blob: 91f2289d6bf4b50ff5e4f703f175728ffb99a608 [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva57f429f2013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
131 incrementing counter, starting with 0).
Sean Silvaf722b002012-12-07 10:36:55 +0000132
133It also shows a convention that we follow in this document. When
134demonstrating instructions, we will follow an instruction with a comment
135that defines the type and name of value produced.
136
137High Level Structure
138====================
139
140Module Structure
141----------------
142
143LLVM programs are composed of ``Module``'s, each of which is a
144translation unit of the input programs. Each module consists of
145functions, global variables, and symbol table entries. Modules may be
146combined together with the LLVM linker, which merges function (and
147global variable) definitions, resolves forward declarations, and merges
148symbol table entries. Here is an example of the "hello world" module:
149
150.. code-block:: llvm
151
Michael Liao2faa0f32013-03-06 18:24:34 +0000152 ; Declare the string constant as a global constant.
153 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000154
Michael Liao2faa0f32013-03-06 18:24:34 +0000155 ; External declaration of the puts function
156 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000157
158 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000159 define i32 @main() { ; i32()*
160 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000161 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
162
Michael Liao2faa0f32013-03-06 18:24:34 +0000163 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000164 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000165 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000166 }
167
168 ; Named metadata
169 !1 = metadata !{i32 42}
170 !foo = !{!1, null}
171
172This example is made up of a :ref:`global variable <globalvars>` named
173"``.str``", an external declaration of the "``puts``" function, a
174:ref:`function definition <functionstructure>` for "``main``" and
175:ref:`named metadata <namedmetadatastructure>` "``foo``".
176
177In general, a module is made up of a list of global values (where both
178functions and global variables are global values). Global values are
179represented by a pointer to a memory location (in this case, a pointer
180to an array of char, and a pointer to a function), and have one of the
181following :ref:`linkage types <linkage>`.
182
183.. _linkage:
184
185Linkage Types
186-------------
187
188All Global Variables and Functions have one of the following types of
189linkage:
190
191``private``
192 Global values with "``private``" linkage are only directly
193 accessible by objects in the current module. In particular, linking
194 code into a module with an private global value may cause the
195 private to be renamed as necessary to avoid collisions. Because the
196 symbol is private to the module, all references can be updated. This
197 doesn't show up in any symbol table in the object file.
198``linker_private``
199 Similar to ``private``, but the symbol is passed through the
200 assembler and evaluated by the linker. Unlike normal strong symbols,
201 they are removed by the linker from the final linked image
202 (executable or dynamic library).
203``linker_private_weak``
204 Similar to "``linker_private``", but the symbol is weak. Note that
205 ``linker_private_weak`` symbols are subject to coalescing by the
206 linker. The symbols are removed by the linker from the final linked
207 image (executable or dynamic library).
208``internal``
209 Similar to private, but the value shows as a local symbol
210 (``STB_LOCAL`` in the case of ELF) in the object file. This
211 corresponds to the notion of the '``static``' keyword in C.
212``available_externally``
213 Globals with "``available_externally``" linkage are never emitted
214 into the object file corresponding to the LLVM module. They exist to
215 allow inlining and other optimizations to take place given knowledge
216 of the definition of the global, which is known to be somewhere
217 outside the module. Globals with ``available_externally`` linkage
218 are allowed to be discarded at will, and are otherwise the same as
219 ``linkonce_odr``. This linkage type is only allowed on definitions,
220 not declarations.
221``linkonce``
222 Globals with "``linkonce``" linkage are merged with other globals of
223 the same name when linkage occurs. This can be used to implement
224 some forms of inline functions, templates, or other code which must
225 be generated in each translation unit that uses it, but where the
226 body may be overridden with a more definitive definition later.
227 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
228 that ``linkonce`` linkage does not actually allow the optimizer to
229 inline the body of this function into callers because it doesn't
230 know if this definition of the function is the definitive definition
231 within the program or whether it will be overridden by a stronger
232 definition. To enable inlining and other optimizations, use
233 "``linkonce_odr``" linkage.
234``weak``
235 "``weak``" linkage has the same merging semantics as ``linkonce``
236 linkage, except that unreferenced globals with ``weak`` linkage may
237 not be discarded. This is used for globals that are declared "weak"
238 in C source code.
239``common``
240 "``common``" linkage is most similar to "``weak``" linkage, but they
241 are used for tentative definitions in C, such as "``int X;``" at
242 global scope. Symbols with "``common``" linkage are merged in the
243 same way as ``weak symbols``, and they may not be deleted if
244 unreferenced. ``common`` symbols may not have an explicit section,
245 must have a zero initializer, and may not be marked
246 ':ref:`constant <globalvars>`'. Functions and aliases may not have
247 common linkage.
248
249.. _linkage_appending:
250
251``appending``
252 "``appending``" linkage may only be applied to global variables of
253 pointer to array type. When two global variables with appending
254 linkage are linked together, the two global arrays are appended
255 together. This is the LLVM, typesafe, equivalent of having the
256 system linker append together "sections" with identical names when
257 .o files are linked.
258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
270``linkonce_odr_auto_hide``
271 Similar to "``linkonce_odr``", but nothing in the translation unit
272 takes the address of this definition. For instance, functions that
273 had an inline definition, but the compiler decided not to inline it.
274 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
275 symbols are removed by the linker from the final linked image
276 (executable or dynamic library).
277``external``
278 If none of the above identifiers are used, the global is externally
279 visible, meaning that it participates in linkage and can be used to
280 resolve external symbol references.
281
282The next two types of linkage are targeted for Microsoft Windows
283platform only. They are designed to support importing (exporting)
284symbols from (to) DLLs (Dynamic Link Libraries).
285
286``dllimport``
287 "``dllimport``" linkage causes the compiler to reference a function
288 or variable via a global pointer to a pointer that is set up by the
289 DLL exporting the symbol. On Microsoft Windows targets, the pointer
290 name is formed by combining ``__imp_`` and the function or variable
291 name.
292``dllexport``
293 "``dllexport``" linkage causes the compiler to provide a global
294 pointer to a pointer in a DLL, so that it can be referenced with the
295 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
296 name is formed by combining ``__imp_`` and the function or variable
297 name.
298
299For example, since the "``.LC0``" variable is defined to be internal, if
300another module defined a "``.LC0``" variable and was linked with this
301one, one of the two would be renamed, preventing a collision. Since
302"``main``" and "``puts``" are external (i.e., lacking any linkage
303declarations), they are accessible outside of the current module.
304
305It is illegal for a function *declaration* to have any linkage type
306other than ``external``, ``dllimport`` or ``extern_weak``.
307
308Aliases can have only ``external``, ``internal``, ``weak`` or
309``weak_odr`` linkages.
310
311.. _callingconv:
312
313Calling Conventions
314-------------------
315
316LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
317:ref:`invokes <i_invoke>` can all have an optional calling convention
318specified for the call. The calling convention of any pair of dynamic
319caller/callee must match, or the behavior of the program is undefined.
320The following calling conventions are supported by LLVM, and more may be
321added in the future:
322
323"``ccc``" - The C calling convention
324 This calling convention (the default if no other calling convention
325 is specified) matches the target C calling conventions. This calling
326 convention supports varargs function calls and tolerates some
327 mismatch in the declared prototype and implemented declaration of
328 the function (as does normal C).
329"``fastcc``" - The fast calling convention
330 This calling convention attempts to make calls as fast as possible
331 (e.g. by passing things in registers). This calling convention
332 allows the target to use whatever tricks it wants to produce fast
333 code for the target, without having to conform to an externally
334 specified ABI (Application Binary Interface). `Tail calls can only
335 be optimized when this, the GHC or the HiPE convention is
336 used. <CodeGenerator.html#id80>`_ This calling convention does not
337 support varargs and requires the prototype of all callees to exactly
338 match the prototype of the function definition.
339"``coldcc``" - The cold calling convention
340 This calling convention attempts to make code in the caller as
341 efficient as possible under the assumption that the call is not
342 commonly executed. As such, these calls often preserve all registers
343 so that the call does not break any live ranges in the caller side.
344 This calling convention does not support varargs and requires the
345 prototype of all callees to exactly match the prototype of the
346 function definition.
347"``cc 10``" - GHC convention
348 This calling convention has been implemented specifically for use by
349 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
350 It passes everything in registers, going to extremes to achieve this
351 by disabling callee save registers. This calling convention should
352 not be used lightly but only for specific situations such as an
353 alternative to the *register pinning* performance technique often
354 used when implementing functional programming languages. At the
355 moment only X86 supports this convention and it has the following
356 limitations:
357
358 - On *X86-32* only supports up to 4 bit type parameters. No
359 floating point types are supported.
360 - On *X86-64* only supports up to 10 bit type parameters and 6
361 floating point parameters.
362
363 This calling convention supports `tail call
364 optimization <CodeGenerator.html#id80>`_ but requires both the
365 caller and callee are using it.
366"``cc 11``" - The HiPE calling convention
367 This calling convention has been implemented specifically for use by
368 the `High-Performance Erlang
369 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
370 native code compiler of the `Ericsson's Open Source Erlang/OTP
371 system <http://www.erlang.org/download.shtml>`_. It uses more
372 registers for argument passing than the ordinary C calling
373 convention and defines no callee-saved registers. The calling
374 convention properly supports `tail call
375 optimization <CodeGenerator.html#id80>`_ but requires that both the
376 caller and the callee use it. It uses a *register pinning*
377 mechanism, similar to GHC's convention, for keeping frequently
378 accessed runtime components pinned to specific hardware registers.
379 At the moment only X86 supports this convention (both 32 and 64
380 bit).
381"``cc <n>``" - Numbered convention
382 Any calling convention may be specified by number, allowing
383 target-specific calling conventions to be used. Target specific
384 calling conventions start at 64.
385
386More calling conventions can be added/defined on an as-needed basis, to
387support Pascal conventions or any other well-known target-independent
388convention.
389
Eli Bendersky1de14102013-06-07 19:40:08 +0000390.. _visibilitystyles:
391
Sean Silvaf722b002012-12-07 10:36:55 +0000392Visibility Styles
393-----------------
394
395All Global Variables and Functions have one of the following visibility
396styles:
397
398"``default``" - Default style
399 On targets that use the ELF object file format, default visibility
400 means that the declaration is visible to other modules and, in
401 shared libraries, means that the declared entity may be overridden.
402 On Darwin, default visibility means that the declaration is visible
403 to other modules. Default visibility corresponds to "external
404 linkage" in the language.
405"``hidden``" - Hidden style
406 Two declarations of an object with hidden visibility refer to the
407 same object if they are in the same shared object. Usually, hidden
408 visibility indicates that the symbol will not be placed into the
409 dynamic symbol table, so no other module (executable or shared
410 library) can reference it directly.
411"``protected``" - Protected style
412 On ELF, protected visibility indicates that the symbol will be
413 placed in the dynamic symbol table, but that references within the
414 defining module will bind to the local symbol. That is, the symbol
415 cannot be overridden by another module.
416
Eli Bendersky1de14102013-06-07 19:40:08 +0000417.. _namedtypes:
418
Sean Silvaf722b002012-12-07 10:36:55 +0000419Named Types
420-----------
421
422LLVM IR allows you to specify name aliases for certain types. This can
423make it easier to read the IR and make the IR more condensed
424(particularly when recursive types are involved). An example of a name
425specification is:
426
427.. code-block:: llvm
428
429 %mytype = type { %mytype*, i32 }
430
431You may give a name to any :ref:`type <typesystem>` except
432":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
433expected with the syntax "%mytype".
434
435Note that type names are aliases for the structural type that they
436indicate, and that you can therefore specify multiple names for the same
437type. This often leads to confusing behavior when dumping out a .ll
438file. Since LLVM IR uses structural typing, the name is not part of the
439type. When printing out LLVM IR, the printer will pick *one name* to
440render all types of a particular shape. This means that if you have code
441where two different source types end up having the same LLVM type, that
442the dumper will sometimes print the "wrong" or unexpected type. This is
443an important design point and isn't going to change.
444
445.. _globalvars:
446
447Global Variables
448----------------
449
450Global variables define regions of memory allocated at compilation time
451instead of run-time. Global variables may optionally be initialized, may
452have an explicit section to be placed in, and may have an optional
453explicit alignment specified.
454
455A variable may be defined as ``thread_local``, which means that it will
456not be shared by threads (each thread will have a separated copy of the
457variable). Not all targets support thread-local variables. Optionally, a
458TLS model may be specified:
459
460``localdynamic``
461 For variables that are only used within the current shared library.
462``initialexec``
463 For variables in modules that will not be loaded dynamically.
464``localexec``
465 For variables defined in the executable and only used within it.
466
467The models correspond to the ELF TLS models; see `ELF Handling For
468Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
469more information on under which circumstances the different models may
470be used. The target may choose a different TLS model if the specified
471model is not supported, or if a better choice of model can be made.
472
Michael Gottesmanf5735882013-01-31 05:48:48 +0000473A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000474the contents of the variable will **never** be modified (enabling better
475optimization, allowing the global data to be placed in the read-only
476section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000477initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000478variable.
479
480LLVM explicitly allows *declarations* of global variables to be marked
481constant, even if the final definition of the global is not. This
482capability can be used to enable slightly better optimization of the
483program, but requires the language definition to guarantee that
484optimizations based on the 'constantness' are valid for the translation
485units that do not include the definition.
486
487As SSA values, global variables define pointer values that are in scope
488(i.e. they dominate) all basic blocks in the program. Global variables
489always define a pointer to their "content" type because they describe a
490region of memory, and all memory objects in LLVM are accessed through
491pointers.
492
493Global variables can be marked with ``unnamed_addr`` which indicates
494that the address is not significant, only the content. Constants marked
495like this can be merged with other constants if they have the same
496initializer. Note that a constant with significant address *can* be
497merged with a ``unnamed_addr`` constant, the result being a constant
498whose address is significant.
499
500A global variable may be declared to reside in a target-specific
501numbered address space. For targets that support them, address spaces
502may affect how optimizations are performed and/or what target
503instructions are used to access the variable. The default address space
504is zero. The address space qualifier must precede any other attributes.
505
506LLVM allows an explicit section to be specified for globals. If the
507target supports it, it will emit globals to the section specified.
508
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000509By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000510variables defined within the module are not modified from their
511initial values before the start of the global initializer. This is
512true even for variables potentially accessible from outside the
513module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000514``@llvm.used``. This assumption may be suppressed by marking the
515variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000516
Sean Silvaf722b002012-12-07 10:36:55 +0000517An explicit alignment may be specified for a global, which must be a
518power of 2. If not present, or if the alignment is set to zero, the
519alignment of the global is set by the target to whatever it feels
520convenient. If an explicit alignment is specified, the global is forced
521to have exactly that alignment. Targets and optimizers are not allowed
522to over-align the global if the global has an assigned section. In this
523case, the extra alignment could be observable: for example, code could
524assume that the globals are densely packed in their section and try to
525iterate over them as an array, alignment padding would break this
526iteration.
527
528For example, the following defines a global in a numbered address space
529with an initializer, section, and alignment:
530
531.. code-block:: llvm
532
533 @G = addrspace(5) constant float 1.0, section "foo", align 4
534
535The following example defines a thread-local global with the
536``initialexec`` TLS model:
537
538.. code-block:: llvm
539
540 @G = thread_local(initialexec) global i32 0, align 4
541
542.. _functionstructure:
543
544Functions
545---------
546
547LLVM function definitions consist of the "``define``" keyword, an
548optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
549style <visibility>`, an optional :ref:`calling convention <callingconv>`,
550an optional ``unnamed_addr`` attribute, a return type, an optional
551:ref:`parameter attribute <paramattrs>` for the return type, a function
552name, a (possibly empty) argument list (each with optional :ref:`parameter
553attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
554an optional section, an optional alignment, an optional :ref:`garbage
555collector name <gc>`, an opening curly brace, a list of basic blocks,
556and a closing curly brace.
557
558LLVM function declarations consist of the "``declare``" keyword, an
559optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
560style <visibility>`, an optional :ref:`calling convention <callingconv>`,
561an optional ``unnamed_addr`` attribute, a return type, an optional
562:ref:`parameter attribute <paramattrs>` for the return type, a function
563name, a possibly empty list of arguments, an optional alignment, and an
564optional :ref:`garbage collector name <gc>`.
565
566A function definition contains a list of basic blocks, forming the CFG
567(Control Flow Graph) for the function. Each basic block may optionally
568start with a label (giving the basic block a symbol table entry),
569contains a list of instructions, and ends with a
570:ref:`terminator <terminators>` instruction (such as a branch or function
Sean Silva57f429f2013-05-20 23:31:12 +0000571return). If explicit label is not provided, a block is assigned an
572implicit numbered label, using a next value from the same counter as used
573for unnamed temporaries (:ref:`see above<identifiers>`). For example, if a
574function entry block does not have explicit label, it will be assigned
575label "%0", then first unnamed temporary in that block will be "%1", etc.
Sean Silvaf722b002012-12-07 10:36:55 +0000576
577The first basic block in a function is special in two ways: it is
578immediately executed on entrance to the function, and it is not allowed
579to have predecessor basic blocks (i.e. there can not be any branches to
580the entry block of a function). Because the block can have no
581predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
582
583LLVM allows an explicit section to be specified for functions. If the
584target supports it, it will emit functions to the section specified.
585
586An explicit alignment may be specified for a function. If not present,
587or if the alignment is set to zero, the alignment of the function is set
588by the target to whatever it feels convenient. If an explicit alignment
589is specified, the function is forced to have at least that much
590alignment. All alignments must be a power of 2.
591
592If the ``unnamed_addr`` attribute is given, the address is know to not
593be significant and two identical functions can be merged.
594
595Syntax::
596
597 define [linkage] [visibility]
598 [cconv] [ret attrs]
599 <ResultType> @<FunctionName> ([argument list])
600 [fn Attrs] [section "name"] [align N]
601 [gc] { ... }
602
Eli Bendersky1de14102013-06-07 19:40:08 +0000603.. _langref_aliases:
604
Sean Silvaf722b002012-12-07 10:36:55 +0000605Aliases
606-------
607
608Aliases act as "second name" for the aliasee value (which can be either
609function, global variable, another alias or bitcast of global value).
610Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
611:ref:`visibility style <visibility>`.
612
613Syntax::
614
615 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
616
617.. _namedmetadatastructure:
618
619Named Metadata
620--------------
621
622Named metadata is a collection of metadata. :ref:`Metadata
623nodes <metadata>` (but not metadata strings) are the only valid
624operands for a named metadata.
625
626Syntax::
627
628 ; Some unnamed metadata nodes, which are referenced by the named metadata.
629 !0 = metadata !{metadata !"zero"}
630 !1 = metadata !{metadata !"one"}
631 !2 = metadata !{metadata !"two"}
632 ; A named metadata.
633 !name = !{!0, !1, !2}
634
635.. _paramattrs:
636
637Parameter Attributes
638--------------------
639
640The return type and each parameter of a function type may have a set of
641*parameter attributes* associated with them. Parameter attributes are
642used to communicate additional information about the result or
643parameters of a function. Parameter attributes are considered to be part
644of the function, not of the function type, so functions with different
645parameter attributes can have the same function type.
646
647Parameter attributes are simple keywords that follow the type specified.
648If multiple parameter attributes are needed, they are space separated.
649For example:
650
651.. code-block:: llvm
652
653 declare i32 @printf(i8* noalias nocapture, ...)
654 declare i32 @atoi(i8 zeroext)
655 declare signext i8 @returns_signed_char()
656
657Note that any attributes for the function result (``nounwind``,
658``readonly``) come immediately after the argument list.
659
660Currently, only the following parameter attributes are defined:
661
662``zeroext``
663 This indicates to the code generator that the parameter or return
664 value should be zero-extended to the extent required by the target's
665 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
666 the caller (for a parameter) or the callee (for a return value).
667``signext``
668 This indicates to the code generator that the parameter or return
669 value should be sign-extended to the extent required by the target's
670 ABI (which is usually 32-bits) by the caller (for a parameter) or
671 the callee (for a return value).
672``inreg``
673 This indicates that this parameter or return value should be treated
674 in a special target-dependent fashion during while emitting code for
675 a function call or return (usually, by putting it in a register as
676 opposed to memory, though some targets use it to distinguish between
677 two different kinds of registers). Use of this attribute is
678 target-specific.
679``byval``
680 This indicates that the pointer parameter should really be passed by
681 value to the function. The attribute implies that a hidden copy of
682 the pointee is made between the caller and the callee, so the callee
683 is unable to modify the value in the caller. This attribute is only
684 valid on LLVM pointer arguments. It is generally used to pass
685 structs and arrays by value, but is also valid on pointers to
686 scalars. The copy is considered to belong to the caller not the
687 callee (for example, ``readonly`` functions should not write to
688 ``byval`` parameters). This is not a valid attribute for return
689 values.
690
691 The byval attribute also supports specifying an alignment with the
692 align attribute. It indicates the alignment of the stack slot to
693 form and the known alignment of the pointer specified to the call
694 site. If the alignment is not specified, then the code generator
695 makes a target-specific assumption.
696
697``sret``
698 This indicates that the pointer parameter specifies the address of a
699 structure that is the return value of the function in the source
700 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000701 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000702 not to trap and to be properly aligned. This may only be applied to
703 the first parameter. This is not a valid attribute for return
704 values.
705``noalias``
Richard Smith2b185262013-06-04 20:42:42 +0000706 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvaf722b002012-12-07 10:36:55 +0000707 the argument or return value do not alias pointer values which are
708 not *based* on it, ignoring certain "irrelevant" dependencies. For a
709 call to the parent function, dependencies between memory references
710 from before or after the call and from those during the call are
711 "irrelevant" to the ``noalias`` keyword for the arguments and return
712 value used in that call. The caller shares the responsibility with
713 the callee for ensuring that these requirements are met. For further
714 details, please see the discussion of the NoAlias response in `alias
715 analysis <AliasAnalysis.html#MustMayNo>`_.
716
717 Note that this definition of ``noalias`` is intentionally similar
718 to the definition of ``restrict`` in C99 for function arguments,
719 though it is slightly weaker.
720
721 For function return values, C99's ``restrict`` is not meaningful,
722 while LLVM's ``noalias`` is.
723``nocapture``
724 This indicates that the callee does not make any copies of the
725 pointer that outlive the callee itself. This is not a valid
726 attribute for return values.
727
728.. _nest:
729
730``nest``
731 This indicates that the pointer parameter can be excised using the
732 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +0000733 attribute for return values and can only be applied to one parameter.
734
735``returned``
Stephen Lin8592fba2013-06-20 21:55:10 +0000736 This indicates that the function always returns the argument as its return
737 value. This is an optimization hint to the code generator when generating
738 the caller, allowing tail call optimization and omission of register saves
739 and restores in some cases; it is not checked or enforced when generating
740 the callee. The parameter and the function return type must be valid
741 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
742 valid attribute for return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +0000743
744.. _gc:
745
746Garbage Collector Names
747-----------------------
748
749Each function may specify a garbage collector name, which is simply a
750string:
751
752.. code-block:: llvm
753
754 define void @f() gc "name" { ... }
755
756The compiler declares the supported values of *name*. Specifying a
757collector which will cause the compiler to alter its output in order to
758support the named garbage collection algorithm.
759
Bill Wendling95ce4c22013-02-06 06:52:58 +0000760.. _attrgrp:
761
762Attribute Groups
763----------------
764
765Attribute groups are groups of attributes that are referenced by objects within
766the IR. They are important for keeping ``.ll`` files readable, because a lot of
767functions will use the same set of attributes. In the degenerative case of a
768``.ll`` file that corresponds to a single ``.c`` file, the single attribute
769group will capture the important command line flags used to build that file.
770
771An attribute group is a module-level object. To use an attribute group, an
772object references the attribute group's ID (e.g. ``#37``). An object may refer
773to more than one attribute group. In that situation, the attributes from the
774different groups are merged.
775
776Here is an example of attribute groups for a function that should always be
777inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
778
779.. code-block:: llvm
780
781 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000782 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000783
784 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000785 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000786
787 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
788 define void @f() #0 #1 { ... }
789
Sean Silvaf722b002012-12-07 10:36:55 +0000790.. _fnattrs:
791
792Function Attributes
793-------------------
794
795Function attributes are set to communicate additional information about
796a function. Function attributes are considered to be part of the
797function, not of the function type, so functions with different function
798attributes can have the same function type.
799
800Function attributes are simple keywords that follow the type specified.
801If multiple attributes are needed, they are space separated. For
802example:
803
804.. code-block:: llvm
805
806 define void @f() noinline { ... }
807 define void @f() alwaysinline { ... }
808 define void @f() alwaysinline optsize { ... }
809 define void @f() optsize { ... }
810
Sean Silvaf722b002012-12-07 10:36:55 +0000811``alignstack(<n>)``
812 This attribute indicates that, when emitting the prologue and
813 epilogue, the backend should forcibly align the stack pointer.
814 Specify the desired alignment, which must be a power of two, in
815 parentheses.
816``alwaysinline``
817 This attribute indicates that the inliner should attempt to inline
818 this function into callers whenever possible, ignoring any active
819 inlining size threshold for this caller.
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000820``builtin``
821 This indicates that the callee function at a call site should be
822 recognized as a built-in function, even though the function's declaration
Michael Gottesman550d9bf2013-07-02 21:32:56 +0000823 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000824 direct calls to functions which are declared with the ``nobuiltin``
825 attribute.
Michael Gottesmane19a8582013-06-27 22:48:08 +0000826``cold``
827 This attribute indicates that this function is rarely called. When
828 computing edge weights, basic blocks post-dominated by a cold
829 function call are also considered to be cold; and, thus, given low
830 weight.
Sean Silvaf722b002012-12-07 10:36:55 +0000831``nonlazybind``
832 This attribute suppresses lazy symbol binding for the function. This
833 may make calls to the function faster, at the cost of extra program
834 startup time if the function is not called during program startup.
835``inlinehint``
836 This attribute indicates that the source code contained a hint that
837 inlining this function is desirable (such as the "inline" keyword in
838 C/C++). It is just a hint; it imposes no requirements on the
839 inliner.
840``naked``
841 This attribute disables prologue / epilogue emission for the
842 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000843``nobuiltin``
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000844 This indicates that the callee function at a call site is not recognized as
845 a built-in function. LLVM will retain the original call and not replace it
846 with equivalent code based on the semantics of the built-in function, unless
847 the call site uses the ``builtin`` attribute. This is valid at call sites
848 and on function declarations and definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000849``noduplicate``
850 This attribute indicates that calls to the function cannot be
851 duplicated. A call to a ``noduplicate`` function may be moved
852 within its parent function, but may not be duplicated within
853 its parent function.
854
855 A function containing a ``noduplicate`` call may still
856 be an inlining candidate, provided that the call is not
857 duplicated by inlining. That implies that the function has
858 internal linkage and only has one call site, so the original
859 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000860``noimplicitfloat``
861 This attributes disables implicit floating point instructions.
862``noinline``
863 This attribute indicates that the inliner should never inline this
864 function in any situation. This attribute may not be used together
865 with the ``alwaysinline`` attribute.
866``noredzone``
867 This attribute indicates that the code generator should not use a
868 red zone, even if the target-specific ABI normally permits it.
869``noreturn``
870 This function attribute indicates that the function never returns
871 normally. This produces undefined behavior at runtime if the
872 function ever does dynamically return.
873``nounwind``
874 This function attribute indicates that the function never returns
875 with an unwind or exceptional control flow. If the function does
876 unwind, its runtime behavior is undefined.
877``optsize``
878 This attribute suggests that optimization passes and code generator
879 passes make choices that keep the code size of this function low,
880 and otherwise do optimizations specifically to reduce code size.
881``readnone``
Nick Lewyckydc897372013-07-06 00:29:58 +0000882 On a function, this attribute indicates that the function computes its
883 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvaf722b002012-12-07 10:36:55 +0000884 without dereferencing any pointer arguments or otherwise accessing
885 any mutable state (e.g. memory, control registers, etc) visible to
886 caller functions. It does not write through any pointer arguments
887 (including ``byval`` arguments) and never changes any state visible
888 to callers. This means that it cannot unwind exceptions by calling
889 the ``C++`` exception throwing methods.
Nick Lewyckydc897372013-07-06 00:29:58 +0000890
891 On an argument, this attribute indicates that the function does not
892 dereference that pointer argument, even though it may read or write the
Nick Lewyckyd1066ef2013-07-06 01:04:47 +0000893 memory that the pointer points to if accessed through other pointers.
Sean Silvaf722b002012-12-07 10:36:55 +0000894``readonly``
Nick Lewyckydc897372013-07-06 00:29:58 +0000895 On a function, this attribute indicates that the function does not write
896 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvaf722b002012-12-07 10:36:55 +0000897 modify any state (e.g. memory, control registers, etc) visible to
898 caller functions. It may dereference pointer arguments and read
899 state that may be set in the caller. A readonly function always
900 returns the same value (or unwinds an exception identically) when
901 called with the same set of arguments and global state. It cannot
902 unwind an exception by calling the ``C++`` exception throwing
903 methods.
Nick Lewyckydc897372013-07-06 00:29:58 +0000904
905 On an argument, this attribute indicates that the function does not write
906 through this pointer argument, even though it may write to the memory that
907 the pointer points to.
Sean Silvaf722b002012-12-07 10:36:55 +0000908``returns_twice``
909 This attribute indicates that this function can return twice. The C
910 ``setjmp`` is an example of such a function. The compiler disables
911 some optimizations (like tail calls) in the caller of these
912 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +0000913``sanitize_address``
914 This attribute indicates that AddressSanitizer checks
915 (dynamic address safety analysis) are enabled for this function.
916``sanitize_memory``
917 This attribute indicates that MemorySanitizer checks (dynamic detection
918 of accesses to uninitialized memory) are enabled for this function.
919``sanitize_thread``
920 This attribute indicates that ThreadSanitizer checks
921 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000922``ssp``
923 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000924 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000925 placed on the stack before the local variables that's checked upon
926 return from the function to see if it has been overwritten. A
927 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000928 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000929
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000930 - Character arrays larger than ``ssp-buffer-size`` (default 8).
931 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
932 - Calls to alloca() with variable sizes or constant sizes greater than
933 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +0000934
935 If a function that has an ``ssp`` attribute is inlined into a
936 function that doesn't have an ``ssp`` attribute, then the resulting
937 function will have an ``ssp`` attribute.
938``sspreq``
939 This attribute indicates that the function should *always* emit a
940 stack smashing protector. This overrides the ``ssp`` function
941 attribute.
942
943 If a function that has an ``sspreq`` attribute is inlined into a
944 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +0000945 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
946 an ``sspreq`` attribute.
947``sspstrong``
948 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000949 protector. This attribute causes a strong heuristic to be used when
950 determining if a function needs stack protectors. The strong heuristic
951 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000952
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000953 - Arrays of any size and type
954 - Aggregates containing an array of any size and type.
955 - Calls to alloca().
956 - Local variables that have had their address taken.
957
958 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +0000959
960 If a function that has an ``sspstrong`` attribute is inlined into a
961 function that doesn't have an ``sspstrong`` attribute, then the
962 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +0000963``uwtable``
964 This attribute indicates that the ABI being targeted requires that
965 an unwind table entry be produce for this function even if we can
966 show that no exceptions passes by it. This is normally the case for
967 the ELF x86-64 abi, but it can be disabled for some compilation
968 units.
Sean Silvaf722b002012-12-07 10:36:55 +0000969
970.. _moduleasm:
971
972Module-Level Inline Assembly
973----------------------------
974
975Modules may contain "module-level inline asm" blocks, which corresponds
976to the GCC "file scope inline asm" blocks. These blocks are internally
977concatenated by LLVM and treated as a single unit, but may be separated
978in the ``.ll`` file if desired. The syntax is very simple:
979
980.. code-block:: llvm
981
982 module asm "inline asm code goes here"
983 module asm "more can go here"
984
985The strings can contain any character by escaping non-printable
986characters. The escape sequence used is simply "\\xx" where "xx" is the
987two digit hex code for the number.
988
989The inline asm code is simply printed to the machine code .s file when
990assembly code is generated.
991
Eli Bendersky1de14102013-06-07 19:40:08 +0000992.. _langref_datalayout:
993
Sean Silvaf722b002012-12-07 10:36:55 +0000994Data Layout
995-----------
996
997A module may specify a target specific data layout string that specifies
998how data is to be laid out in memory. The syntax for the data layout is
999simply:
1000
1001.. code-block:: llvm
1002
1003 target datalayout = "layout specification"
1004
1005The *layout specification* consists of a list of specifications
1006separated by the minus sign character ('-'). Each specification starts
1007with a letter and may include other information after the letter to
1008define some aspect of the data layout. The specifications accepted are
1009as follows:
1010
1011``E``
1012 Specifies that the target lays out data in big-endian form. That is,
1013 the bits with the most significance have the lowest address
1014 location.
1015``e``
1016 Specifies that the target lays out data in little-endian form. That
1017 is, the bits with the least significance have the lowest address
1018 location.
1019``S<size>``
1020 Specifies the natural alignment of the stack in bits. Alignment
1021 promotion of stack variables is limited to the natural stack
1022 alignment to avoid dynamic stack realignment. The stack alignment
1023 must be a multiple of 8-bits. If omitted, the natural stack
1024 alignment defaults to "unspecified", which does not prevent any
1025 alignment promotions.
1026``p[n]:<size>:<abi>:<pref>``
1027 This specifies the *size* of a pointer and its ``<abi>`` and
1028 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1029 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1030 preceding ``:`` should be omitted too. The address space, ``n`` is
1031 optional, and if not specified, denotes the default address space 0.
1032 The value of ``n`` must be in the range [1,2^23).
1033``i<size>:<abi>:<pref>``
1034 This specifies the alignment for an integer type of a given bit
1035 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1036``v<size>:<abi>:<pref>``
1037 This specifies the alignment for a vector type of a given bit
1038 ``<size>``.
1039``f<size>:<abi>:<pref>``
1040 This specifies the alignment for a floating point type of a given bit
1041 ``<size>``. Only values of ``<size>`` that are supported by the target
1042 will work. 32 (float) and 64 (double) are supported on all targets; 80
1043 or 128 (different flavors of long double) are also supported on some
1044 targets.
1045``a<size>:<abi>:<pref>``
1046 This specifies the alignment for an aggregate type of a given bit
1047 ``<size>``.
1048``s<size>:<abi>:<pref>``
1049 This specifies the alignment for a stack object of a given bit
1050 ``<size>``.
1051``n<size1>:<size2>:<size3>...``
1052 This specifies a set of native integer widths for the target CPU in
1053 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1054 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1055 this set are considered to support most general arithmetic operations
1056 efficiently.
1057
1058When constructing the data layout for a given target, LLVM starts with a
1059default set of specifications which are then (possibly) overridden by
1060the specifications in the ``datalayout`` keyword. The default
1061specifications are given in this list:
1062
1063- ``E`` - big endian
1064- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001065- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001066- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1067- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1068- ``i16:16:16`` - i16 is 16-bit aligned
1069- ``i32:32:32`` - i32 is 32-bit aligned
1070- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1071 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001072- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001073- ``f32:32:32`` - float is 32-bit aligned
1074- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001075- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001076- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1077- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001078- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001079
1080When LLVM is determining the alignment for a given type, it uses the
1081following rules:
1082
1083#. If the type sought is an exact match for one of the specifications,
1084 that specification is used.
1085#. If no match is found, and the type sought is an integer type, then
1086 the smallest integer type that is larger than the bitwidth of the
1087 sought type is used. If none of the specifications are larger than
1088 the bitwidth then the largest integer type is used. For example,
1089 given the default specifications above, the i7 type will use the
1090 alignment of i8 (next largest) while both i65 and i256 will use the
1091 alignment of i64 (largest specified).
1092#. If no match is found, and the type sought is a vector type, then the
1093 largest vector type that is smaller than the sought vector type will
1094 be used as a fall back. This happens because <128 x double> can be
1095 implemented in terms of 64 <2 x double>, for example.
1096
1097The function of the data layout string may not be what you expect.
1098Notably, this is not a specification from the frontend of what alignment
1099the code generator should use.
1100
1101Instead, if specified, the target data layout is required to match what
1102the ultimate *code generator* expects. This string is used by the
1103mid-level optimizers to improve code, and this only works if it matches
1104what the ultimate code generator uses. If you would like to generate IR
1105that does not embed this target-specific detail into the IR, then you
1106don't have to specify the string. This will disable some optimizations
1107that require precise layout information, but this also prevents those
1108optimizations from introducing target specificity into the IR.
1109
1110.. _pointeraliasing:
1111
1112Pointer Aliasing Rules
1113----------------------
1114
1115Any memory access must be done through a pointer value associated with
1116an address range of the memory access, otherwise the behavior is
1117undefined. Pointer values are associated with address ranges according
1118to the following rules:
1119
1120- A pointer value is associated with the addresses associated with any
1121 value it is *based* on.
1122- An address of a global variable is associated with the address range
1123 of the variable's storage.
1124- The result value of an allocation instruction is associated with the
1125 address range of the allocated storage.
1126- A null pointer in the default address-space is associated with no
1127 address.
1128- An integer constant other than zero or a pointer value returned from
1129 a function not defined within LLVM may be associated with address
1130 ranges allocated through mechanisms other than those provided by
1131 LLVM. Such ranges shall not overlap with any ranges of addresses
1132 allocated by mechanisms provided by LLVM.
1133
1134A pointer value is *based* on another pointer value according to the
1135following rules:
1136
1137- A pointer value formed from a ``getelementptr`` operation is *based*
1138 on the first operand of the ``getelementptr``.
1139- The result value of a ``bitcast`` is *based* on the operand of the
1140 ``bitcast``.
1141- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1142 values that contribute (directly or indirectly) to the computation of
1143 the pointer's value.
1144- The "*based* on" relationship is transitive.
1145
1146Note that this definition of *"based"* is intentionally similar to the
1147definition of *"based"* in C99, though it is slightly weaker.
1148
1149LLVM IR does not associate types with memory. The result type of a
1150``load`` merely indicates the size and alignment of the memory from
1151which to load, as well as the interpretation of the value. The first
1152operand type of a ``store`` similarly only indicates the size and
1153alignment of the store.
1154
1155Consequently, type-based alias analysis, aka TBAA, aka
1156``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1157:ref:`Metadata <metadata>` may be used to encode additional information
1158which specialized optimization passes may use to implement type-based
1159alias analysis.
1160
1161.. _volatile:
1162
1163Volatile Memory Accesses
1164------------------------
1165
1166Certain memory accesses, such as :ref:`load <i_load>`'s,
1167:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1168marked ``volatile``. The optimizers must not change the number of
1169volatile operations or change their order of execution relative to other
1170volatile operations. The optimizers *may* change the order of volatile
1171operations relative to non-volatile operations. This is not Java's
1172"volatile" and has no cross-thread synchronization behavior.
1173
Andrew Trick9a6dd022013-01-30 21:19:35 +00001174IR-level volatile loads and stores cannot safely be optimized into
1175llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1176flagged volatile. Likewise, the backend should never split or merge
1177target-legal volatile load/store instructions.
1178
Andrew Trick946317d2013-01-31 00:49:39 +00001179.. admonition:: Rationale
1180
1181 Platforms may rely on volatile loads and stores of natively supported
1182 data width to be executed as single instruction. For example, in C
1183 this holds for an l-value of volatile primitive type with native
1184 hardware support, but not necessarily for aggregate types. The
1185 frontend upholds these expectations, which are intentionally
1186 unspecified in the IR. The rules above ensure that IR transformation
1187 do not violate the frontend's contract with the language.
1188
Sean Silvaf722b002012-12-07 10:36:55 +00001189.. _memmodel:
1190
1191Memory Model for Concurrent Operations
1192--------------------------------------
1193
1194The LLVM IR does not define any way to start parallel threads of
1195execution or to register signal handlers. Nonetheless, there are
1196platform-specific ways to create them, and we define LLVM IR's behavior
1197in their presence. This model is inspired by the C++0x memory model.
1198
1199For a more informal introduction to this model, see the :doc:`Atomics`.
1200
1201We define a *happens-before* partial order as the least partial order
1202that
1203
1204- Is a superset of single-thread program order, and
1205- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1206 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1207 techniques, like pthread locks, thread creation, thread joining,
1208 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1209 Constraints <ordering>`).
1210
1211Note that program order does not introduce *happens-before* edges
1212between a thread and signals executing inside that thread.
1213
1214Every (defined) read operation (load instructions, memcpy, atomic
1215loads/read-modify-writes, etc.) R reads a series of bytes written by
1216(defined) write operations (store instructions, atomic
1217stores/read-modify-writes, memcpy, etc.). For the purposes of this
1218section, initialized globals are considered to have a write of the
1219initializer which is atomic and happens before any other read or write
1220of the memory in question. For each byte of a read R, R\ :sub:`byte`
1221may see any write to the same byte, except:
1222
1223- If write\ :sub:`1` happens before write\ :sub:`2`, and
1224 write\ :sub:`2` happens before R\ :sub:`byte`, then
1225 R\ :sub:`byte` does not see write\ :sub:`1`.
1226- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1227 R\ :sub:`byte` does not see write\ :sub:`3`.
1228
1229Given that definition, R\ :sub:`byte` is defined as follows:
1230
1231- If R is volatile, the result is target-dependent. (Volatile is
1232 supposed to give guarantees which can support ``sig_atomic_t`` in
1233 C/C++, and may be used for accesses to addresses which do not behave
1234 like normal memory. It does not generally provide cross-thread
1235 synchronization.)
1236- Otherwise, if there is no write to the same byte that happens before
1237 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1238- Otherwise, if R\ :sub:`byte` may see exactly one write,
1239 R\ :sub:`byte` returns the value written by that write.
1240- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1241 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1242 Memory Ordering Constraints <ordering>` section for additional
1243 constraints on how the choice is made.
1244- Otherwise R\ :sub:`byte` returns ``undef``.
1245
1246R returns the value composed of the series of bytes it read. This
1247implies that some bytes within the value may be ``undef`` **without**
1248the entire value being ``undef``. Note that this only defines the
1249semantics of the operation; it doesn't mean that targets will emit more
1250than one instruction to read the series of bytes.
1251
1252Note that in cases where none of the atomic intrinsics are used, this
1253model places only one restriction on IR transformations on top of what
1254is required for single-threaded execution: introducing a store to a byte
1255which might not otherwise be stored is not allowed in general.
1256(Specifically, in the case where another thread might write to and read
1257from an address, introducing a store can change a load that may see
1258exactly one write into a load that may see multiple writes.)
1259
1260.. _ordering:
1261
1262Atomic Memory Ordering Constraints
1263----------------------------------
1264
1265Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1266:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1267:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1268an ordering parameter that determines which other atomic instructions on
1269the same address they *synchronize with*. These semantics are borrowed
1270from Java and C++0x, but are somewhat more colloquial. If these
1271descriptions aren't precise enough, check those specs (see spec
1272references in the :doc:`atomics guide <Atomics>`).
1273:ref:`fence <i_fence>` instructions treat these orderings somewhat
1274differently since they don't take an address. See that instruction's
1275documentation for details.
1276
1277For a simpler introduction to the ordering constraints, see the
1278:doc:`Atomics`.
1279
1280``unordered``
1281 The set of values that can be read is governed by the happens-before
1282 partial order. A value cannot be read unless some operation wrote
1283 it. This is intended to provide a guarantee strong enough to model
1284 Java's non-volatile shared variables. This ordering cannot be
1285 specified for read-modify-write operations; it is not strong enough
1286 to make them atomic in any interesting way.
1287``monotonic``
1288 In addition to the guarantees of ``unordered``, there is a single
1289 total order for modifications by ``monotonic`` operations on each
1290 address. All modification orders must be compatible with the
1291 happens-before order. There is no guarantee that the modification
1292 orders can be combined to a global total order for the whole program
1293 (and this often will not be possible). The read in an atomic
1294 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1295 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1296 order immediately before the value it writes. If one atomic read
1297 happens before another atomic read of the same address, the later
1298 read must see the same value or a later value in the address's
1299 modification order. This disallows reordering of ``monotonic`` (or
1300 stronger) operations on the same address. If an address is written
1301 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1302 read that address repeatedly, the other threads must eventually see
1303 the write. This corresponds to the C++0x/C1x
1304 ``memory_order_relaxed``.
1305``acquire``
1306 In addition to the guarantees of ``monotonic``, a
1307 *synchronizes-with* edge may be formed with a ``release`` operation.
1308 This is intended to model C++'s ``memory_order_acquire``.
1309``release``
1310 In addition to the guarantees of ``monotonic``, if this operation
1311 writes a value which is subsequently read by an ``acquire``
1312 operation, it *synchronizes-with* that operation. (This isn't a
1313 complete description; see the C++0x definition of a release
1314 sequence.) This corresponds to the C++0x/C1x
1315 ``memory_order_release``.
1316``acq_rel`` (acquire+release)
1317 Acts as both an ``acquire`` and ``release`` operation on its
1318 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1319``seq_cst`` (sequentially consistent)
1320 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1321 operation which only reads, ``release`` for an operation which only
1322 writes), there is a global total order on all
1323 sequentially-consistent operations on all addresses, which is
1324 consistent with the *happens-before* partial order and with the
1325 modification orders of all the affected addresses. Each
1326 sequentially-consistent read sees the last preceding write to the
1327 same address in this global order. This corresponds to the C++0x/C1x
1328 ``memory_order_seq_cst`` and Java volatile.
1329
1330.. _singlethread:
1331
1332If an atomic operation is marked ``singlethread``, it only *synchronizes
1333with* or participates in modification and seq\_cst total orderings with
1334other operations running in the same thread (for example, in signal
1335handlers).
1336
1337.. _fastmath:
1338
1339Fast-Math Flags
1340---------------
1341
1342LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1343:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1344:ref:`frem <i_frem>`) have the following flags that can set to enable
1345otherwise unsafe floating point operations
1346
1347``nnan``
1348 No NaNs - Allow optimizations to assume the arguments and result are not
1349 NaN. Such optimizations are required to retain defined behavior over
1350 NaNs, but the value of the result is undefined.
1351
1352``ninf``
1353 No Infs - Allow optimizations to assume the arguments and result are not
1354 +/-Inf. Such optimizations are required to retain defined behavior over
1355 +/-Inf, but the value of the result is undefined.
1356
1357``nsz``
1358 No Signed Zeros - Allow optimizations to treat the sign of a zero
1359 argument or result as insignificant.
1360
1361``arcp``
1362 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1363 argument rather than perform division.
1364
1365``fast``
1366 Fast - Allow algebraically equivalent transformations that may
1367 dramatically change results in floating point (e.g. reassociate). This
1368 flag implies all the others.
1369
1370.. _typesystem:
1371
1372Type System
1373===========
1374
1375The LLVM type system is one of the most important features of the
1376intermediate representation. Being typed enables a number of
1377optimizations to be performed on the intermediate representation
1378directly, without having to do extra analyses on the side before the
1379transformation. A strong type system makes it easier to read the
1380generated code and enables novel analyses and transformations that are
1381not feasible to perform on normal three address code representations.
1382
Eli Bendersky88fe6822013-06-07 20:24:43 +00001383.. _typeclassifications:
1384
Sean Silvaf722b002012-12-07 10:36:55 +00001385Type Classifications
1386--------------------
1387
1388The types fall into a few useful classifications:
1389
1390
1391.. list-table::
1392 :header-rows: 1
1393
1394 * - Classification
1395 - Types
1396
1397 * - :ref:`integer <t_integer>`
1398 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1399 ``i64``, ...
1400
1401 * - :ref:`floating point <t_floating>`
1402 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1403 ``ppc_fp128``
1404
1405
1406 * - first class
1407
1408 .. _t_firstclass:
1409
1410 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1411 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1412 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1413 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1414
1415 * - :ref:`primitive <t_primitive>`
1416 - :ref:`label <t_label>`,
1417 :ref:`void <t_void>`,
1418 :ref:`integer <t_integer>`,
1419 :ref:`floating point <t_floating>`,
1420 :ref:`x86mmx <t_x86mmx>`,
1421 :ref:`metadata <t_metadata>`.
1422
1423 * - :ref:`derived <t_derived>`
1424 - :ref:`array <t_array>`,
1425 :ref:`function <t_function>`,
1426 :ref:`pointer <t_pointer>`,
1427 :ref:`structure <t_struct>`,
1428 :ref:`vector <t_vector>`,
1429 :ref:`opaque <t_opaque>`.
1430
1431The :ref:`first class <t_firstclass>` types are perhaps the most important.
1432Values of these types are the only ones which can be produced by
1433instructions.
1434
1435.. _t_primitive:
1436
1437Primitive Types
1438---------------
1439
1440The primitive types are the fundamental building blocks of the LLVM
1441system.
1442
1443.. _t_integer:
1444
1445Integer Type
1446^^^^^^^^^^^^
1447
1448Overview:
1449"""""""""
1450
1451The integer type is a very simple type that simply specifies an
1452arbitrary bit width for the integer type desired. Any bit width from 1
1453bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1454
1455Syntax:
1456"""""""
1457
1458::
1459
1460 iN
1461
1462The number of bits the integer will occupy is specified by the ``N``
1463value.
1464
1465Examples:
1466"""""""""
1467
1468+----------------+------------------------------------------------+
1469| ``i1`` | a single-bit integer. |
1470+----------------+------------------------------------------------+
1471| ``i32`` | a 32-bit integer. |
1472+----------------+------------------------------------------------+
1473| ``i1942652`` | a really big integer of over 1 million bits. |
1474+----------------+------------------------------------------------+
1475
1476.. _t_floating:
1477
1478Floating Point Types
1479^^^^^^^^^^^^^^^^^^^^
1480
1481.. list-table::
1482 :header-rows: 1
1483
1484 * - Type
1485 - Description
1486
1487 * - ``half``
1488 - 16-bit floating point value
1489
1490 * - ``float``
1491 - 32-bit floating point value
1492
1493 * - ``double``
1494 - 64-bit floating point value
1495
1496 * - ``fp128``
1497 - 128-bit floating point value (112-bit mantissa)
1498
1499 * - ``x86_fp80``
1500 - 80-bit floating point value (X87)
1501
1502 * - ``ppc_fp128``
1503 - 128-bit floating point value (two 64-bits)
1504
1505.. _t_x86mmx:
1506
1507X86mmx Type
1508^^^^^^^^^^^
1509
1510Overview:
1511"""""""""
1512
1513The x86mmx type represents a value held in an MMX register on an x86
1514machine. The operations allowed on it are quite limited: parameters and
1515return values, load and store, and bitcast. User-specified MMX
1516instructions are represented as intrinsic or asm calls with arguments
1517and/or results of this type. There are no arrays, vectors or constants
1518of this type.
1519
1520Syntax:
1521"""""""
1522
1523::
1524
1525 x86mmx
1526
1527.. _t_void:
1528
1529Void Type
1530^^^^^^^^^
1531
1532Overview:
1533"""""""""
1534
1535The void type does not represent any value and has no size.
1536
1537Syntax:
1538"""""""
1539
1540::
1541
1542 void
1543
1544.. _t_label:
1545
1546Label Type
1547^^^^^^^^^^
1548
1549Overview:
1550"""""""""
1551
1552The label type represents code labels.
1553
1554Syntax:
1555"""""""
1556
1557::
1558
1559 label
1560
1561.. _t_metadata:
1562
1563Metadata Type
1564^^^^^^^^^^^^^
1565
1566Overview:
1567"""""""""
1568
1569The metadata type represents embedded metadata. No derived types may be
1570created from metadata except for :ref:`function <t_function>` arguments.
1571
1572Syntax:
1573"""""""
1574
1575::
1576
1577 metadata
1578
1579.. _t_derived:
1580
1581Derived Types
1582-------------
1583
1584The real power in LLVM comes from the derived types in the system. This
1585is what allows a programmer to represent arrays, functions, pointers,
1586and other useful types. Each of these types contain one or more element
1587types which may be a primitive type, or another derived type. For
1588example, it is possible to have a two dimensional array, using an array
1589as the element type of another array.
1590
1591.. _t_aggregate:
1592
1593Aggregate Types
1594^^^^^^^^^^^^^^^
1595
1596Aggregate Types are a subset of derived types that can contain multiple
1597member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1598aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1599aggregate types.
1600
1601.. _t_array:
1602
1603Array Type
1604^^^^^^^^^^
1605
1606Overview:
1607"""""""""
1608
1609The array type is a very simple derived type that arranges elements
1610sequentially in memory. The array type requires a size (number of
1611elements) and an underlying data type.
1612
1613Syntax:
1614"""""""
1615
1616::
1617
1618 [<# elements> x <elementtype>]
1619
1620The number of elements is a constant integer value; ``elementtype`` may
1621be any type with a size.
1622
1623Examples:
1624"""""""""
1625
1626+------------------+--------------------------------------+
1627| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1628+------------------+--------------------------------------+
1629| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1630+------------------+--------------------------------------+
1631| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1632+------------------+--------------------------------------+
1633
1634Here are some examples of multidimensional arrays:
1635
1636+-----------------------------+----------------------------------------------------------+
1637| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1638+-----------------------------+----------------------------------------------------------+
1639| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1640+-----------------------------+----------------------------------------------------------+
1641| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1642+-----------------------------+----------------------------------------------------------+
1643
1644There is no restriction on indexing beyond the end of the array implied
1645by a static type (though there are restrictions on indexing beyond the
1646bounds of an allocated object in some cases). This means that
1647single-dimension 'variable sized array' addressing can be implemented in
1648LLVM with a zero length array type. An implementation of 'pascal style
1649arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1650example.
1651
1652.. _t_function:
1653
1654Function Type
1655^^^^^^^^^^^^^
1656
1657Overview:
1658"""""""""
1659
1660The function type can be thought of as a function signature. It consists
1661of a return type and a list of formal parameter types. The return type
1662of a function type is a first class type or a void type.
1663
1664Syntax:
1665"""""""
1666
1667::
1668
1669 <returntype> (<parameter list>)
1670
1671...where '``<parameter list>``' is a comma-separated list of type
1672specifiers. Optionally, the parameter list may include a type ``...``,
1673which indicates that the function takes a variable number of arguments.
1674Variable argument functions can access their arguments with the
1675:ref:`variable argument handling intrinsic <int_varargs>` functions.
1676'``<returntype>``' is any type except :ref:`label <t_label>`.
1677
1678Examples:
1679"""""""""
1680
1681+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1682| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1683+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001684| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001685+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1686| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1687+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1688| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1689+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1690
1691.. _t_struct:
1692
1693Structure Type
1694^^^^^^^^^^^^^^
1695
1696Overview:
1697"""""""""
1698
1699The structure type is used to represent a collection of data members
1700together in memory. The elements of a structure may be any type that has
1701a size.
1702
1703Structures in memory are accessed using '``load``' and '``store``' by
1704getting a pointer to a field with the '``getelementptr``' instruction.
1705Structures in registers are accessed using the '``extractvalue``' and
1706'``insertvalue``' instructions.
1707
1708Structures may optionally be "packed" structures, which indicate that
1709the alignment of the struct is one byte, and that there is no padding
1710between the elements. In non-packed structs, padding between field types
1711is inserted as defined by the DataLayout string in the module, which is
1712required to match what the underlying code generator expects.
1713
1714Structures can either be "literal" or "identified". A literal structure
1715is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1716identified types are always defined at the top level with a name.
1717Literal types are uniqued by their contents and can never be recursive
1718or opaque since there is no way to write one. Identified types can be
1719recursive, can be opaqued, and are never uniqued.
1720
1721Syntax:
1722"""""""
1723
1724::
1725
1726 %T1 = type { <type list> } ; Identified normal struct type
1727 %T2 = type <{ <type list> }> ; Identified packed struct type
1728
1729Examples:
1730"""""""""
1731
1732+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1733| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1734+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001735| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001736+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1737| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1738+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1739
1740.. _t_opaque:
1741
1742Opaque Structure Types
1743^^^^^^^^^^^^^^^^^^^^^^
1744
1745Overview:
1746"""""""""
1747
1748Opaque structure types are used to represent named structure types that
1749do not have a body specified. This corresponds (for example) to the C
1750notion of a forward declared structure.
1751
1752Syntax:
1753"""""""
1754
1755::
1756
1757 %X = type opaque
1758 %52 = type opaque
1759
1760Examples:
1761"""""""""
1762
1763+--------------+-------------------+
1764| ``opaque`` | An opaque type. |
1765+--------------+-------------------+
1766
1767.. _t_pointer:
1768
1769Pointer Type
1770^^^^^^^^^^^^
1771
1772Overview:
1773"""""""""
1774
1775The pointer type is used to specify memory locations. Pointers are
1776commonly used to reference objects in memory.
1777
1778Pointer types may have an optional address space attribute defining the
1779numbered address space where the pointed-to object resides. The default
1780address space is number zero. The semantics of non-zero address spaces
1781are target-specific.
1782
1783Note that LLVM does not permit pointers to void (``void*``) nor does it
1784permit pointers to labels (``label*``). Use ``i8*`` instead.
1785
1786Syntax:
1787"""""""
1788
1789::
1790
1791 <type> *
1792
1793Examples:
1794"""""""""
1795
1796+-------------------------+--------------------------------------------------------------------------------------------------------------+
1797| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1798+-------------------------+--------------------------------------------------------------------------------------------------------------+
1799| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1800+-------------------------+--------------------------------------------------------------------------------------------------------------+
1801| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1802+-------------------------+--------------------------------------------------------------------------------------------------------------+
1803
1804.. _t_vector:
1805
1806Vector Type
1807^^^^^^^^^^^
1808
1809Overview:
1810"""""""""
1811
1812A vector type is a simple derived type that represents a vector of
1813elements. Vector types are used when multiple primitive data are
1814operated in parallel using a single instruction (SIMD). A vector type
1815requires a size (number of elements) and an underlying primitive data
1816type. Vector types are considered :ref:`first class <t_firstclass>`.
1817
1818Syntax:
1819"""""""
1820
1821::
1822
1823 < <# elements> x <elementtype> >
1824
1825The number of elements is a constant integer value larger than 0;
1826elementtype may be any integer or floating point type, or a pointer to
1827these types. Vectors of size zero are not allowed.
1828
1829Examples:
1830"""""""""
1831
1832+-------------------+--------------------------------------------------+
1833| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1834+-------------------+--------------------------------------------------+
1835| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1836+-------------------+--------------------------------------------------+
1837| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1838+-------------------+--------------------------------------------------+
1839| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1840+-------------------+--------------------------------------------------+
1841
1842Constants
1843=========
1844
1845LLVM has several different basic types of constants. This section
1846describes them all and their syntax.
1847
1848Simple Constants
1849----------------
1850
1851**Boolean constants**
1852 The two strings '``true``' and '``false``' are both valid constants
1853 of the ``i1`` type.
1854**Integer constants**
1855 Standard integers (such as '4') are constants of the
1856 :ref:`integer <t_integer>` type. Negative numbers may be used with
1857 integer types.
1858**Floating point constants**
1859 Floating point constants use standard decimal notation (e.g.
1860 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1861 hexadecimal notation (see below). The assembler requires the exact
1862 decimal value of a floating-point constant. For example, the
1863 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1864 decimal in binary. Floating point constants must have a :ref:`floating
1865 point <t_floating>` type.
1866**Null pointer constants**
1867 The identifier '``null``' is recognized as a null pointer constant
1868 and must be of :ref:`pointer type <t_pointer>`.
1869
1870The one non-intuitive notation for constants is the hexadecimal form of
1871floating point constants. For example, the form
1872'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1873than) '``double 4.5e+15``'. The only time hexadecimal floating point
1874constants are required (and the only time that they are generated by the
1875disassembler) is when a floating point constant must be emitted but it
1876cannot be represented as a decimal floating point number in a reasonable
1877number of digits. For example, NaN's, infinities, and other special
1878values are represented in their IEEE hexadecimal format so that assembly
1879and disassembly do not cause any bits to change in the constants.
1880
1881When using the hexadecimal form, constants of types half, float, and
1882double are represented using the 16-digit form shown above (which
1883matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001884must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001885precision, respectively. Hexadecimal format is always used for long
1886double, and there are three forms of long double. The 80-bit format used
1887by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1888128-bit format used by PowerPC (two adjacent doubles) is represented by
1889``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00001890represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1891will only work if they match the long double format on your target.
1892The IEEE 16-bit format (half precision) is represented by ``0xH``
1893followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1894(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00001895
1896There are no constants of type x86mmx.
1897
Eli Bendersky88fe6822013-06-07 20:24:43 +00001898.. _complexconstants:
1899
Sean Silvaf722b002012-12-07 10:36:55 +00001900Complex Constants
1901-----------------
1902
1903Complex constants are a (potentially recursive) combination of simple
1904constants and smaller complex constants.
1905
1906**Structure constants**
1907 Structure constants are represented with notation similar to
1908 structure type definitions (a comma separated list of elements,
1909 surrounded by braces (``{}``)). For example:
1910 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1911 "``@G = external global i32``". Structure constants must have
1912 :ref:`structure type <t_struct>`, and the number and types of elements
1913 must match those specified by the type.
1914**Array constants**
1915 Array constants are represented with notation similar to array type
1916 definitions (a comma separated list of elements, surrounded by
1917 square brackets (``[]``)). For example:
1918 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1919 :ref:`array type <t_array>`, and the number and types of elements must
1920 match those specified by the type.
1921**Vector constants**
1922 Vector constants are represented with notation similar to vector
1923 type definitions (a comma separated list of elements, surrounded by
1924 less-than/greater-than's (``<>``)). For example:
1925 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1926 must have :ref:`vector type <t_vector>`, and the number and types of
1927 elements must match those specified by the type.
1928**Zero initialization**
1929 The string '``zeroinitializer``' can be used to zero initialize a
1930 value to zero of *any* type, including scalar and
1931 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1932 having to print large zero initializers (e.g. for large arrays) and
1933 is always exactly equivalent to using explicit zero initializers.
1934**Metadata node**
1935 A metadata node is a structure-like constant with :ref:`metadata
1936 type <t_metadata>`. For example:
1937 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1938 constants that are meant to be interpreted as part of the
1939 instruction stream, metadata is a place to attach additional
1940 information such as debug info.
1941
1942Global Variable and Function Addresses
1943--------------------------------------
1944
1945The addresses of :ref:`global variables <globalvars>` and
1946:ref:`functions <functionstructure>` are always implicitly valid
1947(link-time) constants. These constants are explicitly referenced when
1948the :ref:`identifier for the global <identifiers>` is used and always have
1949:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1950file:
1951
1952.. code-block:: llvm
1953
1954 @X = global i32 17
1955 @Y = global i32 42
1956 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1957
1958.. _undefvalues:
1959
1960Undefined Values
1961----------------
1962
1963The string '``undef``' can be used anywhere a constant is expected, and
1964indicates that the user of the value may receive an unspecified
1965bit-pattern. Undefined values may be of any type (other than '``label``'
1966or '``void``') and be used anywhere a constant is permitted.
1967
1968Undefined values are useful because they indicate to the compiler that
1969the program is well defined no matter what value is used. This gives the
1970compiler more freedom to optimize. Here are some examples of
1971(potentially surprising) transformations that are valid (in pseudo IR):
1972
1973.. code-block:: llvm
1974
1975 %A = add %X, undef
1976 %B = sub %X, undef
1977 %C = xor %X, undef
1978 Safe:
1979 %A = undef
1980 %B = undef
1981 %C = undef
1982
1983This is safe because all of the output bits are affected by the undef
1984bits. Any output bit can have a zero or one depending on the input bits.
1985
1986.. code-block:: llvm
1987
1988 %A = or %X, undef
1989 %B = and %X, undef
1990 Safe:
1991 %A = -1
1992 %B = 0
1993 Unsafe:
1994 %A = undef
1995 %B = undef
1996
1997These logical operations have bits that are not always affected by the
1998input. For example, if ``%X`` has a zero bit, then the output of the
1999'``and``' operation will always be a zero for that bit, no matter what
2000the corresponding bit from the '``undef``' is. As such, it is unsafe to
2001optimize or assume that the result of the '``and``' is '``undef``'.
2002However, it is safe to assume that all bits of the '``undef``' could be
20030, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2004all the bits of the '``undef``' operand to the '``or``' could be set,
2005allowing the '``or``' to be folded to -1.
2006
2007.. code-block:: llvm
2008
2009 %A = select undef, %X, %Y
2010 %B = select undef, 42, %Y
2011 %C = select %X, %Y, undef
2012 Safe:
2013 %A = %X (or %Y)
2014 %B = 42 (or %Y)
2015 %C = %Y
2016 Unsafe:
2017 %A = undef
2018 %B = undef
2019 %C = undef
2020
2021This set of examples shows that undefined '``select``' (and conditional
2022branch) conditions can go *either way*, but they have to come from one
2023of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2024both known to have a clear low bit, then ``%A`` would have to have a
2025cleared low bit. However, in the ``%C`` example, the optimizer is
2026allowed to assume that the '``undef``' operand could be the same as
2027``%Y``, allowing the whole '``select``' to be eliminated.
2028
2029.. code-block:: llvm
2030
2031 %A = xor undef, undef
2032
2033 %B = undef
2034 %C = xor %B, %B
2035
2036 %D = undef
2037 %E = icmp lt %D, 4
2038 %F = icmp gte %D, 4
2039
2040 Safe:
2041 %A = undef
2042 %B = undef
2043 %C = undef
2044 %D = undef
2045 %E = undef
2046 %F = undef
2047
2048This example points out that two '``undef``' operands are not
2049necessarily the same. This can be surprising to people (and also matches
2050C semantics) where they assume that "``X^X``" is always zero, even if
2051``X`` is undefined. This isn't true for a number of reasons, but the
2052short answer is that an '``undef``' "variable" can arbitrarily change
2053its value over its "live range". This is true because the variable
2054doesn't actually *have a live range*. Instead, the value is logically
2055read from arbitrary registers that happen to be around when needed, so
2056the value is not necessarily consistent over time. In fact, ``%A`` and
2057``%C`` need to have the same semantics or the core LLVM "replace all
2058uses with" concept would not hold.
2059
2060.. code-block:: llvm
2061
2062 %A = fdiv undef, %X
2063 %B = fdiv %X, undef
2064 Safe:
2065 %A = undef
2066 b: unreachable
2067
2068These examples show the crucial difference between an *undefined value*
2069and *undefined behavior*. An undefined value (like '``undef``') is
2070allowed to have an arbitrary bit-pattern. This means that the ``%A``
2071operation can be constant folded to '``undef``', because the '``undef``'
2072could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2073However, in the second example, we can make a more aggressive
2074assumption: because the ``undef`` is allowed to be an arbitrary value,
2075we are allowed to assume that it could be zero. Since a divide by zero
2076has *undefined behavior*, we are allowed to assume that the operation
2077does not execute at all. This allows us to delete the divide and all
2078code after it. Because the undefined operation "can't happen", the
2079optimizer can assume that it occurs in dead code.
2080
2081.. code-block:: llvm
2082
2083 a: store undef -> %X
2084 b: store %X -> undef
2085 Safe:
2086 a: <deleted>
2087 b: unreachable
2088
2089These examples reiterate the ``fdiv`` example: a store *of* an undefined
2090value can be assumed to not have any effect; we can assume that the
2091value is overwritten with bits that happen to match what was already
2092there. However, a store *to* an undefined location could clobber
2093arbitrary memory, therefore, it has undefined behavior.
2094
2095.. _poisonvalues:
2096
2097Poison Values
2098-------------
2099
2100Poison values are similar to :ref:`undef values <undefvalues>`, however
2101they also represent the fact that an instruction or constant expression
2102which cannot evoke side effects has nevertheless detected a condition
2103which results in undefined behavior.
2104
2105There is currently no way of representing a poison value in the IR; they
2106only exist when produced by operations such as :ref:`add <i_add>` with
2107the ``nsw`` flag.
2108
2109Poison value behavior is defined in terms of value *dependence*:
2110
2111- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2112- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2113 their dynamic predecessor basic block.
2114- Function arguments depend on the corresponding actual argument values
2115 in the dynamic callers of their functions.
2116- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2117 instructions that dynamically transfer control back to them.
2118- :ref:`Invoke <i_invoke>` instructions depend on the
2119 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2120 call instructions that dynamically transfer control back to them.
2121- Non-volatile loads and stores depend on the most recent stores to all
2122 of the referenced memory addresses, following the order in the IR
2123 (including loads and stores implied by intrinsics such as
2124 :ref:`@llvm.memcpy <int_memcpy>`.)
2125- An instruction with externally visible side effects depends on the
2126 most recent preceding instruction with externally visible side
2127 effects, following the order in the IR. (This includes :ref:`volatile
2128 operations <volatile>`.)
2129- An instruction *control-depends* on a :ref:`terminator
2130 instruction <terminators>` if the terminator instruction has
2131 multiple successors and the instruction is always executed when
2132 control transfers to one of the successors, and may not be executed
2133 when control is transferred to another.
2134- Additionally, an instruction also *control-depends* on a terminator
2135 instruction if the set of instructions it otherwise depends on would
2136 be different if the terminator had transferred control to a different
2137 successor.
2138- Dependence is transitive.
2139
2140Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2141with the additional affect that any instruction which has a *dependence*
2142on a poison value has undefined behavior.
2143
2144Here are some examples:
2145
2146.. code-block:: llvm
2147
2148 entry:
2149 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2150 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2151 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2152 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2153
2154 store i32 %poison, i32* @g ; Poison value stored to memory.
2155 %poison2 = load i32* @g ; Poison value loaded back from memory.
2156
2157 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2158
2159 %narrowaddr = bitcast i32* @g to i16*
2160 %wideaddr = bitcast i32* @g to i64*
2161 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2162 %poison4 = load i64* %wideaddr ; Returns a poison value.
2163
2164 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2165 br i1 %cmp, label %true, label %end ; Branch to either destination.
2166
2167 true:
2168 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2169 ; it has undefined behavior.
2170 br label %end
2171
2172 end:
2173 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2174 ; Both edges into this PHI are
2175 ; control-dependent on %cmp, so this
2176 ; always results in a poison value.
2177
2178 store volatile i32 0, i32* @g ; This would depend on the store in %true
2179 ; if %cmp is true, or the store in %entry
2180 ; otherwise, so this is undefined behavior.
2181
2182 br i1 %cmp, label %second_true, label %second_end
2183 ; The same branch again, but this time the
2184 ; true block doesn't have side effects.
2185
2186 second_true:
2187 ; No side effects!
2188 ret void
2189
2190 second_end:
2191 store volatile i32 0, i32* @g ; This time, the instruction always depends
2192 ; on the store in %end. Also, it is
2193 ; control-equivalent to %end, so this is
2194 ; well-defined (ignoring earlier undefined
2195 ; behavior in this example).
2196
2197.. _blockaddress:
2198
2199Addresses of Basic Blocks
2200-------------------------
2201
2202``blockaddress(@function, %block)``
2203
2204The '``blockaddress``' constant computes the address of the specified
2205basic block in the specified function, and always has an ``i8*`` type.
2206Taking the address of the entry block is illegal.
2207
2208This value only has defined behavior when used as an operand to the
2209':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2210against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002211undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002212no label is equal to the null pointer. This may be passed around as an
2213opaque pointer sized value as long as the bits are not inspected. This
2214allows ``ptrtoint`` and arithmetic to be performed on these values so
2215long as the original value is reconstituted before the ``indirectbr``
2216instruction.
2217
2218Finally, some targets may provide defined semantics when using the value
2219as the operand to an inline assembly, but that is target specific.
2220
Eli Bendersky88fe6822013-06-07 20:24:43 +00002221.. _constantexprs:
2222
Sean Silvaf722b002012-12-07 10:36:55 +00002223Constant Expressions
2224--------------------
2225
2226Constant expressions are used to allow expressions involving other
2227constants to be used as constants. Constant expressions may be of any
2228:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2229that does not have side effects (e.g. load and call are not supported).
2230The following is the syntax for constant expressions:
2231
2232``trunc (CST to TYPE)``
2233 Truncate a constant to another type. The bit size of CST must be
2234 larger than the bit size of TYPE. Both types must be integers.
2235``zext (CST to TYPE)``
2236 Zero extend a constant to another type. The bit size of CST must be
2237 smaller than the bit size of TYPE. Both types must be integers.
2238``sext (CST to TYPE)``
2239 Sign extend a constant to another type. The bit size of CST must be
2240 smaller than the bit size of TYPE. Both types must be integers.
2241``fptrunc (CST to TYPE)``
2242 Truncate a floating point constant to another floating point type.
2243 The size of CST must be larger than the size of TYPE. Both types
2244 must be floating point.
2245``fpext (CST to TYPE)``
2246 Floating point extend a constant to another type. The size of CST
2247 must be smaller or equal to the size of TYPE. Both types must be
2248 floating point.
2249``fptoui (CST to TYPE)``
2250 Convert a floating point constant to the corresponding unsigned
2251 integer constant. TYPE must be a scalar or vector integer type. CST
2252 must be of scalar or vector floating point type. Both CST and TYPE
2253 must be scalars, or vectors of the same number of elements. If the
2254 value won't fit in the integer type, the results are undefined.
2255``fptosi (CST to TYPE)``
2256 Convert a floating point constant to the corresponding signed
2257 integer constant. TYPE must be a scalar or vector integer type. CST
2258 must be of scalar or vector floating point type. Both CST and TYPE
2259 must be scalars, or vectors of the same number of elements. If the
2260 value won't fit in the integer type, the results are undefined.
2261``uitofp (CST to TYPE)``
2262 Convert an unsigned integer constant to the corresponding floating
2263 point constant. TYPE must be a scalar or vector floating point type.
2264 CST must be of scalar or vector integer type. Both CST and TYPE must
2265 be scalars, or vectors of the same number of elements. If the value
2266 won't fit in the floating point type, the results are undefined.
2267``sitofp (CST to TYPE)``
2268 Convert a signed integer constant to the corresponding floating
2269 point constant. TYPE must be a scalar or vector floating point type.
2270 CST must be of scalar or vector integer type. Both CST and TYPE must
2271 be scalars, or vectors of the same number of elements. If the value
2272 won't fit in the floating point type, the results are undefined.
2273``ptrtoint (CST to TYPE)``
2274 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002275 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002276 pointer type. The ``CST`` value is zero extended, truncated, or
2277 unchanged to make it fit in ``TYPE``.
2278``inttoptr (CST to TYPE)``
2279 Convert an integer constant to a pointer constant. TYPE must be a
2280 pointer type. CST must be of integer type. The CST value is zero
2281 extended, truncated, or unchanged to make it fit in a pointer size.
2282 This one is *really* dangerous!
2283``bitcast (CST to TYPE)``
2284 Convert a constant, CST, to another TYPE. The constraints of the
2285 operands are the same as those for the :ref:`bitcast
2286 instruction <i_bitcast>`.
2287``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2288 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2289 constants. As with the :ref:`getelementptr <i_getelementptr>`
2290 instruction, the index list may have zero or more indexes, which are
2291 required to make sense for the type of "CSTPTR".
2292``select (COND, VAL1, VAL2)``
2293 Perform the :ref:`select operation <i_select>` on constants.
2294``icmp COND (VAL1, VAL2)``
2295 Performs the :ref:`icmp operation <i_icmp>` on constants.
2296``fcmp COND (VAL1, VAL2)``
2297 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2298``extractelement (VAL, IDX)``
2299 Perform the :ref:`extractelement operation <i_extractelement>` on
2300 constants.
2301``insertelement (VAL, ELT, IDX)``
2302 Perform the :ref:`insertelement operation <i_insertelement>` on
2303 constants.
2304``shufflevector (VEC1, VEC2, IDXMASK)``
2305 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2306 constants.
2307``extractvalue (VAL, IDX0, IDX1, ...)``
2308 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2309 constants. The index list is interpreted in a similar manner as
2310 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2311 least one index value must be specified.
2312``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2313 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2314 The index list is interpreted in a similar manner as indices in a
2315 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2316 value must be specified.
2317``OPCODE (LHS, RHS)``
2318 Perform the specified operation of the LHS and RHS constants. OPCODE
2319 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2320 binary <bitwiseops>` operations. The constraints on operands are
2321 the same as those for the corresponding instruction (e.g. no bitwise
2322 operations on floating point values are allowed).
2323
2324Other Values
2325============
2326
Eli Bendersky88fe6822013-06-07 20:24:43 +00002327.. _inlineasmexprs:
2328
Sean Silvaf722b002012-12-07 10:36:55 +00002329Inline Assembler Expressions
2330----------------------------
2331
2332LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2333Inline Assembly <moduleasm>`) through the use of a special value. This
2334value represents the inline assembler as a string (containing the
2335instructions to emit), a list of operand constraints (stored as a
2336string), a flag that indicates whether or not the inline asm expression
2337has side effects, and a flag indicating whether the function containing
2338the asm needs to align its stack conservatively. An example inline
2339assembler expression is:
2340
2341.. code-block:: llvm
2342
2343 i32 (i32) asm "bswap $0", "=r,r"
2344
2345Inline assembler expressions may **only** be used as the callee operand
2346of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2347Thus, typically we have:
2348
2349.. code-block:: llvm
2350
2351 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2352
2353Inline asms with side effects not visible in the constraint list must be
2354marked as having side effects. This is done through the use of the
2355'``sideeffect``' keyword, like so:
2356
2357.. code-block:: llvm
2358
2359 call void asm sideeffect "eieio", ""()
2360
2361In some cases inline asms will contain code that will not work unless
2362the stack is aligned in some way, such as calls or SSE instructions on
2363x86, yet will not contain code that does that alignment within the asm.
2364The compiler should make conservative assumptions about what the asm
2365might contain and should generate its usual stack alignment code in the
2366prologue if the '``alignstack``' keyword is present:
2367
2368.. code-block:: llvm
2369
2370 call void asm alignstack "eieio", ""()
2371
2372Inline asms also support using non-standard assembly dialects. The
2373assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2374the inline asm is using the Intel dialect. Currently, ATT and Intel are
2375the only supported dialects. An example is:
2376
2377.. code-block:: llvm
2378
2379 call void asm inteldialect "eieio", ""()
2380
2381If multiple keywords appear the '``sideeffect``' keyword must come
2382first, the '``alignstack``' keyword second and the '``inteldialect``'
2383keyword last.
2384
2385Inline Asm Metadata
2386^^^^^^^^^^^^^^^^^^^
2387
2388The call instructions that wrap inline asm nodes may have a
2389"``!srcloc``" MDNode attached to it that contains a list of constant
2390integers. If present, the code generator will use the integer as the
2391location cookie value when report errors through the ``LLVMContext``
2392error reporting mechanisms. This allows a front-end to correlate backend
2393errors that occur with inline asm back to the source code that produced
2394it. For example:
2395
2396.. code-block:: llvm
2397
2398 call void asm sideeffect "something bad", ""(), !srcloc !42
2399 ...
2400 !42 = !{ i32 1234567 }
2401
2402It is up to the front-end to make sense of the magic numbers it places
2403in the IR. If the MDNode contains multiple constants, the code generator
2404will use the one that corresponds to the line of the asm that the error
2405occurs on.
2406
2407.. _metadata:
2408
2409Metadata Nodes and Metadata Strings
2410-----------------------------------
2411
2412LLVM IR allows metadata to be attached to instructions in the program
2413that can convey extra information about the code to the optimizers and
2414code generator. One example application of metadata is source-level
2415debug information. There are two metadata primitives: strings and nodes.
2416All metadata has the ``metadata`` type and is identified in syntax by a
2417preceding exclamation point ('``!``').
2418
2419A metadata string is a string surrounded by double quotes. It can
2420contain any character by escaping non-printable characters with
2421"``\xx``" where "``xx``" is the two digit hex code. For example:
2422"``!"test\00"``".
2423
2424Metadata nodes are represented with notation similar to structure
2425constants (a comma separated list of elements, surrounded by braces and
2426preceded by an exclamation point). Metadata nodes can have any values as
2427their operand. For example:
2428
2429.. code-block:: llvm
2430
2431 !{ metadata !"test\00", i32 10}
2432
2433A :ref:`named metadata <namedmetadatastructure>` is a collection of
2434metadata nodes, which can be looked up in the module symbol table. For
2435example:
2436
2437.. code-block:: llvm
2438
2439 !foo = metadata !{!4, !3}
2440
2441Metadata can be used as function arguments. Here ``llvm.dbg.value``
2442function is using two metadata arguments:
2443
2444.. code-block:: llvm
2445
2446 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2447
2448Metadata can be attached with an instruction. Here metadata ``!21`` is
2449attached to the ``add`` instruction using the ``!dbg`` identifier:
2450
2451.. code-block:: llvm
2452
2453 %indvar.next = add i64 %indvar, 1, !dbg !21
2454
2455More information about specific metadata nodes recognized by the
2456optimizers and code generator is found below.
2457
2458'``tbaa``' Metadata
2459^^^^^^^^^^^^^^^^^^^
2460
2461In LLVM IR, memory does not have types, so LLVM's own type system is not
2462suitable for doing TBAA. Instead, metadata is added to the IR to
2463describe a type system of a higher level language. This can be used to
2464implement typical C/C++ TBAA, but it can also be used to implement
2465custom alias analysis behavior for other languages.
2466
2467The current metadata format is very simple. TBAA metadata nodes have up
2468to three fields, e.g.:
2469
2470.. code-block:: llvm
2471
2472 !0 = metadata !{ metadata !"an example type tree" }
2473 !1 = metadata !{ metadata !"int", metadata !0 }
2474 !2 = metadata !{ metadata !"float", metadata !0 }
2475 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2476
2477The first field is an identity field. It can be any value, usually a
2478metadata string, which uniquely identifies the type. The most important
2479name in the tree is the name of the root node. Two trees with different
2480root node names are entirely disjoint, even if they have leaves with
2481common names.
2482
2483The second field identifies the type's parent node in the tree, or is
2484null or omitted for a root node. A type is considered to alias all of
2485its descendants and all of its ancestors in the tree. Also, a type is
2486considered to alias all types in other trees, so that bitcode produced
2487from multiple front-ends is handled conservatively.
2488
2489If the third field is present, it's an integer which if equal to 1
2490indicates that the type is "constant" (meaning
2491``pointsToConstantMemory`` should return true; see `other useful
2492AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2493
2494'``tbaa.struct``' Metadata
2495^^^^^^^^^^^^^^^^^^^^^^^^^^
2496
2497The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2498aggregate assignment operations in C and similar languages, however it
2499is defined to copy a contiguous region of memory, which is more than
2500strictly necessary for aggregate types which contain holes due to
2501padding. Also, it doesn't contain any TBAA information about the fields
2502of the aggregate.
2503
2504``!tbaa.struct`` metadata can describe which memory subregions in a
2505memcpy are padding and what the TBAA tags of the struct are.
2506
2507The current metadata format is very simple. ``!tbaa.struct`` metadata
2508nodes are a list of operands which are in conceptual groups of three.
2509For each group of three, the first operand gives the byte offset of a
2510field in bytes, the second gives its size in bytes, and the third gives
2511its tbaa tag. e.g.:
2512
2513.. code-block:: llvm
2514
2515 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2516
2517This describes a struct with two fields. The first is at offset 0 bytes
2518with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2519and has size 4 bytes and has tbaa tag !2.
2520
2521Note that the fields need not be contiguous. In this example, there is a
25224 byte gap between the two fields. This gap represents padding which
2523does not carry useful data and need not be preserved.
2524
2525'``fpmath``' Metadata
2526^^^^^^^^^^^^^^^^^^^^^
2527
2528``fpmath`` metadata may be attached to any instruction of floating point
2529type. It can be used to express the maximum acceptable error in the
2530result of that instruction, in ULPs, thus potentially allowing the
2531compiler to use a more efficient but less accurate method of computing
2532it. ULP is defined as follows:
2533
2534 If ``x`` is a real number that lies between two finite consecutive
2535 floating-point numbers ``a`` and ``b``, without being equal to one
2536 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2537 distance between the two non-equal finite floating-point numbers
2538 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2539
2540The metadata node shall consist of a single positive floating point
2541number representing the maximum relative error, for example:
2542
2543.. code-block:: llvm
2544
2545 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2546
2547'``range``' Metadata
2548^^^^^^^^^^^^^^^^^^^^
2549
2550``range`` metadata may be attached only to loads of integer types. It
2551expresses the possible ranges the loaded value is in. The ranges are
2552represented with a flattened list of integers. The loaded value is known
2553to be in the union of the ranges defined by each consecutive pair. Each
2554pair has the following properties:
2555
2556- The type must match the type loaded by the instruction.
2557- The pair ``a,b`` represents the range ``[a,b)``.
2558- Both ``a`` and ``b`` are constants.
2559- The range is allowed to wrap.
2560- The range should not represent the full or empty set. That is,
2561 ``a!=b``.
2562
2563In addition, the pairs must be in signed order of the lower bound and
2564they must be non-contiguous.
2565
2566Examples:
2567
2568.. code-block:: llvm
2569
2570 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2571 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2572 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2573 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2574 ...
2575 !0 = metadata !{ i8 0, i8 2 }
2576 !1 = metadata !{ i8 255, i8 2 }
2577 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2578 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2579
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002580'``llvm.loop``'
2581^^^^^^^^^^^^^^^
2582
2583It is sometimes useful to attach information to loop constructs. Currently,
2584loop metadata is implemented as metadata attached to the branch instruction
2585in the loop latch block. This type of metadata refer to a metadata node that is
Paul Redmondee21b6f2013-05-28 20:00:34 +00002586guaranteed to be separate for each loop. The loop identifier metadata is
2587specified with the name ``llvm.loop``.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002588
2589The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002590itself to avoid merging it with any other identifier metadata, e.g.,
2591during module linkage or function inlining. That is, each loop should refer
2592to their own identification metadata even if they reside in separate functions.
2593The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002594constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002595
2596.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002597
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002598 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002599 !1 = metadata !{ metadata !1 }
2600
Paul Redmondee21b6f2013-05-28 20:00:34 +00002601The loop identifier metadata can be used to specify additional per-loop
2602metadata. Any operands after the first operand can be treated as user-defined
2603metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2604by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002605
Paul Redmondee21b6f2013-05-28 20:00:34 +00002606.. code-block:: llvm
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002607
Paul Redmondee21b6f2013-05-28 20:00:34 +00002608 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2609 ...
2610 !0 = metadata !{ metadata !0, metadata !1 }
2611 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002612
2613'``llvm.mem``'
2614^^^^^^^^^^^^^^^
2615
2616Metadata types used to annotate memory accesses with information helpful
2617for optimizations are prefixed with ``llvm.mem``.
2618
2619'``llvm.mem.parallel_loop_access``' Metadata
2620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2621
2622For a loop to be parallel, in addition to using
Paul Redmondee21b6f2013-05-28 20:00:34 +00002623the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002624also all of the memory accessing instructions in the loop body need to be
2625marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2626is at least one memory accessing instruction not marked with the metadata,
Paul Redmondee21b6f2013-05-28 20:00:34 +00002627the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002628converted to sequential loops due to optimization passes that are unaware of
2629the parallel semantics and that insert new memory instructions to the loop
2630body.
2631
2632Example of a loop that is considered parallel due to its correct use of
Paul Redmondee21b6f2013-05-28 20:00:34 +00002633both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002634metadata types that refer to the same loop identifier metadata.
2635
2636.. code-block:: llvm
2637
2638 for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002639 ...
2640 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2641 ...
2642 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2643 ...
2644 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002645
2646 for.end:
2647 ...
2648 !0 = metadata !{ metadata !0 }
2649
2650It is also possible to have nested parallel loops. In that case the
2651memory accesses refer to a list of loop identifier metadata nodes instead of
2652the loop identifier metadata node directly:
2653
2654.. code-block:: llvm
2655
2656 outer.for.body:
2657 ...
2658
2659 inner.for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002660 ...
2661 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2662 ...
2663 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2664 ...
2665 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002666
2667 inner.for.end:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002668 ...
2669 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2670 ...
2671 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2672 ...
2673 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002674
2675 outer.for.end: ; preds = %for.body
2676 ...
Paul Redmondee21b6f2013-05-28 20:00:34 +00002677 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2678 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2679 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002680
Paul Redmondee21b6f2013-05-28 20:00:34 +00002681'``llvm.vectorizer``'
2682^^^^^^^^^^^^^^^^^^^^^
2683
2684Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2685vectorization parameters such as vectorization factor and unroll factor.
2686
2687``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2688loop identification metadata.
2689
2690'``llvm.vectorizer.unroll``' Metadata
2691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2692
2693This metadata instructs the loop vectorizer to unroll the specified
2694loop exactly ``N`` times.
2695
2696The first operand is the string ``llvm.vectorizer.unroll`` and the second
2697operand is an integer specifying the unroll factor. For example:
2698
2699.. code-block:: llvm
2700
2701 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2702
2703Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2704loop.
2705
2706If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2707determined automatically.
2708
2709'``llvm.vectorizer.width``' Metadata
2710^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2711
Paul Redmondf95ac8a2013-05-30 17:22:46 +00002712This metadata sets the target width of the vectorizer to ``N``. Without
2713this metadata, the vectorizer will choose a width automatically.
2714Regardless of this metadata, the vectorizer will only vectorize loops if
2715it believes it is valid to do so.
Paul Redmondee21b6f2013-05-28 20:00:34 +00002716
2717The first operand is the string ``llvm.vectorizer.width`` and the second
2718operand is an integer specifying the width. For example:
2719
2720.. code-block:: llvm
2721
2722 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2723
2724Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2725loop.
2726
2727If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2728automatically.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002729
Sean Silvaf722b002012-12-07 10:36:55 +00002730Module Flags Metadata
2731=====================
2732
2733Information about the module as a whole is difficult to convey to LLVM's
2734subsystems. The LLVM IR isn't sufficient to transmit this information.
2735The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002736this. These flags are in the form of key / value pairs --- much like a
2737dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002738look it up.
2739
2740The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2741Each triplet has the following form:
2742
2743- The first element is a *behavior* flag, which specifies the behavior
2744 when two (or more) modules are merged together, and it encounters two
2745 (or more) metadata with the same ID. The supported behaviors are
2746 described below.
2747- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002748 metadata. Each module may only have one flag entry for each unique ID (not
2749 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002750- The third element is the value of the flag.
2751
2752When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002753``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2754each unique metadata ID string, there will be exactly one entry in the merged
2755modules ``llvm.module.flags`` metadata table, and the value for that entry will
2756be determined by the merge behavior flag, as described below. The only exception
2757is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002758
2759The following behaviors are supported:
2760
2761.. list-table::
2762 :header-rows: 1
2763 :widths: 10 90
2764
2765 * - Value
2766 - Behavior
2767
2768 * - 1
2769 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002770 Emits an error if two values disagree, otherwise the resulting value
2771 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002772
2773 * - 2
2774 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002775 Emits a warning if two values disagree. The result value will be the
2776 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002777
2778 * - 3
2779 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002780 Adds a requirement that another module flag be present and have a
2781 specified value after linking is performed. The value must be a
2782 metadata pair, where the first element of the pair is the ID of the
2783 module flag to be restricted, and the second element of the pair is
2784 the value the module flag should be restricted to. This behavior can
2785 be used to restrict the allowable results (via triggering of an
2786 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002787
2788 * - 4
2789 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002790 Uses the specified value, regardless of the behavior or value of the
2791 other module. If both modules specify **Override**, but the values
2792 differ, an error will be emitted.
2793
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002794 * - 5
2795 - **Append**
2796 Appends the two values, which are required to be metadata nodes.
2797
2798 * - 6
2799 - **AppendUnique**
2800 Appends the two values, which are required to be metadata
2801 nodes. However, duplicate entries in the second list are dropped
2802 during the append operation.
2803
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002804It is an error for a particular unique flag ID to have multiple behaviors,
2805except in the case of **Require** (which adds restrictions on another metadata
2806value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002807
2808An example of module flags:
2809
2810.. code-block:: llvm
2811
2812 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2813 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2814 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2815 !3 = metadata !{ i32 3, metadata !"qux",
2816 metadata !{
2817 metadata !"foo", i32 1
2818 }
2819 }
2820 !llvm.module.flags = !{ !0, !1, !2, !3 }
2821
2822- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2823 if two or more ``!"foo"`` flags are seen is to emit an error if their
2824 values are not equal.
2825
2826- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2827 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002828 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002829
2830- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2831 behavior if two or more ``!"qux"`` flags are seen is to emit a
2832 warning if their values are not equal.
2833
2834- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2835
2836 ::
2837
2838 metadata !{ metadata !"foo", i32 1 }
2839
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002840 The behavior is to emit an error if the ``llvm.module.flags`` does not
2841 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2842 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002843
2844Objective-C Garbage Collection Module Flags Metadata
2845----------------------------------------------------
2846
2847On the Mach-O platform, Objective-C stores metadata about garbage
2848collection in a special section called "image info". The metadata
2849consists of a version number and a bitmask specifying what types of
2850garbage collection are supported (if any) by the file. If two or more
2851modules are linked together their garbage collection metadata needs to
2852be merged rather than appended together.
2853
2854The Objective-C garbage collection module flags metadata consists of the
2855following key-value pairs:
2856
2857.. list-table::
2858 :header-rows: 1
2859 :widths: 30 70
2860
2861 * - Key
2862 - Value
2863
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002864 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002865 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002866
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002867 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002868 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002869 always 0.
2870
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002871 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002872 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002873 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2874 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2875 Objective-C ABI version 2.
2876
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002877 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002878 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002879 not. Valid values are 0, for no garbage collection, and 2, for garbage
2880 collection supported.
2881
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002882 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002883 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002884 If present, its value must be 6. This flag requires that the
2885 ``Objective-C Garbage Collection`` flag have the value 2.
2886
2887Some important flag interactions:
2888
2889- If a module with ``Objective-C Garbage Collection`` set to 0 is
2890 merged with a module with ``Objective-C Garbage Collection`` set to
2891 2, then the resulting module has the
2892 ``Objective-C Garbage Collection`` flag set to 0.
2893- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2894 merged with a module with ``Objective-C GC Only`` set to 6.
2895
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002896Automatic Linker Flags Module Flags Metadata
2897--------------------------------------------
2898
2899Some targets support embedding flags to the linker inside individual object
2900files. Typically this is used in conjunction with language extensions which
2901allow source files to explicitly declare the libraries they depend on, and have
2902these automatically be transmitted to the linker via object files.
2903
2904These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002905using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002906to be ``AppendUnique``, and the value for the key is expected to be a metadata
2907node which should be a list of other metadata nodes, each of which should be a
2908list of metadata strings defining linker options.
2909
2910For example, the following metadata section specifies two separate sets of
2911linker options, presumably to link against ``libz`` and the ``Cocoa``
2912framework::
2913
Michael Liao2faa0f32013-03-06 18:24:34 +00002914 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002915 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002916 metadata !{ metadata !"-lz" },
2917 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002918 !llvm.module.flags = !{ !0 }
2919
2920The metadata encoding as lists of lists of options, as opposed to a collapsed
2921list of options, is chosen so that the IR encoding can use multiple option
2922strings to specify e.g., a single library, while still having that specifier be
2923preserved as an atomic element that can be recognized by a target specific
2924assembly writer or object file emitter.
2925
2926Each individual option is required to be either a valid option for the target's
2927linker, or an option that is reserved by the target specific assembly writer or
2928object file emitter. No other aspect of these options is defined by the IR.
2929
Eli Bendersky88fe6822013-06-07 20:24:43 +00002930.. _intrinsicglobalvariables:
2931
Sean Silvaf722b002012-12-07 10:36:55 +00002932Intrinsic Global Variables
2933==========================
2934
2935LLVM has a number of "magic" global variables that contain data that
2936affect code generation or other IR semantics. These are documented here.
2937All globals of this sort should have a section specified as
2938"``llvm.metadata``". This section and all globals that start with
2939"``llvm.``" are reserved for use by LLVM.
2940
Eli Bendersky88fe6822013-06-07 20:24:43 +00002941.. _gv_llvmused:
2942
Sean Silvaf722b002012-12-07 10:36:55 +00002943The '``llvm.used``' Global Variable
2944-----------------------------------
2945
Rafael Espindolacde25b42013-04-22 14:58:02 +00002946The ``@llvm.used`` global is an array which has
Paul Redmond26266a12013-05-30 17:24:32 +00002947:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00002948pointers to named global variables, functions and aliases which may optionally
2949have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvaf722b002012-12-07 10:36:55 +00002950use of it is:
2951
2952.. code-block:: llvm
2953
2954 @X = global i8 4
2955 @Y = global i32 123
2956
2957 @llvm.used = appending global [2 x i8*] [
2958 i8* @X,
2959 i8* bitcast (i32* @Y to i8*)
2960 ], section "llvm.metadata"
2961
Rafael Espindolacde25b42013-04-22 14:58:02 +00002962If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
2963and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00002964symbol that it cannot see (which is why they have to be named). For example, if
2965a variable has internal linkage and no references other than that from the
2966``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
2967references from inline asms and other things the compiler cannot "see", and
2968corresponds to "``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00002969
2970On some targets, the code generator must emit a directive to the
2971assembler or object file to prevent the assembler and linker from
2972molesting the symbol.
2973
Eli Bendersky88fe6822013-06-07 20:24:43 +00002974.. _gv_llvmcompilerused:
2975
Sean Silvaf722b002012-12-07 10:36:55 +00002976The '``llvm.compiler.used``' Global Variable
2977--------------------------------------------
2978
2979The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2980directive, except that it only prevents the compiler from touching the
2981symbol. On targets that support it, this allows an intelligent linker to
2982optimize references to the symbol without being impeded as it would be
2983by ``@llvm.used``.
2984
2985This is a rare construct that should only be used in rare circumstances,
2986and should not be exposed to source languages.
2987
Eli Bendersky88fe6822013-06-07 20:24:43 +00002988.. _gv_llvmglobalctors:
2989
Sean Silvaf722b002012-12-07 10:36:55 +00002990The '``llvm.global_ctors``' Global Variable
2991-------------------------------------------
2992
2993.. code-block:: llvm
2994
2995 %0 = type { i32, void ()* }
2996 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2997
2998The ``@llvm.global_ctors`` array contains a list of constructor
2999functions and associated priorities. The functions referenced by this
3000array will be called in ascending order of priority (i.e. lowest first)
3001when the module is loaded. The order of functions with the same priority
3002is not defined.
3003
Eli Bendersky88fe6822013-06-07 20:24:43 +00003004.. _llvmglobaldtors:
3005
Sean Silvaf722b002012-12-07 10:36:55 +00003006The '``llvm.global_dtors``' Global Variable
3007-------------------------------------------
3008
3009.. code-block:: llvm
3010
3011 %0 = type { i32, void ()* }
3012 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3013
3014The ``@llvm.global_dtors`` array contains a list of destructor functions
3015and associated priorities. The functions referenced by this array will
3016be called in descending order of priority (i.e. highest first) when the
3017module is loaded. The order of functions with the same priority is not
3018defined.
3019
3020Instruction Reference
3021=====================
3022
3023The LLVM instruction set consists of several different classifications
3024of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3025instructions <binaryops>`, :ref:`bitwise binary
3026instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3027:ref:`other instructions <otherops>`.
3028
3029.. _terminators:
3030
3031Terminator Instructions
3032-----------------------
3033
3034As mentioned :ref:`previously <functionstructure>`, every basic block in a
3035program ends with a "Terminator" instruction, which indicates which
3036block should be executed after the current block is finished. These
3037terminator instructions typically yield a '``void``' value: they produce
3038control flow, not values (the one exception being the
3039':ref:`invoke <i_invoke>`' instruction).
3040
3041The terminator instructions are: ':ref:`ret <i_ret>`',
3042':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3043':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3044':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3045
3046.. _i_ret:
3047
3048'``ret``' Instruction
3049^^^^^^^^^^^^^^^^^^^^^
3050
3051Syntax:
3052"""""""
3053
3054::
3055
3056 ret <type> <value> ; Return a value from a non-void function
3057 ret void ; Return from void function
3058
3059Overview:
3060"""""""""
3061
3062The '``ret``' instruction is used to return control flow (and optionally
3063a value) from a function back to the caller.
3064
3065There are two forms of the '``ret``' instruction: one that returns a
3066value and then causes control flow, and one that just causes control
3067flow to occur.
3068
3069Arguments:
3070""""""""""
3071
3072The '``ret``' instruction optionally accepts a single argument, the
3073return value. The type of the return value must be a ':ref:`first
3074class <t_firstclass>`' type.
3075
3076A function is not :ref:`well formed <wellformed>` if it it has a non-void
3077return type and contains a '``ret``' instruction with no return value or
3078a return value with a type that does not match its type, or if it has a
3079void return type and contains a '``ret``' instruction with a return
3080value.
3081
3082Semantics:
3083""""""""""
3084
3085When the '``ret``' instruction is executed, control flow returns back to
3086the calling function's context. If the caller is a
3087":ref:`call <i_call>`" instruction, execution continues at the
3088instruction after the call. If the caller was an
3089":ref:`invoke <i_invoke>`" instruction, execution continues at the
3090beginning of the "normal" destination block. If the instruction returns
3091a value, that value shall set the call or invoke instruction's return
3092value.
3093
3094Example:
3095""""""""
3096
3097.. code-block:: llvm
3098
3099 ret i32 5 ; Return an integer value of 5
3100 ret void ; Return from a void function
3101 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3102
3103.. _i_br:
3104
3105'``br``' Instruction
3106^^^^^^^^^^^^^^^^^^^^
3107
3108Syntax:
3109"""""""
3110
3111::
3112
3113 br i1 <cond>, label <iftrue>, label <iffalse>
3114 br label <dest> ; Unconditional branch
3115
3116Overview:
3117"""""""""
3118
3119The '``br``' instruction is used to cause control flow to transfer to a
3120different basic block in the current function. There are two forms of
3121this instruction, corresponding to a conditional branch and an
3122unconditional branch.
3123
3124Arguments:
3125""""""""""
3126
3127The conditional branch form of the '``br``' instruction takes a single
3128'``i1``' value and two '``label``' values. The unconditional form of the
3129'``br``' instruction takes a single '``label``' value as a target.
3130
3131Semantics:
3132""""""""""
3133
3134Upon execution of a conditional '``br``' instruction, the '``i1``'
3135argument is evaluated. If the value is ``true``, control flows to the
3136'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3137to the '``iffalse``' ``label`` argument.
3138
3139Example:
3140""""""""
3141
3142.. code-block:: llvm
3143
3144 Test:
3145 %cond = icmp eq i32 %a, %b
3146 br i1 %cond, label %IfEqual, label %IfUnequal
3147 IfEqual:
3148 ret i32 1
3149 IfUnequal:
3150 ret i32 0
3151
3152.. _i_switch:
3153
3154'``switch``' Instruction
3155^^^^^^^^^^^^^^^^^^^^^^^^
3156
3157Syntax:
3158"""""""
3159
3160::
3161
3162 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3163
3164Overview:
3165"""""""""
3166
3167The '``switch``' instruction is used to transfer control flow to one of
3168several different places. It is a generalization of the '``br``'
3169instruction, allowing a branch to occur to one of many possible
3170destinations.
3171
3172Arguments:
3173""""""""""
3174
3175The '``switch``' instruction uses three parameters: an integer
3176comparison value '``value``', a default '``label``' destination, and an
3177array of pairs of comparison value constants and '``label``'s. The table
3178is not allowed to contain duplicate constant entries.
3179
3180Semantics:
3181""""""""""
3182
3183The ``switch`` instruction specifies a table of values and destinations.
3184When the '``switch``' instruction is executed, this table is searched
3185for the given value. If the value is found, control flow is transferred
3186to the corresponding destination; otherwise, control flow is transferred
3187to the default destination.
3188
3189Implementation:
3190"""""""""""""""
3191
3192Depending on properties of the target machine and the particular
3193``switch`` instruction, this instruction may be code generated in
3194different ways. For example, it could be generated as a series of
3195chained conditional branches or with a lookup table.
3196
3197Example:
3198""""""""
3199
3200.. code-block:: llvm
3201
3202 ; Emulate a conditional br instruction
3203 %Val = zext i1 %value to i32
3204 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3205
3206 ; Emulate an unconditional br instruction
3207 switch i32 0, label %dest [ ]
3208
3209 ; Implement a jump table:
3210 switch i32 %val, label %otherwise [ i32 0, label %onzero
3211 i32 1, label %onone
3212 i32 2, label %ontwo ]
3213
3214.. _i_indirectbr:
3215
3216'``indirectbr``' Instruction
3217^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3218
3219Syntax:
3220"""""""
3221
3222::
3223
3224 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3225
3226Overview:
3227"""""""""
3228
3229The '``indirectbr``' instruction implements an indirect branch to a
3230label within the current function, whose address is specified by
3231"``address``". Address must be derived from a
3232:ref:`blockaddress <blockaddress>` constant.
3233
3234Arguments:
3235""""""""""
3236
3237The '``address``' argument is the address of the label to jump to. The
3238rest of the arguments indicate the full set of possible destinations
3239that the address may point to. Blocks are allowed to occur multiple
3240times in the destination list, though this isn't particularly useful.
3241
3242This destination list is required so that dataflow analysis has an
3243accurate understanding of the CFG.
3244
3245Semantics:
3246""""""""""
3247
3248Control transfers to the block specified in the address argument. All
3249possible destination blocks must be listed in the label list, otherwise
3250this instruction has undefined behavior. This implies that jumps to
3251labels defined in other functions have undefined behavior as well.
3252
3253Implementation:
3254"""""""""""""""
3255
3256This is typically implemented with a jump through a register.
3257
3258Example:
3259""""""""
3260
3261.. code-block:: llvm
3262
3263 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3264
3265.. _i_invoke:
3266
3267'``invoke``' Instruction
3268^^^^^^^^^^^^^^^^^^^^^^^^
3269
3270Syntax:
3271"""""""
3272
3273::
3274
3275 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3276 to label <normal label> unwind label <exception label>
3277
3278Overview:
3279"""""""""
3280
3281The '``invoke``' instruction causes control to transfer to a specified
3282function, with the possibility of control flow transfer to either the
3283'``normal``' label or the '``exception``' label. If the callee function
3284returns with the "``ret``" instruction, control flow will return to the
3285"normal" label. If the callee (or any indirect callees) returns via the
3286":ref:`resume <i_resume>`" instruction or other exception handling
3287mechanism, control is interrupted and continued at the dynamically
3288nearest "exception" label.
3289
3290The '``exception``' label is a `landing
3291pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3292'``exception``' label is required to have the
3293":ref:`landingpad <i_landingpad>`" instruction, which contains the
3294information about the behavior of the program after unwinding happens,
3295as its first non-PHI instruction. The restrictions on the
3296"``landingpad``" instruction's tightly couples it to the "``invoke``"
3297instruction, so that the important information contained within the
3298"``landingpad``" instruction can't be lost through normal code motion.
3299
3300Arguments:
3301""""""""""
3302
3303This instruction requires several arguments:
3304
3305#. The optional "cconv" marker indicates which :ref:`calling
3306 convention <callingconv>` the call should use. If none is
3307 specified, the call defaults to using C calling conventions.
3308#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3309 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3310 are valid here.
3311#. '``ptr to function ty``': shall be the signature of the pointer to
3312 function value being invoked. In most cases, this is a direct
3313 function invocation, but indirect ``invoke``'s are just as possible,
3314 branching off an arbitrary pointer to function value.
3315#. '``function ptr val``': An LLVM value containing a pointer to a
3316 function to be invoked.
3317#. '``function args``': argument list whose types match the function
3318 signature argument types and parameter attributes. All arguments must
3319 be of :ref:`first class <t_firstclass>` type. If the function signature
3320 indicates the function accepts a variable number of arguments, the
3321 extra arguments can be specified.
3322#. '``normal label``': the label reached when the called function
3323 executes a '``ret``' instruction.
3324#. '``exception label``': the label reached when a callee returns via
3325 the :ref:`resume <i_resume>` instruction or other exception handling
3326 mechanism.
3327#. The optional :ref:`function attributes <fnattrs>` list. Only
3328 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3329 attributes are valid here.
3330
3331Semantics:
3332""""""""""
3333
3334This instruction is designed to operate as a standard '``call``'
3335instruction in most regards. The primary difference is that it
3336establishes an association with a label, which is used by the runtime
3337library to unwind the stack.
3338
3339This instruction is used in languages with destructors to ensure that
3340proper cleanup is performed in the case of either a ``longjmp`` or a
3341thrown exception. Additionally, this is important for implementation of
3342'``catch``' clauses in high-level languages that support them.
3343
3344For the purposes of the SSA form, the definition of the value returned
3345by the '``invoke``' instruction is deemed to occur on the edge from the
3346current block to the "normal" label. If the callee unwinds then no
3347return value is available.
3348
3349Example:
3350""""""""
3351
3352.. code-block:: llvm
3353
3354 %retval = invoke i32 @Test(i32 15) to label %Continue
3355 unwind label %TestCleanup ; {i32}:retval set
3356 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3357 unwind label %TestCleanup ; {i32}:retval set
3358
3359.. _i_resume:
3360
3361'``resume``' Instruction
3362^^^^^^^^^^^^^^^^^^^^^^^^
3363
3364Syntax:
3365"""""""
3366
3367::
3368
3369 resume <type> <value>
3370
3371Overview:
3372"""""""""
3373
3374The '``resume``' instruction is a terminator instruction that has no
3375successors.
3376
3377Arguments:
3378""""""""""
3379
3380The '``resume``' instruction requires one argument, which must have the
3381same type as the result of any '``landingpad``' instruction in the same
3382function.
3383
3384Semantics:
3385""""""""""
3386
3387The '``resume``' instruction resumes propagation of an existing
3388(in-flight) exception whose unwinding was interrupted with a
3389:ref:`landingpad <i_landingpad>` instruction.
3390
3391Example:
3392""""""""
3393
3394.. code-block:: llvm
3395
3396 resume { i8*, i32 } %exn
3397
3398.. _i_unreachable:
3399
3400'``unreachable``' Instruction
3401^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3402
3403Syntax:
3404"""""""
3405
3406::
3407
3408 unreachable
3409
3410Overview:
3411"""""""""
3412
3413The '``unreachable``' instruction has no defined semantics. This
3414instruction is used to inform the optimizer that a particular portion of
3415the code is not reachable. This can be used to indicate that the code
3416after a no-return function cannot be reached, and other facts.
3417
3418Semantics:
3419""""""""""
3420
3421The '``unreachable``' instruction has no defined semantics.
3422
3423.. _binaryops:
3424
3425Binary Operations
3426-----------------
3427
3428Binary operators are used to do most of the computation in a program.
3429They require two operands of the same type, execute an operation on
3430them, and produce a single value. The operands might represent multiple
3431data, as is the case with the :ref:`vector <t_vector>` data type. The
3432result value has the same type as its operands.
3433
3434There are several different binary operators:
3435
3436.. _i_add:
3437
3438'``add``' Instruction
3439^^^^^^^^^^^^^^^^^^^^^
3440
3441Syntax:
3442"""""""
3443
3444::
3445
3446 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3447 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3448 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3449 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3450
3451Overview:
3452"""""""""
3453
3454The '``add``' instruction returns the sum of its two operands.
3455
3456Arguments:
3457""""""""""
3458
3459The two arguments to the '``add``' instruction must be
3460:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3461arguments must have identical types.
3462
3463Semantics:
3464""""""""""
3465
3466The value produced is the integer sum of the two operands.
3467
3468If the sum has unsigned overflow, the result returned is the
3469mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3470the result.
3471
3472Because LLVM integers use a two's complement representation, this
3473instruction is appropriate for both signed and unsigned integers.
3474
3475``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3476respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3477result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3478unsigned and/or signed overflow, respectively, occurs.
3479
3480Example:
3481""""""""
3482
3483.. code-block:: llvm
3484
3485 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3486
3487.. _i_fadd:
3488
3489'``fadd``' Instruction
3490^^^^^^^^^^^^^^^^^^^^^^
3491
3492Syntax:
3493"""""""
3494
3495::
3496
3497 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3498
3499Overview:
3500"""""""""
3501
3502The '``fadd``' instruction returns the sum of its two operands.
3503
3504Arguments:
3505""""""""""
3506
3507The two arguments to the '``fadd``' instruction must be :ref:`floating
3508point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3509Both arguments must have identical types.
3510
3511Semantics:
3512""""""""""
3513
3514The value produced is the floating point sum of the two operands. This
3515instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3516which are optimization hints to enable otherwise unsafe floating point
3517optimizations:
3518
3519Example:
3520""""""""
3521
3522.. code-block:: llvm
3523
3524 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3525
3526'``sub``' Instruction
3527^^^^^^^^^^^^^^^^^^^^^
3528
3529Syntax:
3530"""""""
3531
3532::
3533
3534 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3535 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3536 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3537 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3538
3539Overview:
3540"""""""""
3541
3542The '``sub``' instruction returns the difference of its two operands.
3543
3544Note that the '``sub``' instruction is used to represent the '``neg``'
3545instruction present in most other intermediate representations.
3546
3547Arguments:
3548""""""""""
3549
3550The two arguments to the '``sub``' instruction must be
3551:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3552arguments must have identical types.
3553
3554Semantics:
3555""""""""""
3556
3557The value produced is the integer difference of the two operands.
3558
3559If the difference has unsigned overflow, the result returned is the
3560mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3561the result.
3562
3563Because LLVM integers use a two's complement representation, this
3564instruction is appropriate for both signed and unsigned integers.
3565
3566``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3567respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3568result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3569unsigned and/or signed overflow, respectively, occurs.
3570
3571Example:
3572""""""""
3573
3574.. code-block:: llvm
3575
3576 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3577 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3578
3579.. _i_fsub:
3580
3581'``fsub``' Instruction
3582^^^^^^^^^^^^^^^^^^^^^^
3583
3584Syntax:
3585"""""""
3586
3587::
3588
3589 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3590
3591Overview:
3592"""""""""
3593
3594The '``fsub``' instruction returns the difference of its two operands.
3595
3596Note that the '``fsub``' instruction is used to represent the '``fneg``'
3597instruction present in most other intermediate representations.
3598
3599Arguments:
3600""""""""""
3601
3602The two arguments to the '``fsub``' instruction must be :ref:`floating
3603point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3604Both arguments must have identical types.
3605
3606Semantics:
3607""""""""""
3608
3609The value produced is the floating point difference of the two operands.
3610This instruction can also take any number of :ref:`fast-math
3611flags <fastmath>`, which are optimization hints to enable otherwise
3612unsafe floating point optimizations:
3613
3614Example:
3615""""""""
3616
3617.. code-block:: llvm
3618
3619 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3620 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3621
3622'``mul``' Instruction
3623^^^^^^^^^^^^^^^^^^^^^
3624
3625Syntax:
3626"""""""
3627
3628::
3629
3630 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3631 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3632 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3633 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3634
3635Overview:
3636"""""""""
3637
3638The '``mul``' instruction returns the product of its two operands.
3639
3640Arguments:
3641""""""""""
3642
3643The two arguments to the '``mul``' instruction must be
3644:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3645arguments must have identical types.
3646
3647Semantics:
3648""""""""""
3649
3650The value produced is the integer product of the two operands.
3651
3652If the result of the multiplication has unsigned overflow, the result
3653returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3654bit width of the result.
3655
3656Because LLVM integers use a two's complement representation, and the
3657result is the same width as the operands, this instruction returns the
3658correct result for both signed and unsigned integers. If a full product
3659(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3660sign-extended or zero-extended as appropriate to the width of the full
3661product.
3662
3663``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3664respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3665result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3666unsigned and/or signed overflow, respectively, occurs.
3667
3668Example:
3669""""""""
3670
3671.. code-block:: llvm
3672
3673 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3674
3675.. _i_fmul:
3676
3677'``fmul``' Instruction
3678^^^^^^^^^^^^^^^^^^^^^^
3679
3680Syntax:
3681"""""""
3682
3683::
3684
3685 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3686
3687Overview:
3688"""""""""
3689
3690The '``fmul``' instruction returns the product of its two operands.
3691
3692Arguments:
3693""""""""""
3694
3695The two arguments to the '``fmul``' instruction must be :ref:`floating
3696point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3697Both arguments must have identical types.
3698
3699Semantics:
3700""""""""""
3701
3702The value produced is the floating point product of the two operands.
3703This instruction can also take any number of :ref:`fast-math
3704flags <fastmath>`, which are optimization hints to enable otherwise
3705unsafe floating point optimizations:
3706
3707Example:
3708""""""""
3709
3710.. code-block:: llvm
3711
3712 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3713
3714'``udiv``' Instruction
3715^^^^^^^^^^^^^^^^^^^^^^
3716
3717Syntax:
3718"""""""
3719
3720::
3721
3722 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3723 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3724
3725Overview:
3726"""""""""
3727
3728The '``udiv``' instruction returns the quotient of its two operands.
3729
3730Arguments:
3731""""""""""
3732
3733The two arguments to the '``udiv``' instruction must be
3734:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3735arguments must have identical types.
3736
3737Semantics:
3738""""""""""
3739
3740The value produced is the unsigned integer quotient of the two operands.
3741
3742Note that unsigned integer division and signed integer division are
3743distinct operations; for signed integer division, use '``sdiv``'.
3744
3745Division by zero leads to undefined behavior.
3746
3747If the ``exact`` keyword is present, the result value of the ``udiv`` is
3748a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3749such, "((a udiv exact b) mul b) == a").
3750
3751Example:
3752""""""""
3753
3754.. code-block:: llvm
3755
3756 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3757
3758'``sdiv``' Instruction
3759^^^^^^^^^^^^^^^^^^^^^^
3760
3761Syntax:
3762"""""""
3763
3764::
3765
3766 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3767 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3768
3769Overview:
3770"""""""""
3771
3772The '``sdiv``' instruction returns the quotient of its two operands.
3773
3774Arguments:
3775""""""""""
3776
3777The two arguments to the '``sdiv``' instruction must be
3778:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3779arguments must have identical types.
3780
3781Semantics:
3782""""""""""
3783
3784The value produced is the signed integer quotient of the two operands
3785rounded towards zero.
3786
3787Note that signed integer division and unsigned integer division are
3788distinct operations; for unsigned integer division, use '``udiv``'.
3789
3790Division by zero leads to undefined behavior. Overflow also leads to
3791undefined behavior; this is a rare case, but can occur, for example, by
3792doing a 32-bit division of -2147483648 by -1.
3793
3794If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3795a :ref:`poison value <poisonvalues>` if the result would be rounded.
3796
3797Example:
3798""""""""
3799
3800.. code-block:: llvm
3801
3802 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3803
3804.. _i_fdiv:
3805
3806'``fdiv``' Instruction
3807^^^^^^^^^^^^^^^^^^^^^^
3808
3809Syntax:
3810"""""""
3811
3812::
3813
3814 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3815
3816Overview:
3817"""""""""
3818
3819The '``fdiv``' instruction returns the quotient of its two operands.
3820
3821Arguments:
3822""""""""""
3823
3824The two arguments to the '``fdiv``' instruction must be :ref:`floating
3825point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3826Both arguments must have identical types.
3827
3828Semantics:
3829""""""""""
3830
3831The value produced is the floating point quotient of the two operands.
3832This instruction can also take any number of :ref:`fast-math
3833flags <fastmath>`, which are optimization hints to enable otherwise
3834unsafe floating point optimizations:
3835
3836Example:
3837""""""""
3838
3839.. code-block:: llvm
3840
3841 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3842
3843'``urem``' Instruction
3844^^^^^^^^^^^^^^^^^^^^^^
3845
3846Syntax:
3847"""""""
3848
3849::
3850
3851 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3852
3853Overview:
3854"""""""""
3855
3856The '``urem``' instruction returns the remainder from the unsigned
3857division of its two arguments.
3858
3859Arguments:
3860""""""""""
3861
3862The two arguments to the '``urem``' instruction must be
3863:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3864arguments must have identical types.
3865
3866Semantics:
3867""""""""""
3868
3869This instruction returns the unsigned integer *remainder* of a division.
3870This instruction always performs an unsigned division to get the
3871remainder.
3872
3873Note that unsigned integer remainder and signed integer remainder are
3874distinct operations; for signed integer remainder, use '``srem``'.
3875
3876Taking the remainder of a division by zero leads to undefined behavior.
3877
3878Example:
3879""""""""
3880
3881.. code-block:: llvm
3882
3883 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3884
3885'``srem``' Instruction
3886^^^^^^^^^^^^^^^^^^^^^^
3887
3888Syntax:
3889"""""""
3890
3891::
3892
3893 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3894
3895Overview:
3896"""""""""
3897
3898The '``srem``' instruction returns the remainder from the signed
3899division of its two operands. This instruction can also take
3900:ref:`vector <t_vector>` versions of the values in which case the elements
3901must be integers.
3902
3903Arguments:
3904""""""""""
3905
3906The two arguments to the '``srem``' instruction must be
3907:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3908arguments must have identical types.
3909
3910Semantics:
3911""""""""""
3912
3913This instruction returns the *remainder* of a division (where the result
3914is either zero or has the same sign as the dividend, ``op1``), not the
3915*modulo* operator (where the result is either zero or has the same sign
3916as the divisor, ``op2``) of a value. For more information about the
3917difference, see `The Math
3918Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3919table of how this is implemented in various languages, please see
3920`Wikipedia: modulo
3921operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3922
3923Note that signed integer remainder and unsigned integer remainder are
3924distinct operations; for unsigned integer remainder, use '``urem``'.
3925
3926Taking the remainder of a division by zero leads to undefined behavior.
3927Overflow also leads to undefined behavior; this is a rare case, but can
3928occur, for example, by taking the remainder of a 32-bit division of
3929-2147483648 by -1. (The remainder doesn't actually overflow, but this
3930rule lets srem be implemented using instructions that return both the
3931result of the division and the remainder.)
3932
3933Example:
3934""""""""
3935
3936.. code-block:: llvm
3937
3938 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3939
3940.. _i_frem:
3941
3942'``frem``' Instruction
3943^^^^^^^^^^^^^^^^^^^^^^
3944
3945Syntax:
3946"""""""
3947
3948::
3949
3950 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3951
3952Overview:
3953"""""""""
3954
3955The '``frem``' instruction returns the remainder from the division of
3956its two operands.
3957
3958Arguments:
3959""""""""""
3960
3961The two arguments to the '``frem``' instruction must be :ref:`floating
3962point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3963Both arguments must have identical types.
3964
3965Semantics:
3966""""""""""
3967
3968This instruction returns the *remainder* of a division. The remainder
3969has the same sign as the dividend. This instruction can also take any
3970number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3971to enable otherwise unsafe floating point optimizations:
3972
3973Example:
3974""""""""
3975
3976.. code-block:: llvm
3977
3978 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3979
3980.. _bitwiseops:
3981
3982Bitwise Binary Operations
3983-------------------------
3984
3985Bitwise binary operators are used to do various forms of bit-twiddling
3986in a program. They are generally very efficient instructions and can
3987commonly be strength reduced from other instructions. They require two
3988operands of the same type, execute an operation on them, and produce a
3989single value. The resulting value is the same type as its operands.
3990
3991'``shl``' Instruction
3992^^^^^^^^^^^^^^^^^^^^^
3993
3994Syntax:
3995"""""""
3996
3997::
3998
3999 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4000 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4001 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4002 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4003
4004Overview:
4005"""""""""
4006
4007The '``shl``' instruction returns the first operand shifted to the left
4008a specified number of bits.
4009
4010Arguments:
4011""""""""""
4012
4013Both arguments to the '``shl``' instruction must be the same
4014:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4015'``op2``' is treated as an unsigned value.
4016
4017Semantics:
4018""""""""""
4019
4020The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4021where ``n`` is the width of the result. If ``op2`` is (statically or
4022dynamically) negative or equal to or larger than the number of bits in
4023``op1``, the result is undefined. If the arguments are vectors, each
4024vector element of ``op1`` is shifted by the corresponding shift amount
4025in ``op2``.
4026
4027If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4028value <poisonvalues>` if it shifts out any non-zero bits. If the
4029``nsw`` keyword is present, then the shift produces a :ref:`poison
4030value <poisonvalues>` if it shifts out any bits that disagree with the
4031resultant sign bit. As such, NUW/NSW have the same semantics as they
4032would if the shift were expressed as a mul instruction with the same
4033nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4034
4035Example:
4036""""""""
4037
4038.. code-block:: llvm
4039
4040 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4041 <result> = shl i32 4, 2 ; yields {i32}: 16
4042 <result> = shl i32 1, 10 ; yields {i32}: 1024
4043 <result> = shl i32 1, 32 ; undefined
4044 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4045
4046'``lshr``' Instruction
4047^^^^^^^^^^^^^^^^^^^^^^
4048
4049Syntax:
4050"""""""
4051
4052::
4053
4054 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4055 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4056
4057Overview:
4058"""""""""
4059
4060The '``lshr``' instruction (logical shift right) returns the first
4061operand shifted to the right a specified number of bits with zero fill.
4062
4063Arguments:
4064""""""""""
4065
4066Both arguments to the '``lshr``' instruction must be the same
4067:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4068'``op2``' is treated as an unsigned value.
4069
4070Semantics:
4071""""""""""
4072
4073This instruction always performs a logical shift right operation. The
4074most significant bits of the result will be filled with zero bits after
4075the shift. If ``op2`` is (statically or dynamically) equal to or larger
4076than the number of bits in ``op1``, the result is undefined. If the
4077arguments are vectors, each vector element of ``op1`` is shifted by the
4078corresponding shift amount in ``op2``.
4079
4080If the ``exact`` keyword is present, the result value of the ``lshr`` is
4081a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4082non-zero.
4083
4084Example:
4085""""""""
4086
4087.. code-block:: llvm
4088
4089 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4090 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4091 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover338eba72013-05-07 06:17:14 +00004092 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00004093 <result> = lshr i32 1, 32 ; undefined
4094 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4095
4096'``ashr``' Instruction
4097^^^^^^^^^^^^^^^^^^^^^^
4098
4099Syntax:
4100"""""""
4101
4102::
4103
4104 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4105 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4106
4107Overview:
4108"""""""""
4109
4110The '``ashr``' instruction (arithmetic shift right) returns the first
4111operand shifted to the right a specified number of bits with sign
4112extension.
4113
4114Arguments:
4115""""""""""
4116
4117Both arguments to the '``ashr``' instruction must be the same
4118:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4119'``op2``' is treated as an unsigned value.
4120
4121Semantics:
4122""""""""""
4123
4124This instruction always performs an arithmetic shift right operation,
4125The most significant bits of the result will be filled with the sign bit
4126of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4127than the number of bits in ``op1``, the result is undefined. If the
4128arguments are vectors, each vector element of ``op1`` is shifted by the
4129corresponding shift amount in ``op2``.
4130
4131If the ``exact`` keyword is present, the result value of the ``ashr`` is
4132a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4133non-zero.
4134
4135Example:
4136""""""""
4137
4138.. code-block:: llvm
4139
4140 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4141 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4142 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4143 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4144 <result> = ashr i32 1, 32 ; undefined
4145 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4146
4147'``and``' Instruction
4148^^^^^^^^^^^^^^^^^^^^^
4149
4150Syntax:
4151"""""""
4152
4153::
4154
4155 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4156
4157Overview:
4158"""""""""
4159
4160The '``and``' instruction returns the bitwise logical and of its two
4161operands.
4162
4163Arguments:
4164""""""""""
4165
4166The two arguments to the '``and``' instruction must be
4167:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4168arguments must have identical types.
4169
4170Semantics:
4171""""""""""
4172
4173The truth table used for the '``and``' instruction is:
4174
4175+-----+-----+-----+
4176| In0 | In1 | Out |
4177+-----+-----+-----+
4178| 0 | 0 | 0 |
4179+-----+-----+-----+
4180| 0 | 1 | 0 |
4181+-----+-----+-----+
4182| 1 | 0 | 0 |
4183+-----+-----+-----+
4184| 1 | 1 | 1 |
4185+-----+-----+-----+
4186
4187Example:
4188""""""""
4189
4190.. code-block:: llvm
4191
4192 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4193 <result> = and i32 15, 40 ; yields {i32}:result = 8
4194 <result> = and i32 4, 8 ; yields {i32}:result = 0
4195
4196'``or``' Instruction
4197^^^^^^^^^^^^^^^^^^^^
4198
4199Syntax:
4200"""""""
4201
4202::
4203
4204 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4205
4206Overview:
4207"""""""""
4208
4209The '``or``' instruction returns the bitwise logical inclusive or of its
4210two operands.
4211
4212Arguments:
4213""""""""""
4214
4215The two arguments to the '``or``' instruction must be
4216:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4217arguments must have identical types.
4218
4219Semantics:
4220""""""""""
4221
4222The truth table used for the '``or``' instruction is:
4223
4224+-----+-----+-----+
4225| In0 | In1 | Out |
4226+-----+-----+-----+
4227| 0 | 0 | 0 |
4228+-----+-----+-----+
4229| 0 | 1 | 1 |
4230+-----+-----+-----+
4231| 1 | 0 | 1 |
4232+-----+-----+-----+
4233| 1 | 1 | 1 |
4234+-----+-----+-----+
4235
4236Example:
4237""""""""
4238
4239::
4240
4241 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4242 <result> = or i32 15, 40 ; yields {i32}:result = 47
4243 <result> = or i32 4, 8 ; yields {i32}:result = 12
4244
4245'``xor``' Instruction
4246^^^^^^^^^^^^^^^^^^^^^
4247
4248Syntax:
4249"""""""
4250
4251::
4252
4253 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4254
4255Overview:
4256"""""""""
4257
4258The '``xor``' instruction returns the bitwise logical exclusive or of
4259its two operands. The ``xor`` is used to implement the "one's
4260complement" operation, which is the "~" operator in C.
4261
4262Arguments:
4263""""""""""
4264
4265The two arguments to the '``xor``' instruction must be
4266:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4267arguments must have identical types.
4268
4269Semantics:
4270""""""""""
4271
4272The truth table used for the '``xor``' instruction is:
4273
4274+-----+-----+-----+
4275| In0 | In1 | Out |
4276+-----+-----+-----+
4277| 0 | 0 | 0 |
4278+-----+-----+-----+
4279| 0 | 1 | 1 |
4280+-----+-----+-----+
4281| 1 | 0 | 1 |
4282+-----+-----+-----+
4283| 1 | 1 | 0 |
4284+-----+-----+-----+
4285
4286Example:
4287""""""""
4288
4289.. code-block:: llvm
4290
4291 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4292 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4293 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4294 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4295
4296Vector Operations
4297-----------------
4298
4299LLVM supports several instructions to represent vector operations in a
4300target-independent manner. These instructions cover the element-access
4301and vector-specific operations needed to process vectors effectively.
4302While LLVM does directly support these vector operations, many
4303sophisticated algorithms will want to use target-specific intrinsics to
4304take full advantage of a specific target.
4305
4306.. _i_extractelement:
4307
4308'``extractelement``' Instruction
4309^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4310
4311Syntax:
4312"""""""
4313
4314::
4315
4316 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4317
4318Overview:
4319"""""""""
4320
4321The '``extractelement``' instruction extracts a single scalar element
4322from a vector at a specified index.
4323
4324Arguments:
4325""""""""""
4326
4327The first operand of an '``extractelement``' instruction is a value of
4328:ref:`vector <t_vector>` type. The second operand is an index indicating
4329the position from which to extract the element. The index may be a
4330variable.
4331
4332Semantics:
4333""""""""""
4334
4335The result is a scalar of the same type as the element type of ``val``.
4336Its value is the value at position ``idx`` of ``val``. If ``idx``
4337exceeds the length of ``val``, the results are undefined.
4338
4339Example:
4340""""""""
4341
4342.. code-block:: llvm
4343
4344 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4345
4346.. _i_insertelement:
4347
4348'``insertelement``' Instruction
4349^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4350
4351Syntax:
4352"""""""
4353
4354::
4355
4356 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4357
4358Overview:
4359"""""""""
4360
4361The '``insertelement``' instruction inserts a scalar element into a
4362vector at a specified index.
4363
4364Arguments:
4365""""""""""
4366
4367The first operand of an '``insertelement``' instruction is a value of
4368:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4369type must equal the element type of the first operand. The third operand
4370is an index indicating the position at which to insert the value. The
4371index may be a variable.
4372
4373Semantics:
4374""""""""""
4375
4376The result is a vector of the same type as ``val``. Its element values
4377are those of ``val`` except at position ``idx``, where it gets the value
4378``elt``. If ``idx`` exceeds the length of ``val``, the results are
4379undefined.
4380
4381Example:
4382""""""""
4383
4384.. code-block:: llvm
4385
4386 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4387
4388.. _i_shufflevector:
4389
4390'``shufflevector``' Instruction
4391^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4392
4393Syntax:
4394"""""""
4395
4396::
4397
4398 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4399
4400Overview:
4401"""""""""
4402
4403The '``shufflevector``' instruction constructs a permutation of elements
4404from two input vectors, returning a vector with the same element type as
4405the input and length that is the same as the shuffle mask.
4406
4407Arguments:
4408""""""""""
4409
4410The first two operands of a '``shufflevector``' instruction are vectors
4411with the same type. The third argument is a shuffle mask whose element
4412type is always 'i32'. The result of the instruction is a vector whose
4413length is the same as the shuffle mask and whose element type is the
4414same as the element type of the first two operands.
4415
4416The shuffle mask operand is required to be a constant vector with either
4417constant integer or undef values.
4418
4419Semantics:
4420""""""""""
4421
4422The elements of the two input vectors are numbered from left to right
4423across both of the vectors. The shuffle mask operand specifies, for each
4424element of the result vector, which element of the two input vectors the
4425result element gets. The element selector may be undef (meaning "don't
4426care") and the second operand may be undef if performing a shuffle from
4427only one vector.
4428
4429Example:
4430""""""""
4431
4432.. code-block:: llvm
4433
4434 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4435 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4436 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4437 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4438 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4439 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4440 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4441 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4442
4443Aggregate Operations
4444--------------------
4445
4446LLVM supports several instructions for working with
4447:ref:`aggregate <t_aggregate>` values.
4448
4449.. _i_extractvalue:
4450
4451'``extractvalue``' Instruction
4452^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4453
4454Syntax:
4455"""""""
4456
4457::
4458
4459 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4460
4461Overview:
4462"""""""""
4463
4464The '``extractvalue``' instruction extracts the value of a member field
4465from an :ref:`aggregate <t_aggregate>` value.
4466
4467Arguments:
4468""""""""""
4469
4470The first operand of an '``extractvalue``' instruction is a value of
4471:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4472constant indices to specify which value to extract in a similar manner
4473as indices in a '``getelementptr``' instruction.
4474
4475The major differences to ``getelementptr`` indexing are:
4476
4477- Since the value being indexed is not a pointer, the first index is
4478 omitted and assumed to be zero.
4479- At least one index must be specified.
4480- Not only struct indices but also array indices must be in bounds.
4481
4482Semantics:
4483""""""""""
4484
4485The result is the value at the position in the aggregate specified by
4486the index operands.
4487
4488Example:
4489""""""""
4490
4491.. code-block:: llvm
4492
4493 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4494
4495.. _i_insertvalue:
4496
4497'``insertvalue``' Instruction
4498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4499
4500Syntax:
4501"""""""
4502
4503::
4504
4505 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4506
4507Overview:
4508"""""""""
4509
4510The '``insertvalue``' instruction inserts a value into a member field in
4511an :ref:`aggregate <t_aggregate>` value.
4512
4513Arguments:
4514""""""""""
4515
4516The first operand of an '``insertvalue``' instruction is a value of
4517:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4518a first-class value to insert. The following operands are constant
4519indices indicating the position at which to insert the value in a
4520similar manner as indices in a '``extractvalue``' instruction. The value
4521to insert must have the same type as the value identified by the
4522indices.
4523
4524Semantics:
4525""""""""""
4526
4527The result is an aggregate of the same type as ``val``. Its value is
4528that of ``val`` except that the value at the position specified by the
4529indices is that of ``elt``.
4530
4531Example:
4532""""""""
4533
4534.. code-block:: llvm
4535
4536 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4537 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4538 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4539
4540.. _memoryops:
4541
4542Memory Access and Addressing Operations
4543---------------------------------------
4544
4545A key design point of an SSA-based representation is how it represents
4546memory. In LLVM, no memory locations are in SSA form, which makes things
4547very simple. This section describes how to read, write, and allocate
4548memory in LLVM.
4549
4550.. _i_alloca:
4551
4552'``alloca``' Instruction
4553^^^^^^^^^^^^^^^^^^^^^^^^
4554
4555Syntax:
4556"""""""
4557
4558::
4559
4560 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4561
4562Overview:
4563"""""""""
4564
4565The '``alloca``' instruction allocates memory on the stack frame of the
4566currently executing function, to be automatically released when this
4567function returns to its caller. The object is always allocated in the
4568generic address space (address space zero).
4569
4570Arguments:
4571""""""""""
4572
4573The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4574bytes of memory on the runtime stack, returning a pointer of the
4575appropriate type to the program. If "NumElements" is specified, it is
4576the number of elements allocated, otherwise "NumElements" is defaulted
4577to be one. If a constant alignment is specified, the value result of the
4578allocation is guaranteed to be aligned to at least that boundary. If not
4579specified, or if zero, the target can choose to align the allocation on
4580any convenient boundary compatible with the type.
4581
4582'``type``' may be any sized type.
4583
4584Semantics:
4585""""""""""
4586
4587Memory is allocated; a pointer is returned. The operation is undefined
4588if there is insufficient stack space for the allocation. '``alloca``'d
4589memory is automatically released when the function returns. The
4590'``alloca``' instruction is commonly used to represent automatic
4591variables that must have an address available. When the function returns
4592(either with the ``ret`` or ``resume`` instructions), the memory is
4593reclaimed. Allocating zero bytes is legal, but the result is undefined.
4594The order in which memory is allocated (ie., which way the stack grows)
4595is not specified.
4596
4597Example:
4598""""""""
4599
4600.. code-block:: llvm
4601
4602 %ptr = alloca i32 ; yields {i32*}:ptr
4603 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4604 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4605 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4606
4607.. _i_load:
4608
4609'``load``' Instruction
4610^^^^^^^^^^^^^^^^^^^^^^
4611
4612Syntax:
4613"""""""
4614
4615::
4616
4617 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4618 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4619 !<index> = !{ i32 1 }
4620
4621Overview:
4622"""""""""
4623
4624The '``load``' instruction is used to read from memory.
4625
4626Arguments:
4627""""""""""
4628
Eli Bendersky8c493382013-04-17 20:17:08 +00004629The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004630from which to load. The pointer must point to a :ref:`first
4631class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4632then the optimizer is not allowed to modify the number or order of
4633execution of this ``load`` with other :ref:`volatile
4634operations <volatile>`.
4635
4636If the ``load`` is marked as ``atomic``, it takes an extra
4637:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4638``release`` and ``acq_rel`` orderings are not valid on ``load``
4639instructions. Atomic loads produce :ref:`defined <memmodel>` results
4640when they may see multiple atomic stores. The type of the pointee must
4641be an integer type whose bit width is a power of two greater than or
4642equal to eight and less than or equal to a target-specific size limit.
4643``align`` must be explicitly specified on atomic loads, and the load has
4644undefined behavior if the alignment is not set to a value which is at
4645least the size in bytes of the pointee. ``!nontemporal`` does not have
4646any defined semantics for atomic loads.
4647
4648The optional constant ``align`` argument specifies the alignment of the
4649operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004650or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004651alignment for the target. It is the responsibility of the code emitter
4652to ensure that the alignment information is correct. Overestimating the
4653alignment results in undefined behavior. Underestimating the alignment
4654may produce less efficient code. An alignment of 1 is always safe.
4655
4656The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004657metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004658``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004659metadata on the instruction tells the optimizer and code generator
Sean Silvaf722b002012-12-07 10:36:55 +00004660that this load is not expected to be reused in the cache. The code
4661generator may select special instructions to save cache bandwidth, such
4662as the ``MOVNT`` instruction on x86.
4663
4664The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004665metadata name ``<index>`` corresponding to a metadata node with no
4666entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvaf722b002012-12-07 10:36:55 +00004667instruction tells the optimizer and code generator that this load
4668address points to memory which does not change value during program
4669execution. The optimizer may then move this load around, for example, by
4670hoisting it out of loops using loop invariant code motion.
4671
4672Semantics:
4673""""""""""
4674
4675The location of memory pointed to is loaded. If the value being loaded
4676is of scalar type then the number of bytes read does not exceed the
4677minimum number of bytes needed to hold all bits of the type. For
4678example, loading an ``i24`` reads at most three bytes. When loading a
4679value of a type like ``i20`` with a size that is not an integral number
4680of bytes, the result is undefined if the value was not originally
4681written using a store of the same type.
4682
4683Examples:
4684"""""""""
4685
4686.. code-block:: llvm
4687
4688 %ptr = alloca i32 ; yields {i32*}:ptr
4689 store i32 3, i32* %ptr ; yields {void}
4690 %val = load i32* %ptr ; yields {i32}:val = i32 3
4691
4692.. _i_store:
4693
4694'``store``' Instruction
4695^^^^^^^^^^^^^^^^^^^^^^^
4696
4697Syntax:
4698"""""""
4699
4700::
4701
4702 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4703 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4704
4705Overview:
4706"""""""""
4707
4708The '``store``' instruction is used to write to memory.
4709
4710Arguments:
4711""""""""""
4712
Eli Bendersky8952d902013-04-17 17:17:20 +00004713There are two arguments to the ``store`` instruction: a value to store
4714and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004715operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004716the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004717then the optimizer is not allowed to modify the number or order of
4718execution of this ``store`` with other :ref:`volatile
4719operations <volatile>`.
4720
4721If the ``store`` is marked as ``atomic``, it takes an extra
4722:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4723``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4724instructions. Atomic loads produce :ref:`defined <memmodel>` results
4725when they may see multiple atomic stores. The type of the pointee must
4726be an integer type whose bit width is a power of two greater than or
4727equal to eight and less than or equal to a target-specific size limit.
4728``align`` must be explicitly specified on atomic stores, and the store
4729has undefined behavior if the alignment is not set to a value which is
4730at least the size in bytes of the pointee. ``!nontemporal`` does not
4731have any defined semantics for atomic stores.
4732
Eli Bendersky8952d902013-04-17 17:17:20 +00004733The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004734operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004735or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004736alignment for the target. It is the responsibility of the code emitter
4737to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004738alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004739alignment may produce less efficient code. An alignment of 1 is always
4740safe.
4741
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004742The optional ``!nontemporal`` metadata must reference a single metadata
Eli Bendersky8952d902013-04-17 17:17:20 +00004743name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004744value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004745tells the optimizer and code generator that this load is not expected to
4746be reused in the cache. The code generator may select special
4747instructions to save cache bandwidth, such as the MOVNT instruction on
4748x86.
4749
4750Semantics:
4751""""""""""
4752
Eli Bendersky8952d902013-04-17 17:17:20 +00004753The contents of memory are updated to contain ``<value>`` at the
4754location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004755of scalar type then the number of bytes written does not exceed the
4756minimum number of bytes needed to hold all bits of the type. For
4757example, storing an ``i24`` writes at most three bytes. When writing a
4758value of a type like ``i20`` with a size that is not an integral number
4759of bytes, it is unspecified what happens to the extra bits that do not
4760belong to the type, but they will typically be overwritten.
4761
4762Example:
4763""""""""
4764
4765.. code-block:: llvm
4766
4767 %ptr = alloca i32 ; yields {i32*}:ptr
4768 store i32 3, i32* %ptr ; yields {void}
4769 %val = load i32* %ptr ; yields {i32}:val = i32 3
4770
4771.. _i_fence:
4772
4773'``fence``' Instruction
4774^^^^^^^^^^^^^^^^^^^^^^^
4775
4776Syntax:
4777"""""""
4778
4779::
4780
4781 fence [singlethread] <ordering> ; yields {void}
4782
4783Overview:
4784"""""""""
4785
4786The '``fence``' instruction is used to introduce happens-before edges
4787between operations.
4788
4789Arguments:
4790""""""""""
4791
4792'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4793defines what *synchronizes-with* edges they add. They can only be given
4794``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4795
4796Semantics:
4797""""""""""
4798
4799A fence A which has (at least) ``release`` ordering semantics
4800*synchronizes with* a fence B with (at least) ``acquire`` ordering
4801semantics if and only if there exist atomic operations X and Y, both
4802operating on some atomic object M, such that A is sequenced before X, X
4803modifies M (either directly or through some side effect of a sequence
4804headed by X), Y is sequenced before B, and Y observes M. This provides a
4805*happens-before* dependency between A and B. Rather than an explicit
4806``fence``, one (but not both) of the atomic operations X or Y might
4807provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4808still *synchronize-with* the explicit ``fence`` and establish the
4809*happens-before* edge.
4810
4811A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4812``acquire`` and ``release`` semantics specified above, participates in
4813the global program order of other ``seq_cst`` operations and/or fences.
4814
4815The optional ":ref:`singlethread <singlethread>`" argument specifies
4816that the fence only synchronizes with other fences in the same thread.
4817(This is useful for interacting with signal handlers.)
4818
4819Example:
4820""""""""
4821
4822.. code-block:: llvm
4823
4824 fence acquire ; yields {void}
4825 fence singlethread seq_cst ; yields {void}
4826
4827.. _i_cmpxchg:
4828
4829'``cmpxchg``' Instruction
4830^^^^^^^^^^^^^^^^^^^^^^^^^
4831
4832Syntax:
4833"""""""
4834
4835::
4836
4837 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4838
4839Overview:
4840"""""""""
4841
4842The '``cmpxchg``' instruction is used to atomically modify memory. It
4843loads a value in memory and compares it to a given value. If they are
4844equal, it stores a new value into the memory.
4845
4846Arguments:
4847""""""""""
4848
4849There are three arguments to the '``cmpxchg``' instruction: an address
4850to operate on, a value to compare to the value currently be at that
4851address, and a new value to place at that address if the compared values
4852are equal. The type of '<cmp>' must be an integer type whose bit width
4853is a power of two greater than or equal to eight and less than or equal
4854to a target-specific size limit. '<cmp>' and '<new>' must have the same
4855type, and the type of '<pointer>' must be a pointer to that type. If the
4856``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4857to modify the number or order of execution of this ``cmpxchg`` with
4858other :ref:`volatile operations <volatile>`.
4859
4860The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4861synchronizes with other atomic operations.
4862
4863The optional "``singlethread``" argument declares that the ``cmpxchg``
4864is only atomic with respect to code (usually signal handlers) running in
4865the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4866respect to all other code in the system.
4867
4868The pointer passed into cmpxchg must have alignment greater than or
4869equal to the size in memory of the operand.
4870
4871Semantics:
4872""""""""""
4873
4874The contents of memory at the location specified by the '``<pointer>``'
4875operand is read and compared to '``<cmp>``'; if the read value is the
4876equal, '``<new>``' is written. The original value at the location is
4877returned.
4878
4879A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4880of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4881atomic load with an ordering parameter determined by dropping any
4882``release`` part of the ``cmpxchg``'s ordering.
4883
4884Example:
4885""""""""
4886
4887.. code-block:: llvm
4888
4889 entry:
4890 %orig = atomic load i32* %ptr unordered ; yields {i32}
4891 br label %loop
4892
4893 loop:
4894 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4895 %squared = mul i32 %cmp, %cmp
4896 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4897 %success = icmp eq i32 %cmp, %old
4898 br i1 %success, label %done, label %loop
4899
4900 done:
4901 ...
4902
4903.. _i_atomicrmw:
4904
4905'``atomicrmw``' Instruction
4906^^^^^^^^^^^^^^^^^^^^^^^^^^^
4907
4908Syntax:
4909"""""""
4910
4911::
4912
4913 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4914
4915Overview:
4916"""""""""
4917
4918The '``atomicrmw``' instruction is used to atomically modify memory.
4919
4920Arguments:
4921""""""""""
4922
4923There are three arguments to the '``atomicrmw``' instruction: an
4924operation to apply, an address whose value to modify, an argument to the
4925operation. The operation must be one of the following keywords:
4926
4927- xchg
4928- add
4929- sub
4930- and
4931- nand
4932- or
4933- xor
4934- max
4935- min
4936- umax
4937- umin
4938
4939The type of '<value>' must be an integer type whose bit width is a power
4940of two greater than or equal to eight and less than or equal to a
4941target-specific size limit. The type of the '``<pointer>``' operand must
4942be a pointer to that type. If the ``atomicrmw`` is marked as
4943``volatile``, then the optimizer is not allowed to modify the number or
4944order of execution of this ``atomicrmw`` with other :ref:`volatile
4945operations <volatile>`.
4946
4947Semantics:
4948""""""""""
4949
4950The contents of memory at the location specified by the '``<pointer>``'
4951operand are atomically read, modified, and written back. The original
4952value at the location is returned. The modification is specified by the
4953operation argument:
4954
4955- xchg: ``*ptr = val``
4956- add: ``*ptr = *ptr + val``
4957- sub: ``*ptr = *ptr - val``
4958- and: ``*ptr = *ptr & val``
4959- nand: ``*ptr = ~(*ptr & val)``
4960- or: ``*ptr = *ptr | val``
4961- xor: ``*ptr = *ptr ^ val``
4962- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4963- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4964- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4965 comparison)
4966- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4967 comparison)
4968
4969Example:
4970""""""""
4971
4972.. code-block:: llvm
4973
4974 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4975
4976.. _i_getelementptr:
4977
4978'``getelementptr``' Instruction
4979^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4980
4981Syntax:
4982"""""""
4983
4984::
4985
4986 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4987 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4988 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4989
4990Overview:
4991"""""""""
4992
4993The '``getelementptr``' instruction is used to get the address of a
4994subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4995address calculation only and does not access memory.
4996
4997Arguments:
4998""""""""""
4999
5000The first argument is always a pointer or a vector of pointers, and
5001forms the basis of the calculation. The remaining arguments are indices
5002that indicate which of the elements of the aggregate object are indexed.
5003The interpretation of each index is dependent on the type being indexed
5004into. The first index always indexes the pointer value given as the
5005first argument, the second index indexes a value of the type pointed to
5006(not necessarily the value directly pointed to, since the first index
5007can be non-zero), etc. The first type indexed into must be a pointer
5008value, subsequent types can be arrays, vectors, and structs. Note that
5009subsequent types being indexed into can never be pointers, since that
5010would require loading the pointer before continuing calculation.
5011
5012The type of each index argument depends on the type it is indexing into.
5013When indexing into a (optionally packed) structure, only ``i32`` integer
5014**constants** are allowed (when using a vector of indices they must all
5015be the **same** ``i32`` integer constant). When indexing into an array,
5016pointer or vector, integers of any width are allowed, and they are not
5017required to be constant. These integers are treated as signed values
5018where relevant.
5019
5020For example, let's consider a C code fragment and how it gets compiled
5021to LLVM:
5022
5023.. code-block:: c
5024
5025 struct RT {
5026 char A;
5027 int B[10][20];
5028 char C;
5029 };
5030 struct ST {
5031 int X;
5032 double Y;
5033 struct RT Z;
5034 };
5035
5036 int *foo(struct ST *s) {
5037 return &s[1].Z.B[5][13];
5038 }
5039
5040The LLVM code generated by Clang is:
5041
5042.. code-block:: llvm
5043
5044 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5045 %struct.ST = type { i32, double, %struct.RT }
5046
5047 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5048 entry:
5049 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5050 ret i32* %arrayidx
5051 }
5052
5053Semantics:
5054""""""""""
5055
5056In the example above, the first index is indexing into the
5057'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5058= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5059indexes into the third element of the structure, yielding a
5060'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5061structure. The third index indexes into the second element of the
5062structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5063dimensions of the array are subscripted into, yielding an '``i32``'
5064type. The '``getelementptr``' instruction returns a pointer to this
5065element, thus computing a value of '``i32*``' type.
5066
5067Note that it is perfectly legal to index partially through a structure,
5068returning a pointer to an inner element. Because of this, the LLVM code
5069for the given testcase is equivalent to:
5070
5071.. code-block:: llvm
5072
5073 define i32* @foo(%struct.ST* %s) {
5074 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5075 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5076 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5077 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5078 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5079 ret i32* %t5
5080 }
5081
5082If the ``inbounds`` keyword is present, the result value of the
5083``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5084pointer is not an *in bounds* address of an allocated object, or if any
5085of the addresses that would be formed by successive addition of the
5086offsets implied by the indices to the base address with infinitely
5087precise signed arithmetic are not an *in bounds* address of that
5088allocated object. The *in bounds* addresses for an allocated object are
5089all the addresses that point into the object, plus the address one byte
5090past the end. In cases where the base is a vector of pointers the
5091``inbounds`` keyword applies to each of the computations element-wise.
5092
5093If the ``inbounds`` keyword is not present, the offsets are added to the
5094base address with silently-wrapping two's complement arithmetic. If the
5095offsets have a different width from the pointer, they are sign-extended
5096or truncated to the width of the pointer. The result value of the
5097``getelementptr`` may be outside the object pointed to by the base
5098pointer. The result value may not necessarily be used to access memory
5099though, even if it happens to point into allocated storage. See the
5100:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5101information.
5102
5103The getelementptr instruction is often confusing. For some more insight
5104into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5105
5106Example:
5107""""""""
5108
5109.. code-block:: llvm
5110
5111 ; yields [12 x i8]*:aptr
5112 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5113 ; yields i8*:vptr
5114 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5115 ; yields i8*:eptr
5116 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5117 ; yields i32*:iptr
5118 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5119
5120In cases where the pointer argument is a vector of pointers, each index
5121must be a vector with the same number of elements. For example:
5122
5123.. code-block:: llvm
5124
5125 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5126
5127Conversion Operations
5128---------------------
5129
5130The instructions in this category are the conversion instructions
5131(casting) which all take a single operand and a type. They perform
5132various bit conversions on the operand.
5133
5134'``trunc .. to``' Instruction
5135^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5136
5137Syntax:
5138"""""""
5139
5140::
5141
5142 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5143
5144Overview:
5145"""""""""
5146
5147The '``trunc``' instruction truncates its operand to the type ``ty2``.
5148
5149Arguments:
5150""""""""""
5151
5152The '``trunc``' instruction takes a value to trunc, and a type to trunc
5153it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5154of the same number of integers. The bit size of the ``value`` must be
5155larger than the bit size of the destination type, ``ty2``. Equal sized
5156types are not allowed.
5157
5158Semantics:
5159""""""""""
5160
5161The '``trunc``' instruction truncates the high order bits in ``value``
5162and converts the remaining bits to ``ty2``. Since the source size must
5163be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5164It will always truncate bits.
5165
5166Example:
5167""""""""
5168
5169.. code-block:: llvm
5170
5171 %X = trunc i32 257 to i8 ; yields i8:1
5172 %Y = trunc i32 123 to i1 ; yields i1:true
5173 %Z = trunc i32 122 to i1 ; yields i1:false
5174 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5175
5176'``zext .. to``' Instruction
5177^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5178
5179Syntax:
5180"""""""
5181
5182::
5183
5184 <result> = zext <ty> <value> to <ty2> ; yields ty2
5185
5186Overview:
5187"""""""""
5188
5189The '``zext``' instruction zero extends its operand to type ``ty2``.
5190
5191Arguments:
5192""""""""""
5193
5194The '``zext``' instruction takes a value to cast, and a type to cast it
5195to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5196the same number of integers. The bit size of the ``value`` must be
5197smaller than the bit size of the destination type, ``ty2``.
5198
5199Semantics:
5200""""""""""
5201
5202The ``zext`` fills the high order bits of the ``value`` with zero bits
5203until it reaches the size of the destination type, ``ty2``.
5204
5205When zero extending from i1, the result will always be either 0 or 1.
5206
5207Example:
5208""""""""
5209
5210.. code-block:: llvm
5211
5212 %X = zext i32 257 to i64 ; yields i64:257
5213 %Y = zext i1 true to i32 ; yields i32:1
5214 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5215
5216'``sext .. to``' Instruction
5217^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5218
5219Syntax:
5220"""""""
5221
5222::
5223
5224 <result> = sext <ty> <value> to <ty2> ; yields ty2
5225
5226Overview:
5227"""""""""
5228
5229The '``sext``' sign extends ``value`` to the type ``ty2``.
5230
5231Arguments:
5232""""""""""
5233
5234The '``sext``' instruction takes a value to cast, and a type to cast it
5235to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5236the same number of integers. The bit size of the ``value`` must be
5237smaller than the bit size of the destination type, ``ty2``.
5238
5239Semantics:
5240""""""""""
5241
5242The '``sext``' instruction performs a sign extension by copying the sign
5243bit (highest order bit) of the ``value`` until it reaches the bit size
5244of the type ``ty2``.
5245
5246When sign extending from i1, the extension always results in -1 or 0.
5247
5248Example:
5249""""""""
5250
5251.. code-block:: llvm
5252
5253 %X = sext i8 -1 to i16 ; yields i16 :65535
5254 %Y = sext i1 true to i32 ; yields i32:-1
5255 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5256
5257'``fptrunc .. to``' Instruction
5258^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5259
5260Syntax:
5261"""""""
5262
5263::
5264
5265 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5266
5267Overview:
5268"""""""""
5269
5270The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5271
5272Arguments:
5273""""""""""
5274
5275The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5276value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5277The size of ``value`` must be larger than the size of ``ty2``. This
5278implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5279
5280Semantics:
5281""""""""""
5282
5283The '``fptrunc``' instruction truncates a ``value`` from a larger
5284:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5285point <t_floating>` type. If the value cannot fit within the
5286destination type, ``ty2``, then the results are undefined.
5287
5288Example:
5289""""""""
5290
5291.. code-block:: llvm
5292
5293 %X = fptrunc double 123.0 to float ; yields float:123.0
5294 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5295
5296'``fpext .. to``' Instruction
5297^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5298
5299Syntax:
5300"""""""
5301
5302::
5303
5304 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5305
5306Overview:
5307"""""""""
5308
5309The '``fpext``' extends a floating point ``value`` to a larger floating
5310point value.
5311
5312Arguments:
5313""""""""""
5314
5315The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5316``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5317to. The source type must be smaller than the destination type.
5318
5319Semantics:
5320""""""""""
5321
5322The '``fpext``' instruction extends the ``value`` from a smaller
5323:ref:`floating point <t_floating>` type to a larger :ref:`floating
5324point <t_floating>` type. The ``fpext`` cannot be used to make a
5325*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5326*no-op cast* for a floating point cast.
5327
5328Example:
5329""""""""
5330
5331.. code-block:: llvm
5332
5333 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5334 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5335
5336'``fptoui .. to``' Instruction
5337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5338
5339Syntax:
5340"""""""
5341
5342::
5343
5344 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5345
5346Overview:
5347"""""""""
5348
5349The '``fptoui``' converts a floating point ``value`` to its unsigned
5350integer equivalent of type ``ty2``.
5351
5352Arguments:
5353""""""""""
5354
5355The '``fptoui``' instruction takes a value to cast, which must be a
5356scalar or vector :ref:`floating point <t_floating>` value, and a type to
5357cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5358``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5359type with the same number of elements as ``ty``
5360
5361Semantics:
5362""""""""""
5363
5364The '``fptoui``' instruction converts its :ref:`floating
5365point <t_floating>` operand into the nearest (rounding towards zero)
5366unsigned integer value. If the value cannot fit in ``ty2``, the results
5367are undefined.
5368
5369Example:
5370""""""""
5371
5372.. code-block:: llvm
5373
5374 %X = fptoui double 123.0 to i32 ; yields i32:123
5375 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5376 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5377
5378'``fptosi .. to``' Instruction
5379^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5380
5381Syntax:
5382"""""""
5383
5384::
5385
5386 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5387
5388Overview:
5389"""""""""
5390
5391The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5392``value`` to type ``ty2``.
5393
5394Arguments:
5395""""""""""
5396
5397The '``fptosi``' instruction takes a value to cast, which must be a
5398scalar or vector :ref:`floating point <t_floating>` value, and a type to
5399cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5400``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5401type with the same number of elements as ``ty``
5402
5403Semantics:
5404""""""""""
5405
5406The '``fptosi``' instruction converts its :ref:`floating
5407point <t_floating>` operand into the nearest (rounding towards zero)
5408signed integer value. If the value cannot fit in ``ty2``, the results
5409are undefined.
5410
5411Example:
5412""""""""
5413
5414.. code-block:: llvm
5415
5416 %X = fptosi double -123.0 to i32 ; yields i32:-123
5417 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5418 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5419
5420'``uitofp .. to``' Instruction
5421^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5422
5423Syntax:
5424"""""""
5425
5426::
5427
5428 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5429
5430Overview:
5431"""""""""
5432
5433The '``uitofp``' instruction regards ``value`` as an unsigned integer
5434and converts that value to the ``ty2`` type.
5435
5436Arguments:
5437""""""""""
5438
5439The '``uitofp``' instruction takes a value to cast, which must be a
5440scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5441``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5442``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5443type with the same number of elements as ``ty``
5444
5445Semantics:
5446""""""""""
5447
5448The '``uitofp``' instruction interprets its operand as an unsigned
5449integer quantity and converts it to the corresponding floating point
5450value. If the value cannot fit in the floating point value, the results
5451are undefined.
5452
5453Example:
5454""""""""
5455
5456.. code-block:: llvm
5457
5458 %X = uitofp i32 257 to float ; yields float:257.0
5459 %Y = uitofp i8 -1 to double ; yields double:255.0
5460
5461'``sitofp .. to``' Instruction
5462^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5463
5464Syntax:
5465"""""""
5466
5467::
5468
5469 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5470
5471Overview:
5472"""""""""
5473
5474The '``sitofp``' instruction regards ``value`` as a signed integer and
5475converts that value to the ``ty2`` type.
5476
5477Arguments:
5478""""""""""
5479
5480The '``sitofp``' instruction takes a value to cast, which must be a
5481scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5482``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5483``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5484type with the same number of elements as ``ty``
5485
5486Semantics:
5487""""""""""
5488
5489The '``sitofp``' instruction interprets its operand as a signed integer
5490quantity and converts it to the corresponding floating point value. If
5491the value cannot fit in the floating point value, the results are
5492undefined.
5493
5494Example:
5495""""""""
5496
5497.. code-block:: llvm
5498
5499 %X = sitofp i32 257 to float ; yields float:257.0
5500 %Y = sitofp i8 -1 to double ; yields double:-1.0
5501
5502.. _i_ptrtoint:
5503
5504'``ptrtoint .. to``' Instruction
5505^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5506
5507Syntax:
5508"""""""
5509
5510::
5511
5512 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5513
5514Overview:
5515"""""""""
5516
5517The '``ptrtoint``' instruction converts the pointer or a vector of
5518pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5519
5520Arguments:
5521""""""""""
5522
5523The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5524a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5525type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5526a vector of integers type.
5527
5528Semantics:
5529""""""""""
5530
5531The '``ptrtoint``' instruction converts ``value`` to integer type
5532``ty2`` by interpreting the pointer value as an integer and either
5533truncating or zero extending that value to the size of the integer type.
5534If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5535``value`` is larger than ``ty2`` then a truncation is done. If they are
5536the same size, then nothing is done (*no-op cast*) other than a type
5537change.
5538
5539Example:
5540""""""""
5541
5542.. code-block:: llvm
5543
5544 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5545 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5546 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5547
5548.. _i_inttoptr:
5549
5550'``inttoptr .. to``' Instruction
5551^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5552
5553Syntax:
5554"""""""
5555
5556::
5557
5558 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5559
5560Overview:
5561"""""""""
5562
5563The '``inttoptr``' instruction converts an integer ``value`` to a
5564pointer type, ``ty2``.
5565
5566Arguments:
5567""""""""""
5568
5569The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5570cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5571type.
5572
5573Semantics:
5574""""""""""
5575
5576The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5577applying either a zero extension or a truncation depending on the size
5578of the integer ``value``. If ``value`` is larger than the size of a
5579pointer then a truncation is done. If ``value`` is smaller than the size
5580of a pointer then a zero extension is done. If they are the same size,
5581nothing is done (*no-op cast*).
5582
5583Example:
5584""""""""
5585
5586.. code-block:: llvm
5587
5588 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5589 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5590 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5591 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5592
5593.. _i_bitcast:
5594
5595'``bitcast .. to``' Instruction
5596^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5597
5598Syntax:
5599"""""""
5600
5601::
5602
5603 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5604
5605Overview:
5606"""""""""
5607
5608The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5609changing any bits.
5610
5611Arguments:
5612""""""""""
5613
5614The '``bitcast``' instruction takes a value to cast, which must be a
5615non-aggregate first class value, and a type to cast it to, which must
5616also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5617sizes of ``value`` and the destination type, ``ty2``, must be identical.
5618If the source type is a pointer, the destination type must also be a
5619pointer. This instruction supports bitwise conversion of vectors to
5620integers and to vectors of other types (as long as they have the same
5621size).
5622
5623Semantics:
5624""""""""""
5625
5626The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5627always a *no-op cast* because no bits change with this conversion. The
5628conversion is done as if the ``value`` had been stored to memory and
5629read back as type ``ty2``. Pointer (or vector of pointers) types may
5630only be converted to other pointer (or vector of pointers) types with
5631this instruction. To convert pointers to other types, use the
5632:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5633first.
5634
5635Example:
5636""""""""
5637
5638.. code-block:: llvm
5639
5640 %X = bitcast i8 255 to i8 ; yields i8 :-1
5641 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5642 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5643 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5644
5645.. _otherops:
5646
5647Other Operations
5648----------------
5649
5650The instructions in this category are the "miscellaneous" instructions,
5651which defy better classification.
5652
5653.. _i_icmp:
5654
5655'``icmp``' Instruction
5656^^^^^^^^^^^^^^^^^^^^^^
5657
5658Syntax:
5659"""""""
5660
5661::
5662
5663 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5664
5665Overview:
5666"""""""""
5667
5668The '``icmp``' instruction returns a boolean value or a vector of
5669boolean values based on comparison of its two integer, integer vector,
5670pointer, or pointer vector operands.
5671
5672Arguments:
5673""""""""""
5674
5675The '``icmp``' instruction takes three operands. The first operand is
5676the condition code indicating the kind of comparison to perform. It is
5677not a value, just a keyword. The possible condition code are:
5678
5679#. ``eq``: equal
5680#. ``ne``: not equal
5681#. ``ugt``: unsigned greater than
5682#. ``uge``: unsigned greater or equal
5683#. ``ult``: unsigned less than
5684#. ``ule``: unsigned less or equal
5685#. ``sgt``: signed greater than
5686#. ``sge``: signed greater or equal
5687#. ``slt``: signed less than
5688#. ``sle``: signed less or equal
5689
5690The remaining two arguments must be :ref:`integer <t_integer>` or
5691:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5692must also be identical types.
5693
5694Semantics:
5695""""""""""
5696
5697The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5698code given as ``cond``. The comparison performed always yields either an
5699:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5700
5701#. ``eq``: yields ``true`` if the operands are equal, ``false``
5702 otherwise. No sign interpretation is necessary or performed.
5703#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5704 otherwise. No sign interpretation is necessary or performed.
5705#. ``ugt``: interprets the operands as unsigned values and yields
5706 ``true`` if ``op1`` is greater than ``op2``.
5707#. ``uge``: interprets the operands as unsigned values and yields
5708 ``true`` if ``op1`` is greater than or equal to ``op2``.
5709#. ``ult``: interprets the operands as unsigned values and yields
5710 ``true`` if ``op1`` is less than ``op2``.
5711#. ``ule``: interprets the operands as unsigned values and yields
5712 ``true`` if ``op1`` is less than or equal to ``op2``.
5713#. ``sgt``: interprets the operands as signed values and yields ``true``
5714 if ``op1`` is greater than ``op2``.
5715#. ``sge``: interprets the operands as signed values and yields ``true``
5716 if ``op1`` is greater than or equal to ``op2``.
5717#. ``slt``: interprets the operands as signed values and yields ``true``
5718 if ``op1`` is less than ``op2``.
5719#. ``sle``: interprets the operands as signed values and yields ``true``
5720 if ``op1`` is less than or equal to ``op2``.
5721
5722If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5723are compared as if they were integers.
5724
5725If the operands are integer vectors, then they are compared element by
5726element. The result is an ``i1`` vector with the same number of elements
5727as the values being compared. Otherwise, the result is an ``i1``.
5728
5729Example:
5730""""""""
5731
5732.. code-block:: llvm
5733
5734 <result> = icmp eq i32 4, 5 ; yields: result=false
5735 <result> = icmp ne float* %X, %X ; yields: result=false
5736 <result> = icmp ult i16 4, 5 ; yields: result=true
5737 <result> = icmp sgt i16 4, 5 ; yields: result=false
5738 <result> = icmp ule i16 -4, 5 ; yields: result=false
5739 <result> = icmp sge i16 4, 5 ; yields: result=false
5740
5741Note that the code generator does not yet support vector types with the
5742``icmp`` instruction.
5743
5744.. _i_fcmp:
5745
5746'``fcmp``' Instruction
5747^^^^^^^^^^^^^^^^^^^^^^
5748
5749Syntax:
5750"""""""
5751
5752::
5753
5754 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5755
5756Overview:
5757"""""""""
5758
5759The '``fcmp``' instruction returns a boolean value or vector of boolean
5760values based on comparison of its operands.
5761
5762If the operands are floating point scalars, then the result type is a
5763boolean (:ref:`i1 <t_integer>`).
5764
5765If the operands are floating point vectors, then the result type is a
5766vector of boolean with the same number of elements as the operands being
5767compared.
5768
5769Arguments:
5770""""""""""
5771
5772The '``fcmp``' instruction takes three operands. The first operand is
5773the condition code indicating the kind of comparison to perform. It is
5774not a value, just a keyword. The possible condition code are:
5775
5776#. ``false``: no comparison, always returns false
5777#. ``oeq``: ordered and equal
5778#. ``ogt``: ordered and greater than
5779#. ``oge``: ordered and greater than or equal
5780#. ``olt``: ordered and less than
5781#. ``ole``: ordered and less than or equal
5782#. ``one``: ordered and not equal
5783#. ``ord``: ordered (no nans)
5784#. ``ueq``: unordered or equal
5785#. ``ugt``: unordered or greater than
5786#. ``uge``: unordered or greater than or equal
5787#. ``ult``: unordered or less than
5788#. ``ule``: unordered or less than or equal
5789#. ``une``: unordered or not equal
5790#. ``uno``: unordered (either nans)
5791#. ``true``: no comparison, always returns true
5792
5793*Ordered* means that neither operand is a QNAN while *unordered* means
5794that either operand may be a QNAN.
5795
5796Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5797point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5798type. They must have identical types.
5799
5800Semantics:
5801""""""""""
5802
5803The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5804condition code given as ``cond``. If the operands are vectors, then the
5805vectors are compared element by element. Each comparison performed
5806always yields an :ref:`i1 <t_integer>` result, as follows:
5807
5808#. ``false``: always yields ``false``, regardless of operands.
5809#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5810 is equal to ``op2``.
5811#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5812 is greater than ``op2``.
5813#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5814 is greater than or equal to ``op2``.
5815#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5816 is less than ``op2``.
5817#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5818 is less than or equal to ``op2``.
5819#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5820 is not equal to ``op2``.
5821#. ``ord``: yields ``true`` if both operands are not a QNAN.
5822#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5823 equal to ``op2``.
5824#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5825 greater than ``op2``.
5826#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5827 greater than or equal to ``op2``.
5828#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5829 less than ``op2``.
5830#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5831 less than or equal to ``op2``.
5832#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5833 not equal to ``op2``.
5834#. ``uno``: yields ``true`` if either operand is a QNAN.
5835#. ``true``: always yields ``true``, regardless of operands.
5836
5837Example:
5838""""""""
5839
5840.. code-block:: llvm
5841
5842 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5843 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5844 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5845 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5846
5847Note that the code generator does not yet support vector types with the
5848``fcmp`` instruction.
5849
5850.. _i_phi:
5851
5852'``phi``' Instruction
5853^^^^^^^^^^^^^^^^^^^^^
5854
5855Syntax:
5856"""""""
5857
5858::
5859
5860 <result> = phi <ty> [ <val0>, <label0>], ...
5861
5862Overview:
5863"""""""""
5864
5865The '``phi``' instruction is used to implement the φ node in the SSA
5866graph representing the function.
5867
5868Arguments:
5869""""""""""
5870
5871The type of the incoming values is specified with the first type field.
5872After this, the '``phi``' instruction takes a list of pairs as
5873arguments, with one pair for each predecessor basic block of the current
5874block. Only values of :ref:`first class <t_firstclass>` type may be used as
5875the value arguments to the PHI node. Only labels may be used as the
5876label arguments.
5877
5878There must be no non-phi instructions between the start of a basic block
5879and the PHI instructions: i.e. PHI instructions must be first in a basic
5880block.
5881
5882For the purposes of the SSA form, the use of each incoming value is
5883deemed to occur on the edge from the corresponding predecessor block to
5884the current block (but after any definition of an '``invoke``'
5885instruction's return value on the same edge).
5886
5887Semantics:
5888""""""""""
5889
5890At runtime, the '``phi``' instruction logically takes on the value
5891specified by the pair corresponding to the predecessor basic block that
5892executed just prior to the current block.
5893
5894Example:
5895""""""""
5896
5897.. code-block:: llvm
5898
5899 Loop: ; Infinite loop that counts from 0 on up...
5900 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5901 %nextindvar = add i32 %indvar, 1
5902 br label %Loop
5903
5904.. _i_select:
5905
5906'``select``' Instruction
5907^^^^^^^^^^^^^^^^^^^^^^^^
5908
5909Syntax:
5910"""""""
5911
5912::
5913
5914 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5915
5916 selty is either i1 or {<N x i1>}
5917
5918Overview:
5919"""""""""
5920
5921The '``select``' instruction is used to choose one value based on a
5922condition, without branching.
5923
5924Arguments:
5925""""""""""
5926
5927The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5928values indicating the condition, and two values of the same :ref:`first
5929class <t_firstclass>` type. If the val1/val2 are vectors and the
5930condition is a scalar, then entire vectors are selected, not individual
5931elements.
5932
5933Semantics:
5934""""""""""
5935
5936If the condition is an i1 and it evaluates to 1, the instruction returns
5937the first value argument; otherwise, it returns the second value
5938argument.
5939
5940If the condition is a vector of i1, then the value arguments must be
5941vectors of the same size, and the selection is done element by element.
5942
5943Example:
5944""""""""
5945
5946.. code-block:: llvm
5947
5948 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5949
5950.. _i_call:
5951
5952'``call``' Instruction
5953^^^^^^^^^^^^^^^^^^^^^^
5954
5955Syntax:
5956"""""""
5957
5958::
5959
5960 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5961
5962Overview:
5963"""""""""
5964
5965The '``call``' instruction represents a simple function call.
5966
5967Arguments:
5968""""""""""
5969
5970This instruction requires several arguments:
5971
5972#. The optional "tail" marker indicates that the callee function does
5973 not access any allocas or varargs in the caller. Note that calls may
5974 be marked "tail" even if they do not occur before a
5975 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5976 function call is eligible for tail call optimization, but `might not
5977 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5978 The code generator may optimize calls marked "tail" with either 1)
5979 automatic `sibling call
5980 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5981 callee have matching signatures, or 2) forced tail call optimization
5982 when the following extra requirements are met:
5983
5984 - Caller and callee both have the calling convention ``fastcc``.
5985 - The call is in tail position (ret immediately follows call and ret
5986 uses value of call or is void).
5987 - Option ``-tailcallopt`` is enabled, or
5988 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5989 - `Platform specific constraints are
5990 met. <CodeGenerator.html#tailcallopt>`_
5991
5992#. The optional "cconv" marker indicates which :ref:`calling
5993 convention <callingconv>` the call should use. If none is
5994 specified, the call defaults to using C calling conventions. The
5995 calling convention of the call must match the calling convention of
5996 the target function, or else the behavior is undefined.
5997#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5998 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5999 are valid here.
6000#. '``ty``': the type of the call instruction itself which is also the
6001 type of the return value. Functions that return no value are marked
6002 ``void``.
6003#. '``fnty``': shall be the signature of the pointer to function value
6004 being invoked. The argument types must match the types implied by
6005 this signature. This type can be omitted if the function is not
6006 varargs and if the function type does not return a pointer to a
6007 function.
6008#. '``fnptrval``': An LLVM value containing a pointer to a function to
6009 be invoked. In most cases, this is a direct function invocation, but
6010 indirect ``call``'s are just as possible, calling an arbitrary pointer
6011 to function value.
6012#. '``function args``': argument list whose types match the function
6013 signature argument types and parameter attributes. All arguments must
6014 be of :ref:`first class <t_firstclass>` type. If the function signature
6015 indicates the function accepts a variable number of arguments, the
6016 extra arguments can be specified.
6017#. The optional :ref:`function attributes <fnattrs>` list. Only
6018 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6019 attributes are valid here.
6020
6021Semantics:
6022""""""""""
6023
6024The '``call``' instruction is used to cause control flow to transfer to
6025a specified function, with its incoming arguments bound to the specified
6026values. Upon a '``ret``' instruction in the called function, control
6027flow continues with the instruction after the function call, and the
6028return value of the function is bound to the result argument.
6029
6030Example:
6031""""""""
6032
6033.. code-block:: llvm
6034
6035 %retval = call i32 @test(i32 %argc)
6036 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6037 %X = tail call i32 @foo() ; yields i32
6038 %Y = tail call fastcc i32 @foo() ; yields i32
6039 call void %foo(i8 97 signext)
6040
6041 %struct.A = type { i32, i8 }
6042 %r = call %struct.A @foo() ; yields { 32, i8 }
6043 %gr = extractvalue %struct.A %r, 0 ; yields i32
6044 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6045 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6046 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6047
6048llvm treats calls to some functions with names and arguments that match
6049the standard C99 library as being the C99 library functions, and may
6050perform optimizations or generate code for them under that assumption.
6051This is something we'd like to change in the future to provide better
6052support for freestanding environments and non-C-based languages.
6053
6054.. _i_va_arg:
6055
6056'``va_arg``' Instruction
6057^^^^^^^^^^^^^^^^^^^^^^^^
6058
6059Syntax:
6060"""""""
6061
6062::
6063
6064 <resultval> = va_arg <va_list*> <arglist>, <argty>
6065
6066Overview:
6067"""""""""
6068
6069The '``va_arg``' instruction is used to access arguments passed through
6070the "variable argument" area of a function call. It is used to implement
6071the ``va_arg`` macro in C.
6072
6073Arguments:
6074""""""""""
6075
6076This instruction takes a ``va_list*`` value and the type of the
6077argument. It returns a value of the specified argument type and
6078increments the ``va_list`` to point to the next argument. The actual
6079type of ``va_list`` is target specific.
6080
6081Semantics:
6082""""""""""
6083
6084The '``va_arg``' instruction loads an argument of the specified type
6085from the specified ``va_list`` and causes the ``va_list`` to point to
6086the next argument. For more information, see the variable argument
6087handling :ref:`Intrinsic Functions <int_varargs>`.
6088
6089It is legal for this instruction to be called in a function which does
6090not take a variable number of arguments, for example, the ``vfprintf``
6091function.
6092
6093``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6094function <intrinsics>` because it takes a type as an argument.
6095
6096Example:
6097""""""""
6098
6099See the :ref:`variable argument processing <int_varargs>` section.
6100
6101Note that the code generator does not yet fully support va\_arg on many
6102targets. Also, it does not currently support va\_arg with aggregate
6103types on any target.
6104
6105.. _i_landingpad:
6106
6107'``landingpad``' Instruction
6108^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6109
6110Syntax:
6111"""""""
6112
6113::
6114
6115 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6116 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6117
6118 <clause> := catch <type> <value>
6119 <clause> := filter <array constant type> <array constant>
6120
6121Overview:
6122"""""""""
6123
6124The '``landingpad``' instruction is used by `LLVM's exception handling
6125system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006126is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006127code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6128defines values supplied by the personality function (``pers_fn``) upon
6129re-entry to the function. The ``resultval`` has the type ``resultty``.
6130
6131Arguments:
6132""""""""""
6133
6134This instruction takes a ``pers_fn`` value. This is the personality
6135function associated with the unwinding mechanism. The optional
6136``cleanup`` flag indicates that the landing pad block is a cleanup.
6137
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006138A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006139contains the global variable representing the "type" that may be caught
6140or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6141clause takes an array constant as its argument. Use
6142"``[0 x i8**] undef``" for a filter which cannot throw. The
6143'``landingpad``' instruction must contain *at least* one ``clause`` or
6144the ``cleanup`` flag.
6145
6146Semantics:
6147""""""""""
6148
6149The '``landingpad``' instruction defines the values which are set by the
6150personality function (``pers_fn``) upon re-entry to the function, and
6151therefore the "result type" of the ``landingpad`` instruction. As with
6152calling conventions, how the personality function results are
6153represented in LLVM IR is target specific.
6154
6155The clauses are applied in order from top to bottom. If two
6156``landingpad`` instructions are merged together through inlining, the
6157clauses from the calling function are appended to the list of clauses.
6158When the call stack is being unwound due to an exception being thrown,
6159the exception is compared against each ``clause`` in turn. If it doesn't
6160match any of the clauses, and the ``cleanup`` flag is not set, then
6161unwinding continues further up the call stack.
6162
6163The ``landingpad`` instruction has several restrictions:
6164
6165- A landing pad block is a basic block which is the unwind destination
6166 of an '``invoke``' instruction.
6167- A landing pad block must have a '``landingpad``' instruction as its
6168 first non-PHI instruction.
6169- There can be only one '``landingpad``' instruction within the landing
6170 pad block.
6171- A basic block that is not a landing pad block may not include a
6172 '``landingpad``' instruction.
6173- All '``landingpad``' instructions in a function must have the same
6174 personality function.
6175
6176Example:
6177""""""""
6178
6179.. code-block:: llvm
6180
6181 ;; A landing pad which can catch an integer.
6182 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6183 catch i8** @_ZTIi
6184 ;; A landing pad that is a cleanup.
6185 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6186 cleanup
6187 ;; A landing pad which can catch an integer and can only throw a double.
6188 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6189 catch i8** @_ZTIi
6190 filter [1 x i8**] [@_ZTId]
6191
6192.. _intrinsics:
6193
6194Intrinsic Functions
6195===================
6196
6197LLVM supports the notion of an "intrinsic function". These functions
6198have well known names and semantics and are required to follow certain
6199restrictions. Overall, these intrinsics represent an extension mechanism
6200for the LLVM language that does not require changing all of the
6201transformations in LLVM when adding to the language (or the bitcode
6202reader/writer, the parser, etc...).
6203
6204Intrinsic function names must all start with an "``llvm.``" prefix. This
6205prefix is reserved in LLVM for intrinsic names; thus, function names may
6206not begin with this prefix. Intrinsic functions must always be external
6207functions: you cannot define the body of intrinsic functions. Intrinsic
6208functions may only be used in call or invoke instructions: it is illegal
6209to take the address of an intrinsic function. Additionally, because
6210intrinsic functions are part of the LLVM language, it is required if any
6211are added that they be documented here.
6212
6213Some intrinsic functions can be overloaded, i.e., the intrinsic
6214represents a family of functions that perform the same operation but on
6215different data types. Because LLVM can represent over 8 million
6216different integer types, overloading is used commonly to allow an
6217intrinsic function to operate on any integer type. One or more of the
6218argument types or the result type can be overloaded to accept any
6219integer type. Argument types may also be defined as exactly matching a
6220previous argument's type or the result type. This allows an intrinsic
6221function which accepts multiple arguments, but needs all of them to be
6222of the same type, to only be overloaded with respect to a single
6223argument or the result.
6224
6225Overloaded intrinsics will have the names of its overloaded argument
6226types encoded into its function name, each preceded by a period. Only
6227those types which are overloaded result in a name suffix. Arguments
6228whose type is matched against another type do not. For example, the
6229``llvm.ctpop`` function can take an integer of any width and returns an
6230integer of exactly the same integer width. This leads to a family of
6231functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6232``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6233overloaded, and only one type suffix is required. Because the argument's
6234type is matched against the return type, it does not require its own
6235name suffix.
6236
6237To learn how to add an intrinsic function, please see the `Extending
6238LLVM Guide <ExtendingLLVM.html>`_.
6239
6240.. _int_varargs:
6241
6242Variable Argument Handling Intrinsics
6243-------------------------------------
6244
6245Variable argument support is defined in LLVM with the
6246:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6247functions. These functions are related to the similarly named macros
6248defined in the ``<stdarg.h>`` header file.
6249
6250All of these functions operate on arguments that use a target-specific
6251value type "``va_list``". The LLVM assembly language reference manual
6252does not define what this type is, so all transformations should be
6253prepared to handle these functions regardless of the type used.
6254
6255This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6256variable argument handling intrinsic functions are used.
6257
6258.. code-block:: llvm
6259
6260 define i32 @test(i32 %X, ...) {
6261 ; Initialize variable argument processing
6262 %ap = alloca i8*
6263 %ap2 = bitcast i8** %ap to i8*
6264 call void @llvm.va_start(i8* %ap2)
6265
6266 ; Read a single integer argument
6267 %tmp = va_arg i8** %ap, i32
6268
6269 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6270 %aq = alloca i8*
6271 %aq2 = bitcast i8** %aq to i8*
6272 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6273 call void @llvm.va_end(i8* %aq2)
6274
6275 ; Stop processing of arguments.
6276 call void @llvm.va_end(i8* %ap2)
6277 ret i32 %tmp
6278 }
6279
6280 declare void @llvm.va_start(i8*)
6281 declare void @llvm.va_copy(i8*, i8*)
6282 declare void @llvm.va_end(i8*)
6283
6284.. _int_va_start:
6285
6286'``llvm.va_start``' Intrinsic
6287^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6288
6289Syntax:
6290"""""""
6291
6292::
6293
6294 declare void %llvm.va_start(i8* <arglist>)
6295
6296Overview:
6297"""""""""
6298
6299The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6300subsequent use by ``va_arg``.
6301
6302Arguments:
6303""""""""""
6304
6305The argument is a pointer to a ``va_list`` element to initialize.
6306
6307Semantics:
6308""""""""""
6309
6310The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6311available in C. In a target-dependent way, it initializes the
6312``va_list`` element to which the argument points, so that the next call
6313to ``va_arg`` will produce the first variable argument passed to the
6314function. Unlike the C ``va_start`` macro, this intrinsic does not need
6315to know the last argument of the function as the compiler can figure
6316that out.
6317
6318'``llvm.va_end``' Intrinsic
6319^^^^^^^^^^^^^^^^^^^^^^^^^^^
6320
6321Syntax:
6322"""""""
6323
6324::
6325
6326 declare void @llvm.va_end(i8* <arglist>)
6327
6328Overview:
6329"""""""""
6330
6331The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6332initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6333
6334Arguments:
6335""""""""""
6336
6337The argument is a pointer to a ``va_list`` to destroy.
6338
6339Semantics:
6340""""""""""
6341
6342The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6343available in C. In a target-dependent way, it destroys the ``va_list``
6344element to which the argument points. Calls to
6345:ref:`llvm.va_start <int_va_start>` and
6346:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6347``llvm.va_end``.
6348
6349.. _int_va_copy:
6350
6351'``llvm.va_copy``' Intrinsic
6352^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6353
6354Syntax:
6355"""""""
6356
6357::
6358
6359 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6360
6361Overview:
6362"""""""""
6363
6364The '``llvm.va_copy``' intrinsic copies the current argument position
6365from the source argument list to the destination argument list.
6366
6367Arguments:
6368""""""""""
6369
6370The first argument is a pointer to a ``va_list`` element to initialize.
6371The second argument is a pointer to a ``va_list`` element to copy from.
6372
6373Semantics:
6374""""""""""
6375
6376The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6377available in C. In a target-dependent way, it copies the source
6378``va_list`` element into the destination ``va_list`` element. This
6379intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6380arbitrarily complex and require, for example, memory allocation.
6381
6382Accurate Garbage Collection Intrinsics
6383--------------------------------------
6384
6385LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6386(GC) requires the implementation and generation of these intrinsics.
6387These intrinsics allow identification of :ref:`GC roots on the
6388stack <int_gcroot>`, as well as garbage collector implementations that
6389require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6390Front-ends for type-safe garbage collected languages should generate
6391these intrinsics to make use of the LLVM garbage collectors. For more
6392details, see `Accurate Garbage Collection with
6393LLVM <GarbageCollection.html>`_.
6394
6395The garbage collection intrinsics only operate on objects in the generic
6396address space (address space zero).
6397
6398.. _int_gcroot:
6399
6400'``llvm.gcroot``' Intrinsic
6401^^^^^^^^^^^^^^^^^^^^^^^^^^^
6402
6403Syntax:
6404"""""""
6405
6406::
6407
6408 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6409
6410Overview:
6411"""""""""
6412
6413The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6414the code generator, and allows some metadata to be associated with it.
6415
6416Arguments:
6417""""""""""
6418
6419The first argument specifies the address of a stack object that contains
6420the root pointer. The second pointer (which must be either a constant or
6421a global value address) contains the meta-data to be associated with the
6422root.
6423
6424Semantics:
6425""""""""""
6426
6427At runtime, a call to this intrinsic stores a null pointer into the
6428"ptrloc" location. At compile-time, the code generator generates
6429information to allow the runtime to find the pointer at GC safe points.
6430The '``llvm.gcroot``' intrinsic may only be used in a function which
6431:ref:`specifies a GC algorithm <gc>`.
6432
6433.. _int_gcread:
6434
6435'``llvm.gcread``' Intrinsic
6436^^^^^^^^^^^^^^^^^^^^^^^^^^^
6437
6438Syntax:
6439"""""""
6440
6441::
6442
6443 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6444
6445Overview:
6446"""""""""
6447
6448The '``llvm.gcread``' intrinsic identifies reads of references from heap
6449locations, allowing garbage collector implementations that require read
6450barriers.
6451
6452Arguments:
6453""""""""""
6454
6455The second argument is the address to read from, which should be an
6456address allocated from the garbage collector. The first object is a
6457pointer to the start of the referenced object, if needed by the language
6458runtime (otherwise null).
6459
6460Semantics:
6461""""""""""
6462
6463The '``llvm.gcread``' intrinsic has the same semantics as a load
6464instruction, but may be replaced with substantially more complex code by
6465the garbage collector runtime, as needed. The '``llvm.gcread``'
6466intrinsic may only be used in a function which :ref:`specifies a GC
6467algorithm <gc>`.
6468
6469.. _int_gcwrite:
6470
6471'``llvm.gcwrite``' Intrinsic
6472^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6473
6474Syntax:
6475"""""""
6476
6477::
6478
6479 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6480
6481Overview:
6482"""""""""
6483
6484The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6485locations, allowing garbage collector implementations that require write
6486barriers (such as generational or reference counting collectors).
6487
6488Arguments:
6489""""""""""
6490
6491The first argument is the reference to store, the second is the start of
6492the object to store it to, and the third is the address of the field of
6493Obj to store to. If the runtime does not require a pointer to the
6494object, Obj may be null.
6495
6496Semantics:
6497""""""""""
6498
6499The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6500instruction, but may be replaced with substantially more complex code by
6501the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6502intrinsic may only be used in a function which :ref:`specifies a GC
6503algorithm <gc>`.
6504
6505Code Generator Intrinsics
6506-------------------------
6507
6508These intrinsics are provided by LLVM to expose special features that
6509may only be implemented with code generator support.
6510
6511'``llvm.returnaddress``' Intrinsic
6512^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6513
6514Syntax:
6515"""""""
6516
6517::
6518
6519 declare i8 *@llvm.returnaddress(i32 <level>)
6520
6521Overview:
6522"""""""""
6523
6524The '``llvm.returnaddress``' intrinsic attempts to compute a
6525target-specific value indicating the return address of the current
6526function or one of its callers.
6527
6528Arguments:
6529""""""""""
6530
6531The argument to this intrinsic indicates which function to return the
6532address for. Zero indicates the calling function, one indicates its
6533caller, etc. The argument is **required** to be a constant integer
6534value.
6535
6536Semantics:
6537""""""""""
6538
6539The '``llvm.returnaddress``' intrinsic either returns a pointer
6540indicating the return address of the specified call frame, or zero if it
6541cannot be identified. The value returned by this intrinsic is likely to
6542be incorrect or 0 for arguments other than zero, so it should only be
6543used for debugging purposes.
6544
6545Note that calling this intrinsic does not prevent function inlining or
6546other aggressive transformations, so the value returned may not be that
6547of the obvious source-language caller.
6548
6549'``llvm.frameaddress``' Intrinsic
6550^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6551
6552Syntax:
6553"""""""
6554
6555::
6556
6557 declare i8* @llvm.frameaddress(i32 <level>)
6558
6559Overview:
6560"""""""""
6561
6562The '``llvm.frameaddress``' intrinsic attempts to return the
6563target-specific frame pointer value for the specified stack frame.
6564
6565Arguments:
6566""""""""""
6567
6568The argument to this intrinsic indicates which function to return the
6569frame pointer for. Zero indicates the calling function, one indicates
6570its caller, etc. The argument is **required** to be a constant integer
6571value.
6572
6573Semantics:
6574""""""""""
6575
6576The '``llvm.frameaddress``' intrinsic either returns a pointer
6577indicating the frame address of the specified call frame, or zero if it
6578cannot be identified. The value returned by this intrinsic is likely to
6579be incorrect or 0 for arguments other than zero, so it should only be
6580used for debugging purposes.
6581
6582Note that calling this intrinsic does not prevent function inlining or
6583other aggressive transformations, so the value returned may not be that
6584of the obvious source-language caller.
6585
6586.. _int_stacksave:
6587
6588'``llvm.stacksave``' Intrinsic
6589^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6590
6591Syntax:
6592"""""""
6593
6594::
6595
6596 declare i8* @llvm.stacksave()
6597
6598Overview:
6599"""""""""
6600
6601The '``llvm.stacksave``' intrinsic is used to remember the current state
6602of the function stack, for use with
6603:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6604implementing language features like scoped automatic variable sized
6605arrays in C99.
6606
6607Semantics:
6608""""""""""
6609
6610This intrinsic returns a opaque pointer value that can be passed to
6611:ref:`llvm.stackrestore <int_stackrestore>`. When an
6612``llvm.stackrestore`` intrinsic is executed with a value saved from
6613``llvm.stacksave``, it effectively restores the state of the stack to
6614the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6615practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6616were allocated after the ``llvm.stacksave`` was executed.
6617
6618.. _int_stackrestore:
6619
6620'``llvm.stackrestore``' Intrinsic
6621^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6622
6623Syntax:
6624"""""""
6625
6626::
6627
6628 declare void @llvm.stackrestore(i8* %ptr)
6629
6630Overview:
6631"""""""""
6632
6633The '``llvm.stackrestore``' intrinsic is used to restore the state of
6634the function stack to the state it was in when the corresponding
6635:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6636useful for implementing language features like scoped automatic variable
6637sized arrays in C99.
6638
6639Semantics:
6640""""""""""
6641
6642See the description for :ref:`llvm.stacksave <int_stacksave>`.
6643
6644'``llvm.prefetch``' Intrinsic
6645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6646
6647Syntax:
6648"""""""
6649
6650::
6651
6652 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6653
6654Overview:
6655"""""""""
6656
6657The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6658insert a prefetch instruction if supported; otherwise, it is a noop.
6659Prefetches have no effect on the behavior of the program but can change
6660its performance characteristics.
6661
6662Arguments:
6663""""""""""
6664
6665``address`` is the address to be prefetched, ``rw`` is the specifier
6666determining if the fetch should be for a read (0) or write (1), and
6667``locality`` is a temporal locality specifier ranging from (0) - no
6668locality, to (3) - extremely local keep in cache. The ``cache type``
6669specifies whether the prefetch is performed on the data (1) or
6670instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6671arguments must be constant integers.
6672
6673Semantics:
6674""""""""""
6675
6676This intrinsic does not modify the behavior of the program. In
6677particular, prefetches cannot trap and do not produce a value. On
6678targets that support this intrinsic, the prefetch can provide hints to
6679the processor cache for better performance.
6680
6681'``llvm.pcmarker``' Intrinsic
6682^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6683
6684Syntax:
6685"""""""
6686
6687::
6688
6689 declare void @llvm.pcmarker(i32 <id>)
6690
6691Overview:
6692"""""""""
6693
6694The '``llvm.pcmarker``' intrinsic is a method to export a Program
6695Counter (PC) in a region of code to simulators and other tools. The
6696method is target specific, but it is expected that the marker will use
6697exported symbols to transmit the PC of the marker. The marker makes no
6698guarantees that it will remain with any specific instruction after
6699optimizations. It is possible that the presence of a marker will inhibit
6700optimizations. The intended use is to be inserted after optimizations to
6701allow correlations of simulation runs.
6702
6703Arguments:
6704""""""""""
6705
6706``id`` is a numerical id identifying the marker.
6707
6708Semantics:
6709""""""""""
6710
6711This intrinsic does not modify the behavior of the program. Backends
6712that do not support this intrinsic may ignore it.
6713
6714'``llvm.readcyclecounter``' Intrinsic
6715^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6716
6717Syntax:
6718"""""""
6719
6720::
6721
6722 declare i64 @llvm.readcyclecounter()
6723
6724Overview:
6725"""""""""
6726
6727The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6728counter register (or similar low latency, high accuracy clocks) on those
6729targets that support it. On X86, it should map to RDTSC. On Alpha, it
6730should map to RPCC. As the backing counters overflow quickly (on the
6731order of 9 seconds on alpha), this should only be used for small
6732timings.
6733
6734Semantics:
6735""""""""""
6736
6737When directly supported, reading the cycle counter should not modify any
6738memory. Implementations are allowed to either return a application
6739specific value or a system wide value. On backends without support, this
6740is lowered to a constant 0.
6741
Tim Northover5a02fc42013-05-23 19:11:20 +00006742Note that runtime support may be conditional on the privilege-level code is
6743running at and the host platform.
6744
Sean Silvaf722b002012-12-07 10:36:55 +00006745Standard C Library Intrinsics
6746-----------------------------
6747
6748LLVM provides intrinsics for a few important standard C library
6749functions. These intrinsics allow source-language front-ends to pass
6750information about the alignment of the pointer arguments to the code
6751generator, providing opportunity for more efficient code generation.
6752
6753.. _int_memcpy:
6754
6755'``llvm.memcpy``' Intrinsic
6756^^^^^^^^^^^^^^^^^^^^^^^^^^^
6757
6758Syntax:
6759"""""""
6760
6761This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6762integer bit width and for different address spaces. Not all targets
6763support all bit widths however.
6764
6765::
6766
6767 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6768 i32 <len>, i32 <align>, i1 <isvolatile>)
6769 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6770 i64 <len>, i32 <align>, i1 <isvolatile>)
6771
6772Overview:
6773"""""""""
6774
6775The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6776source location to the destination location.
6777
6778Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6779intrinsics do not return a value, takes extra alignment/isvolatile
6780arguments and the pointers can be in specified address spaces.
6781
6782Arguments:
6783""""""""""
6784
6785The first argument is a pointer to the destination, the second is a
6786pointer to the source. The third argument is an integer argument
6787specifying the number of bytes to copy, the fourth argument is the
6788alignment of the source and destination locations, and the fifth is a
6789boolean indicating a volatile access.
6790
6791If the call to this intrinsic has an alignment value that is not 0 or 1,
6792then the caller guarantees that both the source and destination pointers
6793are aligned to that boundary.
6794
6795If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6796a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6797very cleanly specified and it is unwise to depend on it.
6798
6799Semantics:
6800""""""""""
6801
6802The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6803source location to the destination location, which are not allowed to
6804overlap. It copies "len" bytes of memory over. If the argument is known
6805to be aligned to some boundary, this can be specified as the fourth
6806argument, otherwise it should be set to 0 or 1.
6807
6808'``llvm.memmove``' Intrinsic
6809^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6810
6811Syntax:
6812"""""""
6813
6814This is an overloaded intrinsic. You can use llvm.memmove on any integer
6815bit width and for different address space. Not all targets support all
6816bit widths however.
6817
6818::
6819
6820 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6821 i32 <len>, i32 <align>, i1 <isvolatile>)
6822 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6823 i64 <len>, i32 <align>, i1 <isvolatile>)
6824
6825Overview:
6826"""""""""
6827
6828The '``llvm.memmove.*``' intrinsics move a block of memory from the
6829source location to the destination location. It is similar to the
6830'``llvm.memcpy``' intrinsic but allows the two memory locations to
6831overlap.
6832
6833Note that, unlike the standard libc function, the ``llvm.memmove.*``
6834intrinsics do not return a value, takes extra alignment/isvolatile
6835arguments and the pointers can be in specified address spaces.
6836
6837Arguments:
6838""""""""""
6839
6840The first argument is a pointer to the destination, the second is a
6841pointer to the source. The third argument is an integer argument
6842specifying the number of bytes to copy, the fourth argument is the
6843alignment of the source and destination locations, and the fifth is a
6844boolean indicating a volatile access.
6845
6846If the call to this intrinsic has an alignment value that is not 0 or 1,
6847then the caller guarantees that the source and destination pointers are
6848aligned to that boundary.
6849
6850If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6851is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6852not very cleanly specified and it is unwise to depend on it.
6853
6854Semantics:
6855""""""""""
6856
6857The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6858source location to the destination location, which may overlap. It
6859copies "len" bytes of memory over. If the argument is known to be
6860aligned to some boundary, this can be specified as the fourth argument,
6861otherwise it should be set to 0 or 1.
6862
6863'``llvm.memset.*``' Intrinsics
6864^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6865
6866Syntax:
6867"""""""
6868
6869This is an overloaded intrinsic. You can use llvm.memset on any integer
6870bit width and for different address spaces. However, not all targets
6871support all bit widths.
6872
6873::
6874
6875 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6876 i32 <len>, i32 <align>, i1 <isvolatile>)
6877 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6878 i64 <len>, i32 <align>, i1 <isvolatile>)
6879
6880Overview:
6881"""""""""
6882
6883The '``llvm.memset.*``' intrinsics fill a block of memory with a
6884particular byte value.
6885
6886Note that, unlike the standard libc function, the ``llvm.memset``
6887intrinsic does not return a value and takes extra alignment/volatile
6888arguments. Also, the destination can be in an arbitrary address space.
6889
6890Arguments:
6891""""""""""
6892
6893The first argument is a pointer to the destination to fill, the second
6894is the byte value with which to fill it, the third argument is an
6895integer argument specifying the number of bytes to fill, and the fourth
6896argument is the known alignment of the destination location.
6897
6898If the call to this intrinsic has an alignment value that is not 0 or 1,
6899then the caller guarantees that the destination pointer is aligned to
6900that boundary.
6901
6902If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6903a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6904very cleanly specified and it is unwise to depend on it.
6905
6906Semantics:
6907""""""""""
6908
6909The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6910at the destination location. If the argument is known to be aligned to
6911some boundary, this can be specified as the fourth argument, otherwise
6912it should be set to 0 or 1.
6913
6914'``llvm.sqrt.*``' Intrinsic
6915^^^^^^^^^^^^^^^^^^^^^^^^^^^
6916
6917Syntax:
6918"""""""
6919
6920This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6921floating point or vector of floating point type. Not all targets support
6922all types however.
6923
6924::
6925
6926 declare float @llvm.sqrt.f32(float %Val)
6927 declare double @llvm.sqrt.f64(double %Val)
6928 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6929 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6930 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6931
6932Overview:
6933"""""""""
6934
6935The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6936returning the same value as the libm '``sqrt``' functions would. Unlike
6937``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6938negative numbers other than -0.0 (which allows for better optimization,
6939because there is no need to worry about errno being set).
6940``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6941
6942Arguments:
6943""""""""""
6944
6945The argument and return value are floating point numbers of the same
6946type.
6947
6948Semantics:
6949""""""""""
6950
6951This function returns the sqrt of the specified operand if it is a
6952nonnegative floating point number.
6953
6954'``llvm.powi.*``' Intrinsic
6955^^^^^^^^^^^^^^^^^^^^^^^^^^^
6956
6957Syntax:
6958"""""""
6959
6960This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6961floating point or vector of floating point type. Not all targets support
6962all types however.
6963
6964::
6965
6966 declare float @llvm.powi.f32(float %Val, i32 %power)
6967 declare double @llvm.powi.f64(double %Val, i32 %power)
6968 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6969 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6970 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6971
6972Overview:
6973"""""""""
6974
6975The '``llvm.powi.*``' intrinsics return the first operand raised to the
6976specified (positive or negative) power. The order of evaluation of
6977multiplications is not defined. When a vector of floating point type is
6978used, the second argument remains a scalar integer value.
6979
6980Arguments:
6981""""""""""
6982
6983The second argument is an integer power, and the first is a value to
6984raise to that power.
6985
6986Semantics:
6987""""""""""
6988
6989This function returns the first value raised to the second power with an
6990unspecified sequence of rounding operations.
6991
6992'``llvm.sin.*``' Intrinsic
6993^^^^^^^^^^^^^^^^^^^^^^^^^^
6994
6995Syntax:
6996"""""""
6997
6998This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6999floating point or vector of floating point type. Not all targets support
7000all types however.
7001
7002::
7003
7004 declare float @llvm.sin.f32(float %Val)
7005 declare double @llvm.sin.f64(double %Val)
7006 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7007 declare fp128 @llvm.sin.f128(fp128 %Val)
7008 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7009
7010Overview:
7011"""""""""
7012
7013The '``llvm.sin.*``' intrinsics return the sine of the operand.
7014
7015Arguments:
7016""""""""""
7017
7018The argument and return value are floating point numbers of the same
7019type.
7020
7021Semantics:
7022""""""""""
7023
7024This function returns the sine of the specified operand, returning the
7025same values as the libm ``sin`` functions would, and handles error
7026conditions in the same way.
7027
7028'``llvm.cos.*``' Intrinsic
7029^^^^^^^^^^^^^^^^^^^^^^^^^^
7030
7031Syntax:
7032"""""""
7033
7034This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7035floating point or vector of floating point type. Not all targets support
7036all types however.
7037
7038::
7039
7040 declare float @llvm.cos.f32(float %Val)
7041 declare double @llvm.cos.f64(double %Val)
7042 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7043 declare fp128 @llvm.cos.f128(fp128 %Val)
7044 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7045
7046Overview:
7047"""""""""
7048
7049The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7050
7051Arguments:
7052""""""""""
7053
7054The argument and return value are floating point numbers of the same
7055type.
7056
7057Semantics:
7058""""""""""
7059
7060This function returns the cosine of the specified operand, returning the
7061same values as the libm ``cos`` functions would, and handles error
7062conditions in the same way.
7063
7064'``llvm.pow.*``' Intrinsic
7065^^^^^^^^^^^^^^^^^^^^^^^^^^
7066
7067Syntax:
7068"""""""
7069
7070This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7071floating point or vector of floating point type. Not all targets support
7072all types however.
7073
7074::
7075
7076 declare float @llvm.pow.f32(float %Val, float %Power)
7077 declare double @llvm.pow.f64(double %Val, double %Power)
7078 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7079 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7080 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7081
7082Overview:
7083"""""""""
7084
7085The '``llvm.pow.*``' intrinsics return the first operand raised to the
7086specified (positive or negative) power.
7087
7088Arguments:
7089""""""""""
7090
7091The second argument is a floating point power, and the first is a value
7092to raise to that power.
7093
7094Semantics:
7095""""""""""
7096
7097This function returns the first value raised to the second power,
7098returning the same values as the libm ``pow`` functions would, and
7099handles error conditions in the same way.
7100
7101'``llvm.exp.*``' Intrinsic
7102^^^^^^^^^^^^^^^^^^^^^^^^^^
7103
7104Syntax:
7105"""""""
7106
7107This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7108floating point or vector of floating point type. Not all targets support
7109all types however.
7110
7111::
7112
7113 declare float @llvm.exp.f32(float %Val)
7114 declare double @llvm.exp.f64(double %Val)
7115 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7116 declare fp128 @llvm.exp.f128(fp128 %Val)
7117 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7118
7119Overview:
7120"""""""""
7121
7122The '``llvm.exp.*``' intrinsics perform the exp function.
7123
7124Arguments:
7125""""""""""
7126
7127The argument and return value are floating point numbers of the same
7128type.
7129
7130Semantics:
7131""""""""""
7132
7133This function returns the same values as the libm ``exp`` functions
7134would, and handles error conditions in the same way.
7135
7136'``llvm.exp2.*``' Intrinsic
7137^^^^^^^^^^^^^^^^^^^^^^^^^^^
7138
7139Syntax:
7140"""""""
7141
7142This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7143floating point or vector of floating point type. Not all targets support
7144all types however.
7145
7146::
7147
7148 declare float @llvm.exp2.f32(float %Val)
7149 declare double @llvm.exp2.f64(double %Val)
7150 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7151 declare fp128 @llvm.exp2.f128(fp128 %Val)
7152 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7153
7154Overview:
7155"""""""""
7156
7157The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7158
7159Arguments:
7160""""""""""
7161
7162The argument and return value are floating point numbers of the same
7163type.
7164
7165Semantics:
7166""""""""""
7167
7168This function returns the same values as the libm ``exp2`` functions
7169would, and handles error conditions in the same way.
7170
7171'``llvm.log.*``' Intrinsic
7172^^^^^^^^^^^^^^^^^^^^^^^^^^
7173
7174Syntax:
7175"""""""
7176
7177This is an overloaded intrinsic. You can use ``llvm.log`` on any
7178floating point or vector of floating point type. Not all targets support
7179all types however.
7180
7181::
7182
7183 declare float @llvm.log.f32(float %Val)
7184 declare double @llvm.log.f64(double %Val)
7185 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7186 declare fp128 @llvm.log.f128(fp128 %Val)
7187 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7188
7189Overview:
7190"""""""""
7191
7192The '``llvm.log.*``' intrinsics perform the log function.
7193
7194Arguments:
7195""""""""""
7196
7197The argument and return value are floating point numbers of the same
7198type.
7199
7200Semantics:
7201""""""""""
7202
7203This function returns the same values as the libm ``log`` functions
7204would, and handles error conditions in the same way.
7205
7206'``llvm.log10.*``' Intrinsic
7207^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7208
7209Syntax:
7210"""""""
7211
7212This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7213floating point or vector of floating point type. Not all targets support
7214all types however.
7215
7216::
7217
7218 declare float @llvm.log10.f32(float %Val)
7219 declare double @llvm.log10.f64(double %Val)
7220 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7221 declare fp128 @llvm.log10.f128(fp128 %Val)
7222 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7223
7224Overview:
7225"""""""""
7226
7227The '``llvm.log10.*``' intrinsics perform the log10 function.
7228
7229Arguments:
7230""""""""""
7231
7232The argument and return value are floating point numbers of the same
7233type.
7234
7235Semantics:
7236""""""""""
7237
7238This function returns the same values as the libm ``log10`` functions
7239would, and handles error conditions in the same way.
7240
7241'``llvm.log2.*``' Intrinsic
7242^^^^^^^^^^^^^^^^^^^^^^^^^^^
7243
7244Syntax:
7245"""""""
7246
7247This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7248floating point or vector of floating point type. Not all targets support
7249all types however.
7250
7251::
7252
7253 declare float @llvm.log2.f32(float %Val)
7254 declare double @llvm.log2.f64(double %Val)
7255 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7256 declare fp128 @llvm.log2.f128(fp128 %Val)
7257 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7258
7259Overview:
7260"""""""""
7261
7262The '``llvm.log2.*``' intrinsics perform the log2 function.
7263
7264Arguments:
7265""""""""""
7266
7267The argument and return value are floating point numbers of the same
7268type.
7269
7270Semantics:
7271""""""""""
7272
7273This function returns the same values as the libm ``log2`` functions
7274would, and handles error conditions in the same way.
7275
7276'``llvm.fma.*``' Intrinsic
7277^^^^^^^^^^^^^^^^^^^^^^^^^^
7278
7279Syntax:
7280"""""""
7281
7282This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7283floating point or vector of floating point type. Not all targets support
7284all types however.
7285
7286::
7287
7288 declare float @llvm.fma.f32(float %a, float %b, float %c)
7289 declare double @llvm.fma.f64(double %a, double %b, double %c)
7290 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7291 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7292 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7293
7294Overview:
7295"""""""""
7296
7297The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7298operation.
7299
7300Arguments:
7301""""""""""
7302
7303The argument and return value are floating point numbers of the same
7304type.
7305
7306Semantics:
7307""""""""""
7308
7309This function returns the same values as the libm ``fma`` functions
7310would.
7311
7312'``llvm.fabs.*``' Intrinsic
7313^^^^^^^^^^^^^^^^^^^^^^^^^^^
7314
7315Syntax:
7316"""""""
7317
7318This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7319floating point or vector of floating point type. Not all targets support
7320all types however.
7321
7322::
7323
7324 declare float @llvm.fabs.f32(float %Val)
7325 declare double @llvm.fabs.f64(double %Val)
7326 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7327 declare fp128 @llvm.fabs.f128(fp128 %Val)
7328 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7329
7330Overview:
7331"""""""""
7332
7333The '``llvm.fabs.*``' intrinsics return the absolute value of the
7334operand.
7335
7336Arguments:
7337""""""""""
7338
7339The argument and return value are floating point numbers of the same
7340type.
7341
7342Semantics:
7343""""""""""
7344
7345This function returns the same values as the libm ``fabs`` functions
7346would, and handles error conditions in the same way.
7347
7348'``llvm.floor.*``' Intrinsic
7349^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7350
7351Syntax:
7352"""""""
7353
7354This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7355floating point or vector of floating point type. Not all targets support
7356all types however.
7357
7358::
7359
7360 declare float @llvm.floor.f32(float %Val)
7361 declare double @llvm.floor.f64(double %Val)
7362 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7363 declare fp128 @llvm.floor.f128(fp128 %Val)
7364 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7365
7366Overview:
7367"""""""""
7368
7369The '``llvm.floor.*``' intrinsics return the floor of the operand.
7370
7371Arguments:
7372""""""""""
7373
7374The argument and return value are floating point numbers of the same
7375type.
7376
7377Semantics:
7378""""""""""
7379
7380This function returns the same values as the libm ``floor`` functions
7381would, and handles error conditions in the same way.
7382
7383'``llvm.ceil.*``' Intrinsic
7384^^^^^^^^^^^^^^^^^^^^^^^^^^^
7385
7386Syntax:
7387"""""""
7388
7389This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7390floating point or vector of floating point type. Not all targets support
7391all types however.
7392
7393::
7394
7395 declare float @llvm.ceil.f32(float %Val)
7396 declare double @llvm.ceil.f64(double %Val)
7397 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7398 declare fp128 @llvm.ceil.f128(fp128 %Val)
7399 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7400
7401Overview:
7402"""""""""
7403
7404The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7405
7406Arguments:
7407""""""""""
7408
7409The argument and return value are floating point numbers of the same
7410type.
7411
7412Semantics:
7413""""""""""
7414
7415This function returns the same values as the libm ``ceil`` functions
7416would, and handles error conditions in the same way.
7417
7418'``llvm.trunc.*``' Intrinsic
7419^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7420
7421Syntax:
7422"""""""
7423
7424This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7425floating point or vector of floating point type. Not all targets support
7426all types however.
7427
7428::
7429
7430 declare float @llvm.trunc.f32(float %Val)
7431 declare double @llvm.trunc.f64(double %Val)
7432 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7433 declare fp128 @llvm.trunc.f128(fp128 %Val)
7434 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7435
7436Overview:
7437"""""""""
7438
7439The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7440nearest integer not larger in magnitude than the operand.
7441
7442Arguments:
7443""""""""""
7444
7445The argument and return value are floating point numbers of the same
7446type.
7447
7448Semantics:
7449""""""""""
7450
7451This function returns the same values as the libm ``trunc`` functions
7452would, and handles error conditions in the same way.
7453
7454'``llvm.rint.*``' Intrinsic
7455^^^^^^^^^^^^^^^^^^^^^^^^^^^
7456
7457Syntax:
7458"""""""
7459
7460This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7461floating point or vector of floating point type. Not all targets support
7462all types however.
7463
7464::
7465
7466 declare float @llvm.rint.f32(float %Val)
7467 declare double @llvm.rint.f64(double %Val)
7468 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7469 declare fp128 @llvm.rint.f128(fp128 %Val)
7470 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7471
7472Overview:
7473"""""""""
7474
7475The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7476nearest integer. It may raise an inexact floating-point exception if the
7477operand isn't an integer.
7478
7479Arguments:
7480""""""""""
7481
7482The argument and return value are floating point numbers of the same
7483type.
7484
7485Semantics:
7486""""""""""
7487
7488This function returns the same values as the libm ``rint`` functions
7489would, and handles error conditions in the same way.
7490
7491'``llvm.nearbyint.*``' Intrinsic
7492^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7493
7494Syntax:
7495"""""""
7496
7497This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7498floating point or vector of floating point type. Not all targets support
7499all types however.
7500
7501::
7502
7503 declare float @llvm.nearbyint.f32(float %Val)
7504 declare double @llvm.nearbyint.f64(double %Val)
7505 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7506 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7507 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7508
7509Overview:
7510"""""""""
7511
7512The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7513nearest integer.
7514
7515Arguments:
7516""""""""""
7517
7518The argument and return value are floating point numbers of the same
7519type.
7520
7521Semantics:
7522""""""""""
7523
7524This function returns the same values as the libm ``nearbyint``
7525functions would, and handles error conditions in the same way.
7526
7527Bit Manipulation Intrinsics
7528---------------------------
7529
7530LLVM provides intrinsics for a few important bit manipulation
7531operations. These allow efficient code generation for some algorithms.
7532
7533'``llvm.bswap.*``' Intrinsics
7534^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7535
7536Syntax:
7537"""""""
7538
7539This is an overloaded intrinsic function. You can use bswap on any
7540integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7541
7542::
7543
7544 declare i16 @llvm.bswap.i16(i16 <id>)
7545 declare i32 @llvm.bswap.i32(i32 <id>)
7546 declare i64 @llvm.bswap.i64(i64 <id>)
7547
7548Overview:
7549"""""""""
7550
7551The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7552values with an even number of bytes (positive multiple of 16 bits).
7553These are useful for performing operations on data that is not in the
7554target's native byte order.
7555
7556Semantics:
7557""""""""""
7558
7559The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7560and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7561intrinsic returns an i32 value that has the four bytes of the input i32
7562swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7563returned i32 will have its bytes in 3, 2, 1, 0 order. The
7564``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7565concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7566respectively).
7567
7568'``llvm.ctpop.*``' Intrinsic
7569^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7570
7571Syntax:
7572"""""""
7573
7574This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7575bit width, or on any vector with integer elements. Not all targets
7576support all bit widths or vector types, however.
7577
7578::
7579
7580 declare i8 @llvm.ctpop.i8(i8 <src>)
7581 declare i16 @llvm.ctpop.i16(i16 <src>)
7582 declare i32 @llvm.ctpop.i32(i32 <src>)
7583 declare i64 @llvm.ctpop.i64(i64 <src>)
7584 declare i256 @llvm.ctpop.i256(i256 <src>)
7585 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7586
7587Overview:
7588"""""""""
7589
7590The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7591in a value.
7592
7593Arguments:
7594""""""""""
7595
7596The only argument is the value to be counted. The argument may be of any
7597integer type, or a vector with integer elements. The return type must
7598match the argument type.
7599
7600Semantics:
7601""""""""""
7602
7603The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7604each element of a vector.
7605
7606'``llvm.ctlz.*``' Intrinsic
7607^^^^^^^^^^^^^^^^^^^^^^^^^^^
7608
7609Syntax:
7610"""""""
7611
7612This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7613integer bit width, or any vector whose elements are integers. Not all
7614targets support all bit widths or vector types, however.
7615
7616::
7617
7618 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7619 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7620 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7621 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7622 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7623 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7624
7625Overview:
7626"""""""""
7627
7628The '``llvm.ctlz``' family of intrinsic functions counts the number of
7629leading zeros in a variable.
7630
7631Arguments:
7632""""""""""
7633
7634The first argument is the value to be counted. This argument may be of
7635any integer type, or a vectory with integer element type. The return
7636type must match the first argument type.
7637
7638The second argument must be a constant and is a flag to indicate whether
7639the intrinsic should ensure that a zero as the first argument produces a
7640defined result. Historically some architectures did not provide a
7641defined result for zero values as efficiently, and many algorithms are
7642now predicated on avoiding zero-value inputs.
7643
7644Semantics:
7645""""""""""
7646
7647The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7648zeros in a variable, or within each element of the vector. If
7649``src == 0`` then the result is the size in bits of the type of ``src``
7650if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7651``llvm.ctlz(i32 2) = 30``.
7652
7653'``llvm.cttz.*``' Intrinsic
7654^^^^^^^^^^^^^^^^^^^^^^^^^^^
7655
7656Syntax:
7657"""""""
7658
7659This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7660integer bit width, or any vector of integer elements. Not all targets
7661support all bit widths or vector types, however.
7662
7663::
7664
7665 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7666 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7667 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7668 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7669 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7670 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7671
7672Overview:
7673"""""""""
7674
7675The '``llvm.cttz``' family of intrinsic functions counts the number of
7676trailing zeros.
7677
7678Arguments:
7679""""""""""
7680
7681The first argument is the value to be counted. This argument may be of
7682any integer type, or a vectory with integer element type. The return
7683type must match the first argument type.
7684
7685The second argument must be a constant and is a flag to indicate whether
7686the intrinsic should ensure that a zero as the first argument produces a
7687defined result. Historically some architectures did not provide a
7688defined result for zero values as efficiently, and many algorithms are
7689now predicated on avoiding zero-value inputs.
7690
7691Semantics:
7692""""""""""
7693
7694The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7695zeros in a variable, or within each element of a vector. If ``src == 0``
7696then the result is the size in bits of the type of ``src`` if
7697``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7698``llvm.cttz(2) = 1``.
7699
7700Arithmetic with Overflow Intrinsics
7701-----------------------------------
7702
7703LLVM provides intrinsics for some arithmetic with overflow operations.
7704
7705'``llvm.sadd.with.overflow.*``' Intrinsics
7706^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7707
7708Syntax:
7709"""""""
7710
7711This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7712on any integer bit width.
7713
7714::
7715
7716 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7717 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7718 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7719
7720Overview:
7721"""""""""
7722
7723The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7724a signed addition of the two arguments, and indicate whether an overflow
7725occurred during the signed summation.
7726
7727Arguments:
7728""""""""""
7729
7730The arguments (%a and %b) and the first element of the result structure
7731may be of integer types of any bit width, but they must have the same
7732bit width. The second element of the result structure must be of type
7733``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7734addition.
7735
7736Semantics:
7737""""""""""
7738
7739The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007740a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007741first element of which is the signed summation, and the second element
7742of which is a bit specifying if the signed summation resulted in an
7743overflow.
7744
7745Examples:
7746"""""""""
7747
7748.. code-block:: llvm
7749
7750 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7751 %sum = extractvalue {i32, i1} %res, 0
7752 %obit = extractvalue {i32, i1} %res, 1
7753 br i1 %obit, label %overflow, label %normal
7754
7755'``llvm.uadd.with.overflow.*``' Intrinsics
7756^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7757
7758Syntax:
7759"""""""
7760
7761This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7762on any integer bit width.
7763
7764::
7765
7766 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7767 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7768 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7769
7770Overview:
7771"""""""""
7772
7773The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7774an unsigned addition of the two arguments, and indicate whether a carry
7775occurred during the unsigned summation.
7776
7777Arguments:
7778""""""""""
7779
7780The arguments (%a and %b) and the first element of the result structure
7781may be of integer types of any bit width, but they must have the same
7782bit width. The second element of the result structure must be of type
7783``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7784addition.
7785
7786Semantics:
7787""""""""""
7788
7789The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007790an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007791first element of which is the sum, and the second element of which is a
7792bit specifying if the unsigned summation resulted in a carry.
7793
7794Examples:
7795"""""""""
7796
7797.. code-block:: llvm
7798
7799 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7800 %sum = extractvalue {i32, i1} %res, 0
7801 %obit = extractvalue {i32, i1} %res, 1
7802 br i1 %obit, label %carry, label %normal
7803
7804'``llvm.ssub.with.overflow.*``' Intrinsics
7805^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7806
7807Syntax:
7808"""""""
7809
7810This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7811on any integer bit width.
7812
7813::
7814
7815 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7816 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7817 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7818
7819Overview:
7820"""""""""
7821
7822The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7823a signed subtraction of the two arguments, and indicate whether an
7824overflow occurred during the signed subtraction.
7825
7826Arguments:
7827""""""""""
7828
7829The arguments (%a and %b) and the first element of the result structure
7830may be of integer types of any bit width, but they must have the same
7831bit width. The second element of the result structure must be of type
7832``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7833subtraction.
7834
7835Semantics:
7836""""""""""
7837
7838The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007839a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007840first element of which is the subtraction, and the second element of
7841which is a bit specifying if the signed subtraction resulted in an
7842overflow.
7843
7844Examples:
7845"""""""""
7846
7847.. code-block:: llvm
7848
7849 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7850 %sum = extractvalue {i32, i1} %res, 0
7851 %obit = extractvalue {i32, i1} %res, 1
7852 br i1 %obit, label %overflow, label %normal
7853
7854'``llvm.usub.with.overflow.*``' Intrinsics
7855^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7856
7857Syntax:
7858"""""""
7859
7860This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7861on any integer bit width.
7862
7863::
7864
7865 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7866 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7867 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7868
7869Overview:
7870"""""""""
7871
7872The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7873an unsigned subtraction of the two arguments, and indicate whether an
7874overflow occurred during the unsigned subtraction.
7875
7876Arguments:
7877""""""""""
7878
7879The arguments (%a and %b) and the first element of the result structure
7880may be of integer types of any bit width, but they must have the same
7881bit width. The second element of the result structure must be of type
7882``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7883subtraction.
7884
7885Semantics:
7886""""""""""
7887
7888The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007889an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007890the first element of which is the subtraction, and the second element of
7891which is a bit specifying if the unsigned subtraction resulted in an
7892overflow.
7893
7894Examples:
7895"""""""""
7896
7897.. code-block:: llvm
7898
7899 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7900 %sum = extractvalue {i32, i1} %res, 0
7901 %obit = extractvalue {i32, i1} %res, 1
7902 br i1 %obit, label %overflow, label %normal
7903
7904'``llvm.smul.with.overflow.*``' Intrinsics
7905^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7906
7907Syntax:
7908"""""""
7909
7910This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7911on any integer bit width.
7912
7913::
7914
7915 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7916 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7917 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7918
7919Overview:
7920"""""""""
7921
7922The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7923a signed multiplication of the two arguments, and indicate whether an
7924overflow occurred during the signed multiplication.
7925
7926Arguments:
7927""""""""""
7928
7929The arguments (%a and %b) and the first element of the result structure
7930may be of integer types of any bit width, but they must have the same
7931bit width. The second element of the result structure must be of type
7932``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7933multiplication.
7934
7935Semantics:
7936""""""""""
7937
7938The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007939a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007940the first element of which is the multiplication, and the second element
7941of which is a bit specifying if the signed multiplication resulted in an
7942overflow.
7943
7944Examples:
7945"""""""""
7946
7947.. code-block:: llvm
7948
7949 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7950 %sum = extractvalue {i32, i1} %res, 0
7951 %obit = extractvalue {i32, i1} %res, 1
7952 br i1 %obit, label %overflow, label %normal
7953
7954'``llvm.umul.with.overflow.*``' Intrinsics
7955^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7956
7957Syntax:
7958"""""""
7959
7960This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7961on any integer bit width.
7962
7963::
7964
7965 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7966 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7967 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7968
7969Overview:
7970"""""""""
7971
7972The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7973a unsigned multiplication of the two arguments, and indicate whether an
7974overflow occurred during the unsigned multiplication.
7975
7976Arguments:
7977""""""""""
7978
7979The arguments (%a and %b) and the first element of the result structure
7980may be of integer types of any bit width, but they must have the same
7981bit width. The second element of the result structure must be of type
7982``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7983multiplication.
7984
7985Semantics:
7986""""""""""
7987
7988The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007989an unsigned multiplication of the two arguments. They return a structure ---
7990the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00007991element of which is a bit specifying if the unsigned multiplication
7992resulted in an overflow.
7993
7994Examples:
7995"""""""""
7996
7997.. code-block:: llvm
7998
7999 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8000 %sum = extractvalue {i32, i1} %res, 0
8001 %obit = extractvalue {i32, i1} %res, 1
8002 br i1 %obit, label %overflow, label %normal
8003
8004Specialised Arithmetic Intrinsics
8005---------------------------------
8006
8007'``llvm.fmuladd.*``' Intrinsic
8008^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8009
8010Syntax:
8011"""""""
8012
8013::
8014
8015 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8016 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8017
8018Overview:
8019"""""""""
8020
8021The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00008022expressions that can be fused if the code generator determines that (a) the
8023target instruction set has support for a fused operation, and (b) that the
8024fused operation is more efficient than the equivalent, separate pair of mul
8025and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00008026
8027Arguments:
8028""""""""""
8029
8030The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8031multiplicands, a and b, and an addend c.
8032
8033Semantics:
8034""""""""""
8035
8036The expression:
8037
8038::
8039
8040 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8041
8042is equivalent to the expression a \* b + c, except that rounding will
8043not be performed between the multiplication and addition steps if the
8044code generator fuses the operations. Fusion is not guaranteed, even if
8045the target platform supports it. If a fused multiply-add is required the
8046corresponding llvm.fma.\* intrinsic function should be used instead.
8047
8048Examples:
8049"""""""""
8050
8051.. code-block:: llvm
8052
8053 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8054
8055Half Precision Floating Point Intrinsics
8056----------------------------------------
8057
8058For most target platforms, half precision floating point is a
8059storage-only format. This means that it is a dense encoding (in memory)
8060but does not support computation in the format.
8061
8062This means that code must first load the half-precision floating point
8063value as an i16, then convert it to float with
8064:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8065then be performed on the float value (including extending to double
8066etc). To store the value back to memory, it is first converted to float
8067if needed, then converted to i16 with
8068:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8069i16 value.
8070
8071.. _int_convert_to_fp16:
8072
8073'``llvm.convert.to.fp16``' Intrinsic
8074^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8075
8076Syntax:
8077"""""""
8078
8079::
8080
8081 declare i16 @llvm.convert.to.fp16(f32 %a)
8082
8083Overview:
8084"""""""""
8085
8086The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8087from single precision floating point format to half precision floating
8088point format.
8089
8090Arguments:
8091""""""""""
8092
8093The intrinsic function contains single argument - the value to be
8094converted.
8095
8096Semantics:
8097""""""""""
8098
8099The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8100from single precision floating point format to half precision floating
8101point format. The return value is an ``i16`` which contains the
8102converted number.
8103
8104Examples:
8105"""""""""
8106
8107.. code-block:: llvm
8108
8109 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8110 store i16 %res, i16* @x, align 2
8111
8112.. _int_convert_from_fp16:
8113
8114'``llvm.convert.from.fp16``' Intrinsic
8115^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8116
8117Syntax:
8118"""""""
8119
8120::
8121
8122 declare f32 @llvm.convert.from.fp16(i16 %a)
8123
8124Overview:
8125"""""""""
8126
8127The '``llvm.convert.from.fp16``' intrinsic function performs a
8128conversion from half precision floating point format to single precision
8129floating point format.
8130
8131Arguments:
8132""""""""""
8133
8134The intrinsic function contains single argument - the value to be
8135converted.
8136
8137Semantics:
8138""""""""""
8139
8140The '``llvm.convert.from.fp16``' intrinsic function performs a
8141conversion from half single precision floating point format to single
8142precision floating point format. The input half-float value is
8143represented by an ``i16`` value.
8144
8145Examples:
8146"""""""""
8147
8148.. code-block:: llvm
8149
8150 %a = load i16* @x, align 2
8151 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8152
8153Debugger Intrinsics
8154-------------------
8155
8156The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8157prefix), are described in the `LLVM Source Level
8158Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8159document.
8160
8161Exception Handling Intrinsics
8162-----------------------------
8163
8164The LLVM exception handling intrinsics (which all start with
8165``llvm.eh.`` prefix), are described in the `LLVM Exception
8166Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8167
8168.. _int_trampoline:
8169
8170Trampoline Intrinsics
8171---------------------
8172
8173These intrinsics make it possible to excise one parameter, marked with
8174the :ref:`nest <nest>` attribute, from a function. The result is a
8175callable function pointer lacking the nest parameter - the caller does
8176not need to provide a value for it. Instead, the value to use is stored
8177in advance in a "trampoline", a block of memory usually allocated on the
8178stack, which also contains code to splice the nest value into the
8179argument list. This is used to implement the GCC nested function address
8180extension.
8181
8182For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8183then the resulting function pointer has signature ``i32 (i32, i32)*``.
8184It can be created as follows:
8185
8186.. code-block:: llvm
8187
8188 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8189 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8190 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8191 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8192 %fp = bitcast i8* %p to i32 (i32, i32)*
8193
8194The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8195``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8196
8197.. _int_it:
8198
8199'``llvm.init.trampoline``' Intrinsic
8200^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8201
8202Syntax:
8203"""""""
8204
8205::
8206
8207 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8208
8209Overview:
8210"""""""""
8211
8212This fills the memory pointed to by ``tramp`` with executable code,
8213turning it into a trampoline.
8214
8215Arguments:
8216""""""""""
8217
8218The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8219pointers. The ``tramp`` argument must point to a sufficiently large and
8220sufficiently aligned block of memory; this memory is written to by the
8221intrinsic. Note that the size and the alignment are target-specific -
8222LLVM currently provides no portable way of determining them, so a
8223front-end that generates this intrinsic needs to have some
8224target-specific knowledge. The ``func`` argument must hold a function
8225bitcast to an ``i8*``.
8226
8227Semantics:
8228""""""""""
8229
8230The block of memory pointed to by ``tramp`` is filled with target
8231dependent code, turning it into a function. Then ``tramp`` needs to be
8232passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8233be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8234function's signature is the same as that of ``func`` with any arguments
8235marked with the ``nest`` attribute removed. At most one such ``nest``
8236argument is allowed, and it must be of pointer type. Calling the new
8237function is equivalent to calling ``func`` with the same argument list,
8238but with ``nval`` used for the missing ``nest`` argument. If, after
8239calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8240modified, then the effect of any later call to the returned function
8241pointer is undefined.
8242
8243.. _int_at:
8244
8245'``llvm.adjust.trampoline``' Intrinsic
8246^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8247
8248Syntax:
8249"""""""
8250
8251::
8252
8253 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8254
8255Overview:
8256"""""""""
8257
8258This performs any required machine-specific adjustment to the address of
8259a trampoline (passed as ``tramp``).
8260
8261Arguments:
8262""""""""""
8263
8264``tramp`` must point to a block of memory which already has trampoline
8265code filled in by a previous call to
8266:ref:`llvm.init.trampoline <int_it>`.
8267
8268Semantics:
8269""""""""""
8270
8271On some architectures the address of the code to be executed needs to be
8272different to the address where the trampoline is actually stored. This
8273intrinsic returns the executable address corresponding to ``tramp``
8274after performing the required machine specific adjustments. The pointer
8275returned can then be :ref:`bitcast and executed <int_trampoline>`.
8276
8277Memory Use Markers
8278------------------
8279
8280This class of intrinsics exists to information about the lifetime of
8281memory objects and ranges where variables are immutable.
8282
8283'``llvm.lifetime.start``' Intrinsic
8284^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8285
8286Syntax:
8287"""""""
8288
8289::
8290
8291 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8292
8293Overview:
8294"""""""""
8295
8296The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8297object's lifetime.
8298
8299Arguments:
8300""""""""""
8301
8302The first argument is a constant integer representing the size of the
8303object, or -1 if it is variable sized. The second argument is a pointer
8304to the object.
8305
8306Semantics:
8307""""""""""
8308
8309This intrinsic indicates that before this point in the code, the value
8310of the memory pointed to by ``ptr`` is dead. This means that it is known
8311to never be used and has an undefined value. A load from the pointer
8312that precedes this intrinsic can be replaced with ``'undef'``.
8313
8314'``llvm.lifetime.end``' Intrinsic
8315^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8316
8317Syntax:
8318"""""""
8319
8320::
8321
8322 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8323
8324Overview:
8325"""""""""
8326
8327The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8328object's lifetime.
8329
8330Arguments:
8331""""""""""
8332
8333The first argument is a constant integer representing the size of the
8334object, or -1 if it is variable sized. The second argument is a pointer
8335to the object.
8336
8337Semantics:
8338""""""""""
8339
8340This intrinsic indicates that after this point in the code, the value of
8341the memory pointed to by ``ptr`` is dead. This means that it is known to
8342never be used and has an undefined value. Any stores into the memory
8343object following this intrinsic may be removed as dead.
8344
8345'``llvm.invariant.start``' Intrinsic
8346^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8347
8348Syntax:
8349"""""""
8350
8351::
8352
8353 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8354
8355Overview:
8356"""""""""
8357
8358The '``llvm.invariant.start``' intrinsic specifies that the contents of
8359a memory object will not change.
8360
8361Arguments:
8362""""""""""
8363
8364The first argument is a constant integer representing the size of the
8365object, or -1 if it is variable sized. The second argument is a pointer
8366to the object.
8367
8368Semantics:
8369""""""""""
8370
8371This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8372the return value, the referenced memory location is constant and
8373unchanging.
8374
8375'``llvm.invariant.end``' Intrinsic
8376^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8377
8378Syntax:
8379"""""""
8380
8381::
8382
8383 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8384
8385Overview:
8386"""""""""
8387
8388The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8389memory object are mutable.
8390
8391Arguments:
8392""""""""""
8393
8394The first argument is the matching ``llvm.invariant.start`` intrinsic.
8395The second argument is a constant integer representing the size of the
8396object, or -1 if it is variable sized and the third argument is a
8397pointer to the object.
8398
8399Semantics:
8400""""""""""
8401
8402This intrinsic indicates that the memory is mutable again.
8403
8404General Intrinsics
8405------------------
8406
8407This class of intrinsics is designed to be generic and has no specific
8408purpose.
8409
8410'``llvm.var.annotation``' Intrinsic
8411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8412
8413Syntax:
8414"""""""
8415
8416::
8417
8418 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8419
8420Overview:
8421"""""""""
8422
8423The '``llvm.var.annotation``' intrinsic.
8424
8425Arguments:
8426""""""""""
8427
8428The first argument is a pointer to a value, the second is a pointer to a
8429global string, the third is a pointer to a global string which is the
8430source file name, and the last argument is the line number.
8431
8432Semantics:
8433""""""""""
8434
8435This intrinsic allows annotation of local variables with arbitrary
8436strings. This can be useful for special purpose optimizations that want
8437to look for these annotations. These have no other defined use; they are
8438ignored by code generation and optimization.
8439
Michael Gottesman872b4e52013-03-26 00:34:27 +00008440'``llvm.ptr.annotation.*``' Intrinsic
8441^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8442
8443Syntax:
8444"""""""
8445
8446This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8447pointer to an integer of any width. *NOTE* you must specify an address space for
8448the pointer. The identifier for the default address space is the integer
8449'``0``'.
8450
8451::
8452
8453 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8454 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8455 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8456 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8457 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8458
8459Overview:
8460"""""""""
8461
8462The '``llvm.ptr.annotation``' intrinsic.
8463
8464Arguments:
8465""""""""""
8466
8467The first argument is a pointer to an integer value of arbitrary bitwidth
8468(result of some expression), the second is a pointer to a global string, the
8469third is a pointer to a global string which is the source file name, and the
8470last argument is the line number. It returns the value of the first argument.
8471
8472Semantics:
8473""""""""""
8474
8475This intrinsic allows annotation of a pointer to an integer with arbitrary
8476strings. This can be useful for special purpose optimizations that want to look
8477for these annotations. These have no other defined use; they are ignored by code
8478generation and optimization.
8479
Sean Silvaf722b002012-12-07 10:36:55 +00008480'``llvm.annotation.*``' Intrinsic
8481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8482
8483Syntax:
8484"""""""
8485
8486This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8487any integer bit width.
8488
8489::
8490
8491 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8492 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8493 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8494 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8495 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8496
8497Overview:
8498"""""""""
8499
8500The '``llvm.annotation``' intrinsic.
8501
8502Arguments:
8503""""""""""
8504
8505The first argument is an integer value (result of some expression), the
8506second is a pointer to a global string, the third is a pointer to a
8507global string which is the source file name, and the last argument is
8508the line number. It returns the value of the first argument.
8509
8510Semantics:
8511""""""""""
8512
8513This intrinsic allows annotations to be put on arbitrary expressions
8514with arbitrary strings. This can be useful for special purpose
8515optimizations that want to look for these annotations. These have no
8516other defined use; they are ignored by code generation and optimization.
8517
8518'``llvm.trap``' Intrinsic
8519^^^^^^^^^^^^^^^^^^^^^^^^^
8520
8521Syntax:
8522"""""""
8523
8524::
8525
8526 declare void @llvm.trap() noreturn nounwind
8527
8528Overview:
8529"""""""""
8530
8531The '``llvm.trap``' intrinsic.
8532
8533Arguments:
8534""""""""""
8535
8536None.
8537
8538Semantics:
8539""""""""""
8540
8541This intrinsic is lowered to the target dependent trap instruction. If
8542the target does not have a trap instruction, this intrinsic will be
8543lowered to a call of the ``abort()`` function.
8544
8545'``llvm.debugtrap``' Intrinsic
8546^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8547
8548Syntax:
8549"""""""
8550
8551::
8552
8553 declare void @llvm.debugtrap() nounwind
8554
8555Overview:
8556"""""""""
8557
8558The '``llvm.debugtrap``' intrinsic.
8559
8560Arguments:
8561""""""""""
8562
8563None.
8564
8565Semantics:
8566""""""""""
8567
8568This intrinsic is lowered to code which is intended to cause an
8569execution trap with the intention of requesting the attention of a
8570debugger.
8571
8572'``llvm.stackprotector``' Intrinsic
8573^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8574
8575Syntax:
8576"""""""
8577
8578::
8579
8580 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8581
8582Overview:
8583"""""""""
8584
8585The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8586onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8587is placed on the stack before local variables.
8588
8589Arguments:
8590""""""""""
8591
8592The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8593The first argument is the value loaded from the stack guard
8594``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8595enough space to hold the value of the guard.
8596
8597Semantics:
8598""""""""""
8599
8600This intrinsic causes the prologue/epilogue inserter to force the
8601position of the ``AllocaInst`` stack slot to be before local variables
8602on the stack. This is to ensure that if a local variable on the stack is
8603overwritten, it will destroy the value of the guard. When the function
8604exits, the guard on the stack is checked against the original guard. If
8605they are different, then the program aborts by calling the
8606``__stack_chk_fail()`` function.
8607
8608'``llvm.objectsize``' Intrinsic
8609^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8610
8611Syntax:
8612"""""""
8613
8614::
8615
8616 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8617 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8618
8619Overview:
8620"""""""""
8621
8622The ``llvm.objectsize`` intrinsic is designed to provide information to
8623the optimizers to determine at compile time whether a) an operation
8624(like memcpy) will overflow a buffer that corresponds to an object, or
8625b) that a runtime check for overflow isn't necessary. An object in this
8626context means an allocation of a specific class, structure, array, or
8627other object.
8628
8629Arguments:
8630""""""""""
8631
8632The ``llvm.objectsize`` intrinsic takes two arguments. The first
8633argument is a pointer to or into the ``object``. The second argument is
8634a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8635or -1 (if false) when the object size is unknown. The second argument
8636only accepts constants.
8637
8638Semantics:
8639""""""""""
8640
8641The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8642the size of the object concerned. If the size cannot be determined at
8643compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8644on the ``min`` argument).
8645
8646'``llvm.expect``' Intrinsic
8647^^^^^^^^^^^^^^^^^^^^^^^^^^^
8648
8649Syntax:
8650"""""""
8651
8652::
8653
8654 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8655 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8656
8657Overview:
8658"""""""""
8659
8660The ``llvm.expect`` intrinsic provides information about expected (the
8661most probable) value of ``val``, which can be used by optimizers.
8662
8663Arguments:
8664""""""""""
8665
8666The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8667a value. The second argument is an expected value, this needs to be a
8668constant value, variables are not allowed.
8669
8670Semantics:
8671""""""""""
8672
8673This intrinsic is lowered to the ``val``.
8674
8675'``llvm.donothing``' Intrinsic
8676^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8677
8678Syntax:
8679"""""""
8680
8681::
8682
8683 declare void @llvm.donothing() nounwind readnone
8684
8685Overview:
8686"""""""""
8687
8688The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8689only intrinsic that can be called with an invoke instruction.
8690
8691Arguments:
8692""""""""""
8693
8694None.
8695
8696Semantics:
8697""""""""""
8698
8699This intrinsic does nothing, and it's removed by optimizers and ignored
8700by codegen.