blob: 3afd454f1ba0a7bf1536a46c00074e7a23ff26e5 [file] [log] [blame]
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregor94b1dd22008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregorf9eb9052008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregorbf3af052008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregor3fc749d2008-12-23 00:26:44 +000023#include "llvm/ADT/STLExtras.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000024#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33 static const ImplicitConversionCategory
34 Category[(int)ICK_Num_Conversion_Kinds] = {
35 ICC_Identity,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Lvalue_Transformation,
39 ICC_Qualification_Adjustment,
40 ICC_Promotion,
41 ICC_Promotion,
Douglas Gregor5cdf8212009-02-12 00:15:05 +000042 ICC_Promotion,
43 ICC_Conversion,
44 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000045 ICC_Conversion,
46 ICC_Conversion,
47 ICC_Conversion,
48 ICC_Conversion,
49 ICC_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000050 ICC_Conversion,
Douglas Gregorf9201e02009-02-11 23:02:49 +000051 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000052 ICC_Conversion
53 };
54 return Category[(int)Kind];
55}
56
57/// GetConversionRank - Retrieve the implicit conversion rank
58/// corresponding to the given implicit conversion kind.
59ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60 static const ImplicitConversionRank
61 Rank[(int)ICK_Num_Conversion_Kinds] = {
62 ICR_Exact_Match,
63 ICR_Exact_Match,
64 ICR_Exact_Match,
65 ICR_Exact_Match,
66 ICR_Exact_Match,
67 ICR_Promotion,
68 ICR_Promotion,
Douglas Gregor5cdf8212009-02-12 00:15:05 +000069 ICR_Promotion,
70 ICR_Conversion,
71 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000072 ICR_Conversion,
73 ICR_Conversion,
74 ICR_Conversion,
75 ICR_Conversion,
76 ICR_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000077 ICR_Conversion,
Douglas Gregorf9201e02009-02-11 23:02:49 +000078 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000079 ICR_Conversion
80 };
81 return Rank[(int)Kind];
82}
83
84/// GetImplicitConversionName - Return the name of this kind of
85/// implicit conversion.
86const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88 "No conversion",
89 "Lvalue-to-rvalue",
90 "Array-to-pointer",
91 "Function-to-pointer",
92 "Qualification",
93 "Integral promotion",
94 "Floating point promotion",
Douglas Gregor5cdf8212009-02-12 00:15:05 +000095 "Complex promotion",
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000096 "Integral conversion",
97 "Floating conversion",
Douglas Gregor5cdf8212009-02-12 00:15:05 +000098 "Complex conversion",
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000099 "Floating-integral conversion",
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000100 "Complex-real conversion",
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000101 "Pointer conversion",
102 "Pointer-to-member conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +0000103 "Boolean conversion",
Douglas Gregorf9201e02009-02-11 23:02:49 +0000104 "Compatible-types conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +0000105 "Derived-to-base conversion"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000106 };
107 return Name[Kind];
108}
109
Douglas Gregor60d62c22008-10-31 16:23:19 +0000110/// StandardConversionSequence - Set the standard conversion
111/// sequence to the identity conversion.
112void StandardConversionSequence::setAsIdentityConversion() {
113 First = ICK_Identity;
114 Second = ICK_Identity;
115 Third = ICK_Identity;
116 Deprecated = false;
117 ReferenceBinding = false;
118 DirectBinding = false;
Sebastian Redl85002392009-03-29 22:46:24 +0000119 RRefBinding = false;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000120 CopyConstructor = 0;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000121}
122
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000123/// getRank - Retrieve the rank of this standard conversion sequence
124/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
125/// implicit conversions.
126ImplicitConversionRank StandardConversionSequence::getRank() const {
127 ImplicitConversionRank Rank = ICR_Exact_Match;
128 if (GetConversionRank(First) > Rank)
129 Rank = GetConversionRank(First);
130 if (GetConversionRank(Second) > Rank)
131 Rank = GetConversionRank(Second);
132 if (GetConversionRank(Third) > Rank)
133 Rank = GetConversionRank(Third);
134 return Rank;
135}
136
137/// isPointerConversionToBool - Determines whether this conversion is
138/// a conversion of a pointer or pointer-to-member to bool. This is
139/// used as part of the ranking of standard conversion sequences
140/// (C++ 13.3.3.2p4).
141bool StandardConversionSequence::isPointerConversionToBool() const
142{
143 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
144 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
145
146 // Note that FromType has not necessarily been transformed by the
147 // array-to-pointer or function-to-pointer implicit conversions, so
148 // check for their presence as well as checking whether FromType is
149 // a pointer.
150 if (ToType->isBooleanType() &&
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000151 (FromType->isPointerType() || FromType->isBlockPointerType() ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000152 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
153 return true;
154
155 return false;
156}
157
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000158/// isPointerConversionToVoidPointer - Determines whether this
159/// conversion is a conversion of a pointer to a void pointer. This is
160/// used as part of the ranking of standard conversion sequences (C++
161/// 13.3.3.2p4).
162bool
163StandardConversionSequence::
164isPointerConversionToVoidPointer(ASTContext& Context) const
165{
166 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169 // Note that FromType has not necessarily been transformed by the
170 // array-to-pointer implicit conversion, so check for its presence
171 // and redo the conversion to get a pointer.
172 if (First == ICK_Array_To_Pointer)
173 FromType = Context.getArrayDecayedType(FromType);
174
175 if (Second == ICK_Pointer_Conversion)
176 if (const PointerType* ToPtrType = ToType->getAsPointerType())
177 return ToPtrType->getPointeeType()->isVoidType();
178
179 return false;
180}
181
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185 bool PrintedSomething = false;
186 if (First != ICK_Identity) {
187 fprintf(stderr, "%s", GetImplicitConversionName(First));
188 PrintedSomething = true;
189 }
190
191 if (Second != ICK_Identity) {
192 if (PrintedSomething) {
193 fprintf(stderr, " -> ");
194 }
195 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregor225c41e2008-11-03 19:09:14 +0000196
197 if (CopyConstructor) {
198 fprintf(stderr, " (by copy constructor)");
199 } else if (DirectBinding) {
200 fprintf(stderr, " (direct reference binding)");
201 } else if (ReferenceBinding) {
202 fprintf(stderr, " (reference binding)");
203 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000204 PrintedSomething = true;
205 }
206
207 if (Third != ICK_Identity) {
208 if (PrintedSomething) {
209 fprintf(stderr, " -> ");
210 }
211 fprintf(stderr, "%s", GetImplicitConversionName(Third));
212 PrintedSomething = true;
213 }
214
215 if (!PrintedSomething) {
216 fprintf(stderr, "No conversions required");
217 }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223 if (Before.First || Before.Second || Before.Third) {
224 Before.DebugPrint();
225 fprintf(stderr, " -> ");
226 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +0000227 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000228 if (After.First || After.Second || After.Third) {
229 fprintf(stderr, " -> ");
230 After.DebugPrint();
231 }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237 switch (ConversionKind) {
238 case StandardConversion:
239 fprintf(stderr, "Standard conversion: ");
240 Standard.DebugPrint();
241 break;
242 case UserDefinedConversion:
243 fprintf(stderr, "User-defined conversion: ");
244 UserDefined.DebugPrint();
245 break;
246 case EllipsisConversion:
247 fprintf(stderr, "Ellipsis conversion");
248 break;
249 case BadConversion:
250 fprintf(stderr, "Bad conversion");
251 break;
252 }
253
254 fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267// void f(int, float); // #1
268// void f(int, int); // #2
269// int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1. By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287 OverloadedFunctionDecl::function_iterator& MatchedDecl)
288{
289 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
290 // Is this new function an overload of every function in the
291 // overload set?
292 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
293 FuncEnd = Ovl->function_end();
294 for (; Func != FuncEnd; ++Func) {
295 if (!IsOverload(New, *Func, MatchedDecl)) {
296 MatchedDecl = Func;
297 return false;
298 }
299 }
300
301 // This function overloads every function in the overload set.
302 return true;
303 } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
304 // Is the function New an overload of the function Old?
305 QualType OldQType = Context.getCanonicalType(Old->getType());
306 QualType NewQType = Context.getCanonicalType(New->getType());
307
308 // Compare the signatures (C++ 1.3.10) of the two functions to
309 // determine whether they are overloads. If we find any mismatch
310 // in the signature, they are overloads.
311
312 // If either of these functions is a K&R-style function (no
313 // prototype), then we consider them to have matching signatures.
Douglas Gregor72564e72009-02-26 23:50:07 +0000314 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
315 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000316 return false;
317
Douglas Gregor72564e72009-02-26 23:50:07 +0000318 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType.getTypePtr());
319 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType.getTypePtr());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000320
321 // The signature of a function includes the types of its
322 // parameters (C++ 1.3.10), which includes the presence or absence
323 // of the ellipsis; see C++ DR 357).
324 if (OldQType != NewQType &&
325 (OldType->getNumArgs() != NewType->getNumArgs() ||
326 OldType->isVariadic() != NewType->isVariadic() ||
327 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
328 NewType->arg_type_begin())))
329 return true;
330
331 // If the function is a class member, its signature includes the
332 // cv-qualifiers (if any) on the function itself.
333 //
334 // As part of this, also check whether one of the member functions
335 // is static, in which case they are not overloads (C++
336 // 13.1p2). While not part of the definition of the signature,
337 // this check is important to determine whether these functions
338 // can be overloaded.
339 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
340 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
341 if (OldMethod && NewMethod &&
342 !OldMethod->isStatic() && !NewMethod->isStatic() &&
Douglas Gregor1ca50c32008-11-21 15:36:28 +0000343 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000344 return true;
345
346 // The signatures match; this is not an overload.
347 return false;
348 } else {
349 // (C++ 13p1):
350 // Only function declarations can be overloaded; object and type
351 // declarations cannot be overloaded.
352 return false;
353 }
354}
355
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000356/// TryImplicitConversion - Attempt to perform an implicit conversion
357/// from the given expression (Expr) to the given type (ToType). This
358/// function returns an implicit conversion sequence that can be used
359/// to perform the initialization. Given
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000360///
361/// void f(float f);
362/// void g(int i) { f(i); }
363///
364/// this routine would produce an implicit conversion sequence to
365/// describe the initialization of f from i, which will be a standard
366/// conversion sequence containing an lvalue-to-rvalue conversion (C++
367/// 4.1) followed by a floating-integral conversion (C++ 4.9).
368//
369/// Note that this routine only determines how the conversion can be
370/// performed; it does not actually perform the conversion. As such,
371/// it will not produce any diagnostics if no conversion is available,
372/// but will instead return an implicit conversion sequence of kind
373/// "BadConversion".
Douglas Gregor225c41e2008-11-03 19:09:14 +0000374///
375/// If @p SuppressUserConversions, then user-defined conversions are
376/// not permitted.
Douglas Gregor09f41cf2009-01-14 15:45:31 +0000377/// If @p AllowExplicit, then explicit user-defined conversions are
378/// permitted.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000379ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +0000380Sema::TryImplicitConversion(Expr* From, QualType ToType,
Douglas Gregor09f41cf2009-01-14 15:45:31 +0000381 bool SuppressUserConversions,
Douglas Gregor734d9862009-01-30 23:27:23 +0000382 bool AllowExplicit)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000383{
384 ImplicitConversionSequence ICS;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000385 if (IsStandardConversion(From, ToType, ICS.Standard))
386 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregorf9201e02009-02-11 23:02:49 +0000387 else if (getLangOptions().CPlusPlus &&
388 IsUserDefinedConversion(From, ToType, ICS.UserDefined,
Douglas Gregor734d9862009-01-30 23:27:23 +0000389 !SuppressUserConversions, AllowExplicit)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000390 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000391 // C++ [over.ics.user]p4:
392 // A conversion of an expression of class type to the same class
393 // type is given Exact Match rank, and a conversion of an
394 // expression of class type to a base class of that type is
395 // given Conversion rank, in spite of the fact that a copy
396 // constructor (i.e., a user-defined conversion function) is
397 // called for those cases.
398 if (CXXConstructorDecl *Constructor
399 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
Douglas Gregor2b1e0032009-02-02 22:11:10 +0000400 QualType FromCanon
401 = Context.getCanonicalType(From->getType().getUnqualifiedType());
402 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
403 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
Douglas Gregor225c41e2008-11-03 19:09:14 +0000404 // Turn this into a "standard" conversion sequence, so that it
405 // gets ranked with standard conversion sequences.
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000406 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
407 ICS.Standard.setAsIdentityConversion();
408 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
409 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000410 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregor2b1e0032009-02-02 22:11:10 +0000411 if (ToCanon != FromCanon)
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000412 ICS.Standard.Second = ICK_Derived_To_Base;
413 }
Douglas Gregor60d62c22008-10-31 16:23:19 +0000414 }
Douglas Gregor734d9862009-01-30 23:27:23 +0000415
416 // C++ [over.best.ics]p4:
417 // However, when considering the argument of a user-defined
418 // conversion function that is a candidate by 13.3.1.3 when
419 // invoked for the copying of the temporary in the second step
420 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
421 // 13.3.1.6 in all cases, only standard conversion sequences and
422 // ellipsis conversion sequences are allowed.
423 if (SuppressUserConversions &&
424 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
425 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000426 } else
Douglas Gregor60d62c22008-10-31 16:23:19 +0000427 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000428
429 return ICS;
430}
431
432/// IsStandardConversion - Determines whether there is a standard
433/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
434/// expression From to the type ToType. Standard conversion sequences
435/// only consider non-class types; for conversions that involve class
436/// types, use TryImplicitConversion. If a conversion exists, SCS will
437/// contain the standard conversion sequence required to perform this
438/// conversion and this routine will return true. Otherwise, this
439/// routine will return false and the value of SCS is unspecified.
440bool
441Sema::IsStandardConversion(Expr* From, QualType ToType,
442 StandardConversionSequence &SCS)
443{
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000444 QualType FromType = From->getType();
445
Douglas Gregor60d62c22008-10-31 16:23:19 +0000446 // Standard conversions (C++ [conv])
Douglas Gregoreb8f3062008-11-12 17:17:38 +0000447 SCS.setAsIdentityConversion();
Douglas Gregor60d62c22008-10-31 16:23:19 +0000448 SCS.Deprecated = false;
Douglas Gregor45920e82008-12-19 17:40:08 +0000449 SCS.IncompatibleObjC = false;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000450 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000451 SCS.CopyConstructor = 0;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000452
Douglas Gregorf9201e02009-02-11 23:02:49 +0000453 // There are no standard conversions for class types in C++, so
454 // abort early. When overloading in C, however, we do permit
455 if (FromType->isRecordType() || ToType->isRecordType()) {
456 if (getLangOptions().CPlusPlus)
457 return false;
458
459 // When we're overloading in C, we allow, as standard conversions,
460 }
461
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000462 // The first conversion can be an lvalue-to-rvalue conversion,
463 // array-to-pointer conversion, or function-to-pointer conversion
464 // (C++ 4p1).
465
466 // Lvalue-to-rvalue conversion (C++ 4.1):
467 // An lvalue (3.10) of a non-function, non-array type T can be
468 // converted to an rvalue.
469 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
470 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor904eed32008-11-10 20:40:00 +0000471 !FromType->isFunctionType() && !FromType->isArrayType() &&
Douglas Gregor063daf62009-03-13 18:40:31 +0000472 Context.getCanonicalType(FromType) != Context.OverloadTy) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000473 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000474
475 // If T is a non-class type, the type of the rvalue is the
476 // cv-unqualified version of T. Otherwise, the type of the rvalue
Douglas Gregorf9201e02009-02-11 23:02:49 +0000477 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
478 // just strip the qualifiers because they don't matter.
479
480 // FIXME: Doesn't see through to qualifiers behind a typedef!
Douglas Gregor60d62c22008-10-31 16:23:19 +0000481 FromType = FromType.getUnqualifiedType();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000482 }
483 // Array-to-pointer conversion (C++ 4.2)
484 else if (FromType->isArrayType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000485 SCS.First = ICK_Array_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000486
487 // An lvalue or rvalue of type "array of N T" or "array of unknown
488 // bound of T" can be converted to an rvalue of type "pointer to
489 // T" (C++ 4.2p1).
490 FromType = Context.getArrayDecayedType(FromType);
491
492 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
493 // This conversion is deprecated. (C++ D.4).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000494 SCS.Deprecated = true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000495
496 // For the purpose of ranking in overload resolution
497 // (13.3.3.1.1), this conversion is considered an
498 // array-to-pointer conversion followed by a qualification
499 // conversion (4.4). (C++ 4.2p2)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000500 SCS.Second = ICK_Identity;
501 SCS.Third = ICK_Qualification;
502 SCS.ToTypePtr = ToType.getAsOpaquePtr();
503 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000504 }
505 }
506 // Function-to-pointer conversion (C++ 4.3).
507 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000508 SCS.First = ICK_Function_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000509
510 // An lvalue of function type T can be converted to an rvalue of
511 // type "pointer to T." The result is a pointer to the
512 // function. (C++ 4.3p1).
513 FromType = Context.getPointerType(FromType);
Sebastian Redl33b399a2009-02-04 21:23:32 +0000514 }
Douglas Gregor904eed32008-11-10 20:40:00 +0000515 // Address of overloaded function (C++ [over.over]).
516 else if (FunctionDecl *Fn
517 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
518 SCS.First = ICK_Function_To_Pointer;
519
520 // We were able to resolve the address of the overloaded function,
521 // so we can convert to the type of that function.
522 FromType = Fn->getType();
Sebastian Redl7c80bd62009-03-16 23:22:08 +0000523 if (ToType->isLValueReferenceType())
524 FromType = Context.getLValueReferenceType(FromType);
525 else if (ToType->isRValueReferenceType())
526 FromType = Context.getRValueReferenceType(FromType);
Sebastian Redl33b399a2009-02-04 21:23:32 +0000527 else if (ToType->isMemberPointerType()) {
528 // Resolve address only succeeds if both sides are member pointers,
529 // but it doesn't have to be the same class. See DR 247.
530 // Note that this means that the type of &Derived::fn can be
531 // Ret (Base::*)(Args) if the fn overload actually found is from the
532 // base class, even if it was brought into the derived class via a
533 // using declaration. The standard isn't clear on this issue at all.
534 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
535 FromType = Context.getMemberPointerType(FromType,
536 Context.getTypeDeclType(M->getParent()).getTypePtr());
537 } else
Douglas Gregor904eed32008-11-10 20:40:00 +0000538 FromType = Context.getPointerType(FromType);
539 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000540 // We don't require any conversions for the first step.
541 else {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000542 SCS.First = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000543 }
544
545 // The second conversion can be an integral promotion, floating
546 // point promotion, integral conversion, floating point conversion,
547 // floating-integral conversion, pointer conversion,
548 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
Douglas Gregorf9201e02009-02-11 23:02:49 +0000549 // For overloading in C, this can also be a "compatible-type"
550 // conversion.
Douglas Gregor45920e82008-12-19 17:40:08 +0000551 bool IncompatibleObjC = false;
Douglas Gregorf9201e02009-02-11 23:02:49 +0000552 if (Context.hasSameUnqualifiedType(FromType, ToType)) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000553 // The unqualified versions of the types are the same: there's no
554 // conversion to do.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000555 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000556 }
557 // Integral promotion (C++ 4.5).
558 else if (IsIntegralPromotion(From, FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000559 SCS.Second = ICK_Integral_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000560 FromType = ToType.getUnqualifiedType();
561 }
562 // Floating point promotion (C++ 4.6).
563 else if (IsFloatingPointPromotion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000564 SCS.Second = ICK_Floating_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000565 FromType = ToType.getUnqualifiedType();
566 }
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000567 // Complex promotion (Clang extension)
568 else if (IsComplexPromotion(FromType, ToType)) {
569 SCS.Second = ICK_Complex_Promotion;
570 FromType = ToType.getUnqualifiedType();
571 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000572 // Integral conversions (C++ 4.7).
Sebastian Redl07779722008-10-31 14:43:28 +0000573 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000574 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl07779722008-10-31 14:43:28 +0000575 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000576 SCS.Second = ICK_Integral_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000577 FromType = ToType.getUnqualifiedType();
578 }
579 // Floating point conversions (C++ 4.8).
580 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000581 SCS.Second = ICK_Floating_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000582 FromType = ToType.getUnqualifiedType();
583 }
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000584 // Complex conversions (C99 6.3.1.6)
585 else if (FromType->isComplexType() && ToType->isComplexType()) {
586 SCS.Second = ICK_Complex_Conversion;
587 FromType = ToType.getUnqualifiedType();
588 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000589 // Floating-integral conversions (C++ 4.9).
Sebastian Redl07779722008-10-31 14:43:28 +0000590 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000591 else if ((FromType->isFloatingType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000592 ToType->isIntegralType() && !ToType->isBooleanType() &&
593 !ToType->isEnumeralType()) ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000594 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
595 ToType->isFloatingType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000596 SCS.Second = ICK_Floating_Integral;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000597 FromType = ToType.getUnqualifiedType();
598 }
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000599 // Complex-real conversions (C99 6.3.1.7)
600 else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
601 (ToType->isComplexType() && FromType->isArithmeticType())) {
602 SCS.Second = ICK_Complex_Real;
603 FromType = ToType.getUnqualifiedType();
604 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000605 // Pointer conversions (C++ 4.10).
Douglas Gregor45920e82008-12-19 17:40:08 +0000606 else if (IsPointerConversion(From, FromType, ToType, FromType,
607 IncompatibleObjC)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000608 SCS.Second = ICK_Pointer_Conversion;
Douglas Gregor45920e82008-12-19 17:40:08 +0000609 SCS.IncompatibleObjC = IncompatibleObjC;
Sebastian Redl07779722008-10-31 14:43:28 +0000610 }
Sebastian Redl4433aaf2009-01-25 19:43:20 +0000611 // Pointer to member conversions (4.11).
612 else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
613 SCS.Second = ICK_Pointer_Member;
614 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000615 // Boolean conversions (C++ 4.12).
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000616 else if (ToType->isBooleanType() &&
617 (FromType->isArithmeticType() ||
618 FromType->isEnumeralType() ||
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000619 FromType->isPointerType() ||
Sebastian Redl4433aaf2009-01-25 19:43:20 +0000620 FromType->isBlockPointerType() ||
621 FromType->isMemberPointerType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000622 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000623 FromType = Context.BoolTy;
Douglas Gregorf9201e02009-02-11 23:02:49 +0000624 }
625 // Compatible conversions (Clang extension for C function overloading)
626 else if (!getLangOptions().CPlusPlus &&
627 Context.typesAreCompatible(ToType, FromType)) {
628 SCS.Second = ICK_Compatible_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000629 } else {
630 // No second conversion required.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000631 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000632 }
633
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000634 QualType CanonFrom;
635 QualType CanonTo;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000636 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor98cd5992008-10-21 23:43:52 +0000637 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000638 SCS.Third = ICK_Qualification;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000639 FromType = ToType;
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000640 CanonFrom = Context.getCanonicalType(FromType);
641 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000642 } else {
643 // No conversion required
Douglas Gregor60d62c22008-10-31 16:23:19 +0000644 SCS.Third = ICK_Identity;
645
646 // C++ [over.best.ics]p6:
647 // [...] Any difference in top-level cv-qualification is
648 // subsumed by the initialization itself and does not constitute
649 // a conversion. [...]
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000650 CanonFrom = Context.getCanonicalType(FromType);
651 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor60d62c22008-10-31 16:23:19 +0000652 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000653 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
654 FromType = ToType;
655 CanonFrom = CanonTo;
656 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000657 }
658
659 // If we have not converted the argument type to the parameter type,
660 // this is a bad conversion sequence.
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000661 if (CanonFrom != CanonTo)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000662 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000663
Douglas Gregor60d62c22008-10-31 16:23:19 +0000664 SCS.ToTypePtr = FromType.getAsOpaquePtr();
665 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000666}
667
668/// IsIntegralPromotion - Determines whether the conversion from the
669/// expression From (whose potentially-adjusted type is FromType) to
670/// ToType is an integral promotion (C++ 4.5). If so, returns true and
671/// sets PromotedType to the promoted type.
672bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
673{
674 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redlf7be9442008-11-04 15:59:10 +0000675 // All integers are built-in.
Sebastian Redl07779722008-10-31 14:43:28 +0000676 if (!To) {
677 return false;
678 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000679
680 // An rvalue of type char, signed char, unsigned char, short int, or
681 // unsigned short int can be converted to an rvalue of type int if
682 // int can represent all the values of the source type; otherwise,
683 // the source rvalue can be converted to an rvalue of type unsigned
684 // int (C++ 4.5p1).
Sebastian Redl07779722008-10-31 14:43:28 +0000685 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000686 if (// We can promote any signed, promotable integer type to an int
687 (FromType->isSignedIntegerType() ||
688 // We can promote any unsigned integer type whose size is
689 // less than int to an int.
690 (!FromType->isSignedIntegerType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000691 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000692 return To->getKind() == BuiltinType::Int;
Sebastian Redl07779722008-10-31 14:43:28 +0000693 }
694
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000695 return To->getKind() == BuiltinType::UInt;
696 }
697
698 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
699 // can be converted to an rvalue of the first of the following types
700 // that can represent all the values of its underlying type: int,
701 // unsigned int, long, or unsigned long (C++ 4.5p2).
702 if ((FromType->isEnumeralType() || FromType->isWideCharType())
703 && ToType->isIntegerType()) {
704 // Determine whether the type we're converting from is signed or
705 // unsigned.
706 bool FromIsSigned;
707 uint64_t FromSize = Context.getTypeSize(FromType);
708 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
709 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
710 FromIsSigned = UnderlyingType->isSignedIntegerType();
711 } else {
712 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
713 FromIsSigned = true;
714 }
715
716 // The types we'll try to promote to, in the appropriate
717 // order. Try each of these types.
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000718 QualType PromoteTypes[6] = {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000719 Context.IntTy, Context.UnsignedIntTy,
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000720 Context.LongTy, Context.UnsignedLongTy ,
721 Context.LongLongTy, Context.UnsignedLongLongTy
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000722 };
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000723 for (int Idx = 0; Idx < 6; ++Idx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000724 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
725 if (FromSize < ToSize ||
726 (FromSize == ToSize &&
727 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
728 // We found the type that we can promote to. If this is the
729 // type we wanted, we have a promotion. Otherwise, no
730 // promotion.
Sebastian Redl07779722008-10-31 14:43:28 +0000731 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000732 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
733 }
734 }
735 }
736
737 // An rvalue for an integral bit-field (9.6) can be converted to an
738 // rvalue of type int if int can represent all the values of the
739 // bit-field; otherwise, it can be converted to unsigned int if
740 // unsigned int can represent all the values of the bit-field. If
741 // the bit-field is larger yet, no integral promotion applies to
742 // it. If the bit-field has an enumerated type, it is treated as any
743 // other value of that type for promotion purposes (C++ 4.5p3).
Douglas Gregorb7b5d132009-02-12 00:26:06 +0000744 // FIXME: We should delay checking of bit-fields until we actually
745 // perform the conversion.
746 if (MemberExpr *MemRef = dyn_cast_or_null<MemberExpr>(From)) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000747 using llvm::APSInt;
Douglas Gregor86f19402008-12-20 23:49:58 +0000748 if (FieldDecl *MemberDecl = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) {
749 APSInt BitWidth;
750 if (MemberDecl->isBitField() &&
751 FromType->isIntegralType() && !FromType->isEnumeralType() &&
752 From->isIntegerConstantExpr(BitWidth, Context)) {
753 APSInt ToSize(Context.getTypeSize(ToType));
754
755 // Are we promoting to an int from a bitfield that fits in an int?
756 if (BitWidth < ToSize ||
757 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
758 return To->getKind() == BuiltinType::Int;
759 }
760
761 // Are we promoting to an unsigned int from an unsigned bitfield
762 // that fits into an unsigned int?
763 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
764 return To->getKind() == BuiltinType::UInt;
765 }
766
767 return false;
Sebastian Redl07779722008-10-31 14:43:28 +0000768 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000769 }
770 }
771
772 // An rvalue of type bool can be converted to an rvalue of type int,
773 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl07779722008-10-31 14:43:28 +0000774 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000775 return true;
Sebastian Redl07779722008-10-31 14:43:28 +0000776 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000777
778 return false;
779}
780
781/// IsFloatingPointPromotion - Determines whether the conversion from
782/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
783/// returns true and sets PromotedType to the promoted type.
784bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
785{
786 /// An rvalue of type float can be converted to an rvalue of type
787 /// double. (C++ 4.6p1).
788 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000789 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000790 if (FromBuiltin->getKind() == BuiltinType::Float &&
791 ToBuiltin->getKind() == BuiltinType::Double)
792 return true;
793
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000794 // C99 6.3.1.5p1:
795 // When a float is promoted to double or long double, or a
796 // double is promoted to long double [...].
797 if (!getLangOptions().CPlusPlus &&
798 (FromBuiltin->getKind() == BuiltinType::Float ||
799 FromBuiltin->getKind() == BuiltinType::Double) &&
800 (ToBuiltin->getKind() == BuiltinType::LongDouble))
801 return true;
802 }
803
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000804 return false;
805}
806
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000807/// \brief Determine if a conversion is a complex promotion.
808///
809/// A complex promotion is defined as a complex -> complex conversion
810/// where the conversion between the underlying real types is a
Douglas Gregorb7b5d132009-02-12 00:26:06 +0000811/// floating-point or integral promotion.
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000812bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
813 const ComplexType *FromComplex = FromType->getAsComplexType();
814 if (!FromComplex)
815 return false;
816
817 const ComplexType *ToComplex = ToType->getAsComplexType();
818 if (!ToComplex)
819 return false;
820
821 return IsFloatingPointPromotion(FromComplex->getElementType(),
Douglas Gregorb7b5d132009-02-12 00:26:06 +0000822 ToComplex->getElementType()) ||
823 IsIntegralPromotion(0, FromComplex->getElementType(),
824 ToComplex->getElementType());
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000825}
826
Douglas Gregorcb7de522008-11-26 23:31:11 +0000827/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
828/// the pointer type FromPtr to a pointer to type ToPointee, with the
829/// same type qualifiers as FromPtr has on its pointee type. ToType,
830/// if non-empty, will be a pointer to ToType that may or may not have
831/// the right set of qualifiers on its pointee.
832static QualType
833BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
834 QualType ToPointee, QualType ToType,
835 ASTContext &Context) {
836 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
837 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
838 unsigned Quals = CanonFromPointee.getCVRQualifiers();
839
840 // Exact qualifier match -> return the pointer type we're converting to.
841 if (CanonToPointee.getCVRQualifiers() == Quals) {
842 // ToType is exactly what we need. Return it.
843 if (ToType.getTypePtr())
844 return ToType;
845
846 // Build a pointer to ToPointee. It has the right qualifiers
847 // already.
848 return Context.getPointerType(ToPointee);
849 }
850
851 // Just build a canonical type that has the right qualifiers.
852 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
853}
854
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000855/// IsPointerConversion - Determines whether the conversion of the
856/// expression From, which has the (possibly adjusted) type FromType,
857/// can be converted to the type ToType via a pointer conversion (C++
858/// 4.10). If so, returns true and places the converted type (that
859/// might differ from ToType in its cv-qualifiers at some level) into
860/// ConvertedType.
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000861///
Douglas Gregor7ca09762008-11-27 01:19:21 +0000862/// This routine also supports conversions to and from block pointers
863/// and conversions with Objective-C's 'id', 'id<protocols...>', and
864/// pointers to interfaces. FIXME: Once we've determined the
865/// appropriate overloading rules for Objective-C, we may want to
866/// split the Objective-C checks into a different routine; however,
867/// GCC seems to consider all of these conversions to be pointer
Douglas Gregor45920e82008-12-19 17:40:08 +0000868/// conversions, so for now they live here. IncompatibleObjC will be
869/// set if the conversion is an allowed Objective-C conversion that
870/// should result in a warning.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000871bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
Douglas Gregor45920e82008-12-19 17:40:08 +0000872 QualType& ConvertedType,
873 bool &IncompatibleObjC)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000874{
Douglas Gregor45920e82008-12-19 17:40:08 +0000875 IncompatibleObjC = false;
Douglas Gregorc7887512008-12-19 19:13:09 +0000876 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
877 return true;
Douglas Gregor45920e82008-12-19 17:40:08 +0000878
Douglas Gregor27b09ac2008-12-22 20:51:52 +0000879 // Conversion from a null pointer constant to any Objective-C pointer type.
880 if (Context.isObjCObjectPointerType(ToType) &&
881 From->isNullPointerConstant(Context)) {
882 ConvertedType = ToType;
883 return true;
884 }
885
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000886 // Blocks: Block pointers can be converted to void*.
887 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
888 ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
889 ConvertedType = ToType;
890 return true;
891 }
892 // Blocks: A null pointer constant can be converted to a block
893 // pointer type.
894 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
895 ConvertedType = ToType;
896 return true;
897 }
898
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000899 const PointerType* ToTypePtr = ToType->getAsPointerType();
900 if (!ToTypePtr)
901 return false;
902
903 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
904 if (From->isNullPointerConstant(Context)) {
905 ConvertedType = ToType;
906 return true;
907 }
Sebastian Redl07779722008-10-31 14:43:28 +0000908
Douglas Gregorcb7de522008-11-26 23:31:11 +0000909 // Beyond this point, both types need to be pointers.
910 const PointerType *FromTypePtr = FromType->getAsPointerType();
911 if (!FromTypePtr)
912 return false;
913
914 QualType FromPointeeType = FromTypePtr->getPointeeType();
915 QualType ToPointeeType = ToTypePtr->getPointeeType();
916
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000917 // An rvalue of type "pointer to cv T," where T is an object type,
918 // can be converted to an rvalue of type "pointer to cv void" (C++
919 // 4.10p2).
Douglas Gregorbad0e652009-03-24 20:32:41 +0000920 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000921 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
922 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000923 ToType, Context);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000924 return true;
925 }
926
Douglas Gregorf9201e02009-02-11 23:02:49 +0000927 // When we're overloading in C, we allow a special kind of pointer
928 // conversion for compatible-but-not-identical pointee types.
929 if (!getLangOptions().CPlusPlus &&
930 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
931 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
932 ToPointeeType,
933 ToType, Context);
934 return true;
935 }
936
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000937 // C++ [conv.ptr]p3:
938 //
939 // An rvalue of type "pointer to cv D," where D is a class type,
940 // can be converted to an rvalue of type "pointer to cv B," where
941 // B is a base class (clause 10) of D. If B is an inaccessible
942 // (clause 11) or ambiguous (10.2) base class of D, a program that
943 // necessitates this conversion is ill-formed. The result of the
944 // conversion is a pointer to the base class sub-object of the
945 // derived class object. The null pointer value is converted to
946 // the null pointer value of the destination type.
947 //
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000948 // Note that we do not check for ambiguity or inaccessibility
949 // here. That is handled by CheckPointerConversion.
Douglas Gregorf9201e02009-02-11 23:02:49 +0000950 if (getLangOptions().CPlusPlus &&
951 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
Douglas Gregorcb7de522008-11-26 23:31:11 +0000952 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000953 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
954 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000955 ToType, Context);
956 return true;
957 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000958
Douglas Gregorc7887512008-12-19 19:13:09 +0000959 return false;
960}
961
962/// isObjCPointerConversion - Determines whether this is an
963/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
964/// with the same arguments and return values.
965bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
966 QualType& ConvertedType,
967 bool &IncompatibleObjC) {
968 if (!getLangOptions().ObjC1)
969 return false;
970
971 // Conversions with Objective-C's id<...>.
972 if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
973 ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
974 ConvertedType = ToType;
975 return true;
976 }
977
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000978 // Beyond this point, both types need to be pointers or block pointers.
979 QualType ToPointeeType;
Douglas Gregorc7887512008-12-19 19:13:09 +0000980 const PointerType* ToTypePtr = ToType->getAsPointerType();
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000981 if (ToTypePtr)
982 ToPointeeType = ToTypePtr->getPointeeType();
983 else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType())
984 ToPointeeType = ToBlockPtr->getPointeeType();
985 else
Douglas Gregorc7887512008-12-19 19:13:09 +0000986 return false;
987
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000988 QualType FromPointeeType;
Douglas Gregorc7887512008-12-19 19:13:09 +0000989 const PointerType *FromTypePtr = FromType->getAsPointerType();
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000990 if (FromTypePtr)
991 FromPointeeType = FromTypePtr->getPointeeType();
992 else if (const BlockPointerType *FromBlockPtr
993 = FromType->getAsBlockPointerType())
994 FromPointeeType = FromBlockPtr->getPointeeType();
995 else
Douglas Gregorc7887512008-12-19 19:13:09 +0000996 return false;
997
Douglas Gregorcb7de522008-11-26 23:31:11 +0000998 // Objective C++: We're able to convert from a pointer to an
999 // interface to a pointer to a different interface.
1000 const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
1001 const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
1002 if (FromIface && ToIface &&
1003 Context.canAssignObjCInterfaces(ToIface, FromIface)) {
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001004 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregorbf408182008-11-27 00:52:49 +00001005 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001006 ToType, Context);
1007 return true;
1008 }
1009
Douglas Gregor45920e82008-12-19 17:40:08 +00001010 if (FromIface && ToIface &&
1011 Context.canAssignObjCInterfaces(FromIface, ToIface)) {
1012 // Okay: this is some kind of implicit downcast of Objective-C
1013 // interfaces, which is permitted. However, we're going to
1014 // complain about it.
1015 IncompatibleObjC = true;
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001016 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregor45920e82008-12-19 17:40:08 +00001017 ToPointeeType,
1018 ToType, Context);
1019 return true;
1020 }
1021
Douglas Gregorcb7de522008-11-26 23:31:11 +00001022 // Objective C++: We're able to convert between "id" and a pointer
1023 // to any interface (in both directions).
Steve Naroff389bf462009-02-12 17:52:19 +00001024 if ((FromIface && Context.isObjCIdStructType(ToPointeeType))
1025 || (ToIface && Context.isObjCIdStructType(FromPointeeType))) {
Douglas Gregorbf408182008-11-27 00:52:49 +00001026 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1027 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001028 ToType, Context);
1029 return true;
1030 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001031
Douglas Gregordda78892008-12-18 23:43:31 +00001032 // Objective C++: Allow conversions between the Objective-C "id" and
1033 // "Class", in either direction.
Steve Naroff389bf462009-02-12 17:52:19 +00001034 if ((Context.isObjCIdStructType(FromPointeeType) &&
1035 Context.isObjCClassStructType(ToPointeeType)) ||
1036 (Context.isObjCClassStructType(FromPointeeType) &&
1037 Context.isObjCIdStructType(ToPointeeType))) {
Douglas Gregordda78892008-12-18 23:43:31 +00001038 ConvertedType = ToType;
1039 return true;
1040 }
1041
Douglas Gregorc7887512008-12-19 19:13:09 +00001042 // If we have pointers to pointers, recursively check whether this
1043 // is an Objective-C conversion.
1044 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1045 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1046 IncompatibleObjC)) {
1047 // We always complain about this conversion.
1048 IncompatibleObjC = true;
1049 ConvertedType = ToType;
1050 return true;
1051 }
1052
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001053 // If we have pointers to functions or blocks, check whether the only
Douglas Gregorc7887512008-12-19 19:13:09 +00001054 // differences in the argument and result types are in Objective-C
1055 // pointer conversions. If so, we permit the conversion (but
1056 // complain about it).
Douglas Gregor72564e72009-02-26 23:50:07 +00001057 const FunctionProtoType *FromFunctionType
1058 = FromPointeeType->getAsFunctionProtoType();
1059 const FunctionProtoType *ToFunctionType
1060 = ToPointeeType->getAsFunctionProtoType();
Douglas Gregorc7887512008-12-19 19:13:09 +00001061 if (FromFunctionType && ToFunctionType) {
1062 // If the function types are exactly the same, this isn't an
1063 // Objective-C pointer conversion.
1064 if (Context.getCanonicalType(FromPointeeType)
1065 == Context.getCanonicalType(ToPointeeType))
1066 return false;
1067
1068 // Perform the quick checks that will tell us whether these
1069 // function types are obviously different.
1070 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1071 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1072 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1073 return false;
1074
1075 bool HasObjCConversion = false;
1076 if (Context.getCanonicalType(FromFunctionType->getResultType())
1077 == Context.getCanonicalType(ToFunctionType->getResultType())) {
1078 // Okay, the types match exactly. Nothing to do.
1079 } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1080 ToFunctionType->getResultType(),
1081 ConvertedType, IncompatibleObjC)) {
1082 // Okay, we have an Objective-C pointer conversion.
1083 HasObjCConversion = true;
1084 } else {
1085 // Function types are too different. Abort.
1086 return false;
1087 }
1088
1089 // Check argument types.
1090 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1091 ArgIdx != NumArgs; ++ArgIdx) {
1092 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1093 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1094 if (Context.getCanonicalType(FromArgType)
1095 == Context.getCanonicalType(ToArgType)) {
1096 // Okay, the types match exactly. Nothing to do.
1097 } else if (isObjCPointerConversion(FromArgType, ToArgType,
1098 ConvertedType, IncompatibleObjC)) {
1099 // Okay, we have an Objective-C pointer conversion.
1100 HasObjCConversion = true;
1101 } else {
1102 // Argument types are too different. Abort.
1103 return false;
1104 }
1105 }
1106
1107 if (HasObjCConversion) {
1108 // We had an Objective-C conversion. Allow this pointer
1109 // conversion, but complain about it.
1110 ConvertedType = ToType;
1111 IncompatibleObjC = true;
1112 return true;
1113 }
1114 }
1115
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001116 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001117}
1118
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001119/// CheckPointerConversion - Check the pointer conversion from the
1120/// expression From to the type ToType. This routine checks for
1121/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
1122/// conversions for which IsPointerConversion has already returned
1123/// true. It returns true and produces a diagnostic if there was an
1124/// error, or returns false otherwise.
1125bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1126 QualType FromType = From->getType();
1127
1128 if (const PointerType *FromPtrType = FromType->getAsPointerType())
1129 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001130 QualType FromPointeeType = FromPtrType->getPointeeType(),
1131 ToPointeeType = ToPtrType->getPointeeType();
Douglas Gregordda78892008-12-18 23:43:31 +00001132
1133 // Objective-C++ conversions are always okay.
1134 // FIXME: We should have a different class of conversions for
1135 // the Objective-C++ implicit conversions.
Steve Naroff389bf462009-02-12 17:52:19 +00001136 if (Context.isObjCIdStructType(FromPointeeType) ||
1137 Context.isObjCIdStructType(ToPointeeType) ||
1138 Context.isObjCClassStructType(FromPointeeType) ||
1139 Context.isObjCClassStructType(ToPointeeType))
Douglas Gregordda78892008-12-18 23:43:31 +00001140 return false;
1141
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001142 if (FromPointeeType->isRecordType() &&
1143 ToPointeeType->isRecordType()) {
1144 // We must have a derived-to-base conversion. Check an
1145 // ambiguous or inaccessible conversion.
Douglas Gregor0575d4a2008-10-24 16:17:19 +00001146 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1147 From->getExprLoc(),
1148 From->getSourceRange());
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001149 }
1150 }
1151
1152 return false;
1153}
1154
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001155/// IsMemberPointerConversion - Determines whether the conversion of the
1156/// expression From, which has the (possibly adjusted) type FromType, can be
1157/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1158/// If so, returns true and places the converted type (that might differ from
1159/// ToType in its cv-qualifiers at some level) into ConvertedType.
1160bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1161 QualType ToType, QualType &ConvertedType)
1162{
1163 const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType();
1164 if (!ToTypePtr)
1165 return false;
1166
1167 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1168 if (From->isNullPointerConstant(Context)) {
1169 ConvertedType = ToType;
1170 return true;
1171 }
1172
1173 // Otherwise, both types have to be member pointers.
1174 const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType();
1175 if (!FromTypePtr)
1176 return false;
1177
1178 // A pointer to member of B can be converted to a pointer to member of D,
1179 // where D is derived from B (C++ 4.11p2).
1180 QualType FromClass(FromTypePtr->getClass(), 0);
1181 QualType ToClass(ToTypePtr->getClass(), 0);
1182 // FIXME: What happens when these are dependent? Is this function even called?
1183
1184 if (IsDerivedFrom(ToClass, FromClass)) {
1185 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1186 ToClass.getTypePtr());
1187 return true;
1188 }
1189
1190 return false;
1191}
1192
1193/// CheckMemberPointerConversion - Check the member pointer conversion from the
1194/// expression From to the type ToType. This routine checks for ambiguous or
1195/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1196/// for which IsMemberPointerConversion has already returned true. It returns
1197/// true and produces a diagnostic if there was an error, or returns false
1198/// otherwise.
1199bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1200 QualType FromType = From->getType();
Sebastian Redl21593ac2009-01-28 18:33:18 +00001201 const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType();
1202 if (!FromPtrType)
1203 return false;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001204
Sebastian Redl21593ac2009-01-28 18:33:18 +00001205 const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType();
1206 assert(ToPtrType && "No member pointer cast has a target type "
1207 "that is not a member pointer.");
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001208
Sebastian Redl21593ac2009-01-28 18:33:18 +00001209 QualType FromClass = QualType(FromPtrType->getClass(), 0);
1210 QualType ToClass = QualType(ToPtrType->getClass(), 0);
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001211
Sebastian Redl21593ac2009-01-28 18:33:18 +00001212 // FIXME: What about dependent types?
1213 assert(FromClass->isRecordType() && "Pointer into non-class.");
1214 assert(ToClass->isRecordType() && "Pointer into non-class.");
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001215
Sebastian Redl21593ac2009-01-28 18:33:18 +00001216 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1217 /*DetectVirtual=*/true);
1218 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1219 assert(DerivationOkay &&
1220 "Should not have been called if derivation isn't OK.");
1221 (void)DerivationOkay;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001222
Sebastian Redl21593ac2009-01-28 18:33:18 +00001223 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1224 getUnqualifiedType())) {
1225 // Derivation is ambiguous. Redo the check to find the exact paths.
1226 Paths.clear();
1227 Paths.setRecordingPaths(true);
1228 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1229 assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1230 (void)StillOkay;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001231
Sebastian Redl21593ac2009-01-28 18:33:18 +00001232 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1233 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1234 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1235 return true;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001236 }
Sebastian Redl21593ac2009-01-28 18:33:18 +00001237
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001238 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
Sebastian Redl21593ac2009-01-28 18:33:18 +00001239 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1240 << FromClass << ToClass << QualType(VBase, 0)
1241 << From->getSourceRange();
1242 return true;
1243 }
1244
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001245 return false;
1246}
1247
Douglas Gregor98cd5992008-10-21 23:43:52 +00001248/// IsQualificationConversion - Determines whether the conversion from
1249/// an rvalue of type FromType to ToType is a qualification conversion
1250/// (C++ 4.4).
1251bool
1252Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1253{
1254 FromType = Context.getCanonicalType(FromType);
1255 ToType = Context.getCanonicalType(ToType);
1256
1257 // If FromType and ToType are the same type, this is not a
1258 // qualification conversion.
1259 if (FromType == ToType)
1260 return false;
Sebastian Redl21593ac2009-01-28 18:33:18 +00001261
Douglas Gregor98cd5992008-10-21 23:43:52 +00001262 // (C++ 4.4p4):
1263 // A conversion can add cv-qualifiers at levels other than the first
1264 // in multi-level pointers, subject to the following rules: [...]
1265 bool PreviousToQualsIncludeConst = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +00001266 bool UnwrappedAnyPointer = false;
Douglas Gregor57373262008-10-22 14:17:15 +00001267 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor98cd5992008-10-21 23:43:52 +00001268 // Within each iteration of the loop, we check the qualifiers to
1269 // determine if this still looks like a qualification
1270 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001271 // pointers or pointers-to-members and do it all again
Douglas Gregor98cd5992008-10-21 23:43:52 +00001272 // until there are no more pointers or pointers-to-members left to
1273 // unwrap.
Douglas Gregor57373262008-10-22 14:17:15 +00001274 UnwrappedAnyPointer = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +00001275
1276 // -- for every j > 0, if const is in cv 1,j then const is in cv
1277 // 2,j, and similarly for volatile.
Douglas Gregor9b6e2d22008-10-22 00:38:21 +00001278 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor98cd5992008-10-21 23:43:52 +00001279 return false;
Douglas Gregor57373262008-10-22 14:17:15 +00001280
Douglas Gregor98cd5992008-10-21 23:43:52 +00001281 // -- if the cv 1,j and cv 2,j are different, then const is in
1282 // every cv for 0 < k < j.
1283 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregor57373262008-10-22 14:17:15 +00001284 && !PreviousToQualsIncludeConst)
Douglas Gregor98cd5992008-10-21 23:43:52 +00001285 return false;
Douglas Gregor57373262008-10-22 14:17:15 +00001286
Douglas Gregor98cd5992008-10-21 23:43:52 +00001287 // Keep track of whether all prior cv-qualifiers in the "to" type
1288 // include const.
1289 PreviousToQualsIncludeConst
1290 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregor57373262008-10-22 14:17:15 +00001291 }
Douglas Gregor98cd5992008-10-21 23:43:52 +00001292
1293 // We are left with FromType and ToType being the pointee types
1294 // after unwrapping the original FromType and ToType the same number
1295 // of types. If we unwrapped any pointers, and if FromType and
1296 // ToType have the same unqualified type (since we checked
1297 // qualifiers above), then this is a qualification conversion.
1298 return UnwrappedAnyPointer &&
1299 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1300}
1301
Douglas Gregor734d9862009-01-30 23:27:23 +00001302/// Determines whether there is a user-defined conversion sequence
1303/// (C++ [over.ics.user]) that converts expression From to the type
1304/// ToType. If such a conversion exists, User will contain the
1305/// user-defined conversion sequence that performs such a conversion
1306/// and this routine will return true. Otherwise, this routine returns
1307/// false and User is unspecified.
1308///
1309/// \param AllowConversionFunctions true if the conversion should
1310/// consider conversion functions at all. If false, only constructors
1311/// will be considered.
1312///
1313/// \param AllowExplicit true if the conversion should consider C++0x
1314/// "explicit" conversion functions as well as non-explicit conversion
1315/// functions (C++0x [class.conv.fct]p2).
Douglas Gregor60d62c22008-10-31 16:23:19 +00001316bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001317 UserDefinedConversionSequence& User,
Douglas Gregor734d9862009-01-30 23:27:23 +00001318 bool AllowConversionFunctions,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001319 bool AllowExplicit)
Douglas Gregor60d62c22008-10-31 16:23:19 +00001320{
1321 OverloadCandidateSet CandidateSet;
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001322 if (const RecordType *ToRecordType = ToType->getAsRecordType()) {
1323 if (CXXRecordDecl *ToRecordDecl
1324 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1325 // C++ [over.match.ctor]p1:
1326 // When objects of class type are direct-initialized (8.5), or
1327 // copy-initialized from an expression of the same or a
1328 // derived class type (8.5), overload resolution selects the
1329 // constructor. [...] For copy-initialization, the candidate
1330 // functions are all the converting constructors (12.3.1) of
1331 // that class. The argument list is the expression-list within
1332 // the parentheses of the initializer.
1333 DeclarationName ConstructorName
1334 = Context.DeclarationNames.getCXXConstructorName(
1335 Context.getCanonicalType(ToType).getUnqualifiedType());
1336 DeclContext::lookup_iterator Con, ConEnd;
1337 for (llvm::tie(Con, ConEnd) = ToRecordDecl->lookup(ConstructorName);
1338 Con != ConEnd; ++Con) {
1339 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1340 if (Constructor->isConvertingConstructor())
1341 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1342 /*SuppressUserConversions=*/true);
1343 }
Douglas Gregor60d62c22008-10-31 16:23:19 +00001344 }
1345 }
1346
Douglas Gregor734d9862009-01-30 23:27:23 +00001347 if (!AllowConversionFunctions) {
1348 // Don't allow any conversion functions to enter the overload set.
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001349 } else if (const RecordType *FromRecordType
1350 = From->getType()->getAsRecordType()) {
1351 if (CXXRecordDecl *FromRecordDecl
1352 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1353 // Add all of the conversion functions as candidates.
1354 // FIXME: Look for conversions in base classes!
1355 OverloadedFunctionDecl *Conversions
1356 = FromRecordDecl->getConversionFunctions();
1357 for (OverloadedFunctionDecl::function_iterator Func
1358 = Conversions->function_begin();
1359 Func != Conversions->function_end(); ++Func) {
1360 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1361 if (AllowExplicit || !Conv->isExplicit())
1362 AddConversionCandidate(Conv, From, ToType, CandidateSet);
1363 }
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001364 }
1365 }
Douglas Gregor60d62c22008-10-31 16:23:19 +00001366
1367 OverloadCandidateSet::iterator Best;
1368 switch (BestViableFunction(CandidateSet, Best)) {
1369 case OR_Success:
1370 // Record the standard conversion we used and the conversion function.
Douglas Gregor60d62c22008-10-31 16:23:19 +00001371 if (CXXConstructorDecl *Constructor
1372 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1373 // C++ [over.ics.user]p1:
1374 // If the user-defined conversion is specified by a
1375 // constructor (12.3.1), the initial standard conversion
1376 // sequence converts the source type to the type required by
1377 // the argument of the constructor.
1378 //
1379 // FIXME: What about ellipsis conversions?
1380 QualType ThisType = Constructor->getThisType(Context);
1381 User.Before = Best->Conversions[0].Standard;
1382 User.ConversionFunction = Constructor;
1383 User.After.setAsIdentityConversion();
1384 User.After.FromTypePtr
1385 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1386 User.After.ToTypePtr = ToType.getAsOpaquePtr();
1387 return true;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001388 } else if (CXXConversionDecl *Conversion
1389 = dyn_cast<CXXConversionDecl>(Best->Function)) {
1390 // C++ [over.ics.user]p1:
1391 //
1392 // [...] If the user-defined conversion is specified by a
1393 // conversion function (12.3.2), the initial standard
1394 // conversion sequence converts the source type to the
1395 // implicit object parameter of the conversion function.
1396 User.Before = Best->Conversions[0].Standard;
1397 User.ConversionFunction = Conversion;
1398
1399 // C++ [over.ics.user]p2:
1400 // The second standard conversion sequence converts the
1401 // result of the user-defined conversion to the target type
1402 // for the sequence. Since an implicit conversion sequence
1403 // is an initialization, the special rules for
1404 // initialization by user-defined conversion apply when
1405 // selecting the best user-defined conversion for a
1406 // user-defined conversion sequence (see 13.3.3 and
1407 // 13.3.3.1).
1408 User.After = Best->FinalConversion;
1409 return true;
Douglas Gregor60d62c22008-10-31 16:23:19 +00001410 } else {
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001411 assert(false && "Not a constructor or conversion function?");
Douglas Gregor60d62c22008-10-31 16:23:19 +00001412 return false;
1413 }
1414
1415 case OR_No_Viable_Function:
Douglas Gregor48f3bb92009-02-18 21:56:37 +00001416 case OR_Deleted:
Douglas Gregor60d62c22008-10-31 16:23:19 +00001417 // No conversion here! We're done.
1418 return false;
1419
1420 case OR_Ambiguous:
1421 // FIXME: See C++ [over.best.ics]p10 for the handling of
1422 // ambiguous conversion sequences.
1423 return false;
1424 }
1425
1426 return false;
1427}
1428
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001429/// CompareImplicitConversionSequences - Compare two implicit
1430/// conversion sequences to determine whether one is better than the
1431/// other or if they are indistinguishable (C++ 13.3.3.2).
1432ImplicitConversionSequence::CompareKind
1433Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1434 const ImplicitConversionSequence& ICS2)
1435{
1436 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1437 // conversion sequences (as defined in 13.3.3.1)
1438 // -- a standard conversion sequence (13.3.3.1.1) is a better
1439 // conversion sequence than a user-defined conversion sequence or
1440 // an ellipsis conversion sequence, and
1441 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1442 // conversion sequence than an ellipsis conversion sequence
1443 // (13.3.3.1.3).
1444 //
1445 if (ICS1.ConversionKind < ICS2.ConversionKind)
1446 return ImplicitConversionSequence::Better;
1447 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1448 return ImplicitConversionSequence::Worse;
1449
1450 // Two implicit conversion sequences of the same form are
1451 // indistinguishable conversion sequences unless one of the
1452 // following rules apply: (C++ 13.3.3.2p3):
1453 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1454 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1455 else if (ICS1.ConversionKind ==
1456 ImplicitConversionSequence::UserDefinedConversion) {
1457 // User-defined conversion sequence U1 is a better conversion
1458 // sequence than another user-defined conversion sequence U2 if
1459 // they contain the same user-defined conversion function or
1460 // constructor and if the second standard conversion sequence of
1461 // U1 is better than the second standard conversion sequence of
1462 // U2 (C++ 13.3.3.2p3).
1463 if (ICS1.UserDefined.ConversionFunction ==
1464 ICS2.UserDefined.ConversionFunction)
1465 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1466 ICS2.UserDefined.After);
1467 }
1468
1469 return ImplicitConversionSequence::Indistinguishable;
1470}
1471
1472/// CompareStandardConversionSequences - Compare two standard
1473/// conversion sequences to determine whether one is better than the
1474/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1475ImplicitConversionSequence::CompareKind
1476Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1477 const StandardConversionSequence& SCS2)
1478{
1479 // Standard conversion sequence S1 is a better conversion sequence
1480 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1481
1482 // -- S1 is a proper subsequence of S2 (comparing the conversion
1483 // sequences in the canonical form defined by 13.3.3.1.1,
1484 // excluding any Lvalue Transformation; the identity conversion
1485 // sequence is considered to be a subsequence of any
1486 // non-identity conversion sequence) or, if not that,
1487 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1488 // Neither is a proper subsequence of the other. Do nothing.
1489 ;
1490 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1491 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1492 (SCS1.Second == ICK_Identity &&
1493 SCS1.Third == ICK_Identity))
1494 // SCS1 is a proper subsequence of SCS2.
1495 return ImplicitConversionSequence::Better;
1496 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1497 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1498 (SCS2.Second == ICK_Identity &&
1499 SCS2.Third == ICK_Identity))
1500 // SCS2 is a proper subsequence of SCS1.
1501 return ImplicitConversionSequence::Worse;
1502
1503 // -- the rank of S1 is better than the rank of S2 (by the rules
1504 // defined below), or, if not that,
1505 ImplicitConversionRank Rank1 = SCS1.getRank();
1506 ImplicitConversionRank Rank2 = SCS2.getRank();
1507 if (Rank1 < Rank2)
1508 return ImplicitConversionSequence::Better;
1509 else if (Rank2 < Rank1)
1510 return ImplicitConversionSequence::Worse;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001511
Douglas Gregor57373262008-10-22 14:17:15 +00001512 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1513 // are indistinguishable unless one of the following rules
1514 // applies:
1515
1516 // A conversion that is not a conversion of a pointer, or
1517 // pointer to member, to bool is better than another conversion
1518 // that is such a conversion.
1519 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1520 return SCS2.isPointerConversionToBool()
1521 ? ImplicitConversionSequence::Better
1522 : ImplicitConversionSequence::Worse;
1523
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001524 // C++ [over.ics.rank]p4b2:
1525 //
1526 // If class B is derived directly or indirectly from class A,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001527 // conversion of B* to A* is better than conversion of B* to
1528 // void*, and conversion of A* to void* is better than conversion
1529 // of B* to void*.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001530 bool SCS1ConvertsToVoid
1531 = SCS1.isPointerConversionToVoidPointer(Context);
1532 bool SCS2ConvertsToVoid
1533 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001534 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1535 // Exactly one of the conversion sequences is a conversion to
1536 // a void pointer; it's the worse conversion.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001537 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1538 : ImplicitConversionSequence::Worse;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001539 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1540 // Neither conversion sequence converts to a void pointer; compare
1541 // their derived-to-base conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001542 if (ImplicitConversionSequence::CompareKind DerivedCK
1543 = CompareDerivedToBaseConversions(SCS1, SCS2))
1544 return DerivedCK;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001545 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1546 // Both conversion sequences are conversions to void
1547 // pointers. Compare the source types to determine if there's an
1548 // inheritance relationship in their sources.
1549 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1550 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1551
1552 // Adjust the types we're converting from via the array-to-pointer
1553 // conversion, if we need to.
1554 if (SCS1.First == ICK_Array_To_Pointer)
1555 FromType1 = Context.getArrayDecayedType(FromType1);
1556 if (SCS2.First == ICK_Array_To_Pointer)
1557 FromType2 = Context.getArrayDecayedType(FromType2);
1558
1559 QualType FromPointee1
1560 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1561 QualType FromPointee2
1562 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1563
1564 if (IsDerivedFrom(FromPointee2, FromPointee1))
1565 return ImplicitConversionSequence::Better;
1566 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1567 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001568
1569 // Objective-C++: If one interface is more specific than the
1570 // other, it is the better one.
1571 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1572 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1573 if (FromIface1 && FromIface1) {
1574 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1575 return ImplicitConversionSequence::Better;
1576 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1577 return ImplicitConversionSequence::Worse;
1578 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001579 }
Douglas Gregor57373262008-10-22 14:17:15 +00001580
1581 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1582 // bullet 3).
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001583 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregor57373262008-10-22 14:17:15 +00001584 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001585 return QualCK;
Douglas Gregor57373262008-10-22 14:17:15 +00001586
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001587 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
Sebastian Redlf2e21e52009-03-22 23:49:27 +00001588 // C++0x [over.ics.rank]p3b4:
1589 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1590 // implicit object parameter of a non-static member function declared
1591 // without a ref-qualifier, and S1 binds an rvalue reference to an
1592 // rvalue and S2 binds an lvalue reference.
Sebastian Redla9845802009-03-29 15:27:50 +00001593 // FIXME: We don't know if we're dealing with the implicit object parameter,
1594 // or if the member function in this case has a ref qualifier.
1595 // (Of course, we don't have ref qualifiers yet.)
1596 if (SCS1.RRefBinding != SCS2.RRefBinding)
1597 return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1598 : ImplicitConversionSequence::Worse;
Sebastian Redlf2e21e52009-03-22 23:49:27 +00001599
1600 // C++ [over.ics.rank]p3b4:
1601 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1602 // which the references refer are the same type except for
1603 // top-level cv-qualifiers, and the type to which the reference
1604 // initialized by S2 refers is more cv-qualified than the type
1605 // to which the reference initialized by S1 refers.
Sebastian Redla9845802009-03-29 15:27:50 +00001606 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1607 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001608 T1 = Context.getCanonicalType(T1);
1609 T2 = Context.getCanonicalType(T2);
1610 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1611 if (T2.isMoreQualifiedThan(T1))
1612 return ImplicitConversionSequence::Better;
1613 else if (T1.isMoreQualifiedThan(T2))
1614 return ImplicitConversionSequence::Worse;
1615 }
1616 }
Douglas Gregor57373262008-10-22 14:17:15 +00001617
1618 return ImplicitConversionSequence::Indistinguishable;
1619}
1620
1621/// CompareQualificationConversions - Compares two standard conversion
1622/// sequences to determine whether they can be ranked based on their
1623/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1624ImplicitConversionSequence::CompareKind
1625Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1626 const StandardConversionSequence& SCS2)
1627{
Douglas Gregorba7e2102008-10-22 15:04:37 +00001628 // C++ 13.3.3.2p3:
Douglas Gregor57373262008-10-22 14:17:15 +00001629 // -- S1 and S2 differ only in their qualification conversion and
1630 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1631 // cv-qualification signature of type T1 is a proper subset of
1632 // the cv-qualification signature of type T2, and S1 is not the
1633 // deprecated string literal array-to-pointer conversion (4.2).
1634 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1635 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1636 return ImplicitConversionSequence::Indistinguishable;
1637
1638 // FIXME: the example in the standard doesn't use a qualification
1639 // conversion (!)
1640 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1641 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1642 T1 = Context.getCanonicalType(T1);
1643 T2 = Context.getCanonicalType(T2);
1644
1645 // If the types are the same, we won't learn anything by unwrapped
1646 // them.
1647 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1648 return ImplicitConversionSequence::Indistinguishable;
1649
1650 ImplicitConversionSequence::CompareKind Result
1651 = ImplicitConversionSequence::Indistinguishable;
1652 while (UnwrapSimilarPointerTypes(T1, T2)) {
1653 // Within each iteration of the loop, we check the qualifiers to
1654 // determine if this still looks like a qualification
1655 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001656 // pointers or pointers-to-members and do it all again
Douglas Gregor57373262008-10-22 14:17:15 +00001657 // until there are no more pointers or pointers-to-members left
1658 // to unwrap. This essentially mimics what
1659 // IsQualificationConversion does, but here we're checking for a
1660 // strict subset of qualifiers.
1661 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1662 // The qualifiers are the same, so this doesn't tell us anything
1663 // about how the sequences rank.
1664 ;
1665 else if (T2.isMoreQualifiedThan(T1)) {
1666 // T1 has fewer qualifiers, so it could be the better sequence.
1667 if (Result == ImplicitConversionSequence::Worse)
1668 // Neither has qualifiers that are a subset of the other's
1669 // qualifiers.
1670 return ImplicitConversionSequence::Indistinguishable;
1671
1672 Result = ImplicitConversionSequence::Better;
1673 } else if (T1.isMoreQualifiedThan(T2)) {
1674 // T2 has fewer qualifiers, so it could be the better sequence.
1675 if (Result == ImplicitConversionSequence::Better)
1676 // Neither has qualifiers that are a subset of the other's
1677 // qualifiers.
1678 return ImplicitConversionSequence::Indistinguishable;
1679
1680 Result = ImplicitConversionSequence::Worse;
1681 } else {
1682 // Qualifiers are disjoint.
1683 return ImplicitConversionSequence::Indistinguishable;
1684 }
1685
1686 // If the types after this point are equivalent, we're done.
1687 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1688 break;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001689 }
1690
Douglas Gregor57373262008-10-22 14:17:15 +00001691 // Check that the winning standard conversion sequence isn't using
1692 // the deprecated string literal array to pointer conversion.
1693 switch (Result) {
1694 case ImplicitConversionSequence::Better:
1695 if (SCS1.Deprecated)
1696 Result = ImplicitConversionSequence::Indistinguishable;
1697 break;
1698
1699 case ImplicitConversionSequence::Indistinguishable:
1700 break;
1701
1702 case ImplicitConversionSequence::Worse:
1703 if (SCS2.Deprecated)
1704 Result = ImplicitConversionSequence::Indistinguishable;
1705 break;
1706 }
1707
1708 return Result;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001709}
1710
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001711/// CompareDerivedToBaseConversions - Compares two standard conversion
1712/// sequences to determine whether they can be ranked based on their
Douglas Gregorcb7de522008-11-26 23:31:11 +00001713/// various kinds of derived-to-base conversions (C++
1714/// [over.ics.rank]p4b3). As part of these checks, we also look at
1715/// conversions between Objective-C interface types.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001716ImplicitConversionSequence::CompareKind
1717Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1718 const StandardConversionSequence& SCS2) {
1719 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1720 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1721 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1722 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1723
1724 // Adjust the types we're converting from via the array-to-pointer
1725 // conversion, if we need to.
1726 if (SCS1.First == ICK_Array_To_Pointer)
1727 FromType1 = Context.getArrayDecayedType(FromType1);
1728 if (SCS2.First == ICK_Array_To_Pointer)
1729 FromType2 = Context.getArrayDecayedType(FromType2);
1730
1731 // Canonicalize all of the types.
1732 FromType1 = Context.getCanonicalType(FromType1);
1733 ToType1 = Context.getCanonicalType(ToType1);
1734 FromType2 = Context.getCanonicalType(FromType2);
1735 ToType2 = Context.getCanonicalType(ToType2);
1736
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001737 // C++ [over.ics.rank]p4b3:
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001738 //
1739 // If class B is derived directly or indirectly from class A and
1740 // class C is derived directly or indirectly from B,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001741 //
1742 // For Objective-C, we let A, B, and C also be Objective-C
1743 // interfaces.
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001744
1745 // Compare based on pointer conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001746 if (SCS1.Second == ICK_Pointer_Conversion &&
Douglas Gregor7ca09762008-11-27 01:19:21 +00001747 SCS2.Second == ICK_Pointer_Conversion &&
1748 /*FIXME: Remove if Objective-C id conversions get their own rank*/
1749 FromType1->isPointerType() && FromType2->isPointerType() &&
1750 ToType1->isPointerType() && ToType2->isPointerType()) {
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001751 QualType FromPointee1
1752 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1753 QualType ToPointee1
1754 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1755 QualType FromPointee2
1756 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1757 QualType ToPointee2
1758 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
Douglas Gregorcb7de522008-11-26 23:31:11 +00001759
1760 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1761 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1762 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1763 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1764
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001765 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001766 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1767 if (IsDerivedFrom(ToPointee1, ToPointee2))
1768 return ImplicitConversionSequence::Better;
1769 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1770 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001771
1772 if (ToIface1 && ToIface2) {
1773 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1774 return ImplicitConversionSequence::Better;
1775 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1776 return ImplicitConversionSequence::Worse;
1777 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001778 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001779
1780 // -- conversion of B* to A* is better than conversion of C* to A*,
1781 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1782 if (IsDerivedFrom(FromPointee2, FromPointee1))
1783 return ImplicitConversionSequence::Better;
1784 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1785 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001786
1787 if (FromIface1 && FromIface2) {
1788 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1789 return ImplicitConversionSequence::Better;
1790 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1791 return ImplicitConversionSequence::Worse;
1792 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001793 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001794 }
1795
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001796 // Compare based on reference bindings.
1797 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1798 SCS1.Second == ICK_Derived_To_Base) {
1799 // -- binding of an expression of type C to a reference of type
1800 // B& is better than binding an expression of type C to a
1801 // reference of type A&,
1802 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1803 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1804 if (IsDerivedFrom(ToType1, ToType2))
1805 return ImplicitConversionSequence::Better;
1806 else if (IsDerivedFrom(ToType2, ToType1))
1807 return ImplicitConversionSequence::Worse;
1808 }
1809
Douglas Gregor225c41e2008-11-03 19:09:14 +00001810 // -- binding of an expression of type B to a reference of type
1811 // A& is better than binding an expression of type C to a
1812 // reference of type A&,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001813 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1814 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1815 if (IsDerivedFrom(FromType2, FromType1))
1816 return ImplicitConversionSequence::Better;
1817 else if (IsDerivedFrom(FromType1, FromType2))
1818 return ImplicitConversionSequence::Worse;
1819 }
1820 }
1821
1822
1823 // FIXME: conversion of A::* to B::* is better than conversion of
1824 // A::* to C::*,
1825
1826 // FIXME: conversion of B::* to C::* is better than conversion of
1827 // A::* to C::*, and
1828
Douglas Gregor225c41e2008-11-03 19:09:14 +00001829 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1830 SCS1.Second == ICK_Derived_To_Base) {
1831 // -- conversion of C to B is better than conversion of C to A,
1832 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1833 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1834 if (IsDerivedFrom(ToType1, ToType2))
1835 return ImplicitConversionSequence::Better;
1836 else if (IsDerivedFrom(ToType2, ToType1))
1837 return ImplicitConversionSequence::Worse;
1838 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001839
Douglas Gregor225c41e2008-11-03 19:09:14 +00001840 // -- conversion of B to A is better than conversion of C to A.
1841 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1842 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1843 if (IsDerivedFrom(FromType2, FromType1))
1844 return ImplicitConversionSequence::Better;
1845 else if (IsDerivedFrom(FromType1, FromType2))
1846 return ImplicitConversionSequence::Worse;
1847 }
1848 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001849
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001850 return ImplicitConversionSequence::Indistinguishable;
1851}
1852
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001853/// TryCopyInitialization - Try to copy-initialize a value of type
1854/// ToType from the expression From. Return the implicit conversion
1855/// sequence required to pass this argument, which may be a bad
1856/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregor225c41e2008-11-03 19:09:14 +00001857/// a parameter of this type). If @p SuppressUserConversions, then we
1858/// do not permit any user-defined conversion sequences.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001859ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +00001860Sema::TryCopyInitialization(Expr *From, QualType ToType,
1861 bool SuppressUserConversions) {
Douglas Gregorf9201e02009-02-11 23:02:49 +00001862 if (ToType->isReferenceType()) {
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001863 ImplicitConversionSequence ICS;
Douglas Gregor225c41e2008-11-03 19:09:14 +00001864 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001865 return ICS;
1866 } else {
Douglas Gregor225c41e2008-11-03 19:09:14 +00001867 return TryImplicitConversion(From, ToType, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001868 }
1869}
1870
1871/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1872/// type ToType. Returns true (and emits a diagnostic) if there was
1873/// an error, returns false if the initialization succeeded.
1874bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1875 const char* Flavor) {
1876 if (!getLangOptions().CPlusPlus) {
1877 // In C, argument passing is the same as performing an assignment.
1878 QualType FromType = From->getType();
1879 AssignConvertType ConvTy =
1880 CheckSingleAssignmentConstraints(ToType, From);
1881
1882 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1883 FromType, From, Flavor);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001884 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001885
1886 if (ToType->isReferenceType())
1887 return CheckReferenceInit(From, ToType);
1888
Douglas Gregor45920e82008-12-19 17:40:08 +00001889 if (!PerformImplicitConversion(From, ToType, Flavor))
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001890 return false;
1891
1892 return Diag(From->getSourceRange().getBegin(),
1893 diag::err_typecheck_convert_incompatible)
1894 << ToType << From->getType() << Flavor << From->getSourceRange();
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001895}
1896
Douglas Gregor96176b32008-11-18 23:14:02 +00001897/// TryObjectArgumentInitialization - Try to initialize the object
1898/// parameter of the given member function (@c Method) from the
1899/// expression @p From.
1900ImplicitConversionSequence
1901Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1902 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1903 unsigned MethodQuals = Method->getTypeQualifiers();
1904 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1905
1906 // Set up the conversion sequence as a "bad" conversion, to allow us
1907 // to exit early.
1908 ImplicitConversionSequence ICS;
1909 ICS.Standard.setAsIdentityConversion();
1910 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1911
1912 // We need to have an object of class type.
1913 QualType FromType = From->getType();
1914 if (!FromType->isRecordType())
1915 return ICS;
1916
1917 // The implicit object parmeter is has the type "reference to cv X",
1918 // where X is the class of which the function is a member
1919 // (C++ [over.match.funcs]p4). However, when finding an implicit
1920 // conversion sequence for the argument, we are not allowed to
1921 // create temporaries or perform user-defined conversions
1922 // (C++ [over.match.funcs]p5). We perform a simplified version of
1923 // reference binding here, that allows class rvalues to bind to
1924 // non-constant references.
1925
1926 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1927 // with the implicit object parameter (C++ [over.match.funcs]p5).
1928 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1929 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1930 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1931 return ICS;
1932
1933 // Check that we have either the same type or a derived type. It
1934 // affects the conversion rank.
1935 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1936 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1937 ICS.Standard.Second = ICK_Identity;
1938 else if (IsDerivedFrom(FromType, ClassType))
1939 ICS.Standard.Second = ICK_Derived_To_Base;
1940 else
1941 return ICS;
1942
1943 // Success. Mark this as a reference binding.
1944 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1945 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1946 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1947 ICS.Standard.ReferenceBinding = true;
1948 ICS.Standard.DirectBinding = true;
Sebastian Redl85002392009-03-29 22:46:24 +00001949 ICS.Standard.RRefBinding = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00001950 return ICS;
1951}
1952
1953/// PerformObjectArgumentInitialization - Perform initialization of
1954/// the implicit object parameter for the given Method with the given
1955/// expression.
1956bool
1957Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1958 QualType ImplicitParamType
1959 = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1960 ImplicitConversionSequence ICS
1961 = TryObjectArgumentInitialization(From, Method);
1962 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1963 return Diag(From->getSourceRange().getBegin(),
Chris Lattnerfa25bbb2008-11-19 05:08:23 +00001964 diag::err_implicit_object_parameter_init)
Chris Lattnerd1625842008-11-24 06:25:27 +00001965 << ImplicitParamType << From->getType() << From->getSourceRange();
Douglas Gregor96176b32008-11-18 23:14:02 +00001966
1967 if (ICS.Standard.Second == ICK_Derived_To_Base &&
1968 CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1969 From->getSourceRange().getBegin(),
1970 From->getSourceRange()))
1971 return true;
1972
1973 ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1974 return false;
1975}
1976
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001977/// TryContextuallyConvertToBool - Attempt to contextually convert the
1978/// expression From to bool (C++0x [conv]p3).
1979ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
1980 return TryImplicitConversion(From, Context.BoolTy, false, true);
1981}
1982
1983/// PerformContextuallyConvertToBool - Perform a contextual conversion
1984/// of the expression From to bool (C++0x [conv]p3).
1985bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
1986 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
1987 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
1988 return false;
1989
1990 return Diag(From->getSourceRange().getBegin(),
1991 diag::err_typecheck_bool_condition)
1992 << From->getType() << From->getSourceRange();
1993}
1994
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001995/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregor225c41e2008-11-03 19:09:14 +00001996/// candidate functions, using the given function call arguments. If
1997/// @p SuppressUserConversions, then don't allow user-defined
1998/// conversions via constructors or conversion operators.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001999void
2000Sema::AddOverloadCandidate(FunctionDecl *Function,
2001 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00002002 OverloadCandidateSet& CandidateSet,
2003 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002004{
Douglas Gregor72564e72009-02-26 23:50:07 +00002005 const FunctionProtoType* Proto
2006 = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002007 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002008 assert(!isa<CXXConversionDecl>(Function) &&
2009 "Use AddConversionCandidate for conversion functions");
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002010
Douglas Gregor88a35142008-12-22 05:46:06 +00002011 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2012 // If we get here, it's because we're calling a member function
2013 // that is named without a member access expression (e.g.,
2014 // "this->f") that was either written explicitly or created
2015 // implicitly. This can happen with a qualified call to a member
2016 // function, e.g., X::f(). We use a NULL object as the implied
2017 // object argument (C++ [over.call.func]p3).
2018 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2019 SuppressUserConversions);
2020 return;
2021 }
2022
2023
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002024 // Add this candidate
2025 CandidateSet.push_back(OverloadCandidate());
2026 OverloadCandidate& Candidate = CandidateSet.back();
2027 Candidate.Function = Function;
Douglas Gregor88a35142008-12-22 05:46:06 +00002028 Candidate.Viable = true;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002029 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002030 Candidate.IgnoreObjectArgument = false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002031
2032 unsigned NumArgsInProto = Proto->getNumArgs();
2033
2034 // (C++ 13.3.2p2): A candidate function having fewer than m
2035 // parameters is viable only if it has an ellipsis in its parameter
2036 // list (8.3.5).
2037 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2038 Candidate.Viable = false;
2039 return;
2040 }
2041
2042 // (C++ 13.3.2p2): A candidate function having more than m parameters
2043 // is viable only if the (m+1)st parameter has a default argument
2044 // (8.3.6). For the purposes of overload resolution, the
2045 // parameter list is truncated on the right, so that there are
2046 // exactly m parameters.
2047 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2048 if (NumArgs < MinRequiredArgs) {
2049 // Not enough arguments.
2050 Candidate.Viable = false;
2051 return;
2052 }
2053
2054 // Determine the implicit conversion sequences for each of the
2055 // arguments.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002056 Candidate.Conversions.resize(NumArgs);
2057 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2058 if (ArgIdx < NumArgsInProto) {
2059 // (C++ 13.3.2p3): for F to be a viable function, there shall
2060 // exist for each argument an implicit conversion sequence
2061 // (13.3.3.1) that converts that argument to the corresponding
2062 // parameter of F.
2063 QualType ParamType = Proto->getArgType(ArgIdx);
2064 Candidate.Conversions[ArgIdx]
Douglas Gregor225c41e2008-11-03 19:09:14 +00002065 = TryCopyInitialization(Args[ArgIdx], ParamType,
2066 SuppressUserConversions);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002067 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00002068 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002069 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002070 break;
2071 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002072 } else {
2073 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2074 // argument for which there is no corresponding parameter is
2075 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2076 Candidate.Conversions[ArgIdx].ConversionKind
2077 = ImplicitConversionSequence::EllipsisConversion;
2078 }
2079 }
2080}
2081
Douglas Gregor063daf62009-03-13 18:40:31 +00002082/// \brief Add all of the function declarations in the given function set to
2083/// the overload canddiate set.
2084void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2085 Expr **Args, unsigned NumArgs,
2086 OverloadCandidateSet& CandidateSet,
2087 bool SuppressUserConversions) {
2088 for (FunctionSet::const_iterator F = Functions.begin(),
2089 FEnd = Functions.end();
2090 F != FEnd; ++F)
2091 AddOverloadCandidate(*F, Args, NumArgs, CandidateSet,
2092 SuppressUserConversions);
2093}
2094
Douglas Gregor96176b32008-11-18 23:14:02 +00002095/// AddMethodCandidate - Adds the given C++ member function to the set
2096/// of candidate functions, using the given function call arguments
2097/// and the object argument (@c Object). For example, in a call
2098/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2099/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2100/// allow user-defined conversions via constructors or conversion
2101/// operators.
2102void
2103Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2104 Expr **Args, unsigned NumArgs,
2105 OverloadCandidateSet& CandidateSet,
2106 bool SuppressUserConversions)
2107{
Douglas Gregor72564e72009-02-26 23:50:07 +00002108 const FunctionProtoType* Proto
2109 = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
Douglas Gregor96176b32008-11-18 23:14:02 +00002110 assert(Proto && "Methods without a prototype cannot be overloaded");
2111 assert(!isa<CXXConversionDecl>(Method) &&
2112 "Use AddConversionCandidate for conversion functions");
2113
2114 // Add this candidate
2115 CandidateSet.push_back(OverloadCandidate());
2116 OverloadCandidate& Candidate = CandidateSet.back();
2117 Candidate.Function = Method;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002118 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002119 Candidate.IgnoreObjectArgument = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002120
2121 unsigned NumArgsInProto = Proto->getNumArgs();
2122
2123 // (C++ 13.3.2p2): A candidate function having fewer than m
2124 // parameters is viable only if it has an ellipsis in its parameter
2125 // list (8.3.5).
2126 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2127 Candidate.Viable = false;
2128 return;
2129 }
2130
2131 // (C++ 13.3.2p2): A candidate function having more than m parameters
2132 // is viable only if the (m+1)st parameter has a default argument
2133 // (8.3.6). For the purposes of overload resolution, the
2134 // parameter list is truncated on the right, so that there are
2135 // exactly m parameters.
2136 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2137 if (NumArgs < MinRequiredArgs) {
2138 // Not enough arguments.
2139 Candidate.Viable = false;
2140 return;
2141 }
2142
2143 Candidate.Viable = true;
2144 Candidate.Conversions.resize(NumArgs + 1);
2145
Douglas Gregor88a35142008-12-22 05:46:06 +00002146 if (Method->isStatic() || !Object)
2147 // The implicit object argument is ignored.
2148 Candidate.IgnoreObjectArgument = true;
2149 else {
2150 // Determine the implicit conversion sequence for the object
2151 // parameter.
2152 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2153 if (Candidate.Conversions[0].ConversionKind
2154 == ImplicitConversionSequence::BadConversion) {
2155 Candidate.Viable = false;
2156 return;
2157 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002158 }
2159
2160 // Determine the implicit conversion sequences for each of the
2161 // arguments.
2162 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2163 if (ArgIdx < NumArgsInProto) {
2164 // (C++ 13.3.2p3): for F to be a viable function, there shall
2165 // exist for each argument an implicit conversion sequence
2166 // (13.3.3.1) that converts that argument to the corresponding
2167 // parameter of F.
2168 QualType ParamType = Proto->getArgType(ArgIdx);
2169 Candidate.Conversions[ArgIdx + 1]
2170 = TryCopyInitialization(Args[ArgIdx], ParamType,
2171 SuppressUserConversions);
2172 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2173 == ImplicitConversionSequence::BadConversion) {
2174 Candidate.Viable = false;
2175 break;
2176 }
2177 } else {
2178 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2179 // argument for which there is no corresponding parameter is
2180 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2181 Candidate.Conversions[ArgIdx + 1].ConversionKind
2182 = ImplicitConversionSequence::EllipsisConversion;
2183 }
2184 }
2185}
2186
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002187/// AddConversionCandidate - Add a C++ conversion function as a
2188/// candidate in the candidate set (C++ [over.match.conv],
2189/// C++ [over.match.copy]). From is the expression we're converting from,
2190/// and ToType is the type that we're eventually trying to convert to
2191/// (which may or may not be the same type as the type that the
2192/// conversion function produces).
2193void
2194Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2195 Expr *From, QualType ToType,
2196 OverloadCandidateSet& CandidateSet) {
2197 // Add this candidate
2198 CandidateSet.push_back(OverloadCandidate());
2199 OverloadCandidate& Candidate = CandidateSet.back();
2200 Candidate.Function = Conversion;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002201 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002202 Candidate.IgnoreObjectArgument = false;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002203 Candidate.FinalConversion.setAsIdentityConversion();
2204 Candidate.FinalConversion.FromTypePtr
2205 = Conversion->getConversionType().getAsOpaquePtr();
2206 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2207
Douglas Gregor96176b32008-11-18 23:14:02 +00002208 // Determine the implicit conversion sequence for the implicit
2209 // object parameter.
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002210 Candidate.Viable = true;
2211 Candidate.Conversions.resize(1);
Douglas Gregor96176b32008-11-18 23:14:02 +00002212 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002213
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002214 if (Candidate.Conversions[0].ConversionKind
2215 == ImplicitConversionSequence::BadConversion) {
2216 Candidate.Viable = false;
2217 return;
2218 }
2219
2220 // To determine what the conversion from the result of calling the
2221 // conversion function to the type we're eventually trying to
2222 // convert to (ToType), we need to synthesize a call to the
2223 // conversion function and attempt copy initialization from it. This
2224 // makes sure that we get the right semantics with respect to
2225 // lvalues/rvalues and the type. Fortunately, we can allocate this
2226 // call on the stack and we don't need its arguments to be
2227 // well-formed.
2228 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2229 SourceLocation());
2230 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002231 &ConversionRef, false);
Ted Kremenek668bf912009-02-09 20:51:47 +00002232
2233 // Note that it is safe to allocate CallExpr on the stack here because
2234 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2235 // allocator).
2236 CallExpr Call(Context, &ConversionFn, 0, 0,
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002237 Conversion->getConversionType().getNonReferenceType(),
2238 SourceLocation());
2239 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2240 switch (ICS.ConversionKind) {
2241 case ImplicitConversionSequence::StandardConversion:
2242 Candidate.FinalConversion = ICS.Standard;
2243 break;
2244
2245 case ImplicitConversionSequence::BadConversion:
2246 Candidate.Viable = false;
2247 break;
2248
2249 default:
2250 assert(false &&
2251 "Can only end up with a standard conversion sequence or failure");
2252 }
2253}
2254
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002255/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2256/// converts the given @c Object to a function pointer via the
2257/// conversion function @c Conversion, and then attempts to call it
2258/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2259/// the type of function that we'll eventually be calling.
2260void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
Douglas Gregor72564e72009-02-26 23:50:07 +00002261 const FunctionProtoType *Proto,
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002262 Expr *Object, Expr **Args, unsigned NumArgs,
2263 OverloadCandidateSet& CandidateSet) {
2264 CandidateSet.push_back(OverloadCandidate());
2265 OverloadCandidate& Candidate = CandidateSet.back();
2266 Candidate.Function = 0;
2267 Candidate.Surrogate = Conversion;
2268 Candidate.Viable = true;
2269 Candidate.IsSurrogate = true;
Douglas Gregor88a35142008-12-22 05:46:06 +00002270 Candidate.IgnoreObjectArgument = false;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002271 Candidate.Conversions.resize(NumArgs + 1);
2272
2273 // Determine the implicit conversion sequence for the implicit
2274 // object parameter.
2275 ImplicitConversionSequence ObjectInit
2276 = TryObjectArgumentInitialization(Object, Conversion);
2277 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2278 Candidate.Viable = false;
2279 return;
2280 }
2281
2282 // The first conversion is actually a user-defined conversion whose
2283 // first conversion is ObjectInit's standard conversion (which is
2284 // effectively a reference binding). Record it as such.
2285 Candidate.Conversions[0].ConversionKind
2286 = ImplicitConversionSequence::UserDefinedConversion;
2287 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2288 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2289 Candidate.Conversions[0].UserDefined.After
2290 = Candidate.Conversions[0].UserDefined.Before;
2291 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2292
2293 // Find the
2294 unsigned NumArgsInProto = Proto->getNumArgs();
2295
2296 // (C++ 13.3.2p2): A candidate function having fewer than m
2297 // parameters is viable only if it has an ellipsis in its parameter
2298 // list (8.3.5).
2299 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2300 Candidate.Viable = false;
2301 return;
2302 }
2303
2304 // Function types don't have any default arguments, so just check if
2305 // we have enough arguments.
2306 if (NumArgs < NumArgsInProto) {
2307 // Not enough arguments.
2308 Candidate.Viable = false;
2309 return;
2310 }
2311
2312 // Determine the implicit conversion sequences for each of the
2313 // arguments.
2314 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2315 if (ArgIdx < NumArgsInProto) {
2316 // (C++ 13.3.2p3): for F to be a viable function, there shall
2317 // exist for each argument an implicit conversion sequence
2318 // (13.3.3.1) that converts that argument to the corresponding
2319 // parameter of F.
2320 QualType ParamType = Proto->getArgType(ArgIdx);
2321 Candidate.Conversions[ArgIdx + 1]
2322 = TryCopyInitialization(Args[ArgIdx], ParamType,
2323 /*SuppressUserConversions=*/false);
2324 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2325 == ImplicitConversionSequence::BadConversion) {
2326 Candidate.Viable = false;
2327 break;
2328 }
2329 } else {
2330 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2331 // argument for which there is no corresponding parameter is
2332 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2333 Candidate.Conversions[ArgIdx + 1].ConversionKind
2334 = ImplicitConversionSequence::EllipsisConversion;
2335 }
2336 }
2337}
2338
Douglas Gregor063daf62009-03-13 18:40:31 +00002339// FIXME: This will eventually be removed, once we've migrated all of
2340// the operator overloading logic over to the scheme used by binary
2341// operators, which works for template instantiation.
2342void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002343 SourceLocation OpLoc,
Douglas Gregor96176b32008-11-18 23:14:02 +00002344 Expr **Args, unsigned NumArgs,
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002345 OverloadCandidateSet& CandidateSet,
2346 SourceRange OpRange) {
Douglas Gregor063daf62009-03-13 18:40:31 +00002347
2348 FunctionSet Functions;
2349
2350 QualType T1 = Args[0]->getType();
2351 QualType T2;
2352 if (NumArgs > 1)
2353 T2 = Args[1]->getType();
2354
2355 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2356 LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2357 ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2358 AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2359 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2360 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2361}
2362
2363/// \brief Add overload candidates for overloaded operators that are
2364/// member functions.
2365///
2366/// Add the overloaded operator candidates that are member functions
2367/// for the operator Op that was used in an operator expression such
2368/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2369/// CandidateSet will store the added overload candidates. (C++
2370/// [over.match.oper]).
2371void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2372 SourceLocation OpLoc,
2373 Expr **Args, unsigned NumArgs,
2374 OverloadCandidateSet& CandidateSet,
2375 SourceRange OpRange) {
Douglas Gregor96176b32008-11-18 23:14:02 +00002376 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2377
2378 // C++ [over.match.oper]p3:
2379 // For a unary operator @ with an operand of a type whose
2380 // cv-unqualified version is T1, and for a binary operator @ with
2381 // a left operand of a type whose cv-unqualified version is T1 and
2382 // a right operand of a type whose cv-unqualified version is T2,
2383 // three sets of candidate functions, designated member
2384 // candidates, non-member candidates and built-in candidates, are
2385 // constructed as follows:
2386 QualType T1 = Args[0]->getType();
2387 QualType T2;
2388 if (NumArgs > 1)
2389 T2 = Args[1]->getType();
2390
2391 // -- If T1 is a class type, the set of member candidates is the
2392 // result of the qualified lookup of T1::operator@
2393 // (13.3.1.1.1); otherwise, the set of member candidates is
2394 // empty.
Douglas Gregor063daf62009-03-13 18:40:31 +00002395 // FIXME: Lookup in base classes, too!
Douglas Gregor96176b32008-11-18 23:14:02 +00002396 if (const RecordType *T1Rec = T1->getAsRecordType()) {
Douglas Gregor3fc749d2008-12-23 00:26:44 +00002397 DeclContext::lookup_const_iterator Oper, OperEnd;
Steve Naroff0701bbb2009-01-08 17:28:14 +00002398 for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00002399 Oper != OperEnd; ++Oper)
2400 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2401 Args+1, NumArgs - 1, CandidateSet,
Douglas Gregor96176b32008-11-18 23:14:02 +00002402 /*SuppressUserConversions=*/false);
Douglas Gregor96176b32008-11-18 23:14:02 +00002403 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002404}
2405
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002406/// AddBuiltinCandidate - Add a candidate for a built-in
2407/// operator. ResultTy and ParamTys are the result and parameter types
2408/// of the built-in candidate, respectively. Args and NumArgs are the
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002409/// arguments being passed to the candidate. IsAssignmentOperator
2410/// should be true when this built-in candidate is an assignment
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002411/// operator. NumContextualBoolArguments is the number of arguments
2412/// (at the beginning of the argument list) that will be contextually
2413/// converted to bool.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002414void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2415 Expr **Args, unsigned NumArgs,
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002416 OverloadCandidateSet& CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002417 bool IsAssignmentOperator,
2418 unsigned NumContextualBoolArguments) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002419 // Add this candidate
2420 CandidateSet.push_back(OverloadCandidate());
2421 OverloadCandidate& Candidate = CandidateSet.back();
2422 Candidate.Function = 0;
Douglas Gregorc9467cf2008-12-12 02:00:36 +00002423 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002424 Candidate.IgnoreObjectArgument = false;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002425 Candidate.BuiltinTypes.ResultTy = ResultTy;
2426 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2427 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2428
2429 // Determine the implicit conversion sequences for each of the
2430 // arguments.
2431 Candidate.Viable = true;
2432 Candidate.Conversions.resize(NumArgs);
2433 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002434 // C++ [over.match.oper]p4:
2435 // For the built-in assignment operators, conversions of the
2436 // left operand are restricted as follows:
2437 // -- no temporaries are introduced to hold the left operand, and
2438 // -- no user-defined conversions are applied to the left
2439 // operand to achieve a type match with the left-most
2440 // parameter of a built-in candidate.
2441 //
2442 // We block these conversions by turning off user-defined
2443 // conversions, since that is the only way that initialization of
2444 // a reference to a non-class type can occur from something that
2445 // is not of the same type.
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002446 if (ArgIdx < NumContextualBoolArguments) {
2447 assert(ParamTys[ArgIdx] == Context.BoolTy &&
2448 "Contextual conversion to bool requires bool type");
2449 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2450 } else {
2451 Candidate.Conversions[ArgIdx]
2452 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2453 ArgIdx == 0 && IsAssignmentOperator);
2454 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002455 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00002456 == ImplicitConversionSequence::BadConversion) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002457 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002458 break;
2459 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002460 }
2461}
2462
2463/// BuiltinCandidateTypeSet - A set of types that will be used for the
2464/// candidate operator functions for built-in operators (C++
2465/// [over.built]). The types are separated into pointer types and
2466/// enumeration types.
2467class BuiltinCandidateTypeSet {
2468 /// TypeSet - A set of types.
Chris Lattnere37b94c2009-03-29 00:04:01 +00002469 typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002470
2471 /// PointerTypes - The set of pointer types that will be used in the
2472 /// built-in candidates.
2473 TypeSet PointerTypes;
2474
2475 /// EnumerationTypes - The set of enumeration types that will be
2476 /// used in the built-in candidates.
2477 TypeSet EnumerationTypes;
2478
2479 /// Context - The AST context in which we will build the type sets.
2480 ASTContext &Context;
2481
2482 bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2483
2484public:
2485 /// iterator - Iterates through the types that are part of the set.
Chris Lattnere37b94c2009-03-29 00:04:01 +00002486 typedef TypeSet::iterator iterator;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002487
2488 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2489
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002490 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2491 bool AllowExplicitConversions);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002492
2493 /// pointer_begin - First pointer type found;
2494 iterator pointer_begin() { return PointerTypes.begin(); }
2495
2496 /// pointer_end - Last pointer type found;
2497 iterator pointer_end() { return PointerTypes.end(); }
2498
2499 /// enumeration_begin - First enumeration type found;
2500 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2501
2502 /// enumeration_end - Last enumeration type found;
2503 iterator enumeration_end() { return EnumerationTypes.end(); }
2504};
2505
2506/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2507/// the set of pointer types along with any more-qualified variants of
2508/// that type. For example, if @p Ty is "int const *", this routine
2509/// will add "int const *", "int const volatile *", "int const
2510/// restrict *", and "int const volatile restrict *" to the set of
2511/// pointer types. Returns true if the add of @p Ty itself succeeded,
2512/// false otherwise.
2513bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2514 // Insert this type.
Chris Lattnere37b94c2009-03-29 00:04:01 +00002515 if (!PointerTypes.insert(Ty))
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002516 return false;
2517
2518 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2519 QualType PointeeTy = PointerTy->getPointeeType();
2520 // FIXME: Optimize this so that we don't keep trying to add the same types.
2521
2522 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2523 // with all pointer conversions that don't cast away constness?
2524 if (!PointeeTy.isConstQualified())
2525 AddWithMoreQualifiedTypeVariants
2526 (Context.getPointerType(PointeeTy.withConst()));
2527 if (!PointeeTy.isVolatileQualified())
2528 AddWithMoreQualifiedTypeVariants
2529 (Context.getPointerType(PointeeTy.withVolatile()));
2530 if (!PointeeTy.isRestrictQualified())
2531 AddWithMoreQualifiedTypeVariants
2532 (Context.getPointerType(PointeeTy.withRestrict()));
2533 }
2534
2535 return true;
2536}
2537
2538/// AddTypesConvertedFrom - Add each of the types to which the type @p
2539/// Ty can be implicit converted to the given set of @p Types. We're
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002540/// primarily interested in pointer types and enumeration types.
2541/// AllowUserConversions is true if we should look at the conversion
2542/// functions of a class type, and AllowExplicitConversions if we
2543/// should also include the explicit conversion functions of a class
2544/// type.
2545void
2546BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2547 bool AllowUserConversions,
2548 bool AllowExplicitConversions) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002549 // Only deal with canonical types.
2550 Ty = Context.getCanonicalType(Ty);
2551
2552 // Look through reference types; they aren't part of the type of an
2553 // expression for the purposes of conversions.
2554 if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2555 Ty = RefTy->getPointeeType();
2556
2557 // We don't care about qualifiers on the type.
2558 Ty = Ty.getUnqualifiedType();
2559
2560 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2561 QualType PointeeTy = PointerTy->getPointeeType();
2562
2563 // Insert our type, and its more-qualified variants, into the set
2564 // of types.
2565 if (!AddWithMoreQualifiedTypeVariants(Ty))
2566 return;
2567
2568 // Add 'cv void*' to our set of types.
2569 if (!Ty->isVoidType()) {
2570 QualType QualVoid
2571 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2572 AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2573 }
2574
2575 // If this is a pointer to a class type, add pointers to its bases
2576 // (with the same level of cv-qualification as the original
2577 // derived class, of course).
2578 if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2579 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2580 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2581 Base != ClassDecl->bases_end(); ++Base) {
2582 QualType BaseTy = Context.getCanonicalType(Base->getType());
2583 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2584
2585 // Add the pointer type, recursively, so that we get all of
2586 // the indirect base classes, too.
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002587 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002588 }
2589 }
2590 } else if (Ty->isEnumeralType()) {
Chris Lattnere37b94c2009-03-29 00:04:01 +00002591 EnumerationTypes.insert(Ty);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002592 } else if (AllowUserConversions) {
2593 if (const RecordType *TyRec = Ty->getAsRecordType()) {
2594 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2595 // FIXME: Visit conversion functions in the base classes, too.
2596 OverloadedFunctionDecl *Conversions
2597 = ClassDecl->getConversionFunctions();
2598 for (OverloadedFunctionDecl::function_iterator Func
2599 = Conversions->function_begin();
2600 Func != Conversions->function_end(); ++Func) {
2601 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002602 if (AllowExplicitConversions || !Conv->isExplicit())
2603 AddTypesConvertedFrom(Conv->getConversionType(), false, false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002604 }
2605 }
2606 }
2607}
2608
Douglas Gregor74253732008-11-19 15:42:04 +00002609/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2610/// operator overloads to the candidate set (C++ [over.built]), based
2611/// on the operator @p Op and the arguments given. For example, if the
2612/// operator is a binary '+', this routine might add "int
2613/// operator+(int, int)" to cover integer addition.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002614void
Douglas Gregor74253732008-11-19 15:42:04 +00002615Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2616 Expr **Args, unsigned NumArgs,
2617 OverloadCandidateSet& CandidateSet) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002618 // The set of "promoted arithmetic types", which are the arithmetic
2619 // types are that preserved by promotion (C++ [over.built]p2). Note
2620 // that the first few of these types are the promoted integral
2621 // types; these types need to be first.
2622 // FIXME: What about complex?
2623 const unsigned FirstIntegralType = 0;
2624 const unsigned LastIntegralType = 13;
2625 const unsigned FirstPromotedIntegralType = 7,
2626 LastPromotedIntegralType = 13;
2627 const unsigned FirstPromotedArithmeticType = 7,
2628 LastPromotedArithmeticType = 16;
2629 const unsigned NumArithmeticTypes = 16;
2630 QualType ArithmeticTypes[NumArithmeticTypes] = {
2631 Context.BoolTy, Context.CharTy, Context.WCharTy,
2632 Context.SignedCharTy, Context.ShortTy,
2633 Context.UnsignedCharTy, Context.UnsignedShortTy,
2634 Context.IntTy, Context.LongTy, Context.LongLongTy,
2635 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2636 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2637 };
2638
2639 // Find all of the types that the arguments can convert to, but only
2640 // if the operator we're looking at has built-in operator candidates
2641 // that make use of these types.
2642 BuiltinCandidateTypeSet CandidateTypes(Context);
2643 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2644 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor74253732008-11-19 15:42:04 +00002645 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002646 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor74253732008-11-19 15:42:04 +00002647 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2648 (Op == OO_Star && NumArgs == 1)) {
2649 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002650 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2651 true,
2652 (Op == OO_Exclaim ||
2653 Op == OO_AmpAmp ||
2654 Op == OO_PipePipe));
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002655 }
2656
2657 bool isComparison = false;
2658 switch (Op) {
2659 case OO_None:
2660 case NUM_OVERLOADED_OPERATORS:
2661 assert(false && "Expected an overloaded operator");
2662 break;
2663
Douglas Gregor74253732008-11-19 15:42:04 +00002664 case OO_Star: // '*' is either unary or binary
2665 if (NumArgs == 1)
2666 goto UnaryStar;
2667 else
2668 goto BinaryStar;
2669 break;
2670
2671 case OO_Plus: // '+' is either unary or binary
2672 if (NumArgs == 1)
2673 goto UnaryPlus;
2674 else
2675 goto BinaryPlus;
2676 break;
2677
2678 case OO_Minus: // '-' is either unary or binary
2679 if (NumArgs == 1)
2680 goto UnaryMinus;
2681 else
2682 goto BinaryMinus;
2683 break;
2684
2685 case OO_Amp: // '&' is either unary or binary
2686 if (NumArgs == 1)
2687 goto UnaryAmp;
2688 else
2689 goto BinaryAmp;
2690
2691 case OO_PlusPlus:
2692 case OO_MinusMinus:
2693 // C++ [over.built]p3:
2694 //
2695 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2696 // is either volatile or empty, there exist candidate operator
2697 // functions of the form
2698 //
2699 // VQ T& operator++(VQ T&);
2700 // T operator++(VQ T&, int);
2701 //
2702 // C++ [over.built]p4:
2703 //
2704 // For every pair (T, VQ), where T is an arithmetic type other
2705 // than bool, and VQ is either volatile or empty, there exist
2706 // candidate operator functions of the form
2707 //
2708 // VQ T& operator--(VQ T&);
2709 // T operator--(VQ T&, int);
2710 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2711 Arith < NumArithmeticTypes; ++Arith) {
2712 QualType ArithTy = ArithmeticTypes[Arith];
2713 QualType ParamTypes[2]
Sebastian Redl7c80bd62009-03-16 23:22:08 +00002714 = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
Douglas Gregor74253732008-11-19 15:42:04 +00002715
2716 // Non-volatile version.
2717 if (NumArgs == 1)
2718 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2719 else
2720 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2721
2722 // Volatile version
Sebastian Redl7c80bd62009-03-16 23:22:08 +00002723 ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
Douglas Gregor74253732008-11-19 15:42:04 +00002724 if (NumArgs == 1)
2725 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2726 else
2727 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2728 }
2729
2730 // C++ [over.built]p5:
2731 //
2732 // For every pair (T, VQ), where T is a cv-qualified or
2733 // cv-unqualified object type, and VQ is either volatile or
2734 // empty, there exist candidate operator functions of the form
2735 //
2736 // T*VQ& operator++(T*VQ&);
2737 // T*VQ& operator--(T*VQ&);
2738 // T* operator++(T*VQ&, int);
2739 // T* operator--(T*VQ&, int);
2740 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2741 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2742 // Skip pointer types that aren't pointers to object types.
Douglas Gregorbad0e652009-03-24 20:32:41 +00002743 if (!(*Ptr)->getAsPointerType()->getPointeeType()->isObjectType())
Douglas Gregor74253732008-11-19 15:42:04 +00002744 continue;
2745
2746 QualType ParamTypes[2] = {
Sebastian Redl7c80bd62009-03-16 23:22:08 +00002747 Context.getLValueReferenceType(*Ptr), Context.IntTy
Douglas Gregor74253732008-11-19 15:42:04 +00002748 };
2749
2750 // Without volatile
2751 if (NumArgs == 1)
2752 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2753 else
2754 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2755
2756 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2757 // With volatile
Sebastian Redl7c80bd62009-03-16 23:22:08 +00002758 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
Douglas Gregor74253732008-11-19 15:42:04 +00002759 if (NumArgs == 1)
2760 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2761 else
2762 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2763 }
2764 }
2765 break;
2766
2767 UnaryStar:
2768 // C++ [over.built]p6:
2769 // For every cv-qualified or cv-unqualified object type T, there
2770 // exist candidate operator functions of the form
2771 //
2772 // T& operator*(T*);
2773 //
2774 // C++ [over.built]p7:
2775 // For every function type T, there exist candidate operator
2776 // functions of the form
2777 // T& operator*(T*);
2778 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2779 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2780 QualType ParamTy = *Ptr;
2781 QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00002782 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
Douglas Gregor74253732008-11-19 15:42:04 +00002783 &ParamTy, Args, 1, CandidateSet);
2784 }
2785 break;
2786
2787 UnaryPlus:
2788 // C++ [over.built]p8:
2789 // For every type T, there exist candidate operator functions of
2790 // the form
2791 //
2792 // T* operator+(T*);
2793 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2794 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2795 QualType ParamTy = *Ptr;
2796 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2797 }
2798
2799 // Fall through
2800
2801 UnaryMinus:
2802 // C++ [over.built]p9:
2803 // For every promoted arithmetic type T, there exist candidate
2804 // operator functions of the form
2805 //
2806 // T operator+(T);
2807 // T operator-(T);
2808 for (unsigned Arith = FirstPromotedArithmeticType;
2809 Arith < LastPromotedArithmeticType; ++Arith) {
2810 QualType ArithTy = ArithmeticTypes[Arith];
2811 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2812 }
2813 break;
2814
2815 case OO_Tilde:
2816 // C++ [over.built]p10:
2817 // For every promoted integral type T, there exist candidate
2818 // operator functions of the form
2819 //
2820 // T operator~(T);
2821 for (unsigned Int = FirstPromotedIntegralType;
2822 Int < LastPromotedIntegralType; ++Int) {
2823 QualType IntTy = ArithmeticTypes[Int];
2824 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2825 }
2826 break;
2827
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002828 case OO_New:
2829 case OO_Delete:
2830 case OO_Array_New:
2831 case OO_Array_Delete:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002832 case OO_Call:
Douglas Gregor74253732008-11-19 15:42:04 +00002833 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002834 break;
2835
2836 case OO_Comma:
Douglas Gregor74253732008-11-19 15:42:04 +00002837 UnaryAmp:
2838 case OO_Arrow:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002839 // C++ [over.match.oper]p3:
2840 // -- For the operator ',', the unary operator '&', or the
2841 // operator '->', the built-in candidates set is empty.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002842 break;
2843
2844 case OO_Less:
2845 case OO_Greater:
2846 case OO_LessEqual:
2847 case OO_GreaterEqual:
2848 case OO_EqualEqual:
2849 case OO_ExclaimEqual:
2850 // C++ [over.built]p15:
2851 //
2852 // For every pointer or enumeration type T, there exist
2853 // candidate operator functions of the form
2854 //
2855 // bool operator<(T, T);
2856 // bool operator>(T, T);
2857 // bool operator<=(T, T);
2858 // bool operator>=(T, T);
2859 // bool operator==(T, T);
2860 // bool operator!=(T, T);
2861 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2862 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2863 QualType ParamTypes[2] = { *Ptr, *Ptr };
2864 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2865 }
2866 for (BuiltinCandidateTypeSet::iterator Enum
2867 = CandidateTypes.enumeration_begin();
2868 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2869 QualType ParamTypes[2] = { *Enum, *Enum };
2870 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2871 }
2872
2873 // Fall through.
2874 isComparison = true;
2875
Douglas Gregor74253732008-11-19 15:42:04 +00002876 BinaryPlus:
2877 BinaryMinus:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002878 if (!isComparison) {
2879 // We didn't fall through, so we must have OO_Plus or OO_Minus.
2880
2881 // C++ [over.built]p13:
2882 //
2883 // For every cv-qualified or cv-unqualified object type T
2884 // there exist candidate operator functions of the form
2885 //
2886 // T* operator+(T*, ptrdiff_t);
2887 // T& operator[](T*, ptrdiff_t); [BELOW]
2888 // T* operator-(T*, ptrdiff_t);
2889 // T* operator+(ptrdiff_t, T*);
2890 // T& operator[](ptrdiff_t, T*); [BELOW]
2891 //
2892 // C++ [over.built]p14:
2893 //
2894 // For every T, where T is a pointer to object type, there
2895 // exist candidate operator functions of the form
2896 //
2897 // ptrdiff_t operator-(T, T);
2898 for (BuiltinCandidateTypeSet::iterator Ptr
2899 = CandidateTypes.pointer_begin();
2900 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2901 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2902
2903 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2904 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2905
2906 if (Op == OO_Plus) {
2907 // T* operator+(ptrdiff_t, T*);
2908 ParamTypes[0] = ParamTypes[1];
2909 ParamTypes[1] = *Ptr;
2910 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2911 } else {
2912 // ptrdiff_t operator-(T, T);
2913 ParamTypes[1] = *Ptr;
2914 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2915 Args, 2, CandidateSet);
2916 }
2917 }
2918 }
2919 // Fall through
2920
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002921 case OO_Slash:
Douglas Gregor74253732008-11-19 15:42:04 +00002922 BinaryStar:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002923 // C++ [over.built]p12:
2924 //
2925 // For every pair of promoted arithmetic types L and R, there
2926 // exist candidate operator functions of the form
2927 //
2928 // LR operator*(L, R);
2929 // LR operator/(L, R);
2930 // LR operator+(L, R);
2931 // LR operator-(L, R);
2932 // bool operator<(L, R);
2933 // bool operator>(L, R);
2934 // bool operator<=(L, R);
2935 // bool operator>=(L, R);
2936 // bool operator==(L, R);
2937 // bool operator!=(L, R);
2938 //
2939 // where LR is the result of the usual arithmetic conversions
2940 // between types L and R.
2941 for (unsigned Left = FirstPromotedArithmeticType;
2942 Left < LastPromotedArithmeticType; ++Left) {
2943 for (unsigned Right = FirstPromotedArithmeticType;
2944 Right < LastPromotedArithmeticType; ++Right) {
2945 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2946 QualType Result
2947 = isComparison? Context.BoolTy
2948 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2949 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2950 }
2951 }
2952 break;
2953
2954 case OO_Percent:
Douglas Gregor74253732008-11-19 15:42:04 +00002955 BinaryAmp:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002956 case OO_Caret:
2957 case OO_Pipe:
2958 case OO_LessLess:
2959 case OO_GreaterGreater:
2960 // C++ [over.built]p17:
2961 //
2962 // For every pair of promoted integral types L and R, there
2963 // exist candidate operator functions of the form
2964 //
2965 // LR operator%(L, R);
2966 // LR operator&(L, R);
2967 // LR operator^(L, R);
2968 // LR operator|(L, R);
2969 // L operator<<(L, R);
2970 // L operator>>(L, R);
2971 //
2972 // where LR is the result of the usual arithmetic conversions
2973 // between types L and R.
2974 for (unsigned Left = FirstPromotedIntegralType;
2975 Left < LastPromotedIntegralType; ++Left) {
2976 for (unsigned Right = FirstPromotedIntegralType;
2977 Right < LastPromotedIntegralType; ++Right) {
2978 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2979 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
2980 ? LandR[0]
2981 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2982 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2983 }
2984 }
2985 break;
2986
2987 case OO_Equal:
2988 // C++ [over.built]p20:
2989 //
2990 // For every pair (T, VQ), where T is an enumeration or
2991 // (FIXME:) pointer to member type and VQ is either volatile or
2992 // empty, there exist candidate operator functions of the form
2993 //
2994 // VQ T& operator=(VQ T&, T);
2995 for (BuiltinCandidateTypeSet::iterator Enum
2996 = CandidateTypes.enumeration_begin();
2997 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2998 QualType ParamTypes[2];
2999
3000 // T& operator=(T&, T)
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003001 ParamTypes[0] = Context.getLValueReferenceType(*Enum);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003002 ParamTypes[1] = *Enum;
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003003 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003004 /*IsAssignmentOperator=*/false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003005
Douglas Gregor74253732008-11-19 15:42:04 +00003006 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3007 // volatile T& operator=(volatile T&, T)
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003008 ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile());
Douglas Gregor74253732008-11-19 15:42:04 +00003009 ParamTypes[1] = *Enum;
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003010 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003011 /*IsAssignmentOperator=*/false);
Douglas Gregor74253732008-11-19 15:42:04 +00003012 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003013 }
3014 // Fall through.
3015
3016 case OO_PlusEqual:
3017 case OO_MinusEqual:
3018 // C++ [over.built]p19:
3019 //
3020 // For every pair (T, VQ), where T is any type and VQ is either
3021 // volatile or empty, there exist candidate operator functions
3022 // of the form
3023 //
3024 // T*VQ& operator=(T*VQ&, T*);
3025 //
3026 // C++ [over.built]p21:
3027 //
3028 // For every pair (T, VQ), where T is a cv-qualified or
3029 // cv-unqualified object type and VQ is either volatile or
3030 // empty, there exist candidate operator functions of the form
3031 //
3032 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
3033 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
3034 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3035 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3036 QualType ParamTypes[2];
3037 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3038
3039 // non-volatile version
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003040 ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003041 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3042 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003043
Douglas Gregor74253732008-11-19 15:42:04 +00003044 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3045 // volatile version
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003046 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003047 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3048 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor74253732008-11-19 15:42:04 +00003049 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003050 }
3051 // Fall through.
3052
3053 case OO_StarEqual:
3054 case OO_SlashEqual:
3055 // C++ [over.built]p18:
3056 //
3057 // For every triple (L, VQ, R), where L is an arithmetic type,
3058 // VQ is either volatile or empty, and R is a promoted
3059 // arithmetic type, there exist candidate operator functions of
3060 // the form
3061 //
3062 // VQ L& operator=(VQ L&, R);
3063 // VQ L& operator*=(VQ L&, R);
3064 // VQ L& operator/=(VQ L&, R);
3065 // VQ L& operator+=(VQ L&, R);
3066 // VQ L& operator-=(VQ L&, R);
3067 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3068 for (unsigned Right = FirstPromotedArithmeticType;
3069 Right < LastPromotedArithmeticType; ++Right) {
3070 QualType ParamTypes[2];
3071 ParamTypes[1] = ArithmeticTypes[Right];
3072
3073 // Add this built-in operator as a candidate (VQ is empty).
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003074 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003075 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3076 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003077
3078 // Add this built-in operator as a candidate (VQ is 'volatile').
3079 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003080 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003081 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3082 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003083 }
3084 }
3085 break;
3086
3087 case OO_PercentEqual:
3088 case OO_LessLessEqual:
3089 case OO_GreaterGreaterEqual:
3090 case OO_AmpEqual:
3091 case OO_CaretEqual:
3092 case OO_PipeEqual:
3093 // C++ [over.built]p22:
3094 //
3095 // For every triple (L, VQ, R), where L is an integral type, VQ
3096 // is either volatile or empty, and R is a promoted integral
3097 // type, there exist candidate operator functions of the form
3098 //
3099 // VQ L& operator%=(VQ L&, R);
3100 // VQ L& operator<<=(VQ L&, R);
3101 // VQ L& operator>>=(VQ L&, R);
3102 // VQ L& operator&=(VQ L&, R);
3103 // VQ L& operator^=(VQ L&, R);
3104 // VQ L& operator|=(VQ L&, R);
3105 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3106 for (unsigned Right = FirstPromotedIntegralType;
3107 Right < LastPromotedIntegralType; ++Right) {
3108 QualType ParamTypes[2];
3109 ParamTypes[1] = ArithmeticTypes[Right];
3110
3111 // Add this built-in operator as a candidate (VQ is empty).
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003112 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003113 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3114
3115 // Add this built-in operator as a candidate (VQ is 'volatile').
3116 ParamTypes[0] = ArithmeticTypes[Left];
3117 ParamTypes[0].addVolatile();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003118 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003119 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3120 }
3121 }
3122 break;
3123
Douglas Gregor74253732008-11-19 15:42:04 +00003124 case OO_Exclaim: {
3125 // C++ [over.operator]p23:
3126 //
3127 // There also exist candidate operator functions of the form
3128 //
3129 // bool operator!(bool);
3130 // bool operator&&(bool, bool); [BELOW]
3131 // bool operator||(bool, bool); [BELOW]
3132 QualType ParamTy = Context.BoolTy;
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003133 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3134 /*IsAssignmentOperator=*/false,
3135 /*NumContextualBoolArguments=*/1);
Douglas Gregor74253732008-11-19 15:42:04 +00003136 break;
3137 }
3138
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003139 case OO_AmpAmp:
3140 case OO_PipePipe: {
3141 // C++ [over.operator]p23:
3142 //
3143 // There also exist candidate operator functions of the form
3144 //
Douglas Gregor74253732008-11-19 15:42:04 +00003145 // bool operator!(bool); [ABOVE]
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003146 // bool operator&&(bool, bool);
3147 // bool operator||(bool, bool);
3148 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003149 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3150 /*IsAssignmentOperator=*/false,
3151 /*NumContextualBoolArguments=*/2);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003152 break;
3153 }
3154
3155 case OO_Subscript:
3156 // C++ [over.built]p13:
3157 //
3158 // For every cv-qualified or cv-unqualified object type T there
3159 // exist candidate operator functions of the form
3160 //
3161 // T* operator+(T*, ptrdiff_t); [ABOVE]
3162 // T& operator[](T*, ptrdiff_t);
3163 // T* operator-(T*, ptrdiff_t); [ABOVE]
3164 // T* operator+(ptrdiff_t, T*); [ABOVE]
3165 // T& operator[](ptrdiff_t, T*);
3166 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3167 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3168 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3169 QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003170 QualType ResultTy = Context.getLValueReferenceType(PointeeType);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003171
3172 // T& operator[](T*, ptrdiff_t)
3173 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3174
3175 // T& operator[](ptrdiff_t, T*);
3176 ParamTypes[0] = ParamTypes[1];
3177 ParamTypes[1] = *Ptr;
3178 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3179 }
3180 break;
3181
3182 case OO_ArrowStar:
3183 // FIXME: No support for pointer-to-members yet.
3184 break;
3185 }
3186}
3187
Douglas Gregorfa047642009-02-04 00:32:51 +00003188/// \brief Add function candidates found via argument-dependent lookup
3189/// to the set of overloading candidates.
3190///
3191/// This routine performs argument-dependent name lookup based on the
3192/// given function name (which may also be an operator name) and adds
3193/// all of the overload candidates found by ADL to the overload
3194/// candidate set (C++ [basic.lookup.argdep]).
3195void
3196Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3197 Expr **Args, unsigned NumArgs,
3198 OverloadCandidateSet& CandidateSet) {
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003199 FunctionSet Functions;
Douglas Gregorfa047642009-02-04 00:32:51 +00003200
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003201 // Record all of the function candidates that we've already
3202 // added to the overload set, so that we don't add those same
3203 // candidates a second time.
3204 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3205 CandEnd = CandidateSet.end();
3206 Cand != CandEnd; ++Cand)
3207 if (Cand->Function)
3208 Functions.insert(Cand->Function);
Douglas Gregorfa047642009-02-04 00:32:51 +00003209
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003210 ArgumentDependentLookup(Name, Args, NumArgs, Functions);
Douglas Gregorfa047642009-02-04 00:32:51 +00003211
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003212 // Erase all of the candidates we already knew about.
3213 // FIXME: This is suboptimal. Is there a better way?
3214 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3215 CandEnd = CandidateSet.end();
3216 Cand != CandEnd; ++Cand)
3217 if (Cand->Function)
3218 Functions.erase(Cand->Function);
3219
3220 // For each of the ADL candidates we found, add it to the overload
3221 // set.
3222 for (FunctionSet::iterator Func = Functions.begin(),
3223 FuncEnd = Functions.end();
3224 Func != FuncEnd; ++Func)
3225 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
Douglas Gregorfa047642009-02-04 00:32:51 +00003226}
3227
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003228/// isBetterOverloadCandidate - Determines whether the first overload
3229/// candidate is a better candidate than the second (C++ 13.3.3p1).
3230bool
3231Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3232 const OverloadCandidate& Cand2)
3233{
3234 // Define viable functions to be better candidates than non-viable
3235 // functions.
3236 if (!Cand2.Viable)
3237 return Cand1.Viable;
3238 else if (!Cand1.Viable)
3239 return false;
3240
Douglas Gregor88a35142008-12-22 05:46:06 +00003241 // C++ [over.match.best]p1:
3242 //
3243 // -- if F is a static member function, ICS1(F) is defined such
3244 // that ICS1(F) is neither better nor worse than ICS1(G) for
3245 // any function G, and, symmetrically, ICS1(G) is neither
3246 // better nor worse than ICS1(F).
3247 unsigned StartArg = 0;
3248 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3249 StartArg = 1;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003250
3251 // (C++ 13.3.3p1): a viable function F1 is defined to be a better
3252 // function than another viable function F2 if for all arguments i,
3253 // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
3254 // then...
3255 unsigned NumArgs = Cand1.Conversions.size();
3256 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3257 bool HasBetterConversion = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00003258 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003259 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3260 Cand2.Conversions[ArgIdx])) {
3261 case ImplicitConversionSequence::Better:
3262 // Cand1 has a better conversion sequence.
3263 HasBetterConversion = true;
3264 break;
3265
3266 case ImplicitConversionSequence::Worse:
3267 // Cand1 can't be better than Cand2.
3268 return false;
3269
3270 case ImplicitConversionSequence::Indistinguishable:
3271 // Do nothing.
3272 break;
3273 }
3274 }
3275
3276 if (HasBetterConversion)
3277 return true;
3278
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003279 // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
3280 // implemented, but they require template support.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003281
Douglas Gregorf1991ea2008-11-07 22:36:19 +00003282 // C++ [over.match.best]p1b4:
3283 //
3284 // -- the context is an initialization by user-defined conversion
3285 // (see 8.5, 13.3.1.5) and the standard conversion sequence
3286 // from the return type of F1 to the destination type (i.e.,
3287 // the type of the entity being initialized) is a better
3288 // conversion sequence than the standard conversion sequence
3289 // from the return type of F2 to the destination type.
Douglas Gregor447b69e2008-11-19 03:25:36 +00003290 if (Cand1.Function && Cand2.Function &&
3291 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregorf1991ea2008-11-07 22:36:19 +00003292 isa<CXXConversionDecl>(Cand2.Function)) {
3293 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3294 Cand2.FinalConversion)) {
3295 case ImplicitConversionSequence::Better:
3296 // Cand1 has a better conversion sequence.
3297 return true;
3298
3299 case ImplicitConversionSequence::Worse:
3300 // Cand1 can't be better than Cand2.
3301 return false;
3302
3303 case ImplicitConversionSequence::Indistinguishable:
3304 // Do nothing
3305 break;
3306 }
3307 }
3308
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003309 return false;
3310}
3311
3312/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
3313/// within an overload candidate set. If overloading is successful,
3314/// the result will be OR_Success and Best will be set to point to the
3315/// best viable function within the candidate set. Otherwise, one of
3316/// several kinds of errors will be returned; see
3317/// Sema::OverloadingResult.
3318Sema::OverloadingResult
3319Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3320 OverloadCandidateSet::iterator& Best)
3321{
3322 // Find the best viable function.
3323 Best = CandidateSet.end();
3324 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3325 Cand != CandidateSet.end(); ++Cand) {
3326 if (Cand->Viable) {
3327 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3328 Best = Cand;
3329 }
3330 }
3331
3332 // If we didn't find any viable functions, abort.
3333 if (Best == CandidateSet.end())
3334 return OR_No_Viable_Function;
3335
3336 // Make sure that this function is better than every other viable
3337 // function. If not, we have an ambiguity.
3338 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3339 Cand != CandidateSet.end(); ++Cand) {
3340 if (Cand->Viable &&
3341 Cand != Best &&
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003342 !isBetterOverloadCandidate(*Best, *Cand)) {
3343 Best = CandidateSet.end();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003344 return OR_Ambiguous;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003345 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003346 }
3347
3348 // Best is the best viable function.
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003349 if (Best->Function &&
3350 (Best->Function->isDeleted() ||
3351 Best->Function->getAttr<UnavailableAttr>()))
3352 return OR_Deleted;
3353
3354 // If Best refers to a function that is either deleted (C++0x) or
3355 // unavailable (Clang extension) report an error.
3356
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003357 return OR_Success;
3358}
3359
3360/// PrintOverloadCandidates - When overload resolution fails, prints
3361/// diagnostic messages containing the candidates in the candidate
3362/// set. If OnlyViable is true, only viable candidates will be printed.
3363void
3364Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3365 bool OnlyViable)
3366{
3367 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3368 LastCand = CandidateSet.end();
3369 for (; Cand != LastCand; ++Cand) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003370 if (Cand->Viable || !OnlyViable) {
3371 if (Cand->Function) {
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003372 if (Cand->Function->isDeleted() ||
3373 Cand->Function->getAttr<UnavailableAttr>()) {
3374 // Deleted or "unavailable" function.
3375 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3376 << Cand->Function->isDeleted();
3377 } else {
3378 // Normal function
3379 // FIXME: Give a better reason!
3380 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3381 }
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003382 } else if (Cand->IsSurrogate) {
Douglas Gregor621b3932008-11-21 02:54:28 +00003383 // Desugar the type of the surrogate down to a function type,
3384 // retaining as many typedefs as possible while still showing
3385 // the function type (and, therefore, its parameter types).
3386 QualType FnType = Cand->Surrogate->getConversionType();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003387 bool isLValueReference = false;
3388 bool isRValueReference = false;
Douglas Gregor621b3932008-11-21 02:54:28 +00003389 bool isPointer = false;
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003390 if (const LValueReferenceType *FnTypeRef =
3391 FnType->getAsLValueReferenceType()) {
Douglas Gregor621b3932008-11-21 02:54:28 +00003392 FnType = FnTypeRef->getPointeeType();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003393 isLValueReference = true;
3394 } else if (const RValueReferenceType *FnTypeRef =
3395 FnType->getAsRValueReferenceType()) {
3396 FnType = FnTypeRef->getPointeeType();
3397 isRValueReference = true;
Douglas Gregor621b3932008-11-21 02:54:28 +00003398 }
3399 if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3400 FnType = FnTypePtr->getPointeeType();
3401 isPointer = true;
3402 }
3403 // Desugar down to a function type.
3404 FnType = QualType(FnType->getAsFunctionType(), 0);
3405 // Reconstruct the pointer/reference as appropriate.
3406 if (isPointer) FnType = Context.getPointerType(FnType);
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003407 if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3408 if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
Douglas Gregor621b3932008-11-21 02:54:28 +00003409
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003410 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
Chris Lattnerd1625842008-11-24 06:25:27 +00003411 << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003412 } else {
3413 // FIXME: We need to get the identifier in here
3414 // FIXME: Do we want the error message to point at the
3415 // operator? (built-ins won't have a location)
3416 QualType FnType
3417 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3418 Cand->BuiltinTypes.ParamTypes,
3419 Cand->Conversions.size(),
3420 false, 0);
3421
Chris Lattnerd1625842008-11-24 06:25:27 +00003422 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003423 }
3424 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003425 }
3426}
3427
Douglas Gregor904eed32008-11-10 20:40:00 +00003428/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3429/// an overloaded function (C++ [over.over]), where @p From is an
3430/// expression with overloaded function type and @p ToType is the type
3431/// we're trying to resolve to. For example:
3432///
3433/// @code
3434/// int f(double);
3435/// int f(int);
3436///
3437/// int (*pfd)(double) = f; // selects f(double)
3438/// @endcode
3439///
3440/// This routine returns the resulting FunctionDecl if it could be
3441/// resolved, and NULL otherwise. When @p Complain is true, this
3442/// routine will emit diagnostics if there is an error.
3443FunctionDecl *
Sebastian Redl33b399a2009-02-04 21:23:32 +00003444Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
Douglas Gregor904eed32008-11-10 20:40:00 +00003445 bool Complain) {
3446 QualType FunctionType = ToType;
Sebastian Redl33b399a2009-02-04 21:23:32 +00003447 bool IsMember = false;
Daniel Dunbarbb710012009-02-26 19:13:44 +00003448 if (const PointerType *ToTypePtr = ToType->getAsPointerType())
Douglas Gregor904eed32008-11-10 20:40:00 +00003449 FunctionType = ToTypePtr->getPointeeType();
Daniel Dunbarbb710012009-02-26 19:13:44 +00003450 else if (const ReferenceType *ToTypeRef = ToType->getAsReferenceType())
3451 FunctionType = ToTypeRef->getPointeeType();
Sebastian Redl33b399a2009-02-04 21:23:32 +00003452 else if (const MemberPointerType *MemTypePtr =
3453 ToType->getAsMemberPointerType()) {
3454 FunctionType = MemTypePtr->getPointeeType();
3455 IsMember = true;
3456 }
Douglas Gregor904eed32008-11-10 20:40:00 +00003457
3458 // We only look at pointers or references to functions.
3459 if (!FunctionType->isFunctionType())
3460 return 0;
3461
3462 // Find the actual overloaded function declaration.
3463 OverloadedFunctionDecl *Ovl = 0;
3464
3465 // C++ [over.over]p1:
3466 // [...] [Note: any redundant set of parentheses surrounding the
3467 // overloaded function name is ignored (5.1). ]
3468 Expr *OvlExpr = From->IgnoreParens();
3469
3470 // C++ [over.over]p1:
3471 // [...] The overloaded function name can be preceded by the &
3472 // operator.
3473 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3474 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3475 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3476 }
3477
3478 // Try to dig out the overloaded function.
3479 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3480 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3481
3482 // If there's no overloaded function declaration, we're done.
3483 if (!Ovl)
3484 return 0;
3485
3486 // Look through all of the overloaded functions, searching for one
3487 // whose type matches exactly.
3488 // FIXME: When templates or using declarations come along, we'll actually
3489 // have to deal with duplicates, partial ordering, etc. For now, we
3490 // can just do a simple search.
3491 FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3492 for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3493 Fun != Ovl->function_end(); ++Fun) {
3494 // C++ [over.over]p3:
3495 // Non-member functions and static member functions match
Sebastian Redl0defd762009-02-05 12:33:33 +00003496 // targets of type "pointer-to-function" or "reference-to-function."
3497 // Nonstatic member functions match targets of
Sebastian Redl33b399a2009-02-04 21:23:32 +00003498 // type "pointer-to-member-function."
3499 // Note that according to DR 247, the containing class does not matter.
3500 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3501 // Skip non-static functions when converting to pointer, and static
3502 // when converting to member pointer.
3503 if (Method->isStatic() == IsMember)
Douglas Gregor904eed32008-11-10 20:40:00 +00003504 continue;
Sebastian Redl33b399a2009-02-04 21:23:32 +00003505 } else if (IsMember)
3506 continue;
Douglas Gregor904eed32008-11-10 20:40:00 +00003507
3508 if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3509 return *Fun;
3510 }
3511
3512 return 0;
3513}
3514
Douglas Gregorf6b89692008-11-26 05:54:23 +00003515/// ResolveOverloadedCallFn - Given the call expression that calls Fn
Douglas Gregorfa047642009-02-04 00:32:51 +00003516/// (which eventually refers to the declaration Func) and the call
3517/// arguments Args/NumArgs, attempt to resolve the function call down
3518/// to a specific function. If overload resolution succeeds, returns
3519/// the function declaration produced by overload
Douglas Gregor0a396682008-11-26 06:01:48 +00003520/// resolution. Otherwise, emits diagnostics, deletes all of the
Douglas Gregorf6b89692008-11-26 05:54:23 +00003521/// arguments and Fn, and returns NULL.
Douglas Gregorfa047642009-02-04 00:32:51 +00003522FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
Douglas Gregor17330012009-02-04 15:01:18 +00003523 DeclarationName UnqualifiedName,
Douglas Gregor0a396682008-11-26 06:01:48 +00003524 SourceLocation LParenLoc,
3525 Expr **Args, unsigned NumArgs,
3526 SourceLocation *CommaLocs,
Douglas Gregorfa047642009-02-04 00:32:51 +00003527 SourceLocation RParenLoc,
Douglas Gregor17330012009-02-04 15:01:18 +00003528 bool &ArgumentDependentLookup) {
Douglas Gregorf6b89692008-11-26 05:54:23 +00003529 OverloadCandidateSet CandidateSet;
Douglas Gregor17330012009-02-04 15:01:18 +00003530
3531 // Add the functions denoted by Callee to the set of candidate
3532 // functions. While we're doing so, track whether argument-dependent
3533 // lookup still applies, per:
3534 //
3535 // C++0x [basic.lookup.argdep]p3:
3536 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3537 // and let Y be the lookup set produced by argument dependent
3538 // lookup (defined as follows). If X contains
3539 //
3540 // -- a declaration of a class member, or
3541 //
3542 // -- a block-scope function declaration that is not a
3543 // using-declaration, or
3544 //
3545 // -- a declaration that is neither a function or a function
3546 // template
3547 //
3548 // then Y is empty.
Douglas Gregorfa047642009-02-04 00:32:51 +00003549 if (OverloadedFunctionDecl *Ovl
Douglas Gregor17330012009-02-04 15:01:18 +00003550 = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3551 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3552 FuncEnd = Ovl->function_end();
3553 Func != FuncEnd; ++Func) {
3554 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
3555
3556 if ((*Func)->getDeclContext()->isRecord() ||
3557 (*Func)->getDeclContext()->isFunctionOrMethod())
3558 ArgumentDependentLookup = false;
3559 }
3560 } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
3561 AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3562
3563 if (Func->getDeclContext()->isRecord() ||
3564 Func->getDeclContext()->isFunctionOrMethod())
3565 ArgumentDependentLookup = false;
3566 }
3567
3568 if (Callee)
3569 UnqualifiedName = Callee->getDeclName();
3570
Douglas Gregorfa047642009-02-04 00:32:51 +00003571 if (ArgumentDependentLookup)
Douglas Gregor17330012009-02-04 15:01:18 +00003572 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
Douglas Gregorfa047642009-02-04 00:32:51 +00003573 CandidateSet);
3574
Douglas Gregorf6b89692008-11-26 05:54:23 +00003575 OverloadCandidateSet::iterator Best;
3576 switch (BestViableFunction(CandidateSet, Best)) {
Douglas Gregor0a396682008-11-26 06:01:48 +00003577 case OR_Success:
3578 return Best->Function;
Douglas Gregorf6b89692008-11-26 05:54:23 +00003579
3580 case OR_No_Viable_Function:
Chris Lattner4330d652009-02-17 07:29:20 +00003581 Diag(Fn->getSourceRange().getBegin(),
Douglas Gregorf6b89692008-11-26 05:54:23 +00003582 diag::err_ovl_no_viable_function_in_call)
Chris Lattner4330d652009-02-17 07:29:20 +00003583 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregorf6b89692008-11-26 05:54:23 +00003584 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3585 break;
3586
3587 case OR_Ambiguous:
3588 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
Douglas Gregor17330012009-02-04 15:01:18 +00003589 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregorf6b89692008-11-26 05:54:23 +00003590 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3591 break;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003592
3593 case OR_Deleted:
3594 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3595 << Best->Function->isDeleted()
3596 << UnqualifiedName
3597 << Fn->getSourceRange();
3598 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3599 break;
Douglas Gregorf6b89692008-11-26 05:54:23 +00003600 }
3601
3602 // Overload resolution failed. Destroy all of the subexpressions and
3603 // return NULL.
3604 Fn->Destroy(Context);
3605 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3606 Args[Arg]->Destroy(Context);
3607 return 0;
3608}
3609
Douglas Gregorbc736fc2009-03-13 23:49:33 +00003610/// \brief Create a unary operation that may resolve to an overloaded
3611/// operator.
3612///
3613/// \param OpLoc The location of the operator itself (e.g., '*').
3614///
3615/// \param OpcIn The UnaryOperator::Opcode that describes this
3616/// operator.
3617///
3618/// \param Functions The set of non-member functions that will be
3619/// considered by overload resolution. The caller needs to build this
3620/// set based on the context using, e.g.,
3621/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3622/// set should not contain any member functions; those will be added
3623/// by CreateOverloadedUnaryOp().
3624///
3625/// \param input The input argument.
3626Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
3627 unsigned OpcIn,
3628 FunctionSet &Functions,
3629 ExprArg input) {
3630 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
3631 Expr *Input = (Expr *)input.get();
3632
3633 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
3634 assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
3635 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3636
3637 Expr *Args[2] = { Input, 0 };
3638 unsigned NumArgs = 1;
3639
3640 // For post-increment and post-decrement, add the implicit '0' as
3641 // the second argument, so that we know this is a post-increment or
3642 // post-decrement.
3643 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
3644 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
3645 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
3646 SourceLocation());
3647 NumArgs = 2;
3648 }
3649
3650 if (Input->isTypeDependent()) {
3651 OverloadedFunctionDecl *Overloads
3652 = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3653 for (FunctionSet::iterator Func = Functions.begin(),
3654 FuncEnd = Functions.end();
3655 Func != FuncEnd; ++Func)
3656 Overloads->addOverload(*Func);
3657
3658 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3659 OpLoc, false, false);
3660
3661 input.release();
3662 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
3663 &Args[0], NumArgs,
3664 Context.DependentTy,
3665 OpLoc));
3666 }
3667
3668 // Build an empty overload set.
3669 OverloadCandidateSet CandidateSet;
3670
3671 // Add the candidates from the given function set.
3672 AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
3673
3674 // Add operator candidates that are member functions.
3675 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
3676
3677 // Add builtin operator candidates.
3678 AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
3679
3680 // Perform overload resolution.
3681 OverloadCandidateSet::iterator Best;
3682 switch (BestViableFunction(CandidateSet, Best)) {
3683 case OR_Success: {
3684 // We found a built-in operator or an overloaded operator.
3685 FunctionDecl *FnDecl = Best->Function;
3686
3687 if (FnDecl) {
3688 // We matched an overloaded operator. Build a call to that
3689 // operator.
3690
3691 // Convert the arguments.
3692 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3693 if (PerformObjectArgumentInitialization(Input, Method))
3694 return ExprError();
3695 } else {
3696 // Convert the arguments.
3697 if (PerformCopyInitialization(Input,
3698 FnDecl->getParamDecl(0)->getType(),
3699 "passing"))
3700 return ExprError();
3701 }
3702
3703 // Determine the result type
3704 QualType ResultTy
3705 = FnDecl->getType()->getAsFunctionType()->getResultType();
3706 ResultTy = ResultTy.getNonReferenceType();
3707
3708 // Build the actual expression node.
3709 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
3710 SourceLocation());
3711 UsualUnaryConversions(FnExpr);
3712
3713 input.release();
3714 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
3715 &Input, 1, ResultTy,
3716 OpLoc));
3717 } else {
3718 // We matched a built-in operator. Convert the arguments, then
3719 // break out so that we will build the appropriate built-in
3720 // operator node.
3721 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
3722 Best->Conversions[0], "passing"))
3723 return ExprError();
3724
3725 break;
3726 }
3727 }
3728
3729 case OR_No_Viable_Function:
3730 // No viable function; fall through to handling this as a
3731 // built-in operator, which will produce an error message for us.
3732 break;
3733
3734 case OR_Ambiguous:
3735 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
3736 << UnaryOperator::getOpcodeStr(Opc)
3737 << Input->getSourceRange();
3738 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3739 return ExprError();
3740
3741 case OR_Deleted:
3742 Diag(OpLoc, diag::err_ovl_deleted_oper)
3743 << Best->Function->isDeleted()
3744 << UnaryOperator::getOpcodeStr(Opc)
3745 << Input->getSourceRange();
3746 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3747 return ExprError();
3748 }
3749
3750 // Either we found no viable overloaded operator or we matched a
3751 // built-in operator. In either case, fall through to trying to
3752 // build a built-in operation.
3753 input.release();
3754 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
3755}
3756
Douglas Gregor063daf62009-03-13 18:40:31 +00003757/// \brief Create a binary operation that may resolve to an overloaded
3758/// operator.
3759///
3760/// \param OpLoc The location of the operator itself (e.g., '+').
3761///
3762/// \param OpcIn The BinaryOperator::Opcode that describes this
3763/// operator.
3764///
3765/// \param Functions The set of non-member functions that will be
3766/// considered by overload resolution. The caller needs to build this
3767/// set based on the context using, e.g.,
3768/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3769/// set should not contain any member functions; those will be added
3770/// by CreateOverloadedBinOp().
3771///
3772/// \param LHS Left-hand argument.
3773/// \param RHS Right-hand argument.
3774Sema::OwningExprResult
3775Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
3776 unsigned OpcIn,
3777 FunctionSet &Functions,
3778 Expr *LHS, Expr *RHS) {
Douglas Gregor063daf62009-03-13 18:40:31 +00003779 Expr *Args[2] = { LHS, RHS };
3780
3781 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
3782 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
3783 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3784
3785 // If either side is type-dependent, create an appropriate dependent
3786 // expression.
3787 if (LHS->isTypeDependent() || RHS->isTypeDependent()) {
3788 // .* cannot be overloaded.
3789 if (Opc == BinaryOperator::PtrMemD)
3790 return Owned(new (Context) BinaryOperator(LHS, RHS, Opc,
3791 Context.DependentTy, OpLoc));
3792
3793 OverloadedFunctionDecl *Overloads
3794 = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3795 for (FunctionSet::iterator Func = Functions.begin(),
3796 FuncEnd = Functions.end();
3797 Func != FuncEnd; ++Func)
3798 Overloads->addOverload(*Func);
3799
3800 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3801 OpLoc, false, false);
3802
3803 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
3804 Args, 2,
3805 Context.DependentTy,
3806 OpLoc));
3807 }
3808
3809 // If this is the .* operator, which is not overloadable, just
3810 // create a built-in binary operator.
3811 if (Opc == BinaryOperator::PtrMemD)
3812 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
3813
3814 // If this is one of the assignment operators, we only perform
3815 // overload resolution if the left-hand side is a class or
3816 // enumeration type (C++ [expr.ass]p3).
3817 if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
3818 !LHS->getType()->isOverloadableType())
3819 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
3820
Douglas Gregorbc736fc2009-03-13 23:49:33 +00003821 // Build an empty overload set.
3822 OverloadCandidateSet CandidateSet;
Douglas Gregor063daf62009-03-13 18:40:31 +00003823
3824 // Add the candidates from the given function set.
3825 AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
3826
3827 // Add operator candidates that are member functions.
3828 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
3829
3830 // Add builtin operator candidates.
3831 AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
3832
3833 // Perform overload resolution.
3834 OverloadCandidateSet::iterator Best;
3835 switch (BestViableFunction(CandidateSet, Best)) {
3836 case OR_Success: {
3837 // We found a built-in operator or an overloaded operator.
3838 FunctionDecl *FnDecl = Best->Function;
3839
3840 if (FnDecl) {
3841 // We matched an overloaded operator. Build a call to that
3842 // operator.
3843
3844 // Convert the arguments.
3845 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3846 if (PerformObjectArgumentInitialization(LHS, Method) ||
3847 PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(),
3848 "passing"))
3849 return ExprError();
3850 } else {
3851 // Convert the arguments.
3852 if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(),
3853 "passing") ||
3854 PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(),
3855 "passing"))
3856 return ExprError();
3857 }
3858
3859 // Determine the result type
3860 QualType ResultTy
3861 = FnDecl->getType()->getAsFunctionType()->getResultType();
3862 ResultTy = ResultTy.getNonReferenceType();
3863
3864 // Build the actual expression node.
3865 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
3866 SourceLocation());
3867 UsualUnaryConversions(FnExpr);
3868
3869 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
3870 Args, 2, ResultTy,
3871 OpLoc));
3872 } else {
3873 // We matched a built-in operator. Convert the arguments, then
3874 // break out so that we will build the appropriate built-in
3875 // operator node.
3876 if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
3877 Best->Conversions[0], "passing") ||
3878 PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
3879 Best->Conversions[1], "passing"))
3880 return ExprError();
3881
3882 break;
3883 }
3884 }
3885
3886 case OR_No_Viable_Function:
3887 // No viable function; fall through to handling this as a
3888 // built-in operator, which will produce an error message for us.
3889 break;
3890
3891 case OR_Ambiguous:
3892 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
3893 << BinaryOperator::getOpcodeStr(Opc)
3894 << LHS->getSourceRange() << RHS->getSourceRange();
3895 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3896 return ExprError();
3897
3898 case OR_Deleted:
3899 Diag(OpLoc, diag::err_ovl_deleted_oper)
3900 << Best->Function->isDeleted()
3901 << BinaryOperator::getOpcodeStr(Opc)
3902 << LHS->getSourceRange() << RHS->getSourceRange();
3903 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3904 return ExprError();
3905 }
3906
3907 // Either we found no viable overloaded operator or we matched a
3908 // built-in operator. In either case, try to build a built-in
3909 // operation.
3910 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
3911}
3912
Douglas Gregor88a35142008-12-22 05:46:06 +00003913/// BuildCallToMemberFunction - Build a call to a member
3914/// function. MemExpr is the expression that refers to the member
3915/// function (and includes the object parameter), Args/NumArgs are the
3916/// arguments to the function call (not including the object
3917/// parameter). The caller needs to validate that the member
3918/// expression refers to a member function or an overloaded member
3919/// function.
3920Sema::ExprResult
3921Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
3922 SourceLocation LParenLoc, Expr **Args,
3923 unsigned NumArgs, SourceLocation *CommaLocs,
3924 SourceLocation RParenLoc) {
3925 // Dig out the member expression. This holds both the object
3926 // argument and the member function we're referring to.
3927 MemberExpr *MemExpr = 0;
3928 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
3929 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
3930 else
3931 MemExpr = dyn_cast<MemberExpr>(MemExprE);
3932 assert(MemExpr && "Building member call without member expression");
3933
3934 // Extract the object argument.
3935 Expr *ObjectArg = MemExpr->getBase();
3936 if (MemExpr->isArrow())
Ted Kremenek8189cde2009-02-07 01:47:29 +00003937 ObjectArg = new (Context) UnaryOperator(ObjectArg, UnaryOperator::Deref,
3938 ObjectArg->getType()->getAsPointerType()->getPointeeType(),
Douglas Gregor611a8c42009-02-19 00:52:42 +00003939 ObjectArg->getLocStart());
Douglas Gregor88a35142008-12-22 05:46:06 +00003940 CXXMethodDecl *Method = 0;
3941 if (OverloadedFunctionDecl *Ovl
3942 = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
3943 // Add overload candidates
3944 OverloadCandidateSet CandidateSet;
3945 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3946 FuncEnd = Ovl->function_end();
3947 Func != FuncEnd; ++Func) {
3948 assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
3949 Method = cast<CXXMethodDecl>(*Func);
3950 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
3951 /*SuppressUserConversions=*/false);
3952 }
3953
3954 OverloadCandidateSet::iterator Best;
3955 switch (BestViableFunction(CandidateSet, Best)) {
3956 case OR_Success:
3957 Method = cast<CXXMethodDecl>(Best->Function);
3958 break;
3959
3960 case OR_No_Viable_Function:
3961 Diag(MemExpr->getSourceRange().getBegin(),
3962 diag::err_ovl_no_viable_member_function_in_call)
Chris Lattner4330d652009-02-17 07:29:20 +00003963 << Ovl->getDeclName() << MemExprE->getSourceRange();
Douglas Gregor88a35142008-12-22 05:46:06 +00003964 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3965 // FIXME: Leaking incoming expressions!
3966 return true;
3967
3968 case OR_Ambiguous:
3969 Diag(MemExpr->getSourceRange().getBegin(),
3970 diag::err_ovl_ambiguous_member_call)
3971 << Ovl->getDeclName() << MemExprE->getSourceRange();
3972 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3973 // FIXME: Leaking incoming expressions!
3974 return true;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003975
3976 case OR_Deleted:
3977 Diag(MemExpr->getSourceRange().getBegin(),
3978 diag::err_ovl_deleted_member_call)
3979 << Best->Function->isDeleted()
3980 << Ovl->getDeclName() << MemExprE->getSourceRange();
3981 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3982 // FIXME: Leaking incoming expressions!
3983 return true;
Douglas Gregor88a35142008-12-22 05:46:06 +00003984 }
3985
3986 FixOverloadedFunctionReference(MemExpr, Method);
3987 } else {
3988 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
3989 }
3990
3991 assert(Method && "Member call to something that isn't a method?");
Ted Kremenek8189cde2009-02-07 01:47:29 +00003992 ExprOwningPtr<CXXMemberCallExpr>
Ted Kremenek668bf912009-02-09 20:51:47 +00003993 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
3994 NumArgs,
Douglas Gregor88a35142008-12-22 05:46:06 +00003995 Method->getResultType().getNonReferenceType(),
3996 RParenLoc));
3997
3998 // Convert the object argument (for a non-static member function call).
3999 if (!Method->isStatic() &&
4000 PerformObjectArgumentInitialization(ObjectArg, Method))
4001 return true;
4002 MemExpr->setBase(ObjectArg);
4003
4004 // Convert the rest of the arguments
Douglas Gregor72564e72009-02-26 23:50:07 +00004005 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
Douglas Gregor88a35142008-12-22 05:46:06 +00004006 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4007 RParenLoc))
4008 return true;
4009
Sebastian Redl0eb23302009-01-19 00:08:26 +00004010 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregor88a35142008-12-22 05:46:06 +00004011}
4012
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004013/// BuildCallToObjectOfClassType - Build a call to an object of class
4014/// type (C++ [over.call.object]), which can end up invoking an
4015/// overloaded function call operator (@c operator()) or performing a
4016/// user-defined conversion on the object argument.
Douglas Gregor88a35142008-12-22 05:46:06 +00004017Sema::ExprResult
Douglas Gregor5c37de72008-12-06 00:22:45 +00004018Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4019 SourceLocation LParenLoc,
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004020 Expr **Args, unsigned NumArgs,
4021 SourceLocation *CommaLocs,
4022 SourceLocation RParenLoc) {
4023 assert(Object->getType()->isRecordType() && "Requires object type argument");
4024 const RecordType *Record = Object->getType()->getAsRecordType();
4025
4026 // C++ [over.call.object]p1:
4027 // If the primary-expression E in the function call syntax
4028 // evaluates to a class object of type “cv T”, then the set of
4029 // candidate functions includes at least the function call
4030 // operators of T. The function call operators of T are obtained by
4031 // ordinary lookup of the name operator() in the context of
4032 // (E).operator().
4033 OverloadCandidateSet CandidateSet;
Douglas Gregor44b43212008-12-11 16:49:14 +00004034 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004035 DeclContext::lookup_const_iterator Oper, OperEnd;
Steve Naroff0701bbb2009-01-08 17:28:14 +00004036 for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004037 Oper != OperEnd; ++Oper)
4038 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4039 CandidateSet, /*SuppressUserConversions=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004040
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004041 // C++ [over.call.object]p2:
4042 // In addition, for each conversion function declared in T of the
4043 // form
4044 //
4045 // operator conversion-type-id () cv-qualifier;
4046 //
4047 // where cv-qualifier is the same cv-qualification as, or a
4048 // greater cv-qualification than, cv, and where conversion-type-id
Douglas Gregora967a6f2008-11-20 13:33:37 +00004049 // denotes the type "pointer to function of (P1,...,Pn) returning
4050 // R", or the type "reference to pointer to function of
4051 // (P1,...,Pn) returning R", or the type "reference to function
4052 // of (P1,...,Pn) returning R", a surrogate call function [...]
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004053 // is also considered as a candidate function. Similarly,
4054 // surrogate call functions are added to the set of candidate
4055 // functions for each conversion function declared in an
4056 // accessible base class provided the function is not hidden
4057 // within T by another intervening declaration.
4058 //
4059 // FIXME: Look in base classes for more conversion operators!
4060 OverloadedFunctionDecl *Conversions
4061 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
Douglas Gregor621b3932008-11-21 02:54:28 +00004062 for (OverloadedFunctionDecl::function_iterator
4063 Func = Conversions->function_begin(),
4064 FuncEnd = Conversions->function_end();
4065 Func != FuncEnd; ++Func) {
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004066 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
4067
4068 // Strip the reference type (if any) and then the pointer type (if
4069 // any) to get down to what might be a function type.
4070 QualType ConvType = Conv->getConversionType().getNonReferenceType();
4071 if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
4072 ConvType = ConvPtrType->getPointeeType();
4073
Douglas Gregor72564e72009-02-26 23:50:07 +00004074 if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004075 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4076 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004077
4078 // Perform overload resolution.
4079 OverloadCandidateSet::iterator Best;
4080 switch (BestViableFunction(CandidateSet, Best)) {
4081 case OR_Success:
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004082 // Overload resolution succeeded; we'll build the appropriate call
4083 // below.
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004084 break;
4085
4086 case OR_No_Viable_Function:
Sebastian Redle4c452c2008-11-22 13:44:36 +00004087 Diag(Object->getSourceRange().getBegin(),
4088 diag::err_ovl_no_viable_object_call)
Chris Lattner4330d652009-02-17 07:29:20 +00004089 << Object->getType() << Object->getSourceRange();
Sebastian Redle4c452c2008-11-22 13:44:36 +00004090 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004091 break;
4092
4093 case OR_Ambiguous:
4094 Diag(Object->getSourceRange().getBegin(),
4095 diag::err_ovl_ambiguous_object_call)
Chris Lattnerd1625842008-11-24 06:25:27 +00004096 << Object->getType() << Object->getSourceRange();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004097 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4098 break;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00004099
4100 case OR_Deleted:
4101 Diag(Object->getSourceRange().getBegin(),
4102 diag::err_ovl_deleted_object_call)
4103 << Best->Function->isDeleted()
4104 << Object->getType() << Object->getSourceRange();
4105 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4106 break;
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004107 }
4108
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004109 if (Best == CandidateSet.end()) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004110 // We had an error; delete all of the subexpressions and return
4111 // the error.
Ted Kremenek8189cde2009-02-07 01:47:29 +00004112 Object->Destroy(Context);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004113 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Ted Kremenek8189cde2009-02-07 01:47:29 +00004114 Args[ArgIdx]->Destroy(Context);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004115 return true;
4116 }
4117
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004118 if (Best->Function == 0) {
4119 // Since there is no function declaration, this is one of the
4120 // surrogate candidates. Dig out the conversion function.
4121 CXXConversionDecl *Conv
4122 = cast<CXXConversionDecl>(
4123 Best->Conversions[0].UserDefined.ConversionFunction);
4124
4125 // We selected one of the surrogate functions that converts the
4126 // object parameter to a function pointer. Perform the conversion
4127 // on the object argument, then let ActOnCallExpr finish the job.
4128 // FIXME: Represent the user-defined conversion in the AST!
Sebastian Redl0eb23302009-01-19 00:08:26 +00004129 ImpCastExprToType(Object,
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004130 Conv->getConversionType().getNonReferenceType(),
Sebastian Redl7c80bd62009-03-16 23:22:08 +00004131 Conv->getConversionType()->isLValueReferenceType());
Sebastian Redl0eb23302009-01-19 00:08:26 +00004132 return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4133 MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4134 CommaLocs, RParenLoc).release();
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004135 }
4136
4137 // We found an overloaded operator(). Build a CXXOperatorCallExpr
4138 // that calls this method, using Object for the implicit object
4139 // parameter and passing along the remaining arguments.
4140 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregor72564e72009-02-26 23:50:07 +00004141 const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004142
4143 unsigned NumArgsInProto = Proto->getNumArgs();
4144 unsigned NumArgsToCheck = NumArgs;
4145
4146 // Build the full argument list for the method call (the
4147 // implicit object parameter is placed at the beginning of the
4148 // list).
4149 Expr **MethodArgs;
4150 if (NumArgs < NumArgsInProto) {
4151 NumArgsToCheck = NumArgsInProto;
4152 MethodArgs = new Expr*[NumArgsInProto + 1];
4153 } else {
4154 MethodArgs = new Expr*[NumArgs + 1];
4155 }
4156 MethodArgs[0] = Object;
4157 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4158 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4159
Ted Kremenek8189cde2009-02-07 01:47:29 +00004160 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4161 SourceLocation());
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004162 UsualUnaryConversions(NewFn);
4163
4164 // Once we've built TheCall, all of the expressions are properly
4165 // owned.
4166 QualType ResultTy = Method->getResultType().getNonReferenceType();
Ted Kremenek8189cde2009-02-07 01:47:29 +00004167 ExprOwningPtr<CXXOperatorCallExpr>
Douglas Gregor063daf62009-03-13 18:40:31 +00004168 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4169 MethodArgs, NumArgs + 1,
Ted Kremenek8189cde2009-02-07 01:47:29 +00004170 ResultTy, RParenLoc));
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004171 delete [] MethodArgs;
4172
Douglas Gregor518fda12009-01-13 05:10:00 +00004173 // We may have default arguments. If so, we need to allocate more
4174 // slots in the call for them.
4175 if (NumArgs < NumArgsInProto)
Ted Kremenek8189cde2009-02-07 01:47:29 +00004176 TheCall->setNumArgs(Context, NumArgsInProto + 1);
Douglas Gregor518fda12009-01-13 05:10:00 +00004177 else if (NumArgs > NumArgsInProto)
4178 NumArgsToCheck = NumArgsInProto;
4179
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004180 // Initialize the implicit object parameter.
Douglas Gregor518fda12009-01-13 05:10:00 +00004181 if (PerformObjectArgumentInitialization(Object, Method))
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004182 return true;
4183 TheCall->setArg(0, Object);
4184
4185 // Check the argument types.
4186 for (unsigned i = 0; i != NumArgsToCheck; i++) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004187 Expr *Arg;
Douglas Gregor518fda12009-01-13 05:10:00 +00004188 if (i < NumArgs) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004189 Arg = Args[i];
Douglas Gregor518fda12009-01-13 05:10:00 +00004190
4191 // Pass the argument.
4192 QualType ProtoArgType = Proto->getArgType(i);
4193 if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
4194 return true;
4195 } else {
Ted Kremenek8189cde2009-02-07 01:47:29 +00004196 Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i));
Douglas Gregor518fda12009-01-13 05:10:00 +00004197 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004198
4199 TheCall->setArg(i + 1, Arg);
4200 }
4201
4202 // If this is a variadic call, handle args passed through "...".
4203 if (Proto->isVariadic()) {
4204 // Promote the arguments (C99 6.5.2.2p7).
4205 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4206 Expr *Arg = Args[i];
Anders Carlsson906fed02009-01-13 05:48:52 +00004207
Anders Carlssondce5e2c2009-01-16 16:48:51 +00004208 DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004209 TheCall->setArg(i + 1, Arg);
4210 }
4211 }
4212
Sebastian Redl0eb23302009-01-19 00:08:26 +00004213 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004214}
4215
Douglas Gregor8ba10742008-11-20 16:27:02 +00004216/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4217/// (if one exists), where @c Base is an expression of class type and
4218/// @c Member is the name of the member we're trying to find.
4219Action::ExprResult
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004220Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
Douglas Gregor8ba10742008-11-20 16:27:02 +00004221 SourceLocation MemberLoc,
4222 IdentifierInfo &Member) {
4223 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4224
4225 // C++ [over.ref]p1:
4226 //
4227 // [...] An expression x->m is interpreted as (x.operator->())->m
4228 // for a class object x of type T if T::operator->() exists and if
4229 // the operator is selected as the best match function by the
4230 // overload resolution mechanism (13.3).
4231 // FIXME: look in base classes.
4232 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4233 OverloadCandidateSet CandidateSet;
4234 const RecordType *BaseRecord = Base->getType()->getAsRecordType();
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004235
4236 DeclContext::lookup_const_iterator Oper, OperEnd;
Steve Naroff0701bbb2009-01-08 17:28:14 +00004237 for (llvm::tie(Oper, OperEnd) = BaseRecord->getDecl()->lookup(OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004238 Oper != OperEnd; ++Oper)
4239 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
Douglas Gregor8ba10742008-11-20 16:27:02 +00004240 /*SuppressUserConversions=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00004241
Ted Kremenek8189cde2009-02-07 01:47:29 +00004242 ExprOwningPtr<Expr> BasePtr(this, Base);
Douglas Gregorfc195ef2008-11-21 03:04:22 +00004243
Douglas Gregor8ba10742008-11-20 16:27:02 +00004244 // Perform overload resolution.
4245 OverloadCandidateSet::iterator Best;
4246 switch (BestViableFunction(CandidateSet, Best)) {
4247 case OR_Success:
4248 // Overload resolution succeeded; we'll build the call below.
4249 break;
4250
4251 case OR_No_Viable_Function:
4252 if (CandidateSet.empty())
4253 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
Chris Lattnerd1625842008-11-24 06:25:27 +00004254 << BasePtr->getType() << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004255 else
4256 Diag(OpLoc, diag::err_ovl_no_viable_oper)
Chris Lattner4330d652009-02-17 07:29:20 +00004257 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004258 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00004259 return true;
4260
4261 case OR_Ambiguous:
4262 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
Chris Lattnerd1625842008-11-24 06:25:27 +00004263 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004264 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregor8ba10742008-11-20 16:27:02 +00004265 return true;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00004266
4267 case OR_Deleted:
4268 Diag(OpLoc, diag::err_ovl_deleted_oper)
4269 << Best->Function->isDeleted()
4270 << "operator->" << BasePtr->getSourceRange();
4271 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4272 return true;
Douglas Gregor8ba10742008-11-20 16:27:02 +00004273 }
4274
4275 // Convert the object parameter.
4276 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorfc195ef2008-11-21 03:04:22 +00004277 if (PerformObjectArgumentInitialization(Base, Method))
Douglas Gregor8ba10742008-11-20 16:27:02 +00004278 return true;
Douglas Gregorfc195ef2008-11-21 03:04:22 +00004279
4280 // No concerns about early exits now.
4281 BasePtr.take();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004282
4283 // Build the operator call.
Ted Kremenek8189cde2009-02-07 01:47:29 +00004284 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4285 SourceLocation());
Douglas Gregor8ba10742008-11-20 16:27:02 +00004286 UsualUnaryConversions(FnExpr);
Douglas Gregor063daf62009-03-13 18:40:31 +00004287 Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
Douglas Gregor8ba10742008-11-20 16:27:02 +00004288 Method->getResultType().getNonReferenceType(),
4289 OpLoc);
Sebastian Redl0eb23302009-01-19 00:08:26 +00004290 return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
Chris Lattnerb28317a2009-03-28 19:18:32 +00004291 MemberLoc, Member, DeclPtrTy()).release();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004292}
4293
Douglas Gregor904eed32008-11-10 20:40:00 +00004294/// FixOverloadedFunctionReference - E is an expression that refers to
4295/// a C++ overloaded function (possibly with some parentheses and
4296/// perhaps a '&' around it). We have resolved the overloaded function
4297/// to the function declaration Fn, so patch up the expression E to
4298/// refer (possibly indirectly) to Fn.
4299void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4300 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4301 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4302 E->setType(PE->getSubExpr()->getType());
4303 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4304 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4305 "Can only take the address of an overloaded function");
Douglas Gregorb86b0572009-02-11 01:18:59 +00004306 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4307 if (Method->isStatic()) {
4308 // Do nothing: static member functions aren't any different
4309 // from non-member functions.
4310 }
4311 else if (QualifiedDeclRefExpr *DRE
4312 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4313 // We have taken the address of a pointer to member
4314 // function. Perform the computation here so that we get the
4315 // appropriate pointer to member type.
4316 DRE->setDecl(Fn);
4317 DRE->setType(Fn->getType());
4318 QualType ClassType
4319 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4320 E->setType(Context.getMemberPointerType(Fn->getType(),
4321 ClassType.getTypePtr()));
4322 return;
4323 }
4324 }
Douglas Gregor904eed32008-11-10 20:40:00 +00004325 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
Douglas Gregora35284b2009-02-11 00:19:33 +00004326 E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
Douglas Gregor904eed32008-11-10 20:40:00 +00004327 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4328 assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
4329 "Expected overloaded function");
4330 DR->setDecl(Fn);
4331 E->setType(Fn->getType());
Douglas Gregor88a35142008-12-22 05:46:06 +00004332 } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4333 MemExpr->setMemberDecl(Fn);
4334 E->setType(Fn->getType());
Douglas Gregor904eed32008-11-10 20:40:00 +00004335 } else {
4336 assert(false && "Invalid reference to overloaded function");
4337 }
4338}
4339
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00004340} // end namespace clang