blob: 99bf54c8345772c8f229a84e1c2ac23cbcb2c886 [file] [log] [blame]
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SystemZTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
Ulrich Weigand5f613df2013-05-06 16:15:19 +000014#include "SystemZISelLowering.h"
15#include "SystemZCallingConv.h"
16#include "SystemZConstantPoolValue.h"
17#include "SystemZMachineFunctionInfo.h"
18#include "SystemZTargetMachine.h"
19#include "llvm/CodeGen/CallingConvLower.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
Ulrich Weigand57c85f52015-04-01 12:51:43 +000023#include "llvm/IR/Intrinsics.h"
Will Dietz981af002013-10-12 00:55:57 +000024#include <cctype>
25
Ulrich Weigand5f613df2013-05-06 16:15:19 +000026using namespace llvm;
27
Chandler Carruth84e68b22014-04-22 02:41:26 +000028#define DEBUG_TYPE "systemz-lower"
29
Richard Sandifordf722a8e302013-10-16 11:10:55 +000030namespace {
31// Represents a sequence for extracting a 0/1 value from an IPM result:
32// (((X ^ XORValue) + AddValue) >> Bit)
33struct IPMConversion {
34 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
35 : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
36
37 int64_t XORValue;
38 int64_t AddValue;
39 unsigned Bit;
40};
Richard Sandifordd420f732013-12-13 15:28:45 +000041
42// Represents information about a comparison.
43struct Comparison {
44 Comparison(SDValue Op0In, SDValue Op1In)
45 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
46
47 // The operands to the comparison.
48 SDValue Op0, Op1;
49
50 // The opcode that should be used to compare Op0 and Op1.
51 unsigned Opcode;
52
53 // A SystemZICMP value. Only used for integer comparisons.
54 unsigned ICmpType;
55
56 // The mask of CC values that Opcode can produce.
57 unsigned CCValid;
58
59 // The mask of CC values for which the original condition is true.
60 unsigned CCMask;
61};
Richard Sandifordc2312692014-03-06 10:38:30 +000062} // end anonymous namespace
Richard Sandifordf722a8e302013-10-16 11:10:55 +000063
Ulrich Weigand5f613df2013-05-06 16:15:19 +000064// Classify VT as either 32 or 64 bit.
65static bool is32Bit(EVT VT) {
66 switch (VT.getSimpleVT().SimpleTy) {
67 case MVT::i32:
68 return true;
69 case MVT::i64:
70 return false;
71 default:
72 llvm_unreachable("Unsupported type");
73 }
74}
75
76// Return a version of MachineOperand that can be safely used before the
77// final use.
78static MachineOperand earlyUseOperand(MachineOperand Op) {
79 if (Op.isReg())
80 Op.setIsKill(false);
81 return Op;
82}
83
Eric Christophera6734172015-01-31 00:06:45 +000084SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &tm,
85 const SystemZSubtarget &STI)
86 : TargetLowering(tm), Subtarget(STI) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +000087 MVT PtrVT = getPointerTy();
88
89 // Set up the register classes.
Richard Sandiford0755c932013-10-01 11:26:28 +000090 if (Subtarget.hasHighWord())
91 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
92 else
93 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
Ulrich Weigand49506d72015-05-05 19:28:34 +000094 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
95 if (Subtarget.hasVector()) {
96 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
97 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
98 } else {
99 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
100 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
101 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
103
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000104 if (Subtarget.hasVector()) {
105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
Ulrich Weigand80b3af72015-05-05 19:27:45 +0000109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
Ulrich Weigandcd808232015-05-05 19:26:48 +0000110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000111 }
112
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000113 // Compute derived properties from the register classes
Eric Christopher23a3a7c2015-02-26 00:00:24 +0000114 computeRegisterProperties(Subtarget.getRegisterInfo());
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000115
116 // Set up special registers.
117 setExceptionPointerRegister(SystemZ::R6D);
118 setExceptionSelectorRegister(SystemZ::R7D);
119 setStackPointerRegisterToSaveRestore(SystemZ::R15D);
120
121 // TODO: It may be better to default to latency-oriented scheduling, however
122 // LLVM's current latency-oriented scheduler can't handle physreg definitions
Richard Sandiford14a44492013-05-22 13:38:45 +0000123 // such as SystemZ has with CC, so set this to the register-pressure
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000124 // scheduler, because it can.
125 setSchedulingPreference(Sched::RegPressure);
126
127 setBooleanContents(ZeroOrOneBooleanContent);
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000128 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000129
130 // Instructions are strings of 2-byte aligned 2-byte values.
131 setMinFunctionAlignment(2);
132
133 // Handle operations that are handled in a similar way for all types.
134 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
135 I <= MVT::LAST_FP_VALUETYPE;
136 ++I) {
137 MVT VT = MVT::SimpleValueType(I);
138 if (isTypeLegal(VT)) {
Richard Sandifordf722a8e302013-10-16 11:10:55 +0000139 // Lower SET_CC into an IPM-based sequence.
140 setOperationAction(ISD::SETCC, VT, Custom);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000141
142 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
143 setOperationAction(ISD::SELECT, VT, Expand);
144
145 // Lower SELECT_CC and BR_CC into separate comparisons and branches.
146 setOperationAction(ISD::SELECT_CC, VT, Custom);
147 setOperationAction(ISD::BR_CC, VT, Custom);
148 }
149 }
150
151 // Expand jump table branches as address arithmetic followed by an
152 // indirect jump.
153 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
154
155 // Expand BRCOND into a BR_CC (see above).
156 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
157
158 // Handle integer types.
159 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
160 I <= MVT::LAST_INTEGER_VALUETYPE;
161 ++I) {
162 MVT VT = MVT::SimpleValueType(I);
163 if (isTypeLegal(VT)) {
164 // Expand individual DIV and REMs into DIVREMs.
165 setOperationAction(ISD::SDIV, VT, Expand);
166 setOperationAction(ISD::UDIV, VT, Expand);
167 setOperationAction(ISD::SREM, VT, Expand);
168 setOperationAction(ISD::UREM, VT, Expand);
169 setOperationAction(ISD::SDIVREM, VT, Custom);
170 setOperationAction(ISD::UDIVREM, VT, Custom);
171
Richard Sandifordbef3d7a2013-12-10 10:49:34 +0000172 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
173 // stores, putting a serialization instruction after the stores.
174 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom);
175 setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000176
Richard Sandiford41350a52013-12-24 15:18:04 +0000177 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
178 // available, or if the operand is constant.
179 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
180
Ulrich Weigandb4012182015-03-31 12:56:33 +0000181 // Use POPCNT on z196 and above.
182 if (Subtarget.hasPopulationCount())
183 setOperationAction(ISD::CTPOP, VT, Custom);
184 else
185 setOperationAction(ISD::CTPOP, VT, Expand);
186
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000187 // No special instructions for these.
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000188 setOperationAction(ISD::CTTZ, VT, Expand);
189 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
190 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
191 setOperationAction(ISD::ROTR, VT, Expand);
192
Richard Sandiford7d86e472013-08-21 09:34:56 +0000193 // Use *MUL_LOHI where possible instead of MULH*.
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000194 setOperationAction(ISD::MULHS, VT, Expand);
195 setOperationAction(ISD::MULHU, VT, Expand);
Richard Sandiford7d86e472013-08-21 09:34:56 +0000196 setOperationAction(ISD::SMUL_LOHI, VT, Custom);
197 setOperationAction(ISD::UMUL_LOHI, VT, Custom);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000198
Richard Sandiforddc6c2c92014-03-21 10:56:30 +0000199 // Only z196 and above have native support for conversions to unsigned.
200 if (!Subtarget.hasFPExtension())
201 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000202 }
203 }
204
205 // Type legalization will convert 8- and 16-bit atomic operations into
206 // forms that operate on i32s (but still keeping the original memory VT).
207 // Lower them into full i32 operations.
208 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
209 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
210 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
211 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
212 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
213 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
214 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
215 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
216 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
217 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
218 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
219 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
220
Richard Sandiforddc6c2c92014-03-21 10:56:30 +0000221 // z10 has instructions for signed but not unsigned FP conversion.
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000222 // Handle unsigned 32-bit types as signed 64-bit types.
Richard Sandiforddc6c2c92014-03-21 10:56:30 +0000223 if (!Subtarget.hasFPExtension()) {
224 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
225 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
226 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000227
228 // We have native support for a 64-bit CTLZ, via FLOGR.
229 setOperationAction(ISD::CTLZ, MVT::i32, Promote);
230 setOperationAction(ISD::CTLZ, MVT::i64, Legal);
231
232 // Give LowerOperation the chance to replace 64-bit ORs with subregs.
233 setOperationAction(ISD::OR, MVT::i64, Custom);
234
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000235 // FIXME: Can we support these natively?
236 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
237 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
238 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
239
240 // We have native instructions for i8, i16 and i32 extensions, but not i1.
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000241 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000242 for (MVT VT : MVT::integer_valuetypes()) {
243 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
244 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
245 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
246 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000247
248 // Handle the various types of symbolic address.
249 setOperationAction(ISD::ConstantPool, PtrVT, Custom);
250 setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
251 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
252 setOperationAction(ISD::BlockAddress, PtrVT, Custom);
253 setOperationAction(ISD::JumpTable, PtrVT, Custom);
254
255 // We need to handle dynamic allocations specially because of the
256 // 160-byte area at the bottom of the stack.
257 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
258
259 // Use custom expanders so that we can force the function to use
260 // a frame pointer.
261 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
262 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
263
Richard Sandiford03481332013-08-23 11:36:42 +0000264 // Handle prefetches with PFD or PFDRL.
265 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
266
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000267 for (MVT VT : MVT::vector_valuetypes()) {
268 // Assume by default that all vector operations need to be expanded.
269 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
270 if (getOperationAction(Opcode, VT) == Legal)
271 setOperationAction(Opcode, VT, Expand);
272
273 // Likewise all truncating stores and extending loads.
274 for (MVT InnerVT : MVT::vector_valuetypes()) {
275 setTruncStoreAction(VT, InnerVT, Expand);
276 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
277 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
278 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
279 }
280
281 if (isTypeLegal(VT)) {
282 // These operations are legal for anything that can be stored in a
283 // vector register, even if there is no native support for the format
Ulrich Weigand80b3af72015-05-05 19:27:45 +0000284 // as such. In particular, we can do these for v4f32 even though there
285 // are no specific instructions for that format.
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000286 setOperationAction(ISD::LOAD, VT, Legal);
287 setOperationAction(ISD::STORE, VT, Legal);
288 setOperationAction(ISD::VSELECT, VT, Legal);
289 setOperationAction(ISD::BITCAST, VT, Legal);
290 setOperationAction(ISD::UNDEF, VT, Legal);
291
292 // Likewise, except that we need to replace the nodes with something
293 // more specific.
294 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
295 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
296 }
297 }
298
299 // Handle integer vector types.
300 for (MVT VT : MVT::integer_vector_valuetypes()) {
301 if (isTypeLegal(VT)) {
302 // These operations have direct equivalents.
303 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
304 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
305 setOperationAction(ISD::ADD, VT, Legal);
306 setOperationAction(ISD::SUB, VT, Legal);
307 if (VT != MVT::v2i64)
308 setOperationAction(ISD::MUL, VT, Legal);
309 setOperationAction(ISD::AND, VT, Legal);
310 setOperationAction(ISD::OR, VT, Legal);
311 setOperationAction(ISD::XOR, VT, Legal);
312 setOperationAction(ISD::CTPOP, VT, Custom);
313 setOperationAction(ISD::CTTZ, VT, Legal);
314 setOperationAction(ISD::CTLZ, VT, Legal);
315 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
316 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
317
318 // Convert a GPR scalar to a vector by inserting it into element 0.
319 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
320
Ulrich Weigandcd2a1b52015-05-05 19:29:21 +0000321 // Use a series of unpacks for extensions.
322 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
323 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
324
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000325 // Detect shifts by a scalar amount and convert them into
326 // V*_BY_SCALAR.
327 setOperationAction(ISD::SHL, VT, Custom);
328 setOperationAction(ISD::SRA, VT, Custom);
329 setOperationAction(ISD::SRL, VT, Custom);
330
331 // At present ROTL isn't matched by DAGCombiner. ROTR should be
332 // converted into ROTL.
333 setOperationAction(ISD::ROTL, VT, Expand);
334 setOperationAction(ISD::ROTR, VT, Expand);
335
336 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
337 // and inverting the result as necessary.
338 setOperationAction(ISD::SETCC, VT, Custom);
339 }
340 }
341
Ulrich Weigandcd808232015-05-05 19:26:48 +0000342 if (Subtarget.hasVector()) {
343 // There should be no need to check for float types other than v2f64
344 // since <2 x f32> isn't a legal type.
345 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
346 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
347 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
348 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
349 }
350
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000351 // Handle floating-point types.
352 for (unsigned I = MVT::FIRST_FP_VALUETYPE;
353 I <= MVT::LAST_FP_VALUETYPE;
354 ++I) {
355 MVT VT = MVT::SimpleValueType(I);
356 if (isTypeLegal(VT)) {
357 // We can use FI for FRINT.
358 setOperationAction(ISD::FRINT, VT, Legal);
359
Richard Sandifordaf5f66a2013-08-21 09:04:20 +0000360 // We can use the extended form of FI for other rounding operations.
361 if (Subtarget.hasFPExtension()) {
362 setOperationAction(ISD::FNEARBYINT, VT, Legal);
363 setOperationAction(ISD::FFLOOR, VT, Legal);
364 setOperationAction(ISD::FCEIL, VT, Legal);
365 setOperationAction(ISD::FTRUNC, VT, Legal);
366 setOperationAction(ISD::FROUND, VT, Legal);
367 }
368
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000369 // No special instructions for these.
370 setOperationAction(ISD::FSIN, VT, Expand);
371 setOperationAction(ISD::FCOS, VT, Expand);
372 setOperationAction(ISD::FREM, VT, Expand);
373 }
374 }
375
Ulrich Weigandcd808232015-05-05 19:26:48 +0000376 // Handle floating-point vector types.
377 if (Subtarget.hasVector()) {
378 // Scalar-to-vector conversion is just a subreg.
Ulrich Weigand80b3af72015-05-05 19:27:45 +0000379 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
Ulrich Weigandcd808232015-05-05 19:26:48 +0000380 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
381
382 // Some insertions and extractions can be done directly but others
383 // need to go via integers.
Ulrich Weigand80b3af72015-05-05 19:27:45 +0000384 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
Ulrich Weigandcd808232015-05-05 19:26:48 +0000385 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
Ulrich Weigand80b3af72015-05-05 19:27:45 +0000386 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
Ulrich Weigandcd808232015-05-05 19:26:48 +0000387 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
388
389 // These operations have direct equivalents.
390 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
391 setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
392 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
393 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
394 setOperationAction(ISD::FMA, MVT::v2f64, Legal);
395 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
396 setOperationAction(ISD::FABS, MVT::v2f64, Legal);
397 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
398 setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
399 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
400 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
401 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
402 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
403 setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
404 }
405
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000406 // We have fused multiply-addition for f32 and f64 but not f128.
407 setOperationAction(ISD::FMA, MVT::f32, Legal);
408 setOperationAction(ISD::FMA, MVT::f64, Legal);
409 setOperationAction(ISD::FMA, MVT::f128, Expand);
410
411 // Needed so that we don't try to implement f128 constant loads using
412 // a load-and-extend of a f80 constant (in cases where the constant
413 // would fit in an f80).
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000414 for (MVT VT : MVT::fp_valuetypes())
415 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000416
417 // Floating-point truncation and stores need to be done separately.
418 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
419 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
420 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
421
422 // We have 64-bit FPR<->GPR moves, but need special handling for
423 // 32-bit forms.
Ulrich Weigand80b3af72015-05-05 19:27:45 +0000424 if (!Subtarget.hasVector()) {
425 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
426 setOperationAction(ISD::BITCAST, MVT::f32, Custom);
427 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000428
429 // VASTART and VACOPY need to deal with the SystemZ-specific varargs
430 // structure, but VAEND is a no-op.
431 setOperationAction(ISD::VASTART, MVT::Other, Custom);
432 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
433 setOperationAction(ISD::VAEND, MVT::Other, Expand);
Richard Sandifordd131ff82013-07-08 09:35:23 +0000434
Richard Sandiford95bc5f92014-03-07 11:34:35 +0000435 // Codes for which we want to perform some z-specific combinations.
436 setTargetDAGCombine(ISD::SIGN_EXTEND);
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000437 setTargetDAGCombine(ISD::STORE);
438 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
Ulrich Weigand80b3af72015-05-05 19:27:45 +0000439 setTargetDAGCombine(ISD::FP_ROUND);
Richard Sandiford95bc5f92014-03-07 11:34:35 +0000440
Ulrich Weigand57c85f52015-04-01 12:51:43 +0000441 // Handle intrinsics.
442 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
Ulrich Weigandc1708b22015-05-05 19:31:09 +0000443 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
Ulrich Weigand57c85f52015-04-01 12:51:43 +0000444
Richard Sandifordd131ff82013-07-08 09:35:23 +0000445 // We want to use MVC in preference to even a single load/store pair.
446 MaxStoresPerMemcpy = 0;
447 MaxStoresPerMemcpyOptSize = 0;
Richard Sandiford47660c12013-07-09 09:32:42 +0000448
449 // The main memset sequence is a byte store followed by an MVC.
450 // Two STC or MV..I stores win over that, but the kind of fused stores
451 // generated by target-independent code don't when the byte value is
452 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better
453 // than "STC;MVC". Handle the choice in target-specific code instead.
454 MaxStoresPerMemset = 0;
455 MaxStoresPerMemsetOptSize = 0;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000456}
457
Richard Sandifordabc010b2013-11-06 12:16:02 +0000458EVT SystemZTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
459 if (!VT.isVector())
460 return MVT::i32;
461 return VT.changeVectorElementTypeToInteger();
462}
463
464bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
Stephen Lin73de7bf2013-07-09 18:16:56 +0000465 VT = VT.getScalarType();
466
467 if (!VT.isSimple())
468 return false;
469
470 switch (VT.getSimpleVT().SimpleTy) {
471 case MVT::f32:
472 case MVT::f64:
473 return true;
474 case MVT::f128:
475 return false;
476 default:
477 break;
478 }
479
480 return false;
481}
482
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000483bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
484 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
485 return Imm.isZero() || Imm.isNegZero();
486}
487
Ulrich Weigand1f6666a2015-03-31 12:52:27 +0000488bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
489 // We can use CGFI or CLGFI.
490 return isInt<32>(Imm) || isUInt<32>(Imm);
491}
492
493bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
494 // We can use ALGFI or SLGFI.
495 return isUInt<32>(Imm) || isUInt<32>(-Imm);
496}
497
Matt Arsenault6f2a5262014-07-27 17:46:40 +0000498bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
499 unsigned,
500 unsigned,
501 bool *Fast) const {
Richard Sandiford46af5a22013-05-30 09:45:42 +0000502 // Unaligned accesses should never be slower than the expanded version.
503 // We check specifically for aligned accesses in the few cases where
504 // they are required.
505 if (Fast)
506 *Fast = true;
507 return true;
508}
509
Richard Sandiford791bea42013-07-31 12:58:26 +0000510bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
511 Type *Ty) const {
512 // Punt on globals for now, although they can be used in limited
513 // RELATIVE LONG cases.
514 if (AM.BaseGV)
515 return false;
516
517 // Require a 20-bit signed offset.
518 if (!isInt<20>(AM.BaseOffs))
519 return false;
520
521 // Indexing is OK but no scale factor can be applied.
522 return AM.Scale == 0 || AM.Scale == 1;
523}
524
Richard Sandiford709bda62013-08-19 12:42:31 +0000525bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
526 if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
527 return false;
528 unsigned FromBits = FromType->getPrimitiveSizeInBits();
529 unsigned ToBits = ToType->getPrimitiveSizeInBits();
530 return FromBits > ToBits;
531}
532
533bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
534 if (!FromVT.isInteger() || !ToVT.isInteger())
535 return false;
536 unsigned FromBits = FromVT.getSizeInBits();
537 unsigned ToBits = ToVT.getSizeInBits();
538 return FromBits > ToBits;
539}
540
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000541//===----------------------------------------------------------------------===//
542// Inline asm support
543//===----------------------------------------------------------------------===//
544
545TargetLowering::ConstraintType
546SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
547 if (Constraint.size() == 1) {
548 switch (Constraint[0]) {
549 case 'a': // Address register
550 case 'd': // Data register (equivalent to 'r')
551 case 'f': // Floating-point register
Richard Sandiford0755c932013-10-01 11:26:28 +0000552 case 'h': // High-part register
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000553 case 'r': // General-purpose register
554 return C_RegisterClass;
555
556 case 'Q': // Memory with base and unsigned 12-bit displacement
557 case 'R': // Likewise, plus an index
558 case 'S': // Memory with base and signed 20-bit displacement
559 case 'T': // Likewise, plus an index
560 case 'm': // Equivalent to 'T'.
561 return C_Memory;
562
563 case 'I': // Unsigned 8-bit constant
564 case 'J': // Unsigned 12-bit constant
565 case 'K': // Signed 16-bit constant
566 case 'L': // Signed 20-bit displacement (on all targets we support)
567 case 'M': // 0x7fffffff
568 return C_Other;
569
570 default:
571 break;
572 }
573 }
574 return TargetLowering::getConstraintType(Constraint);
575}
576
577TargetLowering::ConstraintWeight SystemZTargetLowering::
578getSingleConstraintMatchWeight(AsmOperandInfo &info,
579 const char *constraint) const {
580 ConstraintWeight weight = CW_Invalid;
581 Value *CallOperandVal = info.CallOperandVal;
582 // If we don't have a value, we can't do a match,
583 // but allow it at the lowest weight.
Craig Topper062a2ba2014-04-25 05:30:21 +0000584 if (!CallOperandVal)
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000585 return CW_Default;
586 Type *type = CallOperandVal->getType();
587 // Look at the constraint type.
588 switch (*constraint) {
589 default:
590 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
591 break;
592
593 case 'a': // Address register
594 case 'd': // Data register (equivalent to 'r')
Richard Sandiford0755c932013-10-01 11:26:28 +0000595 case 'h': // High-part register
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000596 case 'r': // General-purpose register
597 if (CallOperandVal->getType()->isIntegerTy())
598 weight = CW_Register;
599 break;
600
601 case 'f': // Floating-point register
602 if (type->isFloatingPointTy())
603 weight = CW_Register;
604 break;
605
606 case 'I': // Unsigned 8-bit constant
Richard Sandiford21f5d682014-03-06 11:22:58 +0000607 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000608 if (isUInt<8>(C->getZExtValue()))
609 weight = CW_Constant;
610 break;
611
612 case 'J': // Unsigned 12-bit constant
Richard Sandiford21f5d682014-03-06 11:22:58 +0000613 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000614 if (isUInt<12>(C->getZExtValue()))
615 weight = CW_Constant;
616 break;
617
618 case 'K': // Signed 16-bit constant
Richard Sandiford21f5d682014-03-06 11:22:58 +0000619 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000620 if (isInt<16>(C->getSExtValue()))
621 weight = CW_Constant;
622 break;
623
624 case 'L': // Signed 20-bit displacement (on all targets we support)
Richard Sandiford21f5d682014-03-06 11:22:58 +0000625 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000626 if (isInt<20>(C->getSExtValue()))
627 weight = CW_Constant;
628 break;
629
630 case 'M': // 0x7fffffff
Richard Sandiford21f5d682014-03-06 11:22:58 +0000631 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000632 if (C->getZExtValue() == 0x7fffffff)
633 weight = CW_Constant;
634 break;
635 }
636 return weight;
637}
638
Richard Sandifordb8204052013-07-12 09:08:12 +0000639// Parse a "{tNNN}" register constraint for which the register type "t"
640// has already been verified. MC is the class associated with "t" and
641// Map maps 0-based register numbers to LLVM register numbers.
642static std::pair<unsigned, const TargetRegisterClass *>
643parseRegisterNumber(const std::string &Constraint,
644 const TargetRegisterClass *RC, const unsigned *Map) {
645 assert(*(Constraint.end()-1) == '}' && "Missing '}'");
646 if (isdigit(Constraint[2])) {
647 std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
648 unsigned Index = atoi(Suffix.c_str());
649 if (Index < 16 && Map[Index])
650 return std::make_pair(Map[Index], RC);
651 }
Craig Topper062a2ba2014-04-25 05:30:21 +0000652 return std::make_pair(0U, nullptr);
Richard Sandifordb8204052013-07-12 09:08:12 +0000653}
654
Eric Christopher11e4df72015-02-26 22:38:43 +0000655std::pair<unsigned, const TargetRegisterClass *>
656SystemZTargetLowering::getRegForInlineAsmConstraint(
657 const TargetRegisterInfo *TRI, const std::string &Constraint,
658 MVT VT) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000659 if (Constraint.size() == 1) {
660 // GCC Constraint Letters
661 switch (Constraint[0]) {
662 default: break;
663 case 'd': // Data register (equivalent to 'r')
664 case 'r': // General-purpose register
665 if (VT == MVT::i64)
666 return std::make_pair(0U, &SystemZ::GR64BitRegClass);
667 else if (VT == MVT::i128)
668 return std::make_pair(0U, &SystemZ::GR128BitRegClass);
669 return std::make_pair(0U, &SystemZ::GR32BitRegClass);
670
671 case 'a': // Address register
672 if (VT == MVT::i64)
673 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
674 else if (VT == MVT::i128)
675 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
676 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
677
Richard Sandiford0755c932013-10-01 11:26:28 +0000678 case 'h': // High-part register (an LLVM extension)
679 return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
680
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000681 case 'f': // Floating-point register
682 if (VT == MVT::f64)
683 return std::make_pair(0U, &SystemZ::FP64BitRegClass);
684 else if (VT == MVT::f128)
685 return std::make_pair(0U, &SystemZ::FP128BitRegClass);
686 return std::make_pair(0U, &SystemZ::FP32BitRegClass);
687 }
688 }
Richard Sandifordb8204052013-07-12 09:08:12 +0000689 if (Constraint[0] == '{') {
690 // We need to override the default register parsing for GPRs and FPRs
691 // because the interpretation depends on VT. The internal names of
692 // the registers are also different from the external names
693 // (F0D and F0S instead of F0, etc.).
694 if (Constraint[1] == 'r') {
695 if (VT == MVT::i32)
696 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
697 SystemZMC::GR32Regs);
698 if (VT == MVT::i128)
699 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
700 SystemZMC::GR128Regs);
701 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
702 SystemZMC::GR64Regs);
703 }
704 if (Constraint[1] == 'f') {
705 if (VT == MVT::f32)
706 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
707 SystemZMC::FP32Regs);
708 if (VT == MVT::f128)
709 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
710 SystemZMC::FP128Regs);
711 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
712 SystemZMC::FP64Regs);
713 }
714 }
Eric Christopher11e4df72015-02-26 22:38:43 +0000715 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000716}
717
718void SystemZTargetLowering::
719LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
720 std::vector<SDValue> &Ops,
721 SelectionDAG &DAG) const {
722 // Only support length 1 constraints for now.
723 if (Constraint.length() == 1) {
724 switch (Constraint[0]) {
725 case 'I': // Unsigned 8-bit constant
Richard Sandiford21f5d682014-03-06 11:22:58 +0000726 if (auto *C = dyn_cast<ConstantSDNode>(Op))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000727 if (isUInt<8>(C->getZExtValue()))
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +0000728 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000729 Op.getValueType()));
730 return;
731
732 case 'J': // Unsigned 12-bit constant
Richard Sandiford21f5d682014-03-06 11:22:58 +0000733 if (auto *C = dyn_cast<ConstantSDNode>(Op))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000734 if (isUInt<12>(C->getZExtValue()))
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +0000735 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000736 Op.getValueType()));
737 return;
738
739 case 'K': // Signed 16-bit constant
Richard Sandiford21f5d682014-03-06 11:22:58 +0000740 if (auto *C = dyn_cast<ConstantSDNode>(Op))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000741 if (isInt<16>(C->getSExtValue()))
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +0000742 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000743 Op.getValueType()));
744 return;
745
746 case 'L': // Signed 20-bit displacement (on all targets we support)
Richard Sandiford21f5d682014-03-06 11:22:58 +0000747 if (auto *C = dyn_cast<ConstantSDNode>(Op))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000748 if (isInt<20>(C->getSExtValue()))
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +0000749 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000750 Op.getValueType()));
751 return;
752
753 case 'M': // 0x7fffffff
Richard Sandiford21f5d682014-03-06 11:22:58 +0000754 if (auto *C = dyn_cast<ConstantSDNode>(Op))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000755 if (C->getZExtValue() == 0x7fffffff)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +0000756 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000757 Op.getValueType()));
758 return;
759 }
760 }
761 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
762}
763
764//===----------------------------------------------------------------------===//
765// Calling conventions
766//===----------------------------------------------------------------------===//
767
768#include "SystemZGenCallingConv.inc"
769
Richard Sandiford709bda62013-08-19 12:42:31 +0000770bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
771 Type *ToType) const {
772 return isTruncateFree(FromType, ToType);
773}
774
775bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
776 if (!CI->isTailCall())
777 return false;
778 return true;
779}
780
Ulrich Weigand5211f9f2015-05-05 19:30:05 +0000781// We do not yet support 128-bit single-element vector types. If the user
782// attempts to use such types as function argument or return type, prefer
783// to error out instead of emitting code violating the ABI.
784static void VerifyVectorType(MVT VT, EVT ArgVT) {
785 if (ArgVT.isVector() && !VT.isVector())
786 report_fatal_error("Unsupported vector argument or return type");
787}
788
789static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
790 for (unsigned i = 0; i < Ins.size(); ++i)
791 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
792}
793
794static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
795 for (unsigned i = 0; i < Outs.size(); ++i)
796 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
797}
798
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000799// Value is a value that has been passed to us in the location described by VA
800// (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
801// any loads onto Chain.
Andrew Trickef9de2a2013-05-25 02:42:55 +0000802static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000803 CCValAssign &VA, SDValue Chain,
804 SDValue Value) {
805 // If the argument has been promoted from a smaller type, insert an
806 // assertion to capture this.
807 if (VA.getLocInfo() == CCValAssign::SExt)
808 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
809 DAG.getValueType(VA.getValVT()));
810 else if (VA.getLocInfo() == CCValAssign::ZExt)
811 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
812 DAG.getValueType(VA.getValVT()));
813
814 if (VA.isExtInLoc())
815 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
816 else if (VA.getLocInfo() == CCValAssign::Indirect)
817 Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
818 MachinePointerInfo(), false, false, false, 0);
Ulrich Weigandcd2a1b52015-05-05 19:29:21 +0000819 else if (VA.getLocInfo() == CCValAssign::BCvt) {
820 // If this is a short vector argument loaded from the stack,
821 // extend from i64 to full vector size and then bitcast.
822 assert(VA.getLocVT() == MVT::i64);
823 assert(VA.getValVT().isVector());
824 Value = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i64,
825 Value, DAG.getUNDEF(MVT::i64));
826 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
827 } else
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000828 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
829 return Value;
830}
831
832// Value is a value of type VA.getValVT() that we need to copy into
833// the location described by VA. Return a copy of Value converted to
834// VA.getValVT(). The caller is responsible for handling indirect values.
Andrew Trickef9de2a2013-05-25 02:42:55 +0000835static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000836 CCValAssign &VA, SDValue Value) {
837 switch (VA.getLocInfo()) {
838 case CCValAssign::SExt:
839 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
840 case CCValAssign::ZExt:
841 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
842 case CCValAssign::AExt:
843 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
Ulrich Weigandcd2a1b52015-05-05 19:29:21 +0000844 case CCValAssign::BCvt:
845 // If this is a short vector argument to be stored to the stack,
846 // bitcast to v2i64 and then extract first element.
847 assert(VA.getLocVT() == MVT::i64);
848 assert(VA.getValVT().isVector());
849 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
850 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
851 DAG.getConstant(0, DL, MVT::i32));
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000852 case CCValAssign::Full:
853 return Value;
854 default:
855 llvm_unreachable("Unhandled getLocInfo()");
856 }
857}
858
859SDValue SystemZTargetLowering::
860LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
861 const SmallVectorImpl<ISD::InputArg> &Ins,
Andrew Trickef9de2a2013-05-25 02:42:55 +0000862 SDLoc DL, SelectionDAG &DAG,
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000863 SmallVectorImpl<SDValue> &InVals) const {
864 MachineFunction &MF = DAG.getMachineFunction();
865 MachineFrameInfo *MFI = MF.getFrameInfo();
866 MachineRegisterInfo &MRI = MF.getRegInfo();
867 SystemZMachineFunctionInfo *FuncInfo =
Eric Christophera6734172015-01-31 00:06:45 +0000868 MF.getInfo<SystemZMachineFunctionInfo>();
869 auto *TFL =
870 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000871
Ulrich Weigand5211f9f2015-05-05 19:30:05 +0000872 // Detect unsupported vector argument types.
873 if (Subtarget.hasVector())
874 VerifyVectorTypes(Ins);
875
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000876 // Assign locations to all of the incoming arguments.
877 SmallVector<CCValAssign, 16> ArgLocs;
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000878 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000879 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
880
881 unsigned NumFixedGPRs = 0;
882 unsigned NumFixedFPRs = 0;
883 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
884 SDValue ArgValue;
885 CCValAssign &VA = ArgLocs[I];
886 EVT LocVT = VA.getLocVT();
887 if (VA.isRegLoc()) {
888 // Arguments passed in registers
889 const TargetRegisterClass *RC;
890 switch (LocVT.getSimpleVT().SimpleTy) {
891 default:
892 // Integers smaller than i64 should be promoted to i64.
893 llvm_unreachable("Unexpected argument type");
894 case MVT::i32:
895 NumFixedGPRs += 1;
896 RC = &SystemZ::GR32BitRegClass;
897 break;
898 case MVT::i64:
899 NumFixedGPRs += 1;
900 RC = &SystemZ::GR64BitRegClass;
901 break;
902 case MVT::f32:
903 NumFixedFPRs += 1;
904 RC = &SystemZ::FP32BitRegClass;
905 break;
906 case MVT::f64:
907 NumFixedFPRs += 1;
908 RC = &SystemZ::FP64BitRegClass;
909 break;
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000910 case MVT::v16i8:
911 case MVT::v8i16:
912 case MVT::v4i32:
913 case MVT::v2i64:
Ulrich Weigand80b3af72015-05-05 19:27:45 +0000914 case MVT::v4f32:
Ulrich Weigandcd808232015-05-05 19:26:48 +0000915 case MVT::v2f64:
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000916 RC = &SystemZ::VR128BitRegClass;
917 break;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000918 }
919
920 unsigned VReg = MRI.createVirtualRegister(RC);
921 MRI.addLiveIn(VA.getLocReg(), VReg);
922 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
923 } else {
924 assert(VA.isMemLoc() && "Argument not register or memory");
925
926 // Create the frame index object for this incoming parameter.
927 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
928 VA.getLocMemOffset(), true);
929
930 // Create the SelectionDAG nodes corresponding to a load
931 // from this parameter. Unpromoted ints and floats are
932 // passed as right-justified 8-byte values.
933 EVT PtrVT = getPointerTy();
934 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
935 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +0000936 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
937 DAG.getIntPtrConstant(4, DL));
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000938 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
939 MachinePointerInfo::getFixedStack(FI),
940 false, false, false, 0);
941 }
942
943 // Convert the value of the argument register into the value that's
944 // being passed.
945 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
946 }
947
948 if (IsVarArg) {
949 // Save the number of non-varargs registers for later use by va_start, etc.
950 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
951 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
952
953 // Likewise the address (in the form of a frame index) of where the
954 // first stack vararg would be. The 1-byte size here is arbitrary.
955 int64_t StackSize = CCInfo.getNextStackOffset();
956 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
957
958 // ...and a similar frame index for the caller-allocated save area
959 // that will be used to store the incoming registers.
960 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
961 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
962 FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
963
964 // Store the FPR varargs in the reserved frame slots. (We store the
965 // GPRs as part of the prologue.)
966 if (NumFixedFPRs < SystemZ::NumArgFPRs) {
967 SDValue MemOps[SystemZ::NumArgFPRs];
968 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
969 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
970 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
971 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
972 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
973 &SystemZ::FP64BitRegClass);
974 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
975 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
976 MachinePointerInfo::getFixedStack(FI),
977 false, false, 0);
978
979 }
980 // Join the stores, which are independent of one another.
981 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
Craig Topper2d2aa0c2014-04-30 07:17:30 +0000982 makeArrayRef(&MemOps[NumFixedFPRs],
983 SystemZ::NumArgFPRs-NumFixedFPRs));
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000984 }
985 }
986
987 return Chain;
988}
989
Benjamin Kramerc6cc58e2014-10-04 16:55:56 +0000990static bool canUseSiblingCall(const CCState &ArgCCInfo,
Richard Sandiford709bda62013-08-19 12:42:31 +0000991 SmallVectorImpl<CCValAssign> &ArgLocs) {
992 // Punt if there are any indirect or stack arguments, or if the call
993 // needs the call-saved argument register R6.
994 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
995 CCValAssign &VA = ArgLocs[I];
996 if (VA.getLocInfo() == CCValAssign::Indirect)
997 return false;
998 if (!VA.isRegLoc())
999 return false;
1000 unsigned Reg = VA.getLocReg();
Richard Sandiford0755c932013-10-01 11:26:28 +00001001 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
Richard Sandiford709bda62013-08-19 12:42:31 +00001002 return false;
1003 }
1004 return true;
1005}
1006
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001007SDValue
1008SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1009 SmallVectorImpl<SDValue> &InVals) const {
1010 SelectionDAG &DAG = CLI.DAG;
Andrew Trickef9de2a2013-05-25 02:42:55 +00001011 SDLoc &DL = CLI.DL;
Craig Topperb94011f2013-07-14 04:42:23 +00001012 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1013 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1014 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001015 SDValue Chain = CLI.Chain;
1016 SDValue Callee = CLI.Callee;
Richard Sandiford709bda62013-08-19 12:42:31 +00001017 bool &IsTailCall = CLI.IsTailCall;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001018 CallingConv::ID CallConv = CLI.CallConv;
1019 bool IsVarArg = CLI.IsVarArg;
1020 MachineFunction &MF = DAG.getMachineFunction();
1021 EVT PtrVT = getPointerTy();
1022
Ulrich Weigand5211f9f2015-05-05 19:30:05 +00001023 // Detect unsupported vector argument and return types.
1024 if (Subtarget.hasVector()) {
1025 VerifyVectorTypes(Outs);
1026 VerifyVectorTypes(Ins);
1027 }
1028
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001029 // Analyze the operands of the call, assigning locations to each operand.
1030 SmallVector<CCValAssign, 16> ArgLocs;
Ulrich Weigandce4c1092015-05-05 19:25:42 +00001031 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001032 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1033
Richard Sandiford709bda62013-08-19 12:42:31 +00001034 // We don't support GuaranteedTailCallOpt, only automatically-detected
1035 // sibling calls.
1036 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
1037 IsTailCall = false;
1038
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001039 // Get a count of how many bytes are to be pushed on the stack.
1040 unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1041
1042 // Mark the start of the call.
Richard Sandiford709bda62013-08-19 12:42:31 +00001043 if (!IsTailCall)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001044 Chain = DAG.getCALLSEQ_START(Chain,
1045 DAG.getConstant(NumBytes, DL, PtrVT, true),
Richard Sandiford709bda62013-08-19 12:42:31 +00001046 DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001047
1048 // Copy argument values to their designated locations.
1049 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1050 SmallVector<SDValue, 8> MemOpChains;
1051 SDValue StackPtr;
1052 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1053 CCValAssign &VA = ArgLocs[I];
1054 SDValue ArgValue = OutVals[I];
1055
1056 if (VA.getLocInfo() == CCValAssign::Indirect) {
1057 // Store the argument in a stack slot and pass its address.
1058 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1059 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1060 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1061 MachinePointerInfo::getFixedStack(FI),
1062 false, false, 0));
1063 ArgValue = SpillSlot;
1064 } else
1065 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1066
1067 if (VA.isRegLoc())
1068 // Queue up the argument copies and emit them at the end.
1069 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1070 else {
1071 assert(VA.isMemLoc() && "Argument not register or memory");
1072
1073 // Work out the address of the stack slot. Unpromoted ints and
1074 // floats are passed as right-justified 8-byte values.
1075 if (!StackPtr.getNode())
1076 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1077 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1078 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1079 Offset += 4;
1080 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001081 DAG.getIntPtrConstant(Offset, DL));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001082
1083 // Emit the store.
1084 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
1085 MachinePointerInfo(),
1086 false, false, 0));
1087 }
1088 }
1089
1090 // Join the stores, which are independent of one another.
1091 if (!MemOpChains.empty())
Craig Topper48d114b2014-04-26 18:35:24 +00001092 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001093
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001094 // Accept direct calls by converting symbolic call addresses to the
Richard Sandiford709bda62013-08-19 12:42:31 +00001095 // associated Target* opcodes. Force %r1 to be used for indirect
1096 // tail calls.
1097 SDValue Glue;
Richard Sandiford21f5d682014-03-06 11:22:58 +00001098 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001099 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1100 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
Richard Sandiford21f5d682014-03-06 11:22:58 +00001101 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001102 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1103 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
Richard Sandiford709bda62013-08-19 12:42:31 +00001104 } else if (IsTailCall) {
1105 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1106 Glue = Chain.getValue(1);
1107 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1108 }
1109
1110 // Build a sequence of copy-to-reg nodes, chained and glued together.
1111 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1112 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1113 RegsToPass[I].second, Glue);
1114 Glue = Chain.getValue(1);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001115 }
1116
1117 // The first call operand is the chain and the second is the target address.
1118 SmallVector<SDValue, 8> Ops;
1119 Ops.push_back(Chain);
1120 Ops.push_back(Callee);
1121
1122 // Add argument registers to the end of the list so that they are
1123 // known live into the call.
1124 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1125 Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1126 RegsToPass[I].second.getValueType()));
1127
Richard Sandiford02bb0ec2014-07-10 11:44:37 +00001128 // Add a register mask operand representing the call-preserved registers.
Eric Christophera6734172015-01-31 00:06:45 +00001129 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
Eric Christopher9deb75d2015-03-11 22:42:13 +00001130 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
Richard Sandiford02bb0ec2014-07-10 11:44:37 +00001131 assert(Mask && "Missing call preserved mask for calling convention");
1132 Ops.push_back(DAG.getRegisterMask(Mask));
1133
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001134 // Glue the call to the argument copies, if any.
1135 if (Glue.getNode())
1136 Ops.push_back(Glue);
1137
1138 // Emit the call.
1139 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Richard Sandiford709bda62013-08-19 12:42:31 +00001140 if (IsTailCall)
Craig Topper48d114b2014-04-26 18:35:24 +00001141 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1142 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001143 Glue = Chain.getValue(1);
1144
1145 // Mark the end of the call, which is glued to the call itself.
1146 Chain = DAG.getCALLSEQ_END(Chain,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001147 DAG.getConstant(NumBytes, DL, PtrVT, true),
1148 DAG.getConstant(0, DL, PtrVT, true),
Andrew Trickad6d08a2013-05-29 22:03:55 +00001149 Glue, DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001150 Glue = Chain.getValue(1);
1151
1152 // Assign locations to each value returned by this call.
1153 SmallVector<CCValAssign, 16> RetLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00001154 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001155 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1156
1157 // Copy all of the result registers out of their specified physreg.
1158 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1159 CCValAssign &VA = RetLocs[I];
1160
1161 // Copy the value out, gluing the copy to the end of the call sequence.
1162 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1163 VA.getLocVT(), Glue);
1164 Chain = RetValue.getValue(1);
1165 Glue = RetValue.getValue(2);
1166
1167 // Convert the value of the return register into the value that's
1168 // being returned.
1169 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1170 }
1171
1172 return Chain;
1173}
1174
1175SDValue
1176SystemZTargetLowering::LowerReturn(SDValue Chain,
1177 CallingConv::ID CallConv, bool IsVarArg,
1178 const SmallVectorImpl<ISD::OutputArg> &Outs,
1179 const SmallVectorImpl<SDValue> &OutVals,
Andrew Trickef9de2a2013-05-25 02:42:55 +00001180 SDLoc DL, SelectionDAG &DAG) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001181 MachineFunction &MF = DAG.getMachineFunction();
1182
Ulrich Weigand5211f9f2015-05-05 19:30:05 +00001183 // Detect unsupported vector return types.
1184 if (Subtarget.hasVector())
1185 VerifyVectorTypes(Outs);
1186
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001187 // Assign locations to each returned value.
1188 SmallVector<CCValAssign, 16> RetLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00001189 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001190 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1191
1192 // Quick exit for void returns
1193 if (RetLocs.empty())
1194 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1195
1196 // Copy the result values into the output registers.
1197 SDValue Glue;
1198 SmallVector<SDValue, 4> RetOps;
1199 RetOps.push_back(Chain);
1200 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1201 CCValAssign &VA = RetLocs[I];
1202 SDValue RetValue = OutVals[I];
1203
1204 // Make the return register live on exit.
1205 assert(VA.isRegLoc() && "Can only return in registers!");
1206
1207 // Promote the value as required.
1208 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1209
1210 // Chain and glue the copies together.
1211 unsigned Reg = VA.getLocReg();
1212 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1213 Glue = Chain.getValue(1);
1214 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1215 }
1216
1217 // Update chain and glue.
1218 RetOps[0] = Chain;
1219 if (Glue.getNode())
1220 RetOps.push_back(Glue);
1221
Craig Topper48d114b2014-04-26 18:35:24 +00001222 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001223}
1224
Richard Sandiford9afe6132013-12-10 10:36:34 +00001225SDValue SystemZTargetLowering::
1226prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const {
1227 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
1228}
1229
Ulrich Weigand57c85f52015-04-01 12:51:43 +00001230// Return true if Op is an intrinsic node with chain that returns the CC value
1231// as its only (other) argument. Provide the associated SystemZISD opcode and
1232// the mask of valid CC values if so.
1233static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1234 unsigned &CCValid) {
1235 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1236 switch (Id) {
1237 case Intrinsic::s390_tbegin:
1238 Opcode = SystemZISD::TBEGIN;
1239 CCValid = SystemZ::CCMASK_TBEGIN;
1240 return true;
1241
1242 case Intrinsic::s390_tbegin_nofloat:
1243 Opcode = SystemZISD::TBEGIN_NOFLOAT;
1244 CCValid = SystemZ::CCMASK_TBEGIN;
1245 return true;
1246
1247 case Intrinsic::s390_tend:
1248 Opcode = SystemZISD::TEND;
1249 CCValid = SystemZ::CCMASK_TEND;
1250 return true;
1251
1252 default:
1253 return false;
1254 }
1255}
1256
Ulrich Weigandc1708b22015-05-05 19:31:09 +00001257// Return true if Op is an intrinsic node without chain that returns the
1258// CC value as its final argument. Provide the associated SystemZISD
1259// opcode and the mask of valid CC values if so.
1260static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1261 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1262 switch (Id) {
1263 case Intrinsic::s390_vpkshs:
1264 case Intrinsic::s390_vpksfs:
1265 case Intrinsic::s390_vpksgs:
1266 Opcode = SystemZISD::PACKS_CC;
1267 CCValid = SystemZ::CCMASK_VCMP;
1268 return true;
1269
1270 case Intrinsic::s390_vpklshs:
1271 case Intrinsic::s390_vpklsfs:
1272 case Intrinsic::s390_vpklsgs:
1273 Opcode = SystemZISD::PACKLS_CC;
1274 CCValid = SystemZ::CCMASK_VCMP;
1275 return true;
1276
1277 case Intrinsic::s390_vceqbs:
1278 case Intrinsic::s390_vceqhs:
1279 case Intrinsic::s390_vceqfs:
1280 case Intrinsic::s390_vceqgs:
1281 Opcode = SystemZISD::VICMPES;
1282 CCValid = SystemZ::CCMASK_VCMP;
1283 return true;
1284
1285 case Intrinsic::s390_vchbs:
1286 case Intrinsic::s390_vchhs:
1287 case Intrinsic::s390_vchfs:
1288 case Intrinsic::s390_vchgs:
1289 Opcode = SystemZISD::VICMPHS;
1290 CCValid = SystemZ::CCMASK_VCMP;
1291 return true;
1292
1293 case Intrinsic::s390_vchlbs:
1294 case Intrinsic::s390_vchlhs:
1295 case Intrinsic::s390_vchlfs:
1296 case Intrinsic::s390_vchlgs:
1297 Opcode = SystemZISD::VICMPHLS;
1298 CCValid = SystemZ::CCMASK_VCMP;
1299 return true;
1300
1301 case Intrinsic::s390_vtm:
1302 Opcode = SystemZISD::VTM;
1303 CCValid = SystemZ::CCMASK_VCMP;
1304 return true;
1305
1306 case Intrinsic::s390_vfaebs:
1307 case Intrinsic::s390_vfaehs:
1308 case Intrinsic::s390_vfaefs:
1309 Opcode = SystemZISD::VFAE_CC;
1310 CCValid = SystemZ::CCMASK_ANY;
1311 return true;
1312
1313 case Intrinsic::s390_vfaezbs:
1314 case Intrinsic::s390_vfaezhs:
1315 case Intrinsic::s390_vfaezfs:
1316 Opcode = SystemZISD::VFAEZ_CC;
1317 CCValid = SystemZ::CCMASK_ANY;
1318 return true;
1319
1320 case Intrinsic::s390_vfeebs:
1321 case Intrinsic::s390_vfeehs:
1322 case Intrinsic::s390_vfeefs:
1323 Opcode = SystemZISD::VFEE_CC;
1324 CCValid = SystemZ::CCMASK_ANY;
1325 return true;
1326
1327 case Intrinsic::s390_vfeezbs:
1328 case Intrinsic::s390_vfeezhs:
1329 case Intrinsic::s390_vfeezfs:
1330 Opcode = SystemZISD::VFEEZ_CC;
1331 CCValid = SystemZ::CCMASK_ANY;
1332 return true;
1333
1334 case Intrinsic::s390_vfenebs:
1335 case Intrinsic::s390_vfenehs:
1336 case Intrinsic::s390_vfenefs:
1337 Opcode = SystemZISD::VFENE_CC;
1338 CCValid = SystemZ::CCMASK_ANY;
1339 return true;
1340
1341 case Intrinsic::s390_vfenezbs:
1342 case Intrinsic::s390_vfenezhs:
1343 case Intrinsic::s390_vfenezfs:
1344 Opcode = SystemZISD::VFENEZ_CC;
1345 CCValid = SystemZ::CCMASK_ANY;
1346 return true;
1347
1348 case Intrinsic::s390_vistrbs:
1349 case Intrinsic::s390_vistrhs:
1350 case Intrinsic::s390_vistrfs:
1351 Opcode = SystemZISD::VISTR_CC;
1352 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1353 return true;
1354
1355 case Intrinsic::s390_vstrcbs:
1356 case Intrinsic::s390_vstrchs:
1357 case Intrinsic::s390_vstrcfs:
1358 Opcode = SystemZISD::VSTRC_CC;
1359 CCValid = SystemZ::CCMASK_ANY;
1360 return true;
1361
1362 case Intrinsic::s390_vstrczbs:
1363 case Intrinsic::s390_vstrczhs:
1364 case Intrinsic::s390_vstrczfs:
1365 Opcode = SystemZISD::VSTRCZ_CC;
1366 CCValid = SystemZ::CCMASK_ANY;
1367 return true;
1368
1369 case Intrinsic::s390_vfcedbs:
1370 Opcode = SystemZISD::VFCMPES;
1371 CCValid = SystemZ::CCMASK_VCMP;
1372 return true;
1373
1374 case Intrinsic::s390_vfchdbs:
1375 Opcode = SystemZISD::VFCMPHS;
1376 CCValid = SystemZ::CCMASK_VCMP;
1377 return true;
1378
1379 case Intrinsic::s390_vfchedbs:
1380 Opcode = SystemZISD::VFCMPHES;
1381 CCValid = SystemZ::CCMASK_VCMP;
1382 return true;
1383
1384 case Intrinsic::s390_vftcidb:
1385 Opcode = SystemZISD::VFTCI;
1386 CCValid = SystemZ::CCMASK_VCMP;
1387 return true;
1388
1389 default:
1390 return false;
1391 }
1392}
1393
Ulrich Weigand57c85f52015-04-01 12:51:43 +00001394// Emit an intrinsic with chain with a glued value instead of its CC result.
1395static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op,
1396 unsigned Opcode) {
1397 // Copy all operands except the intrinsic ID.
1398 unsigned NumOps = Op.getNumOperands();
1399 SmallVector<SDValue, 6> Ops;
1400 Ops.reserve(NumOps - 1);
1401 Ops.push_back(Op.getOperand(0));
1402 for (unsigned I = 2; I < NumOps; ++I)
1403 Ops.push_back(Op.getOperand(I));
1404
1405 assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1406 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1407 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1408 SDValue OldChain = SDValue(Op.getNode(), 1);
1409 SDValue NewChain = SDValue(Intr.getNode(), 0);
1410 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1411 return Intr;
1412}
1413
Ulrich Weigandc1708b22015-05-05 19:31:09 +00001414// Emit an intrinsic with a glued value instead of its CC result.
1415static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op,
1416 unsigned Opcode) {
1417 // Copy all operands except the intrinsic ID.
1418 unsigned NumOps = Op.getNumOperands();
1419 SmallVector<SDValue, 6> Ops;
1420 Ops.reserve(NumOps - 1);
1421 for (unsigned I = 1; I < NumOps; ++I)
1422 Ops.push_back(Op.getOperand(I));
1423
1424 if (Op->getNumValues() == 1)
1425 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops);
1426 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result");
1427 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue);
1428 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1429}
1430
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001431// CC is a comparison that will be implemented using an integer or
1432// floating-point comparison. Return the condition code mask for
1433// a branch on true. In the integer case, CCMASK_CMP_UO is set for
1434// unsigned comparisons and clear for signed ones. In the floating-point
1435// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1436static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1437#define CONV(X) \
1438 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1439 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1440 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1441
1442 switch (CC) {
1443 default:
1444 llvm_unreachable("Invalid integer condition!");
1445
1446 CONV(EQ);
1447 CONV(NE);
1448 CONV(GT);
1449 CONV(GE);
1450 CONV(LT);
1451 CONV(LE);
1452
1453 case ISD::SETO: return SystemZ::CCMASK_CMP_O;
1454 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1455 }
1456#undef CONV
1457}
1458
Richard Sandifordf722a8e302013-10-16 11:10:55 +00001459// Return a sequence for getting a 1 from an IPM result when CC has a
1460// value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1461// The handling of CC values outside CCValid doesn't matter.
1462static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1463 // Deal with cases where the result can be taken directly from a bit
1464 // of the IPM result.
1465 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1466 return IPMConversion(0, 0, SystemZ::IPM_CC);
1467 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1468 return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1469
1470 // Deal with cases where we can add a value to force the sign bit
1471 // to contain the right value. Putting the bit in 31 means we can
1472 // use SRL rather than RISBG(L), and also makes it easier to get a
1473 // 0/-1 value, so it has priority over the other tests below.
1474 //
1475 // These sequences rely on the fact that the upper two bits of the
1476 // IPM result are zero.
1477 uint64_t TopBit = uint64_t(1) << 31;
1478 if (CCMask == (CCValid & SystemZ::CCMASK_0))
1479 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1480 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1481 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1482 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1483 | SystemZ::CCMASK_1
1484 | SystemZ::CCMASK_2)))
1485 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1486 if (CCMask == (CCValid & SystemZ::CCMASK_3))
1487 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1488 if (CCMask == (CCValid & (SystemZ::CCMASK_1
1489 | SystemZ::CCMASK_2
1490 | SystemZ::CCMASK_3)))
1491 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1492
1493 // Next try inverting the value and testing a bit. 0/1 could be
1494 // handled this way too, but we dealt with that case above.
1495 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1496 return IPMConversion(-1, 0, SystemZ::IPM_CC);
1497
1498 // Handle cases where adding a value forces a non-sign bit to contain
1499 // the right value.
1500 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1501 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1502 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1503 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1504
Alp Tokercb402912014-01-24 17:20:08 +00001505 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are
Richard Sandifordf722a8e302013-10-16 11:10:55 +00001506 // can be done by inverting the low CC bit and applying one of the
1507 // sign-based extractions above.
1508 if (CCMask == (CCValid & SystemZ::CCMASK_1))
1509 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1510 if (CCMask == (CCValid & SystemZ::CCMASK_2))
1511 return IPMConversion(1 << SystemZ::IPM_CC,
1512 TopBit - (3 << SystemZ::IPM_CC), 31);
1513 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1514 | SystemZ::CCMASK_1
1515 | SystemZ::CCMASK_3)))
1516 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1517 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1518 | SystemZ::CCMASK_2
1519 | SystemZ::CCMASK_3)))
1520 return IPMConversion(1 << SystemZ::IPM_CC,
1521 TopBit - (1 << SystemZ::IPM_CC), 31);
1522
1523 llvm_unreachable("Unexpected CC combination");
1524}
1525
Richard Sandifordd420f732013-12-13 15:28:45 +00001526// If C can be converted to a comparison against zero, adjust the operands
Richard Sandiforda0757082013-08-01 10:29:45 +00001527// as necessary.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001528static void adjustZeroCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001529 if (C.ICmpType == SystemZICMP::UnsignedOnly)
Richard Sandiforda0757082013-08-01 10:29:45 +00001530 return;
1531
Richard Sandiford21f5d682014-03-06 11:22:58 +00001532 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
Richard Sandiforda0757082013-08-01 10:29:45 +00001533 if (!ConstOp1)
1534 return;
1535
1536 int64_t Value = ConstOp1->getSExtValue();
Richard Sandifordd420f732013-12-13 15:28:45 +00001537 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1538 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1539 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1540 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1541 C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001542 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
Richard Sandiforda0757082013-08-01 10:29:45 +00001543 }
1544}
1545
Richard Sandifordd420f732013-12-13 15:28:45 +00001546// If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1547// adjust the operands as necessary.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001548static void adjustSubwordCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001549 // For us to make any changes, it must a comparison between a single-use
1550 // load and a constant.
Richard Sandifordd420f732013-12-13 15:28:45 +00001551 if (!C.Op0.hasOneUse() ||
1552 C.Op0.getOpcode() != ISD::LOAD ||
1553 C.Op1.getOpcode() != ISD::Constant)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001554 return;
1555
1556 // We must have an 8- or 16-bit load.
Richard Sandiford21f5d682014-03-06 11:22:58 +00001557 auto *Load = cast<LoadSDNode>(C.Op0);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001558 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1559 if (NumBits != 8 && NumBits != 16)
1560 return;
1561
1562 // The load must be an extending one and the constant must be within the
1563 // range of the unextended value.
Richard Sandiford21f5d682014-03-06 11:22:58 +00001564 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
Richard Sandifordd420f732013-12-13 15:28:45 +00001565 uint64_t Value = ConstOp1->getZExtValue();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001566 uint64_t Mask = (1 << NumBits) - 1;
1567 if (Load->getExtensionType() == ISD::SEXTLOAD) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001568 // Make sure that ConstOp1 is in range of C.Op0.
1569 int64_t SignedValue = ConstOp1->getSExtValue();
1570 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001571 return;
Richard Sandifordd420f732013-12-13 15:28:45 +00001572 if (C.ICmpType != SystemZICMP::SignedOnly) {
1573 // Unsigned comparison between two sign-extended values is equivalent
1574 // to unsigned comparison between two zero-extended values.
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001575 Value &= Mask;
Richard Sandifordd420f732013-12-13 15:28:45 +00001576 } else if (NumBits == 8) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001577 // Try to treat the comparison as unsigned, so that we can use CLI.
1578 // Adjust CCMask and Value as necessary.
Richard Sandifordd420f732013-12-13 15:28:45 +00001579 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001580 // Test whether the high bit of the byte is set.
Richard Sandifordd420f732013-12-13 15:28:45 +00001581 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1582 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001583 // Test whether the high bit of the byte is clear.
Richard Sandifordd420f732013-12-13 15:28:45 +00001584 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001585 else
1586 // No instruction exists for this combination.
1587 return;
Richard Sandifordd420f732013-12-13 15:28:45 +00001588 C.ICmpType = SystemZICMP::UnsignedOnly;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001589 }
1590 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1591 if (Value > Mask)
1592 return;
Richard Sandifordd420f732013-12-13 15:28:45 +00001593 assert(C.ICmpType == SystemZICMP::Any &&
1594 "Signedness shouldn't matter here.");
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001595 } else
1596 return;
1597
1598 // Make sure that the first operand is an i32 of the right extension type.
Richard Sandifordd420f732013-12-13 15:28:45 +00001599 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1600 ISD::SEXTLOAD :
1601 ISD::ZEXTLOAD);
1602 if (C.Op0.getValueType() != MVT::i32 ||
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001603 Load->getExtensionType() != ExtType)
Richard Sandifordd420f732013-12-13 15:28:45 +00001604 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
1605 Load->getChain(), Load->getBasePtr(),
1606 Load->getPointerInfo(), Load->getMemoryVT(),
1607 Load->isVolatile(), Load->isNonTemporal(),
Louis Gerbarg67474e32014-07-31 21:45:05 +00001608 Load->isInvariant(), Load->getAlignment());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001609
1610 // Make sure that the second operand is an i32 with the right value.
Richard Sandifordd420f732013-12-13 15:28:45 +00001611 if (C.Op1.getValueType() != MVT::i32 ||
1612 Value != ConstOp1->getZExtValue())
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001613 C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001614}
1615
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001616// Return true if Op is either an unextended load, or a load suitable
1617// for integer register-memory comparisons of type ICmpType.
1618static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
Richard Sandiford21f5d682014-03-06 11:22:58 +00001619 auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001620 if (Load) {
1621 // There are no instructions to compare a register with a memory byte.
1622 if (Load->getMemoryVT() == MVT::i8)
1623 return false;
1624 // Otherwise decide on extension type.
Richard Sandiford24e597b2013-08-23 11:27:19 +00001625 switch (Load->getExtensionType()) {
1626 case ISD::NON_EXTLOAD:
Richard Sandiford24e597b2013-08-23 11:27:19 +00001627 return true;
1628 case ISD::SEXTLOAD:
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001629 return ICmpType != SystemZICMP::UnsignedOnly;
Richard Sandiford24e597b2013-08-23 11:27:19 +00001630 case ISD::ZEXTLOAD:
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001631 return ICmpType != SystemZICMP::SignedOnly;
Richard Sandiford24e597b2013-08-23 11:27:19 +00001632 default:
1633 break;
1634 }
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001635 }
Richard Sandiford24e597b2013-08-23 11:27:19 +00001636 return false;
1637}
1638
Richard Sandifordd420f732013-12-13 15:28:45 +00001639// Return true if it is better to swap the operands of C.
1640static bool shouldSwapCmpOperands(const Comparison &C) {
Richard Sandiford24e597b2013-08-23 11:27:19 +00001641 // Leave f128 comparisons alone, since they have no memory forms.
Richard Sandifordd420f732013-12-13 15:28:45 +00001642 if (C.Op0.getValueType() == MVT::f128)
Richard Sandiford24e597b2013-08-23 11:27:19 +00001643 return false;
1644
1645 // Always keep a floating-point constant second, since comparisons with
1646 // zero can use LOAD TEST and comparisons with other constants make a
1647 // natural memory operand.
Richard Sandifordd420f732013-12-13 15:28:45 +00001648 if (isa<ConstantFPSDNode>(C.Op1))
Richard Sandiford24e597b2013-08-23 11:27:19 +00001649 return false;
1650
1651 // Never swap comparisons with zero since there are many ways to optimize
1652 // those later.
Richard Sandiford21f5d682014-03-06 11:22:58 +00001653 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
Richard Sandifordd420f732013-12-13 15:28:45 +00001654 if (ConstOp1 && ConstOp1->getZExtValue() == 0)
Richard Sandiford24e597b2013-08-23 11:27:19 +00001655 return false;
1656
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001657 // Also keep natural memory operands second if the loaded value is
1658 // only used here. Several comparisons have memory forms.
Richard Sandifordd420f732013-12-13 15:28:45 +00001659 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001660 return false;
1661
Richard Sandiford24e597b2013-08-23 11:27:19 +00001662 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1663 // In that case we generally prefer the memory to be second.
Richard Sandifordd420f732013-12-13 15:28:45 +00001664 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
Richard Sandiford24e597b2013-08-23 11:27:19 +00001665 // The only exceptions are when the second operand is a constant and
1666 // we can use things like CHHSI.
Richard Sandifordd420f732013-12-13 15:28:45 +00001667 if (!ConstOp1)
Richard Sandiford24e597b2013-08-23 11:27:19 +00001668 return true;
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001669 // The unsigned memory-immediate instructions can handle 16-bit
1670 // unsigned integers.
Richard Sandifordd420f732013-12-13 15:28:45 +00001671 if (C.ICmpType != SystemZICMP::SignedOnly &&
1672 isUInt<16>(ConstOp1->getZExtValue()))
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001673 return false;
1674 // The signed memory-immediate instructions can handle 16-bit
1675 // signed integers.
Richard Sandifordd420f732013-12-13 15:28:45 +00001676 if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1677 isInt<16>(ConstOp1->getSExtValue()))
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001678 return false;
Richard Sandiford24e597b2013-08-23 11:27:19 +00001679 return true;
1680 }
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001681
1682 // Try to promote the use of CGFR and CLGFR.
Richard Sandifordd420f732013-12-13 15:28:45 +00001683 unsigned Opcode0 = C.Op0.getOpcode();
1684 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001685 return true;
Richard Sandifordd420f732013-12-13 15:28:45 +00001686 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001687 return true;
Richard Sandifordd420f732013-12-13 15:28:45 +00001688 if (C.ICmpType != SystemZICMP::SignedOnly &&
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001689 Opcode0 == ISD::AND &&
Richard Sandifordd420f732013-12-13 15:28:45 +00001690 C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1691 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001692 return true;
1693
Richard Sandiford24e597b2013-08-23 11:27:19 +00001694 return false;
1695}
1696
Richard Sandiford73170f82013-12-11 11:45:08 +00001697// Return a version of comparison CC mask CCMask in which the LT and GT
1698// actions are swapped.
1699static unsigned reverseCCMask(unsigned CCMask) {
1700 return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1701 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1702 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1703 (CCMask & SystemZ::CCMASK_CMP_UO));
1704}
1705
Richard Sandiford0847c452013-12-13 15:50:30 +00001706// Check whether C tests for equality between X and Y and whether X - Y
1707// or Y - X is also computed. In that case it's better to compare the
1708// result of the subtraction against zero.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001709static void adjustForSubtraction(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
Richard Sandiford0847c452013-12-13 15:50:30 +00001710 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1711 C.CCMask == SystemZ::CCMASK_CMP_NE) {
Richard Sandiford28c111e2014-03-06 11:00:15 +00001712 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
Richard Sandiford0847c452013-12-13 15:50:30 +00001713 SDNode *N = *I;
1714 if (N->getOpcode() == ISD::SUB &&
1715 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1716 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1717 C.Op0 = SDValue(N, 0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001718 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
Richard Sandiford0847c452013-12-13 15:50:30 +00001719 return;
1720 }
1721 }
1722 }
1723}
1724
Richard Sandifordd420f732013-12-13 15:28:45 +00001725// Check whether C compares a floating-point value with zero and if that
1726// floating-point value is also negated. In this case we can use the
1727// negation to set CC, so avoiding separate LOAD AND TEST and
1728// LOAD (NEGATIVE/COMPLEMENT) instructions.
1729static void adjustForFNeg(Comparison &C) {
Richard Sandiford21f5d682014-03-06 11:22:58 +00001730 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
Richard Sandiford73170f82013-12-11 11:45:08 +00001731 if (C1 && C1->isZero()) {
Richard Sandiford28c111e2014-03-06 11:00:15 +00001732 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
Richard Sandiford73170f82013-12-11 11:45:08 +00001733 SDNode *N = *I;
1734 if (N->getOpcode() == ISD::FNEG) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001735 C.Op0 = SDValue(N, 0);
1736 C.CCMask = reverseCCMask(C.CCMask);
Richard Sandiford73170f82013-12-11 11:45:08 +00001737 return;
1738 }
1739 }
1740 }
1741}
1742
Richard Sandifordd420f732013-12-13 15:28:45 +00001743// Check whether C compares (shl X, 32) with 0 and whether X is
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001744// also sign-extended. In that case it is better to test the result
1745// of the sign extension using LTGFR.
1746//
1747// This case is important because InstCombine transforms a comparison
1748// with (sext (trunc X)) into a comparison with (shl X, 32).
Richard Sandifordd420f732013-12-13 15:28:45 +00001749static void adjustForLTGFR(Comparison &C) {
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001750 // Check for a comparison between (shl X, 32) and 0.
Richard Sandifordd420f732013-12-13 15:28:45 +00001751 if (C.Op0.getOpcode() == ISD::SHL &&
1752 C.Op0.getValueType() == MVT::i64 &&
1753 C.Op1.getOpcode() == ISD::Constant &&
1754 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
Richard Sandiford21f5d682014-03-06 11:22:58 +00001755 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001756 if (C1 && C1->getZExtValue() == 32) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001757 SDValue ShlOp0 = C.Op0.getOperand(0);
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001758 // See whether X has any SIGN_EXTEND_INREG uses.
Richard Sandiford28c111e2014-03-06 11:00:15 +00001759 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001760 SDNode *N = *I;
1761 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1762 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001763 C.Op0 = SDValue(N, 0);
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001764 return;
1765 }
1766 }
1767 }
1768 }
1769}
1770
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00001771// If C compares the truncation of an extending load, try to compare
1772// the untruncated value instead. This exposes more opportunities to
1773// reuse CC.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001774static void adjustICmpTruncate(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00001775 if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1776 C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1777 C.Op1.getOpcode() == ISD::Constant &&
1778 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
Richard Sandiford21f5d682014-03-06 11:22:58 +00001779 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00001780 if (L->getMemoryVT().getStoreSizeInBits()
1781 <= C.Op0.getValueType().getSizeInBits()) {
1782 unsigned Type = L->getExtensionType();
1783 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
1784 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
1785 C.Op0 = C.Op0.getOperand(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001786 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00001787 }
1788 }
1789 }
1790}
1791
Richard Sandiford030c1652013-09-13 09:09:50 +00001792// Return true if shift operation N has an in-range constant shift value.
1793// Store it in ShiftVal if so.
1794static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
Richard Sandiford21f5d682014-03-06 11:22:58 +00001795 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
Richard Sandiford030c1652013-09-13 09:09:50 +00001796 if (!Shift)
1797 return false;
1798
1799 uint64_t Amount = Shift->getZExtValue();
1800 if (Amount >= N.getValueType().getSizeInBits())
1801 return false;
1802
1803 ShiftVal = Amount;
1804 return true;
1805}
1806
1807// Check whether an AND with Mask is suitable for a TEST UNDER MASK
1808// instruction and whether the CC value is descriptive enough to handle
1809// a comparison of type Opcode between the AND result and CmpVal.
1810// CCMask says which comparison result is being tested and BitSize is
1811// the number of bits in the operands. If TEST UNDER MASK can be used,
1812// return the corresponding CC mask, otherwise return 0.
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001813static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1814 uint64_t Mask, uint64_t CmpVal,
1815 unsigned ICmpType) {
Richard Sandiford113c8702013-09-03 15:38:35 +00001816 assert(Mask != 0 && "ANDs with zero should have been removed by now");
1817
Richard Sandiford030c1652013-09-13 09:09:50 +00001818 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1819 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1820 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1821 return 0;
1822
Richard Sandiford113c8702013-09-03 15:38:35 +00001823 // Work out the masks for the lowest and highest bits.
1824 unsigned HighShift = 63 - countLeadingZeros(Mask);
1825 uint64_t High = uint64_t(1) << HighShift;
1826 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1827
1828 // Signed ordered comparisons are effectively unsigned if the sign
1829 // bit is dropped.
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001830 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
Richard Sandiford113c8702013-09-03 15:38:35 +00001831
1832 // Check for equality comparisons with 0, or the equivalent.
1833 if (CmpVal == 0) {
1834 if (CCMask == SystemZ::CCMASK_CMP_EQ)
1835 return SystemZ::CCMASK_TM_ALL_0;
1836 if (CCMask == SystemZ::CCMASK_CMP_NE)
1837 return SystemZ::CCMASK_TM_SOME_1;
1838 }
1839 if (EffectivelyUnsigned && CmpVal <= Low) {
1840 if (CCMask == SystemZ::CCMASK_CMP_LT)
1841 return SystemZ::CCMASK_TM_ALL_0;
1842 if (CCMask == SystemZ::CCMASK_CMP_GE)
1843 return SystemZ::CCMASK_TM_SOME_1;
1844 }
1845 if (EffectivelyUnsigned && CmpVal < Low) {
1846 if (CCMask == SystemZ::CCMASK_CMP_LE)
1847 return SystemZ::CCMASK_TM_ALL_0;
1848 if (CCMask == SystemZ::CCMASK_CMP_GT)
1849 return SystemZ::CCMASK_TM_SOME_1;
1850 }
1851
1852 // Check for equality comparisons with the mask, or the equivalent.
1853 if (CmpVal == Mask) {
1854 if (CCMask == SystemZ::CCMASK_CMP_EQ)
1855 return SystemZ::CCMASK_TM_ALL_1;
1856 if (CCMask == SystemZ::CCMASK_CMP_NE)
1857 return SystemZ::CCMASK_TM_SOME_0;
1858 }
1859 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
1860 if (CCMask == SystemZ::CCMASK_CMP_GT)
1861 return SystemZ::CCMASK_TM_ALL_1;
1862 if (CCMask == SystemZ::CCMASK_CMP_LE)
1863 return SystemZ::CCMASK_TM_SOME_0;
1864 }
1865 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
1866 if (CCMask == SystemZ::CCMASK_CMP_GE)
1867 return SystemZ::CCMASK_TM_ALL_1;
1868 if (CCMask == SystemZ::CCMASK_CMP_LT)
1869 return SystemZ::CCMASK_TM_SOME_0;
1870 }
1871
1872 // Check for ordered comparisons with the top bit.
1873 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
1874 if (CCMask == SystemZ::CCMASK_CMP_LE)
1875 return SystemZ::CCMASK_TM_MSB_0;
1876 if (CCMask == SystemZ::CCMASK_CMP_GT)
1877 return SystemZ::CCMASK_TM_MSB_1;
1878 }
1879 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
1880 if (CCMask == SystemZ::CCMASK_CMP_LT)
1881 return SystemZ::CCMASK_TM_MSB_0;
1882 if (CCMask == SystemZ::CCMASK_CMP_GE)
1883 return SystemZ::CCMASK_TM_MSB_1;
1884 }
1885
1886 // If there are just two bits, we can do equality checks for Low and High
1887 // as well.
1888 if (Mask == Low + High) {
1889 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
1890 return SystemZ::CCMASK_TM_MIXED_MSB_0;
1891 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
1892 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
1893 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
1894 return SystemZ::CCMASK_TM_MIXED_MSB_1;
1895 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
1896 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
1897 }
1898
1899 // Looks like we've exhausted our options.
1900 return 0;
1901}
1902
Richard Sandifordd420f732013-12-13 15:28:45 +00001903// See whether C can be implemented as a TEST UNDER MASK instruction.
1904// Update the arguments with the TM version if so.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001905static void adjustForTestUnderMask(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
Richard Sandiford113c8702013-09-03 15:38:35 +00001906 // Check that we have a comparison with a constant.
Richard Sandiford21f5d682014-03-06 11:22:58 +00001907 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
Richard Sandifordd420f732013-12-13 15:28:45 +00001908 if (!ConstOp1)
Richard Sandiford35b9be22013-08-28 10:31:43 +00001909 return;
Richard Sandifordd420f732013-12-13 15:28:45 +00001910 uint64_t CmpVal = ConstOp1->getZExtValue();
Richard Sandiford35b9be22013-08-28 10:31:43 +00001911
1912 // Check whether the nonconstant input is an AND with a constant mask.
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001913 Comparison NewC(C);
1914 uint64_t MaskVal;
Craig Topper062a2ba2014-04-25 05:30:21 +00001915 ConstantSDNode *Mask = nullptr;
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001916 if (C.Op0.getOpcode() == ISD::AND) {
1917 NewC.Op0 = C.Op0.getOperand(0);
1918 NewC.Op1 = C.Op0.getOperand(1);
1919 Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
1920 if (!Mask)
1921 return;
1922 MaskVal = Mask->getZExtValue();
1923 } else {
1924 // There is no instruction to compare with a 64-bit immediate
1925 // so use TMHH instead if possible. We need an unsigned ordered
1926 // comparison with an i64 immediate.
1927 if (NewC.Op0.getValueType() != MVT::i64 ||
1928 NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
1929 NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
1930 NewC.ICmpType == SystemZICMP::SignedOnly)
1931 return;
1932 // Convert LE and GT comparisons into LT and GE.
1933 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
1934 NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
1935 if (CmpVal == uint64_t(-1))
1936 return;
1937 CmpVal += 1;
1938 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1939 }
1940 // If the low N bits of Op1 are zero than the low N bits of Op0 can
1941 // be masked off without changing the result.
1942 MaskVal = -(CmpVal & -CmpVal);
1943 NewC.ICmpType = SystemZICMP::UnsignedOnly;
1944 }
Ulrich Weigandb8d76fb2015-03-30 13:46:59 +00001945 if (!MaskVal)
1946 return;
Richard Sandiford35b9be22013-08-28 10:31:43 +00001947
Richard Sandiford113c8702013-09-03 15:38:35 +00001948 // Check whether the combination of mask, comparison value and comparison
1949 // type are suitable.
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001950 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits();
Richard Sandiford030c1652013-09-13 09:09:50 +00001951 unsigned NewCCMask, ShiftVal;
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001952 if (NewC.ICmpType != SystemZICMP::SignedOnly &&
1953 NewC.Op0.getOpcode() == ISD::SHL &&
1954 isSimpleShift(NewC.Op0, ShiftVal) &&
1955 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
1956 MaskVal >> ShiftVal,
Richard Sandiford030c1652013-09-13 09:09:50 +00001957 CmpVal >> ShiftVal,
1958 SystemZICMP::Any))) {
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001959 NewC.Op0 = NewC.Op0.getOperand(0);
1960 MaskVal >>= ShiftVal;
1961 } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
1962 NewC.Op0.getOpcode() == ISD::SRL &&
1963 isSimpleShift(NewC.Op0, ShiftVal) &&
1964 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
Richard Sandiford030c1652013-09-13 09:09:50 +00001965 MaskVal << ShiftVal,
1966 CmpVal << ShiftVal,
1967 SystemZICMP::UnsignedOnly))) {
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001968 NewC.Op0 = NewC.Op0.getOperand(0);
1969 MaskVal <<= ShiftVal;
Richard Sandiford030c1652013-09-13 09:09:50 +00001970 } else {
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001971 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
1972 NewC.ICmpType);
Richard Sandiford030c1652013-09-13 09:09:50 +00001973 if (!NewCCMask)
1974 return;
1975 }
Richard Sandiford113c8702013-09-03 15:38:35 +00001976
Richard Sandiford35b9be22013-08-28 10:31:43 +00001977 // Go ahead and make the change.
Richard Sandifordd420f732013-12-13 15:28:45 +00001978 C.Opcode = SystemZISD::TM;
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001979 C.Op0 = NewC.Op0;
1980 if (Mask && Mask->getZExtValue() == MaskVal)
1981 C.Op1 = SDValue(Mask, 0);
1982 else
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001983 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
Richard Sandifordd420f732013-12-13 15:28:45 +00001984 C.CCValid = SystemZ::CCMASK_TM;
1985 C.CCMask = NewCCMask;
Richard Sandiford35b9be22013-08-28 10:31:43 +00001986}
1987
Ulrich Weigand57c85f52015-04-01 12:51:43 +00001988// Return a Comparison that tests the condition-code result of intrinsic
1989// node Call against constant integer CC using comparison code Cond.
1990// Opcode is the opcode of the SystemZISD operation for the intrinsic
1991// and CCValid is the set of possible condition-code results.
1992static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
1993 SDValue Call, unsigned CCValid, uint64_t CC,
1994 ISD::CondCode Cond) {
1995 Comparison C(Call, SDValue());
1996 C.Opcode = Opcode;
1997 C.CCValid = CCValid;
1998 if (Cond == ISD::SETEQ)
1999 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2000 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2001 else if (Cond == ISD::SETNE)
2002 // ...and the inverse of that.
2003 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2004 else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2005 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2006 // always true for CC>3.
2007 C.CCMask = CC < 4 ? -1 << (4 - CC) : -1;
2008 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2009 // ...and the inverse of that.
2010 C.CCMask = CC < 4 ? ~(-1 << (4 - CC)) : 0;
2011 else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2012 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2013 // always true for CC>3.
2014 C.CCMask = CC < 4 ? -1 << (3 - CC) : -1;
2015 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2016 // ...and the inverse of that.
2017 C.CCMask = CC < 4 ? ~(-1 << (3 - CC)) : 0;
2018 else
2019 llvm_unreachable("Unexpected integer comparison type");
2020 C.CCMask &= CCValid;
2021 return C;
2022}
2023
Richard Sandifordd420f732013-12-13 15:28:45 +00002024// Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2025static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002026 ISD::CondCode Cond, SDLoc DL) {
Ulrich Weigand57c85f52015-04-01 12:51:43 +00002027 if (CmpOp1.getOpcode() == ISD::Constant) {
2028 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2029 unsigned Opcode, CCValid;
2030 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2031 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2032 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2033 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
Ulrich Weigandc1708b22015-05-05 19:31:09 +00002034 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2035 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2036 isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2037 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
Ulrich Weigand57c85f52015-04-01 12:51:43 +00002038 }
Richard Sandifordd420f732013-12-13 15:28:45 +00002039 Comparison C(CmpOp0, CmpOp1);
2040 C.CCMask = CCMaskForCondCode(Cond);
2041 if (C.Op0.getValueType().isFloatingPoint()) {
2042 C.CCValid = SystemZ::CCMASK_FCMP;
2043 C.Opcode = SystemZISD::FCMP;
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00002044 adjustForFNeg(C);
Richard Sandiford5bc670b2013-09-06 11:51:39 +00002045 } else {
Richard Sandifordd420f732013-12-13 15:28:45 +00002046 C.CCValid = SystemZ::CCMASK_ICMP;
2047 C.Opcode = SystemZISD::ICMP;
Richard Sandiford5bc670b2013-09-06 11:51:39 +00002048 // Choose the type of comparison. Equality and inequality tests can
2049 // use either signed or unsigned comparisons. The choice also doesn't
2050 // matter if both sign bits are known to be clear. In those cases we
2051 // want to give the main isel code the freedom to choose whichever
2052 // form fits best.
Richard Sandifordd420f732013-12-13 15:28:45 +00002053 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2054 C.CCMask == SystemZ::CCMASK_CMP_NE ||
2055 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2056 C.ICmpType = SystemZICMP::Any;
2057 else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2058 C.ICmpType = SystemZICMP::UnsignedOnly;
Richard Sandiford5bc670b2013-09-06 11:51:39 +00002059 else
Richard Sandifordd420f732013-12-13 15:28:45 +00002060 C.ICmpType = SystemZICMP::SignedOnly;
2061 C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002062 adjustZeroCmp(DAG, DL, C);
2063 adjustSubwordCmp(DAG, DL, C);
2064 adjustForSubtraction(DAG, DL, C);
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00002065 adjustForLTGFR(C);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002066 adjustICmpTruncate(DAG, DL, C);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002067 }
2068
Richard Sandifordd420f732013-12-13 15:28:45 +00002069 if (shouldSwapCmpOperands(C)) {
2070 std::swap(C.Op0, C.Op1);
2071 C.CCMask = reverseCCMask(C.CCMask);
Richard Sandiford24e597b2013-08-23 11:27:19 +00002072 }
2073
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002074 adjustForTestUnderMask(DAG, DL, C);
Richard Sandifordd420f732013-12-13 15:28:45 +00002075 return C;
2076}
2077
2078// Emit the comparison instruction described by C.
2079static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
Ulrich Weigand57c85f52015-04-01 12:51:43 +00002080 if (!C.Op1.getNode()) {
2081 SDValue Op;
2082 switch (C.Op0.getOpcode()) {
2083 case ISD::INTRINSIC_W_CHAIN:
2084 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode);
2085 break;
Ulrich Weigandc1708b22015-05-05 19:31:09 +00002086 case ISD::INTRINSIC_WO_CHAIN:
2087 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode);
2088 break;
Ulrich Weigand57c85f52015-04-01 12:51:43 +00002089 default:
2090 llvm_unreachable("Invalid comparison operands");
2091 }
2092 return SDValue(Op.getNode(), Op->getNumValues() - 1);
2093 }
Richard Sandifordd420f732013-12-13 15:28:45 +00002094 if (C.Opcode == SystemZISD::ICMP)
2095 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002096 DAG.getConstant(C.ICmpType, DL, MVT::i32));
Richard Sandifordd420f732013-12-13 15:28:45 +00002097 if (C.Opcode == SystemZISD::TM) {
2098 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2099 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2100 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002101 DAG.getConstant(RegisterOnly, DL, MVT::i32));
Richard Sandifordd420f732013-12-13 15:28:45 +00002102 }
2103 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002104}
2105
Richard Sandiford7d86e472013-08-21 09:34:56 +00002106// Implement a 32-bit *MUL_LOHI operation by extending both operands to
2107// 64 bits. Extend is the extension type to use. Store the high part
2108// in Hi and the low part in Lo.
2109static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
2110 unsigned Extend, SDValue Op0, SDValue Op1,
2111 SDValue &Hi, SDValue &Lo) {
2112 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2113 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2114 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002115 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2116 DAG.getConstant(32, DL, MVT::i64));
Richard Sandiford7d86e472013-08-21 09:34:56 +00002117 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2118 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2119}
2120
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002121// Lower a binary operation that produces two VT results, one in each
2122// half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
2123// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
2124// on the extended Op0 and (unextended) Op1. Store the even register result
2125// in Even and the odd register result in Odd.
Andrew Trickef9de2a2013-05-25 02:42:55 +00002126static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002127 unsigned Extend, unsigned Opcode,
2128 SDValue Op0, SDValue Op1,
2129 SDValue &Even, SDValue &Odd) {
2130 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
2131 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
2132 SDValue(In128, 0), Op1);
2133 bool Is32Bit = is32Bit(VT);
Richard Sandifordd8163202013-09-13 09:12:44 +00002134 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2135 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002136}
2137
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00002138// Return an i32 value that is 1 if the CC value produced by Glue is
2139// in the mask CCMask and 0 otherwise. CC is known to have a value
2140// in CCValid, so other values can be ignored.
2141static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue,
2142 unsigned CCValid, unsigned CCMask) {
Richard Sandifordf722a8e302013-10-16 11:10:55 +00002143 IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
2144 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
2145
2146 if (Conversion.XORValue)
2147 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002148 DAG.getConstant(Conversion.XORValue, DL, MVT::i32));
Richard Sandifordf722a8e302013-10-16 11:10:55 +00002149
2150 if (Conversion.AddValue)
2151 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002152 DAG.getConstant(Conversion.AddValue, DL, MVT::i32));
Richard Sandifordf722a8e302013-10-16 11:10:55 +00002153
2154 // The SHR/AND sequence should get optimized to an RISBG.
2155 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002156 DAG.getConstant(Conversion.Bit, DL, MVT::i32));
Richard Sandifordf722a8e302013-10-16 11:10:55 +00002157 if (Conversion.Bit != 31)
2158 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002159 DAG.getConstant(1, DL, MVT::i32));
Richard Sandifordf722a8e302013-10-16 11:10:55 +00002160 return Result;
2161}
2162
Ulrich Weigandcd808232015-05-05 19:26:48 +00002163// Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2164// be done directly. IsFP is true if CC is for a floating-point rather than
2165// integer comparison.
2166static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002167 switch (CC) {
Ulrich Weigandcd808232015-05-05 19:26:48 +00002168 case ISD::SETOEQ:
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002169 case ISD::SETEQ:
Ulrich Weigandcd808232015-05-05 19:26:48 +00002170 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002171
Ulrich Weigandcd808232015-05-05 19:26:48 +00002172 case ISD::SETOGE:
2173 case ISD::SETGE:
Saleem Abdulrasoolee33c492015-05-10 00:53:41 +00002174 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
Ulrich Weigandcd808232015-05-05 19:26:48 +00002175
2176 case ISD::SETOGT:
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002177 case ISD::SETGT:
Ulrich Weigandcd808232015-05-05 19:26:48 +00002178 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002179
2180 case ISD::SETUGT:
Saleem Abdulrasoolee33c492015-05-10 00:53:41 +00002181 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002182
2183 default:
2184 return 0;
2185 }
2186}
2187
2188// Return the SystemZISD vector comparison operation for CC or its inverse,
2189// or 0 if neither can be done directly. Indicate in Invert whether the
Ulrich Weigandcd808232015-05-05 19:26:48 +00002190// result is for the inverse of CC. IsFP is true if CC is for a
2191// floating-point rather than integer comparison.
2192static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2193 bool &Invert) {
2194 if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002195 Invert = false;
2196 return Opcode;
2197 }
2198
Ulrich Weigandcd808232015-05-05 19:26:48 +00002199 CC = ISD::getSetCCInverse(CC, !IsFP);
2200 if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002201 Invert = true;
2202 return Opcode;
2203 }
2204
2205 return 0;
2206}
2207
Ulrich Weigand80b3af72015-05-05 19:27:45 +00002208// Return a v2f64 that contains the extended form of elements Start and Start+1
2209// of v4f32 value Op.
2210static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, SDLoc DL,
2211 SDValue Op) {
2212 int Mask[] = { Start, -1, Start + 1, -1 };
2213 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2214 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2215}
2216
2217// Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2218// producing a result of type VT.
2219static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, SDLoc DL,
2220 EVT VT, SDValue CmpOp0, SDValue CmpOp1) {
2221 // There is no hardware support for v4f32, so extend the vector into
2222 // two v2f64s and compare those.
2223 if (CmpOp0.getValueType() == MVT::v4f32) {
2224 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2225 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2226 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2227 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2228 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2229 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2230 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2231 }
2232 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2233}
2234
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002235// Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2236// an integer mask of type VT.
2237static SDValue lowerVectorSETCC(SelectionDAG &DAG, SDLoc DL, EVT VT,
2238 ISD::CondCode CC, SDValue CmpOp0,
2239 SDValue CmpOp1) {
Ulrich Weigandcd808232015-05-05 19:26:48 +00002240 bool IsFP = CmpOp0.getValueType().isFloatingPoint();
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002241 bool Invert = false;
2242 SDValue Cmp;
Ulrich Weigandcd808232015-05-05 19:26:48 +00002243 switch (CC) {
2244 // Handle tests for order using (or (ogt y x) (oge x y)).
2245 case ISD::SETUO:
2246 Invert = true;
2247 case ISD::SETO: {
2248 assert(IsFP && "Unexpected integer comparison");
Ulrich Weigand80b3af72015-05-05 19:27:45 +00002249 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2250 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
Ulrich Weigandcd808232015-05-05 19:26:48 +00002251 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2252 break;
2253 }
2254
2255 // Handle <> tests using (or (ogt y x) (ogt x y)).
2256 case ISD::SETUEQ:
2257 Invert = true;
2258 case ISD::SETONE: {
2259 assert(IsFP && "Unexpected integer comparison");
Ulrich Weigand80b3af72015-05-05 19:27:45 +00002260 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2261 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
Ulrich Weigandcd808232015-05-05 19:26:48 +00002262 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2263 break;
2264 }
2265
2266 // Otherwise a single comparison is enough. It doesn't really
2267 // matter whether we try the inversion or the swap first, since
2268 // there are no cases where both work.
2269 default:
2270 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
Ulrich Weigand80b3af72015-05-05 19:27:45 +00002271 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
Ulrich Weigandcd808232015-05-05 19:26:48 +00002272 else {
2273 CC = ISD::getSetCCSwappedOperands(CC);
2274 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
Ulrich Weigand80b3af72015-05-05 19:27:45 +00002275 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
Ulrich Weigandcd808232015-05-05 19:26:48 +00002276 else
2277 llvm_unreachable("Unhandled comparison");
2278 }
2279 break;
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002280 }
2281 if (Invert) {
2282 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
2283 DAG.getConstant(65535, DL, MVT::i32));
2284 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
2285 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2286 }
2287 return Cmp;
2288}
2289
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00002290SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2291 SelectionDAG &DAG) const {
2292 SDValue CmpOp0 = Op.getOperand(0);
2293 SDValue CmpOp1 = Op.getOperand(1);
2294 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2295 SDLoc DL(Op);
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002296 EVT VT = Op.getValueType();
2297 if (VT.isVector())
2298 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00002299
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002300 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
Richard Sandifordd420f732013-12-13 15:28:45 +00002301 SDValue Glue = emitCmp(DAG, DL, C);
2302 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00002303}
2304
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002305SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002306 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2307 SDValue CmpOp0 = Op.getOperand(2);
2308 SDValue CmpOp1 = Op.getOperand(3);
2309 SDValue Dest = Op.getOperand(4);
Andrew Trickef9de2a2013-05-25 02:42:55 +00002310 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002311
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002312 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
Richard Sandifordd420f732013-12-13 15:28:45 +00002313 SDValue Glue = emitCmp(DAG, DL, C);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002314 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002315 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
2316 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002317}
2318
Richard Sandiford57485472013-12-13 15:35:00 +00002319// Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2320// allowing Pos and Neg to be wider than CmpOp.
2321static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2322 return (Neg.getOpcode() == ISD::SUB &&
2323 Neg.getOperand(0).getOpcode() == ISD::Constant &&
2324 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2325 Neg.getOperand(1) == Pos &&
2326 (Pos == CmpOp ||
2327 (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2328 Pos.getOperand(0) == CmpOp)));
2329}
2330
2331// Return the absolute or negative absolute of Op; IsNegative decides which.
2332static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op,
2333 bool IsNegative) {
2334 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2335 if (IsNegative)
2336 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002337 DAG.getConstant(0, DL, Op.getValueType()), Op);
Richard Sandiford57485472013-12-13 15:35:00 +00002338 return Op;
2339}
2340
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002341SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2342 SelectionDAG &DAG) const {
2343 SDValue CmpOp0 = Op.getOperand(0);
2344 SDValue CmpOp1 = Op.getOperand(1);
2345 SDValue TrueOp = Op.getOperand(2);
2346 SDValue FalseOp = Op.getOperand(3);
2347 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002348 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002349
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002350 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
Richard Sandiford57485472013-12-13 15:35:00 +00002351
2352 // Check for absolute and negative-absolute selections, including those
2353 // where the comparison value is sign-extended (for LPGFR and LNGFR).
2354 // This check supplements the one in DAGCombiner.
2355 if (C.Opcode == SystemZISD::ICMP &&
2356 C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2357 C.CCMask != SystemZ::CCMASK_CMP_NE &&
2358 C.Op1.getOpcode() == ISD::Constant &&
2359 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2360 if (isAbsolute(C.Op0, TrueOp, FalseOp))
2361 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2362 if (isAbsolute(C.Op0, FalseOp, TrueOp))
2363 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2364 }
2365
Richard Sandifordd420f732013-12-13 15:28:45 +00002366 SDValue Glue = emitCmp(DAG, DL, C);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00002367
2368 // Special case for handling -1/0 results. The shifts we use here
2369 // should get optimized with the IPM conversion sequence.
Richard Sandiford21f5d682014-03-06 11:22:58 +00002370 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
2371 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00002372 if (TrueC && FalseC) {
2373 int64_t TrueVal = TrueC->getSExtValue();
2374 int64_t FalseVal = FalseC->getSExtValue();
2375 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
2376 // Invert the condition if we want -1 on false.
2377 if (TrueVal == 0)
Richard Sandifordd420f732013-12-13 15:28:45 +00002378 C.CCMask ^= C.CCValid;
2379 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00002380 EVT VT = Op.getValueType();
2381 // Extend the result to VT. Upper bits are ignored.
2382 if (!is32Bit(VT))
2383 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
2384 // Sign-extend from the low bit.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002385 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00002386 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
2387 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
2388 }
2389 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002390
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002391 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
2392 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue};
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002393
2394 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
Craig Topper48d114b2014-04-26 18:35:24 +00002395 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002396}
2397
2398SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2399 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00002400 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002401 const GlobalValue *GV = Node->getGlobal();
2402 int64_t Offset = Node->getOffset();
2403 EVT PtrVT = getPointerTy();
Eric Christopher93bf97c2014-06-27 07:38:01 +00002404 Reloc::Model RM = DAG.getTarget().getRelocationModel();
2405 CodeModel::Model CM = DAG.getTarget().getCodeModel();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002406
2407 SDValue Result;
2408 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
Richard Sandiford54b36912013-09-27 15:14:04 +00002409 // Assign anchors at 1<<12 byte boundaries.
2410 uint64_t Anchor = Offset & ~uint64_t(0xfff);
2411 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2412 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2413
2414 // The offset can be folded into the address if it is aligned to a halfword.
2415 Offset -= Anchor;
2416 if (Offset != 0 && (Offset & 1) == 0) {
2417 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2418 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002419 Offset = 0;
2420 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002421 } else {
2422 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2423 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2424 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2425 MachinePointerInfo::getGOT(), false, false, false, 0);
2426 }
2427
2428 // If there was a non-zero offset that we didn't fold, create an explicit
2429 // addition for it.
2430 if (Offset != 0)
2431 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002432 DAG.getConstant(Offset, DL, PtrVT));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002433
2434 return Result;
2435}
2436
Ulrich Weigand7db69182015-02-18 09:13:27 +00002437SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2438 SelectionDAG &DAG,
2439 unsigned Opcode,
2440 SDValue GOTOffset) const {
2441 SDLoc DL(Node);
2442 EVT PtrVT = getPointerTy();
2443 SDValue Chain = DAG.getEntryNode();
2444 SDValue Glue;
2445
2446 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2447 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2448 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2449 Glue = Chain.getValue(1);
2450 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2451 Glue = Chain.getValue(1);
2452
2453 // The first call operand is the chain and the second is the TLS symbol.
2454 SmallVector<SDValue, 8> Ops;
2455 Ops.push_back(Chain);
2456 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2457 Node->getValueType(0),
2458 0, 0));
2459
2460 // Add argument registers to the end of the list so that they are
2461 // known live into the call.
2462 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2463 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2464
2465 // Add a register mask operand representing the call-preserved registers.
2466 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
Eric Christopher9deb75d2015-03-11 22:42:13 +00002467 const uint32_t *Mask =
2468 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
Ulrich Weigand7db69182015-02-18 09:13:27 +00002469 assert(Mask && "Missing call preserved mask for calling convention");
2470 Ops.push_back(DAG.getRegisterMask(Mask));
2471
2472 // Glue the call to the argument copies.
2473 Ops.push_back(Glue);
2474
2475 // Emit the call.
2476 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2477 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2478 Glue = Chain.getValue(1);
2479
2480 // Copy the return value from %r2.
2481 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2482}
2483
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002484SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2485 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00002486 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002487 const GlobalValue *GV = Node->getGlobal();
2488 EVT PtrVT = getPointerTy();
Eric Christopher93bf97c2014-06-27 07:38:01 +00002489 TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002490
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002491 // The high part of the thread pointer is in access register 0.
2492 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002493 DAG.getConstant(0, DL, MVT::i32));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002494 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2495
2496 // The low part of the thread pointer is in access register 1.
2497 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002498 DAG.getConstant(1, DL, MVT::i32));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002499 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2500
2501 // Merge them into a single 64-bit address.
2502 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002503 DAG.getConstant(32, DL, PtrVT));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002504 SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2505
Ulrich Weigand7db69182015-02-18 09:13:27 +00002506 // Get the offset of GA from the thread pointer, based on the TLS model.
2507 SDValue Offset;
2508 switch (model) {
2509 case TLSModel::GeneralDynamic: {
2510 // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2511 SystemZConstantPoolValue *CPV =
2512 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002513
Ulrich Weigand7db69182015-02-18 09:13:27 +00002514 Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2515 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
2516 Offset, MachinePointerInfo::getConstantPool(),
2517 false, false, false, 0);
2518
2519 // Call __tls_get_offset to retrieve the offset.
2520 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2521 break;
2522 }
2523
2524 case TLSModel::LocalDynamic: {
2525 // Load the GOT offset of the module ID.
2526 SystemZConstantPoolValue *CPV =
2527 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2528
2529 Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2530 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
2531 Offset, MachinePointerInfo::getConstantPool(),
2532 false, false, false, 0);
2533
2534 // Call __tls_get_offset to retrieve the module base offset.
2535 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2536
2537 // Note: The SystemZLDCleanupPass will remove redundant computations
2538 // of the module base offset. Count total number of local-dynamic
2539 // accesses to trigger execution of that pass.
2540 SystemZMachineFunctionInfo* MFI =
2541 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2542 MFI->incNumLocalDynamicTLSAccesses();
2543
2544 // Add the per-symbol offset.
2545 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2546
2547 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
2548 DTPOffset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
2549 DTPOffset, MachinePointerInfo::getConstantPool(),
2550 false, false, false, 0);
2551
2552 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
2553 break;
2554 }
2555
2556 case TLSModel::InitialExec: {
2557 // Load the offset from the GOT.
2558 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2559 SystemZII::MO_INDNTPOFF);
2560 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
2561 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
2562 Offset, MachinePointerInfo::getGOT(),
2563 false, false, false, 0);
2564 break;
2565 }
2566
2567 case TLSModel::LocalExec: {
2568 // Force the offset into the constant pool and load it from there.
2569 SystemZConstantPoolValue *CPV =
2570 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
2571
2572 Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2573 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
2574 Offset, MachinePointerInfo::getConstantPool(),
2575 false, false, false, 0);
2576 break;
Ulrich Weigandb7e59092015-02-18 09:42:23 +00002577 }
Ulrich Weigand7db69182015-02-18 09:13:27 +00002578 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002579
2580 // Add the base and offset together.
2581 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
2582}
2583
2584SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
2585 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00002586 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002587 const BlockAddress *BA = Node->getBlockAddress();
2588 int64_t Offset = Node->getOffset();
2589 EVT PtrVT = getPointerTy();
2590
2591 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
2592 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2593 return Result;
2594}
2595
2596SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
2597 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00002598 SDLoc DL(JT);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002599 EVT PtrVT = getPointerTy();
2600 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2601
2602 // Use LARL to load the address of the table.
2603 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2604}
2605
2606SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
2607 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00002608 SDLoc DL(CP);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002609 EVT PtrVT = getPointerTy();
2610
2611 SDValue Result;
2612 if (CP->isMachineConstantPoolEntry())
2613 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2614 CP->getAlignment());
2615 else
2616 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2617 CP->getAlignment(), CP->getOffset());
2618
2619 // Use LARL to load the address of the constant pool entry.
2620 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2621}
2622
2623SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
2624 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00002625 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002626 SDValue In = Op.getOperand(0);
2627 EVT InVT = In.getValueType();
2628 EVT ResVT = Op.getValueType();
2629
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002630 // Convert loads directly. This is normally done by DAGCombiner,
2631 // but we need this case for bitcasts that are created during lowering
2632 // and which are then lowered themselves.
2633 if (auto *LoadN = dyn_cast<LoadSDNode>(In))
2634 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(),
2635 LoadN->getMemOperand());
2636
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002637 if (InVT == MVT::i32 && ResVT == MVT::f32) {
Richard Sandifordf6377fb2013-10-01 14:31:11 +00002638 SDValue In64;
2639 if (Subtarget.hasHighWord()) {
2640 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
2641 MVT::i64);
2642 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
2643 MVT::i64, SDValue(U64, 0), In);
2644 } else {
2645 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
2646 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002647 DAG.getConstant(32, DL, MVT::i64));
Richard Sandifordf6377fb2013-10-01 14:31:11 +00002648 }
2649 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
Ulrich Weigand9ac2f9b2015-05-04 17:41:22 +00002650 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32,
Richard Sandifordd8163202013-09-13 09:12:44 +00002651 DL, MVT::f32, Out64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002652 }
2653 if (InVT == MVT::f32 && ResVT == MVT::i32) {
2654 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
Ulrich Weigand9ac2f9b2015-05-04 17:41:22 +00002655 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL,
Richard Sandifordd8163202013-09-13 09:12:44 +00002656 MVT::f64, SDValue(U64, 0), In);
2657 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
Richard Sandifordf6377fb2013-10-01 14:31:11 +00002658 if (Subtarget.hasHighWord())
2659 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
2660 MVT::i32, Out64);
2661 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002662 DAG.getConstant(32, DL, MVT::i64));
Richard Sandifordf6377fb2013-10-01 14:31:11 +00002663 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002664 }
2665 llvm_unreachable("Unexpected bitcast combination");
2666}
2667
2668SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
2669 SelectionDAG &DAG) const {
2670 MachineFunction &MF = DAG.getMachineFunction();
2671 SystemZMachineFunctionInfo *FuncInfo =
2672 MF.getInfo<SystemZMachineFunctionInfo>();
2673 EVT PtrVT = getPointerTy();
2674
2675 SDValue Chain = Op.getOperand(0);
2676 SDValue Addr = Op.getOperand(1);
2677 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002678 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002679
2680 // The initial values of each field.
2681 const unsigned NumFields = 4;
2682 SDValue Fields[NumFields] = {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002683 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
2684 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002685 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
2686 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
2687 };
2688
2689 // Store each field into its respective slot.
2690 SDValue MemOps[NumFields];
2691 unsigned Offset = 0;
2692 for (unsigned I = 0; I < NumFields; ++I) {
2693 SDValue FieldAddr = Addr;
2694 if (Offset != 0)
2695 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002696 DAG.getIntPtrConstant(Offset, DL));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002697 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
2698 MachinePointerInfo(SV, Offset),
2699 false, false, 0);
2700 Offset += 8;
2701 }
Craig Topper48d114b2014-04-26 18:35:24 +00002702 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002703}
2704
2705SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
2706 SelectionDAG &DAG) const {
2707 SDValue Chain = Op.getOperand(0);
2708 SDValue DstPtr = Op.getOperand(1);
2709 SDValue SrcPtr = Op.getOperand(2);
2710 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2711 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002712 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002713
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002714 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002715 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
Krzysztof Parzyszeka46c36b2015-04-13 17:16:45 +00002716 /*isTailCall*/false,
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002717 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
2718}
2719
2720SDValue SystemZTargetLowering::
2721lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
2722 SDValue Chain = Op.getOperand(0);
2723 SDValue Size = Op.getOperand(1);
Andrew Trickef9de2a2013-05-25 02:42:55 +00002724 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002725
2726 unsigned SPReg = getStackPointerRegisterToSaveRestore();
2727
2728 // Get a reference to the stack pointer.
2729 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
2730
2731 // Get the new stack pointer value.
2732 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
2733
2734 // Copy the new stack pointer back.
2735 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
2736
2737 // The allocated data lives above the 160 bytes allocated for the standard
2738 // frame, plus any outgoing stack arguments. We don't know how much that
2739 // amounts to yet, so emit a special ADJDYNALLOC placeholder.
2740 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2741 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
2742
2743 SDValue Ops[2] = { Result, Chain };
Craig Topper64941d92014-04-27 19:20:57 +00002744 return DAG.getMergeValues(Ops, DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002745}
2746
Richard Sandiford7d86e472013-08-21 09:34:56 +00002747SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
2748 SelectionDAG &DAG) const {
2749 EVT VT = Op.getValueType();
2750 SDLoc DL(Op);
2751 SDValue Ops[2];
2752 if (is32Bit(VT))
2753 // Just do a normal 64-bit multiplication and extract the results.
2754 // We define this so that it can be used for constant division.
2755 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
2756 Op.getOperand(1), Ops[1], Ops[0]);
2757 else {
2758 // Do a full 128-bit multiplication based on UMUL_LOHI64:
2759 //
2760 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
2761 //
2762 // but using the fact that the upper halves are either all zeros
2763 // or all ones:
2764 //
2765 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
2766 //
2767 // and grouping the right terms together since they are quicker than the
2768 // multiplication:
2769 //
2770 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002771 SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
Richard Sandiford7d86e472013-08-21 09:34:56 +00002772 SDValue LL = Op.getOperand(0);
2773 SDValue RL = Op.getOperand(1);
2774 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
2775 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
2776 // UMUL_LOHI64 returns the low result in the odd register and the high
2777 // result in the even register. SMUL_LOHI is defined to return the
2778 // low half first, so the results are in reverse order.
2779 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2780 LL, RL, Ops[1], Ops[0]);
2781 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
2782 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
2783 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
2784 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
2785 }
Craig Topper64941d92014-04-27 19:20:57 +00002786 return DAG.getMergeValues(Ops, DL);
Richard Sandiford7d86e472013-08-21 09:34:56 +00002787}
2788
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002789SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
2790 SelectionDAG &DAG) const {
2791 EVT VT = Op.getValueType();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002792 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002793 SDValue Ops[2];
Richard Sandiford7d86e472013-08-21 09:34:56 +00002794 if (is32Bit(VT))
2795 // Just do a normal 64-bit multiplication and extract the results.
2796 // We define this so that it can be used for constant division.
2797 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
2798 Op.getOperand(1), Ops[1], Ops[0]);
2799 else
2800 // UMUL_LOHI64 returns the low result in the odd register and the high
2801 // result in the even register. UMUL_LOHI is defined to return the
2802 // low half first, so the results are in reverse order.
2803 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2804 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
Craig Topper64941d92014-04-27 19:20:57 +00002805 return DAG.getMergeValues(Ops, DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002806}
2807
2808SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
2809 SelectionDAG &DAG) const {
2810 SDValue Op0 = Op.getOperand(0);
2811 SDValue Op1 = Op.getOperand(1);
2812 EVT VT = Op.getValueType();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002813 SDLoc DL(Op);
Richard Sandiforde6e78852013-07-02 15:40:22 +00002814 unsigned Opcode;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002815
2816 // We use DSGF for 32-bit division.
2817 if (is32Bit(VT)) {
2818 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
Richard Sandiforde6e78852013-07-02 15:40:22 +00002819 Opcode = SystemZISD::SDIVREM32;
2820 } else if (DAG.ComputeNumSignBits(Op1) > 32) {
2821 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
2822 Opcode = SystemZISD::SDIVREM32;
2823 } else
2824 Opcode = SystemZISD::SDIVREM64;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002825
2826 // DSG(F) takes a 64-bit dividend, so the even register in the GR128
2827 // input is "don't care". The instruction returns the remainder in
2828 // the even register and the quotient in the odd register.
2829 SDValue Ops[2];
Richard Sandiforde6e78852013-07-02 15:40:22 +00002830 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002831 Op0, Op1, Ops[1], Ops[0]);
Craig Topper64941d92014-04-27 19:20:57 +00002832 return DAG.getMergeValues(Ops, DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002833}
2834
2835SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
2836 SelectionDAG &DAG) const {
2837 EVT VT = Op.getValueType();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002838 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002839
2840 // DL(G) uses a double-width dividend, so we need to clear the even
2841 // register in the GR128 input. The instruction returns the remainder
2842 // in the even register and the quotient in the odd register.
2843 SDValue Ops[2];
2844 if (is32Bit(VT))
2845 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
2846 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2847 else
2848 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
2849 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
Craig Topper64941d92014-04-27 19:20:57 +00002850 return DAG.getMergeValues(Ops, DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002851}
2852
2853SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
2854 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
2855
2856 // Get the known-zero masks for each operand.
2857 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
2858 APInt KnownZero[2], KnownOne[2];
Jay Foada0653a32014-05-14 21:14:37 +00002859 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]);
2860 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002861
2862 // See if the upper 32 bits of one operand and the lower 32 bits of the
2863 // other are known zero. They are the low and high operands respectively.
2864 uint64_t Masks[] = { KnownZero[0].getZExtValue(),
2865 KnownZero[1].getZExtValue() };
2866 unsigned High, Low;
2867 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
2868 High = 1, Low = 0;
2869 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
2870 High = 0, Low = 1;
2871 else
2872 return Op;
2873
2874 SDValue LowOp = Ops[Low];
2875 SDValue HighOp = Ops[High];
2876
2877 // If the high part is a constant, we're better off using IILH.
2878 if (HighOp.getOpcode() == ISD::Constant)
2879 return Op;
2880
2881 // If the low part is a constant that is outside the range of LHI,
2882 // then we're better off using IILF.
2883 if (LowOp.getOpcode() == ISD::Constant) {
2884 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
2885 if (!isInt<16>(Value))
2886 return Op;
2887 }
2888
2889 // Check whether the high part is an AND that doesn't change the
2890 // high 32 bits and just masks out low bits. We can skip it if so.
2891 if (HighOp.getOpcode() == ISD::AND &&
2892 HighOp.getOperand(1).getOpcode() == ISD::Constant) {
Richard Sandifordccc2a7c2013-12-03 11:01:54 +00002893 SDValue HighOp0 = HighOp.getOperand(0);
2894 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
2895 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
2896 HighOp = HighOp0;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002897 }
2898
2899 // Take advantage of the fact that all GR32 operations only change the
2900 // low 32 bits by truncating Low to an i32 and inserting it directly
2901 // using a subreg. The interesting cases are those where the truncation
2902 // can be folded.
Andrew Trickef9de2a2013-05-25 02:42:55 +00002903 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002904 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
Richard Sandiford87a44362013-09-30 10:28:35 +00002905 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
Richard Sandifordd8163202013-09-13 09:12:44 +00002906 MVT::i64, HighOp, Low32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002907}
2908
Ulrich Weigandb4012182015-03-31 12:56:33 +00002909SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
2910 SelectionDAG &DAG) const {
2911 EVT VT = Op.getValueType();
Ulrich Weigandb4012182015-03-31 12:56:33 +00002912 SDLoc DL(Op);
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002913 Op = Op.getOperand(0);
2914
2915 // Handle vector types via VPOPCT.
2916 if (VT.isVector()) {
2917 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
2918 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
2919 switch (VT.getVectorElementType().getSizeInBits()) {
2920 case 8:
2921 break;
2922 case 16: {
2923 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
2924 SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
2925 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
2926 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
2927 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
2928 break;
2929 }
2930 case 32: {
2931 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
2932 DAG.getConstant(0, DL, MVT::i32));
2933 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
2934 break;
2935 }
2936 case 64: {
2937 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
2938 DAG.getConstant(0, DL, MVT::i32));
2939 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
2940 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
2941 break;
2942 }
2943 default:
2944 llvm_unreachable("Unexpected type");
2945 }
2946 return Op;
2947 }
Ulrich Weigandb4012182015-03-31 12:56:33 +00002948
2949 // Get the known-zero mask for the operand.
Ulrich Weigandb4012182015-03-31 12:56:33 +00002950 APInt KnownZero, KnownOne;
2951 DAG.computeKnownBits(Op, KnownZero, KnownOne);
Ulrich Weigand050527b2015-03-31 19:28:50 +00002952 unsigned NumSignificantBits = (~KnownZero).getActiveBits();
2953 if (NumSignificantBits == 0)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002954 return DAG.getConstant(0, DL, VT);
Ulrich Weigandb4012182015-03-31 12:56:33 +00002955
2956 // Skip known-zero high parts of the operand.
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002957 int64_t OrigBitSize = VT.getSizeInBits();
Ulrich Weigand050527b2015-03-31 19:28:50 +00002958 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
2959 BitSize = std::min(BitSize, OrigBitSize);
Ulrich Weigandb4012182015-03-31 12:56:33 +00002960
2961 // The POPCNT instruction counts the number of bits in each byte.
2962 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
2963 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
2964 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
2965
2966 // Add up per-byte counts in a binary tree. All bits of Op at
2967 // position larger than BitSize remain zero throughout.
2968 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002969 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
Ulrich Weigandb4012182015-03-31 12:56:33 +00002970 if (BitSize != OrigBitSize)
2971 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002972 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
Ulrich Weigandb4012182015-03-31 12:56:33 +00002973 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
2974 }
2975
2976 // Extract overall result from high byte.
2977 if (BitSize > 8)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002978 Op = DAG.getNode(ISD::SRL, DL, VT, Op,
2979 DAG.getConstant(BitSize - 8, DL, VT));
Ulrich Weigandb4012182015-03-31 12:56:33 +00002980
2981 return Op;
2982}
2983
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002984// Op is an atomic load. Lower it into a normal volatile load.
2985SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
2986 SelectionDAG &DAG) const {
Richard Sandiford21f5d682014-03-06 11:22:58 +00002987 auto *Node = cast<AtomicSDNode>(Op.getNode());
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002988 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
2989 Node->getChain(), Node->getBasePtr(),
2990 Node->getMemoryVT(), Node->getMemOperand());
2991}
2992
2993// Op is an atomic store. Lower it into a normal volatile store followed
2994// by a serialization.
2995SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
2996 SelectionDAG &DAG) const {
Richard Sandiford21f5d682014-03-06 11:22:58 +00002997 auto *Node = cast<AtomicSDNode>(Op.getNode());
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002998 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
2999 Node->getBasePtr(), Node->getMemoryVT(),
3000 Node->getMemOperand());
3001 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
3002 Chain), 0);
3003}
3004
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003005// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
3006// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00003007SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3008 SelectionDAG &DAG,
3009 unsigned Opcode) const {
Richard Sandiford21f5d682014-03-06 11:22:58 +00003010 auto *Node = cast<AtomicSDNode>(Op.getNode());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003011
3012 // 32-bit operations need no code outside the main loop.
3013 EVT NarrowVT = Node->getMemoryVT();
3014 EVT WideVT = MVT::i32;
3015 if (NarrowVT == WideVT)
3016 return Op;
3017
3018 int64_t BitSize = NarrowVT.getSizeInBits();
3019 SDValue ChainIn = Node->getChain();
3020 SDValue Addr = Node->getBasePtr();
3021 SDValue Src2 = Node->getVal();
3022 MachineMemOperand *MMO = Node->getMemOperand();
Andrew Trickef9de2a2013-05-25 02:42:55 +00003023 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003024 EVT PtrVT = Addr.getValueType();
3025
3026 // Convert atomic subtracts of constants into additions.
3027 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
Richard Sandiford21f5d682014-03-06 11:22:58 +00003028 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003029 Opcode = SystemZISD::ATOMIC_LOADW_ADD;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003030 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003031 }
3032
3033 // Get the address of the containing word.
3034 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003035 DAG.getConstant(-4, DL, PtrVT));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003036
3037 // Get the number of bits that the word must be rotated left in order
3038 // to bring the field to the top bits of a GR32.
3039 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003040 DAG.getConstant(3, DL, PtrVT));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003041 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3042
3043 // Get the complementing shift amount, for rotating a field in the top
3044 // bits back to its proper position.
3045 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003046 DAG.getConstant(0, DL, WideVT), BitShift);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003047
3048 // Extend the source operand to 32 bits and prepare it for the inner loop.
3049 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3050 // operations require the source to be shifted in advance. (This shift
3051 // can be folded if the source is constant.) For AND and NAND, the lower
3052 // bits must be set, while for other opcodes they should be left clear.
3053 if (Opcode != SystemZISD::ATOMIC_SWAPW)
3054 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003055 DAG.getConstant(32 - BitSize, DL, WideVT));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003056 if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3057 Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3058 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003059 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003060
3061 // Construct the ATOMIC_LOADW_* node.
3062 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3063 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003064 DAG.getConstant(BitSize, DL, WideVT) };
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003065 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003066 NarrowVT, MMO);
3067
3068 // Rotate the result of the final CS so that the field is in the lower
3069 // bits of a GR32, then truncate it.
3070 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003071 DAG.getConstant(BitSize, DL, WideVT));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003072 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3073
3074 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
Craig Topper64941d92014-04-27 19:20:57 +00003075 return DAG.getMergeValues(RetOps, DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003076}
3077
Richard Sandiford41350a52013-12-24 15:18:04 +00003078// Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations
Richard Sandiford002019a2013-12-24 15:22:39 +00003079// into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
Richard Sandiford41350a52013-12-24 15:18:04 +00003080// operations into additions.
3081SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3082 SelectionDAG &DAG) const {
Richard Sandiford21f5d682014-03-06 11:22:58 +00003083 auto *Node = cast<AtomicSDNode>(Op.getNode());
Richard Sandiford41350a52013-12-24 15:18:04 +00003084 EVT MemVT = Node->getMemoryVT();
3085 if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3086 // A full-width operation.
3087 assert(Op.getValueType() == MemVT && "Mismatched VTs");
3088 SDValue Src2 = Node->getVal();
3089 SDValue NegSrc2;
3090 SDLoc DL(Src2);
3091
Richard Sandiford21f5d682014-03-06 11:22:58 +00003092 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
Richard Sandiford41350a52013-12-24 15:18:04 +00003093 // Use an addition if the operand is constant and either LAA(G) is
3094 // available or the negative value is in the range of A(G)FHI.
3095 int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
Eric Christopher93bf97c2014-06-27 07:38:01 +00003096 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003097 NegSrc2 = DAG.getConstant(Value, DL, MemVT);
Eric Christopher93bf97c2014-06-27 07:38:01 +00003098 } else if (Subtarget.hasInterlockedAccess1())
Richard Sandiford41350a52013-12-24 15:18:04 +00003099 // Use LAA(G) if available.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003100 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
Richard Sandiford41350a52013-12-24 15:18:04 +00003101 Src2);
3102
3103 if (NegSrc2.getNode())
3104 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3105 Node->getChain(), Node->getBasePtr(), NegSrc2,
3106 Node->getMemOperand(), Node->getOrdering(),
3107 Node->getSynchScope());
3108
3109 // Use the node as-is.
3110 return Op;
3111 }
3112
3113 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3114}
3115
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003116// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two
3117// into a fullword ATOMIC_CMP_SWAPW operation.
3118SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3119 SelectionDAG &DAG) const {
Richard Sandiford21f5d682014-03-06 11:22:58 +00003120 auto *Node = cast<AtomicSDNode>(Op.getNode());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003121
3122 // We have native support for 32-bit compare and swap.
3123 EVT NarrowVT = Node->getMemoryVT();
3124 EVT WideVT = MVT::i32;
3125 if (NarrowVT == WideVT)
3126 return Op;
3127
3128 int64_t BitSize = NarrowVT.getSizeInBits();
3129 SDValue ChainIn = Node->getOperand(0);
3130 SDValue Addr = Node->getOperand(1);
3131 SDValue CmpVal = Node->getOperand(2);
3132 SDValue SwapVal = Node->getOperand(3);
3133 MachineMemOperand *MMO = Node->getMemOperand();
Andrew Trickef9de2a2013-05-25 02:42:55 +00003134 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003135 EVT PtrVT = Addr.getValueType();
3136
3137 // Get the address of the containing word.
3138 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003139 DAG.getConstant(-4, DL, PtrVT));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003140
3141 // Get the number of bits that the word must be rotated left in order
3142 // to bring the field to the top bits of a GR32.
3143 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003144 DAG.getConstant(3, DL, PtrVT));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003145 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3146
3147 // Get the complementing shift amount, for rotating a field in the top
3148 // bits back to its proper position.
3149 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003150 DAG.getConstant(0, DL, WideVT), BitShift);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003151
3152 // Construct the ATOMIC_CMP_SWAPW node.
3153 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3154 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003155 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003156 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
Craig Topper206fcd42014-04-26 19:29:41 +00003157 VTList, Ops, NarrowVT, MMO);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003158 return AtomicOp;
3159}
3160
3161SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3162 SelectionDAG &DAG) const {
3163 MachineFunction &MF = DAG.getMachineFunction();
3164 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
Andrew Trickef9de2a2013-05-25 02:42:55 +00003165 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003166 SystemZ::R15D, Op.getValueType());
3167}
3168
3169SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3170 SelectionDAG &DAG) const {
3171 MachineFunction &MF = DAG.getMachineFunction();
3172 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
Andrew Trickef9de2a2013-05-25 02:42:55 +00003173 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003174 SystemZ::R15D, Op.getOperand(1));
3175}
3176
Richard Sandiford03481332013-08-23 11:36:42 +00003177SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3178 SelectionDAG &DAG) const {
3179 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3180 if (!IsData)
3181 // Just preserve the chain.
3182 return Op.getOperand(0);
3183
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003184 SDLoc DL(Op);
Richard Sandiford03481332013-08-23 11:36:42 +00003185 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3186 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
Richard Sandiford21f5d682014-03-06 11:22:58 +00003187 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
Richard Sandiford03481332013-08-23 11:36:42 +00003188 SDValue Ops[] = {
3189 Op.getOperand(0),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003190 DAG.getConstant(Code, DL, MVT::i32),
Richard Sandiford03481332013-08-23 11:36:42 +00003191 Op.getOperand(1)
3192 };
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003193 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
Craig Topper206fcd42014-04-26 19:29:41 +00003194 Node->getVTList(), Ops,
Richard Sandiford03481332013-08-23 11:36:42 +00003195 Node->getMemoryVT(), Node->getMemOperand());
3196}
3197
Ulrich Weigand57c85f52015-04-01 12:51:43 +00003198// Return an i32 that contains the value of CC immediately after After,
3199// whose final operand must be MVT::Glue.
3200static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003201 SDLoc DL(After);
Ulrich Weigand57c85f52015-04-01 12:51:43 +00003202 SDValue Glue = SDValue(After, After->getNumValues() - 1);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003203 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
3204 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3205 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
Ulrich Weigand57c85f52015-04-01 12:51:43 +00003206}
3207
3208SDValue
3209SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3210 SelectionDAG &DAG) const {
3211 unsigned Opcode, CCValid;
3212 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3213 assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
3214 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode);
3215 SDValue CC = getCCResult(DAG, Glued.getNode());
3216 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3217 return SDValue();
3218 }
3219
3220 return SDValue();
3221}
3222
Ulrich Weigandc1708b22015-05-05 19:31:09 +00003223SDValue
3224SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3225 SelectionDAG &DAG) const {
3226 unsigned Opcode, CCValid;
3227 if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3228 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode);
3229 SDValue CC = getCCResult(DAG, Glued.getNode());
3230 if (Op->getNumValues() == 1)
3231 return CC;
3232 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
3233 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
3234 Glued, CC);
3235 }
3236
3237 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3238 switch (Id) {
3239 case Intrinsic::s390_vpdi:
3240 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3241 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3242
3243 case Intrinsic::s390_vperm:
3244 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3245 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3246
3247 case Intrinsic::s390_vuphb:
3248 case Intrinsic::s390_vuphh:
3249 case Intrinsic::s390_vuphf:
3250 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3251 Op.getOperand(1));
3252
3253 case Intrinsic::s390_vuplhb:
3254 case Intrinsic::s390_vuplhh:
3255 case Intrinsic::s390_vuplhf:
3256 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3257 Op.getOperand(1));
3258
3259 case Intrinsic::s390_vuplb:
3260 case Intrinsic::s390_vuplhw:
3261 case Intrinsic::s390_vuplf:
3262 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
3263 Op.getOperand(1));
3264
3265 case Intrinsic::s390_vupllb:
3266 case Intrinsic::s390_vupllh:
3267 case Intrinsic::s390_vupllf:
3268 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
3269 Op.getOperand(1));
3270
3271 case Intrinsic::s390_vsumb:
3272 case Intrinsic::s390_vsumh:
3273 case Intrinsic::s390_vsumgh:
3274 case Intrinsic::s390_vsumgf:
3275 case Intrinsic::s390_vsumqf:
3276 case Intrinsic::s390_vsumqg:
3277 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
3278 Op.getOperand(1), Op.getOperand(2));
3279 }
3280
3281 return SDValue();
3282}
3283
Ulrich Weigandce4c1092015-05-05 19:25:42 +00003284namespace {
3285// Says that SystemZISD operation Opcode can be used to perform the equivalent
3286// of a VPERM with permute vector Bytes. If Opcode takes three operands,
3287// Operand is the constant third operand, otherwise it is the number of
3288// bytes in each element of the result.
3289struct Permute {
3290 unsigned Opcode;
3291 unsigned Operand;
3292 unsigned char Bytes[SystemZ::VectorBytes];
3293};
3294}
3295
3296static const Permute PermuteForms[] = {
3297 // VMRHG
3298 { SystemZISD::MERGE_HIGH, 8,
3299 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
3300 // VMRHF
3301 { SystemZISD::MERGE_HIGH, 4,
3302 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
3303 // VMRHH
3304 { SystemZISD::MERGE_HIGH, 2,
3305 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
3306 // VMRHB
3307 { SystemZISD::MERGE_HIGH, 1,
3308 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
3309 // VMRLG
3310 { SystemZISD::MERGE_LOW, 8,
3311 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
3312 // VMRLF
3313 { SystemZISD::MERGE_LOW, 4,
3314 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
3315 // VMRLH
3316 { SystemZISD::MERGE_LOW, 2,
3317 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
3318 // VMRLB
3319 { SystemZISD::MERGE_LOW, 1,
3320 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
3321 // VPKG
3322 { SystemZISD::PACK, 4,
3323 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
3324 // VPKF
3325 { SystemZISD::PACK, 2,
3326 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
3327 // VPKH
3328 { SystemZISD::PACK, 1,
3329 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
3330 // VPDI V1, V2, 4 (low half of V1, high half of V2)
3331 { SystemZISD::PERMUTE_DWORDS, 4,
3332 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
3333 // VPDI V1, V2, 1 (high half of V1, low half of V2)
3334 { SystemZISD::PERMUTE_DWORDS, 1,
3335 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
3336};
3337
3338// Called after matching a vector shuffle against a particular pattern.
3339// Both the original shuffle and the pattern have two vector operands.
3340// OpNos[0] is the operand of the original shuffle that should be used for
3341// operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
3342// OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and
3343// set OpNo0 and OpNo1 to the shuffle operands that should actually be used
3344// for operands 0 and 1 of the pattern.
3345static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
3346 if (OpNos[0] < 0) {
3347 if (OpNos[1] < 0)
3348 return false;
3349 OpNo0 = OpNo1 = OpNos[1];
3350 } else if (OpNos[1] < 0) {
3351 OpNo0 = OpNo1 = OpNos[0];
3352 } else {
3353 OpNo0 = OpNos[0];
3354 OpNo1 = OpNos[1];
3355 }
3356 return true;
3357}
3358
3359// Bytes is a VPERM-like permute vector, except that -1 is used for
3360// undefined bytes. Return true if the VPERM can be implemented using P.
3361// When returning true set OpNo0 to the VPERM operand that should be
3362// used for operand 0 of P and likewise OpNo1 for operand 1 of P.
3363//
3364// For example, if swapping the VPERM operands allows P to match, OpNo0
3365// will be 1 and OpNo1 will be 0. If instead Bytes only refers to one
3366// operand, but rewriting it to use two duplicated operands allows it to
3367// match P, then OpNo0 and OpNo1 will be the same.
3368static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
3369 unsigned &OpNo0, unsigned &OpNo1) {
3370 int OpNos[] = { -1, -1 };
3371 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
3372 int Elt = Bytes[I];
3373 if (Elt >= 0) {
3374 // Make sure that the two permute vectors use the same suboperand
3375 // byte number. Only the operand numbers (the high bits) are
3376 // allowed to differ.
3377 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
3378 return false;
3379 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
3380 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
3381 // Make sure that the operand mappings are consistent with previous
3382 // elements.
3383 if (OpNos[ModelOpNo] == 1 - RealOpNo)
3384 return false;
3385 OpNos[ModelOpNo] = RealOpNo;
3386 }
3387 }
3388 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3389}
3390
3391// As above, but search for a matching permute.
3392static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
3393 unsigned &OpNo0, unsigned &OpNo1) {
3394 for (auto &P : PermuteForms)
3395 if (matchPermute(Bytes, P, OpNo0, OpNo1))
3396 return &P;
3397 return nullptr;
3398}
3399
3400// Bytes is a VPERM-like permute vector, except that -1 is used for
3401// undefined bytes. This permute is an operand of an outer permute.
3402// See whether redistributing the -1 bytes gives a shuffle that can be
3403// implemented using P. If so, set Transform to a VPERM-like permute vector
3404// that, when applied to the result of P, gives the original permute in Bytes.
3405static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3406 const Permute &P,
3407 SmallVectorImpl<int> &Transform) {
3408 unsigned To = 0;
3409 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
3410 int Elt = Bytes[From];
3411 if (Elt < 0)
3412 // Byte number From of the result is undefined.
3413 Transform[From] = -1;
3414 else {
3415 while (P.Bytes[To] != Elt) {
3416 To += 1;
3417 if (To == SystemZ::VectorBytes)
3418 return false;
3419 }
3420 Transform[From] = To;
3421 }
3422 }
3423 return true;
3424}
3425
3426// As above, but search for a matching permute.
3427static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3428 SmallVectorImpl<int> &Transform) {
3429 for (auto &P : PermuteForms)
3430 if (matchDoublePermute(Bytes, P, Transform))
3431 return &P;
3432 return nullptr;
3433}
3434
3435// Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask,
3436// as if it had type vNi8.
3437static void getVPermMask(ShuffleVectorSDNode *VSN,
3438 SmallVectorImpl<int> &Bytes) {
3439 EVT VT = VSN->getValueType(0);
3440 unsigned NumElements = VT.getVectorNumElements();
3441 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3442 Bytes.resize(NumElements * BytesPerElement, -1);
3443 for (unsigned I = 0; I < NumElements; ++I) {
3444 int Index = VSN->getMaskElt(I);
3445 if (Index >= 0)
3446 for (unsigned J = 0; J < BytesPerElement; ++J)
3447 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
3448 }
3449}
3450
3451// Bytes is a VPERM-like permute vector, except that -1 is used for
3452// undefined bytes. See whether bytes [Start, Start + BytesPerElement) of
3453// the result come from a contiguous sequence of bytes from one input.
3454// Set Base to the selector for the first byte if so.
3455static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
3456 unsigned BytesPerElement, int &Base) {
3457 Base = -1;
3458 for (unsigned I = 0; I < BytesPerElement; ++I) {
3459 if (Bytes[Start + I] >= 0) {
3460 unsigned Elem = Bytes[Start + I];
3461 if (Base < 0) {
3462 Base = Elem - I;
3463 // Make sure the bytes would come from one input operand.
3464 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
3465 return false;
3466 } else if (unsigned(Base) != Elem - I)
3467 return false;
3468 }
3469 }
3470 return true;
3471}
3472
3473// Bytes is a VPERM-like permute vector, except that -1 is used for
3474// undefined bytes. Return true if it can be performed using VSLDI.
3475// When returning true, set StartIndex to the shift amount and OpNo0
3476// and OpNo1 to the VPERM operands that should be used as the first
3477// and second shift operand respectively.
3478static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
3479 unsigned &StartIndex, unsigned &OpNo0,
3480 unsigned &OpNo1) {
3481 int OpNos[] = { -1, -1 };
3482 int Shift = -1;
3483 for (unsigned I = 0; I < 16; ++I) {
3484 int Index = Bytes[I];
3485 if (Index >= 0) {
3486 int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
3487 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
3488 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
3489 if (Shift < 0)
3490 Shift = ExpectedShift;
3491 else if (Shift != ExpectedShift)
3492 return false;
3493 // Make sure that the operand mappings are consistent with previous
3494 // elements.
3495 if (OpNos[ModelOpNo] == 1 - RealOpNo)
3496 return false;
3497 OpNos[ModelOpNo] = RealOpNo;
3498 }
3499 }
3500 StartIndex = Shift;
3501 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3502}
3503
3504// Create a node that performs P on operands Op0 and Op1, casting the
3505// operands to the appropriate type. The type of the result is determined by P.
3506static SDValue getPermuteNode(SelectionDAG &DAG, SDLoc DL,
3507 const Permute &P, SDValue Op0, SDValue Op1) {
3508 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input
3509 // elements of a PACK are twice as wide as the outputs.
3510 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
3511 P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
3512 P.Operand);
3513 // Cast both operands to the appropriate type.
3514 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
3515 SystemZ::VectorBytes / InBytes);
3516 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
3517 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
3518 SDValue Op;
3519 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
3520 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
3521 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
3522 } else if (P.Opcode == SystemZISD::PACK) {
3523 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
3524 SystemZ::VectorBytes / P.Operand);
3525 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
3526 } else {
3527 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
3528 }
3529 return Op;
3530}
3531
3532// Bytes is a VPERM-like permute vector, except that -1 is used for
3533// undefined bytes. Implement it on operands Ops[0] and Ops[1] using
3534// VSLDI or VPERM.
3535static SDValue getGeneralPermuteNode(SelectionDAG &DAG, SDLoc DL, SDValue *Ops,
3536 const SmallVectorImpl<int> &Bytes) {
3537 for (unsigned I = 0; I < 2; ++I)
3538 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
3539
3540 // First see whether VSLDI can be used.
3541 unsigned StartIndex, OpNo0, OpNo1;
3542 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
3543 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
3544 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
3545
3546 // Fall back on VPERM. Construct an SDNode for the permute vector.
3547 SDValue IndexNodes[SystemZ::VectorBytes];
3548 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
3549 if (Bytes[I] >= 0)
3550 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
3551 else
3552 IndexNodes[I] = DAG.getUNDEF(MVT::i32);
3553 SDValue Op2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, IndexNodes);
3554 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
3555}
3556
3557namespace {
3558// Describes a general N-operand vector shuffle.
3559struct GeneralShuffle {
3560 GeneralShuffle(EVT vt) : VT(vt) {}
3561 void addUndef();
3562 void add(SDValue, unsigned);
3563 SDValue getNode(SelectionDAG &, SDLoc);
3564
3565 // The operands of the shuffle.
3566 SmallVector<SDValue, SystemZ::VectorBytes> Ops;
3567
3568 // Index I is -1 if byte I of the result is undefined. Otherwise the
3569 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
3570 // Bytes[I] / SystemZ::VectorBytes.
3571 SmallVector<int, SystemZ::VectorBytes> Bytes;
3572
3573 // The type of the shuffle result.
3574 EVT VT;
3575};
3576}
3577
3578// Add an extra undefined element to the shuffle.
3579void GeneralShuffle::addUndef() {
3580 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3581 for (unsigned I = 0; I < BytesPerElement; ++I)
3582 Bytes.push_back(-1);
3583}
3584
3585// Add an extra element to the shuffle, taking it from element Elem of Op.
3586// A null Op indicates a vector input whose value will be calculated later;
3587// there is at most one such input per shuffle and it always has the same
3588// type as the result.
3589void GeneralShuffle::add(SDValue Op, unsigned Elem) {
3590 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3591
3592 // The source vector can have wider elements than the result,
3593 // either through an explicit TRUNCATE or because of type legalization.
3594 // We want the least significant part.
3595 EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
3596 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
3597 assert(FromBytesPerElement >= BytesPerElement &&
3598 "Invalid EXTRACT_VECTOR_ELT");
3599 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
3600 (FromBytesPerElement - BytesPerElement));
3601
3602 // Look through things like shuffles and bitcasts.
3603 while (Op.getNode()) {
3604 if (Op.getOpcode() == ISD::BITCAST)
3605 Op = Op.getOperand(0);
3606 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
3607 // See whether the bytes we need come from a contiguous part of one
3608 // operand.
3609 SmallVector<int, SystemZ::VectorBytes> OpBytes;
3610 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes);
3611 int NewByte;
3612 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
3613 break;
3614 if (NewByte < 0) {
3615 addUndef();
3616 return;
3617 }
3618 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
3619 Byte = unsigned(NewByte) % SystemZ::VectorBytes;
3620 } else if (Op.getOpcode() == ISD::UNDEF) {
3621 addUndef();
3622 return;
3623 } else
3624 break;
3625 }
3626
3627 // Make sure that the source of the extraction is in Ops.
3628 unsigned OpNo = 0;
3629 for (; OpNo < Ops.size(); ++OpNo)
3630 if (Ops[OpNo] == Op)
3631 break;
3632 if (OpNo == Ops.size())
3633 Ops.push_back(Op);
3634
3635 // Add the element to Bytes.
3636 unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
3637 for (unsigned I = 0; I < BytesPerElement; ++I)
3638 Bytes.push_back(Base + I);
3639}
3640
3641// Return SDNodes for the completed shuffle.
3642SDValue GeneralShuffle::getNode(SelectionDAG &DAG, SDLoc DL) {
3643 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
3644
3645 if (Ops.size() == 0)
3646 return DAG.getUNDEF(VT);
3647
3648 // Make sure that there are at least two shuffle operands.
3649 if (Ops.size() == 1)
3650 Ops.push_back(DAG.getUNDEF(MVT::v16i8));
3651
3652 // Create a tree of shuffles, deferring root node until after the loop.
3653 // Try to redistribute the undefined elements of non-root nodes so that
3654 // the non-root shuffles match something like a pack or merge, then adjust
3655 // the parent node's permute vector to compensate for the new order.
3656 // Among other things, this copes with vectors like <2 x i16> that were
3657 // padded with undefined elements during type legalization.
3658 //
3659 // In the best case this redistribution will lead to the whole tree
3660 // using packs and merges. It should rarely be a loss in other cases.
3661 unsigned Stride = 1;
3662 for (; Stride * 2 < Ops.size(); Stride *= 2) {
3663 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
3664 SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
3665
3666 // Create a mask for just these two operands.
3667 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
3668 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
3669 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
3670 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
3671 if (OpNo == I)
3672 NewBytes[J] = Byte;
3673 else if (OpNo == I + Stride)
3674 NewBytes[J] = SystemZ::VectorBytes + Byte;
3675 else
3676 NewBytes[J] = -1;
3677 }
3678 // See if it would be better to reorganize NewMask to avoid using VPERM.
3679 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
3680 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
3681 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
3682 // Applying NewBytesMap to Ops[I] gets back to NewBytes.
3683 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
3684 if (NewBytes[J] >= 0) {
3685 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
3686 "Invalid double permute");
3687 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
3688 } else
3689 assert(NewBytesMap[J] < 0 && "Invalid double permute");
3690 }
3691 } else {
3692 // Just use NewBytes on the operands.
3693 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
3694 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
3695 if (NewBytes[J] >= 0)
3696 Bytes[J] = I * SystemZ::VectorBytes + J;
3697 }
3698 }
3699 }
3700
3701 // Now we just have 2 inputs. Put the second operand in Ops[1].
3702 if (Stride > 1) {
3703 Ops[1] = Ops[Stride];
3704 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
3705 if (Bytes[I] >= int(SystemZ::VectorBytes))
3706 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
3707 }
3708
3709 // Look for an instruction that can do the permute without resorting
3710 // to VPERM.
3711 unsigned OpNo0, OpNo1;
3712 SDValue Op;
3713 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
3714 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
3715 else
3716 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
3717 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
3718}
3719
Ulrich Weigandcd808232015-05-05 19:26:48 +00003720// Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
3721static bool isScalarToVector(SDValue Op) {
3722 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
3723 if (Op.getOperand(I).getOpcode() != ISD::UNDEF)
3724 return false;
3725 return true;
3726}
3727
3728// Return a vector of type VT that contains Value in the first element.
3729// The other elements don't matter.
3730static SDValue buildScalarToVector(SelectionDAG &DAG, SDLoc DL, EVT VT,
3731 SDValue Value) {
3732 // If we have a constant, replicate it to all elements and let the
3733 // BUILD_VECTOR lowering take care of it.
3734 if (Value.getOpcode() == ISD::Constant ||
3735 Value.getOpcode() == ISD::ConstantFP) {
3736 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
3737 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
3738 }
3739 if (Value.getOpcode() == ISD::UNDEF)
3740 return DAG.getUNDEF(VT);
3741 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
3742}
3743
3744// Return a vector of type VT in which Op0 is in element 0 and Op1 is in
3745// element 1. Used for cases in which replication is cheap.
3746static SDValue buildMergeScalars(SelectionDAG &DAG, SDLoc DL, EVT VT,
3747 SDValue Op0, SDValue Op1) {
3748 if (Op0.getOpcode() == ISD::UNDEF) {
3749 if (Op1.getOpcode() == ISD::UNDEF)
3750 return DAG.getUNDEF(VT);
3751 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
3752 }
3753 if (Op1.getOpcode() == ISD::UNDEF)
3754 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
3755 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
3756 buildScalarToVector(DAG, DL, VT, Op0),
3757 buildScalarToVector(DAG, DL, VT, Op1));
3758}
3759
Ulrich Weigandce4c1092015-05-05 19:25:42 +00003760// Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
3761// vector for them.
3762static SDValue joinDwords(SelectionDAG &DAG, SDLoc DL, SDValue Op0,
3763 SDValue Op1) {
3764 if (Op0.getOpcode() == ISD::UNDEF && Op1.getOpcode() == ISD::UNDEF)
3765 return DAG.getUNDEF(MVT::v2i64);
3766 // If one of the two inputs is undefined then replicate the other one,
3767 // in order to avoid using another register unnecessarily.
3768 if (Op0.getOpcode() == ISD::UNDEF)
3769 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
3770 else if (Op1.getOpcode() == ISD::UNDEF)
3771 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3772 else {
3773 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3774 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
3775 }
3776 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
3777}
3778
3779// Try to represent constant BUILD_VECTOR node BVN using a
3780// SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask
3781// on success.
3782static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) {
3783 EVT ElemVT = BVN->getValueType(0).getVectorElementType();
3784 unsigned BytesPerElement = ElemVT.getStoreSize();
3785 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) {
3786 SDValue Op = BVN->getOperand(I);
3787 if (Op.getOpcode() != ISD::UNDEF) {
3788 uint64_t Value;
3789 if (Op.getOpcode() == ISD::Constant)
3790 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue();
3791 else if (Op.getOpcode() == ISD::ConstantFP)
3792 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()
3793 .getZExtValue());
3794 else
3795 return false;
3796 for (unsigned J = 0; J < BytesPerElement; ++J) {
3797 uint64_t Byte = (Value >> (J * 8)) & 0xff;
3798 if (Byte == 0xff)
3799 Mask |= 1 << ((E - I - 1) * BytesPerElement + J);
3800 else if (Byte != 0)
3801 return false;
3802 }
3803 }
3804 }
3805 return true;
3806}
3807
3808// Try to load a vector constant in which BitsPerElement-bit value Value
3809// is replicated to fill the vector. VT is the type of the resulting
3810// constant, which may have elements of a different size from BitsPerElement.
3811// Return the SDValue of the constant on success, otherwise return
3812// an empty value.
3813static SDValue tryBuildVectorReplicate(SelectionDAG &DAG,
3814 const SystemZInstrInfo *TII,
3815 SDLoc DL, EVT VT, uint64_t Value,
3816 unsigned BitsPerElement) {
3817 // Signed 16-bit values can be replicated using VREPI.
3818 int64_t SignedValue = SignExtend64(Value, BitsPerElement);
3819 if (isInt<16>(SignedValue)) {
3820 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
3821 SystemZ::VectorBits / BitsPerElement);
3822 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT,
3823 DAG.getConstant(SignedValue, DL, MVT::i32));
3824 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
3825 }
3826 // See whether rotating the constant left some N places gives a value that
3827 // is one less than a power of 2 (i.e. all zeros followed by all ones).
3828 // If so we can use VGM.
3829 unsigned Start, End;
3830 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) {
3831 // isRxSBGMask returns the bit numbers for a full 64-bit value,
3832 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to
3833 // bit numbers for an BitsPerElement value, so that 0 denotes
3834 // 1 << (BitsPerElement-1).
3835 Start -= 64 - BitsPerElement;
3836 End -= 64 - BitsPerElement;
3837 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
3838 SystemZ::VectorBits / BitsPerElement);
3839 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT,
3840 DAG.getConstant(Start, DL, MVT::i32),
3841 DAG.getConstant(End, DL, MVT::i32));
3842 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
3843 }
3844 return SDValue();
3845}
3846
3847// If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
3848// better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
3849// the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR
3850// would benefit from this representation and return it if so.
3851static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
3852 BuildVectorSDNode *BVN) {
3853 EVT VT = BVN->getValueType(0);
3854 unsigned NumElements = VT.getVectorNumElements();
3855
3856 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
3857 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still
3858 // need a BUILD_VECTOR, add an additional placeholder operand for that
3859 // BUILD_VECTOR and store its operands in ResidueOps.
3860 GeneralShuffle GS(VT);
3861 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
3862 bool FoundOne = false;
3863 for (unsigned I = 0; I < NumElements; ++I) {
3864 SDValue Op = BVN->getOperand(I);
3865 if (Op.getOpcode() == ISD::TRUNCATE)
3866 Op = Op.getOperand(0);
3867 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
3868 Op.getOperand(1).getOpcode() == ISD::Constant) {
3869 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
3870 GS.add(Op.getOperand(0), Elem);
3871 FoundOne = true;
3872 } else if (Op.getOpcode() == ISD::UNDEF) {
3873 GS.addUndef();
3874 } else {
3875 GS.add(SDValue(), ResidueOps.size());
3876 ResidueOps.push_back(Op);
3877 }
3878 }
3879
3880 // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
3881 if (!FoundOne)
3882 return SDValue();
3883
3884 // Create the BUILD_VECTOR for the remaining elements, if any.
3885 if (!ResidueOps.empty()) {
3886 while (ResidueOps.size() < NumElements)
3887 ResidueOps.push_back(DAG.getUNDEF(VT.getVectorElementType()));
3888 for (auto &Op : GS.Ops) {
3889 if (!Op.getNode()) {
3890 Op = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BVN), VT, ResidueOps);
3891 break;
3892 }
3893 }
3894 }
3895 return GS.getNode(DAG, SDLoc(BVN));
3896}
3897
3898// Combine GPR scalar values Elems into a vector of type VT.
3899static SDValue buildVector(SelectionDAG &DAG, SDLoc DL, EVT VT,
3900 SmallVectorImpl<SDValue> &Elems) {
3901 // See whether there is a single replicated value.
3902 SDValue Single;
3903 unsigned int NumElements = Elems.size();
3904 unsigned int Count = 0;
3905 for (auto Elem : Elems) {
3906 if (Elem.getOpcode() != ISD::UNDEF) {
3907 if (!Single.getNode())
3908 Single = Elem;
3909 else if (Elem != Single) {
3910 Single = SDValue();
3911 break;
3912 }
3913 Count += 1;
3914 }
3915 }
3916 // There are three cases here:
3917 //
3918 // - if the only defined element is a loaded one, the best sequence
3919 // is a replicating load.
3920 //
3921 // - otherwise, if the only defined element is an i64 value, we will
3922 // end up with the same VLVGP sequence regardless of whether we short-cut
3923 // for replication or fall through to the later code.
3924 //
3925 // - otherwise, if the only defined element is an i32 or smaller value,
3926 // we would need 2 instructions to replicate it: VLVGP followed by VREPx.
3927 // This is only a win if the single defined element is used more than once.
3928 // In other cases we're better off using a single VLVGx.
3929 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
3930 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
3931
3932 // The best way of building a v2i64 from two i64s is to use VLVGP.
3933 if (VT == MVT::v2i64)
3934 return joinDwords(DAG, DL, Elems[0], Elems[1]);
3935
Ulrich Weigandcd808232015-05-05 19:26:48 +00003936 // Use a 64-bit merge high to combine two doubles.
3937 if (VT == MVT::v2f64)
3938 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
3939
Ulrich Weigand80b3af72015-05-05 19:27:45 +00003940 // Build v4f32 values directly from the FPRs:
3941 //
3942 // <Axxx> <Bxxx> <Cxxxx> <Dxxx>
3943 // V V VMRHF
3944 // <ABxx> <CDxx>
3945 // V VMRHG
3946 // <ABCD>
3947 if (VT == MVT::v4f32) {
3948 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
3949 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
3950 // Avoid unnecessary undefs by reusing the other operand.
3951 if (Op01.getOpcode() == ISD::UNDEF)
3952 Op01 = Op23;
3953 else if (Op23.getOpcode() == ISD::UNDEF)
3954 Op23 = Op01;
3955 // Merging identical replications is a no-op.
3956 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
3957 return Op01;
3958 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
3959 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
3960 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
3961 DL, MVT::v2i64, Op01, Op23);
3962 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
3963 }
3964
Ulrich Weigandce4c1092015-05-05 19:25:42 +00003965 // Collect the constant terms.
3966 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
3967 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
3968
3969 unsigned NumConstants = 0;
3970 for (unsigned I = 0; I < NumElements; ++I) {
3971 SDValue Elem = Elems[I];
3972 if (Elem.getOpcode() == ISD::Constant ||
3973 Elem.getOpcode() == ISD::ConstantFP) {
3974 NumConstants += 1;
3975 Constants[I] = Elem;
3976 Done[I] = true;
3977 }
3978 }
3979 // If there was at least one constant, fill in the other elements of
3980 // Constants with undefs to get a full vector constant and use that
3981 // as the starting point.
3982 SDValue Result;
3983 if (NumConstants > 0) {
3984 for (unsigned I = 0; I < NumElements; ++I)
3985 if (!Constants[I].getNode())
3986 Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
3987 Result = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Constants);
3988 } else {
3989 // Otherwise try to use VLVGP to start the sequence in order to
3990 // avoid a false dependency on any previous contents of the vector
3991 // register. This only makes sense if one of the associated elements
3992 // is defined.
3993 unsigned I1 = NumElements / 2 - 1;
3994 unsigned I2 = NumElements - 1;
3995 bool Def1 = (Elems[I1].getOpcode() != ISD::UNDEF);
3996 bool Def2 = (Elems[I2].getOpcode() != ISD::UNDEF);
3997 if (Def1 || Def2) {
3998 SDValue Elem1 = Elems[Def1 ? I1 : I2];
3999 SDValue Elem2 = Elems[Def2 ? I2 : I1];
4000 Result = DAG.getNode(ISD::BITCAST, DL, VT,
4001 joinDwords(DAG, DL, Elem1, Elem2));
4002 Done[I1] = true;
4003 Done[I2] = true;
4004 } else
4005 Result = DAG.getUNDEF(VT);
4006 }
4007
4008 // Use VLVGx to insert the other elements.
4009 for (unsigned I = 0; I < NumElements; ++I)
4010 if (!Done[I] && Elems[I].getOpcode() != ISD::UNDEF)
4011 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4012 DAG.getConstant(I, DL, MVT::i32));
4013 return Result;
4014}
4015
4016SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4017 SelectionDAG &DAG) const {
4018 const SystemZInstrInfo *TII =
4019 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
4020 auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4021 SDLoc DL(Op);
4022 EVT VT = Op.getValueType();
4023
4024 if (BVN->isConstant()) {
4025 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally-
4026 // preferred way of creating all-zero and all-one vectors so give it
4027 // priority over other methods below.
4028 uint64_t Mask = 0;
4029 if (tryBuildVectorByteMask(BVN, Mask)) {
4030 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
4031 DAG.getConstant(Mask, DL, MVT::i32));
4032 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4033 }
4034
4035 // Try using some form of replication.
4036 APInt SplatBits, SplatUndef;
4037 unsigned SplatBitSize;
4038 bool HasAnyUndefs;
4039 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4040 8, true) &&
4041 SplatBitSize <= 64) {
4042 // First try assuming that any undefined bits above the highest set bit
4043 // and below the lowest set bit are 1s. This increases the likelihood of
4044 // being able to use a sign-extended element value in VECTOR REPLICATE
4045 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
4046 uint64_t SplatBitsZ = SplatBits.getZExtValue();
4047 uint64_t SplatUndefZ = SplatUndef.getZExtValue();
4048 uint64_t Lower = (SplatUndefZ
4049 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
4050 uint64_t Upper = (SplatUndefZ
4051 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
4052 uint64_t Value = SplatBitsZ | Upper | Lower;
4053 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value,
4054 SplatBitSize);
4055 if (Op.getNode())
4056 return Op;
4057
4058 // Now try assuming that any undefined bits between the first and
4059 // last defined set bits are set. This increases the chances of
4060 // using a non-wraparound mask.
4061 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
4062 Value = SplatBitsZ | Middle;
4063 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize);
4064 if (Op.getNode())
4065 return Op;
4066 }
4067
4068 // Fall back to loading it from memory.
4069 return SDValue();
4070 }
4071
4072 // See if we should use shuffles to construct the vector from other vectors.
4073 SDValue Res = tryBuildVectorShuffle(DAG, BVN);
4074 if (Res.getNode())
4075 return Res;
4076
Ulrich Weigandcd808232015-05-05 19:26:48 +00004077 // Detect SCALAR_TO_VECTOR conversions.
4078 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4079 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4080
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004081 // Otherwise use buildVector to build the vector up from GPRs.
4082 unsigned NumElements = Op.getNumOperands();
4083 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4084 for (unsigned I = 0; I < NumElements; ++I)
4085 Ops[I] = Op.getOperand(I);
4086 return buildVector(DAG, DL, VT, Ops);
4087}
4088
4089SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4090 SelectionDAG &DAG) const {
4091 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4092 SDLoc DL(Op);
4093 EVT VT = Op.getValueType();
4094 unsigned NumElements = VT.getVectorNumElements();
4095
4096 if (VSN->isSplat()) {
4097 SDValue Op0 = Op.getOperand(0);
4098 unsigned Index = VSN->getSplatIndex();
4099 assert(Index < VT.getVectorNumElements() &&
4100 "Splat index should be defined and in first operand");
4101 // See whether the value we're splatting is directly available as a scalar.
4102 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4103 Op0.getOpcode() == ISD::BUILD_VECTOR)
4104 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4105 // Otherwise keep it as a vector-to-vector operation.
4106 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4107 DAG.getConstant(Index, DL, MVT::i32));
4108 }
4109
4110 GeneralShuffle GS(VT);
4111 for (unsigned I = 0; I < NumElements; ++I) {
4112 int Elt = VSN->getMaskElt(I);
4113 if (Elt < 0)
4114 GS.addUndef();
4115 else
4116 GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4117 unsigned(Elt) % NumElements);
4118 }
4119 return GS.getNode(DAG, SDLoc(VSN));
4120}
4121
4122SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4123 SelectionDAG &DAG) const {
4124 SDLoc DL(Op);
4125 // Just insert the scalar into element 0 of an undefined vector.
4126 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4127 Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4128 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4129}
4130
Ulrich Weigandcd808232015-05-05 19:26:48 +00004131SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4132 SelectionDAG &DAG) const {
4133 // Handle insertions of floating-point values.
4134 SDLoc DL(Op);
4135 SDValue Op0 = Op.getOperand(0);
4136 SDValue Op1 = Op.getOperand(1);
4137 SDValue Op2 = Op.getOperand(2);
4138 EVT VT = Op.getValueType();
4139
Ulrich Weigand80b3af72015-05-05 19:27:45 +00004140 // Insertions into constant indices of a v2f64 can be done using VPDI.
4141 // However, if the inserted value is a bitcast or a constant then it's
4142 // better to use GPRs, as below.
4143 if (VT == MVT::v2f64 &&
4144 Op1.getOpcode() != ISD::BITCAST &&
Ulrich Weigandcd808232015-05-05 19:26:48 +00004145 Op1.getOpcode() != ISD::ConstantFP &&
4146 Op2.getOpcode() == ISD::Constant) {
4147 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue();
4148 unsigned Mask = VT.getVectorNumElements() - 1;
4149 if (Index <= Mask)
4150 return Op;
4151 }
4152
4153 // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4154 MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits());
4155 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4156 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4157 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4158 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4159 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4160}
4161
4162SDValue
4163SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4164 SelectionDAG &DAG) const {
4165 // Handle extractions of floating-point values.
4166 SDLoc DL(Op);
4167 SDValue Op0 = Op.getOperand(0);
4168 SDValue Op1 = Op.getOperand(1);
4169 EVT VT = Op.getValueType();
4170 EVT VecVT = Op0.getValueType();
4171
4172 // Extractions of constant indices can be done directly.
4173 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4174 uint64_t Index = CIndexN->getZExtValue();
4175 unsigned Mask = VecVT.getVectorNumElements() - 1;
4176 if (Index <= Mask)
4177 return Op;
4178 }
4179
4180 // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4181 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4182 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4183 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4184 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4185 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4186}
4187
Ulrich Weigandcd2a1b52015-05-05 19:29:21 +00004188SDValue
4189SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
4190 unsigned UnpackHigh) const {
4191 SDValue PackedOp = Op.getOperand(0);
4192 EVT OutVT = Op.getValueType();
4193 EVT InVT = PackedOp.getValueType();
4194 unsigned ToBits = OutVT.getVectorElementType().getSizeInBits();
4195 unsigned FromBits = InVT.getVectorElementType().getSizeInBits();
4196 do {
4197 FromBits *= 2;
4198 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4199 SystemZ::VectorBits / FromBits);
4200 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4201 } while (FromBits != ToBits);
4202 return PackedOp;
4203}
4204
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004205SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4206 unsigned ByScalar) const {
4207 // Look for cases where a vector shift can use the *_BY_SCALAR form.
4208 SDValue Op0 = Op.getOperand(0);
4209 SDValue Op1 = Op.getOperand(1);
4210 SDLoc DL(Op);
4211 EVT VT = Op.getValueType();
4212 unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits();
4213
4214 // See whether the shift vector is a splat represented as BUILD_VECTOR.
4215 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4216 APInt SplatBits, SplatUndef;
4217 unsigned SplatBitSize;
4218 bool HasAnyUndefs;
4219 // Check for constant splats. Use ElemBitSize as the minimum element
4220 // width and reject splats that need wider elements.
4221 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4222 ElemBitSize, true) &&
4223 SplatBitSize == ElemBitSize) {
4224 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4225 DL, MVT::i32);
4226 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4227 }
4228 // Check for variable splats.
4229 BitVector UndefElements;
4230 SDValue Splat = BVN->getSplatValue(&UndefElements);
4231 if (Splat) {
4232 // Since i32 is the smallest legal type, we either need a no-op
4233 // or a truncation.
4234 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4235 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4236 }
4237 }
4238
4239 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4240 // and the shift amount is directly available in a GPR.
4241 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4242 if (VSN->isSplat()) {
4243 SDValue VSNOp0 = VSN->getOperand(0);
4244 unsigned Index = VSN->getSplatIndex();
4245 assert(Index < VT.getVectorNumElements() &&
4246 "Splat index should be defined and in first operand");
4247 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4248 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4249 // Since i32 is the smallest legal type, we either need a no-op
4250 // or a truncation.
4251 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4252 VSNOp0.getOperand(Index));
4253 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4254 }
4255 }
4256 }
4257
4258 // Otherwise just treat the current form as legal.
4259 return Op;
4260}
4261
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004262SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4263 SelectionDAG &DAG) const {
4264 switch (Op.getOpcode()) {
4265 case ISD::BR_CC:
4266 return lowerBR_CC(Op, DAG);
4267 case ISD::SELECT_CC:
4268 return lowerSELECT_CC(Op, DAG);
Richard Sandifordf722a8e302013-10-16 11:10:55 +00004269 case ISD::SETCC:
4270 return lowerSETCC(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004271 case ISD::GlobalAddress:
4272 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4273 case ISD::GlobalTLSAddress:
4274 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4275 case ISD::BlockAddress:
4276 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4277 case ISD::JumpTable:
4278 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4279 case ISD::ConstantPool:
4280 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4281 case ISD::BITCAST:
4282 return lowerBITCAST(Op, DAG);
4283 case ISD::VASTART:
4284 return lowerVASTART(Op, DAG);
4285 case ISD::VACOPY:
4286 return lowerVACOPY(Op, DAG);
4287 case ISD::DYNAMIC_STACKALLOC:
4288 return lowerDYNAMIC_STACKALLOC(Op, DAG);
Richard Sandiford7d86e472013-08-21 09:34:56 +00004289 case ISD::SMUL_LOHI:
4290 return lowerSMUL_LOHI(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004291 case ISD::UMUL_LOHI:
4292 return lowerUMUL_LOHI(Op, DAG);
4293 case ISD::SDIVREM:
4294 return lowerSDIVREM(Op, DAG);
4295 case ISD::UDIVREM:
4296 return lowerUDIVREM(Op, DAG);
4297 case ISD::OR:
4298 return lowerOR(Op, DAG);
Ulrich Weigandb4012182015-03-31 12:56:33 +00004299 case ISD::CTPOP:
4300 return lowerCTPOP(Op, DAG);
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004301 case ISD::CTLZ_ZERO_UNDEF:
4302 return DAG.getNode(ISD::CTLZ, SDLoc(Op),
4303 Op.getValueType(), Op.getOperand(0));
4304 case ISD::CTTZ_ZERO_UNDEF:
4305 return DAG.getNode(ISD::CTTZ, SDLoc(Op),
4306 Op.getValueType(), Op.getOperand(0));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004307 case ISD::ATOMIC_SWAP:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00004308 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
4309 case ISD::ATOMIC_STORE:
4310 return lowerATOMIC_STORE(Op, DAG);
4311 case ISD::ATOMIC_LOAD:
4312 return lowerATOMIC_LOAD(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004313 case ISD::ATOMIC_LOAD_ADD:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00004314 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004315 case ISD::ATOMIC_LOAD_SUB:
Richard Sandiford41350a52013-12-24 15:18:04 +00004316 return lowerATOMIC_LOAD_SUB(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004317 case ISD::ATOMIC_LOAD_AND:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00004318 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004319 case ISD::ATOMIC_LOAD_OR:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00004320 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004321 case ISD::ATOMIC_LOAD_XOR:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00004322 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004323 case ISD::ATOMIC_LOAD_NAND:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00004324 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004325 case ISD::ATOMIC_LOAD_MIN:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00004326 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004327 case ISD::ATOMIC_LOAD_MAX:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00004328 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004329 case ISD::ATOMIC_LOAD_UMIN:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00004330 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004331 case ISD::ATOMIC_LOAD_UMAX:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00004332 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004333 case ISD::ATOMIC_CMP_SWAP:
4334 return lowerATOMIC_CMP_SWAP(Op, DAG);
4335 case ISD::STACKSAVE:
4336 return lowerSTACKSAVE(Op, DAG);
4337 case ISD::STACKRESTORE:
4338 return lowerSTACKRESTORE(Op, DAG);
Richard Sandiford03481332013-08-23 11:36:42 +00004339 case ISD::PREFETCH:
4340 return lowerPREFETCH(Op, DAG);
Ulrich Weigand57c85f52015-04-01 12:51:43 +00004341 case ISD::INTRINSIC_W_CHAIN:
4342 return lowerINTRINSIC_W_CHAIN(Op, DAG);
Ulrich Weigandc1708b22015-05-05 19:31:09 +00004343 case ISD::INTRINSIC_WO_CHAIN:
4344 return lowerINTRINSIC_WO_CHAIN(Op, DAG);
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004345 case ISD::BUILD_VECTOR:
4346 return lowerBUILD_VECTOR(Op, DAG);
4347 case ISD::VECTOR_SHUFFLE:
4348 return lowerVECTOR_SHUFFLE(Op, DAG);
4349 case ISD::SCALAR_TO_VECTOR:
4350 return lowerSCALAR_TO_VECTOR(Op, DAG);
Ulrich Weigandcd808232015-05-05 19:26:48 +00004351 case ISD::INSERT_VECTOR_ELT:
4352 return lowerINSERT_VECTOR_ELT(Op, DAG);
4353 case ISD::EXTRACT_VECTOR_ELT:
4354 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
Ulrich Weigandcd2a1b52015-05-05 19:29:21 +00004355 case ISD::SIGN_EXTEND_VECTOR_INREG:
4356 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
4357 case ISD::ZERO_EXTEND_VECTOR_INREG:
4358 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004359 case ISD::SHL:
4360 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
4361 case ISD::SRL:
4362 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
4363 case ISD::SRA:
4364 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004365 default:
4366 llvm_unreachable("Unexpected node to lower");
4367 }
4368}
4369
4370const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
4371#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
Matthias Braund04893f2015-05-07 21:33:59 +00004372 switch ((SystemZISD::NodeType)Opcode) {
4373 case SystemZISD::FIRST_NUMBER: break;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004374 OPCODE(RET_FLAG);
4375 OPCODE(CALL);
Richard Sandiford709bda62013-08-19 12:42:31 +00004376 OPCODE(SIBCALL);
Ulrich Weigand1c6f07d2015-05-04 17:39:40 +00004377 OPCODE(TLS_GDCALL);
4378 OPCODE(TLS_LDCALL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004379 OPCODE(PCREL_WRAPPER);
Richard Sandiford54b36912013-09-27 15:14:04 +00004380 OPCODE(PCREL_OFFSET);
Richard Sandiford57485472013-12-13 15:35:00 +00004381 OPCODE(IABS);
Richard Sandiford5bc670b2013-09-06 11:51:39 +00004382 OPCODE(ICMP);
4383 OPCODE(FCMP);
Richard Sandiford35b9be22013-08-28 10:31:43 +00004384 OPCODE(TM);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004385 OPCODE(BR_CCMASK);
4386 OPCODE(SELECT_CCMASK);
4387 OPCODE(ADJDYNALLOC);
4388 OPCODE(EXTRACT_ACCESS);
Ulrich Weigand1c6f07d2015-05-04 17:39:40 +00004389 OPCODE(POPCNT);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004390 OPCODE(UMUL_LOHI64);
Ulrich Weigand1c6f07d2015-05-04 17:39:40 +00004391 OPCODE(SDIVREM32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004392 OPCODE(SDIVREM64);
4393 OPCODE(UDIVREM32);
4394 OPCODE(UDIVREM64);
Richard Sandifordd131ff82013-07-08 09:35:23 +00004395 OPCODE(MVC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00004396 OPCODE(MVC_LOOP);
Richard Sandiford178273a2013-09-05 10:36:45 +00004397 OPCODE(NC);
4398 OPCODE(NC_LOOP);
4399 OPCODE(OC);
4400 OPCODE(OC_LOOP);
4401 OPCODE(XC);
4402 OPCODE(XC_LOOP);
Richard Sandiford761703a2013-08-12 10:17:33 +00004403 OPCODE(CLC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00004404 OPCODE(CLC_LOOP);
Richard Sandifordbb83a502013-08-16 11:29:37 +00004405 OPCODE(STPCPY);
Ulrich Weigand1c6f07d2015-05-04 17:39:40 +00004406 OPCODE(STRCMP);
Richard Sandiford0dec06a2013-08-16 11:41:43 +00004407 OPCODE(SEARCH_STRING);
Richard Sandiford564681c2013-08-12 10:28:10 +00004408 OPCODE(IPM);
Richard Sandiford9afe6132013-12-10 10:36:34 +00004409 OPCODE(SERIALIZE);
Ulrich Weigand57c85f52015-04-01 12:51:43 +00004410 OPCODE(TBEGIN);
4411 OPCODE(TBEGIN_NOFLOAT);
4412 OPCODE(TEND);
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004413 OPCODE(BYTE_MASK);
4414 OPCODE(ROTATE_MASK);
4415 OPCODE(REPLICATE);
4416 OPCODE(JOIN_DWORDS);
4417 OPCODE(SPLAT);
4418 OPCODE(MERGE_HIGH);
4419 OPCODE(MERGE_LOW);
4420 OPCODE(SHL_DOUBLE);
4421 OPCODE(PERMUTE_DWORDS);
4422 OPCODE(PERMUTE);
4423 OPCODE(PACK);
Ulrich Weigandc1708b22015-05-05 19:31:09 +00004424 OPCODE(PACKS_CC);
4425 OPCODE(PACKLS_CC);
Ulrich Weigandcd2a1b52015-05-05 19:29:21 +00004426 OPCODE(UNPACK_HIGH);
4427 OPCODE(UNPACKL_HIGH);
4428 OPCODE(UNPACK_LOW);
4429 OPCODE(UNPACKL_LOW);
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004430 OPCODE(VSHL_BY_SCALAR);
4431 OPCODE(VSRL_BY_SCALAR);
4432 OPCODE(VSRA_BY_SCALAR);
4433 OPCODE(VSUM);
4434 OPCODE(VICMPE);
4435 OPCODE(VICMPH);
4436 OPCODE(VICMPHL);
Ulrich Weigandc1708b22015-05-05 19:31:09 +00004437 OPCODE(VICMPES);
4438 OPCODE(VICMPHS);
4439 OPCODE(VICMPHLS);
Ulrich Weigandcd808232015-05-05 19:26:48 +00004440 OPCODE(VFCMPE);
4441 OPCODE(VFCMPH);
4442 OPCODE(VFCMPHE);
Ulrich Weigandc1708b22015-05-05 19:31:09 +00004443 OPCODE(VFCMPES);
4444 OPCODE(VFCMPHS);
4445 OPCODE(VFCMPHES);
4446 OPCODE(VFTCI);
Ulrich Weigand80b3af72015-05-05 19:27:45 +00004447 OPCODE(VEXTEND);
4448 OPCODE(VROUND);
Ulrich Weigandc1708b22015-05-05 19:31:09 +00004449 OPCODE(VTM);
4450 OPCODE(VFAE_CC);
4451 OPCODE(VFAEZ_CC);
4452 OPCODE(VFEE_CC);
4453 OPCODE(VFEEZ_CC);
4454 OPCODE(VFENE_CC);
4455 OPCODE(VFENEZ_CC);
4456 OPCODE(VISTR_CC);
4457 OPCODE(VSTRC_CC);
4458 OPCODE(VSTRCZ_CC);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004459 OPCODE(ATOMIC_SWAPW);
4460 OPCODE(ATOMIC_LOADW_ADD);
4461 OPCODE(ATOMIC_LOADW_SUB);
4462 OPCODE(ATOMIC_LOADW_AND);
4463 OPCODE(ATOMIC_LOADW_OR);
4464 OPCODE(ATOMIC_LOADW_XOR);
4465 OPCODE(ATOMIC_LOADW_NAND);
4466 OPCODE(ATOMIC_LOADW_MIN);
4467 OPCODE(ATOMIC_LOADW_MAX);
4468 OPCODE(ATOMIC_LOADW_UMIN);
4469 OPCODE(ATOMIC_LOADW_UMAX);
4470 OPCODE(ATOMIC_CMP_SWAPW);
Richard Sandiford03481332013-08-23 11:36:42 +00004471 OPCODE(PREFETCH);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004472 }
Craig Topper062a2ba2014-04-25 05:30:21 +00004473 return nullptr;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004474#undef OPCODE
4475}
4476
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004477// Return true if VT is a vector whose elements are a whole number of bytes
4478// in width.
4479static bool canTreatAsByteVector(EVT VT) {
4480 return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0;
4481}
4482
4483// Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
4484// producing a result of type ResVT. Op is a possibly bitcast version
4485// of the input vector and Index is the index (based on type VecVT) that
4486// should be extracted. Return the new extraction if a simplification
4487// was possible or if Force is true.
4488SDValue SystemZTargetLowering::combineExtract(SDLoc DL, EVT ResVT, EVT VecVT,
4489 SDValue Op, unsigned Index,
4490 DAGCombinerInfo &DCI,
4491 bool Force) const {
4492 SelectionDAG &DAG = DCI.DAG;
4493
4494 // The number of bytes being extracted.
4495 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
4496
4497 for (;;) {
4498 unsigned Opcode = Op.getOpcode();
4499 if (Opcode == ISD::BITCAST)
4500 // Look through bitcasts.
4501 Op = Op.getOperand(0);
4502 else if (Opcode == ISD::VECTOR_SHUFFLE &&
4503 canTreatAsByteVector(Op.getValueType())) {
4504 // Get a VPERM-like permute mask and see whether the bytes covered
4505 // by the extracted element are a contiguous sequence from one
4506 // source operand.
4507 SmallVector<int, SystemZ::VectorBytes> Bytes;
4508 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes);
4509 int First;
4510 if (!getShuffleInput(Bytes, Index * BytesPerElement,
4511 BytesPerElement, First))
4512 break;
4513 if (First < 0)
4514 return DAG.getUNDEF(ResVT);
4515 // Make sure the contiguous sequence starts at a multiple of the
4516 // original element size.
4517 unsigned Byte = unsigned(First) % Bytes.size();
4518 if (Byte % BytesPerElement != 0)
4519 break;
4520 // We can get the extracted value directly from an input.
4521 Index = Byte / BytesPerElement;
4522 Op = Op.getOperand(unsigned(First) / Bytes.size());
4523 Force = true;
4524 } else if (Opcode == ISD::BUILD_VECTOR &&
4525 canTreatAsByteVector(Op.getValueType())) {
4526 // We can only optimize this case if the BUILD_VECTOR elements are
4527 // at least as wide as the extracted value.
4528 EVT OpVT = Op.getValueType();
4529 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
4530 if (OpBytesPerElement < BytesPerElement)
4531 break;
4532 // Make sure that the least-significant bit of the extracted value
4533 // is the least significant bit of an input.
4534 unsigned End = (Index + 1) * BytesPerElement;
4535 if (End % OpBytesPerElement != 0)
4536 break;
4537 // We're extracting the low part of one operand of the BUILD_VECTOR.
4538 Op = Op.getOperand(End / OpBytesPerElement - 1);
4539 if (!Op.getValueType().isInteger()) {
4540 EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits());
4541 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4542 DCI.AddToWorklist(Op.getNode());
4543 }
4544 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
4545 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
4546 if (VT != ResVT) {
4547 DCI.AddToWorklist(Op.getNode());
4548 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
4549 }
4550 return Op;
4551 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
4552 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
4553 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
4554 canTreatAsByteVector(Op.getValueType()) &&
4555 canTreatAsByteVector(Op.getOperand(0).getValueType())) {
4556 // Make sure that only the unextended bits are significant.
4557 EVT ExtVT = Op.getValueType();
4558 EVT OpVT = Op.getOperand(0).getValueType();
4559 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
4560 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
4561 unsigned Byte = Index * BytesPerElement;
4562 unsigned SubByte = Byte % ExtBytesPerElement;
4563 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
4564 if (SubByte < MinSubByte ||
4565 SubByte + BytesPerElement > ExtBytesPerElement)
4566 break;
4567 // Get the byte offset of the unextended element
4568 Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
4569 // ...then add the byte offset relative to that element.
4570 Byte += SubByte - MinSubByte;
4571 if (Byte % BytesPerElement != 0)
4572 break;
4573 Op = Op.getOperand(0);
4574 Index = Byte / BytesPerElement;
4575 Force = true;
4576 } else
4577 break;
4578 }
4579 if (Force) {
4580 if (Op.getValueType() != VecVT) {
4581 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
4582 DCI.AddToWorklist(Op.getNode());
4583 }
4584 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
4585 DAG.getConstant(Index, DL, MVT::i32));
4586 }
4587 return SDValue();
4588}
4589
4590// Optimize vector operations in scalar value Op on the basis that Op
4591// is truncated to TruncVT.
4592SDValue
4593SystemZTargetLowering::combineTruncateExtract(SDLoc DL, EVT TruncVT, SDValue Op,
4594 DAGCombinerInfo &DCI) const {
4595 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
4596 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
4597 // of type TruncVT.
4598 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4599 TruncVT.getSizeInBits() % 8 == 0) {
4600 SDValue Vec = Op.getOperand(0);
4601 EVT VecVT = Vec.getValueType();
4602 if (canTreatAsByteVector(VecVT)) {
4603 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
4604 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
4605 unsigned TruncBytes = TruncVT.getStoreSize();
4606 if (BytesPerElement % TruncBytes == 0) {
4607 // Calculate the value of Y' in the above description. We are
4608 // splitting the original elements into Scale equal-sized pieces
4609 // and for truncation purposes want the last (least-significant)
4610 // of these pieces for IndexN. This is easiest to do by calculating
4611 // the start index of the following element and then subtracting 1.
4612 unsigned Scale = BytesPerElement / TruncBytes;
4613 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
4614
4615 // Defer the creation of the bitcast from X to combineExtract,
4616 // which might be able to optimize the extraction.
4617 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
4618 VecVT.getStoreSize() / TruncBytes);
4619 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
4620 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
4621 }
4622 }
4623 }
4624 }
4625 return SDValue();
4626}
4627
Richard Sandiford95bc5f92014-03-07 11:34:35 +00004628SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
4629 DAGCombinerInfo &DCI) const {
4630 SelectionDAG &DAG = DCI.DAG;
4631 unsigned Opcode = N->getOpcode();
4632 if (Opcode == ISD::SIGN_EXTEND) {
4633 // Convert (sext (ashr (shl X, C1), C2)) to
4634 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
4635 // cheap as narrower ones.
4636 SDValue N0 = N->getOperand(0);
4637 EVT VT = N->getValueType(0);
4638 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
4639 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4640 SDValue Inner = N0.getOperand(0);
4641 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
4642 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
4643 unsigned Extra = (VT.getSizeInBits() -
4644 N0.getValueType().getSizeInBits());
4645 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
4646 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
4647 EVT ShiftVT = N0.getOperand(1).getValueType();
4648 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
4649 Inner.getOperand(0));
4650 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004651 DAG.getConstant(NewShlAmt, SDLoc(Inner),
4652 ShiftVT));
Richard Sandiford95bc5f92014-03-07 11:34:35 +00004653 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004654 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
Richard Sandiford95bc5f92014-03-07 11:34:35 +00004655 }
4656 }
4657 }
4658 }
Ulrich Weigandcd2a1b52015-05-05 19:29:21 +00004659 if (Opcode == SystemZISD::MERGE_HIGH ||
4660 Opcode == SystemZISD::MERGE_LOW) {
Ulrich Weigand80b3af72015-05-05 19:27:45 +00004661 SDValue Op0 = N->getOperand(0);
4662 SDValue Op1 = N->getOperand(1);
Ulrich Weigandcd2a1b52015-05-05 19:29:21 +00004663 if (Op0.getOpcode() == ISD::BITCAST)
4664 Op0 = Op0.getOperand(0);
4665 if (Op0.getOpcode() == SystemZISD::BYTE_MASK &&
4666 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) {
4667 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF
4668 // for v4f32.
4669 if (Op1 == N->getOperand(0))
Ulrich Weigand80b3af72015-05-05 19:27:45 +00004670 return Op1;
Ulrich Weigandcd2a1b52015-05-05 19:29:21 +00004671 // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
4672 EVT VT = Op1.getValueType();
4673 unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
4674 if (ElemBytes <= 4) {
4675 Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
4676 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
4677 EVT InVT = VT.changeVectorElementTypeToInteger();
4678 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
4679 SystemZ::VectorBytes / ElemBytes / 2);
4680 if (VT != InVT) {
4681 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
4682 DCI.AddToWorklist(Op1.getNode());
4683 }
4684 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
4685 DCI.AddToWorklist(Op.getNode());
4686 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
4687 }
Ulrich Weigand80b3af72015-05-05 19:27:45 +00004688 }
4689 }
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004690 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
4691 // for the extraction to be done on a vMiN value, so that we can use VSTE.
4692 // If X has wider elements then convert it to:
4693 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
4694 if (Opcode == ISD::STORE) {
4695 auto *SN = cast<StoreSDNode>(N);
4696 EVT MemVT = SN->getMemoryVT();
4697 if (MemVT.isInteger()) {
4698 SDValue Value = combineTruncateExtract(SDLoc(N), MemVT,
4699 SN->getValue(), DCI);
4700 if (Value.getNode()) {
4701 DCI.AddToWorklist(Value.getNode());
4702
4703 // Rewrite the store with the new form of stored value.
4704 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
4705 SN->getBasePtr(), SN->getMemoryVT(),
4706 SN->getMemOperand());
4707 }
4708 }
4709 }
4710 // Try to simplify a vector extraction.
4711 if (Opcode == ISD::EXTRACT_VECTOR_ELT) {
4712 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
4713 SDValue Op0 = N->getOperand(0);
4714 EVT VecVT = Op0.getValueType();
4715 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
4716 IndexN->getZExtValue(), DCI, false);
4717 }
4718 }
4719 // (join_dwords X, X) == (replicate X)
4720 if (Opcode == SystemZISD::JOIN_DWORDS &&
4721 N->getOperand(0) == N->getOperand(1))
4722 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
4723 N->getOperand(0));
Ulrich Weigand80b3af72015-05-05 19:27:45 +00004724 // (fround (extract_vector_elt X 0))
4725 // (fround (extract_vector_elt X 1)) ->
4726 // (extract_vector_elt (VROUND X) 0)
4727 // (extract_vector_elt (VROUND X) 1)
4728 //
4729 // This is a special case since the target doesn't really support v2f32s.
4730 if (Opcode == ISD::FP_ROUND) {
4731 SDValue Op0 = N->getOperand(0);
4732 if (N->getValueType(0) == MVT::f32 &&
4733 Op0.hasOneUse() &&
4734 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4735 Op0.getOperand(0).getValueType() == MVT::v2f64 &&
4736 Op0.getOperand(1).getOpcode() == ISD::Constant &&
4737 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
4738 SDValue Vec = Op0.getOperand(0);
4739 for (auto *U : Vec->uses()) {
4740 if (U != Op0.getNode() &&
4741 U->hasOneUse() &&
4742 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4743 U->getOperand(0) == Vec &&
4744 U->getOperand(1).getOpcode() == ISD::Constant &&
4745 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
4746 SDValue OtherRound = SDValue(*U->use_begin(), 0);
4747 if (OtherRound.getOpcode() == ISD::FP_ROUND &&
4748 OtherRound.getOperand(0) == SDValue(U, 0) &&
4749 OtherRound.getValueType() == MVT::f32) {
4750 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
4751 MVT::v4f32, Vec);
4752 DCI.AddToWorklist(VRound.getNode());
4753 SDValue Extract1 =
4754 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
4755 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
4756 DCI.AddToWorklist(Extract1.getNode());
4757 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
4758 SDValue Extract0 =
4759 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
4760 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
4761 return Extract0;
4762 }
4763 }
4764 }
4765 }
4766 }
Richard Sandiford95bc5f92014-03-07 11:34:35 +00004767 return SDValue();
4768}
4769
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004770//===----------------------------------------------------------------------===//
4771// Custom insertion
4772//===----------------------------------------------------------------------===//
4773
4774// Create a new basic block after MBB.
4775static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
4776 MachineFunction &MF = *MBB->getParent();
4777 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00004778 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004779 return NewMBB;
4780}
4781
Richard Sandifordbe133a82013-08-28 09:01:51 +00004782// Split MBB after MI and return the new block (the one that contains
4783// instructions after MI).
4784static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
4785 MachineBasicBlock *MBB) {
4786 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
4787 NewMBB->splice(NewMBB->begin(), MBB,
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00004788 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
Richard Sandifordbe133a82013-08-28 09:01:51 +00004789 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
4790 return NewMBB;
4791}
4792
Richard Sandiford5e318f02013-08-27 09:54:29 +00004793// Split MBB before MI and return the new block (the one that contains MI).
4794static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
4795 MachineBasicBlock *MBB) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004796 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
Richard Sandiford5e318f02013-08-27 09:54:29 +00004797 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004798 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
4799 return NewMBB;
4800}
4801
Richard Sandiford5e318f02013-08-27 09:54:29 +00004802// Force base value Base into a register before MI. Return the register.
4803static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
4804 const SystemZInstrInfo *TII) {
4805 if (Base.isReg())
4806 return Base.getReg();
4807
4808 MachineBasicBlock *MBB = MI->getParent();
4809 MachineFunction &MF = *MBB->getParent();
4810 MachineRegisterInfo &MRI = MF.getRegInfo();
4811
4812 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
4813 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
4814 .addOperand(Base).addImm(0).addReg(0);
4815 return Reg;
4816}
4817
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004818// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
4819MachineBasicBlock *
4820SystemZTargetLowering::emitSelect(MachineInstr *MI,
4821 MachineBasicBlock *MBB) const {
Eric Christophera6734172015-01-31 00:06:45 +00004822 const SystemZInstrInfo *TII =
4823 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004824
4825 unsigned DestReg = MI->getOperand(0).getReg();
4826 unsigned TrueReg = MI->getOperand(1).getReg();
4827 unsigned FalseReg = MI->getOperand(2).getReg();
Richard Sandiford3d768e32013-07-31 12:30:20 +00004828 unsigned CCValid = MI->getOperand(3).getImm();
4829 unsigned CCMask = MI->getOperand(4).getImm();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004830 DebugLoc DL = MI->getDebugLoc();
4831
4832 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00004833 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004834 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
4835
4836 // StartMBB:
Richard Sandiford0fb90ab2013-05-28 10:41:11 +00004837 // BRC CCMask, JoinMBB
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004838 // # fallthrough to FalseMBB
4839 MBB = StartMBB;
Richard Sandiford3d768e32013-07-31 12:30:20 +00004840 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
4841 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004842 MBB->addSuccessor(JoinMBB);
4843 MBB->addSuccessor(FalseMBB);
4844
4845 // FalseMBB:
4846 // # fallthrough to JoinMBB
4847 MBB = FalseMBB;
4848 MBB->addSuccessor(JoinMBB);
4849
4850 // JoinMBB:
4851 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
4852 // ...
4853 MBB = JoinMBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00004854 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004855 .addReg(TrueReg).addMBB(StartMBB)
4856 .addReg(FalseReg).addMBB(FalseMBB);
4857
4858 MI->eraseFromParent();
4859 return JoinMBB;
4860}
4861
Richard Sandifordb86a8342013-06-27 09:27:40 +00004862// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
4863// StoreOpcode is the store to use and Invert says whether the store should
Richard Sandiforda68e6f52013-07-25 08:57:02 +00004864// happen when the condition is false rather than true. If a STORE ON
4865// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
Richard Sandifordb86a8342013-06-27 09:27:40 +00004866MachineBasicBlock *
4867SystemZTargetLowering::emitCondStore(MachineInstr *MI,
4868 MachineBasicBlock *MBB,
Richard Sandiforda68e6f52013-07-25 08:57:02 +00004869 unsigned StoreOpcode, unsigned STOCOpcode,
4870 bool Invert) const {
Eric Christophera6734172015-01-31 00:06:45 +00004871 const SystemZInstrInfo *TII =
4872 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
Richard Sandifordb86a8342013-06-27 09:27:40 +00004873
Richard Sandiforda68e6f52013-07-25 08:57:02 +00004874 unsigned SrcReg = MI->getOperand(0).getReg();
4875 MachineOperand Base = MI->getOperand(1);
4876 int64_t Disp = MI->getOperand(2).getImm();
4877 unsigned IndexReg = MI->getOperand(3).getReg();
Richard Sandiford3d768e32013-07-31 12:30:20 +00004878 unsigned CCValid = MI->getOperand(4).getImm();
4879 unsigned CCMask = MI->getOperand(5).getImm();
Richard Sandifordb86a8342013-06-27 09:27:40 +00004880 DebugLoc DL = MI->getDebugLoc();
4881
4882 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
4883
Richard Sandiforda68e6f52013-07-25 08:57:02 +00004884 // Use STOCOpcode if possible. We could use different store patterns in
4885 // order to avoid matching the index register, but the performance trade-offs
4886 // might be more complicated in that case.
Eric Christopher93bf97c2014-06-27 07:38:01 +00004887 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
Richard Sandiforda68e6f52013-07-25 08:57:02 +00004888 if (Invert)
Richard Sandiford3d768e32013-07-31 12:30:20 +00004889 CCMask ^= CCValid;
Richard Sandiforda68e6f52013-07-25 08:57:02 +00004890 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +00004891 .addReg(SrcReg).addOperand(Base).addImm(Disp)
4892 .addImm(CCValid).addImm(CCMask);
Richard Sandiforda68e6f52013-07-25 08:57:02 +00004893 MI->eraseFromParent();
4894 return MBB;
4895 }
4896
Richard Sandifordb86a8342013-06-27 09:27:40 +00004897 // Get the condition needed to branch around the store.
4898 if (!Invert)
Richard Sandiford3d768e32013-07-31 12:30:20 +00004899 CCMask ^= CCValid;
Richard Sandifordb86a8342013-06-27 09:27:40 +00004900
4901 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00004902 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
Richard Sandifordb86a8342013-06-27 09:27:40 +00004903 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
4904
4905 // StartMBB:
4906 // BRC CCMask, JoinMBB
4907 // # fallthrough to FalseMBB
Richard Sandifordb86a8342013-06-27 09:27:40 +00004908 MBB = StartMBB;
Richard Sandiford3d768e32013-07-31 12:30:20 +00004909 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
4910 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
Richard Sandifordb86a8342013-06-27 09:27:40 +00004911 MBB->addSuccessor(JoinMBB);
4912 MBB->addSuccessor(FalseMBB);
4913
4914 // FalseMBB:
4915 // store %SrcReg, %Disp(%Index,%Base)
4916 // # fallthrough to JoinMBB
4917 MBB = FalseMBB;
4918 BuildMI(MBB, DL, TII->get(StoreOpcode))
4919 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
4920 MBB->addSuccessor(JoinMBB);
4921
4922 MI->eraseFromParent();
4923 return JoinMBB;
4924}
4925
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004926// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
4927// or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that
4928// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
4929// BitSize is the width of the field in bits, or 0 if this is a partword
4930// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
4931// is one of the operands. Invert says whether the field should be
4932// inverted after performing BinOpcode (e.g. for NAND).
4933MachineBasicBlock *
4934SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
4935 MachineBasicBlock *MBB,
4936 unsigned BinOpcode,
4937 unsigned BitSize,
4938 bool Invert) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004939 MachineFunction &MF = *MBB->getParent();
Eric Christopherfc6de422014-08-05 02:39:49 +00004940 const SystemZInstrInfo *TII =
Eric Christophera6734172015-01-31 00:06:45 +00004941 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004942 MachineRegisterInfo &MRI = MF.getRegInfo();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004943 bool IsSubWord = (BitSize < 32);
4944
4945 // Extract the operands. Base can be a register or a frame index.
4946 // Src2 can be a register or immediate.
4947 unsigned Dest = MI->getOperand(0).getReg();
4948 MachineOperand Base = earlyUseOperand(MI->getOperand(1));
4949 int64_t Disp = MI->getOperand(2).getImm();
4950 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3));
4951 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
4952 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
4953 DebugLoc DL = MI->getDebugLoc();
4954 if (IsSubWord)
4955 BitSize = MI->getOperand(6).getImm();
4956
4957 // Subword operations use 32-bit registers.
4958 const TargetRegisterClass *RC = (BitSize <= 32 ?
4959 &SystemZ::GR32BitRegClass :
4960 &SystemZ::GR64BitRegClass);
4961 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
4962 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
4963
4964 // Get the right opcodes for the displacement.
4965 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
4966 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
4967 assert(LOpcode && CSOpcode && "Displacement out of range");
4968
4969 // Create virtual registers for temporary results.
4970 unsigned OrigVal = MRI.createVirtualRegister(RC);
4971 unsigned OldVal = MRI.createVirtualRegister(RC);
4972 unsigned NewVal = (BinOpcode || IsSubWord ?
4973 MRI.createVirtualRegister(RC) : Src2.getReg());
4974 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
4975 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
4976
4977 // Insert a basic block for the main loop.
4978 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00004979 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004980 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
4981
4982 // StartMBB:
4983 // ...
4984 // %OrigVal = L Disp(%Base)
4985 // # fall through to LoopMMB
4986 MBB = StartMBB;
4987 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
4988 .addOperand(Base).addImm(Disp).addReg(0);
4989 MBB->addSuccessor(LoopMBB);
4990
4991 // LoopMBB:
4992 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
4993 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
4994 // %RotatedNewVal = OP %RotatedOldVal, %Src2
4995 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
4996 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
4997 // JNE LoopMBB
4998 // # fall through to DoneMMB
4999 MBB = LoopMBB;
5000 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5001 .addReg(OrigVal).addMBB(StartMBB)
5002 .addReg(Dest).addMBB(LoopMBB);
5003 if (IsSubWord)
5004 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5005 .addReg(OldVal).addReg(BitShift).addImm(0);
5006 if (Invert) {
5007 // Perform the operation normally and then invert every bit of the field.
5008 unsigned Tmp = MRI.createVirtualRegister(RC);
5009 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
5010 .addReg(RotatedOldVal).addOperand(Src2);
Alexey Samsonovfffd56ec2014-08-20 21:56:43 +00005011 if (BitSize <= 32)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005012 // XILF with the upper BitSize bits set.
Richard Sandiford652784e2013-09-25 11:11:53 +00005013 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
Alexey Samsonovfffd56ec2014-08-20 21:56:43 +00005014 .addReg(Tmp).addImm(-1U << (32 - BitSize));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005015 else {
5016 // Use LCGR and add -1 to the result, which is more compact than
5017 // an XILF, XILH pair.
5018 unsigned Tmp2 = MRI.createVirtualRegister(RC);
5019 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
5020 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
5021 .addReg(Tmp2).addImm(-1);
5022 }
5023 } else if (BinOpcode)
5024 // A simply binary operation.
5025 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
5026 .addReg(RotatedOldVal).addOperand(Src2);
5027 else if (IsSubWord)
5028 // Use RISBG to rotate Src2 into position and use it to replace the
5029 // field in RotatedOldVal.
5030 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
5031 .addReg(RotatedOldVal).addReg(Src2.getReg())
5032 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
5033 if (IsSubWord)
5034 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
5035 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
5036 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
5037 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
Richard Sandiford3d768e32013-07-31 12:30:20 +00005038 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5039 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005040 MBB->addSuccessor(LoopMBB);
5041 MBB->addSuccessor(DoneMBB);
5042
5043 MI->eraseFromParent();
5044 return DoneMBB;
5045}
5046
5047// Implement EmitInstrWithCustomInserter for pseudo
5048// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
5049// instruction that should be used to compare the current field with the
5050// minimum or maximum value. KeepOldMask is the BRC condition-code mask
5051// for when the current field should be kept. BitSize is the width of
5052// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
5053MachineBasicBlock *
5054SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
5055 MachineBasicBlock *MBB,
5056 unsigned CompareOpcode,
5057 unsigned KeepOldMask,
5058 unsigned BitSize) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005059 MachineFunction &MF = *MBB->getParent();
Eric Christopherfc6de422014-08-05 02:39:49 +00005060 const SystemZInstrInfo *TII =
Eric Christophera6734172015-01-31 00:06:45 +00005061 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005062 MachineRegisterInfo &MRI = MF.getRegInfo();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005063 bool IsSubWord = (BitSize < 32);
5064
5065 // Extract the operands. Base can be a register or a frame index.
5066 unsigned Dest = MI->getOperand(0).getReg();
5067 MachineOperand Base = earlyUseOperand(MI->getOperand(1));
5068 int64_t Disp = MI->getOperand(2).getImm();
5069 unsigned Src2 = MI->getOperand(3).getReg();
5070 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
5071 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
5072 DebugLoc DL = MI->getDebugLoc();
5073 if (IsSubWord)
5074 BitSize = MI->getOperand(6).getImm();
5075
5076 // Subword operations use 32-bit registers.
5077 const TargetRegisterClass *RC = (BitSize <= 32 ?
5078 &SystemZ::GR32BitRegClass :
5079 &SystemZ::GR64BitRegClass);
5080 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
5081 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
5082
5083 // Get the right opcodes for the displacement.
5084 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
5085 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
5086 assert(LOpcode && CSOpcode && "Displacement out of range");
5087
5088 // Create virtual registers for temporary results.
5089 unsigned OrigVal = MRI.createVirtualRegister(RC);
5090 unsigned OldVal = MRI.createVirtualRegister(RC);
5091 unsigned NewVal = MRI.createVirtualRegister(RC);
5092 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
5093 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
5094 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
5095
5096 // Insert 3 basic blocks for the loop.
5097 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00005098 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005099 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
5100 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
5101 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
5102
5103 // StartMBB:
5104 // ...
5105 // %OrigVal = L Disp(%Base)
5106 // # fall through to LoopMMB
5107 MBB = StartMBB;
5108 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
5109 .addOperand(Base).addImm(Disp).addReg(0);
5110 MBB->addSuccessor(LoopMBB);
5111
5112 // LoopMBB:
5113 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
5114 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
5115 // CompareOpcode %RotatedOldVal, %Src2
Richard Sandiford312425f2013-05-20 14:23:08 +00005116 // BRC KeepOldMask, UpdateMBB
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005117 MBB = LoopMBB;
5118 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5119 .addReg(OrigVal).addMBB(StartMBB)
5120 .addReg(Dest).addMBB(UpdateMBB);
5121 if (IsSubWord)
5122 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5123 .addReg(OldVal).addReg(BitShift).addImm(0);
Richard Sandiford8a757bb2013-07-31 12:11:07 +00005124 BuildMI(MBB, DL, TII->get(CompareOpcode))
5125 .addReg(RotatedOldVal).addReg(Src2);
5126 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
Richard Sandiford3d768e32013-07-31 12:30:20 +00005127 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005128 MBB->addSuccessor(UpdateMBB);
5129 MBB->addSuccessor(UseAltMBB);
5130
5131 // UseAltMBB:
5132 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
5133 // # fall through to UpdateMMB
5134 MBB = UseAltMBB;
5135 if (IsSubWord)
5136 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
5137 .addReg(RotatedOldVal).addReg(Src2)
5138 .addImm(32).addImm(31 + BitSize).addImm(0);
5139 MBB->addSuccessor(UpdateMBB);
5140
5141 // UpdateMBB:
5142 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
5143 // [ %RotatedAltVal, UseAltMBB ]
5144 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
5145 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
5146 // JNE LoopMBB
5147 // # fall through to DoneMMB
5148 MBB = UpdateMBB;
5149 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
5150 .addReg(RotatedOldVal).addMBB(LoopMBB)
5151 .addReg(RotatedAltVal).addMBB(UseAltMBB);
5152 if (IsSubWord)
5153 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
5154 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
5155 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
5156 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
Richard Sandiford3d768e32013-07-31 12:30:20 +00005157 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5158 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005159 MBB->addSuccessor(LoopMBB);
5160 MBB->addSuccessor(DoneMBB);
5161
5162 MI->eraseFromParent();
5163 return DoneMBB;
5164}
5165
5166// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
5167// instruction MI.
5168MachineBasicBlock *
5169SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
5170 MachineBasicBlock *MBB) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005171 MachineFunction &MF = *MBB->getParent();
Eric Christopherfc6de422014-08-05 02:39:49 +00005172 const SystemZInstrInfo *TII =
Eric Christophera6734172015-01-31 00:06:45 +00005173 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005174 MachineRegisterInfo &MRI = MF.getRegInfo();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005175
5176 // Extract the operands. Base can be a register or a frame index.
5177 unsigned Dest = MI->getOperand(0).getReg();
5178 MachineOperand Base = earlyUseOperand(MI->getOperand(1));
5179 int64_t Disp = MI->getOperand(2).getImm();
5180 unsigned OrigCmpVal = MI->getOperand(3).getReg();
5181 unsigned OrigSwapVal = MI->getOperand(4).getReg();
5182 unsigned BitShift = MI->getOperand(5).getReg();
5183 unsigned NegBitShift = MI->getOperand(6).getReg();
5184 int64_t BitSize = MI->getOperand(7).getImm();
5185 DebugLoc DL = MI->getDebugLoc();
5186
5187 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
5188
5189 // Get the right opcodes for the displacement.
5190 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
5191 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
5192 assert(LOpcode && CSOpcode && "Displacement out of range");
5193
5194 // Create virtual registers for temporary results.
5195 unsigned OrigOldVal = MRI.createVirtualRegister(RC);
5196 unsigned OldVal = MRI.createVirtualRegister(RC);
5197 unsigned CmpVal = MRI.createVirtualRegister(RC);
5198 unsigned SwapVal = MRI.createVirtualRegister(RC);
5199 unsigned StoreVal = MRI.createVirtualRegister(RC);
5200 unsigned RetryOldVal = MRI.createVirtualRegister(RC);
5201 unsigned RetryCmpVal = MRI.createVirtualRegister(RC);
5202 unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
5203
5204 // Insert 2 basic blocks for the loop.
5205 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00005206 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005207 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
5208 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB);
5209
5210 // StartMBB:
5211 // ...
5212 // %OrigOldVal = L Disp(%Base)
5213 // # fall through to LoopMMB
5214 MBB = StartMBB;
5215 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
5216 .addOperand(Base).addImm(Disp).addReg(0);
5217 MBB->addSuccessor(LoopMBB);
5218
5219 // LoopMBB:
5220 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
5221 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
5222 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
5223 // %Dest = RLL %OldVal, BitSize(%BitShift)
5224 // ^^ The low BitSize bits contain the field
5225 // of interest.
5226 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
5227 // ^^ Replace the upper 32-BitSize bits of the
5228 // comparison value with those that we loaded,
5229 // so that we can use a full word comparison.
Richard Sandiford8a757bb2013-07-31 12:11:07 +00005230 // CR %Dest, %RetryCmpVal
5231 // JNE DoneMBB
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005232 // # Fall through to SetMBB
5233 MBB = LoopMBB;
5234 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5235 .addReg(OrigOldVal).addMBB(StartMBB)
5236 .addReg(RetryOldVal).addMBB(SetMBB);
5237 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
5238 .addReg(OrigCmpVal).addMBB(StartMBB)
5239 .addReg(RetryCmpVal).addMBB(SetMBB);
5240 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
5241 .addReg(OrigSwapVal).addMBB(StartMBB)
5242 .addReg(RetrySwapVal).addMBB(SetMBB);
5243 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
5244 .addReg(OldVal).addReg(BitShift).addImm(BitSize);
5245 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
5246 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
Richard Sandiford8a757bb2013-07-31 12:11:07 +00005247 BuildMI(MBB, DL, TII->get(SystemZ::CR))
5248 .addReg(Dest).addReg(RetryCmpVal);
5249 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
Richard Sandiford3d768e32013-07-31 12:30:20 +00005250 .addImm(SystemZ::CCMASK_ICMP)
5251 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005252 MBB->addSuccessor(DoneMBB);
5253 MBB->addSuccessor(SetMBB);
5254
5255 // SetMBB:
5256 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
5257 // ^^ Replace the upper 32-BitSize bits of the new
5258 // value with those that we loaded.
5259 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
5260 // ^^ Rotate the new field to its proper position.
5261 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
5262 // JNE LoopMBB
5263 // # fall through to ExitMMB
5264 MBB = SetMBB;
5265 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
5266 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
5267 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
5268 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
5269 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
5270 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
Richard Sandiford3d768e32013-07-31 12:30:20 +00005271 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5272 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005273 MBB->addSuccessor(LoopMBB);
5274 MBB->addSuccessor(DoneMBB);
5275
5276 MI->eraseFromParent();
5277 return DoneMBB;
5278}
5279
5280// Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true
5281// if the high register of the GR128 value must be cleared or false if
Richard Sandiford87a44362013-09-30 10:28:35 +00005282// it's "don't care". SubReg is subreg_l32 when extending a GR32
5283// and subreg_l64 when extending a GR64.
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005284MachineBasicBlock *
5285SystemZTargetLowering::emitExt128(MachineInstr *MI,
5286 MachineBasicBlock *MBB,
5287 bool ClearEven, unsigned SubReg) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005288 MachineFunction &MF = *MBB->getParent();
Eric Christopherfc6de422014-08-05 02:39:49 +00005289 const SystemZInstrInfo *TII =
Eric Christophera6734172015-01-31 00:06:45 +00005290 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005291 MachineRegisterInfo &MRI = MF.getRegInfo();
5292 DebugLoc DL = MI->getDebugLoc();
5293
5294 unsigned Dest = MI->getOperand(0).getReg();
5295 unsigned Src = MI->getOperand(1).getReg();
5296 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
5297
5298 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
5299 if (ClearEven) {
5300 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
5301 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
5302
5303 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
5304 .addImm(0);
5305 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
Richard Sandiford87a44362013-09-30 10:28:35 +00005306 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005307 In128 = NewIn128;
5308 }
5309 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
5310 .addReg(In128).addReg(Src).addImm(SubReg);
5311
5312 MI->eraseFromParent();
5313 return MBB;
5314}
5315
Richard Sandifordd131ff82013-07-08 09:35:23 +00005316MachineBasicBlock *
Richard Sandiford564681c2013-08-12 10:28:10 +00005317SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
5318 MachineBasicBlock *MBB,
5319 unsigned Opcode) const {
Richard Sandiford5e318f02013-08-27 09:54:29 +00005320 MachineFunction &MF = *MBB->getParent();
Eric Christopherfc6de422014-08-05 02:39:49 +00005321 const SystemZInstrInfo *TII =
Eric Christophera6734172015-01-31 00:06:45 +00005322 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
Richard Sandiford5e318f02013-08-27 09:54:29 +00005323 MachineRegisterInfo &MRI = MF.getRegInfo();
Richard Sandifordd131ff82013-07-08 09:35:23 +00005324 DebugLoc DL = MI->getDebugLoc();
5325
Richard Sandiford5e318f02013-08-27 09:54:29 +00005326 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
Richard Sandifordd131ff82013-07-08 09:35:23 +00005327 uint64_t DestDisp = MI->getOperand(1).getImm();
Richard Sandiford5e318f02013-08-27 09:54:29 +00005328 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2));
Richard Sandifordd131ff82013-07-08 09:35:23 +00005329 uint64_t SrcDisp = MI->getOperand(3).getImm();
5330 uint64_t Length = MI->getOperand(4).getImm();
5331
Richard Sandifordbe133a82013-08-28 09:01:51 +00005332 // When generating more than one CLC, all but the last will need to
5333 // branch to the end when a difference is found.
5334 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
Craig Topper062a2ba2014-04-25 05:30:21 +00005335 splitBlockAfter(MI, MBB) : nullptr);
Richard Sandifordbe133a82013-08-28 09:01:51 +00005336
Richard Sandiford5e318f02013-08-27 09:54:29 +00005337 // Check for the loop form, in which operand 5 is the trip count.
5338 if (MI->getNumExplicitOperands() > 5) {
5339 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
5340
5341 uint64_t StartCountReg = MI->getOperand(5).getReg();
5342 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII);
5343 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg :
5344 forceReg(MI, DestBase, TII));
5345
5346 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
5347 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC);
5348 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
5349 MRI.createVirtualRegister(RC));
5350 uint64_t NextSrcReg = MRI.createVirtualRegister(RC);
5351 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
5352 MRI.createVirtualRegister(RC));
5353
5354 RC = &SystemZ::GR64BitRegClass;
5355 uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
5356 uint64_t NextCountReg = MRI.createVirtualRegister(RC);
5357
5358 MachineBasicBlock *StartMBB = MBB;
5359 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
5360 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
Richard Sandifordbe133a82013-08-28 09:01:51 +00005361 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
Richard Sandiford5e318f02013-08-27 09:54:29 +00005362
5363 // StartMBB:
5364 // # fall through to LoopMMB
5365 MBB->addSuccessor(LoopMBB);
5366
5367 // LoopMBB:
5368 // %ThisDestReg = phi [ %StartDestReg, StartMBB ],
Richard Sandifordbe133a82013-08-28 09:01:51 +00005369 // [ %NextDestReg, NextMBB ]
Richard Sandiford5e318f02013-08-27 09:54:29 +00005370 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
Richard Sandifordbe133a82013-08-28 09:01:51 +00005371 // [ %NextSrcReg, NextMBB ]
Richard Sandiford5e318f02013-08-27 09:54:29 +00005372 // %ThisCountReg = phi [ %StartCountReg, StartMBB ],
Richard Sandifordbe133a82013-08-28 09:01:51 +00005373 // [ %NextCountReg, NextMBB ]
5374 // ( PFD 2, 768+DestDisp(%ThisDestReg) )
Richard Sandiford5e318f02013-08-27 09:54:29 +00005375 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
Richard Sandifordbe133a82013-08-28 09:01:51 +00005376 // ( JLH EndMBB )
5377 //
5378 // The prefetch is used only for MVC. The JLH is used only for CLC.
5379 MBB = LoopMBB;
5380
5381 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
5382 .addReg(StartDestReg).addMBB(StartMBB)
5383 .addReg(NextDestReg).addMBB(NextMBB);
5384 if (!HaveSingleBase)
5385 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
5386 .addReg(StartSrcReg).addMBB(StartMBB)
5387 .addReg(NextSrcReg).addMBB(NextMBB);
5388 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
5389 .addReg(StartCountReg).addMBB(StartMBB)
5390 .addReg(NextCountReg).addMBB(NextMBB);
5391 if (Opcode == SystemZ::MVC)
5392 BuildMI(MBB, DL, TII->get(SystemZ::PFD))
5393 .addImm(SystemZ::PFD_WRITE)
5394 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
5395 BuildMI(MBB, DL, TII->get(Opcode))
5396 .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
5397 .addReg(ThisSrcReg).addImm(SrcDisp);
5398 if (EndMBB) {
5399 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5400 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
5401 .addMBB(EndMBB);
5402 MBB->addSuccessor(EndMBB);
5403 MBB->addSuccessor(NextMBB);
5404 }
5405
5406 // NextMBB:
Richard Sandiford5e318f02013-08-27 09:54:29 +00005407 // %NextDestReg = LA 256(%ThisDestReg)
5408 // %NextSrcReg = LA 256(%ThisSrcReg)
5409 // %NextCountReg = AGHI %ThisCountReg, -1
5410 // CGHI %NextCountReg, 0
5411 // JLH LoopMBB
5412 // # fall through to DoneMMB
5413 //
5414 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
Richard Sandifordbe133a82013-08-28 09:01:51 +00005415 MBB = NextMBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00005416
Richard Sandiford5e318f02013-08-27 09:54:29 +00005417 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
5418 .addReg(ThisDestReg).addImm(256).addReg(0);
5419 if (!HaveSingleBase)
5420 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
5421 .addReg(ThisSrcReg).addImm(256).addReg(0);
5422 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
5423 .addReg(ThisCountReg).addImm(-1);
5424 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
5425 .addReg(NextCountReg).addImm(0);
5426 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5427 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
5428 .addMBB(LoopMBB);
5429 MBB->addSuccessor(LoopMBB);
5430 MBB->addSuccessor(DoneMBB);
5431
5432 DestBase = MachineOperand::CreateReg(NextDestReg, false);
5433 SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
5434 Length &= 255;
5435 MBB = DoneMBB;
5436 }
5437 // Handle any remaining bytes with straight-line code.
5438 while (Length > 0) {
5439 uint64_t ThisLength = std::min(Length, uint64_t(256));
5440 // The previous iteration might have created out-of-range displacements.
5441 // Apply them using LAY if so.
5442 if (!isUInt<12>(DestDisp)) {
5443 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
5444 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
5445 .addOperand(DestBase).addImm(DestDisp).addReg(0);
5446 DestBase = MachineOperand::CreateReg(Reg, false);
5447 DestDisp = 0;
5448 }
5449 if (!isUInt<12>(SrcDisp)) {
5450 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
5451 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
5452 .addOperand(SrcBase).addImm(SrcDisp).addReg(0);
5453 SrcBase = MachineOperand::CreateReg(Reg, false);
5454 SrcDisp = 0;
5455 }
5456 BuildMI(*MBB, MI, DL, TII->get(Opcode))
5457 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
5458 .addOperand(SrcBase).addImm(SrcDisp);
5459 DestDisp += ThisLength;
5460 SrcDisp += ThisLength;
5461 Length -= ThisLength;
Richard Sandifordbe133a82013-08-28 09:01:51 +00005462 // If there's another CLC to go, branch to the end if a difference
5463 // was found.
5464 if (EndMBB && Length > 0) {
5465 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
5466 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5467 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
5468 .addMBB(EndMBB);
5469 MBB->addSuccessor(EndMBB);
5470 MBB->addSuccessor(NextMBB);
5471 MBB = NextMBB;
5472 }
5473 }
5474 if (EndMBB) {
5475 MBB->addSuccessor(EndMBB);
5476 MBB = EndMBB;
5477 MBB->addLiveIn(SystemZ::CC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00005478 }
Richard Sandifordd131ff82013-07-08 09:35:23 +00005479
5480 MI->eraseFromParent();
5481 return MBB;
5482}
5483
Richard Sandifordca232712013-08-16 11:21:54 +00005484// Decompose string pseudo-instruction MI into a loop that continually performs
5485// Opcode until CC != 3.
5486MachineBasicBlock *
5487SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
5488 MachineBasicBlock *MBB,
5489 unsigned Opcode) const {
Richard Sandifordca232712013-08-16 11:21:54 +00005490 MachineFunction &MF = *MBB->getParent();
Eric Christopherfc6de422014-08-05 02:39:49 +00005491 const SystemZInstrInfo *TII =
Eric Christophera6734172015-01-31 00:06:45 +00005492 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
Richard Sandifordca232712013-08-16 11:21:54 +00005493 MachineRegisterInfo &MRI = MF.getRegInfo();
5494 DebugLoc DL = MI->getDebugLoc();
5495
5496 uint64_t End1Reg = MI->getOperand(0).getReg();
5497 uint64_t Start1Reg = MI->getOperand(1).getReg();
5498 uint64_t Start2Reg = MI->getOperand(2).getReg();
5499 uint64_t CharReg = MI->getOperand(3).getReg();
5500
5501 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
5502 uint64_t This1Reg = MRI.createVirtualRegister(RC);
5503 uint64_t This2Reg = MRI.createVirtualRegister(RC);
5504 uint64_t End2Reg = MRI.createVirtualRegister(RC);
5505
5506 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00005507 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Richard Sandifordca232712013-08-16 11:21:54 +00005508 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
5509
5510 // StartMBB:
Richard Sandifordca232712013-08-16 11:21:54 +00005511 // # fall through to LoopMMB
Richard Sandifordca232712013-08-16 11:21:54 +00005512 MBB->addSuccessor(LoopMBB);
5513
5514 // LoopMBB:
5515 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
5516 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
Richard Sandiford7789b082013-09-30 08:48:38 +00005517 // R0L = %CharReg
5518 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
Richard Sandifordca232712013-08-16 11:21:54 +00005519 // JO LoopMBB
5520 // # fall through to DoneMMB
Richard Sandiford6f6d5512013-08-20 09:38:48 +00005521 //
Richard Sandiford7789b082013-09-30 08:48:38 +00005522 // The load of R0L can be hoisted by post-RA LICM.
Richard Sandifordca232712013-08-16 11:21:54 +00005523 MBB = LoopMBB;
Richard Sandifordca232712013-08-16 11:21:54 +00005524
5525 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
5526 .addReg(Start1Reg).addMBB(StartMBB)
5527 .addReg(End1Reg).addMBB(LoopMBB);
5528 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
5529 .addReg(Start2Reg).addMBB(StartMBB)
5530 .addReg(End2Reg).addMBB(LoopMBB);
Richard Sandiford7789b082013-09-30 08:48:38 +00005531 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
Richard Sandifordca232712013-08-16 11:21:54 +00005532 BuildMI(MBB, DL, TII->get(Opcode))
5533 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
5534 .addReg(This1Reg).addReg(This2Reg);
5535 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5536 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
5537 MBB->addSuccessor(LoopMBB);
5538 MBB->addSuccessor(DoneMBB);
5539
5540 DoneMBB->addLiveIn(SystemZ::CC);
5541
5542 MI->eraseFromParent();
5543 return DoneMBB;
5544}
5545
Ulrich Weigand57c85f52015-04-01 12:51:43 +00005546// Update TBEGIN instruction with final opcode and register clobbers.
5547MachineBasicBlock *
5548SystemZTargetLowering::emitTransactionBegin(MachineInstr *MI,
5549 MachineBasicBlock *MBB,
5550 unsigned Opcode,
5551 bool NoFloat) const {
5552 MachineFunction &MF = *MBB->getParent();
5553 const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
5554 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
5555
5556 // Update opcode.
5557 MI->setDesc(TII->get(Opcode));
5558
5559 // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
5560 // Make sure to add the corresponding GRSM bits if they are missing.
5561 uint64_t Control = MI->getOperand(2).getImm();
5562 static const unsigned GPRControlBit[16] = {
5563 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
5564 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
5565 };
5566 Control |= GPRControlBit[15];
5567 if (TFI->hasFP(MF))
5568 Control |= GPRControlBit[11];
5569 MI->getOperand(2).setImm(Control);
5570
5571 // Add GPR clobbers.
5572 for (int I = 0; I < 16; I++) {
5573 if ((Control & GPRControlBit[I]) == 0) {
5574 unsigned Reg = SystemZMC::GR64Regs[I];
5575 MI->addOperand(MachineOperand::CreateReg(Reg, true, true));
5576 }
5577 }
5578
Ulrich Weigandce4c1092015-05-05 19:25:42 +00005579 // Add FPR/VR clobbers.
Ulrich Weigand57c85f52015-04-01 12:51:43 +00005580 if (!NoFloat && (Control & 4) != 0) {
Ulrich Weigandce4c1092015-05-05 19:25:42 +00005581 if (Subtarget.hasVector()) {
5582 for (int I = 0; I < 32; I++) {
5583 unsigned Reg = SystemZMC::VR128Regs[I];
5584 MI->addOperand(MachineOperand::CreateReg(Reg, true, true));
5585 }
5586 } else {
5587 for (int I = 0; I < 16; I++) {
5588 unsigned Reg = SystemZMC::FP64Regs[I];
5589 MI->addOperand(MachineOperand::CreateReg(Reg, true, true));
5590 }
Ulrich Weigand57c85f52015-04-01 12:51:43 +00005591 }
5592 }
5593
5594 return MBB;
5595}
5596
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005597MachineBasicBlock *SystemZTargetLowering::
5598EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
5599 switch (MI->getOpcode()) {
Richard Sandiford7c5c0ea2013-10-01 13:10:16 +00005600 case SystemZ::Select32Mux:
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005601 case SystemZ::Select32:
5602 case SystemZ::SelectF32:
5603 case SystemZ::Select64:
5604 case SystemZ::SelectF64:
5605 case SystemZ::SelectF128:
5606 return emitSelect(MI, MBB);
5607
Richard Sandiford2896d042013-10-01 14:33:55 +00005608 case SystemZ::CondStore8Mux:
5609 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
5610 case SystemZ::CondStore8MuxInv:
5611 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
5612 case SystemZ::CondStore16Mux:
5613 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
5614 case SystemZ::CondStore16MuxInv:
5615 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00005616 case SystemZ::CondStore8:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00005617 return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00005618 case SystemZ::CondStore8Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00005619 return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00005620 case SystemZ::CondStore16:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00005621 return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00005622 case SystemZ::CondStore16Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00005623 return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00005624 case SystemZ::CondStore32:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00005625 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00005626 case SystemZ::CondStore32Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00005627 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00005628 case SystemZ::CondStore64:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00005629 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00005630 case SystemZ::CondStore64Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00005631 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00005632 case SystemZ::CondStoreF32:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00005633 return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00005634 case SystemZ::CondStoreF32Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00005635 return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00005636 case SystemZ::CondStoreF64:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00005637 return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00005638 case SystemZ::CondStoreF64Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00005639 return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00005640
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005641 case SystemZ::AEXT128_64:
Richard Sandiford87a44362013-09-30 10:28:35 +00005642 return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005643 case SystemZ::ZEXT128_32:
Richard Sandiford87a44362013-09-30 10:28:35 +00005644 return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005645 case SystemZ::ZEXT128_64:
Richard Sandiford87a44362013-09-30 10:28:35 +00005646 return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005647
5648 case SystemZ::ATOMIC_SWAPW:
5649 return emitAtomicLoadBinary(MI, MBB, 0, 0);
5650 case SystemZ::ATOMIC_SWAP_32:
5651 return emitAtomicLoadBinary(MI, MBB, 0, 32);
5652 case SystemZ::ATOMIC_SWAP_64:
5653 return emitAtomicLoadBinary(MI, MBB, 0, 64);
5654
5655 case SystemZ::ATOMIC_LOADW_AR:
5656 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
5657 case SystemZ::ATOMIC_LOADW_AFI:
5658 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
5659 case SystemZ::ATOMIC_LOAD_AR:
5660 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
5661 case SystemZ::ATOMIC_LOAD_AHI:
5662 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
5663 case SystemZ::ATOMIC_LOAD_AFI:
5664 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
5665 case SystemZ::ATOMIC_LOAD_AGR:
5666 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
5667 case SystemZ::ATOMIC_LOAD_AGHI:
5668 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
5669 case SystemZ::ATOMIC_LOAD_AGFI:
5670 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
5671
5672 case SystemZ::ATOMIC_LOADW_SR:
5673 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
5674 case SystemZ::ATOMIC_LOAD_SR:
5675 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
5676 case SystemZ::ATOMIC_LOAD_SGR:
5677 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
5678
5679 case SystemZ::ATOMIC_LOADW_NR:
5680 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
5681 case SystemZ::ATOMIC_LOADW_NILH:
Richard Sandiford652784e2013-09-25 11:11:53 +00005682 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005683 case SystemZ::ATOMIC_LOAD_NR:
5684 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
Richard Sandiford652784e2013-09-25 11:11:53 +00005685 case SystemZ::ATOMIC_LOAD_NILL:
5686 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
5687 case SystemZ::ATOMIC_LOAD_NILH:
5688 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
5689 case SystemZ::ATOMIC_LOAD_NILF:
5690 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005691 case SystemZ::ATOMIC_LOAD_NGR:
5692 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00005693 case SystemZ::ATOMIC_LOAD_NILL64:
5694 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
5695 case SystemZ::ATOMIC_LOAD_NILH64:
5696 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
Richard Sandiford70284282013-10-01 14:20:41 +00005697 case SystemZ::ATOMIC_LOAD_NIHL64:
5698 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
5699 case SystemZ::ATOMIC_LOAD_NIHH64:
5700 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00005701 case SystemZ::ATOMIC_LOAD_NILF64:
5702 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
Richard Sandiford70284282013-10-01 14:20:41 +00005703 case SystemZ::ATOMIC_LOAD_NIHF64:
5704 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005705
5706 case SystemZ::ATOMIC_LOADW_OR:
5707 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
5708 case SystemZ::ATOMIC_LOADW_OILH:
Richard Sandiford652784e2013-09-25 11:11:53 +00005709 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005710 case SystemZ::ATOMIC_LOAD_OR:
5711 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
Richard Sandiford652784e2013-09-25 11:11:53 +00005712 case SystemZ::ATOMIC_LOAD_OILL:
5713 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
5714 case SystemZ::ATOMIC_LOAD_OILH:
5715 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
5716 case SystemZ::ATOMIC_LOAD_OILF:
5717 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005718 case SystemZ::ATOMIC_LOAD_OGR:
5719 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00005720 case SystemZ::ATOMIC_LOAD_OILL64:
5721 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
5722 case SystemZ::ATOMIC_LOAD_OILH64:
5723 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
Richard Sandiford6e96ac62013-10-01 13:22:41 +00005724 case SystemZ::ATOMIC_LOAD_OIHL64:
5725 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
5726 case SystemZ::ATOMIC_LOAD_OIHH64:
5727 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00005728 case SystemZ::ATOMIC_LOAD_OILF64:
5729 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
Richard Sandiford6e96ac62013-10-01 13:22:41 +00005730 case SystemZ::ATOMIC_LOAD_OIHF64:
5731 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005732
5733 case SystemZ::ATOMIC_LOADW_XR:
5734 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
5735 case SystemZ::ATOMIC_LOADW_XILF:
Richard Sandiford652784e2013-09-25 11:11:53 +00005736 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005737 case SystemZ::ATOMIC_LOAD_XR:
5738 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
Richard Sandiford652784e2013-09-25 11:11:53 +00005739 case SystemZ::ATOMIC_LOAD_XILF:
5740 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005741 case SystemZ::ATOMIC_LOAD_XGR:
5742 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00005743 case SystemZ::ATOMIC_LOAD_XILF64:
5744 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
Richard Sandiford5718dac2013-10-01 14:08:44 +00005745 case SystemZ::ATOMIC_LOAD_XIHF64:
5746 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005747
5748 case SystemZ::ATOMIC_LOADW_NRi:
5749 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
5750 case SystemZ::ATOMIC_LOADW_NILHi:
Richard Sandiford652784e2013-09-25 11:11:53 +00005751 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005752 case SystemZ::ATOMIC_LOAD_NRi:
5753 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
Richard Sandiford652784e2013-09-25 11:11:53 +00005754 case SystemZ::ATOMIC_LOAD_NILLi:
5755 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
5756 case SystemZ::ATOMIC_LOAD_NILHi:
5757 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
5758 case SystemZ::ATOMIC_LOAD_NILFi:
5759 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005760 case SystemZ::ATOMIC_LOAD_NGRi:
5761 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
Richard Sandiford652784e2013-09-25 11:11:53 +00005762 case SystemZ::ATOMIC_LOAD_NILL64i:
5763 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
5764 case SystemZ::ATOMIC_LOAD_NILH64i:
5765 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
Richard Sandiford70284282013-10-01 14:20:41 +00005766 case SystemZ::ATOMIC_LOAD_NIHL64i:
5767 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
5768 case SystemZ::ATOMIC_LOAD_NIHH64i:
5769 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
Richard Sandiford652784e2013-09-25 11:11:53 +00005770 case SystemZ::ATOMIC_LOAD_NILF64i:
5771 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
Richard Sandiford70284282013-10-01 14:20:41 +00005772 case SystemZ::ATOMIC_LOAD_NIHF64i:
5773 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005774
5775 case SystemZ::ATOMIC_LOADW_MIN:
5776 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
5777 SystemZ::CCMASK_CMP_LE, 0);
5778 case SystemZ::ATOMIC_LOAD_MIN_32:
5779 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
5780 SystemZ::CCMASK_CMP_LE, 32);
5781 case SystemZ::ATOMIC_LOAD_MIN_64:
5782 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
5783 SystemZ::CCMASK_CMP_LE, 64);
5784
5785 case SystemZ::ATOMIC_LOADW_MAX:
5786 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
5787 SystemZ::CCMASK_CMP_GE, 0);
5788 case SystemZ::ATOMIC_LOAD_MAX_32:
5789 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
5790 SystemZ::CCMASK_CMP_GE, 32);
5791 case SystemZ::ATOMIC_LOAD_MAX_64:
5792 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
5793 SystemZ::CCMASK_CMP_GE, 64);
5794
5795 case SystemZ::ATOMIC_LOADW_UMIN:
5796 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
5797 SystemZ::CCMASK_CMP_LE, 0);
5798 case SystemZ::ATOMIC_LOAD_UMIN_32:
5799 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
5800 SystemZ::CCMASK_CMP_LE, 32);
5801 case SystemZ::ATOMIC_LOAD_UMIN_64:
5802 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
5803 SystemZ::CCMASK_CMP_LE, 64);
5804
5805 case SystemZ::ATOMIC_LOADW_UMAX:
5806 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
5807 SystemZ::CCMASK_CMP_GE, 0);
5808 case SystemZ::ATOMIC_LOAD_UMAX_32:
5809 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
5810 SystemZ::CCMASK_CMP_GE, 32);
5811 case SystemZ::ATOMIC_LOAD_UMAX_64:
5812 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
5813 SystemZ::CCMASK_CMP_GE, 64);
5814
5815 case SystemZ::ATOMIC_CMP_SWAPW:
5816 return emitAtomicCmpSwapW(MI, MBB);
Richard Sandiford5e318f02013-08-27 09:54:29 +00005817 case SystemZ::MVCSequence:
5818 case SystemZ::MVCLoop:
Richard Sandiford564681c2013-08-12 10:28:10 +00005819 return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
Richard Sandiford178273a2013-09-05 10:36:45 +00005820 case SystemZ::NCSequence:
5821 case SystemZ::NCLoop:
5822 return emitMemMemWrapper(MI, MBB, SystemZ::NC);
5823 case SystemZ::OCSequence:
5824 case SystemZ::OCLoop:
5825 return emitMemMemWrapper(MI, MBB, SystemZ::OC);
5826 case SystemZ::XCSequence:
5827 case SystemZ::XCLoop:
5828 return emitMemMemWrapper(MI, MBB, SystemZ::XC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00005829 case SystemZ::CLCSequence:
5830 case SystemZ::CLCLoop:
Richard Sandiford564681c2013-08-12 10:28:10 +00005831 return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
Richard Sandifordca232712013-08-16 11:21:54 +00005832 case SystemZ::CLSTLoop:
5833 return emitStringWrapper(MI, MBB, SystemZ::CLST);
Richard Sandifordbb83a502013-08-16 11:29:37 +00005834 case SystemZ::MVSTLoop:
5835 return emitStringWrapper(MI, MBB, SystemZ::MVST);
Richard Sandiford0dec06a2013-08-16 11:41:43 +00005836 case SystemZ::SRSTLoop:
5837 return emitStringWrapper(MI, MBB, SystemZ::SRST);
Ulrich Weigand57c85f52015-04-01 12:51:43 +00005838 case SystemZ::TBEGIN:
5839 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
5840 case SystemZ::TBEGIN_nofloat:
5841 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
5842 case SystemZ::TBEGINC:
5843 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005844 default:
5845 llvm_unreachable("Unexpected instr type to insert");
5846 }
5847}