blob: 0e3d01470db59de62a7d44c1f60f49110a294f17 [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Chris Lattner45762472010-02-03 21:24:49 +000017#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000018#include "llvm/MC/MCInst.h"
19#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000020using namespace llvm;
21
Chris Lattner5dccfad2010-02-10 06:52:12 +000022// FIXME: This should move to a header.
23namespace llvm {
24namespace X86 {
25enum Fixups {
Chris Lattner11eafa82010-02-11 21:17:54 +000026 reloc_pcrel_4byte = FirstTargetFixupKind, // 32-bit pcrel, e.g. a branch.
Chris Lattner835acab2010-02-12 23:00:36 +000027 reloc_pcrel_1byte, // 8-bit pcrel, e.g. branch_1
28 reloc_riprel_4byte // 32-bit rip-relative
Chris Lattner5dccfad2010-02-10 06:52:12 +000029};
30}
31}
32
Chris Lattner45762472010-02-03 21:24:49 +000033namespace {
34class X86MCCodeEmitter : public MCCodeEmitter {
35 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
36 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000037 const TargetMachine &TM;
38 const TargetInstrInfo &TII;
Chris Lattner1ac23b12010-02-05 02:18:40 +000039 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000040public:
Chris Lattner00cb3fe2010-02-05 21:51:35 +000041 X86MCCodeEmitter(TargetMachine &tm, bool is64Bit)
Chris Lattner92b1dfe2010-02-03 21:43:43 +000042 : TM(tm), TII(*TM.getInstrInfo()) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000043 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000044 }
45
46 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000047
48 unsigned getNumFixupKinds() const {
Chris Lattner835acab2010-02-12 23:00:36 +000049 return 3;
Daniel Dunbar73c55742010-02-09 22:59:55 +000050 }
51
Chris Lattner8d31de62010-02-11 21:27:18 +000052 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
53 const static MCFixupKindInfo Infos[] = {
Chris Lattner11eafa82010-02-11 21:17:54 +000054 { "reloc_pcrel_4byte", 0, 4 * 8 },
Chris Lattner835acab2010-02-12 23:00:36 +000055 { "reloc_pcrel_1byte", 0, 1 * 8 },
56 { "reloc_riprel_4byte", 0, 4 * 8 }
Daniel Dunbar73c55742010-02-09 22:59:55 +000057 };
Chris Lattner8d31de62010-02-11 21:27:18 +000058
59 if (Kind < FirstTargetFixupKind)
60 return MCCodeEmitter::getFixupKindInfo(Kind);
Daniel Dunbar73c55742010-02-09 22:59:55 +000061
Chris Lattner8d31de62010-02-11 21:27:18 +000062 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
Daniel Dunbar73c55742010-02-09 22:59:55 +000063 "Invalid kind!");
64 return Infos[Kind - FirstTargetFixupKind];
65 }
Chris Lattner45762472010-02-03 21:24:49 +000066
Chris Lattner28249d92010-02-05 01:53:19 +000067 static unsigned GetX86RegNum(const MCOperand &MO) {
68 return X86RegisterInfo::getX86RegNum(MO.getReg());
69 }
70
Chris Lattner37ce80e2010-02-10 06:41:02 +000071 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000072 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000073 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000074 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000075
Chris Lattner37ce80e2010-02-10 06:41:02 +000076 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
77 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000078 // Output the constant in little endian byte order.
79 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000080 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000081 Val >>= 8;
82 }
83 }
Chris Lattner0e73c392010-02-05 06:16:07 +000084
Chris Lattnercf653392010-02-12 22:36:47 +000085 void EmitImmediate(const MCOperand &Disp,
86 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +000087 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +000088 SmallVectorImpl<MCFixup> &Fixups,
89 int ImmOffset = 0) const;
Chris Lattner28249d92010-02-05 01:53:19 +000090
91 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
92 unsigned RM) {
93 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
94 return RM | (RegOpcode << 3) | (Mod << 6);
95 }
96
97 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +000098 unsigned &CurByte, raw_ostream &OS) const {
99 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000100 }
101
Chris Lattner0e73c392010-02-05 06:16:07 +0000102 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000103 unsigned &CurByte, raw_ostream &OS) const {
104 // SIB byte is in the same format as the ModRMByte.
105 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000106 }
107
108
Chris Lattner1ac23b12010-02-05 02:18:40 +0000109 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Chris Lattner1b670602010-02-11 06:49:52 +0000110 unsigned RegOpcodeField,
Chris Lattner835acab2010-02-12 23:00:36 +0000111 unsigned TSFlags, unsigned &CurByte, raw_ostream &OS,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000112 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000113
Daniel Dunbar73c55742010-02-09 22:59:55 +0000114 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
115 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000116
Chris Lattner45762472010-02-03 21:24:49 +0000117};
118
119} // end anonymous namespace
120
121
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000122MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000123 TargetMachine &TM,
124 MCContext &Ctx) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000125 return new X86MCCodeEmitter(TM, false);
126}
127
128MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000129 TargetMachine &TM,
130 MCContext &Ctx) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000131 return new X86MCCodeEmitter(TM, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000132}
133
134
Chris Lattner1ac23b12010-02-05 02:18:40 +0000135/// isDisp8 - Return true if this signed displacement fits in a 8-bit
136/// sign-extended field.
137static bool isDisp8(int Value) {
138 return Value == (signed char)Value;
139}
140
Chris Lattnercf653392010-02-12 22:36:47 +0000141/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
142/// in an instruction with the specified TSFlags.
143static MCFixupKind getImmFixupKind(unsigned TSFlags) {
144 unsigned Size = X86II::getSizeOfImm(TSFlags);
145 bool isPCRel = X86II::isImmPCRel(TSFlags);
146
Chris Lattnercf653392010-02-12 22:36:47 +0000147 switch (Size) {
148 default: assert(0 && "Unknown immediate size");
149 case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
150 case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
151 case 2: assert(!isPCRel); return FK_Data_2;
152 case 8: assert(!isPCRel); return FK_Data_8;
153 }
154}
155
156
Chris Lattner0e73c392010-02-05 06:16:07 +0000157void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000158EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000159 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000160 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000161 // If this is a simple integer displacement that doesn't require a relocation,
162 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000163 if (DispOp.isImm()) {
Chris Lattner835acab2010-02-12 23:00:36 +0000164 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000165 return;
166 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000167
Chris Lattner835acab2010-02-12 23:00:36 +0000168 // If we have an immoffset, add it to the expression.
169 const MCExpr *Expr = DispOp.getExpr();
170 // FIXME: NO CONTEXT.
171
Chris Lattner5dccfad2010-02-10 06:52:12 +0000172 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattner835acab2010-02-12 23:00:36 +0000173 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000174 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000175}
176
177
Chris Lattner1ac23b12010-02-05 02:18:40 +0000178void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
179 unsigned RegOpcodeField,
Chris Lattner835acab2010-02-12 23:00:36 +0000180 unsigned TSFlags, unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000181 raw_ostream &OS,
182 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000183 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000184 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000185 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000186 const MCOperand &IndexReg = MI.getOperand(Op+2);
187 unsigned BaseReg = Base.getReg();
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000188
189 // Handle %rip relative addressing.
190 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
191 assert(IndexReg.getReg() == 0 && Is64BitMode &&
192 "Invalid rip-relative address");
193 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattner835acab2010-02-12 23:00:36 +0000194
195 // rip-relative addressing is actually relative to the *next* instruction.
196 // Since an immediate can follow the mod/rm byte for an instruction, this
197 // means that we need to bias the immediate field of the instruction with
198 // the size of the immediate field. If we have this case, add it into the
199 // expression to emit.
200 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
201 EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_riprel_4byte),
202 CurByte, OS, Fixups, -ImmSize);
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000203 return;
204 }
205
206 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
Chris Lattnerecfb3c32010-02-11 08:45:56 +0000207
Chris Lattnera8168ec2010-02-09 21:57:34 +0000208 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000209 // If no BaseReg, issue a RIP relative instruction only if the MCE can
210 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
211 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000212
Chris Lattnera8168ec2010-02-09 21:57:34 +0000213 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000214 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000215 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
216 // encode to an R/M value of 4, which indicates that a SIB byte is
217 // present.
218 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000219 // If there is no base register and we're in 64-bit mode, we need a SIB
220 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
221 (!Is64BitMode || BaseReg != 0)) {
222
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000223 if (BaseReg == 0) { // [disp32] in X86-32 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000224 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000225 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000226 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000227 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000228
Chris Lattnera8168ec2010-02-09 21:57:34 +0000229 // If the base is not EBP/ESP and there is no displacement, use simple
230 // indirect register encoding, this handles addresses like [EAX]. The
231 // encoding for [EBP] with no displacement means [disp32] so we handle it
232 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000233 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000234 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000235 return;
236 }
237
238 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000239 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000240 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000241 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000242 return;
243 }
244
245 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000246 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000247 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000248 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000249 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000250
251 // We need a SIB byte, so start by outputting the ModR/M byte first
252 assert(IndexReg.getReg() != X86::ESP &&
253 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
254
255 bool ForceDisp32 = false;
256 bool ForceDisp8 = false;
257 if (BaseReg == 0) {
258 // If there is no base register, we emit the special case SIB byte with
259 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000260 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000261 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000262 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000263 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000264 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000265 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000266 } else if (Disp.getImm() == 0 && BaseReg != X86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000267 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000268 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000269 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000270 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000271 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000272 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
273 } else {
274 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000275 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000276 }
277
278 // Calculate what the SS field value should be...
279 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
280 unsigned SS = SSTable[Scale.getImm()];
281
282 if (BaseReg == 0) {
283 // Handle the SIB byte for the case where there is no base, see Intel
284 // Manual 2A, table 2-7. The displacement has already been output.
285 unsigned IndexRegNo;
286 if (IndexReg.getReg())
287 IndexRegNo = GetX86RegNum(IndexReg);
288 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
289 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000290 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000291 } else {
292 unsigned IndexRegNo;
293 if (IndexReg.getReg())
294 IndexRegNo = GetX86RegNum(IndexReg);
295 else
296 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000297 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000298 }
299
300 // Do we need to output a displacement?
301 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000302 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000303 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattnercf653392010-02-12 22:36:47 +0000304 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000305}
306
Chris Lattner39a612e2010-02-05 22:10:22 +0000307/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
308/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
309/// size, and 3) use of X86-64 extended registers.
310static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
311 const TargetInstrDesc &Desc) {
Chris Lattner7e851802010-02-11 22:39:10 +0000312 // Pseudo instructions shouldn't get here.
313 assert((TSFlags & X86II::FormMask) != X86II::Pseudo &&
314 "Can't encode pseudo instrs");
Chris Lattner39a612e2010-02-05 22:10:22 +0000315
Chris Lattner7e851802010-02-11 22:39:10 +0000316 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000317 if (TSFlags & X86II::REX_W)
318 REX |= 1 << 3;
319
320 if (MI.getNumOperands() == 0) return REX;
321
322 unsigned NumOps = MI.getNumOperands();
323 // FIXME: MCInst should explicitize the two-addrness.
324 bool isTwoAddr = NumOps > 1 &&
325 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
326
327 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
328 unsigned i = isTwoAddr ? 1 : 0;
329 for (; i != NumOps; ++i) {
330 const MCOperand &MO = MI.getOperand(i);
331 if (!MO.isReg()) continue;
332 unsigned Reg = MO.getReg();
333 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000334 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
335 // that returns non-zero.
Chris Lattner39a612e2010-02-05 22:10:22 +0000336 REX |= 0x40;
337 break;
338 }
339
340 switch (TSFlags & X86II::FormMask) {
341 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
342 case X86II::MRMSrcReg:
343 if (MI.getOperand(0).isReg() &&
344 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
345 REX |= 1 << 2;
346 i = isTwoAddr ? 2 : 1;
347 for (; i != NumOps; ++i) {
348 const MCOperand &MO = MI.getOperand(i);
349 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
350 REX |= 1 << 0;
351 }
352 break;
353 case X86II::MRMSrcMem: {
354 if (MI.getOperand(0).isReg() &&
355 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
356 REX |= 1 << 2;
357 unsigned Bit = 0;
358 i = isTwoAddr ? 2 : 1;
359 for (; i != NumOps; ++i) {
360 const MCOperand &MO = MI.getOperand(i);
361 if (MO.isReg()) {
362 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
363 REX |= 1 << Bit;
364 Bit++;
365 }
366 }
367 break;
368 }
369 case X86II::MRM0m: case X86II::MRM1m:
370 case X86II::MRM2m: case X86II::MRM3m:
371 case X86II::MRM4m: case X86II::MRM5m:
372 case X86II::MRM6m: case X86II::MRM7m:
373 case X86II::MRMDestMem: {
374 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
375 i = isTwoAddr ? 1 : 0;
376 if (NumOps > e && MI.getOperand(e).isReg() &&
377 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
378 REX |= 1 << 2;
379 unsigned Bit = 0;
380 for (; i != e; ++i) {
381 const MCOperand &MO = MI.getOperand(i);
382 if (MO.isReg()) {
383 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
384 REX |= 1 << Bit;
385 Bit++;
386 }
387 }
388 break;
389 }
390 default:
391 if (MI.getOperand(0).isReg() &&
392 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
393 REX |= 1 << 0;
394 i = isTwoAddr ? 2 : 1;
395 for (unsigned e = NumOps; i != e; ++i) {
396 const MCOperand &MO = MI.getOperand(i);
397 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
398 REX |= 1 << 2;
399 }
400 break;
401 }
402 return REX;
403}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000404
405void X86MCCodeEmitter::
Daniel Dunbar73c55742010-02-09 22:59:55 +0000406EncodeInstruction(const MCInst &MI, raw_ostream &OS,
407 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000408 unsigned Opcode = MI.getOpcode();
409 const TargetInstrDesc &Desc = TII.get(Opcode);
Chris Lattner1e80f402010-02-03 21:57:59 +0000410 unsigned TSFlags = Desc.TSFlags;
411
Chris Lattner37ce80e2010-02-10 06:41:02 +0000412 // Keep track of the current byte being emitted.
413 unsigned CurByte = 0;
414
Chris Lattner1e80f402010-02-03 21:57:59 +0000415 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
416 // in order to provide diffability.
417
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000418 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000419 if (TSFlags & X86II::LOCK)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000420 EmitByte(0xF0, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000421
422 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000423 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000424 default: assert(0 && "Invalid segment!");
425 case 0: break; // No segment override!
426 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000427 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000428 break;
429 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000430 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000431 break;
432 }
433
Chris Lattner1e80f402010-02-03 21:57:59 +0000434 // Emit the repeat opcode prefix as needed.
435 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000436 EmitByte(0xF3, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000437
Chris Lattner1e80f402010-02-03 21:57:59 +0000438 // Emit the operand size opcode prefix as needed.
439 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000440 EmitByte(0x66, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000441
442 // Emit the address size opcode prefix as needed.
443 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000444 EmitByte(0x67, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000445
446 bool Need0FPrefix = false;
447 switch (TSFlags & X86II::Op0Mask) {
448 default: assert(0 && "Invalid prefix!");
449 case 0: break; // No prefix!
450 case X86II::REP: break; // already handled.
451 case X86II::TB: // Two-byte opcode prefix
452 case X86II::T8: // 0F 38
453 case X86II::TA: // 0F 3A
454 Need0FPrefix = true;
455 break;
456 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000457 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000458 Need0FPrefix = true;
459 break;
460 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000461 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000462 Need0FPrefix = true;
463 break;
464 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000465 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000466 Need0FPrefix = true;
467 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000468 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
469 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
470 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
471 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
472 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
473 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
474 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
475 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000476 }
477
478 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000479 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000480 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000481 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000482 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000483 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000484
485 // 0x0F escape code must be emitted just before the opcode.
486 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000487 EmitByte(0x0F, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000488
489 // FIXME: Pull this up into previous switch if REX can be moved earlier.
490 switch (TSFlags & X86II::Op0Mask) {
491 case X86II::TF: // F2 0F 38
492 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000493 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000494 break;
495 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000496 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000497 break;
498 }
499
500 // If this is a two-address instruction, skip one of the register operands.
501 unsigned NumOps = Desc.getNumOperands();
502 unsigned CurOp = 0;
503 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
504 ++CurOp;
505 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
506 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
507 --NumOps;
508
Chris Lattner74a21512010-02-05 19:24:13 +0000509 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Chris Lattner1e80f402010-02-03 21:57:59 +0000510 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000511 case X86II::MRMInitReg:
512 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000513 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000514 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
515 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000516 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000517 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000518
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000519 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000520 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000521 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000522
523 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000524 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000525 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000526 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000527 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000528 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000529
530 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000531 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000532 EmitMemModRMByte(MI, CurOp,
533 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
Chris Lattner835acab2010-02-12 23:00:36 +0000534 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000535 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000536 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000537
538 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000539 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000540 EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000541 CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000542 CurOp += 2;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000543 break;
544
545 case X86II::MRMSrcMem: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000546 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000547
548 // FIXME: Maybe lea should have its own form? This is a horrible hack.
549 int AddrOperands;
550 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
551 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
552 AddrOperands = X86AddrNumOperands - 1; // No segment register
553 else
554 AddrOperands = X86AddrNumOperands;
555
Chris Lattnerdaa45552010-02-05 19:04:37 +0000556 EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner835acab2010-02-12 23:00:36 +0000557 TSFlags, CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000558 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000559 break;
560 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000561
562 case X86II::MRM0r: case X86II::MRM1r:
563 case X86II::MRM2r: case X86II::MRM3r:
564 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000565 case X86II::MRM6r: case X86II::MRM7r:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000566 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000567
568 // Special handling of lfence, mfence, monitor, and mwait.
569 // FIXME: This is terrible, they should get proper encoding bits in TSFlags.
570 if (Opcode == X86::LFENCE || Opcode == X86::MFENCE ||
571 Opcode == X86::MONITOR || Opcode == X86::MWAIT) {
Chris Lattnerc4d3f662010-02-12 01:06:22 +0000572 EmitByte(ModRMByte(3, (TSFlags & X86II::FormMask)-X86II::MRM0r,
573 Opcode == X86::MWAIT),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000574 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000575 } else {
576 EmitRegModRMByte(MI.getOperand(CurOp++),
577 (TSFlags & X86II::FormMask)-X86II::MRM0r,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000578 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000579 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000580 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000581 case X86II::MRM0m: case X86II::MRM1m:
582 case X86II::MRM2m: case X86II::MRM3m:
583 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000584 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000585 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000586 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner835acab2010-02-12 23:00:36 +0000587 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000588 CurOp += X86AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000589 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000590 case X86II::MRM_C1:
591 EmitByte(BaseOpcode, CurByte, OS);
592 EmitByte(0xC1, CurByte, OS);
593 break;
594 case X86II::MRM_C8:
595 EmitByte(BaseOpcode, CurByte, OS);
596 EmitByte(0xC8, CurByte, OS);
597 break;
598 case X86II::MRM_C9:
599 EmitByte(BaseOpcode, CurByte, OS);
600 EmitByte(0xC9, CurByte, OS);
601 break;
602 case X86II::MRM_E8:
603 EmitByte(BaseOpcode, CurByte, OS);
604 EmitByte(0xE8, CurByte, OS);
605 break;
606 case X86II::MRM_F0:
607 EmitByte(BaseOpcode, CurByte, OS);
608 EmitByte(0xF0, CurByte, OS);
609 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000610 }
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000611
612 // If there is a remaining operand, it must be a trailing immediate. Emit it
613 // according to the right size for the instruction.
Chris Lattnerbd13fb62010-02-11 19:25:55 +0000614 // FIXME: This should pass in whether the value is pc relative or not. This
615 // information should be aquired from TSFlags as well.
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000616 if (CurOp != NumOps)
Chris Lattnercf653392010-02-12 22:36:47 +0000617 EmitImmediate(MI.getOperand(CurOp++),
618 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000619 CurByte, OS, Fixups);
Chris Lattner28249d92010-02-05 01:53:19 +0000620
621#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000622 // FIXME: Verify.
623 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000624 errs() << "Cannot encode all operands of: ";
625 MI.dump();
626 errs() << '\n';
627 abort();
628 }
629#endif
Chris Lattner45762472010-02-03 21:24:49 +0000630}