blob: adfd5f9af9eafa938ab37a41cf8a7cc83461f8ef [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000024#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/PostOrderIterator.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/Statistic.h"
James Molloyefbba722015-09-10 10:22:12 +000029#include "llvm/Analysis/GlobalsModRef.h"
Quentin Colombet6443cce2015-08-06 18:44:34 +000030#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000031#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000032#include "llvm/IR/Constants.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/IRBuilder.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000038#include "llvm/IR/ValueHandle.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000039#include "llvm/Pass.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000040#include "llvm/Support/Debug.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000041#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000042#include "llvm/Transforms/Utils/Local.h"
Chris Lattner1e506502005-05-07 21:59:39 +000043#include <algorithm>
Chris Lattner49525f82004-01-09 06:02:20 +000044using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000045
Chandler Carruth964daaa2014-04-22 02:55:47 +000046#define DEBUG_TYPE "reassociate"
47
Chris Lattner79a42ac2006-12-19 21:40:18 +000048STATISTIC(NumChanged, "Number of insts reassociated");
49STATISTIC(NumAnnihil, "Number of expr tree annihilated");
50STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000051
Chris Lattner79a42ac2006-12-19 21:40:18 +000052namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +000053 struct ValueEntry {
Chris Lattner1e506502005-05-07 21:59:39 +000054 unsigned Rank;
55 Value *Op;
56 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
57 };
58 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
59 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
60 }
Chris Lattner4c065092006-03-04 09:31:13 +000061}
Chris Lattner1e506502005-05-07 21:59:39 +000062
Devang Patel702f45d2008-11-21 21:00:20 +000063#ifndef NDEBUG
Sanjay Patelc96ee082015-04-22 18:04:46 +000064/// Print out the expression identified in the Ops list.
Chris Lattner4c065092006-03-04 09:31:13 +000065///
Chris Lattner38abecb2009-12-31 18:40:32 +000066static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner4c065092006-03-04 09:31:13 +000067 Module *M = I->getParent()->getParent()->getParent();
David Greened17c3912010-01-05 01:27:24 +000068 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000069 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000070 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000071 dbgs() << "[ ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +000072 Ops[i].Op->printAsOperand(dbgs(), false, M);
David Greened17c3912010-01-05 01:27:24 +000073 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000074 }
Chris Lattner4c065092006-03-04 09:31:13 +000075}
Devang Patelcb181bb2008-11-21 20:00:59 +000076#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000077
Dan Gohmand78c4002008-05-13 00:00:25 +000078namespace {
Chandler Carruth739ef802012-04-26 05:30:30 +000079 /// \brief Utility class representing a base and exponent pair which form one
80 /// factor of some product.
81 struct Factor {
82 Value *Base;
83 unsigned Power;
84
85 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
86
87 /// \brief Sort factors by their Base.
88 struct BaseSorter {
89 bool operator()(const Factor &LHS, const Factor &RHS) {
90 return LHS.Base < RHS.Base;
91 }
92 };
93
94 /// \brief Compare factors for equal bases.
95 struct BaseEqual {
96 bool operator()(const Factor &LHS, const Factor &RHS) {
97 return LHS.Base == RHS.Base;
98 }
99 };
100
101 /// \brief Sort factors in descending order by their power.
102 struct PowerDescendingSorter {
103 bool operator()(const Factor &LHS, const Factor &RHS) {
104 return LHS.Power > RHS.Power;
105 }
106 };
107
108 /// \brief Compare factors for equal powers.
109 struct PowerEqual {
110 bool operator()(const Factor &LHS, const Factor &RHS) {
111 return LHS.Power == RHS.Power;
112 }
113 };
114 };
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000115
116 /// Utility class representing a non-constant Xor-operand. We classify
117 /// non-constant Xor-Operands into two categories:
118 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
119 /// C2)
120 /// C2.1) The operand is in the form of "X | C", where C is a non-zero
121 /// constant.
122 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
123 /// operand as "E | 0"
124 class XorOpnd {
125 public:
126 XorOpnd(Value *V);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000127
Craig Topperf40110f2014-04-25 05:29:35 +0000128 bool isInvalid() const { return SymbolicPart == nullptr; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000129 bool isOrExpr() const { return isOr; }
130 Value *getValue() const { return OrigVal; }
131 Value *getSymbolicPart() const { return SymbolicPart; }
132 unsigned getSymbolicRank() const { return SymbolicRank; }
133 const APInt &getConstPart() const { return ConstPart; }
134
Craig Topperf40110f2014-04-25 05:29:35 +0000135 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000136 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
137
138 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
139 // The purpose is twofold:
140 // 1) Cluster together the operands sharing the same symbolic-value.
141 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
142 // could potentially shorten crital path, and expose more loop-invariants.
143 // Note that values' rank are basically defined in RPO order (FIXME).
144 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
145 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
146 // "z" in the order of X-Y-Z is better than any other orders.
Shuxin Yang331f01d2013-04-08 22:00:43 +0000147 struct PtrSortFunctor {
148 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
149 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000150 }
151 };
152 private:
153 Value *OrigVal;
154 Value *SymbolicPart;
155 APInt ConstPart;
156 unsigned SymbolicRank;
157 bool isOr;
158 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000159}
Chandler Carruth739ef802012-04-26 05:30:30 +0000160
161namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +0000162 class Reassociate : public FunctionPass {
Chris Lattner17229a72010-01-01 00:01:34 +0000163 DenseMap<BasicBlock*, unsigned> RankMap;
Craig Topper6e80c282012-03-26 06:58:25 +0000164 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
Shuxin Yangc94c3bb2012-11-13 00:08:49 +0000165 SetVector<AssertingVH<Instruction> > RedoInsts;
Chris Lattner1e506502005-05-07 21:59:39 +0000166 bool MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000167 public:
Nick Lewyckye7da2d62007-05-06 13:37:16 +0000168 static char ID; // Pass identification, replacement for typeid
Owen Anderson6c18d1a2010-10-19 17:21:58 +0000169 Reassociate() : FunctionPass(ID) {
170 initializeReassociatePass(*PassRegistry::getPassRegistry());
171 }
Devang Patel09f162c2007-05-01 21:15:47 +0000172
Craig Topper3e4c6972014-03-05 09:10:37 +0000173 bool runOnFunction(Function &F) override;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000174
Craig Topper3e4c6972014-03-05 09:10:37 +0000175 void getAnalysisUsage(AnalysisUsage &AU) const override {
Chris Lattner820d9712002-10-21 20:00:28 +0000176 AU.setPreservesCFG();
James Molloyefbba722015-09-10 10:22:12 +0000177 AU.addPreserved<GlobalsAAWrapperPass>();
Chris Lattnerc0f58002002-05-08 22:19:27 +0000178 }
179 private:
Chris Lattner113f4f42002-06-25 16:13:24 +0000180 void BuildRankMap(Function &F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000181 unsigned getRank(Value *V);
Chad Rosierf8b55f12014-11-14 17:05:59 +0000182 void canonicalizeOperands(Instruction *I);
Duncan Sands78386032012-06-15 08:37:50 +0000183 void ReassociateExpression(BinaryOperator *I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000184 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner38abecb2009-12-31 18:40:32 +0000185 Value *OptimizeExpression(BinaryOperator *I,
186 SmallVectorImpl<ValueEntry> &Ops);
187 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000188 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
189 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
190 Value *&Res);
191 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
192 APInt &ConstOpnd, Value *&Res);
Chandler Carruth739ef802012-04-26 05:30:30 +0000193 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
194 SmallVectorImpl<Factor> &Factors);
195 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
196 SmallVectorImpl<Factor> &Factors);
197 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner4c065092006-03-04 09:31:13 +0000198 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Duncan Sands3293f462012-06-08 20:15:33 +0000199 void EraseInst(Instruction *I);
200 void OptimizeInst(Instruction *I);
Chad Rosier094ac772014-11-11 22:58:35 +0000201 Instruction *canonicalizeNegConstExpr(Instruction *I);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000202 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000203}
Chris Lattnerc0f58002002-05-08 22:19:27 +0000204
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000205XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000206 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000207 OrigVal = V;
208 Instruction *I = dyn_cast<Instruction>(V);
209 SymbolicRank = 0;
210
211 if (I && (I->getOpcode() == Instruction::Or ||
212 I->getOpcode() == Instruction::And)) {
213 Value *V0 = I->getOperand(0);
214 Value *V1 = I->getOperand(1);
215 if (isa<ConstantInt>(V0))
216 std::swap(V0, V1);
217
218 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
219 ConstPart = C->getValue();
220 SymbolicPart = V0;
221 isOr = (I->getOpcode() == Instruction::Or);
222 return;
223 }
224 }
225
226 // view the operand as "V | 0"
227 SymbolicPart = V;
228 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
229 isOr = true;
230}
231
Dan Gohmand78c4002008-05-13 00:00:25 +0000232char Reassociate::ID = 0;
Owen Andersona57b97e2010-07-21 22:09:45 +0000233INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000234 "Reassociate expressions", false, false)
Dan Gohmand78c4002008-05-13 00:00:25 +0000235
Brian Gaeke960707c2003-11-11 22:41:34 +0000236// Public interface to the Reassociate pass
Chris Lattner49525f82004-01-09 06:02:20 +0000237FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000238
Sanjay Patelc96ee082015-04-22 18:04:46 +0000239/// Return true if V is an instruction of the specified opcode and if it
240/// only has one use.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000241static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
242 if (V->hasOneUse() && isa<Instruction>(V) &&
Chad Rosierac6a2f52014-11-06 16:46:37 +0000243 cast<Instruction>(V)->getOpcode() == Opcode &&
244 (!isa<FPMathOperator>(V) ||
245 cast<Instruction>(V)->hasUnsafeAlgebra()))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000246 return cast<BinaryOperator>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000247 return nullptr;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000248}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000249
Chad Rosier11ab9412014-08-14 15:23:01 +0000250static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
251 unsigned Opcode2) {
252 if (V->hasOneUse() && isa<Instruction>(V) &&
253 (cast<Instruction>(V)->getOpcode() == Opcode1 ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000254 cast<Instruction>(V)->getOpcode() == Opcode2) &&
255 (!isa<FPMathOperator>(V) ||
256 cast<Instruction>(V)->hasUnsafeAlgebra()))
Chad Rosier11ab9412014-08-14 15:23:01 +0000257 return cast<BinaryOperator>(V);
258 return nullptr;
259}
260
Chris Lattner113f4f42002-06-25 16:13:24 +0000261void Reassociate::BuildRankMap(Function &F) {
Chris Lattner58c7eb62003-08-12 20:14:27 +0000262 unsigned i = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000263
Chad Rosierf59e5482014-11-14 15:01:38 +0000264 // Assign distinct ranks to function arguments.
265 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000266 ValueRankMap[&*I] = ++i;
Chad Rosierf59e5482014-11-14 15:01:38 +0000267 DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
268 }
Chris Lattner8ac196d2003-08-13 16:16:26 +0000269
Chris Lattner113f4f42002-06-25 16:13:24 +0000270 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000271 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9f284e02005-05-08 20:57:04 +0000272 E = RPOT.end(); I != E; ++I) {
273 BasicBlock *BB = *I;
274 unsigned BBRank = RankMap[BB] = ++i << 16;
275
276 // Walk the basic block, adding precomputed ranks for any instructions that
277 // we cannot move. This ensures that the ranks for these instructions are
278 // all different in the block.
279 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
Quentin Colombet6443cce2015-08-06 18:44:34 +0000280 if (mayBeMemoryDependent(*I))
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000281 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000282 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000283}
284
285unsigned Reassociate::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000286 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000287 if (!I) {
Chris Lattner17229a72010-01-01 00:01:34 +0000288 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
289 return 0; // Otherwise it's a global or constant, rank 0.
290 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000291
Chris Lattner17229a72010-01-01 00:01:34 +0000292 if (unsigned Rank = ValueRankMap[I])
293 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000294
Chris Lattnerf43e9742005-05-07 04:08:02 +0000295 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
296 // we can reassociate expressions for code motion! Since we do not recurse
297 // for PHI nodes, we cannot have infinite recursion here, because there
298 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000299 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
300 for (unsigned i = 0, e = I->getNumOperands();
301 i != e && Rank != MaxRank; ++i)
302 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000303
Chris Lattner6e2086d2005-05-08 00:08:33 +0000304 // If this is a not or neg instruction, do not count it for rank. This
305 // assures us that X and ~X will have the same rank.
Robert Lougher1858ba72015-03-13 20:53:01 +0000306 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
307 !BinaryOperator::isFNeg(I))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000308 ++Rank;
309
Chad Rosierf59e5482014-11-14 15:01:38 +0000310 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000311
Chris Lattner17229a72010-01-01 00:01:34 +0000312 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000313}
314
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000315// Canonicalize constants to RHS. Otherwise, sort the operands by rank.
Chad Rosierf8b55f12014-11-14 17:05:59 +0000316void Reassociate::canonicalizeOperands(Instruction *I) {
317 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
318 assert(I->isCommutative() && "Expected commutative operator.");
319
320 Value *LHS = I->getOperand(0);
321 Value *RHS = I->getOperand(1);
322 unsigned LHSRank = getRank(LHS);
323 unsigned RHSRank = getRank(RHS);
324
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000325 if (isa<Constant>(RHS))
326 return;
327
Chad Rosierf8b55f12014-11-14 17:05:59 +0000328 if (isa<Constant>(LHS) || RHSRank < LHSRank)
329 cast<BinaryOperator>(I)->swapOperands();
330}
331
Chad Rosier11ab9412014-08-14 15:23:01 +0000332static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
333 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000334 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000335 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
336 else {
337 BinaryOperator *Res =
338 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
339 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
340 return Res;
341 }
342}
343
344static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
345 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000346 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000347 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
348 else {
349 BinaryOperator *Res =
350 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
351 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
352 return Res;
353 }
354}
355
356static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
357 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000358 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000359 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
360 else {
361 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
362 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
363 return Res;
364 }
365}
366
Sanjay Patelc96ee082015-04-22 18:04:46 +0000367/// Replace 0-X with X*-1.
Duncan Sands3293f462012-06-08 20:15:33 +0000368static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000369 Type *Ty = Neg->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +0000370 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
371 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
Chris Lattner877b1142005-05-08 21:28:52 +0000372
Chad Rosier11ab9412014-08-14 15:23:01 +0000373 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
374 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000375 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000376 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000377 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000378 return Res;
379}
380
Sanjay Patelc96ee082015-04-22 18:04:46 +0000381/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
382/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000383/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
384/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
385/// even x in Bitwidth-bit arithmetic.
386static unsigned CarmichaelShift(unsigned Bitwidth) {
387 if (Bitwidth < 3)
388 return Bitwidth - 1;
389 return Bitwidth - 2;
390}
391
Sanjay Patelc96ee082015-04-22 18:04:46 +0000392/// Add the extra weight 'RHS' to the existing weight 'LHS',
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000393/// reducing the combined weight using any special properties of the operation.
394/// The existing weight LHS represents the computation X op X op ... op X where
395/// X occurs LHS times. The combined weight represents X op X op ... op X with
396/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
397/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
398/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
399static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
400 // If we were working with infinite precision arithmetic then the combined
401 // weight would be LHS + RHS. But we are using finite precision arithmetic,
402 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
403 // for nilpotent operations and addition, but not for idempotent operations
404 // and multiplication), so it is important to correctly reduce the combined
405 // weight back into range if wrapping would be wrong.
406
407 // If RHS is zero then the weight didn't change.
408 if (RHS.isMinValue())
409 return;
410 // If LHS is zero then the combined weight is RHS.
411 if (LHS.isMinValue()) {
412 LHS = RHS;
413 return;
414 }
415 // From this point on we know that neither LHS nor RHS is zero.
416
417 if (Instruction::isIdempotent(Opcode)) {
418 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
419 // weight of 1. Keeping weights at zero or one also means that wrapping is
420 // not a problem.
421 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
422 return; // Return a weight of 1.
423 }
424 if (Instruction::isNilpotent(Opcode)) {
425 // Nilpotent means X op X === 0, so reduce weights modulo 2.
426 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
427 LHS = 0; // 1 + 1 === 0 modulo 2.
428 return;
429 }
Chad Rosier11ab9412014-08-14 15:23:01 +0000430 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000431 // TODO: Reduce the weight by exploiting nsw/nuw?
432 LHS += RHS;
433 return;
434 }
435
Chad Rosier11ab9412014-08-14 15:23:01 +0000436 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
437 "Unknown associative operation!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000438 unsigned Bitwidth = LHS.getBitWidth();
439 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
440 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
441 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
442 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
443 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
444 // which by a happy accident means that they can always be represented using
445 // Bitwidth bits.
446 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
447 // the Carmichael number).
448 if (Bitwidth > 3) {
449 /// CM - The value of Carmichael's lambda function.
450 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
451 // Any weight W >= Threshold can be replaced with W - CM.
452 APInt Threshold = CM + Bitwidth;
453 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
454 // For Bitwidth 4 or more the following sum does not overflow.
455 LHS += RHS;
456 while (LHS.uge(Threshold))
457 LHS -= CM;
458 } else {
459 // To avoid problems with overflow do everything the same as above but using
460 // a larger type.
461 unsigned CM = 1U << CarmichaelShift(Bitwidth);
462 unsigned Threshold = CM + Bitwidth;
463 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
464 "Weights not reduced!");
465 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
466 while (Total >= Threshold)
467 Total -= CM;
468 LHS = Total;
469 }
470}
471
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000472typedef std::pair<Value*, APInt> RepeatedValue;
473
Sanjay Patelc96ee082015-04-22 18:04:46 +0000474/// Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000475/// nodes in Ops along with their weights (how many times the leaf occurs). The
476/// original expression is the same as
477/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000478/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000479/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
480/// op
481/// ...
482/// op
483/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
484///
Duncan Sandsac852c72012-11-15 09:58:38 +0000485/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000486///
487/// This routine may modify the function, in which case it returns 'true'. The
488/// changes it makes may well be destructive, changing the value computed by 'I'
489/// to something completely different. Thus if the routine returns 'true' then
490/// you MUST either replace I with a new expression computed from the Ops array,
491/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000492///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000493/// A leaf node is either not a binary operation of the same kind as the root
494/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
495/// opcode), or is the same kind of binary operator but has a use which either
496/// does not belong to the expression, or does belong to the expression but is
497/// a leaf node. Every leaf node has at least one use that is a non-leaf node
498/// of the expression, while for non-leaf nodes (except for the root 'I') every
499/// use is a non-leaf node of the expression.
500///
501/// For example:
502/// expression graph node names
503///
504/// + | I
505/// / \ |
506/// + + | A, B
507/// / \ / \ |
508/// * + * | C, D, E
509/// / \ / \ / \ |
510/// + * | F, G
511///
512/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000513/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000514///
515/// The expression is maximal: if some instruction is a binary operator of the
516/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
517/// then the instruction also belongs to the expression, is not a leaf node of
518/// it, and its operands also belong to the expression (but may be leaf nodes).
519///
520/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
521/// order to ensure that every non-root node in the expression has *exactly one*
522/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000523/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000524/// RewriteExprTree to put the values back in if the routine indicates that it
525/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000526///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000527/// In the above example either the right operand of A or the left operand of B
528/// will be replaced by undef. If it is B's operand then this gives:
529///
530/// + | I
531/// / \ |
532/// + + | A, B - operand of B replaced with undef
533/// / \ \ |
534/// * + * | C, D, E
535/// / \ / \ / \ |
536/// + * | F, G
537///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000538/// Note that such undef operands can only be reached by passing through 'I'.
539/// For example, if you visit operands recursively starting from a leaf node
540/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000541/// which requires passing through a phi node.
542///
543/// Note that this routine may also mutate binary operators of the wrong type
544/// that have all uses inside the expression (i.e. only used by non-leaf nodes
545/// of the expression) if it can turn them into binary operators of the right
546/// type and thus make the expression bigger.
547
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000548static bool LinearizeExprTree(BinaryOperator *I,
549 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000550 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000551 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
552 unsigned Opcode = I->getOpcode();
Chad Rosier11ab9412014-08-14 15:23:01 +0000553 assert(I->isAssociative() && I->isCommutative() &&
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000554 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000555
556 // Visit all operands of the expression, keeping track of their weight (the
557 // number of paths from the expression root to the operand, or if you like
558 // the number of times that operand occurs in the linearized expression).
559 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
560 // while A has weight two.
561
562 // Worklist of non-leaf nodes (their operands are in the expression too) along
563 // with their weights, representing a certain number of paths to the operator.
564 // If an operator occurs in the worklist multiple times then we found multiple
565 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000566 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
567 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000568 bool Changed = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000569
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000570 // Leaves of the expression are values that either aren't the right kind of
571 // operation (eg: a constant, or a multiply in an add tree), or are, but have
572 // some uses that are not inside the expression. For example, in I = X + X,
573 // X = A + B, the value X has two uses (by I) that are in the expression. If
574 // X has any other uses, for example in a return instruction, then we consider
575 // X to be a leaf, and won't analyze it further. When we first visit a value,
576 // if it has more than one use then at first we conservatively consider it to
577 // be a leaf. Later, as the expression is explored, we may discover some more
578 // uses of the value from inside the expression. If all uses turn out to be
579 // from within the expression (and the value is a binary operator of the right
580 // kind) then the value is no longer considered to be a leaf, and its operands
581 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000582
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000583 // Leaves - Keeps track of the set of putative leaves as well as the number of
584 // paths to each leaf seen so far.
Duncan Sands72aea012012-06-12 20:26:43 +0000585 typedef DenseMap<Value*, APInt> LeafMap;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000586 LeafMap Leaves; // Leaf -> Total weight so far.
587 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
588
589#ifndef NDEBUG
590 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
591#endif
592 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000593 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000594 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000595
596 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
597 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000598 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000599 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
600 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
601
602 // If this is a binary operation of the right kind with only one use then
603 // add its operands to the expression.
604 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
David Blaikie70573dc2014-11-19 07:49:26 +0000605 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000606 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
607 Worklist.push_back(std::make_pair(BO, Weight));
608 continue;
609 }
610
611 // Appears to be a leaf. Is the operand already in the set of leaves?
612 LeafMap::iterator It = Leaves.find(Op);
613 if (It == Leaves.end()) {
614 // Not in the leaf map. Must be the first time we saw this operand.
David Blaikie70573dc2014-11-19 07:49:26 +0000615 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000616 if (!Op->hasOneUse()) {
617 // This value has uses not accounted for by the expression, so it is
618 // not safe to modify. Mark it as being a leaf.
619 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
620 LeafOrder.push_back(Op);
621 Leaves[Op] = Weight;
622 continue;
623 }
624 // No uses outside the expression, try morphing it.
625 } else if (It != Leaves.end()) {
626 // Already in the leaf map.
627 assert(Visited.count(Op) && "In leaf map but not visited!");
628
629 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000630 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000631
Duncan Sands56514522012-07-26 09:26:40 +0000632#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000633 // The leaf already has one use from inside the expression. As we want
634 // exactly one such use, drop this new use of the leaf.
635 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
636 I->setOperand(OpIdx, UndefValue::get(I->getType()));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000637 Changed = true;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000638
639 // If the leaf is a binary operation of the right kind and we now see
640 // that its multiple original uses were in fact all by nodes belonging
641 // to the expression, then no longer consider it to be a leaf and add
642 // its operands to the expression.
643 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
644 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
645 Worklist.push_back(std::make_pair(BO, It->second));
646 Leaves.erase(It);
647 continue;
648 }
Duncan Sands56514522012-07-26 09:26:40 +0000649#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000650
651 // If we still have uses that are not accounted for by the expression
652 // then it is not safe to modify the value.
653 if (!Op->hasOneUse())
654 continue;
655
656 // No uses outside the expression, try morphing it.
657 Weight = It->second;
658 Leaves.erase(It); // Since the value may be morphed below.
659 }
660
661 // At this point we have a value which, first of all, is not a binary
662 // expression of the right kind, and secondly, is only used inside the
663 // expression. This means that it can safely be modified. See if we
664 // can usefully morph it into an expression of the right kind.
665 assert((!isa<Instruction>(Op) ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000666 cast<Instruction>(Op)->getOpcode() != Opcode
667 || (isa<FPMathOperator>(Op) &&
668 !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000669 "Should have been handled above!");
670 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
671
672 // If this is a multiply expression, turn any internal negations into
673 // multiplies by -1 so they can be reassociated.
Chad Rosier11ab9412014-08-14 15:23:01 +0000674 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
675 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
676 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
677 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
678 BO = LowerNegateToMultiply(BO);
679 DEBUG(dbgs() << *BO << '\n');
680 Worklist.push_back(std::make_pair(BO, Weight));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000681 Changed = true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000682 continue;
683 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000684
685 // Failed to morph into an expression of the right type. This really is
686 // a leaf.
687 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
688 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
689 LeafOrder.push_back(Op);
690 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000691 }
692 }
693
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000694 // The leaves, repeated according to their weights, represent the linearized
695 // form of the expression.
696 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
697 Value *V = LeafOrder[i];
698 LeafMap::iterator It = Leaves.find(V);
699 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000700 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000701 continue;
702 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000703 APInt Weight = It->second;
704 if (Weight.isMinValue())
705 // Leaf already output or weight reduction eliminated it.
706 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000707 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000708 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000709 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000710 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000711
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000712 // For nilpotent operations or addition there may be no operands, for example
713 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
714 // in both cases the weight reduces to 0 causing the value to be skipped.
715 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000716 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000717 assert(Identity && "Associative operation without identity!");
Benjamin Kramerf5e2fc42015-05-29 19:43:39 +0000718 Ops.emplace_back(Identity, APInt(Bitwidth, 1));
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000719 }
720
Chad Rosiere53e8c82014-11-18 20:21:54 +0000721 return Changed;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000722}
723
Sanjay Patelc96ee082015-04-22 18:04:46 +0000724/// Now that the operands for this expression tree are
725/// linearized and optimized, emit them in-order.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000726void Reassociate::RewriteExprTree(BinaryOperator *I,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000727 SmallVectorImpl<ValueEntry> &Ops) {
728 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000729
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000730 // Since our optimizations should never increase the number of operations, the
731 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000732 // from the original expression tree, without creating any new instructions,
733 // though the rewritten expression may have a completely different topology.
734 // We take care to not change anything if the new expression will be the same
735 // as the original. If more than trivial changes (like commuting operands)
736 // were made then we are obliged to clear out any optional subclass data like
737 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000738
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000739 /// NodesToRewrite - Nodes from the original expression available for writing
740 /// the new expression into.
741 SmallVector<BinaryOperator*, 8> NodesToRewrite;
742 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000743 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000744
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000745 /// NotRewritable - The operands being written will be the leaves of the new
746 /// expression and must not be used as inner nodes (via NodesToRewrite) by
747 /// mistake. Inner nodes are always reassociable, and usually leaves are not
748 /// (if they were they would have been incorporated into the expression and so
749 /// would not be leaves), so most of the time there is no danger of this. But
750 /// in rare cases a leaf may become reassociable if an optimization kills uses
751 /// of it, or it may momentarily become reassociable during rewriting (below)
752 /// due it being removed as an operand of one of its uses. Ensure that misuse
753 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
754 /// leaves and refusing to reuse any of them as inner nodes.
755 SmallPtrSet<Value*, 8> NotRewritable;
756 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
757 NotRewritable.insert(Ops[i].Op);
758
Duncan Sands3c05cd32012-05-26 16:42:52 +0000759 // ExpressionChanged - Non-null if the rewritten expression differs from the
760 // original in some non-trivial way, requiring the clearing of optional flags.
761 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
Craig Topperf40110f2014-04-25 05:29:35 +0000762 BinaryOperator *ExpressionChanged = nullptr;
Duncan Sands514db112012-06-27 14:19:00 +0000763 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000764 // The last operation (which comes earliest in the IR) is special as both
765 // operands will come from Ops, rather than just one with the other being
766 // a subexpression.
767 if (i+2 == Ops.size()) {
768 Value *NewLHS = Ops[i].Op;
769 Value *NewRHS = Ops[i+1].Op;
770 Value *OldLHS = Op->getOperand(0);
771 Value *OldRHS = Op->getOperand(1);
772
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000773 if (NewLHS == OldLHS && NewRHS == OldRHS)
774 // Nothing changed, leave it alone.
775 break;
776
777 if (NewLHS == OldRHS && NewRHS == OldLHS) {
778 // The order of the operands was reversed. Swap them.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000779 DEBUG(dbgs() << "RA: " << *Op << '\n');
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000780 Op->swapOperands();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000781 DEBUG(dbgs() << "TO: " << *Op << '\n');
782 MadeChange = true;
783 ++NumChanged;
784 break;
785 }
786
787 // The new operation differs non-trivially from the original. Overwrite
788 // the old operands with the new ones.
789 DEBUG(dbgs() << "RA: " << *Op << '\n');
790 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000791 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
792 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000793 NodesToRewrite.push_back(BO);
794 Op->setOperand(0, NewLHS);
795 }
796 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000797 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
798 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000799 NodesToRewrite.push_back(BO);
800 Op->setOperand(1, NewRHS);
801 }
802 DEBUG(dbgs() << "TO: " << *Op << '\n');
803
Duncan Sands3c05cd32012-05-26 16:42:52 +0000804 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000805 MadeChange = true;
806 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000807
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000808 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000809 }
Chris Lattner1e506502005-05-07 21:59:39 +0000810
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000811 // Not the last operation. The left-hand side will be a sub-expression
812 // while the right-hand side will be the current element of Ops.
813 Value *NewRHS = Ops[i].Op;
814 if (NewRHS != Op->getOperand(1)) {
815 DEBUG(dbgs() << "RA: " << *Op << '\n');
816 if (NewRHS == Op->getOperand(0)) {
817 // The new right-hand side was already present as the left operand. If
818 // we are lucky then swapping the operands will sort out both of them.
819 Op->swapOperands();
820 } else {
821 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000822 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
823 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000824 NodesToRewrite.push_back(BO);
825 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000826 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000827 }
828 DEBUG(dbgs() << "TO: " << *Op << '\n');
829 MadeChange = true;
830 ++NumChanged;
831 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000832
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000833 // Now deal with the left-hand side. If this is already an operation node
834 // from the original expression then just rewrite the rest of the expression
835 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000836 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
837 if (BO && !NotRewritable.count(BO)) {
Duncan Sands98382862012-06-29 19:03:05 +0000838 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000839 continue;
840 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000841
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000842 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000843 // the left-hand side. If there are no nodes left then the optimizers made
844 // an expression with more nodes than the original! This usually means that
845 // they did something stupid but it might mean that the problem was just too
846 // hard (finding the mimimal number of multiplications needed to realize a
847 // multiplication expression is NP-complete). Whatever the reason, smart or
848 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000849 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000850 if (NodesToRewrite.empty()) {
851 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000852 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
853 Undef, Undef, "", I);
Robert Lougher1858ba72015-03-13 20:53:01 +0000854 if (NewOp->getType()->isFPOrFPVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000855 NewOp->setFastMathFlags(I->getFastMathFlags());
Duncan Sands98382862012-06-29 19:03:05 +0000856 } else {
857 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000858 }
859
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000860 DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000861 Op->setOperand(0, NewOp);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000862 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000863 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000864 MadeChange = true;
865 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000866 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000867 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000868
Duncan Sands3c05cd32012-05-26 16:42:52 +0000869 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000870 // starting from the operator specified in ExpressionChanged, and compactify
871 // the operators to just before the expression root to guarantee that the
872 // expression tree is dominated by all of Ops.
873 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000874 do {
Chad Rosier11ab9412014-08-14 15:23:01 +0000875 // Preserve FastMathFlags.
876 if (isa<FPMathOperator>(I)) {
877 FastMathFlags Flags = I->getFastMathFlags();
878 ExpressionChanged->clearSubclassOptionalData();
879 ExpressionChanged->setFastMathFlags(Flags);
880 } else
881 ExpressionChanged->clearSubclassOptionalData();
882
Duncan Sands3c05cd32012-05-26 16:42:52 +0000883 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000884 break;
Duncan Sands514db112012-06-27 14:19:00 +0000885 ExpressionChanged->moveBefore(I);
Chandler Carruthcdf47882014-03-09 03:16:01 +0000886 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000887 } while (1);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000888
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000889 // Throw away any left over nodes from the original expression.
890 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000891 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000892}
893
Sanjay Patelc96ee082015-04-22 18:04:46 +0000894/// Insert instructions before the instruction pointed to by BI,
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000895/// that computes the negative version of the value specified. The negative
896/// version of the value is returned, and BI is left pointing at the instruction
897/// that should be processed next by the reassociation pass.
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000898static Value *NegateValue(Value *V, Instruction *BI) {
Mehdi Amini590a2702015-01-16 03:00:58 +0000899 if (Constant *C = dyn_cast<Constant>(V)) {
900 if (C->getType()->isFPOrFPVectorTy()) {
901 return ConstantExpr::getFNeg(C);
902 }
Chris Lattnerfed33972009-12-31 20:34:32 +0000903 return ConstantExpr::getNeg(C);
Mehdi Amini590a2702015-01-16 03:00:58 +0000904 }
905
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000906
Chris Lattner7bc532d2002-05-16 04:37:07 +0000907 // We are trying to expose opportunity for reassociation. One of the things
908 // that we want to do to achieve this is to push a negation as deep into an
909 // expression chain as possible, to expose the add instructions. In practice,
910 // this means that we turn this:
911 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
912 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
913 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000914 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000915 //
Chad Rosier11ab9412014-08-14 15:23:01 +0000916 if (BinaryOperator *I =
917 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000918 // Push the negates through the add.
919 I->setOperand(0, NegateValue(I->getOperand(0), BI));
920 I->setOperand(1, NegateValue(I->getOperand(1), BI));
David Majnemerf6e500a2015-06-24 21:27:36 +0000921 if (I->getOpcode() == Instruction::Add) {
922 I->setHasNoUnsignedWrap(false);
923 I->setHasNoSignedWrap(false);
924 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000925
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000926 // We must move the add instruction here, because the neg instructions do
927 // not dominate the old add instruction in general. By moving it, we are
928 // assured that the neg instructions we just inserted dominate the
929 // instruction we are about to insert after them.
930 //
931 I->moveBefore(BI);
932 I->setName(I->getName()+".neg");
933 return I;
934 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000935
Chris Lattnerfed33972009-12-31 20:34:32 +0000936 // Okay, we need to materialize a negated version of V with an instruction.
937 // Scan the use lists of V to see if we have one already.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000938 for (User *U : V->users()) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000939 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
940 continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000941
942 // We found one! Now we have to make sure that the definition dominates
943 // this use. We do this by moving it to the entry block (if it is a
944 // non-instruction value) or right after the definition. These negates will
945 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000946 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000947
948 // Verify that the negate is in this function, V might be a constant expr.
949 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
950 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000951
Chris Lattnerfed33972009-12-31 20:34:32 +0000952 BasicBlock::iterator InsertPt;
953 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
954 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
955 InsertPt = II->getNormalDest()->begin();
David Majnemer0bc0eef2015-08-15 02:46:08 +0000956 } else if (auto *CPI = dyn_cast<CatchPadInst>(InstInput)) {
957 InsertPt = CPI->getNormalDest()->begin();
Chris Lattnerfed33972009-12-31 20:34:32 +0000958 } else {
959 InsertPt = InstInput;
960 ++InsertPt;
961 }
962 while (isa<PHINode>(InsertPt)) ++InsertPt;
963 } else {
964 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
965 }
966 TheNeg->moveBefore(InsertPt);
David Majnemerf6e500a2015-06-24 21:27:36 +0000967 if (TheNeg->getOpcode() == Instruction::Sub) {
968 TheNeg->setHasNoUnsignedWrap(false);
969 TheNeg->setHasNoSignedWrap(false);
970 } else {
971 TheNeg->andIRFlags(BI);
972 }
Chris Lattnerfed33972009-12-31 20:34:32 +0000973 return TheNeg;
974 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000975
976 // Insert a 'neg' instruction that subtracts the value from zero to get the
977 // negation.
Chad Rosier11ab9412014-08-14 15:23:01 +0000978 return CreateNeg(V, V->getName() + ".neg", BI, BI);
Chris Lattnerf43e9742005-05-07 04:08:02 +0000979}
980
Sanjay Patelc96ee082015-04-22 18:04:46 +0000981/// Return true if we should break up this subtract of X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000982static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000983 // If this is a negation, we can't split it up!
Chad Rosier11ab9412014-08-14 15:23:01 +0000984 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000985 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000986
Chad Rosierbd64d462014-10-09 20:06:29 +0000987 // Don't breakup X - undef.
988 if (isa<UndefValue>(Sub->getOperand(1)))
989 return false;
990
Chris Lattner902537c2008-02-17 20:44:51 +0000991 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +0000992 // subtract or if this is only used by one.
Chad Rosier11ab9412014-08-14 15:23:01 +0000993 Value *V0 = Sub->getOperand(0);
994 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
995 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000996 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000997 Value *V1 = Sub->getOperand(1);
998 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
999 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +00001000 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +00001001 Value *VB = Sub->user_back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001002 if (Sub->hasOneUse() &&
Chad Rosier11ab9412014-08-14 15:23:01 +00001003 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
1004 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
Chris Lattner902537c2008-02-17 20:44:51 +00001005 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001006
Chris Lattner902537c2008-02-17 20:44:51 +00001007 return false;
1008}
1009
Sanjay Patelc96ee082015-04-22 18:04:46 +00001010/// If we have (X-Y), and if either X is an add, or if this is only used by an
1011/// add, transform this into (X+(0-Y)) to promote better reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +00001012static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
Chris Lattnera5526832010-01-01 00:04:26 +00001013 // Convert a subtract into an add and a neg instruction. This allows sub
1014 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +00001015 //
Chris Lattnera5526832010-01-01 00:04:26 +00001016 // Calculate the negative value of Operand 1 of the sub instruction,
1017 // and set it as the RHS of the add instruction we just made.
Chris Lattnerf43e9742005-05-07 04:08:02 +00001018 //
Nick Lewycky7935bcb2009-11-14 07:25:54 +00001019 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Chad Rosier11ab9412014-08-14 15:23:01 +00001020 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Duncan Sands3293f462012-06-08 20:15:33 +00001021 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1022 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +00001023 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +00001024
1025 // Everyone now refers to the add instruction.
1026 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +00001027 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00001028
David Greened17c3912010-01-05 01:27:24 +00001029 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +00001030 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +00001031}
1032
Sanjay Patelc96ee082015-04-22 18:04:46 +00001033/// If this is a shift of a reassociable multiply or is used by one, change
1034/// this into a multiply by a constant to assist with further reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +00001035static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1036 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1037 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001038
Duncan Sands3293f462012-06-08 20:15:33 +00001039 BinaryOperator *Mul =
1040 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1041 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
1042 Mul->takeName(Shl);
Chad Rosierb3eb4522014-11-07 22:12:57 +00001043
1044 // Everyone now refers to the mul instruction.
Duncan Sands3293f462012-06-08 20:15:33 +00001045 Shl->replaceAllUsesWith(Mul);
1046 Mul->setDebugLoc(Shl->getDebugLoc());
Chad Rosierb3eb4522014-11-07 22:12:57 +00001047
1048 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
1049 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
1050 // handling.
1051 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1052 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1053 if (NSW && NUW)
1054 Mul->setHasNoSignedWrap(true);
1055 Mul->setHasNoUnsignedWrap(NUW);
Duncan Sands3293f462012-06-08 20:15:33 +00001056 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +00001057}
1058
Sanjay Patelc96ee082015-04-22 18:04:46 +00001059/// Scan backwards and forwards among values with the same rank as element i
1060/// to see if X exists. If X does not exist, return i. This is useful when
1061/// scanning for 'x' when we see '-x' because they both get the same rank.
Chris Lattner38abecb2009-12-31 18:40:32 +00001062static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner5847e5e2005-05-08 18:59:37 +00001063 Value *X) {
1064 unsigned XRank = Ops[i].Rank;
1065 unsigned e = Ops.size();
Owen Anderson8373d332014-10-05 23:41:26 +00001066 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +00001067 if (Ops[j].Op == X)
1068 return j;
Owen Anderson8373d332014-10-05 23:41:26 +00001069 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1070 if (Instruction *I2 = dyn_cast<Instruction>(X))
1071 if (I1->isIdenticalTo(I2))
1072 return j;
1073 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001074 // Scan backwards.
Owen Anderson8373d332014-10-05 23:41:26 +00001075 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +00001076 if (Ops[j].Op == X)
1077 return j;
Owen Anderson8373d332014-10-05 23:41:26 +00001078 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1079 if (Instruction *I2 = dyn_cast<Instruction>(X))
1080 if (I1->isIdenticalTo(I2))
1081 return j;
1082 }
Chris Lattner5847e5e2005-05-08 18:59:37 +00001083 return i;
1084}
1085
Sanjay Patelc96ee082015-04-22 18:04:46 +00001086/// Emit a tree of add instructions, summing Ops together
Chris Lattner4c065092006-03-04 09:31:13 +00001087/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +00001088static Value *EmitAddTreeOfValues(Instruction *I,
1089 SmallVectorImpl<WeakVH> &Ops){
Chris Lattner4c065092006-03-04 09:31:13 +00001090 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001091
Chris Lattner4c065092006-03-04 09:31:13 +00001092 Value *V1 = Ops.back();
1093 Ops.pop_back();
1094 Value *V2 = EmitAddTreeOfValues(I, Ops);
Chad Rosier11ab9412014-08-14 15:23:01 +00001095 return CreateAdd(V2, V1, "tmp", I, I);
Chris Lattner4c065092006-03-04 09:31:13 +00001096}
1097
Sanjay Patelc96ee082015-04-22 18:04:46 +00001098/// If V is an expression tree that is a multiplication sequence,
1099/// and if this sequence contains a multiply by Factor,
Chris Lattner4c065092006-03-04 09:31:13 +00001100/// remove Factor from the tree and return the new tree.
1101Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001102 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1103 if (!BO)
1104 return nullptr;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001105
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001106 SmallVector<RepeatedValue, 8> Tree;
1107 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001108 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001109 Factors.reserve(Tree.size());
1110 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1111 RepeatedValue E = Tree[i];
1112 Factors.append(E.second.getZExtValue(),
1113 ValueEntry(getRank(E.first), E.first));
1114 }
Chris Lattner4c065092006-03-04 09:31:13 +00001115
1116 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001117 bool NeedsNegate = false;
1118 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001119 if (Factors[i].Op == Factor) {
1120 FoundFactor = true;
1121 Factors.erase(Factors.begin()+i);
1122 break;
1123 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001124
Chris Lattner0c59ac32010-01-01 01:13:15 +00001125 // If this is a negative version of this factor, remove it.
Chad Rosier11ab9412014-08-14 15:23:01 +00001126 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001127 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1128 if (FC1->getValue() == -FC2->getValue()) {
1129 FoundFactor = NeedsNegate = true;
1130 Factors.erase(Factors.begin()+i);
1131 break;
1132 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001133 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1134 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1135 APFloat F1(FC1->getValueAPF());
1136 APFloat F2(FC2->getValueAPF());
1137 F2.changeSign();
1138 if (F1.compare(F2) == APFloat::cmpEqual) {
1139 FoundFactor = NeedsNegate = true;
1140 Factors.erase(Factors.begin() + i);
1141 break;
1142 }
1143 }
1144 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001145 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001146
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001147 if (!FoundFactor) {
1148 // Make sure to restore the operands to the expression tree.
1149 RewriteExprTree(BO, Factors);
Craig Topperf40110f2014-04-25 05:29:35 +00001150 return nullptr;
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001151 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001152
Chris Lattner0c59ac32010-01-01 01:13:15 +00001153 BasicBlock::iterator InsertPt = BO; ++InsertPt;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001154
Chris Lattner1d897942009-12-31 19:34:45 +00001155 // If this was just a single multiply, remove the multiply and return the only
1156 // remaining operand.
1157 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001158 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001159 V = Factors[0].Op;
1160 } else {
1161 RewriteExprTree(BO, Factors);
1162 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001163 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001164
Chris Lattner0c59ac32010-01-01 01:13:15 +00001165 if (NeedsNegate)
Chad Rosier11ab9412014-08-14 15:23:01 +00001166 V = CreateNeg(V, "neg", InsertPt, BO);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001167
Chris Lattner0c59ac32010-01-01 01:13:15 +00001168 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001169}
1170
Sanjay Patelc96ee082015-04-22 18:04:46 +00001171/// If V is a single-use multiply, recursively add its operands as factors,
1172/// otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001173///
1174/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001175static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattnerc6c15232010-03-05 07:18:54 +00001176 SmallVectorImpl<Value*> &Factors,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001177 const SmallVectorImpl<ValueEntry> &Ops) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001178 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001179 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001180 Factors.push_back(V);
1181 return;
1182 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001183
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001184 // Otherwise, add the LHS and RHS to the list of factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001185 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1186 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001187}
1188
Sanjay Patelc96ee082015-04-22 18:04:46 +00001189/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1190/// This optimizes based on identities. If it can be reduced to a single Value,
1191/// it is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001192static Value *OptimizeAndOrXor(unsigned Opcode,
1193 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001194 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1195 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1196 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1197 // First, check for X and ~X in the operand list.
1198 assert(i < Ops.size());
1199 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1200 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1201 unsigned FoundX = FindInOperandList(Ops, i, X);
1202 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001203 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001204 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001205
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001206 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001207 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001208 }
1209 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001210
Chris Lattner5f8a0052009-12-31 07:59:34 +00001211 // Next, check for duplicate pairs of values, which we assume are next to
1212 // each other, due to our sorting criteria.
1213 assert(i < Ops.size());
1214 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1215 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001216 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001217 Ops.erase(Ops.begin()+i);
1218 --i; --e;
1219 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001220 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001221 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001222
Chris Lattner60c2ca72009-12-31 19:49:01 +00001223 // Drop pairs of values for Xor.
1224 assert(Opcode == Instruction::Xor);
1225 if (e == 2)
1226 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001227
Chris Lattnera5526832010-01-01 00:04:26 +00001228 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001229 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1230 i -= 1; e -= 2;
1231 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001232 }
1233 }
Craig Topperf40110f2014-04-25 05:29:35 +00001234 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001235}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001236
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001237/// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
1238/// instruction with the given two operands, and return the resulting
1239/// instruction. There are two special cases: 1) if the constant operand is 0,
1240/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1241/// be returned.
1242static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1243 const APInt &ConstOpnd) {
1244 if (ConstOpnd != 0) {
1245 if (!ConstOpnd.isAllOnesValue()) {
1246 LLVMContext &Ctx = Opnd->getType()->getContext();
1247 Instruction *I;
1248 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1249 "and.ra", InsertBefore);
1250 I->setDebugLoc(InsertBefore->getDebugLoc());
1251 return I;
1252 }
1253 return Opnd;
1254 }
Craig Topperf40110f2014-04-25 05:29:35 +00001255 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001256}
1257
1258// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1259// into "R ^ C", where C would be 0, and R is a symbolic value.
1260//
1261// If it was successful, true is returned, and the "R" and "C" is returned
1262// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1263// and both "Res" and "ConstOpnd" remain unchanged.
1264//
1265bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1266 APInt &ConstOpnd, Value *&Res) {
1267 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1268 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1269 // = (x & ~c1) ^ (c1 ^ c2)
1270 // It is useful only when c1 == c2.
1271 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1272 if (!Opnd1->getValue()->hasOneUse())
1273 return false;
1274
1275 const APInt &C1 = Opnd1->getConstPart();
1276 if (C1 != ConstOpnd)
1277 return false;
1278
1279 Value *X = Opnd1->getSymbolicPart();
1280 Res = createAndInstr(I, X, ~C1);
1281 // ConstOpnd was C2, now C1 ^ C2.
1282 ConstOpnd ^= C1;
1283
1284 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1285 RedoInsts.insert(T);
1286 return true;
1287 }
1288 return false;
1289}
1290
1291
1292// Helper function of OptimizeXor(). It tries to simplify
1293// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1294// symbolic value.
1295//
1296// If it was successful, true is returned, and the "R" and "C" is returned
1297// via "Res" and "ConstOpnd", respectively (If the entire expression is
1298// evaluated to a constant, the Res is set to NULL); otherwise, false is
1299// returned, and both "Res" and "ConstOpnd" remain unchanged.
1300bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1301 APInt &ConstOpnd, Value *&Res) {
1302 Value *X = Opnd1->getSymbolicPart();
1303 if (X != Opnd2->getSymbolicPart())
1304 return false;
1305
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001306 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1307 int DeadInstNum = 1;
1308 if (Opnd1->getValue()->hasOneUse())
1309 DeadInstNum++;
1310 if (Opnd2->getValue()->hasOneUse())
1311 DeadInstNum++;
1312
1313 // Xor-Rule 2:
1314 // (x | c1) ^ (x & c2)
1315 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1316 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1317 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1318 //
1319 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1320 if (Opnd2->isOrExpr())
1321 std::swap(Opnd1, Opnd2);
1322
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001323 const APInt &C1 = Opnd1->getConstPart();
1324 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001325 APInt C3((~C1) ^ C2);
1326
1327 // Do not increase code size!
1328 if (C3 != 0 && !C3.isAllOnesValue()) {
1329 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1330 if (NewInstNum > DeadInstNum)
1331 return false;
1332 }
1333
1334 Res = createAndInstr(I, X, C3);
1335 ConstOpnd ^= C1;
1336
1337 } else if (Opnd1->isOrExpr()) {
1338 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1339 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001340 const APInt &C1 = Opnd1->getConstPart();
1341 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001342 APInt C3 = C1 ^ C2;
1343
1344 // Do not increase code size
1345 if (C3 != 0 && !C3.isAllOnesValue()) {
1346 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1347 if (NewInstNum > DeadInstNum)
1348 return false;
1349 }
1350
1351 Res = createAndInstr(I, X, C3);
1352 ConstOpnd ^= C3;
1353 } else {
1354 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1355 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001356 const APInt &C1 = Opnd1->getConstPart();
1357 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001358 APInt C3 = C1 ^ C2;
1359 Res = createAndInstr(I, X, C3);
1360 }
1361
1362 // Put the original operands in the Redo list; hope they will be deleted
1363 // as dead code.
1364 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1365 RedoInsts.insert(T);
1366 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1367 RedoInsts.insert(T);
1368
1369 return true;
1370}
1371
1372/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1373/// to a single Value, it is returned, otherwise the Ops list is mutated as
1374/// necessary.
1375Value *Reassociate::OptimizeXor(Instruction *I,
1376 SmallVectorImpl<ValueEntry> &Ops) {
1377 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1378 return V;
1379
1380 if (Ops.size() == 1)
Craig Topperf40110f2014-04-25 05:29:35 +00001381 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001382
1383 SmallVector<XorOpnd, 8> Opnds;
Shuxin Yang331f01d2013-04-08 22:00:43 +00001384 SmallVector<XorOpnd*, 8> OpndPtrs;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001385 Type *Ty = Ops[0].Op->getType();
1386 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1387
1388 // Step 1: Convert ValueEntry to XorOpnd
1389 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1390 Value *V = Ops[i].Op;
1391 if (!isa<ConstantInt>(V)) {
1392 XorOpnd O(V);
1393 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1394 Opnds.push_back(O);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001395 } else
1396 ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1397 }
1398
Shuxin Yang331f01d2013-04-08 22:00:43 +00001399 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1400 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1401 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1402 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1403 // when new elements are added to the vector.
1404 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1405 OpndPtrs.push_back(&Opnds[i]);
1406
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001407 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1408 // the same symbolic value cluster together. For instance, the input operand
1409 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1410 // ("x | 123", "x & 789", "y & 456").
Chandler Carruth7b8e1122014-02-25 21:54:50 +00001411 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001412
1413 // Step 3: Combine adjacent operands
Craig Topperf40110f2014-04-25 05:29:35 +00001414 XorOpnd *PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001415 bool Changed = false;
1416 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
Shuxin Yang331f01d2013-04-08 22:00:43 +00001417 XorOpnd *CurrOpnd = OpndPtrs[i];
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001418 // The combined value
1419 Value *CV;
1420
1421 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1422 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1423 Changed = true;
1424 if (CV)
1425 *CurrOpnd = XorOpnd(CV);
1426 else {
1427 CurrOpnd->Invalidate();
1428 continue;
1429 }
1430 }
1431
1432 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1433 PrevOpnd = CurrOpnd;
1434 continue;
1435 }
1436
1437 // step 3.2: When previous and current operands share the same symbolic
1438 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1439 //
1440 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1441 // Remove previous operand
1442 PrevOpnd->Invalidate();
1443 if (CV) {
1444 *CurrOpnd = XorOpnd(CV);
1445 PrevOpnd = CurrOpnd;
1446 } else {
1447 CurrOpnd->Invalidate();
Craig Topperf40110f2014-04-25 05:29:35 +00001448 PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001449 }
1450 Changed = true;
1451 }
1452 }
1453
1454 // Step 4: Reassemble the Ops
1455 if (Changed) {
1456 Ops.clear();
1457 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1458 XorOpnd &O = Opnds[i];
1459 if (O.isInvalid())
1460 continue;
1461 ValueEntry VE(getRank(O.getValue()), O.getValue());
1462 Ops.push_back(VE);
1463 }
1464 if (ConstOpnd != 0) {
1465 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1466 ValueEntry VE(getRank(C), C);
1467 Ops.push_back(VE);
1468 }
1469 int Sz = Ops.size();
1470 if (Sz == 1)
1471 return Ops.back().Op;
1472 else if (Sz == 0) {
1473 assert(ConstOpnd == 0);
1474 return ConstantInt::get(Ty->getContext(), ConstOpnd);
1475 }
1476 }
1477
Craig Topperf40110f2014-04-25 05:29:35 +00001478 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001479}
1480
Sanjay Patelc96ee082015-04-22 18:04:46 +00001481/// Optimize a series of operands to an 'add' instruction. This
Chris Lattner5f8a0052009-12-31 07:59:34 +00001482/// optimizes based on identities. If it can be reduced to a single Value, it
1483/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001484Value *Reassociate::OptimizeAdd(Instruction *I,
1485 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001486 // Scan the operand lists looking for X and -X pairs. If we find any, we
Benjamin Kramer49689442014-05-31 15:01:54 +00001487 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1488 // scan for any
Chris Lattner60b71b52009-12-31 19:24:52 +00001489 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Benjamin Kramer49689442014-05-31 15:01:54 +00001490
Chris Lattner5f8a0052009-12-31 07:59:34 +00001491 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001492 Value *TheOp = Ops[i].Op;
1493 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001494 // instances of the operand together. Due to our sorting criteria, we know
1495 // that these need to be next to each other in the vector.
1496 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1497 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001498 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001499 do {
1500 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001501 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001502 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001503
Chad Rosier78943bc2014-12-12 14:44:12 +00001504 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001505 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001506
Chris Lattner60b71b52009-12-31 19:24:52 +00001507 // Insert a new multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001508 Type *Ty = TheOp->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +00001509 Constant *C = Ty->isIntOrIntVectorTy() ?
1510 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
Chad Rosier11ab9412014-08-14 15:23:01 +00001511 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001512
Chris Lattner60b71b52009-12-31 19:24:52 +00001513 // Now that we have inserted a multiply, optimize it. This allows us to
1514 // handle cases that require multiple factoring steps, such as this:
1515 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Chad Rosier11ab9412014-08-14 15:23:01 +00001516 RedoInsts.insert(Mul);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001517
Chris Lattner60b71b52009-12-31 19:24:52 +00001518 // If every add operand was a duplicate, return the multiply.
1519 if (Ops.empty())
1520 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001521
Chris Lattner60b71b52009-12-31 19:24:52 +00001522 // Otherwise, we had some input that didn't have the dupe, such as
1523 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1524 // things being added by this operation.
1525 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001526
Chris Lattner60c2ca72009-12-31 19:49:01 +00001527 --i;
1528 e = Ops.size();
1529 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001530 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001531
Benjamin Kramer49689442014-05-31 15:01:54 +00001532 // Check for X and -X or X and ~X in the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001533 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1534 !BinaryOperator::isNot(TheOp))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001535 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001536
Benjamin Kramer49689442014-05-31 15:01:54 +00001537 Value *X = nullptr;
Chad Rosier11ab9412014-08-14 15:23:01 +00001538 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
Benjamin Kramer49689442014-05-31 15:01:54 +00001539 X = BinaryOperator::getNegArgument(TheOp);
1540 else if (BinaryOperator::isNot(TheOp))
1541 X = BinaryOperator::getNotArgument(TheOp);
1542
Chris Lattner5f8a0052009-12-31 07:59:34 +00001543 unsigned FoundX = FindInOperandList(Ops, i, X);
1544 if (FoundX == i)
1545 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001546
Chris Lattner5f8a0052009-12-31 07:59:34 +00001547 // Remove X and -X from the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001548 if (Ops.size() == 2 &&
1549 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001550 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001551
Benjamin Kramer49689442014-05-31 15:01:54 +00001552 // Remove X and ~X from the operand list.
1553 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1554 return Constant::getAllOnesValue(X->getType());
1555
Chris Lattner5f8a0052009-12-31 07:59:34 +00001556 Ops.erase(Ops.begin()+i);
1557 if (i < FoundX)
1558 --FoundX;
1559 else
1560 --i; // Need to back up an extra one.
1561 Ops.erase(Ops.begin()+FoundX);
1562 ++NumAnnihil;
1563 --i; // Revisit element.
1564 e -= 2; // Removed two elements.
Benjamin Kramer49689442014-05-31 15:01:54 +00001565
1566 // if X and ~X we append -1 to the operand list.
1567 if (BinaryOperator::isNot(TheOp)) {
1568 Value *V = Constant::getAllOnesValue(X->getType());
1569 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1570 e += 1;
1571 }
Chris Lattner5f8a0052009-12-31 07:59:34 +00001572 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001573
Chris Lattner177140a2009-12-31 18:17:13 +00001574 // Scan the operand list, checking to see if there are any common factors
1575 // between operands. Consider something like A*A+A*B*C+D. We would like to
1576 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1577 // To efficiently find this, we count the number of times a factor occurs
1578 // for any ADD operands that are MULs.
1579 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001580
Chris Lattner177140a2009-12-31 18:17:13 +00001581 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1582 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001583 unsigned MaxOcc = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00001584 Value *MaxOccVal = nullptr;
Chris Lattner177140a2009-12-31 18:17:13 +00001585 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001586 BinaryOperator *BOp =
1587 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001588 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001589 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001590
Chris Lattner177140a2009-12-31 18:17:13 +00001591 // Compute all of the factors of this added value.
1592 SmallVector<Value*, 8> Factors;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001593 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
Chris Lattner177140a2009-12-31 18:17:13 +00001594 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001595
Chris Lattner177140a2009-12-31 18:17:13 +00001596 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001597 SmallPtrSet<Value*, 8> Duplicates;
1598 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1599 Value *Factor = Factors[i];
David Blaikie70573dc2014-11-19 07:49:26 +00001600 if (!Duplicates.insert(Factor).second)
Chad Rosier11ab9412014-08-14 15:23:01 +00001601 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001602
Chris Lattner0c59ac32010-01-01 01:13:15 +00001603 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001604 if (Occ > MaxOcc) {
1605 MaxOcc = Occ;
1606 MaxOccVal = Factor;
1607 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001608
Chris Lattner0c59ac32010-01-01 01:13:15 +00001609 // If Factor is a negative constant, add the negated value as a factor
1610 // because we can percolate the negate out. Watch for minint, which
1611 // cannot be positivified.
Chad Rosier11ab9412014-08-14 15:23:01 +00001612 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
Chris Lattnerb1a15122011-07-15 06:08:15 +00001613 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001614 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1615 assert(!Duplicates.count(Factor) &&
1616 "Shouldn't have two constant factors, missed a canonicalize");
Chris Lattner0c59ac32010-01-01 01:13:15 +00001617 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001618 if (Occ > MaxOcc) {
1619 MaxOcc = Occ;
1620 MaxOccVal = Factor;
1621 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001622 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001623 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1624 if (CF->isNegative()) {
1625 APFloat F(CF->getValueAPF());
1626 F.changeSign();
1627 Factor = ConstantFP::get(CF->getContext(), F);
1628 assert(!Duplicates.count(Factor) &&
1629 "Shouldn't have two constant factors, missed a canonicalize");
1630 unsigned Occ = ++FactorOccurrences[Factor];
1631 if (Occ > MaxOcc) {
1632 MaxOcc = Occ;
1633 MaxOccVal = Factor;
1634 }
1635 }
1636 }
Chris Lattner177140a2009-12-31 18:17:13 +00001637 }
1638 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001639
Chris Lattner177140a2009-12-31 18:17:13 +00001640 // If any factor occurred more than one time, we can pull it out.
1641 if (MaxOcc > 1) {
Chad Rosier78943bc2014-12-12 14:44:12 +00001642 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001643 ++NumFactor;
1644
1645 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1646 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001647 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001648 // RemoveFactorFromExpression on successive values to behave differently.
Chad Rosier11ab9412014-08-14 15:23:01 +00001649 Instruction *DummyInst =
Robert Lougher1858ba72015-03-13 20:53:01 +00001650 I->getType()->isIntOrIntVectorTy()
Chad Rosier11ab9412014-08-14 15:23:01 +00001651 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1652 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1653
Bill Wendling274ba892012-05-02 09:59:45 +00001654 SmallVector<WeakVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001655 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001656 // Only try to remove factors from expressions we're allowed to.
Chad Rosier11ab9412014-08-14 15:23:01 +00001657 BinaryOperator *BOp =
1658 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001659 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001660 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001661
Chris Lattner177140a2009-12-31 18:17:13 +00001662 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001663 // The factorized operand may occur several times. Convert them all in
1664 // one fell swoop.
1665 for (unsigned j = Ops.size(); j != i;) {
1666 --j;
1667 if (Ops[j].Op == Ops[i].Op) {
1668 NewMulOps.push_back(V);
1669 Ops.erase(Ops.begin()+j);
1670 }
1671 }
1672 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001673 }
1674 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001675
Chris Lattner177140a2009-12-31 18:17:13 +00001676 // No need for extra uses anymore.
1677 delete DummyInst;
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001678
Chris Lattner177140a2009-12-31 18:17:13 +00001679 unsigned NumAddedValues = NewMulOps.size();
1680 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001681
Chris Lattner60b71b52009-12-31 19:24:52 +00001682 // Now that we have inserted the add tree, optimize it. This allows us to
1683 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001684 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001685 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001686 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001687 if (Instruction *VI = dyn_cast<Instruction>(V))
1688 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001689
1690 // Create the multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001691 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001692
Chris Lattner60c2ca72009-12-31 19:49:01 +00001693 // Rerun associate on the multiply in case the inner expression turned into
1694 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001695 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001696
Chris Lattner177140a2009-12-31 18:17:13 +00001697 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1698 // entire result expression is just the multiply "A*(B+C)".
1699 if (Ops.empty())
1700 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001701
Chris Lattnerac615502009-12-31 18:18:46 +00001702 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001703 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001704 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001705 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1706 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001707
Craig Topperf40110f2014-04-25 05:29:35 +00001708 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001709}
Chris Lattner4c065092006-03-04 09:31:13 +00001710
Chandler Carruth739ef802012-04-26 05:30:30 +00001711/// \brief Build up a vector of value/power pairs factoring a product.
1712///
1713/// Given a series of multiplication operands, build a vector of factors and
1714/// the powers each is raised to when forming the final product. Sort them in
1715/// the order of descending power.
1716///
1717/// (x*x) -> [(x, 2)]
1718/// ((x*x)*x) -> [(x, 3)]
1719/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1720///
1721/// \returns Whether any factors have a power greater than one.
1722bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1723 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001724 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1725 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001726 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001727 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1728 Value *Op = Ops[Idx-1].Op;
1729
1730 // Count the number of occurrences of this value.
1731 unsigned Count = 1;
1732 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1733 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001734 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001735 if (Count > 1)
1736 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001737 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001738
Chandler Carruth739ef802012-04-26 05:30:30 +00001739 // We can only simplify factors if the sum of the powers of our simplifiable
1740 // factors is 4 or higher. When that is the case, we will *always* have
1741 // a simplification. This is an important invariant to prevent cyclicly
1742 // trying to simplify already minimal formations.
1743 if (FactorPowerSum < 4)
1744 return false;
1745
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001746 // Now gather the simplifiable factors, removing them from Ops.
1747 FactorPowerSum = 0;
1748 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1749 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001750
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001751 // Count the number of occurrences of this value.
1752 unsigned Count = 1;
1753 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1754 ++Count;
1755 if (Count == 1)
1756 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001757 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001758 Count &= ~1U;
1759 Idx -= Count;
1760 FactorPowerSum += Count;
1761 Factors.push_back(Factor(Op, Count));
1762 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001763 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001764
Chandler Carruth739ef802012-04-26 05:30:30 +00001765 // None of the adjustments above should have reduced the sum of factor powers
1766 // below our mininum of '4'.
1767 assert(FactorPowerSum >= 4);
1768
Chandler Carruth7b8e1122014-02-25 21:54:50 +00001769 std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
Chandler Carruth739ef802012-04-26 05:30:30 +00001770 return true;
1771}
1772
1773/// \brief Build a tree of multiplies, computing the product of Ops.
1774static Value *buildMultiplyTree(IRBuilder<> &Builder,
1775 SmallVectorImpl<Value*> &Ops) {
1776 if (Ops.size() == 1)
1777 return Ops.back();
1778
1779 Value *LHS = Ops.pop_back_val();
1780 do {
Robert Lougher1858ba72015-03-13 20:53:01 +00001781 if (LHS->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +00001782 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1783 else
1784 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
Chandler Carruth739ef802012-04-26 05:30:30 +00001785 } while (!Ops.empty());
1786
1787 return LHS;
1788}
1789
1790/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1791///
1792/// Given a vector of values raised to various powers, where no two values are
1793/// equal and the powers are sorted in decreasing order, compute the minimal
1794/// DAG of multiplies to compute the final product, and return that product
1795/// value.
1796Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1797 SmallVectorImpl<Factor> &Factors) {
1798 assert(Factors[0].Power);
1799 SmallVector<Value *, 4> OuterProduct;
1800 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1801 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1802 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1803 LastIdx = Idx;
1804 continue;
1805 }
1806
1807 // We want to multiply across all the factors with the same power so that
1808 // we can raise them to that power as a single entity. Build a mini tree
1809 // for that.
1810 SmallVector<Value *, 4> InnerProduct;
1811 InnerProduct.push_back(Factors[LastIdx].Base);
1812 do {
1813 InnerProduct.push_back(Factors[Idx].Base);
1814 ++Idx;
1815 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1816
1817 // Reset the base value of the first factor to the new expression tree.
1818 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001819 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1820 if (Instruction *MI = dyn_cast<Instruction>(M))
1821 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001822
1823 LastIdx = Idx;
1824 }
1825 // Unique factors with equal powers -- we've folded them into the first one's
1826 // base.
1827 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1828 Factor::PowerEqual()),
1829 Factors.end());
1830
1831 // Iteratively collect the base of each factor with an add power into the
1832 // outer product, and halve each power in preparation for squaring the
1833 // expression.
1834 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1835 if (Factors[Idx].Power & 1)
1836 OuterProduct.push_back(Factors[Idx].Base);
1837 Factors[Idx].Power >>= 1;
1838 }
1839 if (Factors[0].Power) {
1840 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1841 OuterProduct.push_back(SquareRoot);
1842 OuterProduct.push_back(SquareRoot);
1843 }
1844 if (OuterProduct.size() == 1)
1845 return OuterProduct.front();
1846
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001847 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001848 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001849}
1850
1851Value *Reassociate::OptimizeMul(BinaryOperator *I,
1852 SmallVectorImpl<ValueEntry> &Ops) {
1853 // We can only optimize the multiplies when there is a chain of more than
1854 // three, such that a balanced tree might require fewer total multiplies.
1855 if (Ops.size() < 4)
Craig Topperf40110f2014-04-25 05:29:35 +00001856 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001857
1858 // Try to turn linear trees of multiplies without other uses of the
1859 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1860 // re-use.
1861 SmallVector<Factor, 4> Factors;
1862 if (!collectMultiplyFactors(Ops, Factors))
Craig Topperf40110f2014-04-25 05:29:35 +00001863 return nullptr; // All distinct factors, so nothing left for us to do.
Chandler Carruth739ef802012-04-26 05:30:30 +00001864
1865 IRBuilder<> Builder(I);
1866 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1867 if (Ops.empty())
1868 return V;
1869
1870 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1871 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
Craig Topperf40110f2014-04-25 05:29:35 +00001872 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001873}
1874
Chris Lattner4c065092006-03-04 09:31:13 +00001875Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner38abecb2009-12-31 18:40:32 +00001876 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001877 // Now that we have the linearized expression tree, try to optimize it.
1878 // Start by folding any constants that we found.
Craig Topperf40110f2014-04-25 05:29:35 +00001879 Constant *Cst = nullptr;
Chris Lattner4c065092006-03-04 09:31:13 +00001880 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001881 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1882 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1883 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1884 }
1885 // If there was nothing but constants then we are done.
1886 if (Ops.empty())
1887 return Cst;
1888
1889 // Put the combined constant back at the end of the operand list, except if
1890 // there is no point. For example, an add of 0 gets dropped here, while a
1891 // multiplication by zero turns the whole expression into zero.
1892 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1893 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1894 return Cst;
1895 Ops.push_back(ValueEntry(0, Cst));
1896 }
1897
1898 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001899
Chris Lattner9039ff82009-12-31 07:33:14 +00001900 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001901 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001902 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001903 switch (Opcode) {
1904 default: break;
1905 case Instruction::And:
1906 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001907 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1908 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001909 break;
1910
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001911 case Instruction::Xor:
1912 if (Value *Result = OptimizeXor(I, Ops))
1913 return Result;
1914 break;
1915
Chandler Carruth739ef802012-04-26 05:30:30 +00001916 case Instruction::Add:
Chad Rosier11ab9412014-08-14 15:23:01 +00001917 case Instruction::FAdd:
Chris Lattner177140a2009-12-31 18:17:13 +00001918 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001919 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001920 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001921
1922 case Instruction::Mul:
Chad Rosier11ab9412014-08-14 15:23:01 +00001923 case Instruction::FMul:
Chandler Carruth739ef802012-04-26 05:30:30 +00001924 if (Value *Result = OptimizeMul(I, Ops))
1925 return Result;
1926 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001927 }
1928
Duncan Sands3293f462012-06-08 20:15:33 +00001929 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001930 return OptimizeExpression(I, Ops);
Craig Topperf40110f2014-04-25 05:29:35 +00001931 return nullptr;
Chris Lattnere1850b82005-05-08 00:19:31 +00001932}
1933
Sanjay Patelc96ee082015-04-22 18:04:46 +00001934/// Zap the given instruction, adding interesting operands to the work list.
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001935void Reassociate::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001936 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1937 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1938 // Erase the dead instruction.
1939 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001940 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001941 I->eraseFromParent();
1942 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001943 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001944 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1945 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1946 // If this is a node in an expression tree, climb to the expression root
1947 // and add that since that's where optimization actually happens.
1948 unsigned Opcode = Op->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001949 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
David Blaikie70573dc2014-11-19 07:49:26 +00001950 Visited.insert(Op).second)
Chandler Carruthcdf47882014-03-09 03:16:01 +00001951 Op = Op->user_back();
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001952 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001953 }
1954}
1955
Chad Rosier094ac772014-11-11 22:58:35 +00001956// Canonicalize expressions of the following form:
1957// x + (-Constant * y) -> x - (Constant * y)
1958// x - (-Constant * y) -> x + (Constant * y)
1959Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) {
1960 if (!I->hasOneUse() || I->getType()->isVectorTy())
1961 return nullptr;
1962
David Majnemer587336d2015-05-28 06:16:39 +00001963 // Must be a fmul or fdiv instruction.
Chad Rosier094ac772014-11-11 22:58:35 +00001964 unsigned Opcode = I->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001965 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
Chad Rosier094ac772014-11-11 22:58:35 +00001966 return nullptr;
1967
David Majnemer587336d2015-05-28 06:16:39 +00001968 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1969 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1970
1971 // Both operands are constant, let it get constant folded away.
1972 if (C0 && C1)
Chad Rosier094ac772014-11-11 22:58:35 +00001973 return nullptr;
1974
David Majnemer587336d2015-05-28 06:16:39 +00001975 ConstantFP *CF = C0 ? C0 : C1;
1976
1977 // Must have one constant operand.
1978 if (!CF)
1979 return nullptr;
1980
1981 // Must be a negative ConstantFP.
1982 if (!CF->isNegative())
Chad Rosier094ac772014-11-11 22:58:35 +00001983 return nullptr;
1984
1985 // User must be a binary operator with one or more uses.
1986 Instruction *User = I->user_back();
David Majnemer587336d2015-05-28 06:16:39 +00001987 if (!isa<BinaryOperator>(User) || !User->hasNUsesOrMore(1))
Chad Rosier094ac772014-11-11 22:58:35 +00001988 return nullptr;
1989
1990 unsigned UserOpcode = User->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001991 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
Chad Rosier094ac772014-11-11 22:58:35 +00001992 return nullptr;
1993
1994 // Subtraction is not commutative. Explicitly, the following transform is
1995 // not valid: (-Constant * y) - x -> x + (Constant * y)
1996 if (!User->isCommutative() && User->getOperand(1) != I)
1997 return nullptr;
1998
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001999 // Change the sign of the constant.
David Majnemer587336d2015-05-28 06:16:39 +00002000 APFloat Val = CF->getValueAPF();
2001 Val.changeSign();
2002 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002003
Chad Rosier094ac772014-11-11 22:58:35 +00002004 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
2005 // ((-Const*y) + x) -> (x + (-Const*y)).
2006 if (User->getOperand(0) == I && User->isCommutative())
2007 cast<BinaryOperator>(User)->swapOperands();
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002008
Chad Rosier094ac772014-11-11 22:58:35 +00002009 Value *Op0 = User->getOperand(0);
2010 Value *Op1 = User->getOperand(1);
2011 BinaryOperator *NI;
David Majnemer587336d2015-05-28 06:16:39 +00002012 switch (UserOpcode) {
Chad Rosier094ac772014-11-11 22:58:35 +00002013 default:
2014 llvm_unreachable("Unexpected Opcode!");
Chad Rosier094ac772014-11-11 22:58:35 +00002015 case Instruction::FAdd:
2016 NI = BinaryOperator::CreateFSub(Op0, Op1);
2017 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2018 break;
2019 case Instruction::FSub:
2020 NI = BinaryOperator::CreateFAdd(Op0, Op1);
2021 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2022 break;
2023 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002024
Chad Rosier094ac772014-11-11 22:58:35 +00002025 NI->insertBefore(User);
2026 NI->setName(User->getName());
2027 User->replaceAllUsesWith(NI);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002028 NI->setDebugLoc(I->getDebugLoc());
Chad Rosier094ac772014-11-11 22:58:35 +00002029 RedoInsts.insert(I);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002030 MadeChange = true;
Chad Rosier094ac772014-11-11 22:58:35 +00002031 return NI;
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002032}
2033
Sanjay Patelc96ee082015-04-22 18:04:46 +00002034/// Inspect and optimize the given instruction. Note that erasing
Duncan Sands3293f462012-06-08 20:15:33 +00002035/// instructions is not allowed.
2036void Reassociate::OptimizeInst(Instruction *I) {
2037 // Only consider operations that we understand.
2038 if (!isa<BinaryOperator>(I))
2039 return;
2040
Chad Rosier11ab9412014-08-14 15:23:01 +00002041 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
Duncan Sands3293f462012-06-08 20:15:33 +00002042 // If an operand of this shift is a reassociable multiply, or if the shift
2043 // is used by a reassociable multiply or add, turn into a multiply.
2044 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2045 (I->hasOneUse() &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002046 (isReassociableOp(I->user_back(), Instruction::Mul) ||
2047 isReassociableOp(I->user_back(), Instruction::Add)))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002048 Instruction *NI = ConvertShiftToMul(I);
2049 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002050 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002051 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00002052 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00002053
Chad Rosier094ac772014-11-11 22:58:35 +00002054 // Canonicalize negative constants out of expressions.
2055 if (Instruction *Res = canonicalizeNegConstExpr(I))
2056 I = Res;
2057
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002058 // Commute binary operators, to canonicalize the order of their operands.
2059 // This can potentially expose more CSE opportunities, and makes writing other
2060 // transformations simpler.
2061 if (I->isCommutative())
2062 canonicalizeOperands(I);
Chad Rosier11ab9412014-08-14 15:23:01 +00002063
Robert Lougher1858ba72015-03-13 20:53:01 +00002064 // TODO: We should optimize vector Xor instructions, but they are
2065 // currently unsupported.
2066 if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor)
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002067 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002068
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002069 // Don't optimize floating point instructions that don't have unsafe algebra.
2070 if (I->getType()->isFloatingPointTy() && !I->hasUnsafeAlgebra())
2071 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002072
Dan Gohman1c6c3482011-04-12 00:11:56 +00002073 // Do not reassociate boolean (i1) expressions. We want to preserve the
2074 // original order of evaluation for short-circuited comparisons that
2075 // SimplifyCFG has folded to AND/OR expressions. If the expression
2076 // is not further optimized, it is likely to be transformed back to a
2077 // short-circuited form for code gen, and the source order may have been
2078 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00002079 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00002080 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00002081
Dan Gohman1c6c3482011-04-12 00:11:56 +00002082 // If this is a subtract instruction which is not already in negate form,
2083 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00002084 if (I->getOpcode() == Instruction::Sub) {
2085 if (ShouldBreakUpSubtract(I)) {
2086 Instruction *NI = BreakUpSubtract(I);
2087 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002088 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002089 I = NI;
2090 } else if (BinaryOperator::isNeg(I)) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00002091 // Otherwise, this is a negation. See if the operand is a multiply tree
2092 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00002093 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2094 (!I->hasOneUse() ||
Chandler Carruthcdf47882014-03-09 03:16:01 +00002095 !isReassociableOp(I->user_back(), Instruction::Mul))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002096 Instruction *NI = LowerNegateToMultiply(I);
2097 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002098 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002099 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002100 }
2101 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002102 } else if (I->getOpcode() == Instruction::FSub) {
2103 if (ShouldBreakUpSubtract(I)) {
2104 Instruction *NI = BreakUpSubtract(I);
2105 RedoInsts.insert(I);
2106 MadeChange = true;
2107 I = NI;
2108 } else if (BinaryOperator::isFNeg(I)) {
2109 // Otherwise, this is a negation. See if the operand is a multiply tree
2110 // and if this is not an inner node of a multiply tree.
2111 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2112 (!I->hasOneUse() ||
2113 !isReassociableOp(I->user_back(), Instruction::FMul))) {
2114 Instruction *NI = LowerNegateToMultiply(I);
2115 RedoInsts.insert(I);
2116 MadeChange = true;
2117 I = NI;
2118 }
2119 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002120 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002121
Duncan Sands3293f462012-06-08 20:15:33 +00002122 // If this instruction is an associative binary operator, process it.
2123 if (!I->isAssociative()) return;
2124 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002125
2126 // If this is an interior node of a reassociable tree, ignore it until we
2127 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00002128 unsigned Opcode = BO->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00002129 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002130 return;
2131
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002132 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00002133 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00002134 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002135 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002136 return;
Chad Rosier11ab9412014-08-14 15:23:01 +00002137 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2138 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2139 return;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002140
Duncan Sands3293f462012-06-08 20:15:33 +00002141 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00002142}
Chris Lattner1e506502005-05-07 21:59:39 +00002143
Duncan Sands78386032012-06-15 08:37:50 +00002144void Reassociate::ReassociateExpression(BinaryOperator *I) {
Chris Lattner60b71b52009-12-31 19:24:52 +00002145 // First, walk the expression tree, linearizing the tree, collecting the
2146 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002147 SmallVector<RepeatedValue, 8> Tree;
2148 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00002149 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002150 Ops.reserve(Tree.size());
2151 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2152 RepeatedValue E = Tree[i];
2153 Ops.append(E.second.getZExtValue(),
2154 ValueEntry(getRank(E.first), E.first));
2155 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002156
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00002157 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2158
Chris Lattner2fc319d2006-03-14 07:11:11 +00002159 // Now that we have linearized the tree to a list and have gathered all of
2160 // the operands and their ranks, sort the operands by their rank. Use a
2161 // stable_sort so that values with equal ranks will have their relative
2162 // positions maintained (and so the compiler is deterministic). Note that
2163 // this sorts so that the highest ranking values end up at the beginning of
2164 // the vector.
2165 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002166
Sanjay Patelc96ee082015-04-22 18:04:46 +00002167 // Now that we have the expression tree in a convenient
Chris Lattner2fc319d2006-03-14 07:11:11 +00002168 // sorted form, optimize it globally if possible.
2169 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00002170 if (V == I)
2171 // Self-referential expression in unreachable code.
2172 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002173 // This expression tree simplified to something that isn't a tree,
2174 // eliminate it.
David Greened17c3912010-01-05 01:27:24 +00002175 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00002176 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002177 if (Instruction *VI = dyn_cast<Instruction>(V))
2178 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002179 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00002180 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00002181 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002182 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002183
Chris Lattner2fc319d2006-03-14 07:11:11 +00002184 // We want to sink immediates as deeply as possible except in the case where
2185 // this is a multiply tree used only by an add, and the immediate is a -1.
2186 // In this case we reassociate to put the negation on the outside so that we
2187 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
Chad Rosier11ab9412014-08-14 15:23:01 +00002188 if (I->hasOneUse()) {
2189 if (I->getOpcode() == Instruction::Mul &&
2190 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2191 isa<ConstantInt>(Ops.back().Op) &&
2192 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
2193 ValueEntry Tmp = Ops.pop_back_val();
2194 Ops.insert(Ops.begin(), Tmp);
2195 } else if (I->getOpcode() == Instruction::FMul &&
2196 cast<Instruction>(I->user_back())->getOpcode() ==
2197 Instruction::FAdd &&
2198 isa<ConstantFP>(Ops.back().Op) &&
2199 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2200 ValueEntry Tmp = Ops.pop_back_val();
2201 Ops.insert(Ops.begin(), Tmp);
2202 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002203 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002204
David Greened17c3912010-01-05 01:27:24 +00002205 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002206
Chris Lattner2fc319d2006-03-14 07:11:11 +00002207 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00002208 if (Ops[0].Op == I)
2209 // Self-referential expression in unreachable code.
2210 return;
2211
Chris Lattner2fc319d2006-03-14 07:11:11 +00002212 // This expression tree simplified to something that isn't a tree,
2213 // eliminate it.
2214 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002215 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2216 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002217 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00002218 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002219 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002220
Chris Lattner60b71b52009-12-31 19:24:52 +00002221 // Now that we ordered and optimized the expressions, splat them back into
2222 // the expression tree, removing any unneeded nodes.
2223 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002224}
2225
Chris Lattner113f4f42002-06-25 16:13:24 +00002226bool Reassociate::runOnFunction(Function &F) {
Paul Robinsonaf4e64d2014-02-06 00:07:05 +00002227 if (skipOptnoneFunction(F))
2228 return false;
2229
Duncan Sands3293f462012-06-08 20:15:33 +00002230 // Calculate the rank map for F
Chris Lattnerc0f58002002-05-08 22:19:27 +00002231 BuildRankMap(F);
2232
Chris Lattner1e506502005-05-07 21:59:39 +00002233 MadeChange = false;
Duncan Sands3293f462012-06-08 20:15:33 +00002234 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
2235 // Optimize every instruction in the basic block.
2236 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
2237 if (isInstructionTriviallyDead(II)) {
2238 EraseInst(II++);
2239 } else {
2240 OptimizeInst(II);
2241 assert(II->getParent() == BI && "Moved to a different block!");
2242 ++II;
2243 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00002244
Duncan Sands3293f462012-06-08 20:15:33 +00002245 // If this produced extra instructions to optimize, handle them now.
2246 while (!RedoInsts.empty()) {
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00002247 Instruction *I = RedoInsts.pop_back_val();
Duncan Sands3293f462012-06-08 20:15:33 +00002248 if (isInstructionTriviallyDead(I))
2249 EraseInst(I);
2250 else
2251 OptimizeInst(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002252 }
Duncan Sands3293f462012-06-08 20:15:33 +00002253 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00002254
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002255 // We are done with the rank map.
2256 RankMap.clear();
2257 ValueRankMap.clear();
2258
Chris Lattner1e506502005-05-07 21:59:39 +00002259 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002260}