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
2850
2851 // Preserve undefness of the operands.
2852 NewMI->getOperand(1).setIsUndef(isUndef);
2853 NewMI->getOperand(3).setIsUndef(isUndef2);
2854
2855 if (LV && Src2.isKill())
2856 LV->replaceKillInstruction(SrcReg2, MI, NewMI);
2857 break;
2858 }
2859 case X86::ADD16rr:
2860 case X86::ADD16rr_DB: {
2861 if (DisableLEA16)
2862 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2863 : nullptr;
2864 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2865 unsigned Src2 = MI->getOperand(2).getReg();
2866 bool isKill2 = MI->getOperand(2).isKill();
2867 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2868 .addOperand(Dest),
2869 Src.getReg(), Src.isKill(), Src2, isKill2);
2870
2871 // Preserve undefness of the operands.
2872 bool isUndef = MI->getOperand(1).isUndef();
2873 bool isUndef2 = MI->getOperand(2).isUndef();
2874 NewMI->getOperand(1).setIsUndef(isUndef);
2875 NewMI->getOperand(3).setIsUndef(isUndef2);
2876
2877 if (LV && isKill2)
2878 LV->replaceKillInstruction(Src2, MI, NewMI);
2879 break;
2880 }
2881 case X86::ADD64ri32:
2882 case X86::ADD64ri8:
2883 case X86::ADD64ri32_DB:
2884 case X86::ADD64ri8_DB:
2885 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2886 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
2887 .addOperand(Dest).addOperand(Src),
2888 MI->getOperand(2).getImm());
2889 break;
2890 case X86::ADD32ri:
2891 case X86::ADD32ri8:
2892 case X86::ADD32ri_DB:
2893 case X86::ADD32ri8_DB: {
2894 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2895 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2896
2897 bool isKill, isUndef;
2898 unsigned SrcReg;
2899 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2900 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2901 SrcReg, isKill, isUndef, ImplicitOp))
2902 return nullptr;
2903
2904 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2905 .addOperand(Dest)
2906 .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2907 if (ImplicitOp.getReg() != 0)
2908 MIB.addOperand(ImplicitOp);
2909
2910 NewMI = addOffset(MIB, MI->getOperand(2).getImm());
2911 break;
2912 }
2913 case X86::ADD16ri:
2914 case X86::ADD16ri8:
2915 case X86::ADD16ri_DB:
2916 case X86::ADD16ri8_DB:
2917 if (DisableLEA16)
2918 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2919 : nullptr;
2920 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2921 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2922 .addOperand(Dest).addOperand(Src),
2923 MI->getOperand(2).getImm());
2924 break;
Chris Lattnerb7782d72005-01-02 02:37:07 +00002925 }
2926
Craig Topper062a2ba2014-04-25 05:30:21 +00002927 if (!NewMI) return nullptr;
Evan Cheng1bc1cae2008-02-07 08:29:53 +00002928
Evan Cheng7d98a482008-07-03 09:09:37 +00002929 if (LV) { // Update live variables
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002930 if (Src.isKill())
2931 LV->replaceKillInstruction(Src.getReg(), MI, NewMI);
2932 if (Dest.isDead())
2933 LV->replaceKillInstruction(Dest.getReg(), MI, NewMI);
Evan Cheng7d98a482008-07-03 09:09:37 +00002934 }
2935
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00002936 MFI->insert(MBBI, NewMI); // Insert the new inst
Evan Chengdc2c8742006-11-15 20:58:11 +00002937 return NewMI;
Chris Lattnerb7782d72005-01-02 02:37:07 +00002938}
2939
Sanjay Patel203ee502015-02-17 21:55:20 +00002940/// We have a few instructions that must be hacked on to commute them.
Chris Lattner29478012005-01-19 07:11:01 +00002941///
Evan Cheng03553bb2008-06-16 07:33:11 +00002942MachineInstr *
2943X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Chris Lattner29478012005-01-19 07:11:01 +00002944 switch (MI->getOpcode()) {
Chris Lattnerd54845f2005-01-19 07:31:24 +00002945 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
2946 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
Chris Lattner29478012005-01-19 07:11:01 +00002947 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman48ea03d2007-09-14 23:17:45 +00002948 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
2949 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
2950 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Chris Lattnerd54845f2005-01-19 07:31:24 +00002951 unsigned Opc;
2952 unsigned Size;
2953 switch (MI->getOpcode()) {
Torok Edwinfbcc6632009-07-14 16:55:14 +00002954 default: llvm_unreachable("Unreachable!");
Chris Lattnerd54845f2005-01-19 07:31:24 +00002955 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
2956 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
2957 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
2958 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman48ea03d2007-09-14 23:17:45 +00002959 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
2960 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Chris Lattnerd54845f2005-01-19 07:31:24 +00002961 }
Chris Lattner5c463782007-12-30 20:49:49 +00002962 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohmana39b0a12008-10-17 01:23:35 +00002963 if (NewMI) {
2964 MachineFunction &MF = *MI->getParent()->getParent();
2965 MI = MF.CloneMachineInstr(MI);
2966 NewMI = false;
Evan Cheng244183e2008-02-13 02:46:49 +00002967 }
Dan Gohmana39b0a12008-10-17 01:23:35 +00002968 MI->setDesc(get(Opc));
2969 MI->getOperand(3).setImm(Size-Amt);
Jakob Stoklund Olesen9de596e2012-11-28 02:35:17 +00002970 return TargetInstrInfo::commuteInstruction(MI, NewMI);
Chris Lattner29478012005-01-19 07:11:01 +00002971 }
Simon Pilgrimc9a07792014-11-04 23:25:08 +00002972 case X86::BLENDPDrri:
2973 case X86::BLENDPSrri:
2974 case X86::PBLENDWrri:
2975 case X86::VBLENDPDrri:
2976 case X86::VBLENDPSrri:
2977 case X86::VBLENDPDYrri:
2978 case X86::VBLENDPSYrri:
2979 case X86::VPBLENDDrri:
2980 case X86::VPBLENDWrri:
2981 case X86::VPBLENDDYrri:
2982 case X86::VPBLENDWYrri:{
2983 unsigned Mask;
2984 switch (MI->getOpcode()) {
2985 default: llvm_unreachable("Unreachable!");
2986 case X86::BLENDPDrri: Mask = 0x03; break;
2987 case X86::BLENDPSrri: Mask = 0x0F; break;
2988 case X86::PBLENDWrri: Mask = 0xFF; break;
2989 case X86::VBLENDPDrri: Mask = 0x03; break;
2990 case X86::VBLENDPSrri: Mask = 0x0F; break;
2991 case X86::VBLENDPDYrri: Mask = 0x0F; break;
2992 case X86::VBLENDPSYrri: Mask = 0xFF; break;
2993 case X86::VPBLENDDrri: Mask = 0x0F; break;
2994 case X86::VPBLENDWrri: Mask = 0xFF; break;
2995 case X86::VPBLENDDYrri: Mask = 0xFF; break;
2996 case X86::VPBLENDWYrri: Mask = 0xFF; break;
2997 }
Andrea Di Biagio7ecd22c2014-11-06 14:36:45 +00002998 // Only the least significant bits of Imm are used.
2999 unsigned Imm = MI->getOperand(3).getImm() & Mask;
Simon Pilgrimc9a07792014-11-04 23:25:08 +00003000 if (NewMI) {
3001 MachineFunction &MF = *MI->getParent()->getParent();
3002 MI = MF.CloneMachineInstr(MI);
3003 NewMI = false;
3004 }
3005 MI->getOperand(3).setImm(Mask ^ Imm);
3006 return TargetInstrInfo::commuteInstruction(MI, NewMI);
3007 }
Simon Pilgrim9b7c0032015-01-26 22:00:18 +00003008 case X86::PCLMULQDQrr:
3009 case X86::VPCLMULQDQrr:{
3010 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
3011 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
3012 unsigned Imm = MI->getOperand(3).getImm();
3013 unsigned Src1Hi = Imm & 0x01;
3014 unsigned Src2Hi = Imm & 0x10;
3015 if (NewMI) {
3016 MachineFunction &MF = *MI->getParent()->getParent();
3017 MI = MF.CloneMachineInstr(MI);
3018 NewMI = false;
3019 }
3020 MI->getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
3021 return TargetInstrInfo::commuteInstruction(MI, NewMI);
3022 }
Simon Pilgrim0629ba12015-01-26 22:29:24 +00003023 case X86::CMPPDrri:
3024 case X86::CMPPSrri:
3025 case X86::VCMPPDrri:
3026 case X86::VCMPPSrri:
3027 case X86::VCMPPDYrri:
3028 case X86::VCMPPSYrri: {
3029 // Float comparison can be safely commuted for
3030 // Ordered/Unordered/Equal/NotEqual tests
3031 unsigned Imm = MI->getOperand(3).getImm() & 0x7;
3032 switch (Imm) {
3033 case 0x00: // EQUAL
3034 case 0x03: // UNORDERED
3035 case 0x04: // NOT EQUAL
3036 case 0x07: // ORDERED
3037 if (NewMI) {
3038 MachineFunction &MF = *MI->getParent()->getParent();
3039 MI = MF.CloneMachineInstr(MI);
3040 NewMI = false;
3041 }
3042 return TargetInstrInfo::commuteInstruction(MI, NewMI);
3043 default:
3044 return nullptr;
3045 }
3046 }
Simon Pilgrim31457d52015-02-14 22:40:46 +00003047 case X86::VPCOMBri: case X86::VPCOMUBri:
3048 case X86::VPCOMDri: case X86::VPCOMUDri:
3049 case X86::VPCOMQri: case X86::VPCOMUQri:
3050 case X86::VPCOMWri: case X86::VPCOMUWri: {
3051 // Flip comparison mode immediate (if necessary).
3052 unsigned Imm = MI->getOperand(3).getImm() & 0x7;
3053 switch (Imm) {
3054 case 0x00: Imm = 0x02; break; // LT -> GT
3055 case 0x01: Imm = 0x03; break; // LE -> GE
3056 case 0x02: Imm = 0x00; break; // GT -> LT
3057 case 0x03: Imm = 0x01; break; // GE -> LE
3058 case 0x04: // EQ
3059 case 0x05: // NE
3060 case 0x06: // FALSE
3061 case 0x07: // TRUE
3062 default:
3063 break;
3064 }
3065 if (NewMI) {
3066 MachineFunction &MF = *MI->getParent()->getParent();
3067 MI = MF.CloneMachineInstr(MI);
3068 NewMI = false;
3069 }
3070 MI->getOperand(3).setImm(Imm);
3071 return TargetInstrInfo::commuteInstruction(MI, NewMI);
3072 }
Craig Topper653e7592012-08-21 07:32:16 +00003073 case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr:
3074 case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
3075 case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr:
3076 case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
3077 case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
3078 case X86::CMOVA16rr: case X86::CMOVA32rr: case X86::CMOVA64rr:
3079 case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr:
3080 case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
3081 case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
3082 case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr:
3083 case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr:
3084 case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
3085 case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr:
3086 case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
3087 case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr:
3088 case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
3089 unsigned Opc;
Evan Cheng1151ffd2007-10-05 23:13:21 +00003090 switch (MI->getOpcode()) {
Craig Topper653e7592012-08-21 07:32:16 +00003091 default: llvm_unreachable("Unreachable!");
Evan Cheng1151ffd2007-10-05 23:13:21 +00003092 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
3093 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
3094 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
3095 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
3096 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
3097 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
3098 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
3099 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
3100 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
3101 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
3102 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
3103 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
Chris Lattner1a1c6002010-10-05 23:00:14 +00003104 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
3105 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
3106 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
3107 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
3108 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
3109 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
Evan Cheng1151ffd2007-10-05 23:13:21 +00003110 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
3111 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
3112 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
3113 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
3114 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
3115 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
3116 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
3117 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
3118 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
3119 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
3120 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
3121 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
3122 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
3123 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
Mon P Wang6c8bcf92009-04-18 05:16:01 +00003124 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
Evan Cheng1151ffd2007-10-05 23:13:21 +00003125 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
3126 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
3127 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
3128 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
3129 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
Mon P Wang6c8bcf92009-04-18 05:16:01 +00003130 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
Evan Cheng1151ffd2007-10-05 23:13:21 +00003131 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
3132 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
3133 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
Dan Gohman7e47cc72009-01-07 00:35:10 +00003134 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
3135 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
Mon P Wang6c8bcf92009-04-18 05:16:01 +00003136 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
Dan Gohman7e47cc72009-01-07 00:35:10 +00003137 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
3138 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
3139 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
Evan Cheng1151ffd2007-10-05 23:13:21 +00003140 }
Dan Gohmana39b0a12008-10-17 01:23:35 +00003141 if (NewMI) {
3142 MachineFunction &MF = *MI->getParent()->getParent();
3143 MI = MF.CloneMachineInstr(MI);
3144 NewMI = false;
3145 }
Chris Lattner59687512008-01-11 18:10:50 +00003146 MI->setDesc(get(Opc));
Lang Hamesc59a2d02014-04-02 23:57:49 +00003147 // Fallthrough intended.
Evan Cheng1151ffd2007-10-05 23:13:21 +00003148 }
Chris Lattner29478012005-01-19 07:11:01 +00003149 default:
Jakob Stoklund Olesen9de596e2012-11-28 02:35:17 +00003150 return TargetInstrInfo::commuteInstruction(MI, NewMI);
Chris Lattner29478012005-01-19 07:11:01 +00003151 }
3152}
3153
Lang Hamesc59a2d02014-04-02 23:57:49 +00003154bool X86InstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
3155 unsigned &SrcOpIdx2) const {
3156 switch (MI->getOpcode()) {
Simon Pilgrim0629ba12015-01-26 22:29:24 +00003157 case X86::CMPPDrri:
3158 case X86::CMPPSrri:
3159 case X86::VCMPPDrri:
3160 case X86::VCMPPSrri:
3161 case X86::VCMPPDYrri:
3162 case X86::VCMPPSYrri: {
3163 // Float comparison can be safely commuted for
3164 // Ordered/Unordered/Equal/NotEqual tests
3165 unsigned Imm = MI->getOperand(3).getImm() & 0x7;
3166 switch (Imm) {
3167 case 0x00: // EQUAL
3168 case 0x03: // UNORDERED
3169 case 0x04: // NOT EQUAL
3170 case 0x07: // ORDERED
3171 SrcOpIdx1 = 1;
3172 SrcOpIdx2 = 2;
3173 return true;
3174 }
3175 return false;
3176 }
Lang Hamesc59a2d02014-04-02 23:57:49 +00003177 case X86::VFMADDPDr231r:
3178 case X86::VFMADDPSr231r:
3179 case X86::VFMADDSDr231r:
3180 case X86::VFMADDSSr231r:
3181 case X86::VFMSUBPDr231r:
3182 case X86::VFMSUBPSr231r:
3183 case X86::VFMSUBSDr231r:
3184 case X86::VFMSUBSSr231r:
3185 case X86::VFNMADDPDr231r:
3186 case X86::VFNMADDPSr231r:
3187 case X86::VFNMADDSDr231r:
3188 case X86::VFNMADDSSr231r:
3189 case X86::VFNMSUBPDr231r:
3190 case X86::VFNMSUBPSr231r:
3191 case X86::VFNMSUBSDr231r:
3192 case X86::VFNMSUBSSr231r:
3193 case X86::VFMADDPDr231rY:
3194 case X86::VFMADDPSr231rY:
3195 case X86::VFMSUBPDr231rY:
3196 case X86::VFMSUBPSr231rY:
3197 case X86::VFNMADDPDr231rY:
3198 case X86::VFNMADDPSr231rY:
3199 case X86::VFNMSUBPDr231rY:
3200 case X86::VFNMSUBPSr231rY:
3201 SrcOpIdx1 = 2;
3202 SrcOpIdx2 = 3;
3203 return true;
3204 default:
3205 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
3206 }
3207}
3208
Manman Ren5f6fa422012-07-09 18:57:12 +00003209static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003210 switch (BrOpc) {
3211 default: return X86::COND_INVALID;
Craig Topper49758aa2015-01-06 04:23:53 +00003212 case X86::JE_1: return X86::COND_E;
3213 case X86::JNE_1: return X86::COND_NE;
3214 case X86::JL_1: return X86::COND_L;
3215 case X86::JLE_1: return X86::COND_LE;
3216 case X86::JG_1: return X86::COND_G;
3217 case X86::JGE_1: return X86::COND_GE;
3218 case X86::JB_1: return X86::COND_B;
3219 case X86::JBE_1: return X86::COND_BE;
3220 case X86::JA_1: return X86::COND_A;
3221 case X86::JAE_1: return X86::COND_AE;
3222 case X86::JS_1: return X86::COND_S;
3223 case X86::JNS_1: return X86::COND_NS;
3224 case X86::JP_1: return X86::COND_P;
3225 case X86::JNP_1: return X86::COND_NP;
3226 case X86::JO_1: return X86::COND_O;
3227 case X86::JNO_1: return X86::COND_NO;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003228 }
3229}
3230
Sanjay Patel203ee502015-02-17 21:55:20 +00003231/// Return condition code of a SET opcode.
Manman Ren5f6fa422012-07-09 18:57:12 +00003232static X86::CondCode getCondFromSETOpc(unsigned Opc) {
3233 switch (Opc) {
3234 default: return X86::COND_INVALID;
3235 case X86::SETAr: case X86::SETAm: return X86::COND_A;
3236 case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
3237 case X86::SETBr: case X86::SETBm: return X86::COND_B;
3238 case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
3239 case X86::SETEr: case X86::SETEm: return X86::COND_E;
3240 case X86::SETGr: case X86::SETGm: return X86::COND_G;
3241 case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
3242 case X86::SETLr: case X86::SETLm: return X86::COND_L;
3243 case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
3244 case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
3245 case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
3246 case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
3247 case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
3248 case X86::SETOr: case X86::SETOm: return X86::COND_O;
3249 case X86::SETPr: case X86::SETPm: return X86::COND_P;
3250 case X86::SETSr: case X86::SETSm: return X86::COND_S;
3251 }
3252}
3253
Sanjay Patel203ee502015-02-17 21:55:20 +00003254/// Return condition code of a CMov opcode.
Michael Liao32376622012-09-20 03:06:15 +00003255X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
Manman Ren5f6fa422012-07-09 18:57:12 +00003256 switch (Opc) {
3257 default: return X86::COND_INVALID;
3258 case X86::CMOVA16rm: case X86::CMOVA16rr: case X86::CMOVA32rm:
3259 case X86::CMOVA32rr: case X86::CMOVA64rm: case X86::CMOVA64rr:
3260 return X86::COND_A;
3261 case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
3262 case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
3263 return X86::COND_AE;
3264 case X86::CMOVB16rm: case X86::CMOVB16rr: case X86::CMOVB32rm:
3265 case X86::CMOVB32rr: case X86::CMOVB64rm: case X86::CMOVB64rr:
3266 return X86::COND_B;
3267 case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
3268 case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
3269 return X86::COND_BE;
3270 case X86::CMOVE16rm: case X86::CMOVE16rr: case X86::CMOVE32rm:
3271 case X86::CMOVE32rr: case X86::CMOVE64rm: case X86::CMOVE64rr:
3272 return X86::COND_E;
3273 case X86::CMOVG16rm: case X86::CMOVG16rr: case X86::CMOVG32rm:
3274 case X86::CMOVG32rr: case X86::CMOVG64rm: case X86::CMOVG64rr:
3275 return X86::COND_G;
3276 case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
3277 case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
3278 return X86::COND_GE;
3279 case X86::CMOVL16rm: case X86::CMOVL16rr: case X86::CMOVL32rm:
3280 case X86::CMOVL32rr: case X86::CMOVL64rm: case X86::CMOVL64rr:
3281 return X86::COND_L;
3282 case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
3283 case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
3284 return X86::COND_LE;
3285 case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
3286 case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
3287 return X86::COND_NE;
3288 case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
3289 case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
3290 return X86::COND_NO;
3291 case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
3292 case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
3293 return X86::COND_NP;
3294 case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
3295 case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
3296 return X86::COND_NS;
3297 case X86::CMOVO16rm: case X86::CMOVO16rr: case X86::CMOVO32rm:
3298 case X86::CMOVO32rr: case X86::CMOVO64rm: case X86::CMOVO64rr:
3299 return X86::COND_O;
3300 case X86::CMOVP16rm: case X86::CMOVP16rr: case X86::CMOVP32rm:
3301 case X86::CMOVP32rr: case X86::CMOVP64rm: case X86::CMOVP64rr:
3302 return X86::COND_P;
3303 case X86::CMOVS16rm: case X86::CMOVS16rr: case X86::CMOVS32rm:
3304 case X86::CMOVS32rr: case X86::CMOVS64rm: case X86::CMOVS64rr:
3305 return X86::COND_S;
3306 }
3307}
3308
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003309unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
3310 switch (CC) {
Torok Edwinfbcc6632009-07-14 16:55:14 +00003311 default: llvm_unreachable("Illegal condition code!");
Craig Topper49758aa2015-01-06 04:23:53 +00003312 case X86::COND_E: return X86::JE_1;
3313 case X86::COND_NE: return X86::JNE_1;
3314 case X86::COND_L: return X86::JL_1;
3315 case X86::COND_LE: return X86::JLE_1;
3316 case X86::COND_G: return X86::JG_1;
3317 case X86::COND_GE: return X86::JGE_1;
3318 case X86::COND_B: return X86::JB_1;
3319 case X86::COND_BE: return X86::JBE_1;
3320 case X86::COND_A: return X86::JA_1;
3321 case X86::COND_AE: return X86::JAE_1;
3322 case X86::COND_S: return X86::JS_1;
3323 case X86::COND_NS: return X86::JNS_1;
3324 case X86::COND_P: return X86::JP_1;
3325 case X86::COND_NP: return X86::JNP_1;
3326 case X86::COND_O: return X86::JO_1;
3327 case X86::COND_NO: return X86::JNO_1;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003328 }
3329}
3330
Sanjay Patel203ee502015-02-17 21:55:20 +00003331/// Return the inverse of the specified condition,
Chris Lattner3a897f32006-10-21 05:52:40 +00003332/// e.g. turning COND_E to COND_NE.
3333X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
3334 switch (CC) {
Torok Edwinfbcc6632009-07-14 16:55:14 +00003335 default: llvm_unreachable("Illegal condition code!");
Chris Lattner3a897f32006-10-21 05:52:40 +00003336 case X86::COND_E: return X86::COND_NE;
3337 case X86::COND_NE: return X86::COND_E;
3338 case X86::COND_L: return X86::COND_GE;
3339 case X86::COND_LE: return X86::COND_G;
3340 case X86::COND_G: return X86::COND_LE;
3341 case X86::COND_GE: return X86::COND_L;
3342 case X86::COND_B: return X86::COND_AE;
3343 case X86::COND_BE: return X86::COND_A;
3344 case X86::COND_A: return X86::COND_BE;
3345 case X86::COND_AE: return X86::COND_B;
3346 case X86::COND_S: return X86::COND_NS;
3347 case X86::COND_NS: return X86::COND_S;
3348 case X86::COND_P: return X86::COND_NP;
3349 case X86::COND_NP: return X86::COND_P;
3350 case X86::COND_O: return X86::COND_NO;
3351 case X86::COND_NO: return X86::COND_O;
3352 }
3353}
3354
Sanjay Patel203ee502015-02-17 21:55:20 +00003355/// Assuming the flags are set by MI(a,b), return the condition code if we
3356/// modify the instructions such that flags are set by MI(b,a).
Benjamin Kramerabbfe692012-07-13 13:25:15 +00003357static X86::CondCode getSwappedCondition(X86::CondCode CC) {
Manman Ren5f6fa422012-07-09 18:57:12 +00003358 switch (CC) {
3359 default: return X86::COND_INVALID;
3360 case X86::COND_E: return X86::COND_E;
3361 case X86::COND_NE: return X86::COND_NE;
3362 case X86::COND_L: return X86::COND_G;
3363 case X86::COND_LE: return X86::COND_GE;
3364 case X86::COND_G: return X86::COND_L;
3365 case X86::COND_GE: return X86::COND_LE;
3366 case X86::COND_B: return X86::COND_A;
3367 case X86::COND_BE: return X86::COND_AE;
3368 case X86::COND_A: return X86::COND_B;
3369 case X86::COND_AE: return X86::COND_BE;
3370 }
3371}
3372
Sanjay Patel203ee502015-02-17 21:55:20 +00003373/// Return a set opcode for the given condition and
Manman Ren5f6fa422012-07-09 18:57:12 +00003374/// whether it has memory operand.
Juergen Ributzka2da1bbc2014-06-16 23:58:24 +00003375unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) {
Craig Topperbfcfdeb2012-08-21 08:23:21 +00003376 static const uint16_t Opc[16][2] = {
Manman Ren5f6fa422012-07-09 18:57:12 +00003377 { X86::SETAr, X86::SETAm },
3378 { X86::SETAEr, X86::SETAEm },
3379 { X86::SETBr, X86::SETBm },
3380 { X86::SETBEr, X86::SETBEm },
3381 { X86::SETEr, X86::SETEm },
3382 { X86::SETGr, X86::SETGm },
3383 { X86::SETGEr, X86::SETGEm },
3384 { X86::SETLr, X86::SETLm },
3385 { X86::SETLEr, X86::SETLEm },
3386 { X86::SETNEr, X86::SETNEm },
3387 { X86::SETNOr, X86::SETNOm },
3388 { X86::SETNPr, X86::SETNPm },
3389 { X86::SETNSr, X86::SETNSm },
3390 { X86::SETOr, X86::SETOm },
3391 { X86::SETPr, X86::SETPm },
3392 { X86::SETSr, X86::SETSm }
3393 };
3394
Juergen Ributzka2da1bbc2014-06-16 23:58:24 +00003395 assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes");
Manman Ren5f6fa422012-07-09 18:57:12 +00003396 return Opc[CC][HasMemoryOperand ? 1 : 0];
3397}
3398
Sanjay Patel203ee502015-02-17 21:55:20 +00003399/// Return a cmov opcode for the given condition,
Manman Ren5f6fa422012-07-09 18:57:12 +00003400/// register size in bytes, and operand type.
Juergen Ributzka6ef06f92014-06-23 21:55:36 +00003401unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes,
3402 bool HasMemoryOperand) {
Craig Topperbfcfdeb2012-08-21 08:23:21 +00003403 static const uint16_t Opc[32][3] = {
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00003404 { X86::CMOVA16rr, X86::CMOVA32rr, X86::CMOVA64rr },
3405 { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
3406 { X86::CMOVB16rr, X86::CMOVB32rr, X86::CMOVB64rr },
3407 { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
3408 { X86::CMOVE16rr, X86::CMOVE32rr, X86::CMOVE64rr },
3409 { X86::CMOVG16rr, X86::CMOVG32rr, X86::CMOVG64rr },
3410 { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
3411 { X86::CMOVL16rr, X86::CMOVL32rr, X86::CMOVL64rr },
3412 { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
3413 { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
3414 { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
3415 { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
3416 { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
3417 { X86::CMOVO16rr, X86::CMOVO32rr, X86::CMOVO64rr },
3418 { X86::CMOVP16rr, X86::CMOVP32rr, X86::CMOVP64rr },
Manman Ren5f6fa422012-07-09 18:57:12 +00003419 { X86::CMOVS16rr, X86::CMOVS32rr, X86::CMOVS64rr },
3420 { X86::CMOVA16rm, X86::CMOVA32rm, X86::CMOVA64rm },
3421 { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
3422 { X86::CMOVB16rm, X86::CMOVB32rm, X86::CMOVB64rm },
3423 { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
3424 { X86::CMOVE16rm, X86::CMOVE32rm, X86::CMOVE64rm },
3425 { X86::CMOVG16rm, X86::CMOVG32rm, X86::CMOVG64rm },
3426 { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
3427 { X86::CMOVL16rm, X86::CMOVL32rm, X86::CMOVL64rm },
3428 { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
3429 { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
3430 { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
3431 { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
3432 { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
3433 { X86::CMOVO16rm, X86::CMOVO32rm, X86::CMOVO64rm },
3434 { X86::CMOVP16rm, X86::CMOVP32rm, X86::CMOVP64rm },
3435 { X86::CMOVS16rm, X86::CMOVS32rm, X86::CMOVS64rm }
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00003436 };
3437
3438 assert(CC < 16 && "Can only handle standard cond codes");
Manman Ren5f6fa422012-07-09 18:57:12 +00003439 unsigned Idx = HasMemoryOperand ? 16+CC : CC;
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00003440 switch(RegBytes) {
3441 default: llvm_unreachable("Illegal register size!");
Manman Ren5f6fa422012-07-09 18:57:12 +00003442 case 2: return Opc[Idx][0];
3443 case 4: return Opc[Idx][1];
3444 case 8: return Opc[Idx][2];
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00003445 }
3446}
3447
Dale Johannesen616627b2007-06-14 22:03:45 +00003448bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Evan Cheng7f8e5632011-12-07 07:15:52 +00003449 if (!MI->isTerminator()) return false;
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00003450
Chris Lattnera98c6792008-01-07 01:56:04 +00003451 // Conditional branch is a special case.
Evan Cheng7f8e5632011-12-07 07:15:52 +00003452 if (MI->isBranch() && !MI->isBarrier())
Chris Lattnera98c6792008-01-07 01:56:04 +00003453 return true;
Evan Cheng7f8e5632011-12-07 07:15:52 +00003454 if (!MI->isPredicable())
Chris Lattnera98c6792008-01-07 01:56:04 +00003455 return true;
3456 return !isPredicated(MI);
Dale Johannesen616627b2007-06-14 22:03:45 +00003457}
Chris Lattner3a897f32006-10-21 05:52:40 +00003458
Sanjoy Das6b34a462015-06-15 18:44:21 +00003459bool X86InstrInfo::AnalyzeBranchImpl(
3460 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
3461 SmallVectorImpl<MachineOperand> &Cond,
3462 SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
3463
Dan Gohman97d95d62008-10-21 03:29:32 +00003464 // Start from the bottom of the block and work up, examining the
3465 // terminator instructions.
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003466 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng4ca4bc62010-04-13 18:50:27 +00003467 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
Dan Gohman97d95d62008-10-21 03:29:32 +00003468 while (I != MBB.begin()) {
3469 --I;
Dale Johannesen4244d122010-04-02 01:38:09 +00003470 if (I->isDebugValue())
3471 continue;
Bill Wendling277381f2009-12-14 06:51:19 +00003472
3473 // Working from the bottom, when we see a non-terminator instruction, we're
3474 // done.
Jakob Stoklund Olesenc30b4dd2010-07-16 17:41:44 +00003475 if (!isUnpredicatedTerminator(I))
Dan Gohman97d95d62008-10-21 03:29:32 +00003476 break;
Bill Wendling277381f2009-12-14 06:51:19 +00003477
3478 // A terminator that isn't a branch can't easily be handled by this
3479 // analysis.
Evan Cheng7f8e5632011-12-07 07:15:52 +00003480 if (!I->isBranch())
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003481 return true;
Bill Wendling277381f2009-12-14 06:51:19 +00003482
Dan Gohman97d95d62008-10-21 03:29:32 +00003483 // Handle unconditional branches.
Craig Topper49758aa2015-01-06 04:23:53 +00003484 if (I->getOpcode() == X86::JMP_1) {
Evan Cheng4ca4bc62010-04-13 18:50:27 +00003485 UnCondBrIter = I;
3486
Evan Cheng64dfcac2009-02-09 07:14:22 +00003487 if (!AllowModify) {
3488 TBB = I->getOperand(0).getMBB();
Evan Cheng2fa28112009-05-08 06:34:09 +00003489 continue;
Evan Cheng64dfcac2009-02-09 07:14:22 +00003490 }
3491
Dan Gohman97d95d62008-10-21 03:29:32 +00003492 // If the block has any instructions after a JMP, delete them.
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00003493 while (std::next(I) != MBB.end())
3494 std::next(I)->eraseFromParent();
Bill Wendling277381f2009-12-14 06:51:19 +00003495
Dan Gohman97d95d62008-10-21 03:29:32 +00003496 Cond.clear();
Craig Topper062a2ba2014-04-25 05:30:21 +00003497 FBB = nullptr;
Bill Wendling277381f2009-12-14 06:51:19 +00003498
Dan Gohman97d95d62008-10-21 03:29:32 +00003499 // Delete the JMP if it's equivalent to a fall-through.
3500 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
Craig Topper062a2ba2014-04-25 05:30:21 +00003501 TBB = nullptr;
Dan Gohman97d95d62008-10-21 03:29:32 +00003502 I->eraseFromParent();
3503 I = MBB.end();
Evan Cheng4ca4bc62010-04-13 18:50:27 +00003504 UnCondBrIter = MBB.end();
Dan Gohman97d95d62008-10-21 03:29:32 +00003505 continue;
3506 }
Bill Wendling277381f2009-12-14 06:51:19 +00003507
Evan Cheng4ca4bc62010-04-13 18:50:27 +00003508 // TBB is used to indicate the unconditional destination.
Dan Gohman97d95d62008-10-21 03:29:32 +00003509 TBB = I->getOperand(0).getMBB();
3510 continue;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003511 }
Bill Wendling277381f2009-12-14 06:51:19 +00003512
Dan Gohman97d95d62008-10-21 03:29:32 +00003513 // Handle conditional branches.
Manman Ren5f6fa422012-07-09 18:57:12 +00003514 X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003515 if (BranchCode == X86::COND_INVALID)
3516 return true; // Can't handle indirect branch.
Bill Wendling277381f2009-12-14 06:51:19 +00003517
Dan Gohman97d95d62008-10-21 03:29:32 +00003518 // Working from the bottom, handle the first conditional branch.
3519 if (Cond.empty()) {
Evan Cheng4ca4bc62010-04-13 18:50:27 +00003520 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
3521 if (AllowModify && UnCondBrIter != MBB.end() &&
3522 MBB.isLayoutSuccessor(TargetBB)) {
3523 // If we can modify the code and it ends in something like:
3524 //
3525 // jCC L1
3526 // jmp L2
3527 // L1:
3528 // ...
3529 // L2:
3530 //
3531 // Then we can change this to:
3532 //
3533 // jnCC L2
3534 // L1:
3535 // ...
3536 // L2:
3537 //
3538 // Which is a bit more efficient.
3539 // We conditionally jump to the fall-through block.
3540 BranchCode = GetOppositeBranchCondition(BranchCode);
3541 unsigned JNCC = GetCondBranchFromCond(BranchCode);
3542 MachineBasicBlock::iterator OldInst = I;
3543
3544 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
3545 .addMBB(UnCondBrIter->getOperand(0).getMBB());
Craig Topper49758aa2015-01-06 04:23:53 +00003546 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
Evan Cheng4ca4bc62010-04-13 18:50:27 +00003547 .addMBB(TargetBB);
Evan Cheng4ca4bc62010-04-13 18:50:27 +00003548
3549 OldInst->eraseFromParent();
3550 UnCondBrIter->eraseFromParent();
3551
3552 // Restart the analysis.
3553 UnCondBrIter = MBB.end();
3554 I = MBB.end();
3555 continue;
3556 }
3557
Dan Gohman97d95d62008-10-21 03:29:32 +00003558 FBB = TBB;
3559 TBB = I->getOperand(0).getMBB();
3560 Cond.push_back(MachineOperand::CreateImm(BranchCode));
Sanjoy Das6b34a462015-06-15 18:44:21 +00003561 CondBranches.push_back(I);
Dan Gohman97d95d62008-10-21 03:29:32 +00003562 continue;
3563 }
Bill Wendling277381f2009-12-14 06:51:19 +00003564
3565 // Handle subsequent conditional branches. Only handle the case where all
3566 // conditional branches branch to the same destination and their condition
3567 // opcodes fit one of the special multi-branch idioms.
Dan Gohman97d95d62008-10-21 03:29:32 +00003568 assert(Cond.size() == 1);
3569 assert(TBB);
Bill Wendling277381f2009-12-14 06:51:19 +00003570
3571 // Only handle the case where all conditional branches branch to the same
3572 // destination.
Dan Gohman97d95d62008-10-21 03:29:32 +00003573 if (TBB != I->getOperand(0).getMBB())
3574 return true;
Bill Wendling277381f2009-12-14 06:51:19 +00003575
Dan Gohman97d95d62008-10-21 03:29:32 +00003576 // If the conditions are the same, we can leave them alone.
Bill Wendling277381f2009-12-14 06:51:19 +00003577 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
Dan Gohman97d95d62008-10-21 03:29:32 +00003578 if (OldBranchCode == BranchCode)
3579 continue;
Bill Wendling277381f2009-12-14 06:51:19 +00003580
3581 // If they differ, see if they fit one of the known patterns. Theoretically,
3582 // we could handle more patterns here, but we shouldn't expect to see them
3583 // if instruction selection has done a reasonable job.
Dan Gohman97d95d62008-10-21 03:29:32 +00003584 if ((OldBranchCode == X86::COND_NP &&
3585 BranchCode == X86::COND_E) ||
3586 (OldBranchCode == X86::COND_E &&
3587 BranchCode == X86::COND_NP))
3588 BranchCode = X86::COND_NP_OR_E;
3589 else if ((OldBranchCode == X86::COND_P &&
3590 BranchCode == X86::COND_NE) ||
3591 (OldBranchCode == X86::COND_NE &&
3592 BranchCode == X86::COND_P))
3593 BranchCode = X86::COND_NE_OR_P;
3594 else
3595 return true;
Bill Wendling277381f2009-12-14 06:51:19 +00003596
Dan Gohman97d95d62008-10-21 03:29:32 +00003597 // Update the MachineOperand.
3598 Cond[0].setImm(BranchCode);
Sanjoy Das6b34a462015-06-15 18:44:21 +00003599 CondBranches.push_back(I);
Chris Lattner74436002006-10-30 22:27:23 +00003600 }
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003601
Dan Gohman97d95d62008-10-21 03:29:32 +00003602 return false;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003603}
3604
Sanjoy Das6b34a462015-06-15 18:44:21 +00003605bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
3606 MachineBasicBlock *&TBB,
3607 MachineBasicBlock *&FBB,
3608 SmallVectorImpl<MachineOperand> &Cond,
3609 bool AllowModify) const {
3610 SmallVector<MachineInstr *, 4> CondBranches;
3611 return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
3612}
3613
3614bool X86InstrInfo::AnalyzeBranchPredicate(MachineBasicBlock &MBB,
3615 MachineBranchPredicate &MBP,
3616 bool AllowModify) const {
3617 using namespace std::placeholders;
3618
3619 SmallVector<MachineOperand, 4> Cond;
3620 SmallVector<MachineInstr *, 4> CondBranches;
3621 if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
3622 AllowModify))
3623 return true;
3624
3625 if (Cond.size() != 1)
3626 return true;
3627
3628 assert(MBP.TrueDest && "expected!");
3629
3630 if (!MBP.FalseDest)
3631 MBP.FalseDest = MBB.getNextNode();
3632
3633 const TargetRegisterInfo *TRI = &getRegisterInfo();
3634
3635 MachineInstr *ConditionDef = nullptr;
3636 bool SingleUseCondition = true;
3637
3638 for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) {
3639 if (I->modifiesRegister(X86::EFLAGS, TRI)) {
3640 ConditionDef = &*I;
3641 break;
3642 }
3643
3644 if (I->readsRegister(X86::EFLAGS, TRI))
3645 SingleUseCondition = false;
3646 }
3647
3648 if (!ConditionDef)
3649 return true;
3650
3651 if (SingleUseCondition) {
3652 for (auto *Succ : MBB.successors())
3653 if (Succ->isLiveIn(X86::EFLAGS))
3654 SingleUseCondition = false;
3655 }
3656
3657 MBP.ConditionDef = ConditionDef;
3658 MBP.SingleUseCondition = SingleUseCondition;
3659
3660 // Currently we only recognize the simple pattern:
3661 //
3662 // test %reg, %reg
3663 // je %label
3664 //
3665 const unsigned TestOpcode =
3666 Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
3667
3668 if (ConditionDef->getOpcode() == TestOpcode &&
3669 ConditionDef->getNumOperands() == 3 &&
3670 ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
3671 (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
3672 MBP.LHS = ConditionDef->getOperand(0);
3673 MBP.RHS = MachineOperand::CreateImm(0);
3674 MBP.Predicate = Cond[0].getImm() == X86::COND_NE
3675 ? MachineBranchPredicate::PRED_NE
3676 : MachineBranchPredicate::PRED_EQ;
3677 return false;
3678 }
3679
3680 return true;
3681}
3682
Evan Chenge20dd922007-05-18 00:18:17 +00003683unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003684 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman97d95d62008-10-21 03:29:32 +00003685 unsigned Count = 0;
3686
3687 while (I != MBB.begin()) {
3688 --I;
Dale Johannesen4244d122010-04-02 01:38:09 +00003689 if (I->isDebugValue())
3690 continue;
Craig Topper49758aa2015-01-06 04:23:53 +00003691 if (I->getOpcode() != X86::JMP_1 &&
Manman Ren5f6fa422012-07-09 18:57:12 +00003692 getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
Dan Gohman97d95d62008-10-21 03:29:32 +00003693 break;
3694 // Remove the branch.
3695 I->eraseFromParent();
3696 I = MBB.end();
3697 ++Count;
3698 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00003699
Dan Gohman97d95d62008-10-21 03:29:32 +00003700 return Count;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003701}
3702
Evan Chenge20dd922007-05-18 00:18:17 +00003703unsigned
3704X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
Ahmed Bougachac88bf542015-06-11 19:30:37 +00003705 MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
Stuart Hastings0125b642010-06-17 22:43:56 +00003706 DebugLoc DL) const {
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003707 // Shouldn't be a fall through.
3708 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
Chris Lattner6fca75e2006-10-21 05:34:23 +00003709 assert((Cond.size() == 1 || Cond.size() == 0) &&
3710 "X86 branch conditions have one component!");
3711
Dan Gohman97d95d62008-10-21 03:29:32 +00003712 if (Cond.empty()) {
3713 // Unconditional branch?
3714 assert(!FBB && "Unconditional branch with multiple successors!");
Craig Topper49758aa2015-01-06 04:23:53 +00003715 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
Evan Chenge20dd922007-05-18 00:18:17 +00003716 return 1;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003717 }
Dan Gohman97d95d62008-10-21 03:29:32 +00003718
3719 // Conditional branch.
3720 unsigned Count = 0;
3721 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
3722 switch (CC) {
3723 case X86::COND_NP_OR_E:
3724 // Synthesize NP_OR_E with two branches.
Craig Topper49758aa2015-01-06 04:23:53 +00003725 BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB);
Bill Wendling543ce1f2010-03-05 00:33:59 +00003726 ++Count;
Craig Topper49758aa2015-01-06 04:23:53 +00003727 BuildMI(&MBB, DL, get(X86::JE_1)).addMBB(TBB);
Bill Wendling543ce1f2010-03-05 00:33:59 +00003728 ++Count;
Dan Gohman97d95d62008-10-21 03:29:32 +00003729 break;
3730 case X86::COND_NE_OR_P:
3731 // Synthesize NE_OR_P with two branches.
Craig Topper49758aa2015-01-06 04:23:53 +00003732 BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB);
Bill Wendling543ce1f2010-03-05 00:33:59 +00003733 ++Count;
Craig Topper49758aa2015-01-06 04:23:53 +00003734 BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB);
Bill Wendling543ce1f2010-03-05 00:33:59 +00003735 ++Count;
Dan Gohman97d95d62008-10-21 03:29:32 +00003736 break;
Bill Wendling543ce1f2010-03-05 00:33:59 +00003737 default: {
3738 unsigned Opc = GetCondBranchFromCond(CC);
Stuart Hastings0125b642010-06-17 22:43:56 +00003739 BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
Bill Wendling543ce1f2010-03-05 00:33:59 +00003740 ++Count;
Dan Gohman97d95d62008-10-21 03:29:32 +00003741 }
Bill Wendling543ce1f2010-03-05 00:33:59 +00003742 }
Dan Gohman97d95d62008-10-21 03:29:32 +00003743 if (FBB) {
3744 // Two-way Conditional branch. Insert the second branch.
Craig Topper49758aa2015-01-06 04:23:53 +00003745 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
Dan Gohman97d95d62008-10-21 03:29:32 +00003746 ++Count;
3747 }
3748 return Count;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003749}
3750
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00003751bool X86InstrInfo::
3752canInsertSelect(const MachineBasicBlock &MBB,
Ahmed Bougachac88bf542015-06-11 19:30:37 +00003753 ArrayRef<MachineOperand> Cond,
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00003754 unsigned TrueReg, unsigned FalseReg,
3755 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
3756 // Not all subtargets have cmov instructions.
Eric Christopher6c786a12014-06-10 22:34:31 +00003757 if (!Subtarget.hasCMov())
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00003758 return false;
3759 if (Cond.size() != 1)
3760 return false;
3761 // We cannot do the composite conditions, at least not in SSA form.
3762 if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
3763 return false;
3764
3765 // Check register classes.
3766 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3767 const TargetRegisterClass *RC =
3768 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
3769 if (!RC)
3770 return false;
3771
3772 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
3773 if (X86::GR16RegClass.hasSubClassEq(RC) ||
3774 X86::GR32RegClass.hasSubClassEq(RC) ||
3775 X86::GR64RegClass.hasSubClassEq(RC)) {
3776 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
3777 // Bridge. Probably Ivy Bridge as well.
3778 CondCycles = 2;
3779 TrueCycles = 2;
3780 FalseCycles = 2;
3781 return true;
3782 }
3783
3784 // Can't do vectors.
3785 return false;
3786}
3787
3788void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
3789 MachineBasicBlock::iterator I, DebugLoc DL,
Ahmed Bougachac88bf542015-06-11 19:30:37 +00003790 unsigned DstReg, ArrayRef<MachineOperand> Cond,
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00003791 unsigned TrueReg, unsigned FalseReg) const {
3792 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3793 assert(Cond.size() == 1 && "Invalid Cond array");
3794 unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
Manman Ren5f6fa422012-07-09 18:57:12 +00003795 MRI.getRegClass(DstReg)->getSize(),
3796 false/*HasMemoryOperand*/);
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00003797 BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
3798}
3799
Sanjay Patel203ee502015-02-17 21:55:20 +00003800/// Test if the given register is a physical h register.
Dan Gohman7913ea52009-04-15 00:04:23 +00003801static bool isHReg(unsigned Reg) {
Dan Gohman29869722009-04-27 16:41:36 +00003802 return X86::GR8_ABCD_HRegClass.contains(Reg);
Dan Gohman7913ea52009-04-15 00:04:23 +00003803}
3804
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00003805// Try and copy between VR128/VR64 and GR64 registers.
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00003806static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
Eric Christopher6c786a12014-06-10 22:34:31 +00003807 const X86Subtarget &Subtarget) {
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00003808
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00003809 // SrcReg(VR128) -> DestReg(GR64)
3810 // SrcReg(VR64) -> DestReg(GR64)
3811 // SrcReg(GR64) -> DestReg(VR128)
3812 // SrcReg(GR64) -> DestReg(VR64)
3813
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00003814 bool HasAVX = Subtarget.hasAVX();
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003815 bool HasAVX512 = Subtarget.hasAVX512();
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00003816 if (X86::GR64RegClass.contains(DestReg)) {
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003817 if (X86::VR128XRegClass.contains(SrcReg))
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00003818 // Copy from a VR128 register to a GR64 register.
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003819 return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr :
3820 X86::MOVPQIto64rr);
Craig Topperbab0c762012-08-21 08:29:51 +00003821 if (X86::VR64RegClass.contains(SrcReg))
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00003822 // Copy from a VR64 register to a GR64 register.
3823 return X86::MOVSDto64rr;
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00003824 } else if (X86::GR64RegClass.contains(SrcReg)) {
3825 // Copy from a GR64 register to a VR128 register.
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003826 if (X86::VR128XRegClass.contains(DestReg))
3827 return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr :
3828 X86::MOV64toPQIrr);
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00003829 // Copy from a GR64 register to a VR64 register.
Craig Topperbab0c762012-08-21 08:29:51 +00003830 if (X86::VR64RegClass.contains(DestReg))
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00003831 return X86::MOV64toSDrr;
3832 }
3833
Jakob Stoklund Olesenf05864a2011-09-22 22:45:24 +00003834 // SrcReg(FR32) -> DestReg(GR32)
3835 // SrcReg(GR32) -> DestReg(FR32)
3836
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003837 if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg))
Craig Topperbab0c762012-08-21 08:29:51 +00003838 // Copy from a FR32 register to a GR32 register.
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003839 return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr);
Jakob Stoklund Olesenf05864a2011-09-22 22:45:24 +00003840
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003841 if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
Craig Topperbab0c762012-08-21 08:29:51 +00003842 // Copy from a GR32 register to a FR32 register.
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003843 return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr);
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00003844 return 0;
3845}
3846
Elena Demikhovsky47fc44e2013-12-16 13:52:35 +00003847inline static bool MaskRegClassContains(unsigned Reg) {
3848 return X86::VK8RegClass.contains(Reg) ||
3849 X86::VK16RegClass.contains(Reg) ||
Robert Khasanov74acbb72014-07-23 14:49:42 +00003850 X86::VK32RegClass.contains(Reg) ||
3851 X86::VK64RegClass.contains(Reg) ||
Elena Demikhovsky47fc44e2013-12-16 13:52:35 +00003852 X86::VK1RegClass.contains(Reg);
3853}
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00003854static
3855unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg) {
3856 if (X86::VR128XRegClass.contains(DestReg, SrcReg) ||
3857 X86::VR256XRegClass.contains(DestReg, SrcReg) ||
3858 X86::VR512RegClass.contains(DestReg, SrcReg)) {
3859 DestReg = get512BitSuperRegister(DestReg);
3860 SrcReg = get512BitSuperRegister(SrcReg);
3861 return X86::VMOVAPSZrr;
3862 }
Elena Demikhovsky47fc44e2013-12-16 13:52:35 +00003863 if (MaskRegClassContains(DestReg) &&
3864 MaskRegClassContains(SrcReg))
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00003865 return X86::KMOVWkk;
Elena Demikhovsky47fc44e2013-12-16 13:52:35 +00003866 if (MaskRegClassContains(DestReg) &&
Elena Demikhovsky6270b382013-12-10 11:58:35 +00003867 (X86::GR32RegClass.contains(SrcReg) ||
3868 X86::GR16RegClass.contains(SrcReg) ||
3869 X86::GR8RegClass.contains(SrcReg))) {
3870 SrcReg = getX86SubSuperRegister(SrcReg, MVT::i32);
3871 return X86::KMOVWkr;
3872 }
3873 if ((X86::GR32RegClass.contains(DestReg) ||
3874 X86::GR16RegClass.contains(DestReg) ||
3875 X86::GR8RegClass.contains(DestReg)) &&
Elena Demikhovsky47fc44e2013-12-16 13:52:35 +00003876 MaskRegClassContains(SrcReg)) {
Elena Demikhovsky6270b382013-12-10 11:58:35 +00003877 DestReg = getX86SubSuperRegister(DestReg, MVT::i32);
3878 return X86::KMOVWrk;
3879 }
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00003880 return 0;
3881}
3882
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003883void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3884 MachineBasicBlock::iterator MI, DebugLoc DL,
3885 unsigned DestReg, unsigned SrcReg,
3886 bool KillSrc) const {
3887 // First deal with the normal symmetric copies.
Eric Christopher6c786a12014-06-10 22:34:31 +00003888 bool HasAVX = Subtarget.hasAVX();
3889 bool HasAVX512 = Subtarget.hasAVX512();
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00003890 unsigned Opc = 0;
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003891 if (X86::GR64RegClass.contains(DestReg, SrcReg))
3892 Opc = X86::MOV64rr;
3893 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3894 Opc = X86::MOV32rr;
3895 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3896 Opc = X86::MOV16rr;
3897 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3898 // Copying to or from a physical H register on x86-64 requires a NOREX
3899 // move. Otherwise use a normal move.
3900 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
Eric Christopher6c786a12014-06-10 22:34:31 +00003901 Subtarget.is64Bit()) {
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003902 Opc = X86::MOV8rr_NOREX;
Jakob Stoklund Olesen464fcc02011-10-07 20:15:54 +00003903 // Both operands must be encodable without an REX prefix.
3904 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
3905 "8-bit H register can not be copied outside GR8_NOREX");
3906 } else
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003907 Opc = X86::MOV8rr;
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00003908 }
3909 else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3910 Opc = X86::MMX_MOVQ64rr;
3911 else if (HasAVX512)
3912 Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg);
3913 else if (X86::VR128RegClass.contains(DestReg, SrcReg))
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00003914 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00003915 else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3916 Opc = X86::VMOVAPSYrr;
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00003917 if (!Opc)
Eric Christopher6c786a12014-06-10 22:34:31 +00003918 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003919
3920 if (Opc) {
3921 BuildMI(MBB, MI, DL, get(Opc), DestReg)
3922 .addReg(SrcReg, getKillRegState(KillSrc));
3923 return;
3924 }
3925
3926 // Moving EFLAGS to / from another register requires a push and a pop.
Nadav Rotemd5aae982012-12-21 23:48:49 +00003927 // Notice that we have to adjust the stack if we don't want to clobber the
JF Bastienac8b66b2014-08-05 23:27:34 +00003928 // first frame index. See X86FrameLowering.cpp - clobbersTheStack.
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003929 if (SrcReg == X86::EFLAGS) {
3930 if (X86::GR64RegClass.contains(DestReg)) {
3931 BuildMI(MBB, MI, DL, get(X86::PUSHF64));
3932 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
3933 return;
Craig Topperbab0c762012-08-21 08:29:51 +00003934 }
3935 if (X86::GR32RegClass.contains(DestReg)) {
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003936 BuildMI(MBB, MI, DL, get(X86::PUSHF32));
3937 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
3938 return;
3939 }
3940 }
3941 if (DestReg == X86::EFLAGS) {
3942 if (X86::GR64RegClass.contains(SrcReg)) {
3943 BuildMI(MBB, MI, DL, get(X86::PUSH64r))
3944 .addReg(SrcReg, getKillRegState(KillSrc));
3945 BuildMI(MBB, MI, DL, get(X86::POPF64));
3946 return;
Craig Topperbab0c762012-08-21 08:29:51 +00003947 }
3948 if (X86::GR32RegClass.contains(SrcReg)) {
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003949 BuildMI(MBB, MI, DL, get(X86::PUSH32r))
3950 .addReg(SrcReg, getKillRegState(KillSrc));
3951 BuildMI(MBB, MI, DL, get(X86::POPF32));
3952 return;
3953 }
3954 }
3955
3956 DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
3957 << " to " << RI.getName(DestReg) << '\n');
3958 llvm_unreachable("Cannot emit physreg copy instruction");
3959}
3960
Rafael Espindolae302f832010-06-12 20:13:29 +00003961static unsigned getLoadStoreRegOpcode(unsigned Reg,
3962 const TargetRegisterClass *RC,
3963 bool isStackAligned,
Eric Christopher6c786a12014-06-10 22:34:31 +00003964 const X86Subtarget &STI,
Rafael Espindolae302f832010-06-12 20:13:29 +00003965 bool load) {
Eric Christopher6c786a12014-06-10 22:34:31 +00003966 if (STI.hasAVX512()) {
Andrew Trick8460a3b2013-10-14 22:18:56 +00003967 if (X86::VK8RegClass.hasSubClassEq(RC) ||
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003968 X86::VK16RegClass.hasSubClassEq(RC))
3969 return load ? X86::KMOVWkm : X86::KMOVWmk;
Elena Demikhovsky34586e72013-10-02 12:20:42 +00003970 if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC))
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003971 return load ? X86::VMOVSSZrm : X86::VMOVSSZmr;
Elena Demikhovsky34586e72013-10-02 12:20:42 +00003972 if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC))
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003973 return load ? X86::VMOVSDZrm : X86::VMOVSDZmr;
Elena Demikhovsky34586e72013-10-02 12:20:42 +00003974 if (X86::VR512RegClass.hasSubClassEq(RC))
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003975 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3976 }
3977
Eric Christopher6c786a12014-06-10 22:34:31 +00003978 bool HasAVX = STI.hasAVX();
Jakob Stoklund Olesen56ce3a02011-06-01 15:32:10 +00003979 switch (RC->getSize()) {
Rafael Espindola6635f982010-07-12 03:43:04 +00003980 default:
Jakob Stoklund Olesen56ce3a02011-06-01 15:32:10 +00003981 llvm_unreachable("Unknown spill size");
3982 case 1:
3983 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
Eric Christopher6c786a12014-06-10 22:34:31 +00003984 if (STI.is64Bit())
Jakob Stoklund Olesen56ce3a02011-06-01 15:32:10 +00003985 // Copying to or from a physical H register on x86-64 requires a NOREX
3986 // move. Otherwise use a normal move.
3987 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3988 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3989 return load ? X86::MOV8rm : X86::MOV8mr;
3990 case 2:
3991 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3992 return load ? X86::MOV16rm : X86::MOV16mr;
3993 case 4:
3994 if (X86::GR32RegClass.hasSubClassEq(RC))
3995 return load ? X86::MOV32rm : X86::MOV32mr;
3996 if (X86::FR32RegClass.hasSubClassEq(RC))
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00003997 return load ?
3998 (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
3999 (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
Jakob Stoklund Olesen56ce3a02011-06-01 15:32:10 +00004000 if (X86::RFP32RegClass.hasSubClassEq(RC))
4001 return load ? X86::LD_Fp32m : X86::ST_Fp32m;
4002 llvm_unreachable("Unknown 4-byte regclass");
4003 case 8:
4004 if (X86::GR64RegClass.hasSubClassEq(RC))
4005 return load ? X86::MOV64rm : X86::MOV64mr;
4006 if (X86::FR64RegClass.hasSubClassEq(RC))
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00004007 return load ?
4008 (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
4009 (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
Jakob Stoklund Olesen56ce3a02011-06-01 15:32:10 +00004010 if (X86::VR64RegClass.hasSubClassEq(RC))
4011 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
4012 if (X86::RFP64RegClass.hasSubClassEq(RC))
4013 return load ? X86::LD_Fp64m : X86::ST_Fp64m;
4014 llvm_unreachable("Unknown 8-byte regclass");
4015 case 10:
4016 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
Rafael Espindolae302f832010-06-12 20:13:29 +00004017 return load ? X86::LD_Fp80m : X86::ST_FpP80m;
Bruno Cardoso Lopesdb520db2011-08-31 03:04:09 +00004018 case 16: {
Elena Demikhovsky0a74b7d2013-11-14 11:29:27 +00004019 assert((X86::VR128RegClass.hasSubClassEq(RC) ||
4020 X86::VR128XRegClass.hasSubClassEq(RC))&& "Unknown 16-byte regclass");
Rafael Espindolae302f832010-06-12 20:13:29 +00004021 // If stack is realigned we can use aligned stores.
4022 if (isStackAligned)
Bruno Cardoso Lopesdb520db2011-08-31 03:04:09 +00004023 return load ?
4024 (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
4025 (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
Rafael Espindolae302f832010-06-12 20:13:29 +00004026 else
Bruno Cardoso Lopesdb520db2011-08-31 03:04:09 +00004027 return load ?
4028 (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
4029 (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
4030 }
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00004031 case 32:
Elena Demikhovsky0a74b7d2013-11-14 11:29:27 +00004032 assert((X86::VR256RegClass.hasSubClassEq(RC) ||
4033 X86::VR256XRegClass.hasSubClassEq(RC)) && "Unknown 32-byte regclass");
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00004034 // If stack is realigned we can use aligned stores.
4035 if (isStackAligned)
4036 return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
4037 else
4038 return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00004039 case 64:
4040 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
4041 if (isStackAligned)
4042 return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
4043 else
4044 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
Rafael Espindolae302f832010-06-12 20:13:29 +00004045 }
4046}
4047
Sanjoy Dasb666ea32015-06-15 18:44:14 +00004048bool X86InstrInfo::getMemOpBaseRegImmOfs(MachineInstr *MemOp, unsigned &BaseReg,
4049 unsigned &Offset,
4050 const TargetRegisterInfo *TRI) const {
4051 const MCInstrDesc &Desc = MemOp->getDesc();
4052 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags, MemOp->getOpcode());
4053 if (MemRefBegin < 0)
4054 return false;
4055
4056 MemRefBegin += X86II::getOperandBias(Desc);
4057
4058 BaseReg = MemOp->getOperand(MemRefBegin + X86::AddrBaseReg).getReg();
4059 if (MemOp->getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
4060 return false;
4061
4062 if (MemOp->getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
4063 X86::NoRegister)
4064 return false;
4065
4066 const MachineOperand &DispMO = MemOp->getOperand(MemRefBegin + X86::AddrDisp);
4067
4068 // Displacement can be symbolic
4069 if (!DispMO.isImm())
4070 return false;
4071
4072 Offset = DispMO.getImm();
4073
4074 return (MemOp->getOperand(MemRefBegin + X86::AddrIndexReg).getReg() ==
4075 X86::NoRegister);
4076}
4077
Dan Gohman29869722009-04-27 16:41:36 +00004078static unsigned getStoreRegOpcode(unsigned SrcReg,
4079 const TargetRegisterClass *RC,
4080 bool isStackAligned,
Eric Christopher6c786a12014-06-10 22:34:31 +00004081 const X86Subtarget &STI) {
4082 return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
Rafael Espindolae302f832010-06-12 20:13:29 +00004083}
Owen Andersoneee14602008-01-01 21:11:32 +00004084
Rafael Espindolae302f832010-06-12 20:13:29 +00004085
4086static unsigned getLoadRegOpcode(unsigned DestReg,
4087 const TargetRegisterClass *RC,
4088 bool isStackAligned,
Eric Christopher6c786a12014-06-10 22:34:31 +00004089 const X86Subtarget &STI) {
4090 return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
Owen Andersoneee14602008-01-01 21:11:32 +00004091}
4092
4093void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
4094 MachineBasicBlock::iterator MI,
4095 unsigned SrcReg, bool isKill, int FrameIdx,
Evan Chengefb126a2010-05-06 19:06:44 +00004096 const TargetRegisterClass *RC,
4097 const TargetRegisterInfo *TRI) const {
Anton Korobeynikovb7a49922008-07-19 06:30:51 +00004098 const MachineFunction &MF = *MBB.getParent();
Jakob Stoklund Olesenc3c05ed2010-07-27 04:16:58 +00004099 assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
4100 "Stack slot too small for store");
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00004101 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
Eric Christopher05b81972015-02-02 17:38:43 +00004102 bool isAligned =
4103 (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
4104 RI.canRealignStack(MF);
Eric Christopher6c786a12014-06-10 22:34:31 +00004105 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
Dale Johannesene5a41342010-01-26 00:03:12 +00004106 DebugLoc DL = MBB.findDebugLoc(MI);
Bill Wendling27b508d2009-02-11 21:51:19 +00004107 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
Bill Wendlingf7b83c72009-05-13 21:33:08 +00004108 .addReg(SrcReg, getKillRegState(isKill));
Owen Andersoneee14602008-01-01 21:11:32 +00004109}
4110
4111void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
4112 bool isKill,
4113 SmallVectorImpl<MachineOperand> &Addr,
4114 const TargetRegisterClass *RC,
Dan Gohmandd76bb22009-10-09 18:10:05 +00004115 MachineInstr::mmo_iterator MMOBegin,
4116 MachineInstr::mmo_iterator MMOEnd,
Owen Andersoneee14602008-01-01 21:11:32 +00004117 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00004118 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00004119 bool isAligned = MMOBegin != MMOEnd &&
4120 (*MMOBegin)->getAlignment() >= Alignment;
Eric Christopher6c786a12014-06-10 22:34:31 +00004121 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
Chris Lattner6f306d72010-04-02 20:16:16 +00004122 DebugLoc DL;
Dale Johannesen6b8c76a2009-02-12 23:08:38 +00004123 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
Owen Andersoneee14602008-01-01 21:11:32 +00004124 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohman2af1f852009-02-18 05:45:50 +00004125 MIB.addOperand(Addr[i]);
Bill Wendlingf7b83c72009-05-13 21:33:08 +00004126 MIB.addReg(SrcReg, getKillRegState(isKill));
Dan Gohmandd76bb22009-10-09 18:10:05 +00004127 (*MIB).setMemRefs(MMOBegin, MMOEnd);
Owen Andersoneee14602008-01-01 21:11:32 +00004128 NewMIs.push_back(MIB);
4129}
4130
Owen Andersoneee14602008-01-01 21:11:32 +00004131
4132void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikovb7a49922008-07-19 06:30:51 +00004133 MachineBasicBlock::iterator MI,
4134 unsigned DestReg, int FrameIdx,
Evan Chengefb126a2010-05-06 19:06:44 +00004135 const TargetRegisterClass *RC,
4136 const TargetRegisterInfo *TRI) const {
Anton Korobeynikovb7a49922008-07-19 06:30:51 +00004137 const MachineFunction &MF = *MBB.getParent();
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00004138 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
Eric Christopher05b81972015-02-02 17:38:43 +00004139 bool isAligned =
4140 (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
4141 RI.canRealignStack(MF);
Eric Christopher6c786a12014-06-10 22:34:31 +00004142 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
Dale Johannesene5a41342010-01-26 00:03:12 +00004143 DebugLoc DL = MBB.findDebugLoc(MI);
Bill Wendling27b508d2009-02-11 21:51:19 +00004144 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
Owen Andersoneee14602008-01-01 21:11:32 +00004145}
4146
4147void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Cheng7d98a482008-07-03 09:09:37 +00004148 SmallVectorImpl<MachineOperand> &Addr,
4149 const TargetRegisterClass *RC,
Dan Gohmandd76bb22009-10-09 18:10:05 +00004150 MachineInstr::mmo_iterator MMOBegin,
4151 MachineInstr::mmo_iterator MMOEnd,
Owen Andersoneee14602008-01-01 21:11:32 +00004152 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00004153 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00004154 bool isAligned = MMOBegin != MMOEnd &&
4155 (*MMOBegin)->getAlignment() >= Alignment;
Eric Christopher6c786a12014-06-10 22:34:31 +00004156 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
Chris Lattner6f306d72010-04-02 20:16:16 +00004157 DebugLoc DL;
Dale Johannesen6b8c76a2009-02-12 23:08:38 +00004158 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
Owen Andersoneee14602008-01-01 21:11:32 +00004159 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohman2af1f852009-02-18 05:45:50 +00004160 MIB.addOperand(Addr[i]);
Dan Gohmandd76bb22009-10-09 18:10:05 +00004161 (*MIB).setMemRefs(MMOBegin, MMOEnd);
Owen Andersoneee14602008-01-01 21:11:32 +00004162 NewMIs.push_back(MIB);
4163}
4164
Manman Renc9656732012-07-06 17:36:20 +00004165bool X86InstrInfo::
4166analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
4167 int &CmpMask, int &CmpValue) const {
4168 switch (MI->getOpcode()) {
4169 default: break;
4170 case X86::CMP64ri32:
4171 case X86::CMP64ri8:
4172 case X86::CMP32ri:
4173 case X86::CMP32ri8:
4174 case X86::CMP16ri:
4175 case X86::CMP16ri8:
4176 case X86::CMP8ri:
4177 SrcReg = MI->getOperand(0).getReg();
4178 SrcReg2 = 0;
4179 CmpMask = ~0;
4180 CmpValue = MI->getOperand(1).getImm();
4181 return true;
Manman Ren1be131b2012-08-08 00:51:41 +00004182 // A SUB can be used to perform comparison.
4183 case X86::SUB64rm:
4184 case X86::SUB32rm:
4185 case X86::SUB16rm:
4186 case X86::SUB8rm:
4187 SrcReg = MI->getOperand(1).getReg();
4188 SrcReg2 = 0;
4189 CmpMask = ~0;
4190 CmpValue = 0;
4191 return true;
4192 case X86::SUB64rr:
4193 case X86::SUB32rr:
4194 case X86::SUB16rr:
4195 case X86::SUB8rr:
4196 SrcReg = MI->getOperand(1).getReg();
4197 SrcReg2 = MI->getOperand(2).getReg();
4198 CmpMask = ~0;
4199 CmpValue = 0;
4200 return true;
4201 case X86::SUB64ri32:
4202 case X86::SUB64ri8:
4203 case X86::SUB32ri:
4204 case X86::SUB32ri8:
4205 case X86::SUB16ri:
4206 case X86::SUB16ri8:
4207 case X86::SUB8ri:
4208 SrcReg = MI->getOperand(1).getReg();
4209 SrcReg2 = 0;
4210 CmpMask = ~0;
4211 CmpValue = MI->getOperand(2).getImm();
4212 return true;
Manman Renc9656732012-07-06 17:36:20 +00004213 case X86::CMP64rr:
4214 case X86::CMP32rr:
4215 case X86::CMP16rr:
4216 case X86::CMP8rr:
4217 SrcReg = MI->getOperand(0).getReg();
4218 SrcReg2 = MI->getOperand(1).getReg();
4219 CmpMask = ~0;
4220 CmpValue = 0;
4221 return true;
Manman Rend0a4ee82012-07-18 21:40:01 +00004222 case X86::TEST8rr:
4223 case X86::TEST16rr:
4224 case X86::TEST32rr:
4225 case X86::TEST64rr:
4226 SrcReg = MI->getOperand(0).getReg();
4227 if (MI->getOperand(1).getReg() != SrcReg) return false;
4228 // Compare against zero.
4229 SrcReg2 = 0;
4230 CmpMask = ~0;
4231 CmpValue = 0;
4232 return true;
Manman Renc9656732012-07-06 17:36:20 +00004233 }
4234 return false;
4235}
4236
Sanjay Patel203ee502015-02-17 21:55:20 +00004237/// Check whether the first instruction, whose only
Manman Renc9656732012-07-06 17:36:20 +00004238/// purpose is to update flags, can be made redundant.
4239/// CMPrr can be made redundant by SUBrr if the operands are the same.
4240/// This function can be extended later on.
4241/// SrcReg, SrcRegs: register operands for FlagI.
4242/// ImmValue: immediate for FlagI if it takes an immediate.
4243inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
4244 unsigned SrcReg2, int ImmValue,
4245 MachineInstr *OI) {
4246 if (((FlagI->getOpcode() == X86::CMP64rr &&
4247 OI->getOpcode() == X86::SUB64rr) ||
4248 (FlagI->getOpcode() == X86::CMP32rr &&
4249 OI->getOpcode() == X86::SUB32rr)||
4250 (FlagI->getOpcode() == X86::CMP16rr &&
4251 OI->getOpcode() == X86::SUB16rr)||
4252 (FlagI->getOpcode() == X86::CMP8rr &&
4253 OI->getOpcode() == X86::SUB8rr)) &&
4254 ((OI->getOperand(1).getReg() == SrcReg &&
4255 OI->getOperand(2).getReg() == SrcReg2) ||
4256 (OI->getOperand(1).getReg() == SrcReg2 &&
4257 OI->getOperand(2).getReg() == SrcReg)))
4258 return true;
4259
4260 if (((FlagI->getOpcode() == X86::CMP64ri32 &&
4261 OI->getOpcode() == X86::SUB64ri32) ||
4262 (FlagI->getOpcode() == X86::CMP64ri8 &&
4263 OI->getOpcode() == X86::SUB64ri8) ||
4264 (FlagI->getOpcode() == X86::CMP32ri &&
4265 OI->getOpcode() == X86::SUB32ri) ||
4266 (FlagI->getOpcode() == X86::CMP32ri8 &&
4267 OI->getOpcode() == X86::SUB32ri8) ||
4268 (FlagI->getOpcode() == X86::CMP16ri &&
4269 OI->getOpcode() == X86::SUB16ri) ||
4270 (FlagI->getOpcode() == X86::CMP16ri8 &&
4271 OI->getOpcode() == X86::SUB16ri8) ||
4272 (FlagI->getOpcode() == X86::CMP8ri &&
4273 OI->getOpcode() == X86::SUB8ri)) &&
4274 OI->getOperand(1).getReg() == SrcReg &&
4275 OI->getOperand(2).getImm() == ImmValue)
4276 return true;
4277 return false;
4278}
4279
Sanjay Patel203ee502015-02-17 21:55:20 +00004280/// Check whether the definition can be converted
Manman Rend0a4ee82012-07-18 21:40:01 +00004281/// to remove a comparison against zero.
4282inline static bool isDefConvertible(MachineInstr *MI) {
4283 switch (MI->getOpcode()) {
4284 default: return false;
David Majnemer7ea2a522013-05-22 08:13:02 +00004285
4286 // The shift instructions only modify ZF if their shift count is non-zero.
4287 // N.B.: The processor truncates the shift count depending on the encoding.
4288 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
4289 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
4290 return getTruncatedShiftCount(MI, 2) != 0;
4291
4292 // Some left shift instructions can be turned into LEA instructions but only
4293 // if their flags aren't used. Avoid transforming such instructions.
4294 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
4295 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
4296 if (isTruncatedShiftCountForLEA(ShAmt)) return false;
4297 return ShAmt != 0;
4298 }
4299
4300 case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
4301 case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
4302 return getTruncatedShiftCount(MI, 3) != 0;
4303
Manman Rend0a4ee82012-07-18 21:40:01 +00004304 case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
4305 case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
4306 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
4307 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
4308 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
Craig Topper5b08cf72012-12-17 04:55:07 +00004309 case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
Manman Rend0a4ee82012-07-18 21:40:01 +00004310 case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
4311 case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
4312 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
4313 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
4314 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
Craig Topper5b08cf72012-12-17 04:55:07 +00004315 case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
Manman Rend0a4ee82012-07-18 21:40:01 +00004316 case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
4317 case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
4318 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
4319 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
4320 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
4321 case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
4322 case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
4323 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
4324 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
4325 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
4326 case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
4327 case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
4328 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
4329 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
4330 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
David Majnemer8f169742013-05-15 22:03:08 +00004331 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
4332 case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1:
4333 case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1:
4334 case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1:
4335 case X86::ADC32ri: case X86::ADC32ri8:
4336 case X86::ADC32rr: case X86::ADC64ri32:
4337 case X86::ADC64ri8: case X86::ADC64rr:
4338 case X86::SBB32ri: case X86::SBB32ri8:
4339 case X86::SBB32rr: case X86::SBB64ri32:
4340 case X86::SBB64ri8: case X86::SBB64rr:
Craig Topperf3ff6ae2012-12-17 05:12:30 +00004341 case X86::ANDN32rr: case X86::ANDN32rm:
4342 case X86::ANDN64rr: case X86::ANDN64rm:
David Majnemer8f169742013-05-15 22:03:08 +00004343 case X86::BEXTR32rr: case X86::BEXTR64rr:
4344 case X86::BEXTR32rm: case X86::BEXTR64rm:
4345 case X86::BLSI32rr: case X86::BLSI32rm:
4346 case X86::BLSI64rr: case X86::BLSI64rm:
4347 case X86::BLSMSK32rr:case X86::BLSMSK32rm:
4348 case X86::BLSMSK64rr:case X86::BLSMSK64rm:
4349 case X86::BLSR32rr: case X86::BLSR32rm:
4350 case X86::BLSR64rr: case X86::BLSR64rm:
4351 case X86::BZHI32rr: case X86::BZHI32rm:
4352 case X86::BZHI64rr: case X86::BZHI64rm:
4353 case X86::LZCNT16rr: case X86::LZCNT16rm:
4354 case X86::LZCNT32rr: case X86::LZCNT32rm:
4355 case X86::LZCNT64rr: case X86::LZCNT64rm:
4356 case X86::POPCNT16rr:case X86::POPCNT16rm:
4357 case X86::POPCNT32rr:case X86::POPCNT32rm:
4358 case X86::POPCNT64rr:case X86::POPCNT64rm:
4359 case X86::TZCNT16rr: case X86::TZCNT16rm:
4360 case X86::TZCNT32rr: case X86::TZCNT32rm:
4361 case X86::TZCNT64rr: case X86::TZCNT64rm:
Manman Rend0a4ee82012-07-18 21:40:01 +00004362 return true;
4363 }
4364}
4365
Sanjay Patel203ee502015-02-17 21:55:20 +00004366/// Check whether the use can be converted to remove a comparison against zero.
Benjamin Kramer594f9632014-05-14 16:14:45 +00004367static X86::CondCode isUseDefConvertible(MachineInstr *MI) {
4368 switch (MI->getOpcode()) {
4369 default: return X86::COND_INVALID;
4370 case X86::LZCNT16rr: case X86::LZCNT16rm:
4371 case X86::LZCNT32rr: case X86::LZCNT32rm:
4372 case X86::LZCNT64rr: case X86::LZCNT64rm:
4373 return X86::COND_B;
4374 case X86::POPCNT16rr:case X86::POPCNT16rm:
4375 case X86::POPCNT32rr:case X86::POPCNT32rm:
4376 case X86::POPCNT64rr:case X86::POPCNT64rm:
4377 return X86::COND_E;
4378 case X86::TZCNT16rr: case X86::TZCNT16rm:
4379 case X86::TZCNT32rr: case X86::TZCNT32rm:
4380 case X86::TZCNT64rr: case X86::TZCNT64rm:
4381 return X86::COND_B;
4382 }
4383}
4384
Sanjay Patel203ee502015-02-17 21:55:20 +00004385/// Check if there exists an earlier instruction that
Manman Renc9656732012-07-06 17:36:20 +00004386/// operates on the same source operands and sets flags in the same way as
4387/// Compare; remove Compare if possible.
4388bool X86InstrInfo::
4389optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
4390 int CmpMask, int CmpValue,
4391 const MachineRegisterInfo *MRI) const {
Manman Ren1be131b2012-08-08 00:51:41 +00004392 // Check whether we can replace SUB with CMP.
4393 unsigned NewOpcode = 0;
4394 switch (CmpInstr->getOpcode()) {
4395 default: break;
4396 case X86::SUB64ri32:
4397 case X86::SUB64ri8:
4398 case X86::SUB32ri:
4399 case X86::SUB32ri8:
4400 case X86::SUB16ri:
4401 case X86::SUB16ri8:
4402 case X86::SUB8ri:
4403 case X86::SUB64rm:
4404 case X86::SUB32rm:
4405 case X86::SUB16rm:
4406 case X86::SUB8rm:
4407 case X86::SUB64rr:
4408 case X86::SUB32rr:
4409 case X86::SUB16rr:
4410 case X86::SUB8rr: {
4411 if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
4412 return false;
4413 // There is no use of the destination register, we can replace SUB with CMP.
4414 switch (CmpInstr->getOpcode()) {
Craig Topper4bc3e5a2012-08-21 08:16:16 +00004415 default: llvm_unreachable("Unreachable!");
Manman Ren1be131b2012-08-08 00:51:41 +00004416 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
4417 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
4418 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
4419 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
4420 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
4421 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
4422 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
4423 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
4424 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
4425 case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
4426 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
4427 case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
4428 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
4429 case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
4430 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
4431 }
4432 CmpInstr->setDesc(get(NewOpcode));
4433 CmpInstr->RemoveOperand(0);
4434 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
4435 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
4436 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
4437 return false;
4438 }
4439 }
4440
Manman Renc9656732012-07-06 17:36:20 +00004441 // Get the unique definition of SrcReg.
4442 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
4443 if (!MI) return false;
4444
4445 // CmpInstr is the first instruction of the BB.
4446 MachineBasicBlock::iterator I = CmpInstr, Def = MI;
4447
Manman Rend0a4ee82012-07-18 21:40:01 +00004448 // If we are comparing against zero, check whether we can use MI to update
4449 // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
4450 bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
Benjamin Kramer594f9632014-05-14 16:14:45 +00004451 if (IsCmpZero && MI->getParent() != CmpInstr->getParent())
Manman Rend0a4ee82012-07-18 21:40:01 +00004452 return false;
4453
Benjamin Kramer594f9632014-05-14 16:14:45 +00004454 // If we have a use of the source register between the def and our compare
4455 // instruction we can eliminate the compare iff the use sets EFLAGS in the
4456 // right way.
4457 bool ShouldUpdateCC = false;
4458 X86::CondCode NewCC = X86::COND_INVALID;
4459 if (IsCmpZero && !isDefConvertible(MI)) {
4460 // Scan forward from the use until we hit the use we're looking for or the
4461 // compare instruction.
4462 for (MachineBasicBlock::iterator J = MI;; ++J) {
4463 // Do we have a convertible instruction?
4464 NewCC = isUseDefConvertible(J);
4465 if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
4466 J->getOperand(1).getReg() == SrcReg) {
4467 assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
4468 ShouldUpdateCC = true; // Update CC later on.
4469 // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
4470 // with the new def.
4471 MI = Def = J;
4472 break;
4473 }
4474
4475 if (J == I)
4476 return false;
4477 }
4478 }
4479
Manman Renc9656732012-07-06 17:36:20 +00004480 // We are searching for an earlier instruction that can make CmpInstr
4481 // redundant and that instruction will be saved in Sub.
Craig Topper062a2ba2014-04-25 05:30:21 +00004482 MachineInstr *Sub = nullptr;
Manman Renc9656732012-07-06 17:36:20 +00004483 const TargetRegisterInfo *TRI = &getRegisterInfo();
Manman Ren5f6fa422012-07-09 18:57:12 +00004484
Manman Renc9656732012-07-06 17:36:20 +00004485 // We iterate backward, starting from the instruction before CmpInstr and
4486 // stop when reaching the definition of a source register or done with the BB.
4487 // RI points to the instruction before CmpInstr.
4488 // If the definition is in this basic block, RE points to the definition;
4489 // otherwise, RE is the rend of the basic block.
4490 MachineBasicBlock::reverse_iterator
4491 RI = MachineBasicBlock::reverse_iterator(I),
4492 RE = CmpInstr->getParent() == MI->getParent() ?
4493 MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
4494 CmpInstr->getParent()->rend();
Craig Topper062a2ba2014-04-25 05:30:21 +00004495 MachineInstr *Movr0Inst = nullptr;
Manman Renc9656732012-07-06 17:36:20 +00004496 for (; RI != RE; ++RI) {
4497 MachineInstr *Instr = &*RI;
4498 // Check whether CmpInstr can be made redundant by the current instruction.
Manman Rend0a4ee82012-07-18 21:40:01 +00004499 if (!IsCmpZero &&
4500 isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
Manman Renc9656732012-07-06 17:36:20 +00004501 Sub = Instr;
4502 break;
4503 }
4504
4505 if (Instr->modifiesRegister(X86::EFLAGS, TRI) ||
Manman Ren1553ce02012-07-11 19:35:12 +00004506 Instr->readsRegister(X86::EFLAGS, TRI)) {
Manman Renc9656732012-07-06 17:36:20 +00004507 // This instruction modifies or uses EFLAGS.
Manman Ren1553ce02012-07-11 19:35:12 +00004508
4509 // MOV32r0 etc. are implemented with xor which clobbers condition code.
4510 // They are safe to move up, if the definition to EFLAGS is dead and
4511 // earlier instructions do not read or write EFLAGS.
Tim Northover64ec0ff2013-05-30 13:19:42 +00004512 if (!Movr0Inst && Instr->getOpcode() == X86::MOV32r0 &&
Manman Ren1553ce02012-07-11 19:35:12 +00004513 Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
4514 Movr0Inst = Instr;
4515 continue;
4516 }
4517
Manman Renc9656732012-07-06 17:36:20 +00004518 // We can't remove CmpInstr.
4519 return false;
Manman Ren1553ce02012-07-11 19:35:12 +00004520 }
Manman Renc9656732012-07-06 17:36:20 +00004521 }
4522
4523 // Return false if no candidates exist.
Manman Rend0a4ee82012-07-18 21:40:01 +00004524 if (!IsCmpZero && !Sub)
Manman Renc9656732012-07-06 17:36:20 +00004525 return false;
4526
Manman Renbb360742012-07-07 03:34:46 +00004527 bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
4528 Sub->getOperand(2).getReg() == SrcReg);
4529
Manman Renc9656732012-07-06 17:36:20 +00004530 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
Manman Renbb360742012-07-07 03:34:46 +00004531 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
4532 // If we are done with the basic block, we need to check whether EFLAGS is
4533 // live-out.
4534 bool IsSafe = false;
Manman Renc9656732012-07-06 17:36:20 +00004535 SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
4536 MachineBasicBlock::iterator E = CmpInstr->getParent()->end();
4537 for (++I; I != E; ++I) {
4538 const MachineInstr &Instr = *I;
Manman Ren32367c02012-07-28 03:15:46 +00004539 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
4540 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
4541 // We should check the usage if this instruction uses and updates EFLAGS.
4542 if (!UseEFLAGS && ModifyEFLAGS) {
Manman Renc9656732012-07-06 17:36:20 +00004543 // It is safe to remove CmpInstr if EFLAGS is updated again.
Manman Renbb360742012-07-07 03:34:46 +00004544 IsSafe = true;
Manman Renc9656732012-07-06 17:36:20 +00004545 break;
Manman Renbb360742012-07-07 03:34:46 +00004546 }
Manman Ren32367c02012-07-28 03:15:46 +00004547 if (!UseEFLAGS && !ModifyEFLAGS)
Manman Renc9656732012-07-06 17:36:20 +00004548 continue;
4549
4550 // EFLAGS is used by this instruction.
Nick Lewycky0a9a8662014-06-04 07:45:54 +00004551 X86::CondCode OldCC = X86::COND_INVALID;
Manman Rend0a4ee82012-07-18 21:40:01 +00004552 bool OpcIsSET = false;
4553 if (IsCmpZero || IsSwapped) {
4554 // We decode the condition code from opcode.
Manman Ren5f6fa422012-07-09 18:57:12 +00004555 if (Instr.isBranch())
4556 OldCC = getCondFromBranchOpc(Instr.getOpcode());
4557 else {
4558 OldCC = getCondFromSETOpc(Instr.getOpcode());
4559 if (OldCC != X86::COND_INVALID)
4560 OpcIsSET = true;
4561 else
Michael Liao32376622012-09-20 03:06:15 +00004562 OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
Manman Ren5f6fa422012-07-09 18:57:12 +00004563 }
4564 if (OldCC == X86::COND_INVALID) return false;
Manman Rend0a4ee82012-07-18 21:40:01 +00004565 }
4566 if (IsCmpZero) {
4567 switch (OldCC) {
4568 default: break;
4569 case X86::COND_A: case X86::COND_AE:
4570 case X86::COND_B: case X86::COND_BE:
4571 case X86::COND_G: case X86::COND_GE:
4572 case X86::COND_L: case X86::COND_LE:
4573 case X86::COND_O: case X86::COND_NO:
4574 // CF and OF are used, we can't perform this optimization.
4575 return false;
4576 }
Benjamin Kramer594f9632014-05-14 16:14:45 +00004577
4578 // If we're updating the condition code check if we have to reverse the
4579 // condition.
4580 if (ShouldUpdateCC)
4581 switch (OldCC) {
4582 default:
4583 return false;
4584 case X86::COND_E:
4585 break;
4586 case X86::COND_NE:
4587 NewCC = GetOppositeBranchCondition(NewCC);
4588 break;
4589 }
Manman Rend0a4ee82012-07-18 21:40:01 +00004590 } else if (IsSwapped) {
4591 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
4592 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
4593 // We swap the condition code and synthesize the new opcode.
Benjamin Kramer594f9632014-05-14 16:14:45 +00004594 NewCC = getSwappedCondition(OldCC);
Manman Ren5f6fa422012-07-09 18:57:12 +00004595 if (NewCC == X86::COND_INVALID) return false;
Benjamin Kramer594f9632014-05-14 16:14:45 +00004596 }
Manman Ren5f6fa422012-07-09 18:57:12 +00004597
Benjamin Kramer594f9632014-05-14 16:14:45 +00004598 if ((ShouldUpdateCC || IsSwapped) && NewCC != OldCC) {
Manman Ren5f6fa422012-07-09 18:57:12 +00004599 // Synthesize the new opcode.
4600 bool HasMemoryOperand = Instr.hasOneMemOperand();
4601 unsigned NewOpc;
4602 if (Instr.isBranch())
4603 NewOpc = GetCondBranchFromCond(NewCC);
4604 else if(OpcIsSET)
4605 NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
4606 else {
4607 unsigned DstReg = Instr.getOperand(0).getReg();
4608 NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
4609 HasMemoryOperand);
4610 }
Manman Renc9656732012-07-06 17:36:20 +00004611
4612 // Push the MachineInstr to OpsToUpdate.
4613 // If it is safe to remove CmpInstr, the condition code of these
4614 // instructions will be modified.
4615 OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
4616 }
Manman Ren32367c02012-07-28 03:15:46 +00004617 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
4618 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
Manman Renbb360742012-07-07 03:34:46 +00004619 IsSafe = true;
4620 break;
4621 }
4622 }
4623
4624 // If EFLAGS is not killed nor re-defined, we should check whether it is
4625 // live-out. If it is live-out, do not optimize.
Manman Rend0a4ee82012-07-18 21:40:01 +00004626 if ((IsCmpZero || IsSwapped) && !IsSafe) {
Manman Renbb360742012-07-07 03:34:46 +00004627 MachineBasicBlock *MBB = CmpInstr->getParent();
4628 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
4629 SE = MBB->succ_end(); SI != SE; ++SI)
4630 if ((*SI)->isLiveIn(X86::EFLAGS))
4631 return false;
Manman Renc9656732012-07-06 17:36:20 +00004632 }
4633
Manman Rend0a4ee82012-07-18 21:40:01 +00004634 // The instruction to be updated is either Sub or MI.
4635 Sub = IsCmpZero ? MI : Sub;
David Majnemer5ba473a2013-05-18 01:02:03 +00004636 // Move Movr0Inst to the appropriate place before Sub.
Manman Ren1553ce02012-07-11 19:35:12 +00004637 if (Movr0Inst) {
David Majnemer5ba473a2013-05-18 01:02:03 +00004638 // Look backwards until we find a def that doesn't use the current EFLAGS.
4639 Def = Sub;
4640 MachineBasicBlock::reverse_iterator
4641 InsertI = MachineBasicBlock::reverse_iterator(++Def),
4642 InsertE = Sub->getParent()->rend();
4643 for (; InsertI != InsertE; ++InsertI) {
4644 MachineInstr *Instr = &*InsertI;
4645 if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
4646 Instr->modifiesRegister(X86::EFLAGS, TRI)) {
4647 Sub->getParent()->remove(Movr0Inst);
4648 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
4649 Movr0Inst);
4650 break;
4651 }
4652 }
4653 if (InsertI == InsertE)
4654 return false;
Manman Ren1553ce02012-07-11 19:35:12 +00004655 }
4656
Jan Wen Voung4ce1d7b2012-09-17 22:04:23 +00004657 // Make sure Sub instruction defines EFLAGS and mark the def live.
David Majnemer8f169742013-05-15 22:03:08 +00004658 unsigned i = 0, e = Sub->getNumOperands();
4659 for (; i != e; ++i) {
4660 MachineOperand &MO = Sub->getOperand(i);
4661 if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
4662 MO.setIsDead(false);
4663 break;
4664 }
4665 }
4666 assert(i != e && "Unable to locate a def EFLAGS operand");
4667
Manman Renc9656732012-07-06 17:36:20 +00004668 CmpInstr->eraseFromParent();
4669
4670 // Modify the condition code of instructions in OpsToUpdate.
4671 for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++)
4672 OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second));
4673 return true;
4674}
4675
Sanjay Patel203ee502015-02-17 21:55:20 +00004676/// Try to remove the load by folding it to a register
Manman Ren5759d012012-08-02 00:56:42 +00004677/// operand at the use. We fold the load instructions if load defines a virtual
4678/// register, the virtual register is used once in the same BB, and the
4679/// instructions in-between do not load or store, and have no side effects.
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00004680MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr *MI,
4681 const MachineRegisterInfo *MRI,
4682 unsigned &FoldAsLoadDefReg,
4683 MachineInstr *&DefMI) const {
Manman Ren5759d012012-08-02 00:56:42 +00004684 if (FoldAsLoadDefReg == 0)
Craig Topper062a2ba2014-04-25 05:30:21 +00004685 return nullptr;
Manman Ren5759d012012-08-02 00:56:42 +00004686 // To be conservative, if there exists another load, clear the load candidate.
4687 if (MI->mayLoad()) {
4688 FoldAsLoadDefReg = 0;
Craig Topper062a2ba2014-04-25 05:30:21 +00004689 return nullptr;
Manman Ren5759d012012-08-02 00:56:42 +00004690 }
4691
4692 // Check whether we can move DefMI here.
4693 DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
4694 assert(DefMI);
4695 bool SawStore = false;
Matthias Braun07066cc2015-05-19 21:22:20 +00004696 if (!DefMI->isSafeToMove(nullptr, SawStore))
Craig Topper062a2ba2014-04-25 05:30:21 +00004697 return nullptr;
Manman Ren5759d012012-08-02 00:56:42 +00004698
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00004699 // Collect information about virtual register operands of MI.
4700 unsigned SrcOperandId = 0;
4701 bool FoundSrcOperand = false;
4702 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
4703 MachineOperand &MO = MI->getOperand(i);
4704 if (!MO.isReg())
4705 continue;
4706 unsigned Reg = MO.getReg();
4707 if (Reg != FoldAsLoadDefReg)
4708 continue;
4709 // Do not fold if we have a subreg use or a def or multiple uses.
4710 if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
Craig Topper062a2ba2014-04-25 05:30:21 +00004711 return nullptr;
Manman Ren5759d012012-08-02 00:56:42 +00004712
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00004713 SrcOperandId = i;
4714 FoundSrcOperand = true;
Manman Ren5759d012012-08-02 00:56:42 +00004715 }
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00004716 if (!FoundSrcOperand)
4717 return nullptr;
4718
4719 // Check whether we can fold the def into SrcOperandId.
Benjamin Kramerf1362f62015-02-28 12:04:00 +00004720 MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandId, DefMI);
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00004721 if (FoldMI) {
4722 FoldAsLoadDefReg = 0;
4723 return FoldMI;
4724 }
4725
Craig Topper062a2ba2014-04-25 05:30:21 +00004726 return nullptr;
Manman Ren5759d012012-08-02 00:56:42 +00004727}
4728
Sanjay Patel203ee502015-02-17 21:55:20 +00004729/// Expand a single-def pseudo instruction to a two-addr
4730/// instruction with two undef reads of the register being defined.
4731/// This is used for mapping:
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00004732/// %xmm4 = V_SET0
4733/// to:
4734/// %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
4735///
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004736static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
4737 const MCInstrDesc &Desc) {
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00004738 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004739 unsigned Reg = MIB->getOperand(0).getReg();
4740 MIB->setDesc(Desc);
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00004741
4742 // MachineInstr::addOperand() will insert explicit operands before any
4743 // implicit operands.
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004744 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00004745 // But we don't trust that.
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004746 assert(MIB->getOperand(1).getReg() == Reg &&
4747 MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00004748 return true;
4749}
4750
Akira Hatanakae5b6e0d2014-07-25 19:31:34 +00004751// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
4752// code sequence is needed for other targets.
4753static void expandLoadStackGuard(MachineInstrBuilder &MIB,
4754 const TargetInstrInfo &TII) {
4755 MachineBasicBlock &MBB = *MIB->getParent();
4756 DebugLoc DL = MIB->getDebugLoc();
4757 unsigned Reg = MIB->getOperand(0).getReg();
4758 const GlobalValue *GV =
4759 cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
4760 unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
4761 MachineMemOperand *MMO = MBB.getParent()->
4762 getMachineMemOperand(MachinePointerInfo::getGOT(), Flag, 8, 8);
Reid Klecknerda00cf52014-10-31 23:19:46 +00004763 MachineBasicBlock::iterator I = MIB.getInstr();
Akira Hatanakae5b6e0d2014-07-25 19:31:34 +00004764
4765 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
4766 .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
4767 .addMemOperand(MMO);
4768 MIB->setDebugLoc(DL);
4769 MIB->setDesc(TII.get(X86::MOV64rm));
4770 MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
4771}
4772
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00004773bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
Eric Christopher6c786a12014-06-10 22:34:31 +00004774 bool HasAVX = Subtarget.hasAVX();
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004775 MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00004776 switch (MI->getOpcode()) {
Craig Topper854f6442013-12-31 03:05:38 +00004777 case X86::MOV32r0:
4778 return Expand2AddrUndef(MIB, get(X86::XOR32rr));
Craig Topper93849022012-10-05 06:05:15 +00004779 case X86::SETB_C8r:
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004780 return Expand2AddrUndef(MIB, get(X86::SBB8rr));
Craig Topper93849022012-10-05 06:05:15 +00004781 case X86::SETB_C16r:
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004782 return Expand2AddrUndef(MIB, get(X86::SBB16rr));
Craig Topper93849022012-10-05 06:05:15 +00004783 case X86::SETB_C32r:
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004784 return Expand2AddrUndef(MIB, get(X86::SBB32rr));
Craig Topper93849022012-10-05 06:05:15 +00004785 case X86::SETB_C64r:
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004786 return Expand2AddrUndef(MIB, get(X86::SBB64rr));
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00004787 case X86::V_SET0:
Jakob Stoklund Olesenbde32d32011-11-29 22:27:25 +00004788 case X86::FsFLD0SS:
4789 case X86::FsFLD0SD:
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004790 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
Craig Topperbd509ee2012-08-28 07:05:28 +00004791 case X86::AVX_SET0:
4792 assert(HasAVX && "AVX not supported");
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004793 return Expand2AddrUndef(MIB, get(X86::VXORPSYrr));
Elena Demikhovskyf8f478b2013-08-25 12:54:30 +00004794 case X86::AVX512_512_SET0:
4795 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
Craig Topper72f51c32012-08-28 07:30:47 +00004796 case X86::V_SETALLONES:
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004797 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
Craig Topper72f51c32012-08-28 07:30:47 +00004798 case X86::AVX2_SETALLONES:
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004799 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
Jakob Stoklund Olesen729abd32011-10-08 18:28:28 +00004800 case X86::TEST8ri_NOREX:
4801 MI->setDesc(get(X86::TEST8ri));
4802 return true;
Michael Liao5bf95782014-12-04 05:20:33 +00004803 case X86::KSET0B:
Elena Demikhovskyf8f478b2013-08-25 12:54:30 +00004804 case X86::KSET0W: return Expand2AddrUndef(MIB, get(X86::KXORWrr));
4805 case X86::KSET1B:
4806 case X86::KSET1W: return Expand2AddrUndef(MIB, get(X86::KXNORWrr));
Akira Hatanakae5b6e0d2014-07-25 19:31:34 +00004807 case TargetOpcode::LOAD_STACK_GUARD:
4808 expandLoadStackGuard(MIB, *this);
4809 return true;
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00004810 }
4811 return false;
4812}
4813
Keno Fischere70b31f2015-06-08 20:09:58 +00004814static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs) {
4815 unsigned NumAddrOps = MOs.size();
4816 for (unsigned i = 0; i != NumAddrOps; ++i)
4817 MIB.addOperand(MOs[i]);
4818 if (NumAddrOps < 4) // FrameIndex only
4819 addOffset(MIB, 0);
4820}
4821
Dan Gohman3b460302008-07-07 23:14:23 +00004822static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Benjamin Kramerf1362f62015-02-28 12:04:00 +00004823 ArrayRef<MachineOperand> MOs,
Keno Fischere70b31f2015-06-08 20:09:58 +00004824 MachineBasicBlock::iterator InsertPt,
Bill Wendlinge3c78362009-02-03 00:55:04 +00004825 MachineInstr *MI,
4826 const TargetInstrInfo &TII) {
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004827 // Create the base instruction with the memory operand as the first part.
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004828 // Omit the implicit operands, something BuildMI can't do.
Bill Wendlinge3c78362009-02-03 00:55:04 +00004829 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
4830 MI->getDebugLoc(), true);
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004831 MachineInstrBuilder MIB(MF, NewMI);
Keno Fischere70b31f2015-06-08 20:09:58 +00004832 addOperands(MIB, MOs);
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00004833
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004834 // Loop over the rest of the ri operands, converting them over.
Chris Lattner03ad8852008-01-07 07:27:27 +00004835 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004836 for (unsigned i = 0; i != NumOps; ++i) {
4837 MachineOperand &MO = MI->getOperand(i+2);
Dan Gohman2af1f852009-02-18 05:45:50 +00004838 MIB.addOperand(MO);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004839 }
4840 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
4841 MachineOperand &MO = MI->getOperand(i);
Dan Gohman2af1f852009-02-18 05:45:50 +00004842 MIB.addOperand(MO);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004843 }
Keno Fischere70b31f2015-06-08 20:09:58 +00004844
4845 MachineBasicBlock *MBB = InsertPt->getParent();
4846 MBB->insert(InsertPt, NewMI);
4847
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004848 return MIB;
4849}
4850
Benjamin Kramerf1362f62015-02-28 12:04:00 +00004851static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
4852 unsigned OpNo, ArrayRef<MachineOperand> MOs,
Keno Fischere70b31f2015-06-08 20:09:58 +00004853 MachineBasicBlock::iterator InsertPt,
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004854 MachineInstr *MI, const TargetInstrInfo &TII) {
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004855 // Omit the implicit operands, something BuildMI can't do.
Bill Wendlinge3c78362009-02-03 00:55:04 +00004856 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
4857 MI->getDebugLoc(), true);
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004858 MachineInstrBuilder MIB(MF, NewMI);
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00004859
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004860 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
4861 MachineOperand &MO = MI->getOperand(i);
4862 if (i == OpNo) {
Dan Gohman0d1e9a82008-10-03 15:45:36 +00004863 assert(MO.isReg() && "Expected to fold into reg operand!");
Keno Fischere70b31f2015-06-08 20:09:58 +00004864 addOperands(MIB, MOs);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004865 } else {
Dan Gohman2af1f852009-02-18 05:45:50 +00004866 MIB.addOperand(MO);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004867 }
4868 }
Keno Fischere70b31f2015-06-08 20:09:58 +00004869
4870 MachineBasicBlock *MBB = InsertPt->getParent();
4871 MBB->insert(InsertPt, NewMI);
4872
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004873 return MIB;
4874}
4875
4876static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Benjamin Kramerf1362f62015-02-28 12:04:00 +00004877 ArrayRef<MachineOperand> MOs,
Keno Fischere70b31f2015-06-08 20:09:58 +00004878 MachineBasicBlock::iterator InsertPt,
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004879 MachineInstr *MI) {
Keno Fischere70b31f2015-06-08 20:09:58 +00004880 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
4881 MI->getDebugLoc(), TII.get(Opcode));
4882 addOperands(MIB, MOs);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004883 return MIB.addImm(0);
4884}
4885
Keno Fischere70b31f2015-06-08 20:09:58 +00004886MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
4887 MachineFunction &MF, MachineInstr *MI, unsigned OpNum,
4888 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
4889 unsigned Size, unsigned Align, bool AllowCommute) const {
Craig Topper062a2ba2014-04-25 05:30:21 +00004890 const DenseMap<unsigned,
4891 std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
Eric Christopher6c786a12014-06-10 22:34:31 +00004892 bool isCallRegIndirect = Subtarget.callRegIndirect();
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004893 bool isTwoAddrFold = false;
Preston Gurdd6be4bf2013-03-27 23:16:18 +00004894
Sanjay Patelfc54c612015-02-09 16:04:52 +00004895 // For CPUs that favor the register form of a call,
4896 // do not fold loads into calls.
Preston Gurdd6be4bf2013-03-27 23:16:18 +00004897 if (isCallRegIndirect &&
Sanjay Patelfc54c612015-02-09 16:04:52 +00004898 (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r))
Craig Topper062a2ba2014-04-25 05:30:21 +00004899 return nullptr;
Preston Gurdd6be4bf2013-03-27 23:16:18 +00004900
Chris Lattner03ad8852008-01-07 07:27:27 +00004901 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004902 bool isTwoAddr = NumOps > 1 &&
Evan Cheng6cc775f2011-06-28 19:10:37 +00004903 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004904
Jakob Stoklund Olesen2348cdd2011-04-30 23:00:05 +00004905 // FIXME: AsmPrinter doesn't know how to handle
4906 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4907 if (MI->getOpcode() == X86::ADD32ri &&
4908 MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
Craig Topper062a2ba2014-04-25 05:30:21 +00004909 return nullptr;
Jakob Stoklund Olesen2348cdd2011-04-30 23:00:05 +00004910
Craig Topper062a2ba2014-04-25 05:30:21 +00004911 MachineInstr *NewMI = nullptr;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004912 // Folding a memory location into the two-address part of a two-address
4913 // instruction is different than folding it other places. It requires
4914 // replacing the *two* registers with the memory location.
Sanjay Patela7b893d2015-02-09 16:30:58 +00004915 if (isTwoAddr && NumOps >= 2 && OpNum < 2 &&
Dan Gohman0d1e9a82008-10-03 15:45:36 +00004916 MI->getOperand(0).isReg() &&
4917 MI->getOperand(1).isReg() &&
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00004918 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004919 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
4920 isTwoAddrFold = true;
Sanjay Patela7b893d2015-02-09 16:30:58 +00004921 } else if (OpNum == 0) {
Tim Northover64ec0ff2013-05-30 13:19:42 +00004922 if (MI->getOpcode() == X86::MOV32r0) {
Keno Fischere70b31f2015-06-08 20:09:58 +00004923 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
Tim Northover64ec0ff2013-05-30 13:19:42 +00004924 if (NewMI)
4925 return NewMI;
Craig Topperf9115972012-08-23 04:57:36 +00004926 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00004927
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004928 OpcodeTablePtr = &RegOp2MemOpTable0;
Sanjay Patela7b893d2015-02-09 16:30:58 +00004929 } else if (OpNum == 1) {
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004930 OpcodeTablePtr = &RegOp2MemOpTable1;
Sanjay Patela7b893d2015-02-09 16:30:58 +00004931 } else if (OpNum == 2) {
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004932 OpcodeTablePtr = &RegOp2MemOpTable2;
Sanjay Patela7b893d2015-02-09 16:30:58 +00004933 } else if (OpNum == 3) {
Elena Demikhovsky3cb3b002012-08-01 12:06:00 +00004934 OpcodeTablePtr = &RegOp2MemOpTable3;
Sanjay Patela7b893d2015-02-09 16:30:58 +00004935 } else if (OpNum == 4) {
Robert Khasanov79fb7292014-12-18 12:28:22 +00004936 OpcodeTablePtr = &RegOp2MemOpTable4;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004937 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00004938
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004939 // If table selected...
4940 if (OpcodeTablePtr) {
4941 // Find the Opcode to fuse
Chris Lattner1c090c02010-10-07 23:08:41 +00004942 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4943 OpcodeTablePtr->find(MI->getOpcode());
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004944 if (I != OpcodeTablePtr->end()) {
Evan Cheng3cad6282009-09-11 00:39:26 +00004945 unsigned Opcode = I->second.first;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00004946 unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
Evan Cheng9e0c7f22009-07-15 06:10:07 +00004947 if (Align < MinAlign)
Craig Topper062a2ba2014-04-25 05:30:21 +00004948 return nullptr;
Evan Cheng74a32312009-09-11 01:01:31 +00004949 bool NarrowToMOV32rm = false;
Evan Cheng3cad6282009-09-11 00:39:26 +00004950 if (Size) {
Sanjay Patela7b893d2015-02-09 16:30:58 +00004951 unsigned RCSize = getRegClass(MI->getDesc(), OpNum, &RI, MF)->getSize();
Evan Cheng3cad6282009-09-11 00:39:26 +00004952 if (Size < RCSize) {
4953 // Check if it's safe to fold the load. If the size of the object is
4954 // narrower than the load width, then it's not.
4955 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
Craig Topper062a2ba2014-04-25 05:30:21 +00004956 return nullptr;
Evan Cheng3cad6282009-09-11 00:39:26 +00004957 // If this is a 64-bit load, but the spill slot is 32, then we can do
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00004958 // a 32-bit load which is implicitly zero-extended. This likely is
4959 // due to live interval analysis remat'ing a load from stack slot.
Evan Cheng74a32312009-09-11 01:01:31 +00004960 if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
Craig Topper062a2ba2014-04-25 05:30:21 +00004961 return nullptr;
Evan Cheng3cad6282009-09-11 00:39:26 +00004962 Opcode = X86::MOV32rm;
Evan Cheng74a32312009-09-11 01:01:31 +00004963 NarrowToMOV32rm = true;
Evan Cheng3cad6282009-09-11 00:39:26 +00004964 }
4965 }
4966
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004967 if (isTwoAddrFold)
Keno Fischere70b31f2015-06-08 20:09:58 +00004968 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004969 else
Keno Fischere70b31f2015-06-08 20:09:58 +00004970 NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
Evan Cheng74a32312009-09-11 01:01:31 +00004971
4972 if (NarrowToMOV32rm) {
4973 // If this is the special case where we use a MOV32rm to load a 32-bit
4974 // value and zero-extend the top bits. Change the destination register
4975 // to a 32-bit one.
4976 unsigned DstReg = NewMI->getOperand(0).getReg();
4977 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00004978 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
Evan Cheng74a32312009-09-11 01:01:31 +00004979 else
Jakob Stoklund Olesen9340ea52010-05-24 14:48:17 +00004980 NewMI->getOperand(0).setSubReg(X86::sub_32bit);
Evan Cheng74a32312009-09-11 01:01:31 +00004981 }
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004982 return NewMI;
4983 }
4984 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00004985
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00004986 // If the instruction and target operand are commutable, commute the
4987 // instruction and try again.
4988 if (AllowCommute) {
Sanjay Patela7b893d2015-02-09 16:30:58 +00004989 unsigned OriginalOpIdx = OpNum, CommuteOpIdx1, CommuteOpIdx2;
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00004990 if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
4991 bool HasDef = MI->getDesc().getNumDefs();
4992 unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
4993 unsigned Reg1 = MI->getOperand(CommuteOpIdx1).getReg();
4994 unsigned Reg2 = MI->getOperand(CommuteOpIdx2).getReg();
4995 bool Tied0 =
4996 0 == MI->getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
4997 bool Tied1 =
4998 0 == MI->getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
4999
5000 // If either of the commutable operands are tied to the destination
5001 // then we can not commute + fold.
5002 if ((HasDef && Reg0 == Reg1 && Tied0) ||
5003 (HasDef && Reg0 == Reg2 && Tied1))
5004 return nullptr;
5005
5006 if ((CommuteOpIdx1 == OriginalOpIdx) ||
5007 (CommuteOpIdx2 == OriginalOpIdx)) {
5008 MachineInstr *CommutedMI = commuteInstruction(MI, false);
5009 if (!CommutedMI) {
5010 // Unable to commute.
5011 return nullptr;
5012 }
5013 if (CommutedMI != MI) {
5014 // New instruction. We can't fold from this.
5015 CommutedMI->eraseFromParent();
5016 return nullptr;
5017 }
5018
5019 // Attempt to fold with the commuted version of the instruction.
5020 unsigned CommuteOp =
5021 (CommuteOpIdx1 == OriginalOpIdx ? CommuteOpIdx2 : CommuteOpIdx1);
Keno Fischere70b31f2015-06-08 20:09:58 +00005022 NewMI =
5023 foldMemoryOperandImpl(MF, MI, CommuteOp, MOs, InsertPt, Size, Align,
5024 /*AllowCommute=*/false);
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00005025 if (NewMI)
5026 return NewMI;
5027
5028 // Folding failed again - undo the commute before returning.
5029 MachineInstr *UncommutedMI = commuteInstruction(MI, false);
5030 if (!UncommutedMI) {
5031 // Unable to commute.
5032 return nullptr;
5033 }
5034 if (UncommutedMI != MI) {
5035 // New instruction. It doesn't need to be kept.
5036 UncommutedMI->eraseFromParent();
5037 return nullptr;
5038 }
5039
5040 // Return here to prevent duplicate fuse failure report.
5041 return nullptr;
5042 }
5043 }
5044 }
5045
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00005046 // No fusion
Jakob Stoklund Olesen51702ec2010-07-09 20:43:09 +00005047 if (PrintFailedFusing && !MI->isCopy())
Sanjay Patela7b893d2015-02-09 16:30:58 +00005048 dbgs() << "We failed to fuse operand " << OpNum << " in " << *MI;
Craig Topper062a2ba2014-04-25 05:30:21 +00005049 return nullptr;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005050}
5051
Sanjay Patel203ee502015-02-17 21:55:20 +00005052/// Return true for all instructions that only update
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005053/// the first 32 or 64-bits of the destination register and leave the rest
5054/// unmodified. This can be used to avoid folding loads if the instructions
5055/// only update part of the destination register, and the non-updated part is
5056/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
5057/// instructions breaks the partial register dependency and it can improve
5058/// performance. e.g.:
5059///
5060/// movss (%rdi), %xmm0
5061/// cvtss2sd %xmm0, %xmm0
5062///
5063/// Instead of
5064/// cvtss2sd (%rdi), %xmm0
5065///
Bruno Cardoso Lopes7b435682011-09-15 23:04:24 +00005066/// FIXME: This should be turned into a TSFlags.
5067///
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005068static bool hasPartialRegUpdate(unsigned Opcode) {
5069 switch (Opcode) {
Jakob Stoklund Olesenf8ad3362011-11-15 01:15:30 +00005070 case X86::CVTSI2SSrr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00005071 case X86::CVTSI2SSrm:
Jakob Stoklund Olesenf8ad3362011-11-15 01:15:30 +00005072 case X86::CVTSI2SS64rr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00005073 case X86::CVTSI2SS64rm:
Jakob Stoklund Olesenf8ad3362011-11-15 01:15:30 +00005074 case X86::CVTSI2SDrr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00005075 case X86::CVTSI2SDrm:
Jakob Stoklund Olesenf8ad3362011-11-15 01:15:30 +00005076 case X86::CVTSI2SD64rr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00005077 case X86::CVTSI2SD64rm:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005078 case X86::CVTSD2SSrr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00005079 case X86::CVTSD2SSrm:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005080 case X86::Int_CVTSD2SSrr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00005081 case X86::Int_CVTSD2SSrm:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005082 case X86::CVTSS2SDrr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00005083 case X86::CVTSS2SDrm:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005084 case X86::Int_CVTSS2SDrr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00005085 case X86::Int_CVTSS2SDrm:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005086 case X86::RCPSSr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00005087 case X86::RCPSSm:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005088 case X86::RCPSSr_Int:
Michael Kuperstein47c97152014-12-15 13:18:21 +00005089 case X86::RCPSSm_Int:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005090 case X86::ROUNDSDr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00005091 case X86::ROUNDSDm:
Benjamin Kramer2dc5dec2011-12-09 15:43:55 +00005092 case X86::ROUNDSDr_Int:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005093 case X86::ROUNDSSr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00005094 case X86::ROUNDSSm:
Benjamin Kramer2dc5dec2011-12-09 15:43:55 +00005095 case X86::ROUNDSSr_Int:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005096 case X86::RSQRTSSr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00005097 case X86::RSQRTSSm:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005098 case X86::RSQRTSSr_Int:
Michael Kuperstein47c97152014-12-15 13:18:21 +00005099 case X86::RSQRTSSm_Int:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005100 case X86::SQRTSSr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00005101 case X86::SQRTSSm:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005102 case X86::SQRTSSr_Int:
Michael Kuperstein47c97152014-12-15 13:18:21 +00005103 case X86::SQRTSSm_Int:
5104 case X86::SQRTSDr:
5105 case X86::SQRTSDm:
5106 case X86::SQRTSDr_Int:
5107 case X86::SQRTSDm_Int:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005108 return true;
5109 }
5110
5111 return false;
5112}
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005113
Sanjay Patel203ee502015-02-17 21:55:20 +00005114/// Inform the ExeDepsFix pass how many idle
Jakob Stoklund Olesenf8ad3362011-11-15 01:15:30 +00005115/// instructions we would like before a partial register update.
5116unsigned X86InstrInfo::
5117getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
5118 const TargetRegisterInfo *TRI) const {
5119 if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
5120 return 0;
5121
5122 // If MI is marked as reading Reg, the partial register update is wanted.
5123 const MachineOperand &MO = MI->getOperand(0);
5124 unsigned Reg = MO.getReg();
5125 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
5126 if (MO.readsReg() || MI->readsVirtualRegister(Reg))
5127 return 0;
5128 } else {
5129 if (MI->readsRegister(Reg, TRI))
5130 return 0;
5131 }
5132
5133 // If any of the preceding 16 instructions are reading Reg, insert a
5134 // dependency breaking instruction. The magic number is based on a few
5135 // Nehalem experiments.
5136 return 16;
5137}
5138
Andrew Trickb6d56be2013-10-14 22:19:03 +00005139// Return true for any instruction the copies the high bits of the first source
5140// operand into the unused high bits of the destination operand.
5141static bool hasUndefRegUpdate(unsigned Opcode) {
5142 switch (Opcode) {
5143 case X86::VCVTSI2SSrr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005144 case X86::VCVTSI2SSrm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005145 case X86::Int_VCVTSI2SSrr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005146 case X86::Int_VCVTSI2SSrm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005147 case X86::VCVTSI2SS64rr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005148 case X86::VCVTSI2SS64rm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005149 case X86::Int_VCVTSI2SS64rr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005150 case X86::Int_VCVTSI2SS64rm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005151 case X86::VCVTSI2SDrr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005152 case X86::VCVTSI2SDrm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005153 case X86::Int_VCVTSI2SDrr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005154 case X86::Int_VCVTSI2SDrm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005155 case X86::VCVTSI2SD64rr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005156 case X86::VCVTSI2SD64rm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005157 case X86::Int_VCVTSI2SD64rr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005158 case X86::Int_VCVTSI2SD64rm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005159 case X86::VCVTSD2SSrr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005160 case X86::VCVTSD2SSrm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005161 case X86::Int_VCVTSD2SSrr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005162 case X86::Int_VCVTSD2SSrm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005163 case X86::VCVTSS2SDrr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005164 case X86::VCVTSS2SDrm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005165 case X86::Int_VCVTSS2SDrr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005166 case X86::Int_VCVTSS2SDrm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005167 case X86::VRCPSSr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005168 case X86::VRCPSSm:
5169 case X86::VRCPSSm_Int:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005170 case X86::VROUNDSDr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005171 case X86::VROUNDSDm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005172 case X86::VROUNDSDr_Int:
5173 case X86::VROUNDSSr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005174 case X86::VROUNDSSm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005175 case X86::VROUNDSSr_Int:
5176 case X86::VRSQRTSSr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005177 case X86::VRSQRTSSm:
5178 case X86::VRSQRTSSm_Int:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005179 case X86::VSQRTSSr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005180 case X86::VSQRTSSm:
5181 case X86::VSQRTSSm_Int:
5182 case X86::VSQRTSDr:
5183 case X86::VSQRTSDm:
5184 case X86::VSQRTSDm_Int:
5185 // AVX-512
Andrew Trickb6d56be2013-10-14 22:19:03 +00005186 case X86::VCVTSD2SSZrr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005187 case X86::VCVTSD2SSZrm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005188 case X86::VCVTSS2SDZrr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005189 case X86::VCVTSS2SDZrm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005190 return true;
5191 }
5192
5193 return false;
5194}
5195
5196/// Inform the ExeDepsFix pass how many idle instructions we would like before
5197/// certain undef register reads.
5198///
5199/// This catches the VCVTSI2SD family of instructions:
5200///
5201/// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
5202///
5203/// We should to be careful *not* to catch VXOR idioms which are presumably
5204/// handled specially in the pipeline:
5205///
5206/// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1
5207///
5208/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
5209/// high bits that are passed-through are not live.
5210unsigned X86InstrInfo::
5211getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
5212 const TargetRegisterInfo *TRI) const {
5213 if (!hasUndefRegUpdate(MI->getOpcode()))
5214 return 0;
5215
5216 // Set the OpNum parameter to the first source operand.
5217 OpNum = 1;
5218
5219 const MachineOperand &MO = MI->getOperand(OpNum);
5220 if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
5221 // Use the same magic number as getPartialRegUpdateClearance.
5222 return 16;
5223 }
5224 return 0;
5225}
5226
Jakob Stoklund Olesenf8ad3362011-11-15 01:15:30 +00005227void X86InstrInfo::
5228breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
5229 const TargetRegisterInfo *TRI) const {
5230 unsigned Reg = MI->getOperand(OpNum).getReg();
Andrew Trickb6d56be2013-10-14 22:19:03 +00005231 // If MI kills this register, the false dependence is already broken.
5232 if (MI->killsRegister(Reg, TRI))
5233 return;
Jakob Stoklund Olesenf8ad3362011-11-15 01:15:30 +00005234 if (X86::VR128RegClass.contains(Reg)) {
5235 // These instructions are all floating point domain, so xorps is the best
5236 // choice.
Eric Christopher6c786a12014-06-10 22:34:31 +00005237 bool HasAVX = Subtarget.hasAVX();
Jakob Stoklund Olesenf8ad3362011-11-15 01:15:30 +00005238 unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
5239 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
5240 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
5241 } else if (X86::VR256RegClass.contains(Reg)) {
5242 // Use vxorps to clear the full ymm register.
5243 // It wants to read and write the xmm sub-register.
5244 unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
5245 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
5246 .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
5247 .addReg(Reg, RegState::ImplicitDefine);
5248 } else
5249 return;
5250 MI->addRegisterKilled(Reg, TRI, true);
5251}
5252
Keno Fischere70b31f2015-06-08 20:09:58 +00005253MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
5254 MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
5255 MachineBasicBlock::iterator InsertPt, int FrameIndex) const {
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00005256 // Check switch flag
Craig Topper062a2ba2014-04-25 05:30:21 +00005257 if (NoFusing) return nullptr;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005258
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005259 // Unless optimizing for size, don't fold to avoid partial
5260 // register update stalls
Duncan P. N. Exon Smith5975a702015-02-14 01:59:52 +00005261 if (!MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) &&
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005262 hasPartialRegUpdate(MI->getOpcode()))
Craig Topper062a2ba2014-04-25 05:30:21 +00005263 return nullptr;
Evan Cheng4cf30b72009-12-18 07:40:29 +00005264
Evan Cheng3b3286d2008-02-08 21:20:40 +00005265 const MachineFrameInfo *MFI = MF.getFrameInfo();
Evan Cheng3cad6282009-09-11 00:39:26 +00005266 unsigned Size = MFI->getObjectSize(FrameIndex);
Evan Cheng3b3286d2008-02-08 21:20:40 +00005267 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
Benjamin Kramer858a3882013-10-06 13:48:22 +00005268 // If the function stack isn't realigned we don't want to fold instructions
5269 // that need increased alignment.
5270 if (!RI.needsStackRealignment(MF))
Eric Christopher05b81972015-02-02 17:38:43 +00005271 Alignment =
5272 std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005273 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5274 unsigned NewOpc = 0;
Evan Cheng3cad6282009-09-11 00:39:26 +00005275 unsigned RCSize = 0;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005276 switch (MI->getOpcode()) {
Craig Topper062a2ba2014-04-25 05:30:21 +00005277 default: return nullptr;
Evan Cheng3cad6282009-09-11 00:39:26 +00005278 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
Dan Gohman887dd1c2010-05-18 21:42:03 +00005279 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
5280 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
5281 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005282 }
Evan Cheng3cad6282009-09-11 00:39:26 +00005283 // Check if it's safe to fold the load. If the size of the object is
5284 // narrower than the load width, then it's not.
5285 if (Size < RCSize)
Craig Topper062a2ba2014-04-25 05:30:21 +00005286 return nullptr;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005287 // Change to CMPXXri r, 0 first.
Chris Lattner59687512008-01-11 18:10:50 +00005288 MI->setDesc(get(NewOpc));
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005289 MI->getOperand(1).ChangeToImmediate(0);
5290 } else if (Ops.size() != 1)
Craig Topper062a2ba2014-04-25 05:30:21 +00005291 return nullptr;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005292
Benjamin Kramerf1362f62015-02-28 12:04:00 +00005293 return foldMemoryOperandImpl(MF, MI, Ops[0],
Keno Fischere70b31f2015-06-08 20:09:58 +00005294 MachineOperand::CreateFI(FrameIndex), InsertPt,
5295 Size, Alignment, /*AllowCommute=*/true);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005296}
5297
Ahmed Bougachaed3c4d12015-06-22 20:51:51 +00005298/// Check if \p LoadMI is a partial register load that we can't fold into \p MI
5299/// because the latter uses contents that wouldn't be defined in the folded
5300/// version. For instance, this transformation isn't legal:
5301/// movss (%rdi), %xmm0
5302/// addps %xmm0, %xmm0
5303/// ->
5304/// addps (%rdi), %xmm0
5305///
5306/// But this one is:
5307/// movss (%rdi), %xmm0
5308/// addss %xmm0, %xmm0
5309/// ->
5310/// addss (%rdi), %xmm0
5311///
5312static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
5313 const MachineInstr &UserMI,
5314 const MachineFunction &MF) {
Akira Hatanaka760814a2014-09-15 18:23:52 +00005315 unsigned Opc = LoadMI.getOpcode();
Ahmed Bougachaed3c4d12015-06-22 20:51:51 +00005316 unsigned UserOpc = UserMI.getOpcode();
Akira Hatanaka760814a2014-09-15 18:23:52 +00005317 unsigned RegSize =
5318 MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg())->getSize();
5319
Ahmed Bougachaed3c4d12015-06-22 20:51:51 +00005320 if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm) && RegSize > 4) {
Akira Hatanaka760814a2014-09-15 18:23:52 +00005321 // These instructions only load 32 bits, we can't fold them if the
Ahmed Bougachaed3c4d12015-06-22 20:51:51 +00005322 // destination register is wider than 32 bits (4 bytes), and its user
5323 // instruction isn't scalar (SS).
5324 switch (UserOpc) {
5325 case X86::ADDSSrr_Int: case X86::VADDSSrr_Int:
5326 case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int:
5327 case X86::MULSSrr_Int: case X86::VMULSSrr_Int:
5328 case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int:
5329 return false;
5330 default:
5331 return true;
5332 }
5333 }
Akira Hatanaka760814a2014-09-15 18:23:52 +00005334
Ahmed Bougachaed3c4d12015-06-22 20:51:51 +00005335 if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm) && RegSize > 8) {
Akira Hatanaka760814a2014-09-15 18:23:52 +00005336 // These instructions only load 64 bits, we can't fold them if the
Ahmed Bougachaed3c4d12015-06-22 20:51:51 +00005337 // destination register is wider than 64 bits (8 bytes), and its user
5338 // instruction isn't scalar (SD).
5339 switch (UserOpc) {
5340 case X86::ADDSDrr_Int: case X86::VADDSDrr_Int:
5341 case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int:
5342 case X86::MULSDrr_Int: case X86::VMULSDrr_Int:
5343 case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int:
5344 return false;
5345 default:
5346 return true;
5347 }
5348 }
Akira Hatanaka760814a2014-09-15 18:23:52 +00005349
5350 return false;
5351}
5352
Keno Fischere70b31f2015-06-08 20:09:58 +00005353MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
5354 MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
5355 MachineBasicBlock::iterator InsertPt, MachineInstr *LoadMI) const {
Andrew Trick3112a5e2013-11-12 18:06:12 +00005356 // If loading from a FrameIndex, fold directly from the FrameIndex.
5357 unsigned NumOps = LoadMI->getDesc().getNumOperands();
5358 int FrameIndex;
Akira Hatanaka760814a2014-09-15 18:23:52 +00005359 if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
Ahmed Bougachaed3c4d12015-06-22 20:51:51 +00005360 if (isNonFoldablePartialRegisterLoad(*LoadMI, *MI, MF))
Akira Hatanaka760814a2014-09-15 18:23:52 +00005361 return nullptr;
Keno Fischere70b31f2015-06-08 20:09:58 +00005362 return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex);
Akira Hatanaka760814a2014-09-15 18:23:52 +00005363 }
Andrew Trick3112a5e2013-11-12 18:06:12 +00005364
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00005365 // Check switch flag
Craig Topper062a2ba2014-04-25 05:30:21 +00005366 if (NoFusing) return nullptr;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005367
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005368 // Unless optimizing for size, don't fold to avoid partial
5369 // register update stalls
Duncan P. N. Exon Smith5975a702015-02-14 01:59:52 +00005370 if (!MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) &&
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005371 hasPartialRegUpdate(MI->getOpcode()))
Craig Topper062a2ba2014-04-25 05:30:21 +00005372 return nullptr;
Evan Cheng4cf30b72009-12-18 07:40:29 +00005373
Dan Gohman9a542a42008-07-12 00:10:52 +00005374 // Determine the alignment of the load.
Evan Cheng3b3286d2008-02-08 21:20:40 +00005375 unsigned Alignment = 0;
Dan Gohman9a542a42008-07-12 00:10:52 +00005376 if (LoadMI->hasOneMemOperand())
Dan Gohman48b185d2009-09-25 20:36:54 +00005377 Alignment = (*LoadMI->memoperands_begin())->getAlignment();
Dan Gohman69499b132009-09-21 18:30:38 +00005378 else
5379 switch (LoadMI->getOpcode()) {
Craig Toppera3a65832011-11-19 22:34:59 +00005380 case X86::AVX2_SETALLONES:
Craig Topperbd509ee2012-08-28 07:05:28 +00005381 case X86::AVX_SET0:
Bruno Cardoso Lopes7f704b32010-08-12 20:20:53 +00005382 Alignment = 32;
5383 break;
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00005384 case X86::V_SET0:
Dan Gohman69499b132009-09-21 18:30:38 +00005385 case X86::V_SETALLONES:
5386 Alignment = 16;
5387 break;
5388 case X86::FsFLD0SD:
5389 Alignment = 8;
5390 break;
5391 case X86::FsFLD0SS:
5392 Alignment = 4;
5393 break;
5394 default:
Craig Topper062a2ba2014-04-25 05:30:21 +00005395 return nullptr;
Dan Gohman69499b132009-09-21 18:30:38 +00005396 }
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005397 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5398 unsigned NewOpc = 0;
5399 switch (MI->getOpcode()) {
Craig Topper062a2ba2014-04-25 05:30:21 +00005400 default: return nullptr;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005401 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
Dan Gohmanf8bf6632010-05-18 21:54:15 +00005402 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
5403 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
5404 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005405 }
5406 // Change to CMPXXri r, 0 first.
Chris Lattner59687512008-01-11 18:10:50 +00005407 MI->setDesc(get(NewOpc));
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005408 MI->getOperand(1).ChangeToImmediate(0);
5409 } else if (Ops.size() != 1)
Craig Topper062a2ba2014-04-25 05:30:21 +00005410 return nullptr;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005411
Jakob Stoklund Olesen9c473e42010-08-11 23:08:22 +00005412 // Make sure the subregisters match.
5413 // Otherwise we risk changing the size of the load.
5414 if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
Craig Topper062a2ba2014-04-25 05:30:21 +00005415 return nullptr;
Jakob Stoklund Olesen9c473e42010-08-11 23:08:22 +00005416
Chris Lattnerec536272010-07-08 22:41:28 +00005417 SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
Dan Gohman69499b132009-09-21 18:30:38 +00005418 switch (LoadMI->getOpcode()) {
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00005419 case X86::V_SET0:
Dan Gohman69499b132009-09-21 18:30:38 +00005420 case X86::V_SETALLONES:
Craig Toppera3a65832011-11-19 22:34:59 +00005421 case X86::AVX2_SETALLONES:
Craig Topperbd509ee2012-08-28 07:05:28 +00005422 case X86::AVX_SET0:
Dan Gohman69499b132009-09-21 18:30:38 +00005423 case X86::FsFLD0SD:
Jakob Stoklund Olesenbde32d32011-11-29 22:27:25 +00005424 case X86::FsFLD0SS: {
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00005425 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
Dan Gohmancc78cdf2008-12-03 05:21:24 +00005426 // Create a constant-pool entry and operands to load from it.
5427
Dan Gohman772952f2010-03-09 03:01:40 +00005428 // Medium and large mode can't fold loads this way.
Eric Christopher6c786a12014-06-10 22:34:31 +00005429 if (MF.getTarget().getCodeModel() != CodeModel::Small &&
5430 MF.getTarget().getCodeModel() != CodeModel::Kernel)
Craig Topper062a2ba2014-04-25 05:30:21 +00005431 return nullptr;
Dan Gohman772952f2010-03-09 03:01:40 +00005432
Dan Gohmancc78cdf2008-12-03 05:21:24 +00005433 // x86-32 PIC requires a PIC base register for constant pools.
5434 unsigned PICBase = 0;
Eric Christopher6c786a12014-06-10 22:34:31 +00005435 if (MF.getTarget().getRelocationModel() == Reloc::PIC_) {
5436 if (Subtarget.is64Bit())
Evan Chengfdd0eb42009-07-16 18:44:05 +00005437 PICBase = X86::RIP;
Jakob Stoklund Olesenc7895d32009-07-16 21:24:13 +00005438 else
Dan Gohmand7b5ce32010-07-10 09:00:22 +00005439 // FIXME: PICBase = getGlobalBaseReg(&MF);
Evan Chengfdd0eb42009-07-16 18:44:05 +00005440 // This doesn't work for several reasons.
5441 // 1. GlobalBaseReg may have been spilled.
5442 // 2. It may not be live at MI.
Craig Topper062a2ba2014-04-25 05:30:21 +00005443 return nullptr;
Jakob Stoklund Olesenc7895d32009-07-16 21:24:13 +00005444 }
Dan Gohmancc78cdf2008-12-03 05:21:24 +00005445
Dan Gohman69499b132009-09-21 18:30:38 +00005446 // Create a constant-pool entry.
Dan Gohmancc78cdf2008-12-03 05:21:24 +00005447 MachineConstantPool &MCP = *MF.getConstantPool();
Chris Lattner229907c2011-07-18 04:54:35 +00005448 Type *Ty;
Bruno Cardoso Lopes7f704b32010-08-12 20:20:53 +00005449 unsigned Opc = LoadMI->getOpcode();
Jakob Stoklund Olesenbde32d32011-11-29 22:27:25 +00005450 if (Opc == X86::FsFLD0SS)
Dan Gohman69499b132009-09-21 18:30:38 +00005451 Ty = Type::getFloatTy(MF.getFunction()->getContext());
Jakob Stoklund Olesenbde32d32011-11-29 22:27:25 +00005452 else if (Opc == X86::FsFLD0SD)
Dan Gohman69499b132009-09-21 18:30:38 +00005453 Ty = Type::getDoubleTy(MF.getFunction()->getContext());
Craig Topperbd509ee2012-08-28 07:05:28 +00005454 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0)
Craig Toppera4c5a472012-01-13 06:12:41 +00005455 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
Dan Gohman69499b132009-09-21 18:30:38 +00005456 else
5457 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
Bruno Cardoso Lopes9212bf22011-07-25 23:05:32 +00005458
Craig Topper72f51c32012-08-28 07:30:47 +00005459 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES);
Bruno Cardoso Lopes9212bf22011-07-25 23:05:32 +00005460 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
5461 Constant::getNullValue(Ty);
Dan Gohman69499b132009-09-21 18:30:38 +00005462 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
Dan Gohmancc78cdf2008-12-03 05:21:24 +00005463
5464 // Create operands to load from the constant pool entry.
5465 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
5466 MOs.push_back(MachineOperand::CreateImm(1));
5467 MOs.push_back(MachineOperand::CreateReg(0, false));
5468 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
Rafael Espindola3b2df102009-04-08 21:14:34 +00005469 MOs.push_back(MachineOperand::CreateReg(0, false));
Dan Gohman69499b132009-09-21 18:30:38 +00005470 break;
5471 }
5472 default: {
Ahmed Bougachaed3c4d12015-06-22 20:51:51 +00005473 if (isNonFoldablePartialRegisterLoad(*LoadMI, *MI, MF))
Craig Topper062a2ba2014-04-25 05:30:21 +00005474 return nullptr;
Manman Ren5b462822012-11-27 18:09:26 +00005475
Dan Gohmancc78cdf2008-12-03 05:21:24 +00005476 // Folding a normal load. Just copy the load's address operands.
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00005477 MOs.append(LoadMI->operands_begin() + NumOps - X86::AddrNumOperands,
5478 LoadMI->operands_begin() + NumOps);
Dan Gohman69499b132009-09-21 18:30:38 +00005479 break;
5480 }
Dan Gohmancc78cdf2008-12-03 05:21:24 +00005481 }
Keno Fischere70b31f2015-06-08 20:09:58 +00005482 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00005483 /*Size=*/0, Alignment, /*AllowCommute=*/true);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005484}
5485
Dan Gohman33332bc2008-10-16 01:49:15 +00005486bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
Benjamin Kramerf1362f62015-02-28 12:04:00 +00005487 ArrayRef<unsigned> Ops) const {
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00005488 // Check switch flag
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005489 if (NoFusing) return 0;
5490
5491 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5492 switch (MI->getOpcode()) {
5493 default: return false;
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00005494 case X86::TEST8rr:
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005495 case X86::TEST16rr:
5496 case X86::TEST32rr:
5497 case X86::TEST64rr:
5498 return true;
Jakob Stoklund Olesen2348cdd2011-04-30 23:00:05 +00005499 case X86::ADD32ri:
5500 // FIXME: AsmPrinter doesn't know how to handle
5501 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
5502 if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
5503 return false;
5504 break;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005505 }
5506 }
5507
5508 if (Ops.size() != 1)
5509 return false;
5510
5511 unsigned OpNum = Ops[0];
5512 unsigned Opc = MI->getOpcode();
Chris Lattner03ad8852008-01-07 07:27:27 +00005513 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005514 bool isTwoAddr = NumOps > 1 &&
Evan Cheng6cc775f2011-06-28 19:10:37 +00005515 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005516
5517 // Folding a memory location into the two-address part of a two-address
5518 // instruction is different than folding it other places. It requires
5519 // replacing the *two* registers with the memory location.
Craig Topper062a2ba2014-04-25 05:30:21 +00005520 const DenseMap<unsigned,
5521 std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00005522 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005523 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
Sanjay Patela7b893d2015-02-09 16:30:58 +00005524 } else if (OpNum == 0) {
Tim Northover64ec0ff2013-05-30 13:19:42 +00005525 if (Opc == X86::MOV32r0)
5526 return true;
5527
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005528 OpcodeTablePtr = &RegOp2MemOpTable0;
5529 } else if (OpNum == 1) {
5530 OpcodeTablePtr = &RegOp2MemOpTable1;
5531 } else if (OpNum == 2) {
5532 OpcodeTablePtr = &RegOp2MemOpTable2;
Craig Topper7573c8f2012-08-31 22:12:16 +00005533 } else if (OpNum == 3) {
5534 OpcodeTablePtr = &RegOp2MemOpTable3;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005535 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00005536
Chris Lattner626656a2010-10-08 03:54:52 +00005537 if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
5538 return true;
Jakob Stoklund Olesen9de596e2012-11-28 02:35:17 +00005539 return TargetInstrInfo::canFoldMemoryOperand(MI, Ops);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005540}
5541
5542bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
5543 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
Bill Wendling27b508d2009-02-11 21:51:19 +00005544 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Chris Lattner1c090c02010-10-07 23:08:41 +00005545 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
5546 MemOp2RegOpTable.find(MI->getOpcode());
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005547 if (I == MemOp2RegOpTable.end())
5548 return false;
5549 unsigned Opc = I->second.first;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00005550 unsigned Index = I->second.second & TB_INDEX_MASK;
5551 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
5552 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005553 if (UnfoldLoad && !FoldedLoad)
5554 return false;
5555 UnfoldLoad &= FoldedLoad;
5556 if (UnfoldStore && !FoldedStore)
5557 return false;
5558 UnfoldStore &= FoldedStore;
5559
Evan Cheng6cc775f2011-06-28 19:10:37 +00005560 const MCInstrDesc &MCID = get(Opc);
Jakob Stoklund Olesen3c52f022012-05-07 22:10:26 +00005561 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
Evan Cheng0ce84482010-07-02 20:36:18 +00005562 if (!MI->hasOneMemOperand() &&
5563 RC == &X86::VR128RegClass &&
Eric Christopher6c786a12014-06-10 22:34:31 +00005564 !Subtarget.isUnalignedMemAccessFast())
Evan Cheng0ce84482010-07-02 20:36:18 +00005565 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
5566 // conservatively assume the address is unaligned. That's bad for
5567 // performance.
5568 return false;
Chris Lattnerec536272010-07-08 22:41:28 +00005569 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005570 SmallVector<MachineOperand,2> BeforeOps;
5571 SmallVector<MachineOperand,2> AfterOps;
5572 SmallVector<MachineOperand,4> ImpOps;
5573 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
5574 MachineOperand &Op = MI->getOperand(i);
Chris Lattnerec536272010-07-08 22:41:28 +00005575 if (i >= Index && i < Index + X86::AddrNumOperands)
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005576 AddrOps.push_back(Op);
Dan Gohman0d1e9a82008-10-03 15:45:36 +00005577 else if (Op.isReg() && Op.isImplicit())
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005578 ImpOps.push_back(Op);
5579 else if (i < Index)
5580 BeforeOps.push_back(Op);
5581 else if (i > Index)
5582 AfterOps.push_back(Op);
5583 }
5584
5585 // Emit the load instruction.
5586 if (UnfoldLoad) {
Dan Gohmandd76bb22009-10-09 18:10:05 +00005587 std::pair<MachineInstr::mmo_iterator,
5588 MachineInstr::mmo_iterator> MMOs =
5589 MF.extractLoadMemRefs(MI->memoperands_begin(),
5590 MI->memoperands_end());
5591 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005592 if (UnfoldStore) {
5593 // Address operands cannot be marked isKill.
Chris Lattnerec536272010-07-08 22:41:28 +00005594 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005595 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohman0d1e9a82008-10-03 15:45:36 +00005596 if (MO.isReg())
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005597 MO.setIsKill(false);
5598 }
5599 }
5600 }
5601
5602 // Emit the data processing instruction.
Evan Cheng6cc775f2011-06-28 19:10:37 +00005603 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00005604 MachineInstrBuilder MIB(MF, DataMI);
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00005605
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005606 if (FoldedStore)
Bill Wendlingf7b83c72009-05-13 21:33:08 +00005607 MIB.addReg(Reg, RegState::Define);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005608 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
Dan Gohman2af1f852009-02-18 05:45:50 +00005609 MIB.addOperand(BeforeOps[i]);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005610 if (FoldedLoad)
5611 MIB.addReg(Reg);
5612 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
Dan Gohman2af1f852009-02-18 05:45:50 +00005613 MIB.addOperand(AfterOps[i]);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005614 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
5615 MachineOperand &MO = ImpOps[i];
Bill Wendlingf7b83c72009-05-13 21:33:08 +00005616 MIB.addReg(MO.getReg(),
5617 getDefRegState(MO.isDef()) |
5618 RegState::Implicit |
5619 getKillRegState(MO.isKill()) |
Evan Cheng0dc101b2009-06-30 08:49:04 +00005620 getDeadRegState(MO.isDead()) |
5621 getUndefRegState(MO.isUndef()));
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005622 }
5623 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005624 switch (DataMI->getOpcode()) {
5625 default: break;
5626 case X86::CMP64ri32:
Dan Gohmanf8bf6632010-05-18 21:54:15 +00005627 case X86::CMP64ri8:
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005628 case X86::CMP32ri:
Dan Gohmanf8bf6632010-05-18 21:54:15 +00005629 case X86::CMP32ri8:
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005630 case X86::CMP16ri:
Dan Gohmanf8bf6632010-05-18 21:54:15 +00005631 case X86::CMP16ri8:
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005632 case X86::CMP8ri: {
5633 MachineOperand &MO0 = DataMI->getOperand(0);
5634 MachineOperand &MO1 = DataMI->getOperand(1);
5635 if (MO1.getImm() == 0) {
Craig Topper4bc3e5a2012-08-21 08:16:16 +00005636 unsigned NewOpc;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005637 switch (DataMI->getOpcode()) {
Craig Topper4bc3e5a2012-08-21 08:16:16 +00005638 default: llvm_unreachable("Unreachable!");
Dan Gohmanf8bf6632010-05-18 21:54:15 +00005639 case X86::CMP64ri8:
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005640 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
Dan Gohmanf8bf6632010-05-18 21:54:15 +00005641 case X86::CMP32ri8:
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005642 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
Dan Gohmanf8bf6632010-05-18 21:54:15 +00005643 case X86::CMP16ri8:
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005644 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
5645 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
5646 }
Chris Lattner59687512008-01-11 18:10:50 +00005647 DataMI->setDesc(get(NewOpc));
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005648 MO1.ChangeToRegister(MO0.getReg(), false);
5649 }
5650 }
5651 }
5652 NewMIs.push_back(DataMI);
5653
5654 // Emit the store instruction.
5655 if (UnfoldStore) {
Jakob Stoklund Olesen3c52f022012-05-07 22:10:26 +00005656 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
Dan Gohmandd76bb22009-10-09 18:10:05 +00005657 std::pair<MachineInstr::mmo_iterator,
5658 MachineInstr::mmo_iterator> MMOs =
5659 MF.extractStoreMemRefs(MI->memoperands_begin(),
5660 MI->memoperands_end());
5661 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005662 }
5663
5664 return true;
5665}
5666
5667bool
5668X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
Bill Wendling27b508d2009-02-11 21:51:19 +00005669 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohman17059682008-07-17 19:10:17 +00005670 if (!N->isMachineOpcode())
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005671 return false;
5672
Chris Lattner1c090c02010-10-07 23:08:41 +00005673 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
5674 MemOp2RegOpTable.find(N->getMachineOpcode());
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005675 if (I == MemOp2RegOpTable.end())
5676 return false;
5677 unsigned Opc = I->second.first;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00005678 unsigned Index = I->second.second & TB_INDEX_MASK;
5679 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
5680 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
Evan Cheng6cc775f2011-06-28 19:10:37 +00005681 const MCInstrDesc &MCID = get(Opc);
Jakob Stoklund Olesen3c52f022012-05-07 22:10:26 +00005682 MachineFunction &MF = DAG.getMachineFunction();
5683 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
Evan Cheng6cc775f2011-06-28 19:10:37 +00005684 unsigned NumDefs = MCID.NumDefs;
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00005685 std::vector<SDValue> AddrOps;
5686 std::vector<SDValue> BeforeOps;
5687 std::vector<SDValue> AfterOps;
Andrew Trickef9de2a2013-05-25 02:42:55 +00005688 SDLoc dl(N);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005689 unsigned NumOps = N->getNumOperands();
Dan Gohman48b185d2009-09-25 20:36:54 +00005690 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00005691 SDValue Op = N->getOperand(i);
Chris Lattnerec536272010-07-08 22:41:28 +00005692 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005693 AddrOps.push_back(Op);
Dan Gohmancc329b52009-03-04 19:23:38 +00005694 else if (i < Index-NumDefs)
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005695 BeforeOps.push_back(Op);
Dan Gohmancc329b52009-03-04 19:23:38 +00005696 else if (i > Index-NumDefs)
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005697 AfterOps.push_back(Op);
5698 }
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00005699 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005700 AddrOps.push_back(Chain);
5701
5702 // Emit the load instruction.
Craig Topper062a2ba2014-04-25 05:30:21 +00005703 SDNode *Load = nullptr;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005704 if (FoldedLoad) {
Owen Anderson53aa7a92009-08-10 22:56:29 +00005705 EVT VT = *RC->vt_begin();
Evan Chengf25ef4f2009-11-16 21:56:03 +00005706 std::pair<MachineInstr::mmo_iterator,
5707 MachineInstr::mmo_iterator> MMOs =
5708 MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
5709 cast<MachineSDNode>(N)->memoperands_end());
Evan Cheng0ce84482010-07-02 20:36:18 +00005710 if (!(*MMOs.first) &&
5711 RC == &X86::VR128RegClass &&
Eric Christopher6c786a12014-06-10 22:34:31 +00005712 !Subtarget.isUnalignedMemAccessFast())
Evan Cheng0ce84482010-07-02 20:36:18 +00005713 // Do not introduce a slow unaligned load.
5714 return false;
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00005715 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
5716 bool isAligned = (*MMOs.first) &&
5717 (*MMOs.first)->getAlignment() >= Alignment;
Eric Christopher6c786a12014-06-10 22:34:31 +00005718 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
Michael Liaob53d8962013-04-19 22:22:57 +00005719 VT, MVT::Other, AddrOps);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005720 NewNodes.push_back(Load);
Dan Gohmandd76bb22009-10-09 18:10:05 +00005721
5722 // Preserve memory reference information.
Dan Gohmandd76bb22009-10-09 18:10:05 +00005723 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005724 }
5725
5726 // Emit the data processing instruction.
Owen Anderson53aa7a92009-08-10 22:56:29 +00005727 std::vector<EVT> VTs;
Craig Topper062a2ba2014-04-25 05:30:21 +00005728 const TargetRegisterClass *DstRC = nullptr;
Evan Cheng6cc775f2011-06-28 19:10:37 +00005729 if (MCID.getNumDefs() > 0) {
Jakob Stoklund Olesen3c52f022012-05-07 22:10:26 +00005730 DstRC = getRegClass(MCID, 0, &RI, MF);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005731 VTs.push_back(*DstRC->vt_begin());
5732 }
5733 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Owen Anderson53aa7a92009-08-10 22:56:29 +00005734 EVT VT = N->getValueType(i);
Evan Cheng6cc775f2011-06-28 19:10:37 +00005735 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005736 VTs.push_back(VT);
5737 }
5738 if (Load)
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00005739 BeforeOps.push_back(SDValue(Load, 0));
Benjamin Kramer4f6ac162015-02-28 10:11:12 +00005740 BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
Michael Liaob53d8962013-04-19 22:22:57 +00005741 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005742 NewNodes.push_back(NewNode);
5743
5744 // Emit the store instruction.
5745 if (FoldedStore) {
5746 AddrOps.pop_back();
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00005747 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005748 AddrOps.push_back(Chain);
Evan Chengf25ef4f2009-11-16 21:56:03 +00005749 std::pair<MachineInstr::mmo_iterator,
5750 MachineInstr::mmo_iterator> MMOs =
5751 MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
5752 cast<MachineSDNode>(N)->memoperands_end());
Evan Cheng0ce84482010-07-02 20:36:18 +00005753 if (!(*MMOs.first) &&
5754 RC == &X86::VR128RegClass &&
Eric Christopher6c786a12014-06-10 22:34:31 +00005755 !Subtarget.isUnalignedMemAccessFast())
Evan Cheng0ce84482010-07-02 20:36:18 +00005756 // Do not introduce a slow unaligned store.
5757 return false;
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00005758 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
5759 bool isAligned = (*MMOs.first) &&
5760 (*MMOs.first)->getAlignment() >= Alignment;
Eric Christopher6c786a12014-06-10 22:34:31 +00005761 SDNode *Store =
5762 DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
5763 dl, MVT::Other, AddrOps);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005764 NewNodes.push_back(Store);
Dan Gohmandd76bb22009-10-09 18:10:05 +00005765
5766 // Preserve memory reference information.
Craig Topper9e71b822015-02-10 06:29:28 +00005767 cast<MachineSDNode>(Store)->setMemRefs(MMOs.first, MMOs.second);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005768 }
5769
5770 return true;
5771}
5772
5773unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
Dan Gohman49fa51d2009-10-30 22:18:41 +00005774 bool UnfoldLoad, bool UnfoldStore,
5775 unsigned *LoadRegIndex) const {
Chris Lattner1c090c02010-10-07 23:08:41 +00005776 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
5777 MemOp2RegOpTable.find(Opc);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005778 if (I == MemOp2RegOpTable.end())
5779 return 0;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00005780 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
5781 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005782 if (UnfoldLoad && !FoldedLoad)
5783 return 0;
5784 if (UnfoldStore && !FoldedStore)
5785 return 0;
Dan Gohman49fa51d2009-10-30 22:18:41 +00005786 if (LoadRegIndex)
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00005787 *LoadRegIndex = I->second.second & TB_INDEX_MASK;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005788 return I->second.first;
5789}
5790
Evan Cheng4f026f32010-01-22 03:34:51 +00005791bool
5792X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
5793 int64_t &Offset1, int64_t &Offset2) const {
5794 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
5795 return false;
5796 unsigned Opc1 = Load1->getMachineOpcode();
5797 unsigned Opc2 = Load2->getMachineOpcode();
5798 switch (Opc1) {
5799 default: return false;
5800 case X86::MOV8rm:
5801 case X86::MOV16rm:
5802 case X86::MOV32rm:
5803 case X86::MOV64rm:
5804 case X86::LD_Fp32m:
5805 case X86::LD_Fp64m:
5806 case X86::LD_Fp80m:
5807 case X86::MOVSSrm:
5808 case X86::MOVSDrm:
5809 case X86::MMX_MOVD64rm:
5810 case X86::MMX_MOVQ64rm:
5811 case X86::FsMOVAPSrm:
5812 case X86::FsMOVAPDrm:
5813 case X86::MOVAPSrm:
5814 case X86::MOVUPSrm:
Evan Cheng4f026f32010-01-22 03:34:51 +00005815 case X86::MOVAPDrm:
5816 case X86::MOVDQArm:
5817 case X86::MOVDQUrm:
Bruno Cardoso Lopesc69d68a2011-09-15 22:15:52 +00005818 // AVX load instructions
5819 case X86::VMOVSSrm:
5820 case X86::VMOVSDrm:
5821 case X86::FsVMOVAPSrm:
5822 case X86::FsVMOVAPDrm:
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00005823 case X86::VMOVAPSrm:
5824 case X86::VMOVUPSrm:
5825 case X86::VMOVAPDrm:
5826 case X86::VMOVDQArm:
5827 case X86::VMOVDQUrm:
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00005828 case X86::VMOVAPSYrm:
5829 case X86::VMOVUPSYrm:
5830 case X86::VMOVAPDYrm:
5831 case X86::VMOVDQAYrm:
5832 case X86::VMOVDQUYrm:
Evan Cheng4f026f32010-01-22 03:34:51 +00005833 break;
5834 }
5835 switch (Opc2) {
5836 default: return false;
5837 case X86::MOV8rm:
5838 case X86::MOV16rm:
5839 case X86::MOV32rm:
5840 case X86::MOV64rm:
5841 case X86::LD_Fp32m:
5842 case X86::LD_Fp64m:
5843 case X86::LD_Fp80m:
5844 case X86::MOVSSrm:
5845 case X86::MOVSDrm:
5846 case X86::MMX_MOVD64rm:
5847 case X86::MMX_MOVQ64rm:
5848 case X86::FsMOVAPSrm:
5849 case X86::FsMOVAPDrm:
5850 case X86::MOVAPSrm:
5851 case X86::MOVUPSrm:
Evan Cheng4f026f32010-01-22 03:34:51 +00005852 case X86::MOVAPDrm:
5853 case X86::MOVDQArm:
5854 case X86::MOVDQUrm:
Bruno Cardoso Lopesc69d68a2011-09-15 22:15:52 +00005855 // AVX load instructions
5856 case X86::VMOVSSrm:
5857 case X86::VMOVSDrm:
5858 case X86::FsVMOVAPSrm:
5859 case X86::FsVMOVAPDrm:
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00005860 case X86::VMOVAPSrm:
5861 case X86::VMOVUPSrm:
5862 case X86::VMOVAPDrm:
5863 case X86::VMOVDQArm:
5864 case X86::VMOVDQUrm:
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00005865 case X86::VMOVAPSYrm:
5866 case X86::VMOVUPSYrm:
5867 case X86::VMOVAPDYrm:
5868 case X86::VMOVDQAYrm:
5869 case X86::VMOVDQUYrm:
Evan Cheng4f026f32010-01-22 03:34:51 +00005870 break;
5871 }
5872
5873 // Check if chain operands and base addresses match.
5874 if (Load1->getOperand(0) != Load2->getOperand(0) ||
5875 Load1->getOperand(5) != Load2->getOperand(5))
5876 return false;
5877 // Segment operands should match as well.
5878 if (Load1->getOperand(4) != Load2->getOperand(4))
5879 return false;
5880 // Scale should be 1, Index should be Reg0.
5881 if (Load1->getOperand(1) == Load2->getOperand(1) &&
5882 Load1->getOperand(2) == Load2->getOperand(2)) {
5883 if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
5884 return false;
Evan Cheng4f026f32010-01-22 03:34:51 +00005885
5886 // Now let's examine the displacements.
5887 if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
5888 isa<ConstantSDNode>(Load2->getOperand(3))) {
5889 Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
5890 Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
5891 return true;
5892 }
5893 }
5894 return false;
5895}
5896
5897bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
5898 int64_t Offset1, int64_t Offset2,
5899 unsigned NumLoads) const {
5900 assert(Offset2 > Offset1);
5901 if ((Offset2 - Offset1) / 8 > 64)
5902 return false;
5903
5904 unsigned Opc1 = Load1->getMachineOpcode();
5905 unsigned Opc2 = Load2->getMachineOpcode();
5906 if (Opc1 != Opc2)
5907 return false; // FIXME: overly conservative?
5908
5909 switch (Opc1) {
5910 default: break;
5911 case X86::LD_Fp32m:
5912 case X86::LD_Fp64m:
5913 case X86::LD_Fp80m:
5914 case X86::MMX_MOVD64rm:
5915 case X86::MMX_MOVQ64rm:
5916 return false;
5917 }
5918
5919 EVT VT = Load1->getValueType(0);
5920 switch (VT.getSimpleVT().SimpleTy) {
Bill Wendling8ce69cd2010-06-22 22:16:17 +00005921 default:
Evan Cheng4f026f32010-01-22 03:34:51 +00005922 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
5923 // have 16 of them to play with.
Eric Christopher6c786a12014-06-10 22:34:31 +00005924 if (Subtarget.is64Bit()) {
Evan Cheng4f026f32010-01-22 03:34:51 +00005925 if (NumLoads >= 3)
5926 return false;
Bill Wendling8ce69cd2010-06-22 22:16:17 +00005927 } else if (NumLoads) {
Evan Cheng4f026f32010-01-22 03:34:51 +00005928 return false;
Bill Wendling8ce69cd2010-06-22 22:16:17 +00005929 }
Evan Cheng4f026f32010-01-22 03:34:51 +00005930 break;
Evan Cheng4f026f32010-01-22 03:34:51 +00005931 case MVT::i8:
5932 case MVT::i16:
5933 case MVT::i32:
5934 case MVT::i64:
Evan Cheng16cf9342010-01-22 23:49:11 +00005935 case MVT::f32:
5936 case MVT::f64:
Evan Cheng4f026f32010-01-22 03:34:51 +00005937 if (NumLoads)
5938 return false;
Bill Wendling8ce69cd2010-06-22 22:16:17 +00005939 break;
Evan Cheng4f026f32010-01-22 03:34:51 +00005940 }
5941
5942 return true;
5943}
5944
Andrew Trick47740de2013-06-23 09:00:28 +00005945bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First,
5946 MachineInstr *Second) const {
5947 // Check if this processor supports macro-fusion. Since this is a minor
5948 // heuristic, we haven't specifically reserved a feature. hasAVX is a decent
5949 // proxy for SandyBridge+.
Eric Christopher6c786a12014-06-10 22:34:31 +00005950 if (!Subtarget.hasAVX())
Andrew Trick47740de2013-06-23 09:00:28 +00005951 return false;
5952
5953 enum {
5954 FuseTest,
5955 FuseCmp,
5956 FuseInc
5957 } FuseKind;
5958
5959 switch(Second->getOpcode()) {
5960 default:
5961 return false;
Craig Topper49758aa2015-01-06 04:23:53 +00005962 case X86::JE_1:
5963 case X86::JNE_1:
5964 case X86::JL_1:
5965 case X86::JLE_1:
5966 case X86::JG_1:
5967 case X86::JGE_1:
Andrew Trick47740de2013-06-23 09:00:28 +00005968 FuseKind = FuseInc;
5969 break;
Craig Topper49758aa2015-01-06 04:23:53 +00005970 case X86::JB_1:
5971 case X86::JBE_1:
5972 case X86::JA_1:
5973 case X86::JAE_1:
Andrew Trick47740de2013-06-23 09:00:28 +00005974 FuseKind = FuseCmp;
5975 break;
Craig Topper49758aa2015-01-06 04:23:53 +00005976 case X86::JS_1:
5977 case X86::JNS_1:
5978 case X86::JP_1:
5979 case X86::JNP_1:
5980 case X86::JO_1:
5981 case X86::JNO_1:
Andrew Trick47740de2013-06-23 09:00:28 +00005982 FuseKind = FuseTest;
5983 break;
5984 }
5985 switch (First->getOpcode()) {
5986 default:
5987 return false;
5988 case X86::TEST8rr:
5989 case X86::TEST16rr:
5990 case X86::TEST32rr:
5991 case X86::TEST64rr:
5992 case X86::TEST8ri:
5993 case X86::TEST16ri:
5994 case X86::TEST32ri:
5995 case X86::TEST32i32:
5996 case X86::TEST64i32:
5997 case X86::TEST64ri32:
5998 case X86::TEST8rm:
5999 case X86::TEST16rm:
6000 case X86::TEST32rm:
6001 case X86::TEST64rm:
Akira Hatanaka7cc27642014-07-10 18:00:53 +00006002 case X86::TEST8ri_NOREX:
Andrew Trick47740de2013-06-23 09:00:28 +00006003 case X86::AND16i16:
6004 case X86::AND16ri:
6005 case X86::AND16ri8:
6006 case X86::AND16rm:
6007 case X86::AND16rr:
6008 case X86::AND32i32:
6009 case X86::AND32ri:
6010 case X86::AND32ri8:
6011 case X86::AND32rm:
6012 case X86::AND32rr:
6013 case X86::AND64i32:
6014 case X86::AND64ri32:
6015 case X86::AND64ri8:
6016 case X86::AND64rm:
6017 case X86::AND64rr:
6018 case X86::AND8i8:
6019 case X86::AND8ri:
6020 case X86::AND8rm:
6021 case X86::AND8rr:
6022 return true;
6023 case X86::CMP16i16:
6024 case X86::CMP16ri:
6025 case X86::CMP16ri8:
6026 case X86::CMP16rm:
6027 case X86::CMP16rr:
6028 case X86::CMP32i32:
6029 case X86::CMP32ri:
6030 case X86::CMP32ri8:
6031 case X86::CMP32rm:
6032 case X86::CMP32rr:
6033 case X86::CMP64i32:
6034 case X86::CMP64ri32:
6035 case X86::CMP64ri8:
6036 case X86::CMP64rm:
6037 case X86::CMP64rr:
6038 case X86::CMP8i8:
6039 case X86::CMP8ri:
6040 case X86::CMP8rm:
6041 case X86::CMP8rr:
6042 case X86::ADD16i16:
6043 case X86::ADD16ri:
6044 case X86::ADD16ri8:
6045 case X86::ADD16ri8_DB:
6046 case X86::ADD16ri_DB:
6047 case X86::ADD16rm:
6048 case X86::ADD16rr:
6049 case X86::ADD16rr_DB:
6050 case X86::ADD32i32:
6051 case X86::ADD32ri:
6052 case X86::ADD32ri8:
6053 case X86::ADD32ri8_DB:
6054 case X86::ADD32ri_DB:
6055 case X86::ADD32rm:
6056 case X86::ADD32rr:
6057 case X86::ADD32rr_DB:
6058 case X86::ADD64i32:
6059 case X86::ADD64ri32:
6060 case X86::ADD64ri32_DB:
6061 case X86::ADD64ri8:
6062 case X86::ADD64ri8_DB:
6063 case X86::ADD64rm:
6064 case X86::ADD64rr:
6065 case X86::ADD64rr_DB:
6066 case X86::ADD8i8:
6067 case X86::ADD8mi:
6068 case X86::ADD8mr:
6069 case X86::ADD8ri:
6070 case X86::ADD8rm:
6071 case X86::ADD8rr:
6072 case X86::SUB16i16:
6073 case X86::SUB16ri:
6074 case X86::SUB16ri8:
6075 case X86::SUB16rm:
6076 case X86::SUB16rr:
6077 case X86::SUB32i32:
6078 case X86::SUB32ri:
6079 case X86::SUB32ri8:
6080 case X86::SUB32rm:
6081 case X86::SUB32rr:
6082 case X86::SUB64i32:
6083 case X86::SUB64ri32:
6084 case X86::SUB64ri8:
6085 case X86::SUB64rm:
6086 case X86::SUB64rr:
6087 case X86::SUB8i8:
6088 case X86::SUB8ri:
6089 case X86::SUB8rm:
6090 case X86::SUB8rr:
6091 return FuseKind == FuseCmp || FuseKind == FuseInc;
6092 case X86::INC16r:
6093 case X86::INC32r:
Andrew Trick47740de2013-06-23 09:00:28 +00006094 case X86::INC64r:
6095 case X86::INC8r:
6096 case X86::DEC16r:
6097 case X86::DEC32r:
Andrew Trick47740de2013-06-23 09:00:28 +00006098 case X86::DEC64r:
6099 case X86::DEC8r:
6100 return FuseKind == FuseInc;
6101 }
6102}
Evan Cheng4f026f32010-01-22 03:34:51 +00006103
Chris Lattnerc0fb5672006-10-20 17:42:20 +00006104bool X86InstrInfo::
Owen Anderson4f6bf042008-08-14 22:49:33 +00006105ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Chris Lattner3a897f32006-10-21 05:52:40 +00006106 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Chengf93bc7f2008-08-29 23:21:31 +00006107 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman97d95d62008-10-21 03:29:32 +00006108 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
6109 return true;
Evan Chengf93bc7f2008-08-29 23:21:31 +00006110 Cond[0].setImm(GetOppositeBranchCondition(CC));
Chris Lattner3a897f32006-10-21 05:52:40 +00006111 return false;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00006112}
6113
Evan Chengf7137222008-10-27 07:14:50 +00006114bool X86InstrInfo::
Evan Chengb5f0ec32009-02-06 17:17:30 +00006115isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
6116 // FIXME: Return false for x87 stack register classes for now. We can't
Evan Chengf7137222008-10-27 07:14:50 +00006117 // allow any loads of these registers before FpGet_ST0_80.
Evan Chengb5f0ec32009-02-06 17:17:30 +00006118 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
6119 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
Evan Chengf7137222008-10-27 07:14:50 +00006120}
6121
Sanjay Patel203ee502015-02-17 21:55:20 +00006122/// Return a virtual register initialized with the
Dan Gohman6ebe7342008-09-30 00:58:23 +00006123/// the global base register value. Output instructions required to
6124/// initialize the register in the function entry block, if necessary.
Dan Gohman24300732008-09-23 18:22:58 +00006125///
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006126/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
6127///
Dan Gohman6ebe7342008-09-30 00:58:23 +00006128unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
Eric Christopher6c786a12014-06-10 22:34:31 +00006129 assert(!Subtarget.is64Bit() &&
Dan Gohman6ebe7342008-09-30 00:58:23 +00006130 "X86-64 PIC uses RIP relative addressing");
6131
6132 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
6133 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
6134 if (GlobalBaseReg != 0)
6135 return GlobalBaseReg;
6136
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006137 // Create the register. The code to initialize it is inserted
6138 // later, by the CGBR pass (below).
Dan Gohman24300732008-09-23 18:22:58 +00006139 MachineRegisterInfo &RegInfo = MF->getRegInfo();
Jakob Stoklund Olesen38dcd592012-05-20 18:43:00 +00006140 GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
Dan Gohman6ebe7342008-09-30 00:58:23 +00006141 X86FI->setGlobalBaseReg(GlobalBaseReg);
6142 return GlobalBaseReg;
Dan Gohman24300732008-09-23 18:22:58 +00006143}
Jakob Stoklund Olesen49e121d2010-03-25 17:25:00 +00006144
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00006145// These are the replaceable SSE instructions. Some of these have Int variants
6146// that we don't include here. We don't want to replace instructions selected
6147// by intrinsics.
Craig Topper2dac9622012-03-09 07:45:21 +00006148static const uint16_t ReplaceableInstrs[][3] = {
Bruno Cardoso Lopes1401e042010-08-12 02:08:52 +00006149 //PackedSingle PackedDouble PackedInt
Jakob Stoklund Olesendbff4e82010-03-30 22:46:53 +00006150 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
6151 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
6152 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
6153 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
6154 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
Sanjay Patelc03d93b2015-04-15 15:47:51 +00006155 { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr },
Jakob Stoklund Olesendbff4e82010-03-30 22:46:53 +00006156 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
6157 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
6158 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
6159 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
6160 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
6161 { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
6162 { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
6163 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
6164 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
Bruno Cardoso Lopes7f704b32010-08-12 20:20:53 +00006165 // AVX 128-bit support
6166 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
6167 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
6168 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
6169 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
6170 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
Sanjay Patel2161c492015-04-17 17:02:37 +00006171 { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr },
Bruno Cardoso Lopes7f704b32010-08-12 20:20:53 +00006172 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
6173 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
6174 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
6175 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
6176 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
6177 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
6178 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
Bruno Cardoso Lopes7f704b32010-08-12 20:20:53 +00006179 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
6180 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00006181 // AVX 256-bit support
6182 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
6183 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
6184 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
6185 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
6186 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
Craig Topper05baa852011-11-15 05:55:35 +00006187 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }
6188};
6189
Craig Topper2dac9622012-03-09 07:45:21 +00006190static const uint16_t ReplaceableInstrsAVX2[][3] = {
Craig Topper05baa852011-11-15 05:55:35 +00006191 //PackedSingle PackedDouble PackedInt
Craig Topperf87a2be2011-11-09 09:37:21 +00006192 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
6193 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
6194 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
6195 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
6196 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
6197 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
6198 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
Craig Topper12b72de2011-11-29 05:37:58 +00006199 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
6200 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
6201 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
6202 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
6203 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
6204 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
Quentin Colombet6f12ae02014-03-26 00:10:22 +00006205 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr },
6206 { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
6207 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
6208 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
6209 { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
6210 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
6211 { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00006212};
Jakob Stoklund Olesen49e121d2010-03-25 17:25:00 +00006213
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00006214// FIXME: Some shuffle and unpack instructions have equivalents in different
6215// domains, but they require a bit more work than just switching opcodes.
Jakob Stoklund Olesen49e121d2010-03-25 17:25:00 +00006216
Craig Topper2dac9622012-03-09 07:45:21 +00006217static const uint16_t *lookup(unsigned opcode, unsigned domain) {
Jakob Stoklund Olesen49e121d2010-03-25 17:25:00 +00006218 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00006219 if (ReplaceableInstrs[i][domain-1] == opcode)
6220 return ReplaceableInstrs[i];
Craig Topper062a2ba2014-04-25 05:30:21 +00006221 return nullptr;
Craig Topper649d1c52011-11-15 06:39:01 +00006222}
6223
Craig Topper2dac9622012-03-09 07:45:21 +00006224static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
Craig Topper649d1c52011-11-15 06:39:01 +00006225 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
6226 if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
6227 return ReplaceableInstrsAVX2[i];
Craig Topper062a2ba2014-04-25 05:30:21 +00006228 return nullptr;
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00006229}
6230
6231std::pair<uint16_t, uint16_t>
Jakob Stoklund Olesenb48c9942011-09-27 22:57:18 +00006232X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00006233 uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
Eric Christopher6c786a12014-06-10 22:34:31 +00006234 bool hasAVX2 = Subtarget.hasAVX2();
Craig Topper649d1c52011-11-15 06:39:01 +00006235 uint16_t validDomains = 0;
6236 if (domain && lookup(MI->getOpcode(), domain))
6237 validDomains = 0xe;
6238 else if (domain && lookupAVX2(MI->getOpcode(), domain))
6239 validDomains = hasAVX2 ? 0xe : 0x6;
6240 return std::make_pair(domain, validDomains);
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00006241}
6242
Jakob Stoklund Olesenb48c9942011-09-27 22:57:18 +00006243void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00006244 assert(Domain>0 && Domain<4 && "Invalid execution domain");
6245 uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6246 assert(dom && "Not an SSE instruction");
Craig Topper2dac9622012-03-09 07:45:21 +00006247 const uint16_t *table = lookup(MI->getOpcode(), dom);
Jakob Stoklund Olesen02845412011-11-23 04:03:08 +00006248 if (!table) { // try the other table
Eric Christopher6c786a12014-06-10 22:34:31 +00006249 assert((Subtarget.hasAVX2() || Domain < 3) &&
Jakob Stoklund Olesen02845412011-11-23 04:03:08 +00006250 "256-bit vector operations only available in AVX2");
Craig Topper649d1c52011-11-15 06:39:01 +00006251 table = lookupAVX2(MI->getOpcode(), dom);
Jakob Stoklund Olesen02845412011-11-23 04:03:08 +00006252 }
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00006253 assert(table && "Cannot change domain");
6254 MI->setDesc(get(table[Domain-1]));
Jakob Stoklund Olesen49e121d2010-03-25 17:25:00 +00006255}
Chris Lattner6a5e7062010-04-26 23:37:21 +00006256
Sanjay Patel203ee502015-02-17 21:55:20 +00006257/// Return the noop instruction to use for a noop.
Chris Lattner6a5e7062010-04-26 23:37:21 +00006258void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
6259 NopInst.setOpcode(X86::NOOP);
6260}
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006261
Tom Roedereb7a3032014-11-11 21:08:02 +00006262// This code must remain in sync with getJumpInstrTableEntryBound in this class!
6263// In particular, getJumpInstrTableEntryBound must always return an upper bound
6264// on the encoding lengths of the instructions generated by
6265// getUnconditionalBranch and getTrap.
Tom Roeder44cb65f2014-06-05 19:29:43 +00006266void X86InstrInfo::getUnconditionalBranch(
6267 MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const {
Craig Topper49758aa2015-01-06 04:23:53 +00006268 Branch.setOpcode(X86::JMP_1);
Jim Grosbache9119e42015-05-13 18:37:00 +00006269 Branch.addOperand(MCOperand::createExpr(BranchTarget));
Tom Roeder44cb65f2014-06-05 19:29:43 +00006270}
6271
Tom Roedereb7a3032014-11-11 21:08:02 +00006272// This code must remain in sync with getJumpInstrTableEntryBound in this class!
6273// In particular, getJumpInstrTableEntryBound must always return an upper bound
6274// on the encoding lengths of the instructions generated by
6275// getUnconditionalBranch and getTrap.
Tom Roeder44cb65f2014-06-05 19:29:43 +00006276void X86InstrInfo::getTrap(MCInst &MI) const {
6277 MI.setOpcode(X86::TRAP);
6278}
6279
Tom Roedereb7a3032014-11-11 21:08:02 +00006280// See getTrap and getUnconditionalBranch for conditions on the value returned
6281// by this function.
6282unsigned X86InstrInfo::getJumpInstrTableEntryBound() const {
6283 // 5 bytes suffice: JMP_4 Symbol@PLT is uses 1 byte (E9) for the JMP_4 and 4
6284 // bytes for the symbol offset. And TRAP is ud2, which is two bytes (0F 0B).
6285 return 5;
6286}
6287
Andrew Trick641e2d42011-03-05 08:00:22 +00006288bool X86InstrInfo::isHighLatencyDef(int opc) const {
6289 switch (opc) {
Evan Cheng63c76082010-10-19 18:58:51 +00006290 default: return false;
6291 case X86::DIVSDrm:
6292 case X86::DIVSDrm_Int:
6293 case X86::DIVSDrr:
6294 case X86::DIVSDrr_Int:
6295 case X86::DIVSSrm:
6296 case X86::DIVSSrm_Int:
6297 case X86::DIVSSrr:
6298 case X86::DIVSSrr_Int:
6299 case X86::SQRTPDm:
Evan Cheng63c76082010-10-19 18:58:51 +00006300 case X86::SQRTPDr:
Evan Cheng63c76082010-10-19 18:58:51 +00006301 case X86::SQRTPSm:
Evan Cheng63c76082010-10-19 18:58:51 +00006302 case X86::SQRTPSr:
Evan Cheng63c76082010-10-19 18:58:51 +00006303 case X86::SQRTSDm:
6304 case X86::SQRTSDm_Int:
6305 case X86::SQRTSDr:
6306 case X86::SQRTSDr_Int:
6307 case X86::SQRTSSm:
6308 case X86::SQRTSSm_Int:
6309 case X86::SQRTSSr:
6310 case X86::SQRTSSr_Int:
Bruno Cardoso Lopesc69d68a2011-09-15 22:15:52 +00006311 // AVX instructions with high latency
6312 case X86::VDIVSDrm:
6313 case X86::VDIVSDrm_Int:
6314 case X86::VDIVSDrr:
6315 case X86::VDIVSDrr_Int:
6316 case X86::VDIVSSrm:
6317 case X86::VDIVSSrm_Int:
6318 case X86::VDIVSSrr:
6319 case X86::VDIVSSrr_Int:
6320 case X86::VSQRTPDm:
Bruno Cardoso Lopesc69d68a2011-09-15 22:15:52 +00006321 case X86::VSQRTPDr:
Bruno Cardoso Lopesc69d68a2011-09-15 22:15:52 +00006322 case X86::VSQRTPSm:
Bruno Cardoso Lopesc69d68a2011-09-15 22:15:52 +00006323 case X86::VSQRTPSr:
Bruno Cardoso Lopesc69d68a2011-09-15 22:15:52 +00006324 case X86::VSQRTSDm:
6325 case X86::VSQRTSDm_Int:
6326 case X86::VSQRTSDr:
6327 case X86::VSQRTSSm:
6328 case X86::VSQRTSSm_Int:
6329 case X86::VSQRTSSr:
Robert Khasanov1cf354c2014-10-28 18:22:41 +00006330 case X86::VSQRTPDZm:
6331 case X86::VSQRTPDZr:
6332 case X86::VSQRTPSZm:
6333 case X86::VSQRTPSZr:
Elena Demikhovsky402ee642013-09-02 07:41:01 +00006334 case X86::VSQRTSDZm:
6335 case X86::VSQRTSDZm_Int:
6336 case X86::VSQRTSDZr:
6337 case X86::VSQRTSSZm_Int:
6338 case X86::VSQRTSSZr:
6339 case X86::VSQRTSSZm:
6340 case X86::VDIVSDZrm:
6341 case X86::VDIVSDZrr:
6342 case X86::VDIVSSZrm:
6343 case X86::VDIVSSZrr:
Elena Demikhovsky534015e2013-09-02 07:12:29 +00006344
6345 case X86::VGATHERQPSZrm:
6346 case X86::VGATHERQPDZrm:
6347 case X86::VGATHERDPDZrm:
6348 case X86::VGATHERDPSZrm:
6349 case X86::VPGATHERQDZrm:
6350 case X86::VPGATHERQQZrm:
6351 case X86::VPGATHERDDZrm:
Elena Demikhovsky402ee642013-09-02 07:41:01 +00006352 case X86::VPGATHERDQZrm:
6353 case X86::VSCATTERQPDZmr:
6354 case X86::VSCATTERQPSZmr:
6355 case X86::VSCATTERDPDZmr:
6356 case X86::VSCATTERDPSZmr:
6357 case X86::VPSCATTERQDZmr:
6358 case X86::VPSCATTERQQZmr:
6359 case X86::VPSCATTERDDZmr:
6360 case X86::VPSCATTERDQZmr:
Evan Cheng63c76082010-10-19 18:58:51 +00006361 return true;
6362 }
6363}
6364
Andrew Trick641e2d42011-03-05 08:00:22 +00006365bool X86InstrInfo::
Matthias Braun88e21312015-06-13 03:42:11 +00006366hasHighOperandLatency(const TargetSchedModel &SchedModel,
Andrew Trick641e2d42011-03-05 08:00:22 +00006367 const MachineRegisterInfo *MRI,
6368 const MachineInstr *DefMI, unsigned DefIdx,
6369 const MachineInstr *UseMI, unsigned UseIdx) const {
6370 return isHighLatencyDef(DefMI->getOpcode());
6371}
6372
Sanjay Patele79b43a2015-06-23 00:39:40 +00006373static bool hasVirtualRegDefsInBasicBlock(const MachineInstr &Inst,
6374 const MachineBasicBlock *MBB) {
6375 assert(Inst.getNumOperands() == 3 && "Reassociation needs binary operators");
6376 const MachineOperand &Op1 = Inst.getOperand(1);
6377 const MachineOperand &Op2 = Inst.getOperand(2);
Sanjay Patel08829ba2015-06-10 20:32:21 +00006378 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
6379
6380 // We need virtual register definitions.
6381 MachineInstr *MI1 = nullptr;
6382 MachineInstr *MI2 = nullptr;
6383 if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg()))
6384 MI1 = MRI.getUniqueVRegDef(Op1.getReg());
6385 if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg()))
6386 MI2 = MRI.getUniqueVRegDef(Op2.getReg());
Sanjay Patele79b43a2015-06-23 00:39:40 +00006387
Sanjay Patel08829ba2015-06-10 20:32:21 +00006388 // And they need to be in the trace (otherwise, they won't have a depth).
Sanjay Patele79b43a2015-06-23 00:39:40 +00006389 if (MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB)
6390 return true;
6391
6392 return false;
6393}
6394
6395static bool hasReassocSibling(const MachineInstr &Inst, bool &Commuted) {
6396 const MachineBasicBlock *MBB = Inst.getParent();
6397 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
6398 MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
6399 MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
6400 unsigned AssocOpcode = Inst.getOpcode();
6401
6402 // If only one operand has the same opcode and it's the second source operand,
6403 // the operands must be commuted.
6404 Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
6405 if (Commuted)
Sanjay Patel08829ba2015-06-10 20:32:21 +00006406 std::swap(MI1, MI2);
Sanjay Patel08829ba2015-06-10 20:32:21 +00006407
Sanjay Patele79b43a2015-06-23 00:39:40 +00006408 // 1. The previous instruction must be the same type as Inst.
6409 // 2. The previous instruction must have virtual register definitions for its
6410 // operands in the same basic block as Inst.
6411 // 3. The previous instruction's result must only be used by Inst.
6412 if (MI1->getOpcode() == AssocOpcode &&
6413 hasVirtualRegDefsInBasicBlock(*MI1, MBB) &&
6414 MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()))
6415 return true;
Sanjay Patel08829ba2015-06-10 20:32:21 +00006416
Sanjay Patele79b43a2015-06-23 00:39:40 +00006417 return false;
Sanjay Patel08829ba2015-06-10 20:32:21 +00006418}
6419
Sanjay Patele79b43a2015-06-23 00:39:40 +00006420/// Return true if the input instruction is part of a chain of dependent ops
6421/// that are suitable for reassociation, otherwise return false.
6422/// If the instruction's operands must be commuted to have a previous
6423/// instruction of the same type define the first source operand, Commuted will
6424/// be set to true.
6425static bool isReassocCandidate(const MachineInstr &Inst, unsigned AssocOpcode,
6426 bool &Commuted) {
6427 // 1. The instruction must have the correct type.
6428 // 2. The instruction must have virtual register definitions for its
6429 // operands in the same basic block.
6430 // 3. The instruction must have a reassociatable sibling.
6431 if (Inst.getOpcode() == AssocOpcode &&
6432 hasVirtualRegDefsInBasicBlock(Inst, Inst.getParent()) &&
6433 hasReassocSibling(Inst, Commuted))
6434 return true;
6435
6436 return false;
Sanjay Patel08829ba2015-06-10 20:32:21 +00006437}
6438
Sanjay Patele79b43a2015-06-23 00:39:40 +00006439// FIXME: This has the potential to be expensive (compile time) while not
6440// improving the code at all. Some ways to limit the overhead:
6441// 1. Track successful transforms; bail out if hit rate gets too low.
6442// 2. Only enable at -O3 or some other non-default optimization level.
6443// 3. Pre-screen pattern candidates here: if an operand of the previous
6444// instruction is known to not increase the critical path, then don't match
6445// that pattern.
Sanjay Patelcfe03932015-06-19 23:21:42 +00006446bool X86InstrInfo::getMachineCombinerPatterns(MachineInstr &Root,
6447 SmallVectorImpl<MachineCombinerPattern::MC_PATTERN> &Patterns) const {
Sanjay Patel08829ba2015-06-10 20:32:21 +00006448 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
6449 return false;
6450
Sanjay Patele79b43a2015-06-23 00:39:40 +00006451 // TODO: There is nothing x86-specific here except the instruction type.
6452 // This logic could be hoisted into the machine combiner pass itself.
6453
6454 // Look for this reassociation pattern:
6455 // B = A op X (Prev)
6456 // C = B op Y (Root)
6457
Sanjay Patel08829ba2015-06-10 20:32:21 +00006458 // TODO: There are many more associative instruction types to match:
6459 // 1. Other forms of scalar FP add (non-AVX)
6460 // 2. Other data types (double, integer, vectors)
6461 // 3. Other math / logic operations (mul, and, or)
6462 unsigned AssocOpcode = X86::VADDSSrr;
6463
Sanjay Patele79b43a2015-06-23 00:39:40 +00006464 bool Commute = false;
6465 if (isReassocCandidate(Root, AssocOpcode, Commute)) {
6466 // We found a sequence of instructions that may be suitable for a
6467 // reassociation of operands to increase ILP. Specify each commutation
6468 // possibility for the Prev instruction in the sequence and let the
6469 // machine combiner decide if changing the operands is worthwhile.
6470 if (Commute) {
6471 Patterns.push_back(MachineCombinerPattern::MC_REASSOC_AX_YB);
6472 Patterns.push_back(MachineCombinerPattern::MC_REASSOC_XA_YB);
6473 } else {
6474 Patterns.push_back(MachineCombinerPattern::MC_REASSOC_AX_BY);
6475 Patterns.push_back(MachineCombinerPattern::MC_REASSOC_XA_BY);
Sanjay Patel08829ba2015-06-10 20:32:21 +00006476 }
Sanjay Patele79b43a2015-06-23 00:39:40 +00006477 return true;
Sanjay Patel08829ba2015-06-10 20:32:21 +00006478 }
Sanjay Patele79b43a2015-06-23 00:39:40 +00006479
Sanjay Patel08829ba2015-06-10 20:32:21 +00006480 return false;
6481}
6482
6483/// Attempt the following reassociation to reduce critical path length:
6484/// B = A op X (Prev)
6485/// C = B op Y (Root)
6486/// ===>
6487/// B = X op Y
6488/// C = A op B
6489static void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
6490 MachineCombinerPattern::MC_PATTERN Pattern,
6491 SmallVectorImpl<MachineInstr *> &InsInstrs,
6492 SmallVectorImpl<MachineInstr *> &DelInstrs,
6493 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) {
6494 MachineFunction *MF = Root.getParent()->getParent();
6495 MachineRegisterInfo &MRI = MF->getRegInfo();
6496 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
6497 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
6498 const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
6499
6500 // This array encodes the operand index for each parameter because the
6501 // operands may be commuted. Each row corresponds to a pattern value,
6502 // and each column specifies the index of A, B, X, Y.
6503 unsigned OpIdx[4][4] = {
6504 { 1, 1, 2, 2 },
6505 { 1, 2, 2, 1 },
6506 { 2, 1, 1, 2 },
6507 { 2, 2, 1, 1 }
6508 };
6509
6510 MachineOperand &OpA = Prev.getOperand(OpIdx[Pattern][0]);
6511 MachineOperand &OpB = Root.getOperand(OpIdx[Pattern][1]);
6512 MachineOperand &OpX = Prev.getOperand(OpIdx[Pattern][2]);
6513 MachineOperand &OpY = Root.getOperand(OpIdx[Pattern][3]);
6514 MachineOperand &OpC = Root.getOperand(0);
6515
6516 unsigned RegA = OpA.getReg();
6517 unsigned RegB = OpB.getReg();
6518 unsigned RegX = OpX.getReg();
6519 unsigned RegY = OpY.getReg();
6520 unsigned RegC = OpC.getReg();
6521
6522 if (TargetRegisterInfo::isVirtualRegister(RegA))
6523 MRI.constrainRegClass(RegA, RC);
6524 if (TargetRegisterInfo::isVirtualRegister(RegB))
6525 MRI.constrainRegClass(RegB, RC);
6526 if (TargetRegisterInfo::isVirtualRegister(RegX))
6527 MRI.constrainRegClass(RegX, RC);
6528 if (TargetRegisterInfo::isVirtualRegister(RegY))
6529 MRI.constrainRegClass(RegY, RC);
6530 if (TargetRegisterInfo::isVirtualRegister(RegC))
6531 MRI.constrainRegClass(RegC, RC);
6532
6533 // Create a new virtual register for the result of (X op Y) instead of
6534 // recycling RegB because the MachineCombiner's computation of the critical
6535 // path requires a new register definition rather than an existing one.
6536 unsigned NewVR = MRI.createVirtualRegister(RC);
6537 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
6538
6539 unsigned Opcode = Root.getOpcode();
6540 bool KillA = OpA.isKill();
6541 bool KillX = OpX.isKill();
6542 bool KillY = OpY.isKill();
6543
6544 // Create new instructions for insertion.
6545 MachineInstrBuilder MIB1 =
6546 BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
6547 .addReg(RegX, getKillRegState(KillX))
6548 .addReg(RegY, getKillRegState(KillY));
6549 InsInstrs.push_back(MIB1);
6550
6551 MachineInstrBuilder MIB2 =
6552 BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
6553 .addReg(RegA, getKillRegState(KillA))
6554 .addReg(NewVR, getKillRegState(true));
6555 InsInstrs.push_back(MIB2);
6556
6557 // Record old instructions for deletion.
6558 DelInstrs.push_back(&Prev);
6559 DelInstrs.push_back(&Root);
6560}
6561
6562void X86InstrInfo::genAlternativeCodeSequence(
6563 MachineInstr &Root,
6564 MachineCombinerPattern::MC_PATTERN Pattern,
6565 SmallVectorImpl<MachineInstr *> &InsInstrs,
6566 SmallVectorImpl<MachineInstr *> &DelInstrs,
6567 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
6568 MachineRegisterInfo &MRI = Root.getParent()->getParent()->getRegInfo();
6569
6570 // Select the previous instruction in the sequence based on the input pattern.
6571 MachineInstr *Prev = nullptr;
Sanjay Patele79b43a2015-06-23 00:39:40 +00006572 switch (Pattern) {
6573 case MachineCombinerPattern::MC_REASSOC_AX_BY:
6574 case MachineCombinerPattern::MC_REASSOC_XA_BY:
6575 Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
6576 break;
6577 case MachineCombinerPattern::MC_REASSOC_AX_YB:
6578 case MachineCombinerPattern::MC_REASSOC_XA_YB:
6579 Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
6580 }
6581 assert(Prev && "Unknown pattern for machine combiner");
Sanjay Patel08829ba2015-06-10 20:32:21 +00006582
6583 reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
6584 return;
6585}
6586
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006587namespace {
Sanjay Patel203ee502015-02-17 21:55:20 +00006588 /// Create Global Base Reg pass. This initializes the PIC
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006589 /// global base register for x86-32.
6590 struct CGBR : public MachineFunctionPass {
6591 static char ID;
Owen Andersona7aed182010-08-06 18:33:48 +00006592 CGBR() : MachineFunctionPass(ID) {}
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006593
Craig Topper2d9361e2014-03-09 07:44:38 +00006594 bool runOnMachineFunction(MachineFunction &MF) override {
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006595 const X86TargetMachine *TM =
6596 static_cast<const X86TargetMachine *>(&MF.getTarget());
Eric Christopher05b81972015-02-02 17:38:43 +00006597 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006598
Eric Christopher0d5c99e2014-05-22 01:46:02 +00006599 // Don't do anything if this is 64-bit as 64-bit PIC
6600 // uses RIP relative addressing.
Eric Christopher05b81972015-02-02 17:38:43 +00006601 if (STI.is64Bit())
Eric Christopher0d5c99e2014-05-22 01:46:02 +00006602 return false;
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006603
6604 // Only emit a global base reg in PIC mode.
6605 if (TM->getRelocationModel() != Reloc::PIC_)
6606 return false;
6607
Dan Gohman534db8a2010-09-17 20:24:24 +00006608 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
6609 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
6610
6611 // If we didn't need a GlobalBaseReg, don't insert code.
6612 if (GlobalBaseReg == 0)
6613 return false;
6614
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006615 // Insert the set of GlobalBaseReg into the first MBB of the function
6616 MachineBasicBlock &FirstMBB = MF.front();
6617 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
6618 DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
6619 MachineRegisterInfo &RegInfo = MF.getRegInfo();
Eric Christopher05b81972015-02-02 17:38:43 +00006620 const X86InstrInfo *TII = STI.getInstrInfo();
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006621
6622 unsigned PC;
Eric Christopher05b81972015-02-02 17:38:43 +00006623 if (STI.isPICStyleGOT())
Craig Topperabadc662012-04-20 06:31:50 +00006624 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006625 else
Dan Gohman534db8a2010-09-17 20:24:24 +00006626 PC = GlobalBaseReg;
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00006627
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006628 // Operand of MovePCtoStack is completely ignored by asm printer. It's
6629 // only used in JIT code emission as displacement to pc.
6630 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00006631
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006632 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
6633 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
Eric Christopher05b81972015-02-02 17:38:43 +00006634 if (STI.isPICStyleGOT()) {
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006635 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
6636 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
6637 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
6638 X86II::MO_GOT_ABSOLUTE_ADDRESS);
6639 }
6640
6641 return true;
6642 }
6643
Craig Topper2d9361e2014-03-09 07:44:38 +00006644 const char *getPassName() const override {
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006645 return "X86 PIC Global Base Reg Initialization";
6646 }
6647
Craig Topper2d9361e2014-03-09 07:44:38 +00006648 void getAnalysisUsage(AnalysisUsage &AU) const override {
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006649 AU.setPreservesCFG();
6650 MachineFunctionPass::getAnalysisUsage(AU);
6651 }
6652 };
Alexander Kornienko70bc5f12015-06-19 15:57:42 +00006653} // namespace
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006654
6655char CGBR::ID = 0;
6656FunctionPass*
Eric Christopher463b84b2014-05-22 01:45:57 +00006657llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
Hans Wennborg789acfb2012-06-01 16:27:21 +00006658
6659namespace {
6660 struct LDTLSCleanup : public MachineFunctionPass {
6661 static char ID;
6662 LDTLSCleanup() : MachineFunctionPass(ID) {}
6663
Craig Topper2d9361e2014-03-09 07:44:38 +00006664 bool runOnMachineFunction(MachineFunction &MF) override {
Hans Wennborg789acfb2012-06-01 16:27:21 +00006665 X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
6666 if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
6667 // No point folding accesses if there isn't at least two.
6668 return false;
6669 }
6670
6671 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
6672 return VisitNode(DT->getRootNode(), 0);
6673 }
6674
6675 // Visit the dominator subtree rooted at Node in pre-order.
6676 // If TLSBaseAddrReg is non-null, then use that to replace any
6677 // TLS_base_addr instructions. Otherwise, create the register
6678 // when the first such instruction is seen, and then use it
6679 // as we encounter more instructions.
6680 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
6681 MachineBasicBlock *BB = Node->getBlock();
6682 bool Changed = false;
6683
6684 // Traverse the current block.
6685 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
6686 ++I) {
6687 switch (I->getOpcode()) {
6688 case X86::TLS_base_addr32:
6689 case X86::TLS_base_addr64:
6690 if (TLSBaseAddrReg)
6691 I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
6692 else
6693 I = SetRegister(I, &TLSBaseAddrReg);
6694 Changed = true;
6695 break;
6696 default:
6697 break;
6698 }
6699 }
6700
6701 // Visit the children of this block in the dominator tree.
6702 for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
6703 I != E; ++I) {
6704 Changed |= VisitNode(*I, TLSBaseAddrReg);
6705 }
6706
6707 return Changed;
6708 }
6709
6710 // Replace the TLS_base_addr instruction I with a copy from
6711 // TLSBaseAddrReg, returning the new instruction.
6712 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
6713 unsigned TLSBaseAddrReg) {
6714 MachineFunction *MF = I->getParent()->getParent();
Eric Christopher05b81972015-02-02 17:38:43 +00006715 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
6716 const bool is64Bit = STI.is64Bit();
6717 const X86InstrInfo *TII = STI.getInstrInfo();
Hans Wennborg789acfb2012-06-01 16:27:21 +00006718
6719 // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
6720 MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
6721 TII->get(TargetOpcode::COPY),
6722 is64Bit ? X86::RAX : X86::EAX)
6723 .addReg(TLSBaseAddrReg);
6724
6725 // Erase the TLS_base_addr instruction.
6726 I->eraseFromParent();
6727
6728 return Copy;
6729 }
6730
6731 // Create a virtal register in *TLSBaseAddrReg, and populate it by
6732 // inserting a copy instruction after I. Returns the new instruction.
6733 MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
6734 MachineFunction *MF = I->getParent()->getParent();
Eric Christopher05b81972015-02-02 17:38:43 +00006735 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
6736 const bool is64Bit = STI.is64Bit();
6737 const X86InstrInfo *TII = STI.getInstrInfo();
Hans Wennborg789acfb2012-06-01 16:27:21 +00006738
6739 // Create a virtual register for the TLS base address.
6740 MachineRegisterInfo &RegInfo = MF->getRegInfo();
6741 *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
6742 ? &X86::GR64RegClass
6743 : &X86::GR32RegClass);
6744
6745 // Insert a copy from RAX/EAX to TLSBaseAddrReg.
6746 MachineInstr *Next = I->getNextNode();
6747 MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
6748 TII->get(TargetOpcode::COPY),
6749 *TLSBaseAddrReg)
6750 .addReg(is64Bit ? X86::RAX : X86::EAX);
6751
6752 return Copy;
6753 }
6754
Craig Topper2d9361e2014-03-09 07:44:38 +00006755 const char *getPassName() const override {
Hans Wennborg789acfb2012-06-01 16:27:21 +00006756 return "Local Dynamic TLS Access Clean-up";
6757 }
6758
Craig Topper2d9361e2014-03-09 07:44:38 +00006759 void getAnalysisUsage(AnalysisUsage &AU) const override {
Hans Wennborg789acfb2012-06-01 16:27:21 +00006760 AU.setPreservesCFG();
6761 AU.addRequired<MachineDominatorTree>();
6762 MachineFunctionPass::getAnalysisUsage(AU);
6763 }
6764 };
Alexander Kornienko70bc5f12015-06-19 15:57:42 +00006765} // namespace
Hans Wennborg789acfb2012-06-01 16:27:21 +00006766
6767char LDTLSCleanup::ID = 0;
6768FunctionPass*
6769llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }