blob: 6d7b585106d7ce38d299c6cb4cc3c1ec50aa4dfe [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000018#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000019#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000020#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000028#include "Support/Debug.h"
29#include <vector>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000030using namespace llvm;
31
32namespace {
Misha Brukman422791f2004-06-21 17:41:12 +000033 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
34 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000035 ///
36 enum TypeClass {
37 cByte, cShort, cInt, cFP, cLong
38 };
39}
40
41/// getClass - Turn a primitive type into a "class" number which is based on the
42/// size of the type, and whether or not it is floating point.
43///
44static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000045 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000046 case Type::SByteTyID:
47 case Type::UByteTyID: return cByte; // Byte operands are class #0
48 case Type::ShortTyID:
49 case Type::UShortTyID: return cShort; // Short operands are class #1
50 case Type::IntTyID:
51 case Type::UIntTyID:
52 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
53
54 case Type::FloatTyID:
55 case Type::DoubleTyID: return cFP; // Floating Point is #3
56
57 case Type::LongTyID:
58 case Type::ULongTyID: return cLong; // Longs are class #4
59 default:
60 assert(0 && "Invalid type to getClass!");
61 return cByte; // not reached
62 }
63}
64
65// getClassB - Just like getClass, but treat boolean values as ints.
66static inline TypeClass getClassB(const Type *Ty) {
67 if (Ty == Type::BoolTy) return cInt;
68 return getClass(Ty);
69}
70
71namespace {
72 struct ISel : public FunctionPass, InstVisitor<ISel> {
73 TargetMachine &TM;
74 MachineFunction *F; // The function we are compiling into
75 MachineBasicBlock *BB; // The current MBB we are compiling
76 int VarArgsFrameIndex; // FrameIndex for start of varargs area
77 int ReturnAddressIndex; // FrameIndex for the return address
78
79 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
80
81 // MBBMap - Mapping between LLVM BB -> Machine BB
82 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
83
84 // AllocaMap - Mapping from fixed sized alloca instructions to the
85 // FrameIndex for the alloca.
86 std::map<AllocaInst*, unsigned> AllocaMap;
87
88 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
89
90 /// runOnFunction - Top level implementation of instruction selection for
91 /// the entire function.
92 ///
93 bool runOnFunction(Function &Fn) {
94 // First pass over the function, lower any unknown intrinsic functions
95 // with the IntrinsicLowering class.
96 LowerUnknownIntrinsicFunctionCalls(Fn);
97
98 F = &MachineFunction::construct(&Fn, TM);
99
100 // Create all of the machine basic blocks for the function...
101 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
102 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
103
104 BB = &F->front();
105
106 // Set up a frame object for the return address. This is used by the
107 // llvm.returnaddress & llvm.frameaddress intrinisics.
108 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
109
110 // Copy incoming arguments off of the stack...
111 LoadArgumentsToVirtualRegs(Fn);
112
113 // Instruction select everything except PHI nodes
114 visit(Fn);
115
116 // Select the PHI nodes
117 SelectPHINodes();
118
119 RegMap.clear();
120 MBBMap.clear();
121 AllocaMap.clear();
122 F = 0;
123 // We always build a machine code representation for the function
124 return true;
125 }
126
127 virtual const char *getPassName() const {
128 return "PowerPC Simple Instruction Selection";
129 }
130
131 /// visitBasicBlock - This method is called when we are visiting a new basic
132 /// block. This simply creates a new MachineBasicBlock to emit code into
133 /// and adds it to the current MachineFunction. Subsequent visit* for
134 /// instructions will be invoked for all instructions in the basic block.
135 ///
136 void visitBasicBlock(BasicBlock &LLVM_BB) {
137 BB = MBBMap[&LLVM_BB];
138 }
139
140 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
141 /// function, lowering any calls to unknown intrinsic functions into the
142 /// equivalent LLVM code.
143 ///
144 void LowerUnknownIntrinsicFunctionCalls(Function &F);
145
146 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
147 /// from the stack into virtual registers.
148 ///
149 void LoadArgumentsToVirtualRegs(Function &F);
150
151 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
152 /// because we have to generate our sources into the source basic blocks,
153 /// not the current one.
154 ///
155 void SelectPHINodes();
156
157 // Visitation methods for various instructions. These methods simply emit
158 // fixed PowerPC code for each instruction.
159
160 // Control flow operators
161 void visitReturnInst(ReturnInst &RI);
162 void visitBranchInst(BranchInst &BI);
163
164 struct ValueRecord {
165 Value *Val;
166 unsigned Reg;
167 const Type *Ty;
168 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
169 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
170 };
171 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
172 const std::vector<ValueRecord> &Args);
173 void visitCallInst(CallInst &I);
174 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
175
176 // Arithmetic operators
177 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
178 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
179 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
180 void visitMul(BinaryOperator &B);
181
182 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
183 void visitRem(BinaryOperator &B) { visitDivRem(B); }
184 void visitDivRem(BinaryOperator &B);
185
186 // Bitwise operators
187 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
188 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
189 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
190
191 // Comparison operators...
192 void visitSetCondInst(SetCondInst &I);
193 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
194 MachineBasicBlock *MBB,
195 MachineBasicBlock::iterator MBBI);
196 void visitSelectInst(SelectInst &SI);
197
198
199 // Memory Instructions
200 void visitLoadInst(LoadInst &I);
201 void visitStoreInst(StoreInst &I);
202 void visitGetElementPtrInst(GetElementPtrInst &I);
203 void visitAllocaInst(AllocaInst &I);
204 void visitMallocInst(MallocInst &I);
205 void visitFreeInst(FreeInst &I);
206
207 // Other operators
208 void visitShiftInst(ShiftInst &I);
209 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
210 void visitCastInst(CastInst &I);
211 void visitVANextInst(VANextInst &I);
212 void visitVAArgInst(VAArgInst &I);
213
214 void visitInstruction(Instruction &I) {
215 std::cerr << "Cannot instruction select: " << I;
216 abort();
217 }
218
219 /// promote32 - Make a value 32-bits wide, and put it somewhere.
220 ///
221 void promote32(unsigned targetReg, const ValueRecord &VR);
222
223 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
224 /// constant expression GEP support.
225 ///
226 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
227 Value *Src, User::op_iterator IdxBegin,
228 User::op_iterator IdxEnd, unsigned TargetReg);
229
230 /// emitCastOperation - Common code shared between visitCastInst and
231 /// constant expression cast support.
232 ///
233 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
234 Value *Src, const Type *DestTy, unsigned TargetReg);
235
236 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
237 /// and constant expression support.
238 ///
239 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
240 MachineBasicBlock::iterator IP,
241 Value *Op0, Value *Op1,
242 unsigned OperatorClass, unsigned TargetReg);
243
244 /// emitBinaryFPOperation - This method handles emission of floating point
245 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
246 void emitBinaryFPOperation(MachineBasicBlock *BB,
247 MachineBasicBlock::iterator IP,
248 Value *Op0, Value *Op1,
249 unsigned OperatorClass, unsigned TargetReg);
250
251 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
252 Value *Op0, Value *Op1, unsigned TargetReg);
253
254 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
255 unsigned DestReg, const Type *DestTy,
256 unsigned Op0Reg, unsigned Op1Reg);
257 void doMultiplyConst(MachineBasicBlock *MBB,
258 MachineBasicBlock::iterator MBBI,
259 unsigned DestReg, const Type *DestTy,
260 unsigned Op0Reg, unsigned Op1Val);
261
262 void emitDivRemOperation(MachineBasicBlock *BB,
263 MachineBasicBlock::iterator IP,
264 Value *Op0, Value *Op1, bool isDiv,
265 unsigned TargetReg);
266
267 /// emitSetCCOperation - Common code shared between visitSetCondInst and
268 /// constant expression support.
269 ///
270 void emitSetCCOperation(MachineBasicBlock *BB,
271 MachineBasicBlock::iterator IP,
272 Value *Op0, Value *Op1, unsigned Opcode,
273 unsigned TargetReg);
274
275 /// emitShiftOperation - Common code shared between visitShiftInst and
276 /// constant expression support.
277 ///
278 void emitShiftOperation(MachineBasicBlock *MBB,
279 MachineBasicBlock::iterator IP,
280 Value *Op, Value *ShiftAmount, bool isLeftShift,
281 const Type *ResultTy, unsigned DestReg);
282
283 /// emitSelectOperation - Common code shared between visitSelectInst and the
284 /// constant expression support.
285 void emitSelectOperation(MachineBasicBlock *MBB,
286 MachineBasicBlock::iterator IP,
287 Value *Cond, Value *TrueVal, Value *FalseVal,
288 unsigned DestReg);
289
290 /// copyConstantToRegister - Output the instructions required to put the
291 /// specified constant into the specified register.
292 ///
293 void copyConstantToRegister(MachineBasicBlock *MBB,
294 MachineBasicBlock::iterator MBBI,
295 Constant *C, unsigned Reg);
296
297 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
298 unsigned LHS, unsigned RHS);
299
300 /// makeAnotherReg - This method returns the next register number we haven't
301 /// yet used.
302 ///
303 /// Long values are handled somewhat specially. They are always allocated
304 /// as pairs of 32 bit integer values. The register number returned is the
305 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
306 /// of the long value.
307 ///
308 unsigned makeAnotherReg(const Type *Ty) {
309 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
310 "Current target doesn't have PPC reg info??");
311 const PowerPCRegisterInfo *MRI =
312 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
313 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
314 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
315 // Create the lower part
316 F->getSSARegMap()->createVirtualRegister(RC);
317 // Create the upper part.
318 return F->getSSARegMap()->createVirtualRegister(RC)-1;
319 }
320
321 // Add the mapping of regnumber => reg class to MachineFunction
322 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
323 return F->getSSARegMap()->createVirtualRegister(RC);
324 }
325
326 /// getReg - This method turns an LLVM value into a register number.
327 ///
328 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
329 unsigned getReg(Value *V) {
330 // Just append to the end of the current bb.
331 MachineBasicBlock::iterator It = BB->end();
332 return getReg(V, BB, It);
333 }
334 unsigned getReg(Value *V, MachineBasicBlock *MBB,
335 MachineBasicBlock::iterator IPt);
336
337 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
338 /// that is to be statically allocated with the initial stack frame
339 /// adjustment.
340 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
341 };
342}
343
344/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
345/// instruction in the entry block, return it. Otherwise, return a null
346/// pointer.
347static AllocaInst *dyn_castFixedAlloca(Value *V) {
348 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
349 BasicBlock *BB = AI->getParent();
350 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
351 return AI;
352 }
353 return 0;
354}
355
356/// getReg - This method turns an LLVM value into a register number.
357///
358unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
359 MachineBasicBlock::iterator IPt) {
360 // If this operand is a constant, emit the code to copy the constant into
361 // the register here...
362 //
363 if (Constant *C = dyn_cast<Constant>(V)) {
364 unsigned Reg = makeAnotherReg(V->getType());
365 copyConstantToRegister(MBB, IPt, C, Reg);
366 return Reg;
367 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Misha Brukman7e5812c2004-06-28 18:20:59 +0000368 // GV is located at PC + distance
369 unsigned LRsave = makeAnotherReg(Type::IntTy);
370 unsigned CurPC = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000371 unsigned Reg1 = makeAnotherReg(V->getType());
Misha Brukman422791f2004-06-21 17:41:12 +0000372 unsigned Reg2 = makeAnotherReg(V->getType());
Misha Brukman7e5812c2004-06-28 18:20:59 +0000373 // Save the old LR
374 BuildMI(*MBB, IPt, PPC32::MFLR, 0, LRsave);
375 // Move PC to destination reg
376 BuildMI(*MBB, IPt, PPC32::MovePCtoLR, 0, CurPC);
377 // Restore the old LR
378 BuildMI(*MBB, IPt, PPC32::MTLR, 1).addReg(LRsave);
379 // Move value at PC + distance into return reg
380 BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
Misha Brukman911afde2004-06-25 14:50:41 +0000381 .addGlobalAddress(GV);
Misha Brukman9ecf3bf2004-06-25 14:57:19 +0000382 BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1)
Misha Brukman911afde2004-06-25 14:50:41 +0000383 .addGlobalAddress(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000384 return Reg2;
385 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
386 // Do not emit noop casts at all.
387 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
388 return getReg(CI->getOperand(0), MBB, IPt);
389 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
390 unsigned Reg = makeAnotherReg(V->getType());
391 unsigned FI = getFixedSizedAllocaFI(AI);
392 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
393 return Reg;
394 }
395
396 unsigned &Reg = RegMap[V];
397 if (Reg == 0) {
398 Reg = makeAnotherReg(V->getType());
399 RegMap[V] = Reg;
400 }
401
402 return Reg;
403}
404
405/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
406/// that is to be statically allocated with the initial stack frame
407/// adjustment.
408unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
409 // Already computed this?
410 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
411 if (I != AllocaMap.end() && I->first == AI) return I->second;
412
413 const Type *Ty = AI->getAllocatedType();
414 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
415 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
416 TySize *= CUI->getValue(); // Get total allocated size...
417 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
418
419 // Create a new stack object using the frame manager...
420 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
421 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
422 return FrameIdx;
423}
424
425
426/// copyConstantToRegister - Output the instructions required to put the
427/// specified constant into the specified register.
428///
429void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
430 MachineBasicBlock::iterator IP,
431 Constant *C, unsigned R) {
432 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
433 unsigned Class = 0;
434 switch (CE->getOpcode()) {
435 case Instruction::GetElementPtr:
436 emitGEPOperation(MBB, IP, CE->getOperand(0),
437 CE->op_begin()+1, CE->op_end(), R);
438 return;
439 case Instruction::Cast:
440 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
441 return;
442
443 case Instruction::Xor: ++Class; // FALL THROUGH
444 case Instruction::Or: ++Class; // FALL THROUGH
445 case Instruction::And: ++Class; // FALL THROUGH
446 case Instruction::Sub: ++Class; // FALL THROUGH
447 case Instruction::Add:
448 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
449 Class, R);
450 return;
451
452 case Instruction::Mul:
453 emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
454 return;
455
456 case Instruction::Div:
457 case Instruction::Rem:
458 emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
459 CE->getOpcode() == Instruction::Div, R);
460 return;
461
462 case Instruction::SetNE:
463 case Instruction::SetEQ:
464 case Instruction::SetLT:
465 case Instruction::SetGT:
466 case Instruction::SetLE:
467 case Instruction::SetGE:
468 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
469 CE->getOpcode(), R);
470 return;
471
472 case Instruction::Shl:
473 case Instruction::Shr:
474 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
475 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
476 return;
477
478 case Instruction::Select:
479 emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
480 CE->getOperand(2), R);
481 return;
482
483 default:
484 std::cerr << "Offending expr: " << C << "\n";
485 assert(0 && "Constant expression not yet handled!\n");
486 }
487 }
488
489 if (C->getType()->isIntegral()) {
490 unsigned Class = getClassB(C->getType());
491
492 if (Class == cLong) {
493 // Copy the value into the register pair.
494 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman422791f2004-06-21 17:41:12 +0000495 unsigned hiTmp = makeAnotherReg(Type::IntTy);
496 unsigned loTmp = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000497 BuildMI(*MBB, IP, PPC32::ADDIS, 2, loTmp).addReg(PPC32::R0)
498 .addImm(Val >> 48);
499 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(loTmp)
500 .addImm((Val >> 32) & 0xFFFF);
501 BuildMI(*MBB, IP, PPC32::ADDIS, 2, hiTmp).addReg(PPC32::R0)
502 .addImm((Val >> 16) & 0xFFFF);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000503 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(hiTmp).addImm(Val & 0xFFFF);
504 return;
505 }
506
507 assert(Class <= cInt && "Type not handled yet!");
508
509 if (C->getType() == Type::BoolTy) {
Misha Brukman911afde2004-06-25 14:50:41 +0000510 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
511 .addImm(C == ConstantBool::True);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000512 } else if (Class == cByte || Class == cShort) {
513 ConstantInt *CI = cast<ConstantInt>(C);
Misha Brukman911afde2004-06-25 14:50:41 +0000514 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
515 .addImm(CI->getRawValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000516 } else {
517 ConstantInt *CI = cast<ConstantInt>(C);
518 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
519 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman911afde2004-06-25 14:50:41 +0000520 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
521 .addImm(CI->getRawValue());
Misha Brukman422791f2004-06-21 17:41:12 +0000522 } else {
523 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000524 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
525 .addImm(CI->getRawValue() >> 16);
526 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
527 .addImm(CI->getRawValue() & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +0000528 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000529 }
530 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
531 // We need to spill the constant to memory...
532 MachineConstantPool *CP = F->getConstantPool();
533 unsigned CPI = CP->getConstantPoolIndex(CFP);
534 const Type *Ty = CFP->getType();
535
Misha Brukman911afde2004-06-25 14:50:41 +0000536 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000537 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
538 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 2, R), CPI);
539 } else if (isa<ConstantPointerNull>(C)) {
540 // Copy zero (null pointer) to the register.
541 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(0);
542 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000543 BuildMI(*MBB, IP, PPC32::ADDIS, 2, R).addReg(PPC32::R0)
544 .addGlobalAddress(CPR->getValue());
545 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(PPC32::R0)
546 .addGlobalAddress(CPR->getValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000547 } else {
548 std::cerr << "Offending constant: " << C << "\n";
549 assert(0 && "Type not handled yet!");
550 }
551}
552
553/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
554/// the stack into virtual registers.
555///
556/// FIXME: When we can calculate which args are coming in via registers
557/// source them from there instead.
558void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
559 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
560 unsigned GPR_remaining = 8;
561 unsigned FPR_remaining = 13;
562 unsigned GPR_idx = 3;
563 unsigned FPR_idx = 1;
Misha Brukman422791f2004-06-21 17:41:12 +0000564
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000565 MachineFrameInfo *MFI = F->getFrameInfo();
566
567 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
568 bool ArgLive = !I->use_empty();
569 unsigned Reg = ArgLive ? getReg(*I) : 0;
570 int FI; // Frame object index
571
572 switch (getClassB(I->getType())) {
573 case cByte:
574 if (ArgLive) {
575 FI = MFI->CreateFixedObject(1, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000576 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000577 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
578 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000579 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000580 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000581 }
582 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000583 break;
584 case cShort:
585 if (ArgLive) {
586 FI = MFI->CreateFixedObject(2, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000587 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000588 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
589 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000590 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000591 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000592 }
593 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000594 break;
595 case cInt:
596 if (ArgLive) {
597 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000598 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000599 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
600 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000601 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000602 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000603 }
604 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000605 break;
606 case cLong:
607 if (ArgLive) {
608 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000609 if (GPR_remaining > 1) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000610 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
611 .addReg(PPC32::R0+GPR_idx);
612 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(PPC32::R0+GPR_idx+1)
613 .addReg(PPC32::R0+GPR_idx+1);
Misha Brukman422791f2004-06-21 17:41:12 +0000614 } else {
615 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
616 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
617 }
618 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000619 ArgOffset += 4; // longs require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000620 if (GPR_remaining > 1) {
621 GPR_remaining--; // uses up 2 GPRs
622 GPR_idx++;
623 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000624 break;
625 case cFP:
626 if (ArgLive) {
627 unsigned Opcode;
628 if (I->getType() == Type::FloatTy) {
629 Opcode = PPC32::LFS;
630 FI = MFI->CreateFixedObject(4, ArgOffset);
631 } else {
632 Opcode = PPC32::LFD;
633 FI = MFI->CreateFixedObject(8, ArgOffset);
634 }
Misha Brukman422791f2004-06-21 17:41:12 +0000635 if (FPR_remaining > 0) {
636 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(PPC32::F0+FPR_idx);
637 FPR_remaining--;
638 FPR_idx++;
639 } else {
640 addFrameReference(BuildMI(BB, Opcode, 2, Reg), FI);
641 }
642 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000643 if (I->getType() == Type::DoubleTy) {
644 ArgOffset += 4; // doubles require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000645 if (GPR_remaining > 0) {
646 GPR_remaining--; // uses up 2 GPRs
647 GPR_idx++;
648 }
649 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000650 break;
651 default:
652 assert(0 && "Unhandled argument type!");
653 }
654 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000655 if (GPR_remaining > 0) {
656 GPR_remaining--; // uses up 2 GPRs
657 GPR_idx++;
658 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000659 }
660
661 // If the function takes variable number of arguments, add a frame offset for
662 // the start of the first vararg value... this is used to expand
663 // llvm.va_start.
664 if (Fn.getFunctionType()->isVarArg())
665 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
666}
667
668
669/// SelectPHINodes - Insert machine code to generate phis. This is tricky
670/// because we have to generate our sources into the source basic blocks, not
671/// the current one.
672///
673void ISel::SelectPHINodes() {
674 const TargetInstrInfo &TII = *TM.getInstrInfo();
675 const Function &LF = *F->getFunction(); // The LLVM function...
676 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
677 const BasicBlock *BB = I;
678 MachineBasicBlock &MBB = *MBBMap[I];
679
680 // Loop over all of the PHI nodes in the LLVM basic block...
681 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
682 for (BasicBlock::const_iterator I = BB->begin();
683 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
684
685 // Create a new machine instr PHI node, and insert it.
686 unsigned PHIReg = getReg(*PN);
687 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
688 PPC32::PHI, PN->getNumOperands(), PHIReg);
689
690 MachineInstr *LongPhiMI = 0;
691 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
692 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
693 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
694
695 // PHIValues - Map of blocks to incoming virtual registers. We use this
696 // so that we only initialize one incoming value for a particular block,
697 // even if the block has multiple entries in the PHI node.
698 //
699 std::map<MachineBasicBlock*, unsigned> PHIValues;
700
701 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
702 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
703 unsigned ValReg;
704 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
705 PHIValues.lower_bound(PredMBB);
706
707 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
708 // We already inserted an initialization of the register for this
709 // predecessor. Recycle it.
710 ValReg = EntryIt->second;
711
712 } else {
713 // Get the incoming value into a virtual register.
714 //
715 Value *Val = PN->getIncomingValue(i);
716
717 // If this is a constant or GlobalValue, we may have to insert code
718 // into the basic block to compute it into a virtual register.
719 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
720 isa<GlobalValue>(Val)) {
721 // Simple constants get emitted at the end of the basic block,
722 // before any terminator instructions. We "know" that the code to
723 // move a constant into a register will never clobber any flags.
724 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
725 } else {
726 // Because we don't want to clobber any values which might be in
727 // physical registers with the computation of this constant (which
728 // might be arbitrarily complex if it is a constant expression),
729 // just insert the computation at the top of the basic block.
730 MachineBasicBlock::iterator PI = PredMBB->begin();
731
732 // Skip over any PHI nodes though!
733 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
734 ++PI;
735
736 ValReg = getReg(Val, PredMBB, PI);
737 }
738
739 // Remember that we inserted a value for this PHI for this predecessor
740 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
741 }
742
743 PhiMI->addRegOperand(ValReg);
744 PhiMI->addMachineBasicBlockOperand(PredMBB);
745 if (LongPhiMI) {
746 LongPhiMI->addRegOperand(ValReg+1);
747 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
748 }
749 }
750
751 // Now that we emitted all of the incoming values for the PHI node, make
752 // sure to reposition the InsertPoint after the PHI that we just added.
753 // This is needed because we might have inserted a constant into this
754 // block, right after the PHI's which is before the old insert point!
755 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
756 ++PHIInsertPoint;
757 }
758 }
759}
760
761
762// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
763// it into the conditional branch or select instruction which is the only user
764// of the cc instruction. This is the case if the conditional branch is the
765// only user of the setcc, and if the setcc is in the same basic block as the
766// conditional branch. We also don't handle long arguments below, so we reject
767// them here as well.
768//
769static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
770 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
771 if (SCI->hasOneUse()) {
772 Instruction *User = cast<Instruction>(SCI->use_back());
773 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
774 SCI->getParent() == User->getParent() &&
775 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
776 SCI->getOpcode() == Instruction::SetEQ ||
777 SCI->getOpcode() == Instruction::SetNE))
778 return SCI;
779 }
780 return 0;
781}
782
783// Return a fixed numbering for setcc instructions which does not depend on the
784// order of the opcodes.
785//
786static unsigned getSetCCNumber(unsigned Opcode) {
787 switch(Opcode) {
788 default: assert(0 && "Unknown setcc instruction!");
789 case Instruction::SetEQ: return 0;
790 case Instruction::SetNE: return 1;
791 case Instruction::SetLT: return 2;
792 case Instruction::SetGE: return 3;
793 case Instruction::SetGT: return 4;
794 case Instruction::SetLE: return 5;
795 }
796}
797
798/// emitUCOM - emits an unordered FP compare.
799void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
800 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000801 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000802}
803
804// EmitComparison - This function emits a comparison of the two operands,
805// returning the extended setcc code to use.
806unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
807 MachineBasicBlock *MBB,
808 MachineBasicBlock::iterator IP) {
809 // The arguments are already supposed to be of the same type.
810 const Type *CompTy = Op0->getType();
811 unsigned Class = getClassB(CompTy);
812 unsigned Op0r = getReg(Op0, MBB, IP);
813
814 // Special case handling of: cmp R, i
815 if (isa<ConstantPointerNull>(Op1)) {
816 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
817 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
818 if (Class == cByte || Class == cShort || Class == cInt) {
819 unsigned Op1v = CI->getRawValue();
820
821 // Mask off any upper bits of the constant, if there are any...
822 Op1v &= (1ULL << (8 << Class)) - 1;
823
Misha Brukman422791f2004-06-21 17:41:12 +0000824 // Compare immediate or promote to reg?
825 if (Op1v <= 32767) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000826 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
827 PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +0000828 } else {
829 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2fec9902004-06-21 20:22:03 +0000830 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3,
831 PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +0000832 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000833 return OpNum;
834 } else {
835 assert(Class == cLong && "Unknown integer class!");
836 unsigned LowCst = CI->getRawValue();
837 unsigned HiCst = CI->getRawValue() >> 32;
838 if (OpNum < 2) { // seteq, setne
839 unsigned LoTmp = Op0r;
840 if (LowCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000841 unsigned LoLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000842 unsigned LoTmp = makeAnotherReg(Type::IntTy);
843 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000844 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
845 .addImm(LowCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000846 }
847 unsigned HiTmp = Op0r+1;
848 if (HiCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000849 unsigned HiLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000850 unsigned HiTmp = makeAnotherReg(Type::IntTy);
851 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000852 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
853 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000854 }
855 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
856 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
857 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
858 return OpNum;
859 } else {
860 // Emit a sequence of code which compares the high and low parts once
861 // each, then uses a conditional move to handle the overflow case. For
862 // example, a setlt for long would generate code like this:
863 //
864 // AL = lo(op1) < lo(op2) // Always unsigned comparison
865 // BL = hi(op1) < hi(op2) // Signedness depends on operands
866 // dest = hi(op1) == hi(op2) ? BL : AL;
867 //
868
869 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000870 std::cerr << "EmitComparison unimplemented: Opnum >= 2\n";
871 abort();
Misha Brukman422791f2004-06-21 17:41:12 +0000872 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000873 }
874 }
875 }
876
877 unsigned Op1r = getReg(Op1, MBB, IP);
878 switch (Class) {
879 default: assert(0 && "Unknown type class!");
880 case cByte:
881 case cShort:
882 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +0000883 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2,
884 PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000885 break;
886 case cFP:
887 emitUCOM(MBB, IP, Op0r, Op1r);
888 break;
889
890 case cLong:
891 if (OpNum < 2) { // seteq, setne
892 unsigned LoTmp = makeAnotherReg(Type::IntTy);
893 unsigned HiTmp = makeAnotherReg(Type::IntTy);
894 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
895 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
896 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
897 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
898 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
899 break; // Allow the sete or setne to be generated from flags set by OR
900 } else {
901 // Emit a sequence of code which compares the high and low parts once
902 // each, then uses a conditional move to handle the overflow case. For
903 // example, a setlt for long would generate code like this:
904 //
905 // AL = lo(op1) < lo(op2) // Signedness depends on operands
906 // BL = hi(op1) < hi(op2) // Always unsigned comparison
907 // dest = hi(op1) == hi(op2) ? BL : AL;
908 //
909
910 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000911 std::cerr << "EmitComparison (cLong) unimplemented: Opnum >= 2\n";
912 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000913 return OpNum;
914 }
915 }
916 return OpNum;
917}
918
919/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
920/// register, then move it to wherever the result should be.
921///
922void ISel::visitSetCondInst(SetCondInst &I) {
923 if (canFoldSetCCIntoBranchOrSelect(&I))
924 return; // Fold this into a branch or select.
925
926 unsigned DestReg = getReg(I);
927 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +0000928 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
929 DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000930}
931
932/// emitSetCCOperation - Common code shared between visitSetCondInst and
933/// constant expression support.
934///
935/// FIXME: this is wrong. we should figure out a way to guarantee
936/// TargetReg is a CR and then make it a no-op
937void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
938 MachineBasicBlock::iterator IP,
939 Value *Op0, Value *Op1, unsigned Opcode,
940 unsigned TargetReg) {
941 unsigned OpNum = getSetCCNumber(Opcode);
942 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
943
944 // The value is already in CR0 at this point, do nothing.
945}
946
947
948void ISel::visitSelectInst(SelectInst &SI) {
949 unsigned DestReg = getReg(SI);
950 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +0000951 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
952 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000953}
954
955/// emitSelect - Common code shared between visitSelectInst and the constant
956/// expression support.
957/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
958/// no select instruction. FSEL only works for comparisons against zero.
959void ISel::emitSelectOperation(MachineBasicBlock *MBB,
960 MachineBasicBlock::iterator IP,
961 Value *Cond, Value *TrueVal, Value *FalseVal,
962 unsigned DestReg) {
963 unsigned SelectClass = getClassB(TrueVal->getType());
964
965 unsigned TrueReg = getReg(TrueVal, MBB, IP);
966 unsigned FalseReg = getReg(FalseVal, MBB, IP);
967
968 if (TrueReg == FalseReg) {
Misha Brukman422791f2004-06-21 17:41:12 +0000969 if (SelectClass == cFP) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000970 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +0000971 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000972 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TrueReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +0000973 }
974
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000975 if (SelectClass == cLong)
Misha Brukman2fec9902004-06-21 20:22:03 +0000976 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TrueReg+1)
977 .addReg(TrueReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000978 return;
979 }
980
981 unsigned CondReg = getReg(Cond, MBB, IP);
982 unsigned numZeros = makeAnotherReg(Type::IntTy);
983 unsigned falseHi = makeAnotherReg(Type::IntTy);
984 unsigned falseAll = makeAnotherReg(Type::IntTy);
985 unsigned trueAll = makeAnotherReg(Type::IntTy);
986 unsigned Temp1 = makeAnotherReg(Type::IntTy);
987 unsigned Temp2 = makeAnotherReg(Type::IntTy);
988
989 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, numZeros).addReg(CondReg);
Misha Brukman2fec9902004-06-21 20:22:03 +0000990 BuildMI(*MBB, IP, PPC32::RLWINM, 4, falseHi).addReg(numZeros).addImm(26)
991 .addImm(0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000992 BuildMI(*MBB, IP, PPC32::SRAWI, 2, falseAll).addReg(falseHi).addImm(31);
993 BuildMI(*MBB, IP, PPC32::NOR, 2, trueAll).addReg(falseAll).addReg(falseAll);
994 BuildMI(*MBB, IP, PPC32::AND, 2, Temp1).addReg(TrueReg).addReg(trueAll);
995 BuildMI(*MBB, IP, PPC32::AND, 2, Temp2).addReg(FalseReg).addReg(falseAll);
996 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Temp1).addReg(Temp2);
997
998 if (SelectClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +0000999 unsigned Temp3 = makeAnotherReg(Type::IntTy);
1000 unsigned Temp4 = makeAnotherReg(Type::IntTy);
1001 BuildMI(*MBB, IP, PPC32::AND, 2, Temp3).addReg(TrueReg+1).addReg(trueAll);
1002 BuildMI(*MBB, IP, PPC32::AND, 2, Temp4).addReg(FalseReg+1).addReg(falseAll);
1003 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Temp3).addReg(Temp4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001004 }
1005
1006 return;
1007}
1008
1009
1010
1011/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1012/// operand, in the specified target register.
1013///
1014void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1015 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1016
1017 Value *Val = VR.Val;
1018 const Type *Ty = VR.Ty;
1019 if (Val) {
1020 if (Constant *C = dyn_cast<Constant>(Val)) {
1021 Val = ConstantExpr::getCast(C, Type::IntTy);
1022 Ty = Type::IntTy;
1023 }
1024
Misha Brukman2fec9902004-06-21 20:22:03 +00001025 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001026 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1027 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1028
1029 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman422791f2004-06-21 17:41:12 +00001030 BuildMI(BB, PPC32::ADDI, 2, targetReg).addReg(PPC32::R0).addImm(TheVal);
1031 } else {
1032 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001033 BuildMI(BB, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
1034 .addImm(TheVal >> 16);
1035 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1036 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001037 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001038 return;
1039 }
1040 }
1041
1042 // Make sure we have the register number for this value...
1043 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1044
1045 switch (getClassB(Ty)) {
1046 case cByte:
1047 // Extend value into target register (8->32)
1048 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001049 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1050 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001051 else
1052 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1053 break;
1054 case cShort:
1055 // Extend value into target register (16->32)
1056 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001057 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1058 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001059 else
1060 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1061 break;
1062 case cInt:
1063 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001064 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001065 break;
1066 default:
1067 assert(0 && "Unpromotable operand class in promote32");
1068 }
1069}
1070
Misha Brukman2fec9902004-06-21 20:22:03 +00001071/// visitReturnInst - implemented with BLR
1072///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001073void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001074 // Only do the processing if this is a non-void return
1075 if (I.getNumOperands() > 0) {
1076 Value *RetVal = I.getOperand(0);
1077 switch (getClassB(RetVal->getType())) {
1078 case cByte: // integral return values: extend or move into r3 and return
1079 case cShort:
1080 case cInt:
1081 promote32(PPC32::R3, ValueRecord(RetVal));
1082 break;
1083 case cFP: { // Floats & Doubles: Return in f1
1084 unsigned RetReg = getReg(RetVal);
1085 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1086 break;
1087 }
1088 case cLong: {
1089 unsigned RetReg = getReg(RetVal);
1090 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1091 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1092 break;
1093 }
1094 default:
1095 visitInstruction(I);
1096 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001097 }
1098 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1099}
1100
1101// getBlockAfter - Return the basic block which occurs lexically after the
1102// specified one.
1103static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1104 Function::iterator I = BB; ++I; // Get iterator to next block
1105 return I != BB->getParent()->end() ? &*I : 0;
1106}
1107
1108/// visitBranchInst - Handle conditional and unconditional branches here. Note
1109/// that since code layout is frozen at this point, that if we are trying to
1110/// jump to a block that is the immediate successor of the current block, we can
1111/// just make a fall-through (but we don't currently).
1112///
1113void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001114 // Update machine-CFG edges
1115 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1116 if (BI.isConditional())
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001117 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001118
1119 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1120
1121 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001122 if (BI.getSuccessor(0) != NextBB)
1123 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1124 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001125 }
1126
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001127 // See if we can fold the setcc into the branch itself...
1128 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1129 if (SCI == 0) {
1130 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1131 // computed some other way...
1132 unsigned condReg = getReg(BI.getCondition());
Misha Brukman2fec9902004-06-21 20:22:03 +00001133 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(condReg)
1134 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001135 if (BI.getSuccessor(1) == NextBB) {
1136 if (BI.getSuccessor(0) != NextBB)
Misha Brukman2fec9902004-06-21 20:22:03 +00001137 BuildMI(BB, PPC32::BC, 3).addImm(4).addImm(2)
1138 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001139 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001140 BuildMI(BB, PPC32::BC, 3).addImm(12).addImm(2)
1141 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001142
1143 if (BI.getSuccessor(0) != NextBB)
1144 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1145 }
1146 return;
1147 }
1148
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001149 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1150 MachineBasicBlock::iterator MII = BB->end();
1151 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
1152
1153 const Type *CompTy = SCI->getOperand(0)->getType();
1154 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1155
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001156 static const unsigned BITab[6] = { 2, 2, 0, 0, 1, 1 };
1157 unsigned BO_true = (OpNum % 2 == 0) ? 12 : 4;
1158 unsigned BO_false = (OpNum % 2 == 0) ? 4 : 12;
1159 unsigned BIval = BITab[0];
1160
1161 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001162 BuildMI(BB, PPC32::BC, 3).addImm(BO_true).addImm(BIval)
1163 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001164 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001165 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001166 } else {
1167 // Change to the inverse condition...
1168 if (BI.getSuccessor(1) != NextBB) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001169 BuildMI(BB, PPC32::BC, 3).addImm(BO_false).addImm(BIval)
1170 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001171 }
1172 }
1173}
1174
1175
1176/// doCall - This emits an abstract call instruction, setting up the arguments
1177/// and the return value as appropriate. For the actual function call itself,
1178/// it inserts the specified CallMI instruction into the stream.
1179///
1180/// FIXME: See Documentation at the following URL for "correct" behavior
1181/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1182void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
1183 const std::vector<ValueRecord> &Args) {
1184 // Count how many bytes are to be pushed on the stack...
1185 unsigned NumBytes = 0;
1186
1187 if (!Args.empty()) {
1188 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1189 switch (getClassB(Args[i].Ty)) {
1190 case cByte: case cShort: case cInt:
1191 NumBytes += 4; break;
1192 case cLong:
1193 NumBytes += 8; break;
1194 case cFP:
1195 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1196 break;
1197 default: assert(0 && "Unknown class!");
1198 }
1199
1200 // Adjust the stack pointer for the new arguments...
1201 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1202
1203 // Arguments go on the stack in reverse order, as specified by the ABI.
1204 unsigned ArgOffset = 0;
Misha Brukman422791f2004-06-21 17:41:12 +00001205 unsigned GPR_remaining = 8;
1206 unsigned FPR_remaining = 13;
1207 unsigned GPR_idx = 3;
1208 unsigned FPR_idx = 1;
1209
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001210 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1211 unsigned ArgReg;
1212 switch (getClassB(Args[i].Ty)) {
1213 case cByte:
1214 case cShort:
1215 // Promote arg to 32 bits wide into a temporary register...
1216 ArgReg = makeAnotherReg(Type::UIntTy);
1217 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001218
1219 // Reg or stack?
1220 if (GPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001221 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg)
1222 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001223 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001224 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1225 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001226 }
1227 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001228 case cInt:
1229 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1230
Misha Brukman422791f2004-06-21 17:41:12 +00001231 // Reg or stack?
1232 if (GPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001233 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg)
1234 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001235 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001236 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1237 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001238 }
1239 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001240 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001241 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001242
Misha Brukman422791f2004-06-21 17:41:12 +00001243 // Reg or stack?
1244 if (GPR_remaining > 1) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001245 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg)
1246 .addReg(ArgReg);
1247 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx + 1).addReg(ArgReg+1)
1248 .addReg(ArgReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00001249 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001250 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1251 .addReg(PPC32::R1);
1252 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4)
1253 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001254 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001255
1256 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman422791f2004-06-21 17:41:12 +00001257 if (GPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001258 GPR_remaining -= 1; // uses up 2 GPRs
1259 GPR_idx += 1;
Misha Brukman422791f2004-06-21 17:41:12 +00001260 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001261 break;
1262 case cFP:
1263 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1264 if (Args[i].Ty == Type::FloatTy) {
Misha Brukman1916bf92004-06-24 21:56:15 +00001265 // Reg or stack?
1266 if (FPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001267 BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg);
1268 FPR_remaining--;
1269 FPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001270 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001271 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
1272 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001273 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001274 } else {
1275 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman1916bf92004-06-24 21:56:15 +00001276 // Reg or stack?
1277 if (FPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001278 BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg);
1279 FPR_remaining--;
1280 FPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001281 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001282 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1283 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001284 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001285
Misha Brukman1916bf92004-06-24 21:56:15 +00001286 ArgOffset += 4; // 8 byte entry, not 4.
1287 if (GPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001288 GPR_remaining--; // uses up 2 GPRs
1289 GPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001290 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001291 }
1292 break;
1293
1294 default: assert(0 && "Unknown class!");
1295 }
1296 ArgOffset += 4;
Misha Brukman422791f2004-06-21 17:41:12 +00001297 if (GPR_remaining > 0) {
1298 GPR_remaining--; // uses up 2 GPRs
1299 GPR_idx++;
1300 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001301 }
1302 } else {
1303 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
1304 }
1305
1306 BB->push_back(CallMI);
1307
1308 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
1309
1310 // If there is a return value, scavenge the result from the location the call
1311 // leaves it in...
1312 //
1313 if (Ret.Ty != Type::VoidTy) {
1314 unsigned DestClass = getClassB(Ret.Ty);
1315 switch (DestClass) {
1316 case cByte:
1317 case cShort:
1318 case cInt:
1319 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001320 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001321 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001322 case cFP: // Floating-point return values live in f1
1323 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1324 break;
1325 case cLong: // Long values are in r3:r4
Misha Brukman422791f2004-06-21 17:41:12 +00001326 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1327 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001328 break;
1329 default: assert(0 && "Unknown class!");
1330 }
1331 }
1332}
1333
1334
1335/// visitCallInst - Push args on stack and do a procedure call instruction.
1336void ISel::visitCallInst(CallInst &CI) {
1337 MachineInstr *TheCall;
1338 if (Function *F = CI.getCalledFunction()) {
1339 // Is it an intrinsic function call?
1340 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1341 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1342 return;
1343 }
1344
1345 // Emit a CALL instruction with PC-relative displacement.
1346 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
1347 } else { // Emit an indirect call through the CTR
1348 unsigned Reg = getReg(CI.getCalledValue());
1349 BuildMI(PPC32::MTSPR, 2).addZImm(9).addReg(Reg);
1350 TheCall = BuildMI(PPC32::CALLindirect, 1).addZImm(20).addZImm(0);
1351 }
1352
1353 std::vector<ValueRecord> Args;
1354 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1355 Args.push_back(ValueRecord(CI.getOperand(i)));
1356
1357 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1358 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
1359}
1360
1361
1362/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1363///
1364static Value *dyncastIsNan(Value *V) {
1365 if (CallInst *CI = dyn_cast<CallInst>(V))
1366 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001367 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001368 return CI->getOperand(1);
1369 return 0;
1370}
1371
1372/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1373/// or's whos operands are all calls to the isnan predicate.
1374static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1375 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1376
1377 // Check all uses, which will be or's of isnans if this predicate is true.
1378 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1379 Instruction *I = cast<Instruction>(*UI);
1380 if (I->getOpcode() != Instruction::Or) return false;
1381 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1382 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1383 }
1384
1385 return true;
1386}
1387
1388/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1389/// function, lowering any calls to unknown intrinsic functions into the
1390/// equivalent LLVM code.
1391///
1392void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1393 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1394 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1395 if (CallInst *CI = dyn_cast<CallInst>(I++))
1396 if (Function *F = CI->getCalledFunction())
1397 switch (F->getIntrinsicID()) {
1398 case Intrinsic::not_intrinsic:
1399 case Intrinsic::vastart:
1400 case Intrinsic::vacopy:
1401 case Intrinsic::vaend:
1402 case Intrinsic::returnaddress:
1403 case Intrinsic::frameaddress:
Misha Brukmana2916ce2004-06-21 17:58:36 +00001404 // FIXME: should lower this ourselves
1405 // case Intrinsic::isunordered:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001406 // We directly implement these intrinsics
1407 break;
1408 case Intrinsic::readio: {
1409 // On PPC, memory operations are in-order. Lower this intrinsic
1410 // into a volatile load.
1411 Instruction *Before = CI->getPrev();
1412 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1413 CI->replaceAllUsesWith(LI);
1414 BB->getInstList().erase(CI);
1415 break;
1416 }
1417 case Intrinsic::writeio: {
1418 // On PPC, memory operations are in-order. Lower this intrinsic
1419 // into a volatile store.
1420 Instruction *Before = CI->getPrev();
1421 StoreInst *LI = new StoreInst(CI->getOperand(1),
1422 CI->getOperand(2), true, CI);
1423 CI->replaceAllUsesWith(LI);
1424 BB->getInstList().erase(CI);
1425 break;
1426 }
1427 default:
1428 // All other intrinsic calls we must lower.
1429 Instruction *Before = CI->getPrev();
1430 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1431 if (Before) { // Move iterator to instruction after call
1432 I = Before; ++I;
1433 } else {
1434 I = BB->begin();
1435 }
1436 }
1437}
1438
1439void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1440 unsigned TmpReg1, TmpReg2, TmpReg3;
1441 switch (ID) {
1442 case Intrinsic::vastart:
1443 // Get the address of the first vararg value...
1444 TmpReg1 = getReg(CI);
1445 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex);
1446 return;
1447
1448 case Intrinsic::vacopy:
1449 TmpReg1 = getReg(CI);
1450 TmpReg2 = getReg(CI.getOperand(1));
1451 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1452 return;
1453 case Intrinsic::vaend: return;
1454
1455 case Intrinsic::returnaddress:
1456 case Intrinsic::frameaddress:
1457 TmpReg1 = getReg(CI);
1458 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1459 if (ID == Intrinsic::returnaddress) {
1460 // Just load the return address
1461 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1),
1462 ReturnAddressIndex);
1463 } else {
1464 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1),
1465 ReturnAddressIndex, -4, false);
1466 }
1467 } else {
1468 // Values other than zero are not implemented yet.
1469 BuildMI(BB, PPC32::ADDI, 2, TmpReg1).addReg(PPC32::R0).addImm(0);
1470 }
1471 return;
1472
Misha Brukmana2916ce2004-06-21 17:58:36 +00001473#if 0
1474 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001475 case Intrinsic::isnan:
1476 // If this is only used by 'isunordered' style comparisons, don't emit it.
1477 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1478 TmpReg1 = getReg(CI.getOperand(1));
1479 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001480 TmpReg2 = makeAnotherReg(Type::IntTy);
1481 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001482 TmpReg3 = getReg(CI);
1483 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1484 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001485#endif
1486
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001487 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1488 }
1489}
1490
1491/// visitSimpleBinary - Implement simple binary operators for integral types...
1492/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1493/// Xor.
1494///
1495void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1496 unsigned DestReg = getReg(B);
1497 MachineBasicBlock::iterator MI = BB->end();
1498 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1499 unsigned Class = getClassB(B.getType());
1500
1501 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1502}
1503
1504/// emitBinaryFPOperation - This method handles emission of floating point
1505/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1506void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1507 MachineBasicBlock::iterator IP,
1508 Value *Op0, Value *Op1,
1509 unsigned OperatorClass, unsigned DestReg) {
1510
1511 // Special case: op Reg, <const fp>
1512 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001513 // Create a constant pool entry for this constant.
1514 MachineConstantPool *CP = F->getConstantPool();
1515 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1516 const Type *Ty = Op1->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001517
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001518 static const unsigned OpcodeTab[][4] = {
1519 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1520 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
1521 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001522
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001523 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1524 unsigned TempReg = makeAnotherReg(Ty);
1525 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
1526 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001527
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001528 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1529 unsigned Op0r = getReg(Op0, BB, IP);
1530 BuildMI(*BB, IP, Opcode, DestReg).addReg(Op0r).addReg(TempReg);
1531 return;
1532 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001533
1534 // Special case: R1 = op <const fp>, R2
1535 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
1536 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
1537 // -0.0 - X === -X
1538 unsigned op1Reg = getReg(Op1, BB, IP);
1539 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1540 return;
1541 } else {
1542 // R1 = op CST, R2 --> R1 = opr R2, CST
1543
1544 // Create a constant pool entry for this constant.
1545 MachineConstantPool *CP = F->getConstantPool();
1546 unsigned CPI = CP->getConstantPoolIndex(CFP);
1547 const Type *Ty = CFP->getType();
1548
1549 static const unsigned OpcodeTab[][4] = {
1550 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1551 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
1552 };
1553
1554 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman422791f2004-06-21 17:41:12 +00001555 unsigned TempReg = makeAnotherReg(Ty);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001556 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
1557 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
1558
1559 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1560 unsigned Op1r = getReg(Op1, BB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001561 BuildMI(*BB, IP, Opcode, DestReg).addReg(TempReg).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001562 return;
1563 }
1564
1565 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001566 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001567 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1568 };
1569
1570 unsigned Opcode = OpcodeTab[OperatorClass];
1571 unsigned Op0r = getReg(Op0, BB, IP);
1572 unsigned Op1r = getReg(Op1, BB, IP);
1573 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1574}
1575
1576/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1577/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1578/// Or, 4 for Xor.
1579///
1580/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1581/// and constant expression support.
1582///
1583void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1584 MachineBasicBlock::iterator IP,
1585 Value *Op0, Value *Op1,
1586 unsigned OperatorClass, unsigned DestReg) {
1587 unsigned Class = getClassB(Op0->getType());
1588
Misha Brukman422791f2004-06-21 17:41:12 +00001589 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001590 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001591 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1592 };
1593 // Otherwise, code generate the full operation with a constant.
1594 static const unsigned BottomTab[] = {
1595 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1596 };
1597 static const unsigned TopTab[] = {
1598 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1599 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001600
1601 if (Class == cFP) {
1602 assert(OperatorClass < 2 && "No logical ops for FP!");
1603 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1604 return;
1605 }
1606
1607 if (Op0->getType() == Type::BoolTy) {
1608 if (OperatorClass == 3)
1609 // If this is an or of two isnan's, emit an FP comparison directly instead
1610 // of or'ing two isnan's together.
1611 if (Value *LHS = dyncastIsNan(Op0))
1612 if (Value *RHS = dyncastIsNan(Op1)) {
1613 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001614 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001615 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001616 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001617 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1618 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001619 return;
1620 }
1621 }
1622
1623 // sub 0, X -> neg X
1624 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1625 if (OperatorClass == 1 && CI->isNullValue()) {
1626 unsigned op1Reg = getReg(Op1, MBB, IP);
1627 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
1628
1629 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001630 unsigned zeroes = makeAnotherReg(Type::IntTy);
1631 unsigned overflow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001632 unsigned T = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00001633 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001634 BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27)
1635 .addImm(5).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00001636 BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
1637 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001638 }
1639 return;
1640 }
1641
1642 // Special case: op Reg, <const int>
1643 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1644 unsigned Op0r = getReg(Op0, MBB, IP);
1645
1646 // xor X, -1 -> not X
1647 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1648 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1649 if (Class == cLong) // Invert the top part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001650 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1651 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001652 return;
1653 }
1654
1655 unsigned Opcode = OpcodeTab[OperatorClass];
1656 unsigned Op1r = getReg(Op1, MBB, IP);
1657
1658 if (Class != cLong) {
1659 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1660 return;
1661 }
1662
1663 // If the constant is zero in the low 32-bits, just copy the low part
1664 // across and apply the normal 32-bit operation to the high parts. There
1665 // will be no carry or borrow into the top.
1666 if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
1667 if (OperatorClass != 2) // All but and...
1668 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1669 else
1670 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman422791f2004-06-21 17:41:12 +00001671 BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001672 return;
1673 }
1674
1675 // If this is a long value and the high or low bits have a special
1676 // property, emit some special cases.
1677 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
1678
1679 // If this is a logical operation and the top 32-bits are zero, just
1680 // operate on the lower 32.
1681 if (Op1h == 0 && OperatorClass > 1) {
1682 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1683 if (OperatorClass != 2) // All but and
Misha Brukman2fec9902004-06-21 20:22:03 +00001684 BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001685 else
Misha Brukman2fec9902004-06-21 20:22:03 +00001686 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001687 return;
1688 }
1689
1690 // TODO: We could handle lots of other special cases here, such as AND'ing
1691 // with 0xFFFFFFFF00000000 -> noop, etc.
1692
Misha Brukman2fec9902004-06-21 20:22:03 +00001693 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1694 .addImm(Op1r);
1695 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1696 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001697 return;
1698 }
1699
1700 unsigned Op0r = getReg(Op0, MBB, IP);
1701 unsigned Op1r = getReg(Op1, MBB, IP);
1702
1703 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001704 unsigned Opcode = OpcodeTab[OperatorClass];
1705 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001706 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001707 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1708 .addImm(Op1r);
1709 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1710 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001711 }
1712 return;
1713}
1714
1715/// doMultiply - Emit appropriate instructions to multiply together the
1716/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1717/// result should be given as DestTy.
1718///
1719void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
1720 unsigned DestReg, const Type *DestTy,
1721 unsigned op0Reg, unsigned op1Reg) {
1722 unsigned Class = getClass(DestTy);
1723 switch (Class) {
1724 case cLong:
Misha Brukman2fec9902004-06-21 20:22:03 +00001725 BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1)
1726 .addReg(op1Reg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001727 case cInt:
1728 case cShort:
1729 case cByte:
1730 BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
1731 return;
1732 default:
Misha Brukman422791f2004-06-21 17:41:12 +00001733 assert(0 && "doMultiply cannot operate on unknown type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001734 }
1735}
1736
1737// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1738// returns zero when the input is not exactly a power of two.
1739static unsigned ExactLog2(unsigned Val) {
1740 if (Val == 0 || (Val & (Val-1))) return 0;
1741 unsigned Count = 0;
1742 while (Val != 1) {
1743 Val >>= 1;
1744 ++Count;
1745 }
1746 return Count+1;
1747}
1748
1749
1750/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
1751/// 16, or 32-bit integer multiply by a constant.
Misha Brukman2fec9902004-06-21 20:22:03 +00001752///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001753void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1754 MachineBasicBlock::iterator IP,
1755 unsigned DestReg, const Type *DestTy,
1756 unsigned op0Reg, unsigned ConstRHS) {
1757 unsigned Class = getClass(DestTy);
1758 // Handle special cases here.
1759 switch (ConstRHS) {
1760 case 0:
1761 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1762 return;
1763 case 1:
1764 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
1765 return;
1766 case 2:
1767 BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
1768 return;
1769 }
1770
1771 // If the element size is exactly a power of 2, use a shift to get it.
1772 if (unsigned Shift = ExactLog2(ConstRHS)) {
1773 switch (Class) {
1774 default: assert(0 && "Unknown class for this function!");
1775 case cByte:
1776 case cShort:
1777 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +00001778 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg)
1779 .addImm(Shift-1).addImm(0).addImm(31-Shift-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001780 return;
1781 }
1782 }
1783
1784 // Most general case, emit a normal multiply...
1785 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
1786 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001787 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg1).addReg(PPC32::R0)
1788 .addImm(ConstRHS >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001789 BuildMI(*MBB, IP, PPC32::ORI, 2, TmpReg2).addReg(TmpReg1).addImm(ConstRHS);
1790
1791 // Emit a MUL to multiply the register holding the index by
1792 // elementSize, putting the result in OffsetReg.
1793 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg2);
1794}
1795
1796void ISel::visitMul(BinaryOperator &I) {
1797 unsigned ResultReg = getReg(I);
1798
1799 Value *Op0 = I.getOperand(0);
1800 Value *Op1 = I.getOperand(1);
1801
1802 MachineBasicBlock::iterator IP = BB->end();
1803 emitMultiply(BB, IP, Op0, Op1, ResultReg);
1804}
1805
1806void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
1807 Value *Op0, Value *Op1, unsigned DestReg) {
1808 MachineBasicBlock &BB = *MBB;
1809 TypeClass Class = getClass(Op0->getType());
1810
1811 // Simple scalar multiply?
1812 unsigned Op0Reg = getReg(Op0, &BB, IP);
1813 switch (Class) {
1814 case cByte:
1815 case cShort:
1816 case cInt:
1817 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1818 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
1819 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
1820 } else {
1821 unsigned Op1Reg = getReg(Op1, &BB, IP);
1822 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
1823 }
1824 return;
1825 case cFP:
1826 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
1827 return;
1828 case cLong:
1829 break;
1830 }
1831
1832 // Long value. We have to do things the hard way...
1833 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1834 unsigned CLow = CI->getRawValue();
1835 unsigned CHi = CI->getRawValue() >> 32;
1836
1837 if (CLow == 0) {
1838 // If the low part of the constant is all zeros, things are simple.
1839 BuildMI(BB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1840 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
1841 return;
1842 }
1843
1844 // Multiply the two low parts
1845 unsigned OverflowReg = 0;
1846 if (CLow == 1) {
1847 BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
1848 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00001849 unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001850 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
1851 OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001852 BuildMI(BB, IP, PPC32::ADDIS, 2, TmpRegL).addReg(PPC32::R0)
1853 .addImm(CLow >> 16);
Misha Brukman422791f2004-06-21 17:41:12 +00001854 BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
1855 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
Misha Brukman2fec9902004-06-21 20:22:03 +00001856 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg)
1857 .addReg(Op1RegL);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001858 }
1859
1860 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
1861 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
1862
1863 unsigned AHBLplusOverflowReg;
1864 if (OverflowReg) {
1865 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1866 BuildMI(BB, IP, PPC32::ADD, 2, // AH*BL+(AL*BL >> 32)
1867 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1868 } else {
1869 AHBLplusOverflowReg = AHBLReg;
1870 }
1871
1872 if (CHi == 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001873 BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
1874 .addReg(AHBLplusOverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001875 } else {
1876 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1877 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
1878
1879 BuildMI(BB, IP, PPC32::ADD, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1880 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1881 }
1882 return;
1883 }
1884
1885 // General 64x64 multiply
1886
1887 unsigned Op1Reg = getReg(Op1, &BB, IP);
1888
1889 // Multiply the two low parts... capturing carry into EDX
1890 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL
1891
1892 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1893 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL >> 32
1894
1895 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
1896 BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
1897
1898 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1899 BuildMI(BB, IP, PPC32::ADD, 2, // AH*BL+(AL*BL >> 32)
1900 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1901
1902 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1903 BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
1904
1905 BuildMI(BB, IP, PPC32::ADD, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1906 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1907}
1908
1909
1910/// visitDivRem - Handle division and remainder instructions... these
1911/// instruction both require the same instructions to be generated, they just
1912/// select the result from a different register. Note that both of these
1913/// instructions work differently for signed and unsigned operands.
1914///
1915void ISel::visitDivRem(BinaryOperator &I) {
1916 unsigned ResultReg = getReg(I);
1917 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1918
1919 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001920 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
1921 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001922}
1923
1924void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1925 MachineBasicBlock::iterator IP,
1926 Value *Op0, Value *Op1, bool isDiv,
1927 unsigned ResultReg) {
1928 const Type *Ty = Op0->getType();
1929 unsigned Class = getClass(Ty);
1930 switch (Class) {
1931 case cFP: // Floating point divide
1932 if (isDiv) {
1933 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
1934 return;
1935 } else { // Floating point remainder...
1936 unsigned Op0Reg = getReg(Op0, BB, IP);
1937 unsigned Op1Reg = getReg(Op1, BB, IP);
1938 MachineInstr *TheCall =
1939 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("fmod", true);
1940 std::vector<ValueRecord> Args;
1941 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1942 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
1943 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1944 }
1945 return;
1946 case cLong: {
1947 static const char *FnName[] =
1948 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1949 unsigned Op0Reg = getReg(Op0, BB, IP);
1950 unsigned Op1Reg = getReg(Op1, BB, IP);
1951 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
1952 MachineInstr *TheCall =
1953 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol(FnName[NameIdx], true);
1954
1955 std::vector<ValueRecord> Args;
1956 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1957 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
1958 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1959 return;
1960 }
1961 case cByte: case cShort: case cInt:
1962 break; // Small integrals, handled below...
1963 default: assert(0 && "Unknown class!");
1964 }
1965
1966 // Special case signed division by power of 2.
1967 if (isDiv)
1968 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
1969 assert(Class != cLong && "This doesn't handle 64-bit divides!");
1970 int V = CI->getValue();
1971
1972 if (V == 1) { // X /s 1 => X
1973 unsigned Op0Reg = getReg(Op0, BB, IP);
1974 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
1975 return;
1976 }
1977
1978 if (V == -1) { // X /s -1 => -X
1979 unsigned Op0Reg = getReg(Op0, BB, IP);
1980 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
1981 return;
1982 }
1983
1984 bool isNeg = false;
1985 if (V < 0) { // Not a positive power of 2?
1986 V = -V;
1987 isNeg = true; // Maybe it's a negative power of 2.
1988 }
1989 if (unsigned Log = ExactLog2(V)) {
1990 --Log;
1991 unsigned Op0Reg = getReg(Op0, BB, IP);
1992 unsigned TmpReg = makeAnotherReg(Op0->getType());
1993 if (Log != 1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001994 BuildMI(*BB, IP, PPC32::SRAWI,2, TmpReg).addReg(Op0Reg).addImm(Log-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001995 else
1996 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg);
1997
1998 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
Misha Brukman2fec9902004-06-21 20:22:03 +00001999 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log)
2000 .addImm(32-Log).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002001
2002 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
2003 BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2);
2004
2005 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
2006 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log);
2007
2008 if (isNeg)
2009 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4);
2010 return;
2011 }
2012 }
2013
2014 unsigned Op0Reg = getReg(Op0, BB, IP);
2015 unsigned Op1Reg = getReg(Op1, BB, IP);
2016
2017 if (isDiv) {
Misha Brukman422791f2004-06-21 17:41:12 +00002018 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002019 BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002020 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002021 BuildMI(*BB, IP,PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002022 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002023 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002024 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2025 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2026
2027 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002028 BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002029 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002030 BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002031 }
2032 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2033 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002034 }
2035}
2036
2037
2038/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2039/// for constant immediate shift values, and for constant immediate
2040/// shift values equal to 1. Even the general case is sort of special,
2041/// because the shift amount has to be in CL, not just any old register.
2042///
2043void ISel::visitShiftInst(ShiftInst &I) {
2044 MachineBasicBlock::iterator IP = BB->end ();
Misha Brukman2fec9902004-06-21 20:22:03 +00002045 emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1),
2046 I.getOpcode () == Instruction::Shl, I.getType (),
2047 getReg (I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002048}
2049
2050/// emitShiftOperation - Common code shared between visitShiftInst and
2051/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002052///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002053void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2054 MachineBasicBlock::iterator IP,
2055 Value *Op, Value *ShiftAmount, bool isLeftShift,
2056 const Type *ResultTy, unsigned DestReg) {
2057 unsigned SrcReg = getReg (Op, MBB, IP);
2058 bool isSigned = ResultTy->isSigned ();
2059 unsigned Class = getClass (ResultTy);
2060
2061 // Longs, as usual, are handled specially...
2062 if (Class == cLong) {
2063 // If we have a constant shift, we can generate much more efficient code
2064 // than otherwise...
2065 //
2066 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2067 unsigned Amount = CUI->getValue();
2068 if (Amount < 32) {
2069 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002070 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002071 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2072 .addImm(Amount).addImm(0).addImm(31-Amount);
2073 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2074 .addImm(Amount).addImm(32-Amount).addImm(31);
2075 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2076 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002077 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002078 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002079 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2080 .addImm(32-Amount).addImm(Amount).addImm(31);
2081 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2082 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2083 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2084 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002085 }
2086 } else { // Shifting more than 32 bits
2087 Amount -= 32;
2088 if (isLeftShift) {
2089 if (Amount != 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002090 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2091 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002092 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002093 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2094 .addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002095 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002096 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002097 } else {
2098 if (Amount != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +00002099 if (isSigned)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002100 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1)
2101 .addImm(Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002102 else
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002103 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
2104 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002105 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002106 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2107 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002108 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002109 BuildMI(*MBB, IP,PPC32::ADDI,2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002110 }
2111 }
2112 } else {
2113 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2114 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002115 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2116 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2117 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2118 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2119 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2120
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002121 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002122 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2123 .addImm(32);
2124 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1)
2125 .addReg(ShiftAmountReg);
2126 BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1);
2127 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
2128 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2129 .addImm(-32);
2130 BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5);
2131 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
2132 .addReg(TmpReg6);
2133 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2134 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002135 } else {
2136 if (isSigned) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002137 // FIXME: Unimplmented
2138 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukman422791f2004-06-21 17:41:12 +00002139 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002140 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2141 .addImm(32);
2142 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg)
2143 .addReg(ShiftAmountReg);
2144 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1)
2145 .addReg(TmpReg1);
2146 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2147 .addReg(TmpReg3);
2148 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2149 .addImm(-32);
2150 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1)
2151 .addReg(TmpReg5);
2152 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
2153 .addReg(TmpReg6);
2154 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1)
2155 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002156 }
2157 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002158 }
2159 return;
2160 }
2161
2162 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2163 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2164 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2165 unsigned Amount = CUI->getValue();
2166
Misha Brukman422791f2004-06-21 17:41:12 +00002167 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002168 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2169 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002170 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002171 if (isSigned) {
2172 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2173 } else {
2174 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2175 .addImm(32-Amount).addImm(Amount).addImm(31);
2176 }
Misha Brukman422791f2004-06-21 17:41:12 +00002177 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002178 } else { // The shift amount is non-constant.
2179 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2180
Misha Brukman422791f2004-06-21 17:41:12 +00002181 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002182 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2183 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002184 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002185 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2186 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002187 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002188 }
2189}
2190
2191
2192/// visitLoadInst - Implement LLVM load instructions
2193///
2194void ISel::visitLoadInst(LoadInst &I) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002195 static const unsigned Opcodes[] = {
2196 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS
2197 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002198 unsigned Class = getClassB(I.getType());
2199 unsigned Opcode = Opcodes[Class];
2200 if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
2201
2202 unsigned DestReg = getReg(I);
2203
2204 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
Misha Brukman422791f2004-06-21 17:41:12 +00002205 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002206 if (Class == cLong) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002207 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
2208 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002209 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002210 addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002211 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002212 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002213 unsigned SrcAddrReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002214
2215 if (Class == cLong) {
2216 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2217 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
2218 } else {
2219 BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2220 }
2221 }
2222}
2223
2224/// visitStoreInst - Implement LLVM store instructions
2225///
2226void ISel::visitStoreInst(StoreInst &I) {
2227 unsigned ValReg = getReg(I.getOperand(0));
2228 unsigned AddressReg = getReg(I.getOperand(1));
2229
2230 const Type *ValTy = I.getOperand(0)->getType();
2231 unsigned Class = getClassB(ValTy);
2232
2233 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002234 BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002235 BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002236 return;
2237 }
2238
2239 static const unsigned Opcodes[] = {
2240 PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
2241 };
2242 unsigned Opcode = Opcodes[Class];
2243 if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
2244 BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
2245}
2246
2247
2248/// visitCastInst - Here we have various kinds of copying with or without sign
2249/// extension going on.
2250///
2251void ISel::visitCastInst(CastInst &CI) {
2252 Value *Op = CI.getOperand(0);
2253
2254 unsigned SrcClass = getClassB(Op->getType());
2255 unsigned DestClass = getClassB(CI.getType());
2256 // Noop casts are not emitted: getReg will return the source operand as the
2257 // register to use for any uses of the noop cast.
2258 if (DestClass == SrcClass)
2259 return;
2260
2261 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2262 // of the case are GEP instructions, then the cast does not need to be
2263 // generated explicitly, it will be folded into the GEP.
2264 if (DestClass == cLong && SrcClass == cInt) {
2265 bool AllUsesAreGEPs = true;
2266 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2267 if (!isa<GetElementPtrInst>(*I)) {
2268 AllUsesAreGEPs = false;
2269 break;
2270 }
2271
2272 // No need to codegen this cast if all users are getelementptr instrs...
2273 if (AllUsesAreGEPs) return;
2274 }
2275
2276 unsigned DestReg = getReg(CI);
2277 MachineBasicBlock::iterator MI = BB->end();
2278 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2279}
2280
2281/// emitCastOperation - Common code shared between visitCastInst and constant
2282/// expression cast support.
2283///
2284void ISel::emitCastOperation(MachineBasicBlock *BB,
2285 MachineBasicBlock::iterator IP,
2286 Value *Src, const Type *DestTy,
2287 unsigned DestReg) {
2288 const Type *SrcTy = Src->getType();
2289 unsigned SrcClass = getClassB(SrcTy);
2290 unsigned DestClass = getClassB(DestTy);
2291 unsigned SrcReg = getReg(Src, BB, IP);
2292
2293 // Implement casts to bool by using compare on the operand followed by set if
2294 // not zero on the result.
2295 if (DestTy == Type::BoolTy) {
2296 switch (SrcClass) {
2297 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002298 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002299 case cInt: {
2300 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002301 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
2302 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002303 break;
2304 }
2305 case cLong: {
2306 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2307 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
2308 BuildMI(*BB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00002309 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
2310 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002311 break;
2312 }
2313 case cFP:
2314 // FIXME
Misha Brukman422791f2004-06-21 17:41:12 +00002315 // Load -0.0
2316 // Compare
2317 // move to CR1
2318 // Negate -0.0
2319 // Compare
2320 // CROR
2321 // MFCR
2322 // Left-align
2323 // SRA ?
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002324 break;
2325 }
2326 return;
2327 }
2328
2329 // Implement casts between values of the same type class (as determined by
2330 // getClass) by using a register-to-register move.
2331 if (SrcClass == DestClass) {
Misha Brukman422791f2004-06-21 17:41:12 +00002332 if (SrcClass <= cInt) {
2333 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2334 } else if (SrcClass == cFP && SrcTy == DestTy) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002335 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2336 } else if (SrcClass == cFP) {
2337 if (SrcTy == Type::FloatTy) { // float -> double
2338 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
2339 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2340 } else { // double -> float
2341 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
2342 "Unknown cFP member!");
Misha Brukman422791f2004-06-21 17:41:12 +00002343 BuildMI(*BB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002344 }
2345 } else if (SrcClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002346 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002347 BuildMI(*BB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2348 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002349 } else {
2350 assert(0 && "Cannot handle this type of cast instruction!");
2351 abort();
2352 }
2353 return;
2354 }
2355
2356 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2357 // or zero extension, depending on whether the source type was signed.
2358 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2359 SrcClass < DestClass) {
2360 bool isLong = DestClass == cLong;
2361 if (isLong) DestClass = cInt;
2362
2363 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2364 if (SrcClass < cInt) {
2365 if (isUnsigned) {
Misha Brukman422791f2004-06-21 17:41:12 +00002366 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002367 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2368 .addImm(shift).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002369 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002370 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH,
2371 1, DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002372 }
2373 } else {
2374 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2375 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002376
2377 if (isLong) { // Handle upper 32 bits as appropriate...
2378 if (isUnsigned) // Zero out top bits...
2379 BuildMI(*BB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
2380 else // Sign extend bottom half...
2381 BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
2382 }
2383 return;
2384 }
2385
2386 // Special case long -> int ...
2387 if (SrcClass == cLong && DestClass == cInt) {
2388 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2389 return;
2390 }
2391
2392 // Handle cast of LARGER int to SMALLER int with a clear or sign extend
2393 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2394 && SrcClass > DestClass) {
2395 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Misha Brukman422791f2004-06-21 17:41:12 +00002396 if (isUnsigned) {
2397 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002398 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2399 .addImm(shift).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00002400 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002401 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1,
2402 DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002403 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002404 return;
2405 }
2406
2407 // Handle casts from integer to floating point now...
2408 if (DestClass == cFP) {
2409
Misha Brukman422791f2004-06-21 17:41:12 +00002410 // Emit a library call for long to float conversion
2411 if (SrcClass == cLong) {
2412 std::vector<ValueRecord> Args;
2413 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002414 MachineInstr *TheCall =
2415 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__floatdidf", true);
Misha Brukman422791f2004-06-21 17:41:12 +00002416 doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
2417 return;
2418 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002419
2420 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman358829f2004-06-21 17:25:55 +00002421 switch (SrcTy->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002422 case Type::BoolTyID:
2423 case Type::SByteTyID:
2424 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2425 break;
2426 case Type::UByteTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002427 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2428 .addImm(24).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002429 break;
2430 case Type::ShortTyID:
2431 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2432 break;
2433 case Type::UShortTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002434 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2435 .addImm(16).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002436 break;
Misha Brukman422791f2004-06-21 17:41:12 +00002437 case Type::IntTyID:
2438 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2439 break;
2440 case Type::UIntTyID:
2441 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2442 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002443 default: // No promotion needed...
2444 break;
2445 }
2446
2447 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002448
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002449 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002450 // Also spill room for a special conversion constant
2451 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002452 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2453 int ValueFrameIdx =
2454 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2455
Misha Brukman422791f2004-06-21 17:41:12 +00002456 unsigned constantHi = makeAnotherReg(Type::IntTy);
2457 unsigned constantLo = makeAnotherReg(Type::IntTy);
2458 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2459 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2460
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002461 if (!SrcTy->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002462 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2463 .addImm(0x4330);
Misha Brukman422791f2004-06-21 17:41:12 +00002464 BuildMI(*BB, IP, PPC32::ADDI, 2, constantLo).addReg(PPC32::R0).addImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002465 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2466 ConstantFrameIndex);
2467 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2468 ConstantFrameIndex, 4);
2469 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2470 ValueFrameIdx);
2471 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2472 ValueFrameIdx, 4);
2473 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2474 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002475 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2476 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2477 } else {
2478 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002479 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2480 .addImm(0x4330);
2481 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantLo).addReg(PPC32::R0)
2482 .addImm(0x8000);
2483 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2484 ConstantFrameIndex);
2485 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2486 ConstantFrameIndex, 4);
2487 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2488 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002489 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002490 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2491 ValueFrameIdx, 4);
2492 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2493 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002494 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukman2fec9902004-06-21 20:22:03 +00002495 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002496 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002497 return;
2498 }
2499
2500 // Handle casts from floating point to integer now...
2501 if (SrcClass == cFP) {
2502
Misha Brukman422791f2004-06-21 17:41:12 +00002503 // emit library call
2504 if (DestClass == cLong) {
2505 std::vector<ValueRecord> Args;
2506 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002507 MachineInstr *TheCall =
2508 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__fixdfdi", true);
Misha Brukman422791f2004-06-21 17:41:12 +00002509 doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
2510 return;
2511 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002512
2513 int ValueFrameIdx =
2514 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2515
Misha Brukman422791f2004-06-21 17:41:12 +00002516 // load into 32 bit value, and then truncate as necessary
2517 // FIXME: This is wrong for unsigned dest types
2518 //if (DestTy->isSigned()) {
2519 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2520 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002521 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2522 .addReg(TempReg), ValueFrameIdx);
2523 addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, DestReg),
2524 ValueFrameIdx+4);
Misha Brukman422791f2004-06-21 17:41:12 +00002525 //} else {
2526 //}
2527
2528 // FIXME: Truncate return value
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002529 return;
2530 }
2531
2532 // Anything we haven't handled already, we can't (yet) handle at all.
2533 assert(0 && "Unhandled cast instruction!");
2534 abort();
2535}
2536
2537/// visitVANextInst - Implement the va_next instruction...
2538///
2539void ISel::visitVANextInst(VANextInst &I) {
2540 unsigned VAList = getReg(I.getOperand(0));
2541 unsigned DestReg = getReg(I);
2542
2543 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00002544 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002545 default:
2546 std::cerr << I;
2547 assert(0 && "Error: bad type for va_next instruction!");
2548 return;
2549 case Type::PointerTyID:
2550 case Type::UIntTyID:
2551 case Type::IntTyID:
2552 Size = 4;
2553 break;
2554 case Type::ULongTyID:
2555 case Type::LongTyID:
2556 case Type::DoubleTyID:
2557 Size = 8;
2558 break;
2559 }
2560
2561 // Increment the VAList pointer...
2562 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
2563}
2564
2565void ISel::visitVAArgInst(VAArgInst &I) {
2566 unsigned VAList = getReg(I.getOperand(0));
2567 unsigned DestReg = getReg(I);
2568
Misha Brukman358829f2004-06-21 17:25:55 +00002569 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002570 default:
2571 std::cerr << I;
2572 assert(0 && "Error: bad type for va_next instruction!");
2573 return;
2574 case Type::PointerTyID:
2575 case Type::UIntTyID:
2576 case Type::IntTyID:
2577 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2578 break;
2579 case Type::ULongTyID:
2580 case Type::LongTyID:
2581 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2582 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
2583 break;
2584 case Type::DoubleTyID:
2585 BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
2586 break;
2587 }
2588}
2589
2590/// visitGetElementPtrInst - instruction-select GEP instructions
2591///
2592void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2593 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00002594 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
2595 outputReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002596}
2597
2598void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2599 MachineBasicBlock::iterator IP,
2600 Value *Src, User::op_iterator IdxBegin,
2601 User::op_iterator IdxEnd, unsigned TargetReg) {
2602 const TargetData &TD = TM.getTargetData();
2603 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
2604 Src = CPR->getValue();
2605
2606 std::vector<Value*> GEPOps;
2607 GEPOps.resize(IdxEnd-IdxBegin+1);
2608 GEPOps[0] = Src;
2609 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2610
2611 std::vector<const Type*> GEPTypes;
2612 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2613 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
2614
2615 // Keep emitting instructions until we consume the entire GEP instruction.
Misha Brukman98649d12004-06-24 21:54:47 +00002616 while (!GEPTypes.empty()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002617 // It's an array or pointer access: [ArraySize x ElementType].
2618 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2619 Value *idx = GEPOps.back();
2620 GEPOps.pop_back(); // Consume a GEP operand
2621 GEPTypes.pop_back();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002622
Misha Brukman2fec9902004-06-21 20:22:03 +00002623 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
2624 // operand on X86. Handle this case directly now...
2625 if (CastInst *CI = dyn_cast<CastInst>(idx))
2626 if (CI->getOperand(0)->getType() == Type::IntTy ||
2627 CI->getOperand(0)->getType() == Type::UIntTy)
2628 idx = CI->getOperand(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002629
Misha Brukman2fec9902004-06-21 20:22:03 +00002630 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
2631 // must find the size of the pointed-to type (Not coincidentally, the next
2632 // type is the type of the elements in the array).
2633 const Type *ElTy = SqTy->getElementType();
2634 unsigned elementSize = TD.getTypeSize(ElTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002635
Misha Brukman2fec9902004-06-21 20:22:03 +00002636 if (elementSize == 1) {
2637 // If the element size is 1, we don't have to multiply, just add
2638 unsigned idxReg = getReg(idx, MBB, IP);
2639 unsigned Reg = makeAnotherReg(Type::UIntTy);
2640 BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
2641 --IP; // Insert the next instruction before this one.
2642 TargetReg = Reg; // Codegen the rest of the GEP into this
2643 } else {
2644 unsigned idxReg = getReg(idx, MBB, IP);
2645 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002646
Misha Brukman2fec9902004-06-21 20:22:03 +00002647 // Make sure we can back the iterator up to point to the first
2648 // instruction emitted.
2649 MachineBasicBlock::iterator BeforeIt = IP;
2650 if (IP == MBB->begin())
2651 BeforeIt = MBB->end();
2652 else
2653 --BeforeIt;
2654 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002655
Misha Brukman2fec9902004-06-21 20:22:03 +00002656 // Emit an ADD to add OffsetReg to the basePtr.
2657 unsigned Reg = makeAnotherReg(Type::UIntTy);
2658 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002659
Misha Brukman2fec9902004-06-21 20:22:03 +00002660 // Step to the first instruction of the multiply.
2661 if (BeforeIt == MBB->end())
2662 IP = MBB->begin();
2663 else
2664 IP = ++BeforeIt;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002665
Misha Brukman2fec9902004-06-21 20:22:03 +00002666 TargetReg = Reg; // Codegen the rest of the GEP into this
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002667 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002668 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002669}
2670
2671/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2672/// frame manager, otherwise do it the hard way.
2673///
2674void ISel::visitAllocaInst(AllocaInst &I) {
2675 // If this is a fixed size alloca in the entry block for the function, we
2676 // statically stack allocate the space, so we don't need to do anything here.
2677 //
2678 if (dyn_castFixedAlloca(&I)) return;
2679
2680 // Find the data size of the alloca inst's getAllocatedType.
2681 const Type *Ty = I.getAllocatedType();
2682 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2683
2684 // Create a register to hold the temporary result of multiplying the type size
2685 // constant by the variable amount.
2686 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2687 unsigned SrcReg1 = getReg(I.getArraySize());
2688
2689 // TotalSizeReg = mul <numelements>, <TypeSize>
2690 MachineBasicBlock::iterator MBBI = BB->end();
2691 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
2692
2693 // AddedSize = add <TotalSizeReg>, 15
2694 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2695 BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
2696
2697 // AlignedSize = and <AddedSize>, ~15
2698 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002699 BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
2700 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002701
2702 // Subtract size from stack pointer, thereby allocating some space.
2703 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
2704
2705 // Put a pointer to the space into the result register, by copying
2706 // the stack pointer.
2707 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
2708
2709 // Inform the Frame Information that we have just allocated a variable-sized
2710 // object.
2711 F->getFrameInfo()->CreateVariableSizedObject();
2712}
2713
2714/// visitMallocInst - Malloc instructions are code generated into direct calls
2715/// to the library malloc.
2716///
2717void ISel::visitMallocInst(MallocInst &I) {
2718 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2719 unsigned Arg;
2720
2721 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2722 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2723 } else {
2724 Arg = makeAnotherReg(Type::UIntTy);
2725 unsigned Op0Reg = getReg(I.getOperand(0));
2726 MachineBasicBlock::iterator MBBI = BB->end();
2727 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
2728 }
2729
2730 std::vector<ValueRecord> Args;
2731 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002732 MachineInstr *TheCall =
2733 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("malloc", true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002734 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2735}
2736
2737
2738/// visitFreeInst - Free instructions are code gen'd to call the free libc
2739/// function.
2740///
2741void ISel::visitFreeInst(FreeInst &I) {
2742 std::vector<ValueRecord> Args;
2743 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00002744 MachineInstr *TheCall =
2745 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("free", true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002746 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2747}
2748
2749/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
2750/// into a machine code representation is a very simple peep-hole fashion. The
2751/// generated code sucks but the implementation is nice and simple.
2752///
2753FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
2754 return new ISel(TM);
2755}