blob: 1e65f0b823ac6628863bd9eec0f70ef9bc66bcf7 [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva57f429f2013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
131 incrementing counter, starting with 0).
Sean Silvaf722b002012-12-07 10:36:55 +0000132
133It also shows a convention that we follow in this document. When
134demonstrating instructions, we will follow an instruction with a comment
135that defines the type and name of value produced.
136
137High Level Structure
138====================
139
140Module Structure
141----------------
142
143LLVM programs are composed of ``Module``'s, each of which is a
144translation unit of the input programs. Each module consists of
145functions, global variables, and symbol table entries. Modules may be
146combined together with the LLVM linker, which merges function (and
147global variable) definitions, resolves forward declarations, and merges
148symbol table entries. Here is an example of the "hello world" module:
149
150.. code-block:: llvm
151
Michael Liao2faa0f32013-03-06 18:24:34 +0000152 ; Declare the string constant as a global constant.
153 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000154
Michael Liao2faa0f32013-03-06 18:24:34 +0000155 ; External declaration of the puts function
156 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000157
158 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000159 define i32 @main() { ; i32()*
160 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000161 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
162
Michael Liao2faa0f32013-03-06 18:24:34 +0000163 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000164 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000165 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000166 }
167
168 ; Named metadata
169 !1 = metadata !{i32 42}
170 !foo = !{!1, null}
171
172This example is made up of a :ref:`global variable <globalvars>` named
173"``.str``", an external declaration of the "``puts``" function, a
174:ref:`function definition <functionstructure>` for "``main``" and
175:ref:`named metadata <namedmetadatastructure>` "``foo``".
176
177In general, a module is made up of a list of global values (where both
178functions and global variables are global values). Global values are
179represented by a pointer to a memory location (in this case, a pointer
180to an array of char, and a pointer to a function), and have one of the
181following :ref:`linkage types <linkage>`.
182
183.. _linkage:
184
185Linkage Types
186-------------
187
188All Global Variables and Functions have one of the following types of
189linkage:
190
191``private``
192 Global values with "``private``" linkage are only directly
193 accessible by objects in the current module. In particular, linking
194 code into a module with an private global value may cause the
195 private to be renamed as necessary to avoid collisions. Because the
196 symbol is private to the module, all references can be updated. This
197 doesn't show up in any symbol table in the object file.
198``linker_private``
199 Similar to ``private``, but the symbol is passed through the
200 assembler and evaluated by the linker. Unlike normal strong symbols,
201 they are removed by the linker from the final linked image
202 (executable or dynamic library).
203``linker_private_weak``
204 Similar to "``linker_private``", but the symbol is weak. Note that
205 ``linker_private_weak`` symbols are subject to coalescing by the
206 linker. The symbols are removed by the linker from the final linked
207 image (executable or dynamic library).
208``internal``
209 Similar to private, but the value shows as a local symbol
210 (``STB_LOCAL`` in the case of ELF) in the object file. This
211 corresponds to the notion of the '``static``' keyword in C.
212``available_externally``
213 Globals with "``available_externally``" linkage are never emitted
214 into the object file corresponding to the LLVM module. They exist to
215 allow inlining and other optimizations to take place given knowledge
216 of the definition of the global, which is known to be somewhere
217 outside the module. Globals with ``available_externally`` linkage
218 are allowed to be discarded at will, and are otherwise the same as
219 ``linkonce_odr``. This linkage type is only allowed on definitions,
220 not declarations.
221``linkonce``
222 Globals with "``linkonce``" linkage are merged with other globals of
223 the same name when linkage occurs. This can be used to implement
224 some forms of inline functions, templates, or other code which must
225 be generated in each translation unit that uses it, but where the
226 body may be overridden with a more definitive definition later.
227 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
228 that ``linkonce`` linkage does not actually allow the optimizer to
229 inline the body of this function into callers because it doesn't
230 know if this definition of the function is the definitive definition
231 within the program or whether it will be overridden by a stronger
232 definition. To enable inlining and other optimizations, use
233 "``linkonce_odr``" linkage.
234``weak``
235 "``weak``" linkage has the same merging semantics as ``linkonce``
236 linkage, except that unreferenced globals with ``weak`` linkage may
237 not be discarded. This is used for globals that are declared "weak"
238 in C source code.
239``common``
240 "``common``" linkage is most similar to "``weak``" linkage, but they
241 are used for tentative definitions in C, such as "``int X;``" at
242 global scope. Symbols with "``common``" linkage are merged in the
243 same way as ``weak symbols``, and they may not be deleted if
244 unreferenced. ``common`` symbols may not have an explicit section,
245 must have a zero initializer, and may not be marked
246 ':ref:`constant <globalvars>`'. Functions and aliases may not have
247 common linkage.
248
249.. _linkage_appending:
250
251``appending``
252 "``appending``" linkage may only be applied to global variables of
253 pointer to array type. When two global variables with appending
254 linkage are linked together, the two global arrays are appended
255 together. This is the LLVM, typesafe, equivalent of having the
256 system linker append together "sections" with identical names when
257 .o files are linked.
258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
270``linkonce_odr_auto_hide``
271 Similar to "``linkonce_odr``", but nothing in the translation unit
272 takes the address of this definition. For instance, functions that
273 had an inline definition, but the compiler decided not to inline it.
274 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
275 symbols are removed by the linker from the final linked image
276 (executable or dynamic library).
277``external``
278 If none of the above identifiers are used, the global is externally
279 visible, meaning that it participates in linkage and can be used to
280 resolve external symbol references.
281
282The next two types of linkage are targeted for Microsoft Windows
283platform only. They are designed to support importing (exporting)
284symbols from (to) DLLs (Dynamic Link Libraries).
285
286``dllimport``
287 "``dllimport``" linkage causes the compiler to reference a function
288 or variable via a global pointer to a pointer that is set up by the
289 DLL exporting the symbol. On Microsoft Windows targets, the pointer
290 name is formed by combining ``__imp_`` and the function or variable
291 name.
292``dllexport``
293 "``dllexport``" linkage causes the compiler to provide a global
294 pointer to a pointer in a DLL, so that it can be referenced with the
295 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
296 name is formed by combining ``__imp_`` and the function or variable
297 name.
298
299For example, since the "``.LC0``" variable is defined to be internal, if
300another module defined a "``.LC0``" variable and was linked with this
301one, one of the two would be renamed, preventing a collision. Since
302"``main``" and "``puts``" are external (i.e., lacking any linkage
303declarations), they are accessible outside of the current module.
304
305It is illegal for a function *declaration* to have any linkage type
306other than ``external``, ``dllimport`` or ``extern_weak``.
307
308Aliases can have only ``external``, ``internal``, ``weak`` or
309``weak_odr`` linkages.
310
311.. _callingconv:
312
313Calling Conventions
314-------------------
315
316LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
317:ref:`invokes <i_invoke>` can all have an optional calling convention
318specified for the call. The calling convention of any pair of dynamic
319caller/callee must match, or the behavior of the program is undefined.
320The following calling conventions are supported by LLVM, and more may be
321added in the future:
322
323"``ccc``" - The C calling convention
324 This calling convention (the default if no other calling convention
325 is specified) matches the target C calling conventions. This calling
326 convention supports varargs function calls and tolerates some
327 mismatch in the declared prototype and implemented declaration of
328 the function (as does normal C).
329"``fastcc``" - The fast calling convention
330 This calling convention attempts to make calls as fast as possible
331 (e.g. by passing things in registers). This calling convention
332 allows the target to use whatever tricks it wants to produce fast
333 code for the target, without having to conform to an externally
334 specified ABI (Application Binary Interface). `Tail calls can only
335 be optimized when this, the GHC or the HiPE convention is
336 used. <CodeGenerator.html#id80>`_ This calling convention does not
337 support varargs and requires the prototype of all callees to exactly
338 match the prototype of the function definition.
339"``coldcc``" - The cold calling convention
340 This calling convention attempts to make code in the caller as
341 efficient as possible under the assumption that the call is not
342 commonly executed. As such, these calls often preserve all registers
343 so that the call does not break any live ranges in the caller side.
344 This calling convention does not support varargs and requires the
345 prototype of all callees to exactly match the prototype of the
346 function definition.
347"``cc 10``" - GHC convention
348 This calling convention has been implemented specifically for use by
349 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
350 It passes everything in registers, going to extremes to achieve this
351 by disabling callee save registers. This calling convention should
352 not be used lightly but only for specific situations such as an
353 alternative to the *register pinning* performance technique often
354 used when implementing functional programming languages. At the
355 moment only X86 supports this convention and it has the following
356 limitations:
357
358 - On *X86-32* only supports up to 4 bit type parameters. No
359 floating point types are supported.
360 - On *X86-64* only supports up to 10 bit type parameters and 6
361 floating point parameters.
362
363 This calling convention supports `tail call
364 optimization <CodeGenerator.html#id80>`_ but requires both the
365 caller and callee are using it.
366"``cc 11``" - The HiPE calling convention
367 This calling convention has been implemented specifically for use by
368 the `High-Performance Erlang
369 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
370 native code compiler of the `Ericsson's Open Source Erlang/OTP
371 system <http://www.erlang.org/download.shtml>`_. It uses more
372 registers for argument passing than the ordinary C calling
373 convention and defines no callee-saved registers. The calling
374 convention properly supports `tail call
375 optimization <CodeGenerator.html#id80>`_ but requires that both the
376 caller and the callee use it. It uses a *register pinning*
377 mechanism, similar to GHC's convention, for keeping frequently
378 accessed runtime components pinned to specific hardware registers.
379 At the moment only X86 supports this convention (both 32 and 64
380 bit).
381"``cc <n>``" - Numbered convention
382 Any calling convention may be specified by number, allowing
383 target-specific calling conventions to be used. Target specific
384 calling conventions start at 64.
385
386More calling conventions can be added/defined on an as-needed basis, to
387support Pascal conventions or any other well-known target-independent
388convention.
389
Eli Bendersky1de14102013-06-07 19:40:08 +0000390.. _visibilitystyles:
391
Sean Silvaf722b002012-12-07 10:36:55 +0000392Visibility Styles
393-----------------
394
395All Global Variables and Functions have one of the following visibility
396styles:
397
398"``default``" - Default style
399 On targets that use the ELF object file format, default visibility
400 means that the declaration is visible to other modules and, in
401 shared libraries, means that the declared entity may be overridden.
402 On Darwin, default visibility means that the declaration is visible
403 to other modules. Default visibility corresponds to "external
404 linkage" in the language.
405"``hidden``" - Hidden style
406 Two declarations of an object with hidden visibility refer to the
407 same object if they are in the same shared object. Usually, hidden
408 visibility indicates that the symbol will not be placed into the
409 dynamic symbol table, so no other module (executable or shared
410 library) can reference it directly.
411"``protected``" - Protected style
412 On ELF, protected visibility indicates that the symbol will be
413 placed in the dynamic symbol table, but that references within the
414 defining module will bind to the local symbol. That is, the symbol
415 cannot be overridden by another module.
416
Eli Bendersky1de14102013-06-07 19:40:08 +0000417.. _namedtypes:
418
Sean Silvaf722b002012-12-07 10:36:55 +0000419Named Types
420-----------
421
422LLVM IR allows you to specify name aliases for certain types. This can
423make it easier to read the IR and make the IR more condensed
424(particularly when recursive types are involved). An example of a name
425specification is:
426
427.. code-block:: llvm
428
429 %mytype = type { %mytype*, i32 }
430
431You may give a name to any :ref:`type <typesystem>` except
432":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
433expected with the syntax "%mytype".
434
435Note that type names are aliases for the structural type that they
436indicate, and that you can therefore specify multiple names for the same
437type. This often leads to confusing behavior when dumping out a .ll
438file. Since LLVM IR uses structural typing, the name is not part of the
439type. When printing out LLVM IR, the printer will pick *one name* to
440render all types of a particular shape. This means that if you have code
441where two different source types end up having the same LLVM type, that
442the dumper will sometimes print the "wrong" or unexpected type. This is
443an important design point and isn't going to change.
444
445.. _globalvars:
446
447Global Variables
448----------------
449
450Global variables define regions of memory allocated at compilation time
451instead of run-time. Global variables may optionally be initialized, may
452have an explicit section to be placed in, and may have an optional
453explicit alignment specified.
454
455A variable may be defined as ``thread_local``, which means that it will
456not be shared by threads (each thread will have a separated copy of the
457variable). Not all targets support thread-local variables. Optionally, a
458TLS model may be specified:
459
460``localdynamic``
461 For variables that are only used within the current shared library.
462``initialexec``
463 For variables in modules that will not be loaded dynamically.
464``localexec``
465 For variables defined in the executable and only used within it.
466
467The models correspond to the ELF TLS models; see `ELF Handling For
468Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
469more information on under which circumstances the different models may
470be used. The target may choose a different TLS model if the specified
471model is not supported, or if a better choice of model can be made.
472
Michael Gottesmanf5735882013-01-31 05:48:48 +0000473A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000474the contents of the variable will **never** be modified (enabling better
475optimization, allowing the global data to be placed in the read-only
476section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000477initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000478variable.
479
480LLVM explicitly allows *declarations* of global variables to be marked
481constant, even if the final definition of the global is not. This
482capability can be used to enable slightly better optimization of the
483program, but requires the language definition to guarantee that
484optimizations based on the 'constantness' are valid for the translation
485units that do not include the definition.
486
487As SSA values, global variables define pointer values that are in scope
488(i.e. they dominate) all basic blocks in the program. Global variables
489always define a pointer to their "content" type because they describe a
490region of memory, and all memory objects in LLVM are accessed through
491pointers.
492
493Global variables can be marked with ``unnamed_addr`` which indicates
494that the address is not significant, only the content. Constants marked
495like this can be merged with other constants if they have the same
496initializer. Note that a constant with significant address *can* be
497merged with a ``unnamed_addr`` constant, the result being a constant
498whose address is significant.
499
500A global variable may be declared to reside in a target-specific
501numbered address space. For targets that support them, address spaces
502may affect how optimizations are performed and/or what target
503instructions are used to access the variable. The default address space
504is zero. The address space qualifier must precede any other attributes.
505
506LLVM allows an explicit section to be specified for globals. If the
507target supports it, it will emit globals to the section specified.
508
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000509By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000510variables defined within the module are not modified from their
511initial values before the start of the global initializer. This is
512true even for variables potentially accessible from outside the
513module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000514``@llvm.used``. This assumption may be suppressed by marking the
515variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000516
Sean Silvaf722b002012-12-07 10:36:55 +0000517An explicit alignment may be specified for a global, which must be a
518power of 2. If not present, or if the alignment is set to zero, the
519alignment of the global is set by the target to whatever it feels
520convenient. If an explicit alignment is specified, the global is forced
521to have exactly that alignment. Targets and optimizers are not allowed
522to over-align the global if the global has an assigned section. In this
523case, the extra alignment could be observable: for example, code could
524assume that the globals are densely packed in their section and try to
525iterate over them as an array, alignment padding would break this
526iteration.
527
528For example, the following defines a global in a numbered address space
529with an initializer, section, and alignment:
530
531.. code-block:: llvm
532
533 @G = addrspace(5) constant float 1.0, section "foo", align 4
534
535The following example defines a thread-local global with the
536``initialexec`` TLS model:
537
538.. code-block:: llvm
539
540 @G = thread_local(initialexec) global i32 0, align 4
541
542.. _functionstructure:
543
544Functions
545---------
546
547LLVM function definitions consist of the "``define``" keyword, an
548optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
549style <visibility>`, an optional :ref:`calling convention <callingconv>`,
550an optional ``unnamed_addr`` attribute, a return type, an optional
551:ref:`parameter attribute <paramattrs>` for the return type, a function
552name, a (possibly empty) argument list (each with optional :ref:`parameter
553attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
554an optional section, an optional alignment, an optional :ref:`garbage
555collector name <gc>`, an opening curly brace, a list of basic blocks,
556and a closing curly brace.
557
558LLVM function declarations consist of the "``declare``" keyword, an
559optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
560style <visibility>`, an optional :ref:`calling convention <callingconv>`,
561an optional ``unnamed_addr`` attribute, a return type, an optional
562:ref:`parameter attribute <paramattrs>` for the return type, a function
563name, a possibly empty list of arguments, an optional alignment, and an
564optional :ref:`garbage collector name <gc>`.
565
566A function definition contains a list of basic blocks, forming the CFG
567(Control Flow Graph) for the function. Each basic block may optionally
568start with a label (giving the basic block a symbol table entry),
569contains a list of instructions, and ends with a
570:ref:`terminator <terminators>` instruction (such as a branch or function
Sean Silva57f429f2013-05-20 23:31:12 +0000571return). If explicit label is not provided, a block is assigned an
572implicit numbered label, using a next value from the same counter as used
573for unnamed temporaries (:ref:`see above<identifiers>`). For example, if a
574function entry block does not have explicit label, it will be assigned
575label "%0", then first unnamed temporary in that block will be "%1", etc.
Sean Silvaf722b002012-12-07 10:36:55 +0000576
577The first basic block in a function is special in two ways: it is
578immediately executed on entrance to the function, and it is not allowed
579to have predecessor basic blocks (i.e. there can not be any branches to
580the entry block of a function). Because the block can have no
581predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
582
583LLVM allows an explicit section to be specified for functions. If the
584target supports it, it will emit functions to the section specified.
585
586An explicit alignment may be specified for a function. If not present,
587or if the alignment is set to zero, the alignment of the function is set
588by the target to whatever it feels convenient. If an explicit alignment
589is specified, the function is forced to have at least that much
590alignment. All alignments must be a power of 2.
591
592If the ``unnamed_addr`` attribute is given, the address is know to not
593be significant and two identical functions can be merged.
594
595Syntax::
596
597 define [linkage] [visibility]
598 [cconv] [ret attrs]
599 <ResultType> @<FunctionName> ([argument list])
600 [fn Attrs] [section "name"] [align N]
601 [gc] { ... }
602
Eli Bendersky1de14102013-06-07 19:40:08 +0000603.. _langref_aliases:
604
Sean Silvaf722b002012-12-07 10:36:55 +0000605Aliases
606-------
607
608Aliases act as "second name" for the aliasee value (which can be either
609function, global variable, another alias or bitcast of global value).
610Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
611:ref:`visibility style <visibility>`.
612
613Syntax::
614
615 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
616
617.. _namedmetadatastructure:
618
619Named Metadata
620--------------
621
622Named metadata is a collection of metadata. :ref:`Metadata
623nodes <metadata>` (but not metadata strings) are the only valid
624operands for a named metadata.
625
626Syntax::
627
628 ; Some unnamed metadata nodes, which are referenced by the named metadata.
629 !0 = metadata !{metadata !"zero"}
630 !1 = metadata !{metadata !"one"}
631 !2 = metadata !{metadata !"two"}
632 ; A named metadata.
633 !name = !{!0, !1, !2}
634
635.. _paramattrs:
636
637Parameter Attributes
638--------------------
639
640The return type and each parameter of a function type may have a set of
641*parameter attributes* associated with them. Parameter attributes are
642used to communicate additional information about the result or
643parameters of a function. Parameter attributes are considered to be part
644of the function, not of the function type, so functions with different
645parameter attributes can have the same function type.
646
647Parameter attributes are simple keywords that follow the type specified.
648If multiple parameter attributes are needed, they are space separated.
649For example:
650
651.. code-block:: llvm
652
653 declare i32 @printf(i8* noalias nocapture, ...)
654 declare i32 @atoi(i8 zeroext)
655 declare signext i8 @returns_signed_char()
656
657Note that any attributes for the function result (``nounwind``,
658``readonly``) come immediately after the argument list.
659
660Currently, only the following parameter attributes are defined:
661
662``zeroext``
663 This indicates to the code generator that the parameter or return
664 value should be zero-extended to the extent required by the target's
665 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
666 the caller (for a parameter) or the callee (for a return value).
667``signext``
668 This indicates to the code generator that the parameter or return
669 value should be sign-extended to the extent required by the target's
670 ABI (which is usually 32-bits) by the caller (for a parameter) or
671 the callee (for a return value).
672``inreg``
673 This indicates that this parameter or return value should be treated
674 in a special target-dependent fashion during while emitting code for
675 a function call or return (usually, by putting it in a register as
676 opposed to memory, though some targets use it to distinguish between
677 two different kinds of registers). Use of this attribute is
678 target-specific.
679``byval``
680 This indicates that the pointer parameter should really be passed by
681 value to the function. The attribute implies that a hidden copy of
682 the pointee is made between the caller and the callee, so the callee
683 is unable to modify the value in the caller. This attribute is only
684 valid on LLVM pointer arguments. It is generally used to pass
685 structs and arrays by value, but is also valid on pointers to
686 scalars. The copy is considered to belong to the caller not the
687 callee (for example, ``readonly`` functions should not write to
688 ``byval`` parameters). This is not a valid attribute for return
689 values.
690
691 The byval attribute also supports specifying an alignment with the
692 align attribute. It indicates the alignment of the stack slot to
693 form and the known alignment of the pointer specified to the call
694 site. If the alignment is not specified, then the code generator
695 makes a target-specific assumption.
696
697``sret``
698 This indicates that the pointer parameter specifies the address of a
699 structure that is the return value of the function in the source
700 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000701 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000702 not to trap and to be properly aligned. This may only be applied to
703 the first parameter. This is not a valid attribute for return
704 values.
705``noalias``
Richard Smith2b185262013-06-04 20:42:42 +0000706 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvaf722b002012-12-07 10:36:55 +0000707 the argument or return value do not alias pointer values which are
708 not *based* on it, ignoring certain "irrelevant" dependencies. For a
709 call to the parent function, dependencies between memory references
710 from before or after the call and from those during the call are
711 "irrelevant" to the ``noalias`` keyword for the arguments and return
712 value used in that call. The caller shares the responsibility with
713 the callee for ensuring that these requirements are met. For further
714 details, please see the discussion of the NoAlias response in `alias
715 analysis <AliasAnalysis.html#MustMayNo>`_.
716
717 Note that this definition of ``noalias`` is intentionally similar
718 to the definition of ``restrict`` in C99 for function arguments,
719 though it is slightly weaker.
720
721 For function return values, C99's ``restrict`` is not meaningful,
722 while LLVM's ``noalias`` is.
723``nocapture``
724 This indicates that the callee does not make any copies of the
725 pointer that outlive the callee itself. This is not a valid
726 attribute for return values.
727
728.. _nest:
729
730``nest``
731 This indicates that the pointer parameter can be excised using the
732 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +0000733 attribute for return values and can only be applied to one parameter.
734
735``returned``
Stephen Lin8592fba2013-06-20 21:55:10 +0000736 This indicates that the function always returns the argument as its return
737 value. This is an optimization hint to the code generator when generating
738 the caller, allowing tail call optimization and omission of register saves
739 and restores in some cases; it is not checked or enforced when generating
740 the callee. The parameter and the function return type must be valid
741 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
742 valid attribute for return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +0000743
744.. _gc:
745
746Garbage Collector Names
747-----------------------
748
749Each function may specify a garbage collector name, which is simply a
750string:
751
752.. code-block:: llvm
753
754 define void @f() gc "name" { ... }
755
756The compiler declares the supported values of *name*. Specifying a
757collector which will cause the compiler to alter its output in order to
758support the named garbage collection algorithm.
759
Bill Wendling95ce4c22013-02-06 06:52:58 +0000760.. _attrgrp:
761
762Attribute Groups
763----------------
764
765Attribute groups are groups of attributes that are referenced by objects within
766the IR. They are important for keeping ``.ll`` files readable, because a lot of
767functions will use the same set of attributes. In the degenerative case of a
768``.ll`` file that corresponds to a single ``.c`` file, the single attribute
769group will capture the important command line flags used to build that file.
770
771An attribute group is a module-level object. To use an attribute group, an
772object references the attribute group's ID (e.g. ``#37``). An object may refer
773to more than one attribute group. In that situation, the attributes from the
774different groups are merged.
775
776Here is an example of attribute groups for a function that should always be
777inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
778
779.. code-block:: llvm
780
781 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000782 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000783
784 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000785 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000786
787 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
788 define void @f() #0 #1 { ... }
789
Sean Silvaf722b002012-12-07 10:36:55 +0000790.. _fnattrs:
791
792Function Attributes
793-------------------
794
795Function attributes are set to communicate additional information about
796a function. Function attributes are considered to be part of the
797function, not of the function type, so functions with different function
798attributes can have the same function type.
799
800Function attributes are simple keywords that follow the type specified.
801If multiple attributes are needed, they are space separated. For
802example:
803
804.. code-block:: llvm
805
806 define void @f() noinline { ... }
807 define void @f() alwaysinline { ... }
808 define void @f() alwaysinline optsize { ... }
809 define void @f() optsize { ... }
810
Sean Silvaf722b002012-12-07 10:36:55 +0000811``alignstack(<n>)``
812 This attribute indicates that, when emitting the prologue and
813 epilogue, the backend should forcibly align the stack pointer.
814 Specify the desired alignment, which must be a power of two, in
815 parentheses.
816``alwaysinline``
817 This attribute indicates that the inliner should attempt to inline
818 this function into callers whenever possible, ignoring any active
819 inlining size threshold for this caller.
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000820``builtin``
821 This indicates that the callee function at a call site should be
822 recognized as a built-in function, even though the function's declaration
Michael Gottesman550d9bf2013-07-02 21:32:56 +0000823 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000824 direct calls to functions which are declared with the ``nobuiltin``
825 attribute.
Michael Gottesmane19a8582013-06-27 22:48:08 +0000826``cold``
827 This attribute indicates that this function is rarely called. When
828 computing edge weights, basic blocks post-dominated by a cold
829 function call are also considered to be cold; and, thus, given low
830 weight.
Sean Silvaf722b002012-12-07 10:36:55 +0000831``nonlazybind``
832 This attribute suppresses lazy symbol binding for the function. This
833 may make calls to the function faster, at the cost of extra program
834 startup time if the function is not called during program startup.
835``inlinehint``
836 This attribute indicates that the source code contained a hint that
837 inlining this function is desirable (such as the "inline" keyword in
838 C/C++). It is just a hint; it imposes no requirements on the
839 inliner.
840``naked``
841 This attribute disables prologue / epilogue emission for the
842 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000843``nobuiltin``
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000844 This indicates that the callee function at a call site is not recognized as
845 a built-in function. LLVM will retain the original call and not replace it
846 with equivalent code based on the semantics of the built-in function, unless
847 the call site uses the ``builtin`` attribute. This is valid at call sites
848 and on function declarations and definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000849``noduplicate``
850 This attribute indicates that calls to the function cannot be
851 duplicated. A call to a ``noduplicate`` function may be moved
852 within its parent function, but may not be duplicated within
853 its parent function.
854
855 A function containing a ``noduplicate`` call may still
856 be an inlining candidate, provided that the call is not
857 duplicated by inlining. That implies that the function has
858 internal linkage and only has one call site, so the original
859 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000860``noimplicitfloat``
861 This attributes disables implicit floating point instructions.
862``noinline``
863 This attribute indicates that the inliner should never inline this
864 function in any situation. This attribute may not be used together
865 with the ``alwaysinline`` attribute.
866``noredzone``
867 This attribute indicates that the code generator should not use a
868 red zone, even if the target-specific ABI normally permits it.
869``noreturn``
870 This function attribute indicates that the function never returns
871 normally. This produces undefined behavior at runtime if the
872 function ever does dynamically return.
873``nounwind``
874 This function attribute indicates that the function never returns
875 with an unwind or exceptional control flow. If the function does
876 unwind, its runtime behavior is undefined.
877``optsize``
878 This attribute suggests that optimization passes and code generator
879 passes make choices that keep the code size of this function low,
880 and otherwise do optimizations specifically to reduce code size.
881``readnone``
Nick Lewyckydc897372013-07-06 00:29:58 +0000882 On a function, this attribute indicates that the function computes its
883 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvaf722b002012-12-07 10:36:55 +0000884 without dereferencing any pointer arguments or otherwise accessing
885 any mutable state (e.g. memory, control registers, etc) visible to
886 caller functions. It does not write through any pointer arguments
887 (including ``byval`` arguments) and never changes any state visible
888 to callers. This means that it cannot unwind exceptions by calling
889 the ``C++`` exception throwing methods.
Nick Lewyckydc897372013-07-06 00:29:58 +0000890
891 On an argument, this attribute indicates that the function does not
892 dereference that pointer argument, even though it may read or write the
893 memory that the pointer points to through if accessed through other
894 pointers.
Sean Silvaf722b002012-12-07 10:36:55 +0000895``readonly``
Nick Lewyckydc897372013-07-06 00:29:58 +0000896 On a function, this attribute indicates that the function does not write
897 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvaf722b002012-12-07 10:36:55 +0000898 modify any state (e.g. memory, control registers, etc) visible to
899 caller functions. It may dereference pointer arguments and read
900 state that may be set in the caller. A readonly function always
901 returns the same value (or unwinds an exception identically) when
902 called with the same set of arguments and global state. It cannot
903 unwind an exception by calling the ``C++`` exception throwing
904 methods.
Nick Lewyckydc897372013-07-06 00:29:58 +0000905
906 On an argument, this attribute indicates that the function does not write
907 through this pointer argument, even though it may write to the memory that
908 the pointer points to.
Sean Silvaf722b002012-12-07 10:36:55 +0000909``returns_twice``
910 This attribute indicates that this function can return twice. The C
911 ``setjmp`` is an example of such a function. The compiler disables
912 some optimizations (like tail calls) in the caller of these
913 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +0000914``sanitize_address``
915 This attribute indicates that AddressSanitizer checks
916 (dynamic address safety analysis) are enabled for this function.
917``sanitize_memory``
918 This attribute indicates that MemorySanitizer checks (dynamic detection
919 of accesses to uninitialized memory) are enabled for this function.
920``sanitize_thread``
921 This attribute indicates that ThreadSanitizer checks
922 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000923``ssp``
924 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000925 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000926 placed on the stack before the local variables that's checked upon
927 return from the function to see if it has been overwritten. A
928 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000929 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000930
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000931 - Character arrays larger than ``ssp-buffer-size`` (default 8).
932 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
933 - Calls to alloca() with variable sizes or constant sizes greater than
934 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +0000935
936 If a function that has an ``ssp`` attribute is inlined into a
937 function that doesn't have an ``ssp`` attribute, then the resulting
938 function will have an ``ssp`` attribute.
939``sspreq``
940 This attribute indicates that the function should *always* emit a
941 stack smashing protector. This overrides the ``ssp`` function
942 attribute.
943
944 If a function that has an ``sspreq`` attribute is inlined into a
945 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +0000946 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
947 an ``sspreq`` attribute.
948``sspstrong``
949 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000950 protector. This attribute causes a strong heuristic to be used when
951 determining if a function needs stack protectors. The strong heuristic
952 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000953
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000954 - Arrays of any size and type
955 - Aggregates containing an array of any size and type.
956 - Calls to alloca().
957 - Local variables that have had their address taken.
958
959 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +0000960
961 If a function that has an ``sspstrong`` attribute is inlined into a
962 function that doesn't have an ``sspstrong`` attribute, then the
963 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +0000964``uwtable``
965 This attribute indicates that the ABI being targeted requires that
966 an unwind table entry be produce for this function even if we can
967 show that no exceptions passes by it. This is normally the case for
968 the ELF x86-64 abi, but it can be disabled for some compilation
969 units.
Sean Silvaf722b002012-12-07 10:36:55 +0000970
971.. _moduleasm:
972
973Module-Level Inline Assembly
974----------------------------
975
976Modules may contain "module-level inline asm" blocks, which corresponds
977to the GCC "file scope inline asm" blocks. These blocks are internally
978concatenated by LLVM and treated as a single unit, but may be separated
979in the ``.ll`` file if desired. The syntax is very simple:
980
981.. code-block:: llvm
982
983 module asm "inline asm code goes here"
984 module asm "more can go here"
985
986The strings can contain any character by escaping non-printable
987characters. The escape sequence used is simply "\\xx" where "xx" is the
988two digit hex code for the number.
989
990The inline asm code is simply printed to the machine code .s file when
991assembly code is generated.
992
Eli Bendersky1de14102013-06-07 19:40:08 +0000993.. _langref_datalayout:
994
Sean Silvaf722b002012-12-07 10:36:55 +0000995Data Layout
996-----------
997
998A module may specify a target specific data layout string that specifies
999how data is to be laid out in memory. The syntax for the data layout is
1000simply:
1001
1002.. code-block:: llvm
1003
1004 target datalayout = "layout specification"
1005
1006The *layout specification* consists of a list of specifications
1007separated by the minus sign character ('-'). Each specification starts
1008with a letter and may include other information after the letter to
1009define some aspect of the data layout. The specifications accepted are
1010as follows:
1011
1012``E``
1013 Specifies that the target lays out data in big-endian form. That is,
1014 the bits with the most significance have the lowest address
1015 location.
1016``e``
1017 Specifies that the target lays out data in little-endian form. That
1018 is, the bits with the least significance have the lowest address
1019 location.
1020``S<size>``
1021 Specifies the natural alignment of the stack in bits. Alignment
1022 promotion of stack variables is limited to the natural stack
1023 alignment to avoid dynamic stack realignment. The stack alignment
1024 must be a multiple of 8-bits. If omitted, the natural stack
1025 alignment defaults to "unspecified", which does not prevent any
1026 alignment promotions.
1027``p[n]:<size>:<abi>:<pref>``
1028 This specifies the *size* of a pointer and its ``<abi>`` and
1029 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1030 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1031 preceding ``:`` should be omitted too. The address space, ``n`` is
1032 optional, and if not specified, denotes the default address space 0.
1033 The value of ``n`` must be in the range [1,2^23).
1034``i<size>:<abi>:<pref>``
1035 This specifies the alignment for an integer type of a given bit
1036 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1037``v<size>:<abi>:<pref>``
1038 This specifies the alignment for a vector type of a given bit
1039 ``<size>``.
1040``f<size>:<abi>:<pref>``
1041 This specifies the alignment for a floating point type of a given bit
1042 ``<size>``. Only values of ``<size>`` that are supported by the target
1043 will work. 32 (float) and 64 (double) are supported on all targets; 80
1044 or 128 (different flavors of long double) are also supported on some
1045 targets.
1046``a<size>:<abi>:<pref>``
1047 This specifies the alignment for an aggregate type of a given bit
1048 ``<size>``.
1049``s<size>:<abi>:<pref>``
1050 This specifies the alignment for a stack object of a given bit
1051 ``<size>``.
1052``n<size1>:<size2>:<size3>...``
1053 This specifies a set of native integer widths for the target CPU in
1054 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1055 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1056 this set are considered to support most general arithmetic operations
1057 efficiently.
1058
1059When constructing the data layout for a given target, LLVM starts with a
1060default set of specifications which are then (possibly) overridden by
1061the specifications in the ``datalayout`` keyword. The default
1062specifications are given in this list:
1063
1064- ``E`` - big endian
1065- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001066- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001067- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1068- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1069- ``i16:16:16`` - i16 is 16-bit aligned
1070- ``i32:32:32`` - i32 is 32-bit aligned
1071- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1072 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001073- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001074- ``f32:32:32`` - float is 32-bit aligned
1075- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001076- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001077- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1078- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001079- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001080
1081When LLVM is determining the alignment for a given type, it uses the
1082following rules:
1083
1084#. If the type sought is an exact match for one of the specifications,
1085 that specification is used.
1086#. If no match is found, and the type sought is an integer type, then
1087 the smallest integer type that is larger than the bitwidth of the
1088 sought type is used. If none of the specifications are larger than
1089 the bitwidth then the largest integer type is used. For example,
1090 given the default specifications above, the i7 type will use the
1091 alignment of i8 (next largest) while both i65 and i256 will use the
1092 alignment of i64 (largest specified).
1093#. If no match is found, and the type sought is a vector type, then the
1094 largest vector type that is smaller than the sought vector type will
1095 be used as a fall back. This happens because <128 x double> can be
1096 implemented in terms of 64 <2 x double>, for example.
1097
1098The function of the data layout string may not be what you expect.
1099Notably, this is not a specification from the frontend of what alignment
1100the code generator should use.
1101
1102Instead, if specified, the target data layout is required to match what
1103the ultimate *code generator* expects. This string is used by the
1104mid-level optimizers to improve code, and this only works if it matches
1105what the ultimate code generator uses. If you would like to generate IR
1106that does not embed this target-specific detail into the IR, then you
1107don't have to specify the string. This will disable some optimizations
1108that require precise layout information, but this also prevents those
1109optimizations from introducing target specificity into the IR.
1110
1111.. _pointeraliasing:
1112
1113Pointer Aliasing Rules
1114----------------------
1115
1116Any memory access must be done through a pointer value associated with
1117an address range of the memory access, otherwise the behavior is
1118undefined. Pointer values are associated with address ranges according
1119to the following rules:
1120
1121- A pointer value is associated with the addresses associated with any
1122 value it is *based* on.
1123- An address of a global variable is associated with the address range
1124 of the variable's storage.
1125- The result value of an allocation instruction is associated with the
1126 address range of the allocated storage.
1127- A null pointer in the default address-space is associated with no
1128 address.
1129- An integer constant other than zero or a pointer value returned from
1130 a function not defined within LLVM may be associated with address
1131 ranges allocated through mechanisms other than those provided by
1132 LLVM. Such ranges shall not overlap with any ranges of addresses
1133 allocated by mechanisms provided by LLVM.
1134
1135A pointer value is *based* on another pointer value according to the
1136following rules:
1137
1138- A pointer value formed from a ``getelementptr`` operation is *based*
1139 on the first operand of the ``getelementptr``.
1140- The result value of a ``bitcast`` is *based* on the operand of the
1141 ``bitcast``.
1142- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1143 values that contribute (directly or indirectly) to the computation of
1144 the pointer's value.
1145- The "*based* on" relationship is transitive.
1146
1147Note that this definition of *"based"* is intentionally similar to the
1148definition of *"based"* in C99, though it is slightly weaker.
1149
1150LLVM IR does not associate types with memory. The result type of a
1151``load`` merely indicates the size and alignment of the memory from
1152which to load, as well as the interpretation of the value. The first
1153operand type of a ``store`` similarly only indicates the size and
1154alignment of the store.
1155
1156Consequently, type-based alias analysis, aka TBAA, aka
1157``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1158:ref:`Metadata <metadata>` may be used to encode additional information
1159which specialized optimization passes may use to implement type-based
1160alias analysis.
1161
1162.. _volatile:
1163
1164Volatile Memory Accesses
1165------------------------
1166
1167Certain memory accesses, such as :ref:`load <i_load>`'s,
1168:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1169marked ``volatile``. The optimizers must not change the number of
1170volatile operations or change their order of execution relative to other
1171volatile operations. The optimizers *may* change the order of volatile
1172operations relative to non-volatile operations. This is not Java's
1173"volatile" and has no cross-thread synchronization behavior.
1174
Andrew Trick9a6dd022013-01-30 21:19:35 +00001175IR-level volatile loads and stores cannot safely be optimized into
1176llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1177flagged volatile. Likewise, the backend should never split or merge
1178target-legal volatile load/store instructions.
1179
Andrew Trick946317d2013-01-31 00:49:39 +00001180.. admonition:: Rationale
1181
1182 Platforms may rely on volatile loads and stores of natively supported
1183 data width to be executed as single instruction. For example, in C
1184 this holds for an l-value of volatile primitive type with native
1185 hardware support, but not necessarily for aggregate types. The
1186 frontend upholds these expectations, which are intentionally
1187 unspecified in the IR. The rules above ensure that IR transformation
1188 do not violate the frontend's contract with the language.
1189
Sean Silvaf722b002012-12-07 10:36:55 +00001190.. _memmodel:
1191
1192Memory Model for Concurrent Operations
1193--------------------------------------
1194
1195The LLVM IR does not define any way to start parallel threads of
1196execution or to register signal handlers. Nonetheless, there are
1197platform-specific ways to create them, and we define LLVM IR's behavior
1198in their presence. This model is inspired by the C++0x memory model.
1199
1200For a more informal introduction to this model, see the :doc:`Atomics`.
1201
1202We define a *happens-before* partial order as the least partial order
1203that
1204
1205- Is a superset of single-thread program order, and
1206- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1207 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1208 techniques, like pthread locks, thread creation, thread joining,
1209 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1210 Constraints <ordering>`).
1211
1212Note that program order does not introduce *happens-before* edges
1213between a thread and signals executing inside that thread.
1214
1215Every (defined) read operation (load instructions, memcpy, atomic
1216loads/read-modify-writes, etc.) R reads a series of bytes written by
1217(defined) write operations (store instructions, atomic
1218stores/read-modify-writes, memcpy, etc.). For the purposes of this
1219section, initialized globals are considered to have a write of the
1220initializer which is atomic and happens before any other read or write
1221of the memory in question. For each byte of a read R, R\ :sub:`byte`
1222may see any write to the same byte, except:
1223
1224- If write\ :sub:`1` happens before write\ :sub:`2`, and
1225 write\ :sub:`2` happens before R\ :sub:`byte`, then
1226 R\ :sub:`byte` does not see write\ :sub:`1`.
1227- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1228 R\ :sub:`byte` does not see write\ :sub:`3`.
1229
1230Given that definition, R\ :sub:`byte` is defined as follows:
1231
1232- If R is volatile, the result is target-dependent. (Volatile is
1233 supposed to give guarantees which can support ``sig_atomic_t`` in
1234 C/C++, and may be used for accesses to addresses which do not behave
1235 like normal memory. It does not generally provide cross-thread
1236 synchronization.)
1237- Otherwise, if there is no write to the same byte that happens before
1238 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1239- Otherwise, if R\ :sub:`byte` may see exactly one write,
1240 R\ :sub:`byte` returns the value written by that write.
1241- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1242 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1243 Memory Ordering Constraints <ordering>` section for additional
1244 constraints on how the choice is made.
1245- Otherwise R\ :sub:`byte` returns ``undef``.
1246
1247R returns the value composed of the series of bytes it read. This
1248implies that some bytes within the value may be ``undef`` **without**
1249the entire value being ``undef``. Note that this only defines the
1250semantics of the operation; it doesn't mean that targets will emit more
1251than one instruction to read the series of bytes.
1252
1253Note that in cases where none of the atomic intrinsics are used, this
1254model places only one restriction on IR transformations on top of what
1255is required for single-threaded execution: introducing a store to a byte
1256which might not otherwise be stored is not allowed in general.
1257(Specifically, in the case where another thread might write to and read
1258from an address, introducing a store can change a load that may see
1259exactly one write into a load that may see multiple writes.)
1260
1261.. _ordering:
1262
1263Atomic Memory Ordering Constraints
1264----------------------------------
1265
1266Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1267:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1268:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1269an ordering parameter that determines which other atomic instructions on
1270the same address they *synchronize with*. These semantics are borrowed
1271from Java and C++0x, but are somewhat more colloquial. If these
1272descriptions aren't precise enough, check those specs (see spec
1273references in the :doc:`atomics guide <Atomics>`).
1274:ref:`fence <i_fence>` instructions treat these orderings somewhat
1275differently since they don't take an address. See that instruction's
1276documentation for details.
1277
1278For a simpler introduction to the ordering constraints, see the
1279:doc:`Atomics`.
1280
1281``unordered``
1282 The set of values that can be read is governed by the happens-before
1283 partial order. A value cannot be read unless some operation wrote
1284 it. This is intended to provide a guarantee strong enough to model
1285 Java's non-volatile shared variables. This ordering cannot be
1286 specified for read-modify-write operations; it is not strong enough
1287 to make them atomic in any interesting way.
1288``monotonic``
1289 In addition to the guarantees of ``unordered``, there is a single
1290 total order for modifications by ``monotonic`` operations on each
1291 address. All modification orders must be compatible with the
1292 happens-before order. There is no guarantee that the modification
1293 orders can be combined to a global total order for the whole program
1294 (and this often will not be possible). The read in an atomic
1295 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1296 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1297 order immediately before the value it writes. If one atomic read
1298 happens before another atomic read of the same address, the later
1299 read must see the same value or a later value in the address's
1300 modification order. This disallows reordering of ``monotonic`` (or
1301 stronger) operations on the same address. If an address is written
1302 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1303 read that address repeatedly, the other threads must eventually see
1304 the write. This corresponds to the C++0x/C1x
1305 ``memory_order_relaxed``.
1306``acquire``
1307 In addition to the guarantees of ``monotonic``, a
1308 *synchronizes-with* edge may be formed with a ``release`` operation.
1309 This is intended to model C++'s ``memory_order_acquire``.
1310``release``
1311 In addition to the guarantees of ``monotonic``, if this operation
1312 writes a value which is subsequently read by an ``acquire``
1313 operation, it *synchronizes-with* that operation. (This isn't a
1314 complete description; see the C++0x definition of a release
1315 sequence.) This corresponds to the C++0x/C1x
1316 ``memory_order_release``.
1317``acq_rel`` (acquire+release)
1318 Acts as both an ``acquire`` and ``release`` operation on its
1319 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1320``seq_cst`` (sequentially consistent)
1321 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1322 operation which only reads, ``release`` for an operation which only
1323 writes), there is a global total order on all
1324 sequentially-consistent operations on all addresses, which is
1325 consistent with the *happens-before* partial order and with the
1326 modification orders of all the affected addresses. Each
1327 sequentially-consistent read sees the last preceding write to the
1328 same address in this global order. This corresponds to the C++0x/C1x
1329 ``memory_order_seq_cst`` and Java volatile.
1330
1331.. _singlethread:
1332
1333If an atomic operation is marked ``singlethread``, it only *synchronizes
1334with* or participates in modification and seq\_cst total orderings with
1335other operations running in the same thread (for example, in signal
1336handlers).
1337
1338.. _fastmath:
1339
1340Fast-Math Flags
1341---------------
1342
1343LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1344:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1345:ref:`frem <i_frem>`) have the following flags that can set to enable
1346otherwise unsafe floating point operations
1347
1348``nnan``
1349 No NaNs - Allow optimizations to assume the arguments and result are not
1350 NaN. Such optimizations are required to retain defined behavior over
1351 NaNs, but the value of the result is undefined.
1352
1353``ninf``
1354 No Infs - Allow optimizations to assume the arguments and result are not
1355 +/-Inf. Such optimizations are required to retain defined behavior over
1356 +/-Inf, but the value of the result is undefined.
1357
1358``nsz``
1359 No Signed Zeros - Allow optimizations to treat the sign of a zero
1360 argument or result as insignificant.
1361
1362``arcp``
1363 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1364 argument rather than perform division.
1365
1366``fast``
1367 Fast - Allow algebraically equivalent transformations that may
1368 dramatically change results in floating point (e.g. reassociate). This
1369 flag implies all the others.
1370
1371.. _typesystem:
1372
1373Type System
1374===========
1375
1376The LLVM type system is one of the most important features of the
1377intermediate representation. Being typed enables a number of
1378optimizations to be performed on the intermediate representation
1379directly, without having to do extra analyses on the side before the
1380transformation. A strong type system makes it easier to read the
1381generated code and enables novel analyses and transformations that are
1382not feasible to perform on normal three address code representations.
1383
Eli Bendersky88fe6822013-06-07 20:24:43 +00001384.. _typeclassifications:
1385
Sean Silvaf722b002012-12-07 10:36:55 +00001386Type Classifications
1387--------------------
1388
1389The types fall into a few useful classifications:
1390
1391
1392.. list-table::
1393 :header-rows: 1
1394
1395 * - Classification
1396 - Types
1397
1398 * - :ref:`integer <t_integer>`
1399 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1400 ``i64``, ...
1401
1402 * - :ref:`floating point <t_floating>`
1403 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1404 ``ppc_fp128``
1405
1406
1407 * - first class
1408
1409 .. _t_firstclass:
1410
1411 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1412 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1413 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1414 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1415
1416 * - :ref:`primitive <t_primitive>`
1417 - :ref:`label <t_label>`,
1418 :ref:`void <t_void>`,
1419 :ref:`integer <t_integer>`,
1420 :ref:`floating point <t_floating>`,
1421 :ref:`x86mmx <t_x86mmx>`,
1422 :ref:`metadata <t_metadata>`.
1423
1424 * - :ref:`derived <t_derived>`
1425 - :ref:`array <t_array>`,
1426 :ref:`function <t_function>`,
1427 :ref:`pointer <t_pointer>`,
1428 :ref:`structure <t_struct>`,
1429 :ref:`vector <t_vector>`,
1430 :ref:`opaque <t_opaque>`.
1431
1432The :ref:`first class <t_firstclass>` types are perhaps the most important.
1433Values of these types are the only ones which can be produced by
1434instructions.
1435
1436.. _t_primitive:
1437
1438Primitive Types
1439---------------
1440
1441The primitive types are the fundamental building blocks of the LLVM
1442system.
1443
1444.. _t_integer:
1445
1446Integer Type
1447^^^^^^^^^^^^
1448
1449Overview:
1450"""""""""
1451
1452The integer type is a very simple type that simply specifies an
1453arbitrary bit width for the integer type desired. Any bit width from 1
1454bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1455
1456Syntax:
1457"""""""
1458
1459::
1460
1461 iN
1462
1463The number of bits the integer will occupy is specified by the ``N``
1464value.
1465
1466Examples:
1467"""""""""
1468
1469+----------------+------------------------------------------------+
1470| ``i1`` | a single-bit integer. |
1471+----------------+------------------------------------------------+
1472| ``i32`` | a 32-bit integer. |
1473+----------------+------------------------------------------------+
1474| ``i1942652`` | a really big integer of over 1 million bits. |
1475+----------------+------------------------------------------------+
1476
1477.. _t_floating:
1478
1479Floating Point Types
1480^^^^^^^^^^^^^^^^^^^^
1481
1482.. list-table::
1483 :header-rows: 1
1484
1485 * - Type
1486 - Description
1487
1488 * - ``half``
1489 - 16-bit floating point value
1490
1491 * - ``float``
1492 - 32-bit floating point value
1493
1494 * - ``double``
1495 - 64-bit floating point value
1496
1497 * - ``fp128``
1498 - 128-bit floating point value (112-bit mantissa)
1499
1500 * - ``x86_fp80``
1501 - 80-bit floating point value (X87)
1502
1503 * - ``ppc_fp128``
1504 - 128-bit floating point value (two 64-bits)
1505
1506.. _t_x86mmx:
1507
1508X86mmx Type
1509^^^^^^^^^^^
1510
1511Overview:
1512"""""""""
1513
1514The x86mmx type represents a value held in an MMX register on an x86
1515machine. The operations allowed on it are quite limited: parameters and
1516return values, load and store, and bitcast. User-specified MMX
1517instructions are represented as intrinsic or asm calls with arguments
1518and/or results of this type. There are no arrays, vectors or constants
1519of this type.
1520
1521Syntax:
1522"""""""
1523
1524::
1525
1526 x86mmx
1527
1528.. _t_void:
1529
1530Void Type
1531^^^^^^^^^
1532
1533Overview:
1534"""""""""
1535
1536The void type does not represent any value and has no size.
1537
1538Syntax:
1539"""""""
1540
1541::
1542
1543 void
1544
1545.. _t_label:
1546
1547Label Type
1548^^^^^^^^^^
1549
1550Overview:
1551"""""""""
1552
1553The label type represents code labels.
1554
1555Syntax:
1556"""""""
1557
1558::
1559
1560 label
1561
1562.. _t_metadata:
1563
1564Metadata Type
1565^^^^^^^^^^^^^
1566
1567Overview:
1568"""""""""
1569
1570The metadata type represents embedded metadata. No derived types may be
1571created from metadata except for :ref:`function <t_function>` arguments.
1572
1573Syntax:
1574"""""""
1575
1576::
1577
1578 metadata
1579
1580.. _t_derived:
1581
1582Derived Types
1583-------------
1584
1585The real power in LLVM comes from the derived types in the system. This
1586is what allows a programmer to represent arrays, functions, pointers,
1587and other useful types. Each of these types contain one or more element
1588types which may be a primitive type, or another derived type. For
1589example, it is possible to have a two dimensional array, using an array
1590as the element type of another array.
1591
1592.. _t_aggregate:
1593
1594Aggregate Types
1595^^^^^^^^^^^^^^^
1596
1597Aggregate Types are a subset of derived types that can contain multiple
1598member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1599aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1600aggregate types.
1601
1602.. _t_array:
1603
1604Array Type
1605^^^^^^^^^^
1606
1607Overview:
1608"""""""""
1609
1610The array type is a very simple derived type that arranges elements
1611sequentially in memory. The array type requires a size (number of
1612elements) and an underlying data type.
1613
1614Syntax:
1615"""""""
1616
1617::
1618
1619 [<# elements> x <elementtype>]
1620
1621The number of elements is a constant integer value; ``elementtype`` may
1622be any type with a size.
1623
1624Examples:
1625"""""""""
1626
1627+------------------+--------------------------------------+
1628| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1629+------------------+--------------------------------------+
1630| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1631+------------------+--------------------------------------+
1632| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1633+------------------+--------------------------------------+
1634
1635Here are some examples of multidimensional arrays:
1636
1637+-----------------------------+----------------------------------------------------------+
1638| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1639+-----------------------------+----------------------------------------------------------+
1640| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1641+-----------------------------+----------------------------------------------------------+
1642| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1643+-----------------------------+----------------------------------------------------------+
1644
1645There is no restriction on indexing beyond the end of the array implied
1646by a static type (though there are restrictions on indexing beyond the
1647bounds of an allocated object in some cases). This means that
1648single-dimension 'variable sized array' addressing can be implemented in
1649LLVM with a zero length array type. An implementation of 'pascal style
1650arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1651example.
1652
1653.. _t_function:
1654
1655Function Type
1656^^^^^^^^^^^^^
1657
1658Overview:
1659"""""""""
1660
1661The function type can be thought of as a function signature. It consists
1662of a return type and a list of formal parameter types. The return type
1663of a function type is a first class type or a void type.
1664
1665Syntax:
1666"""""""
1667
1668::
1669
1670 <returntype> (<parameter list>)
1671
1672...where '``<parameter list>``' is a comma-separated list of type
1673specifiers. Optionally, the parameter list may include a type ``...``,
1674which indicates that the function takes a variable number of arguments.
1675Variable argument functions can access their arguments with the
1676:ref:`variable argument handling intrinsic <int_varargs>` functions.
1677'``<returntype>``' is any type except :ref:`label <t_label>`.
1678
1679Examples:
1680"""""""""
1681
1682+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1683| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1684+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001685| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001686+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1687| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1688+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1689| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1690+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1691
1692.. _t_struct:
1693
1694Structure Type
1695^^^^^^^^^^^^^^
1696
1697Overview:
1698"""""""""
1699
1700The structure type is used to represent a collection of data members
1701together in memory. The elements of a structure may be any type that has
1702a size.
1703
1704Structures in memory are accessed using '``load``' and '``store``' by
1705getting a pointer to a field with the '``getelementptr``' instruction.
1706Structures in registers are accessed using the '``extractvalue``' and
1707'``insertvalue``' instructions.
1708
1709Structures may optionally be "packed" structures, which indicate that
1710the alignment of the struct is one byte, and that there is no padding
1711between the elements. In non-packed structs, padding between field types
1712is inserted as defined by the DataLayout string in the module, which is
1713required to match what the underlying code generator expects.
1714
1715Structures can either be "literal" or "identified". A literal structure
1716is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1717identified types are always defined at the top level with a name.
1718Literal types are uniqued by their contents and can never be recursive
1719or opaque since there is no way to write one. Identified types can be
1720recursive, can be opaqued, and are never uniqued.
1721
1722Syntax:
1723"""""""
1724
1725::
1726
1727 %T1 = type { <type list> } ; Identified normal struct type
1728 %T2 = type <{ <type list> }> ; Identified packed struct type
1729
1730Examples:
1731"""""""""
1732
1733+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1734| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1735+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001736| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001737+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1738| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1739+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1740
1741.. _t_opaque:
1742
1743Opaque Structure Types
1744^^^^^^^^^^^^^^^^^^^^^^
1745
1746Overview:
1747"""""""""
1748
1749Opaque structure types are used to represent named structure types that
1750do not have a body specified. This corresponds (for example) to the C
1751notion of a forward declared structure.
1752
1753Syntax:
1754"""""""
1755
1756::
1757
1758 %X = type opaque
1759 %52 = type opaque
1760
1761Examples:
1762"""""""""
1763
1764+--------------+-------------------+
1765| ``opaque`` | An opaque type. |
1766+--------------+-------------------+
1767
1768.. _t_pointer:
1769
1770Pointer Type
1771^^^^^^^^^^^^
1772
1773Overview:
1774"""""""""
1775
1776The pointer type is used to specify memory locations. Pointers are
1777commonly used to reference objects in memory.
1778
1779Pointer types may have an optional address space attribute defining the
1780numbered address space where the pointed-to object resides. The default
1781address space is number zero. The semantics of non-zero address spaces
1782are target-specific.
1783
1784Note that LLVM does not permit pointers to void (``void*``) nor does it
1785permit pointers to labels (``label*``). Use ``i8*`` instead.
1786
1787Syntax:
1788"""""""
1789
1790::
1791
1792 <type> *
1793
1794Examples:
1795"""""""""
1796
1797+-------------------------+--------------------------------------------------------------------------------------------------------------+
1798| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1799+-------------------------+--------------------------------------------------------------------------------------------------------------+
1800| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1801+-------------------------+--------------------------------------------------------------------------------------------------------------+
1802| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1803+-------------------------+--------------------------------------------------------------------------------------------------------------+
1804
1805.. _t_vector:
1806
1807Vector Type
1808^^^^^^^^^^^
1809
1810Overview:
1811"""""""""
1812
1813A vector type is a simple derived type that represents a vector of
1814elements. Vector types are used when multiple primitive data are
1815operated in parallel using a single instruction (SIMD). A vector type
1816requires a size (number of elements) and an underlying primitive data
1817type. Vector types are considered :ref:`first class <t_firstclass>`.
1818
1819Syntax:
1820"""""""
1821
1822::
1823
1824 < <# elements> x <elementtype> >
1825
1826The number of elements is a constant integer value larger than 0;
1827elementtype may be any integer or floating point type, or a pointer to
1828these types. Vectors of size zero are not allowed.
1829
1830Examples:
1831"""""""""
1832
1833+-------------------+--------------------------------------------------+
1834| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1835+-------------------+--------------------------------------------------+
1836| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1837+-------------------+--------------------------------------------------+
1838| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1839+-------------------+--------------------------------------------------+
1840| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1841+-------------------+--------------------------------------------------+
1842
1843Constants
1844=========
1845
1846LLVM has several different basic types of constants. This section
1847describes them all and their syntax.
1848
1849Simple Constants
1850----------------
1851
1852**Boolean constants**
1853 The two strings '``true``' and '``false``' are both valid constants
1854 of the ``i1`` type.
1855**Integer constants**
1856 Standard integers (such as '4') are constants of the
1857 :ref:`integer <t_integer>` type. Negative numbers may be used with
1858 integer types.
1859**Floating point constants**
1860 Floating point constants use standard decimal notation (e.g.
1861 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1862 hexadecimal notation (see below). The assembler requires the exact
1863 decimal value of a floating-point constant. For example, the
1864 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1865 decimal in binary. Floating point constants must have a :ref:`floating
1866 point <t_floating>` type.
1867**Null pointer constants**
1868 The identifier '``null``' is recognized as a null pointer constant
1869 and must be of :ref:`pointer type <t_pointer>`.
1870
1871The one non-intuitive notation for constants is the hexadecimal form of
1872floating point constants. For example, the form
1873'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1874than) '``double 4.5e+15``'. The only time hexadecimal floating point
1875constants are required (and the only time that they are generated by the
1876disassembler) is when a floating point constant must be emitted but it
1877cannot be represented as a decimal floating point number in a reasonable
1878number of digits. For example, NaN's, infinities, and other special
1879values are represented in their IEEE hexadecimal format so that assembly
1880and disassembly do not cause any bits to change in the constants.
1881
1882When using the hexadecimal form, constants of types half, float, and
1883double are represented using the 16-digit form shown above (which
1884matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001885must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001886precision, respectively. Hexadecimal format is always used for long
1887double, and there are three forms of long double. The 80-bit format used
1888by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1889128-bit format used by PowerPC (two adjacent doubles) is represented by
1890``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00001891represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1892will only work if they match the long double format on your target.
1893The IEEE 16-bit format (half precision) is represented by ``0xH``
1894followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1895(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00001896
1897There are no constants of type x86mmx.
1898
Eli Bendersky88fe6822013-06-07 20:24:43 +00001899.. _complexconstants:
1900
Sean Silvaf722b002012-12-07 10:36:55 +00001901Complex Constants
1902-----------------
1903
1904Complex constants are a (potentially recursive) combination of simple
1905constants and smaller complex constants.
1906
1907**Structure constants**
1908 Structure constants are represented with notation similar to
1909 structure type definitions (a comma separated list of elements,
1910 surrounded by braces (``{}``)). For example:
1911 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1912 "``@G = external global i32``". Structure constants must have
1913 :ref:`structure type <t_struct>`, and the number and types of elements
1914 must match those specified by the type.
1915**Array constants**
1916 Array constants are represented with notation similar to array type
1917 definitions (a comma separated list of elements, surrounded by
1918 square brackets (``[]``)). For example:
1919 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1920 :ref:`array type <t_array>`, and the number and types of elements must
1921 match those specified by the type.
1922**Vector constants**
1923 Vector constants are represented with notation similar to vector
1924 type definitions (a comma separated list of elements, surrounded by
1925 less-than/greater-than's (``<>``)). For example:
1926 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1927 must have :ref:`vector type <t_vector>`, and the number and types of
1928 elements must match those specified by the type.
1929**Zero initialization**
1930 The string '``zeroinitializer``' can be used to zero initialize a
1931 value to zero of *any* type, including scalar and
1932 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1933 having to print large zero initializers (e.g. for large arrays) and
1934 is always exactly equivalent to using explicit zero initializers.
1935**Metadata node**
1936 A metadata node is a structure-like constant with :ref:`metadata
1937 type <t_metadata>`. For example:
1938 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1939 constants that are meant to be interpreted as part of the
1940 instruction stream, metadata is a place to attach additional
1941 information such as debug info.
1942
1943Global Variable and Function Addresses
1944--------------------------------------
1945
1946The addresses of :ref:`global variables <globalvars>` and
1947:ref:`functions <functionstructure>` are always implicitly valid
1948(link-time) constants. These constants are explicitly referenced when
1949the :ref:`identifier for the global <identifiers>` is used and always have
1950:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1951file:
1952
1953.. code-block:: llvm
1954
1955 @X = global i32 17
1956 @Y = global i32 42
1957 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1958
1959.. _undefvalues:
1960
1961Undefined Values
1962----------------
1963
1964The string '``undef``' can be used anywhere a constant is expected, and
1965indicates that the user of the value may receive an unspecified
1966bit-pattern. Undefined values may be of any type (other than '``label``'
1967or '``void``') and be used anywhere a constant is permitted.
1968
1969Undefined values are useful because they indicate to the compiler that
1970the program is well defined no matter what value is used. This gives the
1971compiler more freedom to optimize. Here are some examples of
1972(potentially surprising) transformations that are valid (in pseudo IR):
1973
1974.. code-block:: llvm
1975
1976 %A = add %X, undef
1977 %B = sub %X, undef
1978 %C = xor %X, undef
1979 Safe:
1980 %A = undef
1981 %B = undef
1982 %C = undef
1983
1984This is safe because all of the output bits are affected by the undef
1985bits. Any output bit can have a zero or one depending on the input bits.
1986
1987.. code-block:: llvm
1988
1989 %A = or %X, undef
1990 %B = and %X, undef
1991 Safe:
1992 %A = -1
1993 %B = 0
1994 Unsafe:
1995 %A = undef
1996 %B = undef
1997
1998These logical operations have bits that are not always affected by the
1999input. For example, if ``%X`` has a zero bit, then the output of the
2000'``and``' operation will always be a zero for that bit, no matter what
2001the corresponding bit from the '``undef``' is. As such, it is unsafe to
2002optimize or assume that the result of the '``and``' is '``undef``'.
2003However, it is safe to assume that all bits of the '``undef``' could be
20040, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2005all the bits of the '``undef``' operand to the '``or``' could be set,
2006allowing the '``or``' to be folded to -1.
2007
2008.. code-block:: llvm
2009
2010 %A = select undef, %X, %Y
2011 %B = select undef, 42, %Y
2012 %C = select %X, %Y, undef
2013 Safe:
2014 %A = %X (or %Y)
2015 %B = 42 (or %Y)
2016 %C = %Y
2017 Unsafe:
2018 %A = undef
2019 %B = undef
2020 %C = undef
2021
2022This set of examples shows that undefined '``select``' (and conditional
2023branch) conditions can go *either way*, but they have to come from one
2024of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2025both known to have a clear low bit, then ``%A`` would have to have a
2026cleared low bit. However, in the ``%C`` example, the optimizer is
2027allowed to assume that the '``undef``' operand could be the same as
2028``%Y``, allowing the whole '``select``' to be eliminated.
2029
2030.. code-block:: llvm
2031
2032 %A = xor undef, undef
2033
2034 %B = undef
2035 %C = xor %B, %B
2036
2037 %D = undef
2038 %E = icmp lt %D, 4
2039 %F = icmp gte %D, 4
2040
2041 Safe:
2042 %A = undef
2043 %B = undef
2044 %C = undef
2045 %D = undef
2046 %E = undef
2047 %F = undef
2048
2049This example points out that two '``undef``' operands are not
2050necessarily the same. This can be surprising to people (and also matches
2051C semantics) where they assume that "``X^X``" is always zero, even if
2052``X`` is undefined. This isn't true for a number of reasons, but the
2053short answer is that an '``undef``' "variable" can arbitrarily change
2054its value over its "live range". This is true because the variable
2055doesn't actually *have a live range*. Instead, the value is logically
2056read from arbitrary registers that happen to be around when needed, so
2057the value is not necessarily consistent over time. In fact, ``%A`` and
2058``%C`` need to have the same semantics or the core LLVM "replace all
2059uses with" concept would not hold.
2060
2061.. code-block:: llvm
2062
2063 %A = fdiv undef, %X
2064 %B = fdiv %X, undef
2065 Safe:
2066 %A = undef
2067 b: unreachable
2068
2069These examples show the crucial difference between an *undefined value*
2070and *undefined behavior*. An undefined value (like '``undef``') is
2071allowed to have an arbitrary bit-pattern. This means that the ``%A``
2072operation can be constant folded to '``undef``', because the '``undef``'
2073could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2074However, in the second example, we can make a more aggressive
2075assumption: because the ``undef`` is allowed to be an arbitrary value,
2076we are allowed to assume that it could be zero. Since a divide by zero
2077has *undefined behavior*, we are allowed to assume that the operation
2078does not execute at all. This allows us to delete the divide and all
2079code after it. Because the undefined operation "can't happen", the
2080optimizer can assume that it occurs in dead code.
2081
2082.. code-block:: llvm
2083
2084 a: store undef -> %X
2085 b: store %X -> undef
2086 Safe:
2087 a: <deleted>
2088 b: unreachable
2089
2090These examples reiterate the ``fdiv`` example: a store *of* an undefined
2091value can be assumed to not have any effect; we can assume that the
2092value is overwritten with bits that happen to match what was already
2093there. However, a store *to* an undefined location could clobber
2094arbitrary memory, therefore, it has undefined behavior.
2095
2096.. _poisonvalues:
2097
2098Poison Values
2099-------------
2100
2101Poison values are similar to :ref:`undef values <undefvalues>`, however
2102they also represent the fact that an instruction or constant expression
2103which cannot evoke side effects has nevertheless detected a condition
2104which results in undefined behavior.
2105
2106There is currently no way of representing a poison value in the IR; they
2107only exist when produced by operations such as :ref:`add <i_add>` with
2108the ``nsw`` flag.
2109
2110Poison value behavior is defined in terms of value *dependence*:
2111
2112- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2113- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2114 their dynamic predecessor basic block.
2115- Function arguments depend on the corresponding actual argument values
2116 in the dynamic callers of their functions.
2117- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2118 instructions that dynamically transfer control back to them.
2119- :ref:`Invoke <i_invoke>` instructions depend on the
2120 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2121 call instructions that dynamically transfer control back to them.
2122- Non-volatile loads and stores depend on the most recent stores to all
2123 of the referenced memory addresses, following the order in the IR
2124 (including loads and stores implied by intrinsics such as
2125 :ref:`@llvm.memcpy <int_memcpy>`.)
2126- An instruction with externally visible side effects depends on the
2127 most recent preceding instruction with externally visible side
2128 effects, following the order in the IR. (This includes :ref:`volatile
2129 operations <volatile>`.)
2130- An instruction *control-depends* on a :ref:`terminator
2131 instruction <terminators>` if the terminator instruction has
2132 multiple successors and the instruction is always executed when
2133 control transfers to one of the successors, and may not be executed
2134 when control is transferred to another.
2135- Additionally, an instruction also *control-depends* on a terminator
2136 instruction if the set of instructions it otherwise depends on would
2137 be different if the terminator had transferred control to a different
2138 successor.
2139- Dependence is transitive.
2140
2141Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2142with the additional affect that any instruction which has a *dependence*
2143on a poison value has undefined behavior.
2144
2145Here are some examples:
2146
2147.. code-block:: llvm
2148
2149 entry:
2150 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2151 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2152 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2153 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2154
2155 store i32 %poison, i32* @g ; Poison value stored to memory.
2156 %poison2 = load i32* @g ; Poison value loaded back from memory.
2157
2158 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2159
2160 %narrowaddr = bitcast i32* @g to i16*
2161 %wideaddr = bitcast i32* @g to i64*
2162 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2163 %poison4 = load i64* %wideaddr ; Returns a poison value.
2164
2165 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2166 br i1 %cmp, label %true, label %end ; Branch to either destination.
2167
2168 true:
2169 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2170 ; it has undefined behavior.
2171 br label %end
2172
2173 end:
2174 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2175 ; Both edges into this PHI are
2176 ; control-dependent on %cmp, so this
2177 ; always results in a poison value.
2178
2179 store volatile i32 0, i32* @g ; This would depend on the store in %true
2180 ; if %cmp is true, or the store in %entry
2181 ; otherwise, so this is undefined behavior.
2182
2183 br i1 %cmp, label %second_true, label %second_end
2184 ; The same branch again, but this time the
2185 ; true block doesn't have side effects.
2186
2187 second_true:
2188 ; No side effects!
2189 ret void
2190
2191 second_end:
2192 store volatile i32 0, i32* @g ; This time, the instruction always depends
2193 ; on the store in %end. Also, it is
2194 ; control-equivalent to %end, so this is
2195 ; well-defined (ignoring earlier undefined
2196 ; behavior in this example).
2197
2198.. _blockaddress:
2199
2200Addresses of Basic Blocks
2201-------------------------
2202
2203``blockaddress(@function, %block)``
2204
2205The '``blockaddress``' constant computes the address of the specified
2206basic block in the specified function, and always has an ``i8*`` type.
2207Taking the address of the entry block is illegal.
2208
2209This value only has defined behavior when used as an operand to the
2210':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2211against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002212undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002213no label is equal to the null pointer. This may be passed around as an
2214opaque pointer sized value as long as the bits are not inspected. This
2215allows ``ptrtoint`` and arithmetic to be performed on these values so
2216long as the original value is reconstituted before the ``indirectbr``
2217instruction.
2218
2219Finally, some targets may provide defined semantics when using the value
2220as the operand to an inline assembly, but that is target specific.
2221
Eli Bendersky88fe6822013-06-07 20:24:43 +00002222.. _constantexprs:
2223
Sean Silvaf722b002012-12-07 10:36:55 +00002224Constant Expressions
2225--------------------
2226
2227Constant expressions are used to allow expressions involving other
2228constants to be used as constants. Constant expressions may be of any
2229:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2230that does not have side effects (e.g. load and call are not supported).
2231The following is the syntax for constant expressions:
2232
2233``trunc (CST to TYPE)``
2234 Truncate a constant to another type. The bit size of CST must be
2235 larger than the bit size of TYPE. Both types must be integers.
2236``zext (CST to TYPE)``
2237 Zero extend a constant to another type. The bit size of CST must be
2238 smaller than the bit size of TYPE. Both types must be integers.
2239``sext (CST to TYPE)``
2240 Sign extend a constant to another type. The bit size of CST must be
2241 smaller than the bit size of TYPE. Both types must be integers.
2242``fptrunc (CST to TYPE)``
2243 Truncate a floating point constant to another floating point type.
2244 The size of CST must be larger than the size of TYPE. Both types
2245 must be floating point.
2246``fpext (CST to TYPE)``
2247 Floating point extend a constant to another type. The size of CST
2248 must be smaller or equal to the size of TYPE. Both types must be
2249 floating point.
2250``fptoui (CST to TYPE)``
2251 Convert a floating point constant to the corresponding unsigned
2252 integer constant. TYPE must be a scalar or vector integer type. CST
2253 must be of scalar or vector floating point type. Both CST and TYPE
2254 must be scalars, or vectors of the same number of elements. If the
2255 value won't fit in the integer type, the results are undefined.
2256``fptosi (CST to TYPE)``
2257 Convert a floating point constant to the corresponding signed
2258 integer constant. TYPE must be a scalar or vector integer type. CST
2259 must be of scalar or vector floating point type. Both CST and TYPE
2260 must be scalars, or vectors of the same number of elements. If the
2261 value won't fit in the integer type, the results are undefined.
2262``uitofp (CST to TYPE)``
2263 Convert an unsigned integer constant to the corresponding floating
2264 point constant. TYPE must be a scalar or vector floating point type.
2265 CST must be of scalar or vector integer type. Both CST and TYPE must
2266 be scalars, or vectors of the same number of elements. If the value
2267 won't fit in the floating point type, the results are undefined.
2268``sitofp (CST to TYPE)``
2269 Convert a signed integer constant to the corresponding floating
2270 point constant. TYPE must be a scalar or vector floating point type.
2271 CST must be of scalar or vector integer type. Both CST and TYPE must
2272 be scalars, or vectors of the same number of elements. If the value
2273 won't fit in the floating point type, the results are undefined.
2274``ptrtoint (CST to TYPE)``
2275 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002276 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002277 pointer type. The ``CST`` value is zero extended, truncated, or
2278 unchanged to make it fit in ``TYPE``.
2279``inttoptr (CST to TYPE)``
2280 Convert an integer constant to a pointer constant. TYPE must be a
2281 pointer type. CST must be of integer type. The CST value is zero
2282 extended, truncated, or unchanged to make it fit in a pointer size.
2283 This one is *really* dangerous!
2284``bitcast (CST to TYPE)``
2285 Convert a constant, CST, to another TYPE. The constraints of the
2286 operands are the same as those for the :ref:`bitcast
2287 instruction <i_bitcast>`.
2288``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2289 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2290 constants. As with the :ref:`getelementptr <i_getelementptr>`
2291 instruction, the index list may have zero or more indexes, which are
2292 required to make sense for the type of "CSTPTR".
2293``select (COND, VAL1, VAL2)``
2294 Perform the :ref:`select operation <i_select>` on constants.
2295``icmp COND (VAL1, VAL2)``
2296 Performs the :ref:`icmp operation <i_icmp>` on constants.
2297``fcmp COND (VAL1, VAL2)``
2298 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2299``extractelement (VAL, IDX)``
2300 Perform the :ref:`extractelement operation <i_extractelement>` on
2301 constants.
2302``insertelement (VAL, ELT, IDX)``
2303 Perform the :ref:`insertelement operation <i_insertelement>` on
2304 constants.
2305``shufflevector (VEC1, VEC2, IDXMASK)``
2306 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2307 constants.
2308``extractvalue (VAL, IDX0, IDX1, ...)``
2309 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2310 constants. The index list is interpreted in a similar manner as
2311 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2312 least one index value must be specified.
2313``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2314 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2315 The index list is interpreted in a similar manner as indices in a
2316 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2317 value must be specified.
2318``OPCODE (LHS, RHS)``
2319 Perform the specified operation of the LHS and RHS constants. OPCODE
2320 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2321 binary <bitwiseops>` operations. The constraints on operands are
2322 the same as those for the corresponding instruction (e.g. no bitwise
2323 operations on floating point values are allowed).
2324
2325Other Values
2326============
2327
Eli Bendersky88fe6822013-06-07 20:24:43 +00002328.. _inlineasmexprs:
2329
Sean Silvaf722b002012-12-07 10:36:55 +00002330Inline Assembler Expressions
2331----------------------------
2332
2333LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2334Inline Assembly <moduleasm>`) through the use of a special value. This
2335value represents the inline assembler as a string (containing the
2336instructions to emit), a list of operand constraints (stored as a
2337string), a flag that indicates whether or not the inline asm expression
2338has side effects, and a flag indicating whether the function containing
2339the asm needs to align its stack conservatively. An example inline
2340assembler expression is:
2341
2342.. code-block:: llvm
2343
2344 i32 (i32) asm "bswap $0", "=r,r"
2345
2346Inline assembler expressions may **only** be used as the callee operand
2347of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2348Thus, typically we have:
2349
2350.. code-block:: llvm
2351
2352 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2353
2354Inline asms with side effects not visible in the constraint list must be
2355marked as having side effects. This is done through the use of the
2356'``sideeffect``' keyword, like so:
2357
2358.. code-block:: llvm
2359
2360 call void asm sideeffect "eieio", ""()
2361
2362In some cases inline asms will contain code that will not work unless
2363the stack is aligned in some way, such as calls or SSE instructions on
2364x86, yet will not contain code that does that alignment within the asm.
2365The compiler should make conservative assumptions about what the asm
2366might contain and should generate its usual stack alignment code in the
2367prologue if the '``alignstack``' keyword is present:
2368
2369.. code-block:: llvm
2370
2371 call void asm alignstack "eieio", ""()
2372
2373Inline asms also support using non-standard assembly dialects. The
2374assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2375the inline asm is using the Intel dialect. Currently, ATT and Intel are
2376the only supported dialects. An example is:
2377
2378.. code-block:: llvm
2379
2380 call void asm inteldialect "eieio", ""()
2381
2382If multiple keywords appear the '``sideeffect``' keyword must come
2383first, the '``alignstack``' keyword second and the '``inteldialect``'
2384keyword last.
2385
2386Inline Asm Metadata
2387^^^^^^^^^^^^^^^^^^^
2388
2389The call instructions that wrap inline asm nodes may have a
2390"``!srcloc``" MDNode attached to it that contains a list of constant
2391integers. If present, the code generator will use the integer as the
2392location cookie value when report errors through the ``LLVMContext``
2393error reporting mechanisms. This allows a front-end to correlate backend
2394errors that occur with inline asm back to the source code that produced
2395it. For example:
2396
2397.. code-block:: llvm
2398
2399 call void asm sideeffect "something bad", ""(), !srcloc !42
2400 ...
2401 !42 = !{ i32 1234567 }
2402
2403It is up to the front-end to make sense of the magic numbers it places
2404in the IR. If the MDNode contains multiple constants, the code generator
2405will use the one that corresponds to the line of the asm that the error
2406occurs on.
2407
2408.. _metadata:
2409
2410Metadata Nodes and Metadata Strings
2411-----------------------------------
2412
2413LLVM IR allows metadata to be attached to instructions in the program
2414that can convey extra information about the code to the optimizers and
2415code generator. One example application of metadata is source-level
2416debug information. There are two metadata primitives: strings and nodes.
2417All metadata has the ``metadata`` type and is identified in syntax by a
2418preceding exclamation point ('``!``').
2419
2420A metadata string is a string surrounded by double quotes. It can
2421contain any character by escaping non-printable characters with
2422"``\xx``" where "``xx``" is the two digit hex code. For example:
2423"``!"test\00"``".
2424
2425Metadata nodes are represented with notation similar to structure
2426constants (a comma separated list of elements, surrounded by braces and
2427preceded by an exclamation point). Metadata nodes can have any values as
2428their operand. For example:
2429
2430.. code-block:: llvm
2431
2432 !{ metadata !"test\00", i32 10}
2433
2434A :ref:`named metadata <namedmetadatastructure>` is a collection of
2435metadata nodes, which can be looked up in the module symbol table. For
2436example:
2437
2438.. code-block:: llvm
2439
2440 !foo = metadata !{!4, !3}
2441
2442Metadata can be used as function arguments. Here ``llvm.dbg.value``
2443function is using two metadata arguments:
2444
2445.. code-block:: llvm
2446
2447 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2448
2449Metadata can be attached with an instruction. Here metadata ``!21`` is
2450attached to the ``add`` instruction using the ``!dbg`` identifier:
2451
2452.. code-block:: llvm
2453
2454 %indvar.next = add i64 %indvar, 1, !dbg !21
2455
2456More information about specific metadata nodes recognized by the
2457optimizers and code generator is found below.
2458
2459'``tbaa``' Metadata
2460^^^^^^^^^^^^^^^^^^^
2461
2462In LLVM IR, memory does not have types, so LLVM's own type system is not
2463suitable for doing TBAA. Instead, metadata is added to the IR to
2464describe a type system of a higher level language. This can be used to
2465implement typical C/C++ TBAA, but it can also be used to implement
2466custom alias analysis behavior for other languages.
2467
2468The current metadata format is very simple. TBAA metadata nodes have up
2469to three fields, e.g.:
2470
2471.. code-block:: llvm
2472
2473 !0 = metadata !{ metadata !"an example type tree" }
2474 !1 = metadata !{ metadata !"int", metadata !0 }
2475 !2 = metadata !{ metadata !"float", metadata !0 }
2476 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2477
2478The first field is an identity field. It can be any value, usually a
2479metadata string, which uniquely identifies the type. The most important
2480name in the tree is the name of the root node. Two trees with different
2481root node names are entirely disjoint, even if they have leaves with
2482common names.
2483
2484The second field identifies the type's parent node in the tree, or is
2485null or omitted for a root node. A type is considered to alias all of
2486its descendants and all of its ancestors in the tree. Also, a type is
2487considered to alias all types in other trees, so that bitcode produced
2488from multiple front-ends is handled conservatively.
2489
2490If the third field is present, it's an integer which if equal to 1
2491indicates that the type is "constant" (meaning
2492``pointsToConstantMemory`` should return true; see `other useful
2493AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2494
2495'``tbaa.struct``' Metadata
2496^^^^^^^^^^^^^^^^^^^^^^^^^^
2497
2498The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2499aggregate assignment operations in C and similar languages, however it
2500is defined to copy a contiguous region of memory, which is more than
2501strictly necessary for aggregate types which contain holes due to
2502padding. Also, it doesn't contain any TBAA information about the fields
2503of the aggregate.
2504
2505``!tbaa.struct`` metadata can describe which memory subregions in a
2506memcpy are padding and what the TBAA tags of the struct are.
2507
2508The current metadata format is very simple. ``!tbaa.struct`` metadata
2509nodes are a list of operands which are in conceptual groups of three.
2510For each group of three, the first operand gives the byte offset of a
2511field in bytes, the second gives its size in bytes, and the third gives
2512its tbaa tag. e.g.:
2513
2514.. code-block:: llvm
2515
2516 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2517
2518This describes a struct with two fields. The first is at offset 0 bytes
2519with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2520and has size 4 bytes and has tbaa tag !2.
2521
2522Note that the fields need not be contiguous. In this example, there is a
25234 byte gap between the two fields. This gap represents padding which
2524does not carry useful data and need not be preserved.
2525
2526'``fpmath``' Metadata
2527^^^^^^^^^^^^^^^^^^^^^
2528
2529``fpmath`` metadata may be attached to any instruction of floating point
2530type. It can be used to express the maximum acceptable error in the
2531result of that instruction, in ULPs, thus potentially allowing the
2532compiler to use a more efficient but less accurate method of computing
2533it. ULP is defined as follows:
2534
2535 If ``x`` is a real number that lies between two finite consecutive
2536 floating-point numbers ``a`` and ``b``, without being equal to one
2537 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2538 distance between the two non-equal finite floating-point numbers
2539 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2540
2541The metadata node shall consist of a single positive floating point
2542number representing the maximum relative error, for example:
2543
2544.. code-block:: llvm
2545
2546 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2547
2548'``range``' Metadata
2549^^^^^^^^^^^^^^^^^^^^
2550
2551``range`` metadata may be attached only to loads of integer types. It
2552expresses the possible ranges the loaded value is in. The ranges are
2553represented with a flattened list of integers. The loaded value is known
2554to be in the union of the ranges defined by each consecutive pair. Each
2555pair has the following properties:
2556
2557- The type must match the type loaded by the instruction.
2558- The pair ``a,b`` represents the range ``[a,b)``.
2559- Both ``a`` and ``b`` are constants.
2560- The range is allowed to wrap.
2561- The range should not represent the full or empty set. That is,
2562 ``a!=b``.
2563
2564In addition, the pairs must be in signed order of the lower bound and
2565they must be non-contiguous.
2566
2567Examples:
2568
2569.. code-block:: llvm
2570
2571 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2572 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2573 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2574 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2575 ...
2576 !0 = metadata !{ i8 0, i8 2 }
2577 !1 = metadata !{ i8 255, i8 2 }
2578 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2579 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2580
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002581'``llvm.loop``'
2582^^^^^^^^^^^^^^^
2583
2584It is sometimes useful to attach information to loop constructs. Currently,
2585loop metadata is implemented as metadata attached to the branch instruction
2586in the loop latch block. This type of metadata refer to a metadata node that is
Paul Redmondee21b6f2013-05-28 20:00:34 +00002587guaranteed to be separate for each loop. The loop identifier metadata is
2588specified with the name ``llvm.loop``.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002589
2590The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002591itself to avoid merging it with any other identifier metadata, e.g.,
2592during module linkage or function inlining. That is, each loop should refer
2593to their own identification metadata even if they reside in separate functions.
2594The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002595constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002596
2597.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002598
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002599 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002600 !1 = metadata !{ metadata !1 }
2601
Paul Redmondee21b6f2013-05-28 20:00:34 +00002602The loop identifier metadata can be used to specify additional per-loop
2603metadata. Any operands after the first operand can be treated as user-defined
2604metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2605by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002606
Paul Redmondee21b6f2013-05-28 20:00:34 +00002607.. code-block:: llvm
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002608
Paul Redmondee21b6f2013-05-28 20:00:34 +00002609 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2610 ...
2611 !0 = metadata !{ metadata !0, metadata !1 }
2612 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002613
2614'``llvm.mem``'
2615^^^^^^^^^^^^^^^
2616
2617Metadata types used to annotate memory accesses with information helpful
2618for optimizations are prefixed with ``llvm.mem``.
2619
2620'``llvm.mem.parallel_loop_access``' Metadata
2621^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2622
2623For a loop to be parallel, in addition to using
Paul Redmondee21b6f2013-05-28 20:00:34 +00002624the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002625also all of the memory accessing instructions in the loop body need to be
2626marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2627is at least one memory accessing instruction not marked with the metadata,
Paul Redmondee21b6f2013-05-28 20:00:34 +00002628the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002629converted to sequential loops due to optimization passes that are unaware of
2630the parallel semantics and that insert new memory instructions to the loop
2631body.
2632
2633Example of a loop that is considered parallel due to its correct use of
Paul Redmondee21b6f2013-05-28 20:00:34 +00002634both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002635metadata types that refer to the same loop identifier metadata.
2636
2637.. code-block:: llvm
2638
2639 for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002640 ...
2641 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2642 ...
2643 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2644 ...
2645 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002646
2647 for.end:
2648 ...
2649 !0 = metadata !{ metadata !0 }
2650
2651It is also possible to have nested parallel loops. In that case the
2652memory accesses refer to a list of loop identifier metadata nodes instead of
2653the loop identifier metadata node directly:
2654
2655.. code-block:: llvm
2656
2657 outer.for.body:
2658 ...
2659
2660 inner.for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002661 ...
2662 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2663 ...
2664 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2665 ...
2666 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002667
2668 inner.for.end:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002669 ...
2670 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2671 ...
2672 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2673 ...
2674 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002675
2676 outer.for.end: ; preds = %for.body
2677 ...
Paul Redmondee21b6f2013-05-28 20:00:34 +00002678 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2679 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2680 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002681
Paul Redmondee21b6f2013-05-28 20:00:34 +00002682'``llvm.vectorizer``'
2683^^^^^^^^^^^^^^^^^^^^^
2684
2685Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2686vectorization parameters such as vectorization factor and unroll factor.
2687
2688``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2689loop identification metadata.
2690
2691'``llvm.vectorizer.unroll``' Metadata
2692^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2693
2694This metadata instructs the loop vectorizer to unroll the specified
2695loop exactly ``N`` times.
2696
2697The first operand is the string ``llvm.vectorizer.unroll`` and the second
2698operand is an integer specifying the unroll factor. For example:
2699
2700.. code-block:: llvm
2701
2702 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2703
2704Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2705loop.
2706
2707If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2708determined automatically.
2709
2710'``llvm.vectorizer.width``' Metadata
2711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2712
Paul Redmondf95ac8a2013-05-30 17:22:46 +00002713This metadata sets the target width of the vectorizer to ``N``. Without
2714this metadata, the vectorizer will choose a width automatically.
2715Regardless of this metadata, the vectorizer will only vectorize loops if
2716it believes it is valid to do so.
Paul Redmondee21b6f2013-05-28 20:00:34 +00002717
2718The first operand is the string ``llvm.vectorizer.width`` and the second
2719operand is an integer specifying the width. For example:
2720
2721.. code-block:: llvm
2722
2723 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2724
2725Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2726loop.
2727
2728If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2729automatically.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002730
Sean Silvaf722b002012-12-07 10:36:55 +00002731Module Flags Metadata
2732=====================
2733
2734Information about the module as a whole is difficult to convey to LLVM's
2735subsystems. The LLVM IR isn't sufficient to transmit this information.
2736The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002737this. These flags are in the form of key / value pairs --- much like a
2738dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002739look it up.
2740
2741The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2742Each triplet has the following form:
2743
2744- The first element is a *behavior* flag, which specifies the behavior
2745 when two (or more) modules are merged together, and it encounters two
2746 (or more) metadata with the same ID. The supported behaviors are
2747 described below.
2748- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002749 metadata. Each module may only have one flag entry for each unique ID (not
2750 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002751- The third element is the value of the flag.
2752
2753When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002754``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2755each unique metadata ID string, there will be exactly one entry in the merged
2756modules ``llvm.module.flags`` metadata table, and the value for that entry will
2757be determined by the merge behavior flag, as described below. The only exception
2758is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002759
2760The following behaviors are supported:
2761
2762.. list-table::
2763 :header-rows: 1
2764 :widths: 10 90
2765
2766 * - Value
2767 - Behavior
2768
2769 * - 1
2770 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002771 Emits an error if two values disagree, otherwise the resulting value
2772 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002773
2774 * - 2
2775 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002776 Emits a warning if two values disagree. The result value will be the
2777 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002778
2779 * - 3
2780 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002781 Adds a requirement that another module flag be present and have a
2782 specified value after linking is performed. The value must be a
2783 metadata pair, where the first element of the pair is the ID of the
2784 module flag to be restricted, and the second element of the pair is
2785 the value the module flag should be restricted to. This behavior can
2786 be used to restrict the allowable results (via triggering of an
2787 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002788
2789 * - 4
2790 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002791 Uses the specified value, regardless of the behavior or value of the
2792 other module. If both modules specify **Override**, but the values
2793 differ, an error will be emitted.
2794
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002795 * - 5
2796 - **Append**
2797 Appends the two values, which are required to be metadata nodes.
2798
2799 * - 6
2800 - **AppendUnique**
2801 Appends the two values, which are required to be metadata
2802 nodes. However, duplicate entries in the second list are dropped
2803 during the append operation.
2804
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002805It is an error for a particular unique flag ID to have multiple behaviors,
2806except in the case of **Require** (which adds restrictions on another metadata
2807value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002808
2809An example of module flags:
2810
2811.. code-block:: llvm
2812
2813 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2814 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2815 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2816 !3 = metadata !{ i32 3, metadata !"qux",
2817 metadata !{
2818 metadata !"foo", i32 1
2819 }
2820 }
2821 !llvm.module.flags = !{ !0, !1, !2, !3 }
2822
2823- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2824 if two or more ``!"foo"`` flags are seen is to emit an error if their
2825 values are not equal.
2826
2827- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2828 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002829 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002830
2831- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2832 behavior if two or more ``!"qux"`` flags are seen is to emit a
2833 warning if their values are not equal.
2834
2835- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2836
2837 ::
2838
2839 metadata !{ metadata !"foo", i32 1 }
2840
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002841 The behavior is to emit an error if the ``llvm.module.flags`` does not
2842 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2843 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002844
2845Objective-C Garbage Collection Module Flags Metadata
2846----------------------------------------------------
2847
2848On the Mach-O platform, Objective-C stores metadata about garbage
2849collection in a special section called "image info". The metadata
2850consists of a version number and a bitmask specifying what types of
2851garbage collection are supported (if any) by the file. If two or more
2852modules are linked together their garbage collection metadata needs to
2853be merged rather than appended together.
2854
2855The Objective-C garbage collection module flags metadata consists of the
2856following key-value pairs:
2857
2858.. list-table::
2859 :header-rows: 1
2860 :widths: 30 70
2861
2862 * - Key
2863 - Value
2864
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002865 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002866 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002867
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002868 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002869 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002870 always 0.
2871
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002872 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002873 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002874 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2875 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2876 Objective-C ABI version 2.
2877
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002878 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002879 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002880 not. Valid values are 0, for no garbage collection, and 2, for garbage
2881 collection supported.
2882
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002883 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002884 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002885 If present, its value must be 6. This flag requires that the
2886 ``Objective-C Garbage Collection`` flag have the value 2.
2887
2888Some important flag interactions:
2889
2890- If a module with ``Objective-C Garbage Collection`` set to 0 is
2891 merged with a module with ``Objective-C Garbage Collection`` set to
2892 2, then the resulting module has the
2893 ``Objective-C Garbage Collection`` flag set to 0.
2894- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2895 merged with a module with ``Objective-C GC Only`` set to 6.
2896
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002897Automatic Linker Flags Module Flags Metadata
2898--------------------------------------------
2899
2900Some targets support embedding flags to the linker inside individual object
2901files. Typically this is used in conjunction with language extensions which
2902allow source files to explicitly declare the libraries they depend on, and have
2903these automatically be transmitted to the linker via object files.
2904
2905These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002906using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002907to be ``AppendUnique``, and the value for the key is expected to be a metadata
2908node which should be a list of other metadata nodes, each of which should be a
2909list of metadata strings defining linker options.
2910
2911For example, the following metadata section specifies two separate sets of
2912linker options, presumably to link against ``libz`` and the ``Cocoa``
2913framework::
2914
Michael Liao2faa0f32013-03-06 18:24:34 +00002915 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002916 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002917 metadata !{ metadata !"-lz" },
2918 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002919 !llvm.module.flags = !{ !0 }
2920
2921The metadata encoding as lists of lists of options, as opposed to a collapsed
2922list of options, is chosen so that the IR encoding can use multiple option
2923strings to specify e.g., a single library, while still having that specifier be
2924preserved as an atomic element that can be recognized by a target specific
2925assembly writer or object file emitter.
2926
2927Each individual option is required to be either a valid option for the target's
2928linker, or an option that is reserved by the target specific assembly writer or
2929object file emitter. No other aspect of these options is defined by the IR.
2930
Eli Bendersky88fe6822013-06-07 20:24:43 +00002931.. _intrinsicglobalvariables:
2932
Sean Silvaf722b002012-12-07 10:36:55 +00002933Intrinsic Global Variables
2934==========================
2935
2936LLVM has a number of "magic" global variables that contain data that
2937affect code generation or other IR semantics. These are documented here.
2938All globals of this sort should have a section specified as
2939"``llvm.metadata``". This section and all globals that start with
2940"``llvm.``" are reserved for use by LLVM.
2941
Eli Bendersky88fe6822013-06-07 20:24:43 +00002942.. _gv_llvmused:
2943
Sean Silvaf722b002012-12-07 10:36:55 +00002944The '``llvm.used``' Global Variable
2945-----------------------------------
2946
Rafael Espindolacde25b42013-04-22 14:58:02 +00002947The ``@llvm.used`` global is an array which has
Paul Redmond26266a12013-05-30 17:24:32 +00002948:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00002949pointers to named global variables, functions and aliases which may optionally
2950have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvaf722b002012-12-07 10:36:55 +00002951use of it is:
2952
2953.. code-block:: llvm
2954
2955 @X = global i8 4
2956 @Y = global i32 123
2957
2958 @llvm.used = appending global [2 x i8*] [
2959 i8* @X,
2960 i8* bitcast (i32* @Y to i8*)
2961 ], section "llvm.metadata"
2962
Rafael Espindolacde25b42013-04-22 14:58:02 +00002963If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
2964and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00002965symbol that it cannot see (which is why they have to be named). For example, if
2966a variable has internal linkage and no references other than that from the
2967``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
2968references from inline asms and other things the compiler cannot "see", and
2969corresponds to "``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00002970
2971On some targets, the code generator must emit a directive to the
2972assembler or object file to prevent the assembler and linker from
2973molesting the symbol.
2974
Eli Bendersky88fe6822013-06-07 20:24:43 +00002975.. _gv_llvmcompilerused:
2976
Sean Silvaf722b002012-12-07 10:36:55 +00002977The '``llvm.compiler.used``' Global Variable
2978--------------------------------------------
2979
2980The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2981directive, except that it only prevents the compiler from touching the
2982symbol. On targets that support it, this allows an intelligent linker to
2983optimize references to the symbol without being impeded as it would be
2984by ``@llvm.used``.
2985
2986This is a rare construct that should only be used in rare circumstances,
2987and should not be exposed to source languages.
2988
Eli Bendersky88fe6822013-06-07 20:24:43 +00002989.. _gv_llvmglobalctors:
2990
Sean Silvaf722b002012-12-07 10:36:55 +00002991The '``llvm.global_ctors``' Global Variable
2992-------------------------------------------
2993
2994.. code-block:: llvm
2995
2996 %0 = type { i32, void ()* }
2997 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2998
2999The ``@llvm.global_ctors`` array contains a list of constructor
3000functions and associated priorities. The functions referenced by this
3001array will be called in ascending order of priority (i.e. lowest first)
3002when the module is loaded. The order of functions with the same priority
3003is not defined.
3004
Eli Bendersky88fe6822013-06-07 20:24:43 +00003005.. _llvmglobaldtors:
3006
Sean Silvaf722b002012-12-07 10:36:55 +00003007The '``llvm.global_dtors``' Global Variable
3008-------------------------------------------
3009
3010.. code-block:: llvm
3011
3012 %0 = type { i32, void ()* }
3013 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3014
3015The ``@llvm.global_dtors`` array contains a list of destructor functions
3016and associated priorities. The functions referenced by this array will
3017be called in descending order of priority (i.e. highest first) when the
3018module is loaded. The order of functions with the same priority is not
3019defined.
3020
3021Instruction Reference
3022=====================
3023
3024The LLVM instruction set consists of several different classifications
3025of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3026instructions <binaryops>`, :ref:`bitwise binary
3027instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3028:ref:`other instructions <otherops>`.
3029
3030.. _terminators:
3031
3032Terminator Instructions
3033-----------------------
3034
3035As mentioned :ref:`previously <functionstructure>`, every basic block in a
3036program ends with a "Terminator" instruction, which indicates which
3037block should be executed after the current block is finished. These
3038terminator instructions typically yield a '``void``' value: they produce
3039control flow, not values (the one exception being the
3040':ref:`invoke <i_invoke>`' instruction).
3041
3042The terminator instructions are: ':ref:`ret <i_ret>`',
3043':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3044':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3045':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3046
3047.. _i_ret:
3048
3049'``ret``' Instruction
3050^^^^^^^^^^^^^^^^^^^^^
3051
3052Syntax:
3053"""""""
3054
3055::
3056
3057 ret <type> <value> ; Return a value from a non-void function
3058 ret void ; Return from void function
3059
3060Overview:
3061"""""""""
3062
3063The '``ret``' instruction is used to return control flow (and optionally
3064a value) from a function back to the caller.
3065
3066There are two forms of the '``ret``' instruction: one that returns a
3067value and then causes control flow, and one that just causes control
3068flow to occur.
3069
3070Arguments:
3071""""""""""
3072
3073The '``ret``' instruction optionally accepts a single argument, the
3074return value. The type of the return value must be a ':ref:`first
3075class <t_firstclass>`' type.
3076
3077A function is not :ref:`well formed <wellformed>` if it it has a non-void
3078return type and contains a '``ret``' instruction with no return value or
3079a return value with a type that does not match its type, or if it has a
3080void return type and contains a '``ret``' instruction with a return
3081value.
3082
3083Semantics:
3084""""""""""
3085
3086When the '``ret``' instruction is executed, control flow returns back to
3087the calling function's context. If the caller is a
3088":ref:`call <i_call>`" instruction, execution continues at the
3089instruction after the call. If the caller was an
3090":ref:`invoke <i_invoke>`" instruction, execution continues at the
3091beginning of the "normal" destination block. If the instruction returns
3092a value, that value shall set the call or invoke instruction's return
3093value.
3094
3095Example:
3096""""""""
3097
3098.. code-block:: llvm
3099
3100 ret i32 5 ; Return an integer value of 5
3101 ret void ; Return from a void function
3102 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3103
3104.. _i_br:
3105
3106'``br``' Instruction
3107^^^^^^^^^^^^^^^^^^^^
3108
3109Syntax:
3110"""""""
3111
3112::
3113
3114 br i1 <cond>, label <iftrue>, label <iffalse>
3115 br label <dest> ; Unconditional branch
3116
3117Overview:
3118"""""""""
3119
3120The '``br``' instruction is used to cause control flow to transfer to a
3121different basic block in the current function. There are two forms of
3122this instruction, corresponding to a conditional branch and an
3123unconditional branch.
3124
3125Arguments:
3126""""""""""
3127
3128The conditional branch form of the '``br``' instruction takes a single
3129'``i1``' value and two '``label``' values. The unconditional form of the
3130'``br``' instruction takes a single '``label``' value as a target.
3131
3132Semantics:
3133""""""""""
3134
3135Upon execution of a conditional '``br``' instruction, the '``i1``'
3136argument is evaluated. If the value is ``true``, control flows to the
3137'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3138to the '``iffalse``' ``label`` argument.
3139
3140Example:
3141""""""""
3142
3143.. code-block:: llvm
3144
3145 Test:
3146 %cond = icmp eq i32 %a, %b
3147 br i1 %cond, label %IfEqual, label %IfUnequal
3148 IfEqual:
3149 ret i32 1
3150 IfUnequal:
3151 ret i32 0
3152
3153.. _i_switch:
3154
3155'``switch``' Instruction
3156^^^^^^^^^^^^^^^^^^^^^^^^
3157
3158Syntax:
3159"""""""
3160
3161::
3162
3163 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3164
3165Overview:
3166"""""""""
3167
3168The '``switch``' instruction is used to transfer control flow to one of
3169several different places. It is a generalization of the '``br``'
3170instruction, allowing a branch to occur to one of many possible
3171destinations.
3172
3173Arguments:
3174""""""""""
3175
3176The '``switch``' instruction uses three parameters: an integer
3177comparison value '``value``', a default '``label``' destination, and an
3178array of pairs of comparison value constants and '``label``'s. The table
3179is not allowed to contain duplicate constant entries.
3180
3181Semantics:
3182""""""""""
3183
3184The ``switch`` instruction specifies a table of values and destinations.
3185When the '``switch``' instruction is executed, this table is searched
3186for the given value. If the value is found, control flow is transferred
3187to the corresponding destination; otherwise, control flow is transferred
3188to the default destination.
3189
3190Implementation:
3191"""""""""""""""
3192
3193Depending on properties of the target machine and the particular
3194``switch`` instruction, this instruction may be code generated in
3195different ways. For example, it could be generated as a series of
3196chained conditional branches or with a lookup table.
3197
3198Example:
3199""""""""
3200
3201.. code-block:: llvm
3202
3203 ; Emulate a conditional br instruction
3204 %Val = zext i1 %value to i32
3205 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3206
3207 ; Emulate an unconditional br instruction
3208 switch i32 0, label %dest [ ]
3209
3210 ; Implement a jump table:
3211 switch i32 %val, label %otherwise [ i32 0, label %onzero
3212 i32 1, label %onone
3213 i32 2, label %ontwo ]
3214
3215.. _i_indirectbr:
3216
3217'``indirectbr``' Instruction
3218^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3219
3220Syntax:
3221"""""""
3222
3223::
3224
3225 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3226
3227Overview:
3228"""""""""
3229
3230The '``indirectbr``' instruction implements an indirect branch to a
3231label within the current function, whose address is specified by
3232"``address``". Address must be derived from a
3233:ref:`blockaddress <blockaddress>` constant.
3234
3235Arguments:
3236""""""""""
3237
3238The '``address``' argument is the address of the label to jump to. The
3239rest of the arguments indicate the full set of possible destinations
3240that the address may point to. Blocks are allowed to occur multiple
3241times in the destination list, though this isn't particularly useful.
3242
3243This destination list is required so that dataflow analysis has an
3244accurate understanding of the CFG.
3245
3246Semantics:
3247""""""""""
3248
3249Control transfers to the block specified in the address argument. All
3250possible destination blocks must be listed in the label list, otherwise
3251this instruction has undefined behavior. This implies that jumps to
3252labels defined in other functions have undefined behavior as well.
3253
3254Implementation:
3255"""""""""""""""
3256
3257This is typically implemented with a jump through a register.
3258
3259Example:
3260""""""""
3261
3262.. code-block:: llvm
3263
3264 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3265
3266.. _i_invoke:
3267
3268'``invoke``' Instruction
3269^^^^^^^^^^^^^^^^^^^^^^^^
3270
3271Syntax:
3272"""""""
3273
3274::
3275
3276 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3277 to label <normal label> unwind label <exception label>
3278
3279Overview:
3280"""""""""
3281
3282The '``invoke``' instruction causes control to transfer to a specified
3283function, with the possibility of control flow transfer to either the
3284'``normal``' label or the '``exception``' label. If the callee function
3285returns with the "``ret``" instruction, control flow will return to the
3286"normal" label. If the callee (or any indirect callees) returns via the
3287":ref:`resume <i_resume>`" instruction or other exception handling
3288mechanism, control is interrupted and continued at the dynamically
3289nearest "exception" label.
3290
3291The '``exception``' label is a `landing
3292pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3293'``exception``' label is required to have the
3294":ref:`landingpad <i_landingpad>`" instruction, which contains the
3295information about the behavior of the program after unwinding happens,
3296as its first non-PHI instruction. The restrictions on the
3297"``landingpad``" instruction's tightly couples it to the "``invoke``"
3298instruction, so that the important information contained within the
3299"``landingpad``" instruction can't be lost through normal code motion.
3300
3301Arguments:
3302""""""""""
3303
3304This instruction requires several arguments:
3305
3306#. The optional "cconv" marker indicates which :ref:`calling
3307 convention <callingconv>` the call should use. If none is
3308 specified, the call defaults to using C calling conventions.
3309#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3310 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3311 are valid here.
3312#. '``ptr to function ty``': shall be the signature of the pointer to
3313 function value being invoked. In most cases, this is a direct
3314 function invocation, but indirect ``invoke``'s are just as possible,
3315 branching off an arbitrary pointer to function value.
3316#. '``function ptr val``': An LLVM value containing a pointer to a
3317 function to be invoked.
3318#. '``function args``': argument list whose types match the function
3319 signature argument types and parameter attributes. All arguments must
3320 be of :ref:`first class <t_firstclass>` type. If the function signature
3321 indicates the function accepts a variable number of arguments, the
3322 extra arguments can be specified.
3323#. '``normal label``': the label reached when the called function
3324 executes a '``ret``' instruction.
3325#. '``exception label``': the label reached when a callee returns via
3326 the :ref:`resume <i_resume>` instruction or other exception handling
3327 mechanism.
3328#. The optional :ref:`function attributes <fnattrs>` list. Only
3329 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3330 attributes are valid here.
3331
3332Semantics:
3333""""""""""
3334
3335This instruction is designed to operate as a standard '``call``'
3336instruction in most regards. The primary difference is that it
3337establishes an association with a label, which is used by the runtime
3338library to unwind the stack.
3339
3340This instruction is used in languages with destructors to ensure that
3341proper cleanup is performed in the case of either a ``longjmp`` or a
3342thrown exception. Additionally, this is important for implementation of
3343'``catch``' clauses in high-level languages that support them.
3344
3345For the purposes of the SSA form, the definition of the value returned
3346by the '``invoke``' instruction is deemed to occur on the edge from the
3347current block to the "normal" label. If the callee unwinds then no
3348return value is available.
3349
3350Example:
3351""""""""
3352
3353.. code-block:: llvm
3354
3355 %retval = invoke i32 @Test(i32 15) to label %Continue
3356 unwind label %TestCleanup ; {i32}:retval set
3357 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3358 unwind label %TestCleanup ; {i32}:retval set
3359
3360.. _i_resume:
3361
3362'``resume``' Instruction
3363^^^^^^^^^^^^^^^^^^^^^^^^
3364
3365Syntax:
3366"""""""
3367
3368::
3369
3370 resume <type> <value>
3371
3372Overview:
3373"""""""""
3374
3375The '``resume``' instruction is a terminator instruction that has no
3376successors.
3377
3378Arguments:
3379""""""""""
3380
3381The '``resume``' instruction requires one argument, which must have the
3382same type as the result of any '``landingpad``' instruction in the same
3383function.
3384
3385Semantics:
3386""""""""""
3387
3388The '``resume``' instruction resumes propagation of an existing
3389(in-flight) exception whose unwinding was interrupted with a
3390:ref:`landingpad <i_landingpad>` instruction.
3391
3392Example:
3393""""""""
3394
3395.. code-block:: llvm
3396
3397 resume { i8*, i32 } %exn
3398
3399.. _i_unreachable:
3400
3401'``unreachable``' Instruction
3402^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3403
3404Syntax:
3405"""""""
3406
3407::
3408
3409 unreachable
3410
3411Overview:
3412"""""""""
3413
3414The '``unreachable``' instruction has no defined semantics. This
3415instruction is used to inform the optimizer that a particular portion of
3416the code is not reachable. This can be used to indicate that the code
3417after a no-return function cannot be reached, and other facts.
3418
3419Semantics:
3420""""""""""
3421
3422The '``unreachable``' instruction has no defined semantics.
3423
3424.. _binaryops:
3425
3426Binary Operations
3427-----------------
3428
3429Binary operators are used to do most of the computation in a program.
3430They require two operands of the same type, execute an operation on
3431them, and produce a single value. The operands might represent multiple
3432data, as is the case with the :ref:`vector <t_vector>` data type. The
3433result value has the same type as its operands.
3434
3435There are several different binary operators:
3436
3437.. _i_add:
3438
3439'``add``' Instruction
3440^^^^^^^^^^^^^^^^^^^^^
3441
3442Syntax:
3443"""""""
3444
3445::
3446
3447 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3448 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3449 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3450 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3451
3452Overview:
3453"""""""""
3454
3455The '``add``' instruction returns the sum of its two operands.
3456
3457Arguments:
3458""""""""""
3459
3460The two arguments to the '``add``' instruction must be
3461:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3462arguments must have identical types.
3463
3464Semantics:
3465""""""""""
3466
3467The value produced is the integer sum of the two operands.
3468
3469If the sum has unsigned overflow, the result returned is the
3470mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3471the result.
3472
3473Because LLVM integers use a two's complement representation, this
3474instruction is appropriate for both signed and unsigned integers.
3475
3476``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3477respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3478result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3479unsigned and/or signed overflow, respectively, occurs.
3480
3481Example:
3482""""""""
3483
3484.. code-block:: llvm
3485
3486 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3487
3488.. _i_fadd:
3489
3490'``fadd``' Instruction
3491^^^^^^^^^^^^^^^^^^^^^^
3492
3493Syntax:
3494"""""""
3495
3496::
3497
3498 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3499
3500Overview:
3501"""""""""
3502
3503The '``fadd``' instruction returns the sum of its two operands.
3504
3505Arguments:
3506""""""""""
3507
3508The two arguments to the '``fadd``' instruction must be :ref:`floating
3509point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3510Both arguments must have identical types.
3511
3512Semantics:
3513""""""""""
3514
3515The value produced is the floating point sum of the two operands. This
3516instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3517which are optimization hints to enable otherwise unsafe floating point
3518optimizations:
3519
3520Example:
3521""""""""
3522
3523.. code-block:: llvm
3524
3525 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3526
3527'``sub``' Instruction
3528^^^^^^^^^^^^^^^^^^^^^
3529
3530Syntax:
3531"""""""
3532
3533::
3534
3535 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3536 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3537 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3538 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3539
3540Overview:
3541"""""""""
3542
3543The '``sub``' instruction returns the difference of its two operands.
3544
3545Note that the '``sub``' instruction is used to represent the '``neg``'
3546instruction present in most other intermediate representations.
3547
3548Arguments:
3549""""""""""
3550
3551The two arguments to the '``sub``' instruction must be
3552:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3553arguments must have identical types.
3554
3555Semantics:
3556""""""""""
3557
3558The value produced is the integer difference of the two operands.
3559
3560If the difference has unsigned overflow, the result returned is the
3561mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3562the result.
3563
3564Because LLVM integers use a two's complement representation, this
3565instruction is appropriate for both signed and unsigned integers.
3566
3567``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3568respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3569result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3570unsigned and/or signed overflow, respectively, occurs.
3571
3572Example:
3573""""""""
3574
3575.. code-block:: llvm
3576
3577 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3578 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3579
3580.. _i_fsub:
3581
3582'``fsub``' Instruction
3583^^^^^^^^^^^^^^^^^^^^^^
3584
3585Syntax:
3586"""""""
3587
3588::
3589
3590 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3591
3592Overview:
3593"""""""""
3594
3595The '``fsub``' instruction returns the difference of its two operands.
3596
3597Note that the '``fsub``' instruction is used to represent the '``fneg``'
3598instruction present in most other intermediate representations.
3599
3600Arguments:
3601""""""""""
3602
3603The two arguments to the '``fsub``' instruction must be :ref:`floating
3604point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3605Both arguments must have identical types.
3606
3607Semantics:
3608""""""""""
3609
3610The value produced is the floating point difference of the two operands.
3611This instruction can also take any number of :ref:`fast-math
3612flags <fastmath>`, which are optimization hints to enable otherwise
3613unsafe floating point optimizations:
3614
3615Example:
3616""""""""
3617
3618.. code-block:: llvm
3619
3620 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3621 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3622
3623'``mul``' Instruction
3624^^^^^^^^^^^^^^^^^^^^^
3625
3626Syntax:
3627"""""""
3628
3629::
3630
3631 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3632 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3633 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3634 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3635
3636Overview:
3637"""""""""
3638
3639The '``mul``' instruction returns the product of its two operands.
3640
3641Arguments:
3642""""""""""
3643
3644The two arguments to the '``mul``' instruction must be
3645:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3646arguments must have identical types.
3647
3648Semantics:
3649""""""""""
3650
3651The value produced is the integer product of the two operands.
3652
3653If the result of the multiplication has unsigned overflow, the result
3654returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3655bit width of the result.
3656
3657Because LLVM integers use a two's complement representation, and the
3658result is the same width as the operands, this instruction returns the
3659correct result for both signed and unsigned integers. If a full product
3660(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3661sign-extended or zero-extended as appropriate to the width of the full
3662product.
3663
3664``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3665respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3666result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3667unsigned and/or signed overflow, respectively, occurs.
3668
3669Example:
3670""""""""
3671
3672.. code-block:: llvm
3673
3674 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3675
3676.. _i_fmul:
3677
3678'``fmul``' Instruction
3679^^^^^^^^^^^^^^^^^^^^^^
3680
3681Syntax:
3682"""""""
3683
3684::
3685
3686 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3687
3688Overview:
3689"""""""""
3690
3691The '``fmul``' instruction returns the product of its two operands.
3692
3693Arguments:
3694""""""""""
3695
3696The two arguments to the '``fmul``' instruction must be :ref:`floating
3697point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3698Both arguments must have identical types.
3699
3700Semantics:
3701""""""""""
3702
3703The value produced is the floating point product of the two operands.
3704This instruction can also take any number of :ref:`fast-math
3705flags <fastmath>`, which are optimization hints to enable otherwise
3706unsafe floating point optimizations:
3707
3708Example:
3709""""""""
3710
3711.. code-block:: llvm
3712
3713 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3714
3715'``udiv``' Instruction
3716^^^^^^^^^^^^^^^^^^^^^^
3717
3718Syntax:
3719"""""""
3720
3721::
3722
3723 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3724 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3725
3726Overview:
3727"""""""""
3728
3729The '``udiv``' instruction returns the quotient of its two operands.
3730
3731Arguments:
3732""""""""""
3733
3734The two arguments to the '``udiv``' instruction must be
3735:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3736arguments must have identical types.
3737
3738Semantics:
3739""""""""""
3740
3741The value produced is the unsigned integer quotient of the two operands.
3742
3743Note that unsigned integer division and signed integer division are
3744distinct operations; for signed integer division, use '``sdiv``'.
3745
3746Division by zero leads to undefined behavior.
3747
3748If the ``exact`` keyword is present, the result value of the ``udiv`` is
3749a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3750such, "((a udiv exact b) mul b) == a").
3751
3752Example:
3753""""""""
3754
3755.. code-block:: llvm
3756
3757 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3758
3759'``sdiv``' Instruction
3760^^^^^^^^^^^^^^^^^^^^^^
3761
3762Syntax:
3763"""""""
3764
3765::
3766
3767 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3768 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3769
3770Overview:
3771"""""""""
3772
3773The '``sdiv``' instruction returns the quotient of its two operands.
3774
3775Arguments:
3776""""""""""
3777
3778The two arguments to the '``sdiv``' instruction must be
3779:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3780arguments must have identical types.
3781
3782Semantics:
3783""""""""""
3784
3785The value produced is the signed integer quotient of the two operands
3786rounded towards zero.
3787
3788Note that signed integer division and unsigned integer division are
3789distinct operations; for unsigned integer division, use '``udiv``'.
3790
3791Division by zero leads to undefined behavior. Overflow also leads to
3792undefined behavior; this is a rare case, but can occur, for example, by
3793doing a 32-bit division of -2147483648 by -1.
3794
3795If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3796a :ref:`poison value <poisonvalues>` if the result would be rounded.
3797
3798Example:
3799""""""""
3800
3801.. code-block:: llvm
3802
3803 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3804
3805.. _i_fdiv:
3806
3807'``fdiv``' Instruction
3808^^^^^^^^^^^^^^^^^^^^^^
3809
3810Syntax:
3811"""""""
3812
3813::
3814
3815 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3816
3817Overview:
3818"""""""""
3819
3820The '``fdiv``' instruction returns the quotient of its two operands.
3821
3822Arguments:
3823""""""""""
3824
3825The two arguments to the '``fdiv``' instruction must be :ref:`floating
3826point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3827Both arguments must have identical types.
3828
3829Semantics:
3830""""""""""
3831
3832The value produced is the floating point quotient of the two operands.
3833This instruction can also take any number of :ref:`fast-math
3834flags <fastmath>`, which are optimization hints to enable otherwise
3835unsafe floating point optimizations:
3836
3837Example:
3838""""""""
3839
3840.. code-block:: llvm
3841
3842 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3843
3844'``urem``' Instruction
3845^^^^^^^^^^^^^^^^^^^^^^
3846
3847Syntax:
3848"""""""
3849
3850::
3851
3852 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3853
3854Overview:
3855"""""""""
3856
3857The '``urem``' instruction returns the remainder from the unsigned
3858division of its two arguments.
3859
3860Arguments:
3861""""""""""
3862
3863The two arguments to the '``urem``' instruction must be
3864:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3865arguments must have identical types.
3866
3867Semantics:
3868""""""""""
3869
3870This instruction returns the unsigned integer *remainder* of a division.
3871This instruction always performs an unsigned division to get the
3872remainder.
3873
3874Note that unsigned integer remainder and signed integer remainder are
3875distinct operations; for signed integer remainder, use '``srem``'.
3876
3877Taking the remainder of a division by zero leads to undefined behavior.
3878
3879Example:
3880""""""""
3881
3882.. code-block:: llvm
3883
3884 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3885
3886'``srem``' Instruction
3887^^^^^^^^^^^^^^^^^^^^^^
3888
3889Syntax:
3890"""""""
3891
3892::
3893
3894 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3895
3896Overview:
3897"""""""""
3898
3899The '``srem``' instruction returns the remainder from the signed
3900division of its two operands. This instruction can also take
3901:ref:`vector <t_vector>` versions of the values in which case the elements
3902must be integers.
3903
3904Arguments:
3905""""""""""
3906
3907The two arguments to the '``srem``' instruction must be
3908:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3909arguments must have identical types.
3910
3911Semantics:
3912""""""""""
3913
3914This instruction returns the *remainder* of a division (where the result
3915is either zero or has the same sign as the dividend, ``op1``), not the
3916*modulo* operator (where the result is either zero or has the same sign
3917as the divisor, ``op2``) of a value. For more information about the
3918difference, see `The Math
3919Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3920table of how this is implemented in various languages, please see
3921`Wikipedia: modulo
3922operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3923
3924Note that signed integer remainder and unsigned integer remainder are
3925distinct operations; for unsigned integer remainder, use '``urem``'.
3926
3927Taking the remainder of a division by zero leads to undefined behavior.
3928Overflow also leads to undefined behavior; this is a rare case, but can
3929occur, for example, by taking the remainder of a 32-bit division of
3930-2147483648 by -1. (The remainder doesn't actually overflow, but this
3931rule lets srem be implemented using instructions that return both the
3932result of the division and the remainder.)
3933
3934Example:
3935""""""""
3936
3937.. code-block:: llvm
3938
3939 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3940
3941.. _i_frem:
3942
3943'``frem``' Instruction
3944^^^^^^^^^^^^^^^^^^^^^^
3945
3946Syntax:
3947"""""""
3948
3949::
3950
3951 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3952
3953Overview:
3954"""""""""
3955
3956The '``frem``' instruction returns the remainder from the division of
3957its two operands.
3958
3959Arguments:
3960""""""""""
3961
3962The two arguments to the '``frem``' instruction must be :ref:`floating
3963point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3964Both arguments must have identical types.
3965
3966Semantics:
3967""""""""""
3968
3969This instruction returns the *remainder* of a division. The remainder
3970has the same sign as the dividend. This instruction can also take any
3971number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3972to enable otherwise unsafe floating point optimizations:
3973
3974Example:
3975""""""""
3976
3977.. code-block:: llvm
3978
3979 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3980
3981.. _bitwiseops:
3982
3983Bitwise Binary Operations
3984-------------------------
3985
3986Bitwise binary operators are used to do various forms of bit-twiddling
3987in a program. They are generally very efficient instructions and can
3988commonly be strength reduced from other instructions. They require two
3989operands of the same type, execute an operation on them, and produce a
3990single value. The resulting value is the same type as its operands.
3991
3992'``shl``' Instruction
3993^^^^^^^^^^^^^^^^^^^^^
3994
3995Syntax:
3996"""""""
3997
3998::
3999
4000 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4001 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4002 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4003 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4004
4005Overview:
4006"""""""""
4007
4008The '``shl``' instruction returns the first operand shifted to the left
4009a specified number of bits.
4010
4011Arguments:
4012""""""""""
4013
4014Both arguments to the '``shl``' instruction must be the same
4015:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4016'``op2``' is treated as an unsigned value.
4017
4018Semantics:
4019""""""""""
4020
4021The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4022where ``n`` is the width of the result. If ``op2`` is (statically or
4023dynamically) negative or equal to or larger than the number of bits in
4024``op1``, the result is undefined. If the arguments are vectors, each
4025vector element of ``op1`` is shifted by the corresponding shift amount
4026in ``op2``.
4027
4028If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4029value <poisonvalues>` if it shifts out any non-zero bits. If the
4030``nsw`` keyword is present, then the shift produces a :ref:`poison
4031value <poisonvalues>` if it shifts out any bits that disagree with the
4032resultant sign bit. As such, NUW/NSW have the same semantics as they
4033would if the shift were expressed as a mul instruction with the same
4034nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4035
4036Example:
4037""""""""
4038
4039.. code-block:: llvm
4040
4041 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4042 <result> = shl i32 4, 2 ; yields {i32}: 16
4043 <result> = shl i32 1, 10 ; yields {i32}: 1024
4044 <result> = shl i32 1, 32 ; undefined
4045 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4046
4047'``lshr``' Instruction
4048^^^^^^^^^^^^^^^^^^^^^^
4049
4050Syntax:
4051"""""""
4052
4053::
4054
4055 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4056 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4057
4058Overview:
4059"""""""""
4060
4061The '``lshr``' instruction (logical shift right) returns the first
4062operand shifted to the right a specified number of bits with zero fill.
4063
4064Arguments:
4065""""""""""
4066
4067Both arguments to the '``lshr``' instruction must be the same
4068:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4069'``op2``' is treated as an unsigned value.
4070
4071Semantics:
4072""""""""""
4073
4074This instruction always performs a logical shift right operation. The
4075most significant bits of the result will be filled with zero bits after
4076the shift. If ``op2`` is (statically or dynamically) equal to or larger
4077than the number of bits in ``op1``, the result is undefined. If the
4078arguments are vectors, each vector element of ``op1`` is shifted by the
4079corresponding shift amount in ``op2``.
4080
4081If the ``exact`` keyword is present, the result value of the ``lshr`` is
4082a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4083non-zero.
4084
4085Example:
4086""""""""
4087
4088.. code-block:: llvm
4089
4090 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4091 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4092 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover338eba72013-05-07 06:17:14 +00004093 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00004094 <result> = lshr i32 1, 32 ; undefined
4095 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4096
4097'``ashr``' Instruction
4098^^^^^^^^^^^^^^^^^^^^^^
4099
4100Syntax:
4101"""""""
4102
4103::
4104
4105 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4106 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4107
4108Overview:
4109"""""""""
4110
4111The '``ashr``' instruction (arithmetic shift right) returns the first
4112operand shifted to the right a specified number of bits with sign
4113extension.
4114
4115Arguments:
4116""""""""""
4117
4118Both arguments to the '``ashr``' instruction must be the same
4119:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4120'``op2``' is treated as an unsigned value.
4121
4122Semantics:
4123""""""""""
4124
4125This instruction always performs an arithmetic shift right operation,
4126The most significant bits of the result will be filled with the sign bit
4127of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4128than the number of bits in ``op1``, the result is undefined. If the
4129arguments are vectors, each vector element of ``op1`` is shifted by the
4130corresponding shift amount in ``op2``.
4131
4132If the ``exact`` keyword is present, the result value of the ``ashr`` is
4133a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4134non-zero.
4135
4136Example:
4137""""""""
4138
4139.. code-block:: llvm
4140
4141 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4142 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4143 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4144 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4145 <result> = ashr i32 1, 32 ; undefined
4146 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4147
4148'``and``' Instruction
4149^^^^^^^^^^^^^^^^^^^^^
4150
4151Syntax:
4152"""""""
4153
4154::
4155
4156 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4157
4158Overview:
4159"""""""""
4160
4161The '``and``' instruction returns the bitwise logical and of its two
4162operands.
4163
4164Arguments:
4165""""""""""
4166
4167The two arguments to the '``and``' instruction must be
4168:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4169arguments must have identical types.
4170
4171Semantics:
4172""""""""""
4173
4174The truth table used for the '``and``' instruction is:
4175
4176+-----+-----+-----+
4177| In0 | In1 | Out |
4178+-----+-----+-----+
4179| 0 | 0 | 0 |
4180+-----+-----+-----+
4181| 0 | 1 | 0 |
4182+-----+-----+-----+
4183| 1 | 0 | 0 |
4184+-----+-----+-----+
4185| 1 | 1 | 1 |
4186+-----+-----+-----+
4187
4188Example:
4189""""""""
4190
4191.. code-block:: llvm
4192
4193 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4194 <result> = and i32 15, 40 ; yields {i32}:result = 8
4195 <result> = and i32 4, 8 ; yields {i32}:result = 0
4196
4197'``or``' Instruction
4198^^^^^^^^^^^^^^^^^^^^
4199
4200Syntax:
4201"""""""
4202
4203::
4204
4205 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4206
4207Overview:
4208"""""""""
4209
4210The '``or``' instruction returns the bitwise logical inclusive or of its
4211two operands.
4212
4213Arguments:
4214""""""""""
4215
4216The two arguments to the '``or``' instruction must be
4217:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4218arguments must have identical types.
4219
4220Semantics:
4221""""""""""
4222
4223The truth table used for the '``or``' instruction is:
4224
4225+-----+-----+-----+
4226| In0 | In1 | Out |
4227+-----+-----+-----+
4228| 0 | 0 | 0 |
4229+-----+-----+-----+
4230| 0 | 1 | 1 |
4231+-----+-----+-----+
4232| 1 | 0 | 1 |
4233+-----+-----+-----+
4234| 1 | 1 | 1 |
4235+-----+-----+-----+
4236
4237Example:
4238""""""""
4239
4240::
4241
4242 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4243 <result> = or i32 15, 40 ; yields {i32}:result = 47
4244 <result> = or i32 4, 8 ; yields {i32}:result = 12
4245
4246'``xor``' Instruction
4247^^^^^^^^^^^^^^^^^^^^^
4248
4249Syntax:
4250"""""""
4251
4252::
4253
4254 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4255
4256Overview:
4257"""""""""
4258
4259The '``xor``' instruction returns the bitwise logical exclusive or of
4260its two operands. The ``xor`` is used to implement the "one's
4261complement" operation, which is the "~" operator in C.
4262
4263Arguments:
4264""""""""""
4265
4266The two arguments to the '``xor``' instruction must be
4267:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4268arguments must have identical types.
4269
4270Semantics:
4271""""""""""
4272
4273The truth table used for the '``xor``' instruction is:
4274
4275+-----+-----+-----+
4276| In0 | In1 | Out |
4277+-----+-----+-----+
4278| 0 | 0 | 0 |
4279+-----+-----+-----+
4280| 0 | 1 | 1 |
4281+-----+-----+-----+
4282| 1 | 0 | 1 |
4283+-----+-----+-----+
4284| 1 | 1 | 0 |
4285+-----+-----+-----+
4286
4287Example:
4288""""""""
4289
4290.. code-block:: llvm
4291
4292 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4293 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4294 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4295 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4296
4297Vector Operations
4298-----------------
4299
4300LLVM supports several instructions to represent vector operations in a
4301target-independent manner. These instructions cover the element-access
4302and vector-specific operations needed to process vectors effectively.
4303While LLVM does directly support these vector operations, many
4304sophisticated algorithms will want to use target-specific intrinsics to
4305take full advantage of a specific target.
4306
4307.. _i_extractelement:
4308
4309'``extractelement``' Instruction
4310^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4311
4312Syntax:
4313"""""""
4314
4315::
4316
4317 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4318
4319Overview:
4320"""""""""
4321
4322The '``extractelement``' instruction extracts a single scalar element
4323from a vector at a specified index.
4324
4325Arguments:
4326""""""""""
4327
4328The first operand of an '``extractelement``' instruction is a value of
4329:ref:`vector <t_vector>` type. The second operand is an index indicating
4330the position from which to extract the element. The index may be a
4331variable.
4332
4333Semantics:
4334""""""""""
4335
4336The result is a scalar of the same type as the element type of ``val``.
4337Its value is the value at position ``idx`` of ``val``. If ``idx``
4338exceeds the length of ``val``, the results are undefined.
4339
4340Example:
4341""""""""
4342
4343.. code-block:: llvm
4344
4345 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4346
4347.. _i_insertelement:
4348
4349'``insertelement``' Instruction
4350^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4351
4352Syntax:
4353"""""""
4354
4355::
4356
4357 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4358
4359Overview:
4360"""""""""
4361
4362The '``insertelement``' instruction inserts a scalar element into a
4363vector at a specified index.
4364
4365Arguments:
4366""""""""""
4367
4368The first operand of an '``insertelement``' instruction is a value of
4369:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4370type must equal the element type of the first operand. The third operand
4371is an index indicating the position at which to insert the value. The
4372index may be a variable.
4373
4374Semantics:
4375""""""""""
4376
4377The result is a vector of the same type as ``val``. Its element values
4378are those of ``val`` except at position ``idx``, where it gets the value
4379``elt``. If ``idx`` exceeds the length of ``val``, the results are
4380undefined.
4381
4382Example:
4383""""""""
4384
4385.. code-block:: llvm
4386
4387 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4388
4389.. _i_shufflevector:
4390
4391'``shufflevector``' Instruction
4392^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4393
4394Syntax:
4395"""""""
4396
4397::
4398
4399 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4400
4401Overview:
4402"""""""""
4403
4404The '``shufflevector``' instruction constructs a permutation of elements
4405from two input vectors, returning a vector with the same element type as
4406the input and length that is the same as the shuffle mask.
4407
4408Arguments:
4409""""""""""
4410
4411The first two operands of a '``shufflevector``' instruction are vectors
4412with the same type. The third argument is a shuffle mask whose element
4413type is always 'i32'. The result of the instruction is a vector whose
4414length is the same as the shuffle mask and whose element type is the
4415same as the element type of the first two operands.
4416
4417The shuffle mask operand is required to be a constant vector with either
4418constant integer or undef values.
4419
4420Semantics:
4421""""""""""
4422
4423The elements of the two input vectors are numbered from left to right
4424across both of the vectors. The shuffle mask operand specifies, for each
4425element of the result vector, which element of the two input vectors the
4426result element gets. The element selector may be undef (meaning "don't
4427care") and the second operand may be undef if performing a shuffle from
4428only one vector.
4429
4430Example:
4431""""""""
4432
4433.. code-block:: llvm
4434
4435 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4436 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4437 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4438 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4439 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4440 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4441 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4442 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4443
4444Aggregate Operations
4445--------------------
4446
4447LLVM supports several instructions for working with
4448:ref:`aggregate <t_aggregate>` values.
4449
4450.. _i_extractvalue:
4451
4452'``extractvalue``' Instruction
4453^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4454
4455Syntax:
4456"""""""
4457
4458::
4459
4460 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4461
4462Overview:
4463"""""""""
4464
4465The '``extractvalue``' instruction extracts the value of a member field
4466from an :ref:`aggregate <t_aggregate>` value.
4467
4468Arguments:
4469""""""""""
4470
4471The first operand of an '``extractvalue``' instruction is a value of
4472:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4473constant indices to specify which value to extract in a similar manner
4474as indices in a '``getelementptr``' instruction.
4475
4476The major differences to ``getelementptr`` indexing are:
4477
4478- Since the value being indexed is not a pointer, the first index is
4479 omitted and assumed to be zero.
4480- At least one index must be specified.
4481- Not only struct indices but also array indices must be in bounds.
4482
4483Semantics:
4484""""""""""
4485
4486The result is the value at the position in the aggregate specified by
4487the index operands.
4488
4489Example:
4490""""""""
4491
4492.. code-block:: llvm
4493
4494 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4495
4496.. _i_insertvalue:
4497
4498'``insertvalue``' Instruction
4499^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4500
4501Syntax:
4502"""""""
4503
4504::
4505
4506 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4507
4508Overview:
4509"""""""""
4510
4511The '``insertvalue``' instruction inserts a value into a member field in
4512an :ref:`aggregate <t_aggregate>` value.
4513
4514Arguments:
4515""""""""""
4516
4517The first operand of an '``insertvalue``' instruction is a value of
4518:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4519a first-class value to insert. The following operands are constant
4520indices indicating the position at which to insert the value in a
4521similar manner as indices in a '``extractvalue``' instruction. The value
4522to insert must have the same type as the value identified by the
4523indices.
4524
4525Semantics:
4526""""""""""
4527
4528The result is an aggregate of the same type as ``val``. Its value is
4529that of ``val`` except that the value at the position specified by the
4530indices is that of ``elt``.
4531
4532Example:
4533""""""""
4534
4535.. code-block:: llvm
4536
4537 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4538 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4539 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4540
4541.. _memoryops:
4542
4543Memory Access and Addressing Operations
4544---------------------------------------
4545
4546A key design point of an SSA-based representation is how it represents
4547memory. In LLVM, no memory locations are in SSA form, which makes things
4548very simple. This section describes how to read, write, and allocate
4549memory in LLVM.
4550
4551.. _i_alloca:
4552
4553'``alloca``' Instruction
4554^^^^^^^^^^^^^^^^^^^^^^^^
4555
4556Syntax:
4557"""""""
4558
4559::
4560
4561 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4562
4563Overview:
4564"""""""""
4565
4566The '``alloca``' instruction allocates memory on the stack frame of the
4567currently executing function, to be automatically released when this
4568function returns to its caller. The object is always allocated in the
4569generic address space (address space zero).
4570
4571Arguments:
4572""""""""""
4573
4574The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4575bytes of memory on the runtime stack, returning a pointer of the
4576appropriate type to the program. If "NumElements" is specified, it is
4577the number of elements allocated, otherwise "NumElements" is defaulted
4578to be one. If a constant alignment is specified, the value result of the
4579allocation is guaranteed to be aligned to at least that boundary. If not
4580specified, or if zero, the target can choose to align the allocation on
4581any convenient boundary compatible with the type.
4582
4583'``type``' may be any sized type.
4584
4585Semantics:
4586""""""""""
4587
4588Memory is allocated; a pointer is returned. The operation is undefined
4589if there is insufficient stack space for the allocation. '``alloca``'d
4590memory is automatically released when the function returns. The
4591'``alloca``' instruction is commonly used to represent automatic
4592variables that must have an address available. When the function returns
4593(either with the ``ret`` or ``resume`` instructions), the memory is
4594reclaimed. Allocating zero bytes is legal, but the result is undefined.
4595The order in which memory is allocated (ie., which way the stack grows)
4596is not specified.
4597
4598Example:
4599""""""""
4600
4601.. code-block:: llvm
4602
4603 %ptr = alloca i32 ; yields {i32*}:ptr
4604 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4605 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4606 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4607
4608.. _i_load:
4609
4610'``load``' Instruction
4611^^^^^^^^^^^^^^^^^^^^^^
4612
4613Syntax:
4614"""""""
4615
4616::
4617
4618 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4619 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4620 !<index> = !{ i32 1 }
4621
4622Overview:
4623"""""""""
4624
4625The '``load``' instruction is used to read from memory.
4626
4627Arguments:
4628""""""""""
4629
Eli Bendersky8c493382013-04-17 20:17:08 +00004630The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004631from which to load. The pointer must point to a :ref:`first
4632class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4633then the optimizer is not allowed to modify the number or order of
4634execution of this ``load`` with other :ref:`volatile
4635operations <volatile>`.
4636
4637If the ``load`` is marked as ``atomic``, it takes an extra
4638:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4639``release`` and ``acq_rel`` orderings are not valid on ``load``
4640instructions. Atomic loads produce :ref:`defined <memmodel>` results
4641when they may see multiple atomic stores. The type of the pointee must
4642be an integer type whose bit width is a power of two greater than or
4643equal to eight and less than or equal to a target-specific size limit.
4644``align`` must be explicitly specified on atomic loads, and the load has
4645undefined behavior if the alignment is not set to a value which is at
4646least the size in bytes of the pointee. ``!nontemporal`` does not have
4647any defined semantics for atomic loads.
4648
4649The optional constant ``align`` argument specifies the alignment of the
4650operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004651or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004652alignment for the target. It is the responsibility of the code emitter
4653to ensure that the alignment information is correct. Overestimating the
4654alignment results in undefined behavior. Underestimating the alignment
4655may produce less efficient code. An alignment of 1 is always safe.
4656
4657The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004658metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004659``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004660metadata on the instruction tells the optimizer and code generator
Sean Silvaf722b002012-12-07 10:36:55 +00004661that this load is not expected to be reused in the cache. The code
4662generator may select special instructions to save cache bandwidth, such
4663as the ``MOVNT`` instruction on x86.
4664
4665The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004666metadata name ``<index>`` corresponding to a metadata node with no
4667entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvaf722b002012-12-07 10:36:55 +00004668instruction tells the optimizer and code generator that this load
4669address points to memory which does not change value during program
4670execution. The optimizer may then move this load around, for example, by
4671hoisting it out of loops using loop invariant code motion.
4672
4673Semantics:
4674""""""""""
4675
4676The location of memory pointed to is loaded. If the value being loaded
4677is of scalar type then the number of bytes read does not exceed the
4678minimum number of bytes needed to hold all bits of the type. For
4679example, loading an ``i24`` reads at most three bytes. When loading a
4680value of a type like ``i20`` with a size that is not an integral number
4681of bytes, the result is undefined if the value was not originally
4682written using a store of the same type.
4683
4684Examples:
4685"""""""""
4686
4687.. code-block:: llvm
4688
4689 %ptr = alloca i32 ; yields {i32*}:ptr
4690 store i32 3, i32* %ptr ; yields {void}
4691 %val = load i32* %ptr ; yields {i32}:val = i32 3
4692
4693.. _i_store:
4694
4695'``store``' Instruction
4696^^^^^^^^^^^^^^^^^^^^^^^
4697
4698Syntax:
4699"""""""
4700
4701::
4702
4703 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4704 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4705
4706Overview:
4707"""""""""
4708
4709The '``store``' instruction is used to write to memory.
4710
4711Arguments:
4712""""""""""
4713
Eli Bendersky8952d902013-04-17 17:17:20 +00004714There are two arguments to the ``store`` instruction: a value to store
4715and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004716operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004717the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004718then the optimizer is not allowed to modify the number or order of
4719execution of this ``store`` with other :ref:`volatile
4720operations <volatile>`.
4721
4722If the ``store`` is marked as ``atomic``, it takes an extra
4723:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4724``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4725instructions. Atomic loads produce :ref:`defined <memmodel>` results
4726when they may see multiple atomic stores. The type of the pointee must
4727be an integer type whose bit width is a power of two greater than or
4728equal to eight and less than or equal to a target-specific size limit.
4729``align`` must be explicitly specified on atomic stores, and the store
4730has undefined behavior if the alignment is not set to a value which is
4731at least the size in bytes of the pointee. ``!nontemporal`` does not
4732have any defined semantics for atomic stores.
4733
Eli Bendersky8952d902013-04-17 17:17:20 +00004734The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004735operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004736or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004737alignment for the target. It is the responsibility of the code emitter
4738to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004739alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004740alignment may produce less efficient code. An alignment of 1 is always
4741safe.
4742
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004743The optional ``!nontemporal`` metadata must reference a single metadata
Eli Bendersky8952d902013-04-17 17:17:20 +00004744name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004745value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004746tells the optimizer and code generator that this load is not expected to
4747be reused in the cache. The code generator may select special
4748instructions to save cache bandwidth, such as the MOVNT instruction on
4749x86.
4750
4751Semantics:
4752""""""""""
4753
Eli Bendersky8952d902013-04-17 17:17:20 +00004754The contents of memory are updated to contain ``<value>`` at the
4755location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004756of scalar type then the number of bytes written does not exceed the
4757minimum number of bytes needed to hold all bits of the type. For
4758example, storing an ``i24`` writes at most three bytes. When writing a
4759value of a type like ``i20`` with a size that is not an integral number
4760of bytes, it is unspecified what happens to the extra bits that do not
4761belong to the type, but they will typically be overwritten.
4762
4763Example:
4764""""""""
4765
4766.. code-block:: llvm
4767
4768 %ptr = alloca i32 ; yields {i32*}:ptr
4769 store i32 3, i32* %ptr ; yields {void}
4770 %val = load i32* %ptr ; yields {i32}:val = i32 3
4771
4772.. _i_fence:
4773
4774'``fence``' Instruction
4775^^^^^^^^^^^^^^^^^^^^^^^
4776
4777Syntax:
4778"""""""
4779
4780::
4781
4782 fence [singlethread] <ordering> ; yields {void}
4783
4784Overview:
4785"""""""""
4786
4787The '``fence``' instruction is used to introduce happens-before edges
4788between operations.
4789
4790Arguments:
4791""""""""""
4792
4793'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4794defines what *synchronizes-with* edges they add. They can only be given
4795``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4796
4797Semantics:
4798""""""""""
4799
4800A fence A which has (at least) ``release`` ordering semantics
4801*synchronizes with* a fence B with (at least) ``acquire`` ordering
4802semantics if and only if there exist atomic operations X and Y, both
4803operating on some atomic object M, such that A is sequenced before X, X
4804modifies M (either directly or through some side effect of a sequence
4805headed by X), Y is sequenced before B, and Y observes M. This provides a
4806*happens-before* dependency between A and B. Rather than an explicit
4807``fence``, one (but not both) of the atomic operations X or Y might
4808provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4809still *synchronize-with* the explicit ``fence`` and establish the
4810*happens-before* edge.
4811
4812A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4813``acquire`` and ``release`` semantics specified above, participates in
4814the global program order of other ``seq_cst`` operations and/or fences.
4815
4816The optional ":ref:`singlethread <singlethread>`" argument specifies
4817that the fence only synchronizes with other fences in the same thread.
4818(This is useful for interacting with signal handlers.)
4819
4820Example:
4821""""""""
4822
4823.. code-block:: llvm
4824
4825 fence acquire ; yields {void}
4826 fence singlethread seq_cst ; yields {void}
4827
4828.. _i_cmpxchg:
4829
4830'``cmpxchg``' Instruction
4831^^^^^^^^^^^^^^^^^^^^^^^^^
4832
4833Syntax:
4834"""""""
4835
4836::
4837
4838 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4839
4840Overview:
4841"""""""""
4842
4843The '``cmpxchg``' instruction is used to atomically modify memory. It
4844loads a value in memory and compares it to a given value. If they are
4845equal, it stores a new value into the memory.
4846
4847Arguments:
4848""""""""""
4849
4850There are three arguments to the '``cmpxchg``' instruction: an address
4851to operate on, a value to compare to the value currently be at that
4852address, and a new value to place at that address if the compared values
4853are equal. The type of '<cmp>' must be an integer type whose bit width
4854is a power of two greater than or equal to eight and less than or equal
4855to a target-specific size limit. '<cmp>' and '<new>' must have the same
4856type, and the type of '<pointer>' must be a pointer to that type. If the
4857``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4858to modify the number or order of execution of this ``cmpxchg`` with
4859other :ref:`volatile operations <volatile>`.
4860
4861The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4862synchronizes with other atomic operations.
4863
4864The optional "``singlethread``" argument declares that the ``cmpxchg``
4865is only atomic with respect to code (usually signal handlers) running in
4866the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4867respect to all other code in the system.
4868
4869The pointer passed into cmpxchg must have alignment greater than or
4870equal to the size in memory of the operand.
4871
4872Semantics:
4873""""""""""
4874
4875The contents of memory at the location specified by the '``<pointer>``'
4876operand is read and compared to '``<cmp>``'; if the read value is the
4877equal, '``<new>``' is written. The original value at the location is
4878returned.
4879
4880A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4881of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4882atomic load with an ordering parameter determined by dropping any
4883``release`` part of the ``cmpxchg``'s ordering.
4884
4885Example:
4886""""""""
4887
4888.. code-block:: llvm
4889
4890 entry:
4891 %orig = atomic load i32* %ptr unordered ; yields {i32}
4892 br label %loop
4893
4894 loop:
4895 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4896 %squared = mul i32 %cmp, %cmp
4897 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4898 %success = icmp eq i32 %cmp, %old
4899 br i1 %success, label %done, label %loop
4900
4901 done:
4902 ...
4903
4904.. _i_atomicrmw:
4905
4906'``atomicrmw``' Instruction
4907^^^^^^^^^^^^^^^^^^^^^^^^^^^
4908
4909Syntax:
4910"""""""
4911
4912::
4913
4914 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4915
4916Overview:
4917"""""""""
4918
4919The '``atomicrmw``' instruction is used to atomically modify memory.
4920
4921Arguments:
4922""""""""""
4923
4924There are three arguments to the '``atomicrmw``' instruction: an
4925operation to apply, an address whose value to modify, an argument to the
4926operation. The operation must be one of the following keywords:
4927
4928- xchg
4929- add
4930- sub
4931- and
4932- nand
4933- or
4934- xor
4935- max
4936- min
4937- umax
4938- umin
4939
4940The type of '<value>' must be an integer type whose bit width is a power
4941of two greater than or equal to eight and less than or equal to a
4942target-specific size limit. The type of the '``<pointer>``' operand must
4943be a pointer to that type. If the ``atomicrmw`` is marked as
4944``volatile``, then the optimizer is not allowed to modify the number or
4945order of execution of this ``atomicrmw`` with other :ref:`volatile
4946operations <volatile>`.
4947
4948Semantics:
4949""""""""""
4950
4951The contents of memory at the location specified by the '``<pointer>``'
4952operand are atomically read, modified, and written back. The original
4953value at the location is returned. The modification is specified by the
4954operation argument:
4955
4956- xchg: ``*ptr = val``
4957- add: ``*ptr = *ptr + val``
4958- sub: ``*ptr = *ptr - val``
4959- and: ``*ptr = *ptr & val``
4960- nand: ``*ptr = ~(*ptr & val)``
4961- or: ``*ptr = *ptr | val``
4962- xor: ``*ptr = *ptr ^ val``
4963- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4964- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4965- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4966 comparison)
4967- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4968 comparison)
4969
4970Example:
4971""""""""
4972
4973.. code-block:: llvm
4974
4975 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4976
4977.. _i_getelementptr:
4978
4979'``getelementptr``' Instruction
4980^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4981
4982Syntax:
4983"""""""
4984
4985::
4986
4987 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4988 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4989 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4990
4991Overview:
4992"""""""""
4993
4994The '``getelementptr``' instruction is used to get the address of a
4995subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4996address calculation only and does not access memory.
4997
4998Arguments:
4999""""""""""
5000
5001The first argument is always a pointer or a vector of pointers, and
5002forms the basis of the calculation. The remaining arguments are indices
5003that indicate which of the elements of the aggregate object are indexed.
5004The interpretation of each index is dependent on the type being indexed
5005into. The first index always indexes the pointer value given as the
5006first argument, the second index indexes a value of the type pointed to
5007(not necessarily the value directly pointed to, since the first index
5008can be non-zero), etc. The first type indexed into must be a pointer
5009value, subsequent types can be arrays, vectors, and structs. Note that
5010subsequent types being indexed into can never be pointers, since that
5011would require loading the pointer before continuing calculation.
5012
5013The type of each index argument depends on the type it is indexing into.
5014When indexing into a (optionally packed) structure, only ``i32`` integer
5015**constants** are allowed (when using a vector of indices they must all
5016be the **same** ``i32`` integer constant). When indexing into an array,
5017pointer or vector, integers of any width are allowed, and they are not
5018required to be constant. These integers are treated as signed values
5019where relevant.
5020
5021For example, let's consider a C code fragment and how it gets compiled
5022to LLVM:
5023
5024.. code-block:: c
5025
5026 struct RT {
5027 char A;
5028 int B[10][20];
5029 char C;
5030 };
5031 struct ST {
5032 int X;
5033 double Y;
5034 struct RT Z;
5035 };
5036
5037 int *foo(struct ST *s) {
5038 return &s[1].Z.B[5][13];
5039 }
5040
5041The LLVM code generated by Clang is:
5042
5043.. code-block:: llvm
5044
5045 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5046 %struct.ST = type { i32, double, %struct.RT }
5047
5048 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5049 entry:
5050 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5051 ret i32* %arrayidx
5052 }
5053
5054Semantics:
5055""""""""""
5056
5057In the example above, the first index is indexing into the
5058'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5059= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5060indexes into the third element of the structure, yielding a
5061'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5062structure. The third index indexes into the second element of the
5063structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5064dimensions of the array are subscripted into, yielding an '``i32``'
5065type. The '``getelementptr``' instruction returns a pointer to this
5066element, thus computing a value of '``i32*``' type.
5067
5068Note that it is perfectly legal to index partially through a structure,
5069returning a pointer to an inner element. Because of this, the LLVM code
5070for the given testcase is equivalent to:
5071
5072.. code-block:: llvm
5073
5074 define i32* @foo(%struct.ST* %s) {
5075 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5076 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5077 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5078 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5079 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5080 ret i32* %t5
5081 }
5082
5083If the ``inbounds`` keyword is present, the result value of the
5084``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5085pointer is not an *in bounds* address of an allocated object, or if any
5086of the addresses that would be formed by successive addition of the
5087offsets implied by the indices to the base address with infinitely
5088precise signed arithmetic are not an *in bounds* address of that
5089allocated object. The *in bounds* addresses for an allocated object are
5090all the addresses that point into the object, plus the address one byte
5091past the end. In cases where the base is a vector of pointers the
5092``inbounds`` keyword applies to each of the computations element-wise.
5093
5094If the ``inbounds`` keyword is not present, the offsets are added to the
5095base address with silently-wrapping two's complement arithmetic. If the
5096offsets have a different width from the pointer, they are sign-extended
5097or truncated to the width of the pointer. The result value of the
5098``getelementptr`` may be outside the object pointed to by the base
5099pointer. The result value may not necessarily be used to access memory
5100though, even if it happens to point into allocated storage. See the
5101:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5102information.
5103
5104The getelementptr instruction is often confusing. For some more insight
5105into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5106
5107Example:
5108""""""""
5109
5110.. code-block:: llvm
5111
5112 ; yields [12 x i8]*:aptr
5113 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5114 ; yields i8*:vptr
5115 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5116 ; yields i8*:eptr
5117 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5118 ; yields i32*:iptr
5119 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5120
5121In cases where the pointer argument is a vector of pointers, each index
5122must be a vector with the same number of elements. For example:
5123
5124.. code-block:: llvm
5125
5126 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5127
5128Conversion Operations
5129---------------------
5130
5131The instructions in this category are the conversion instructions
5132(casting) which all take a single operand and a type. They perform
5133various bit conversions on the operand.
5134
5135'``trunc .. to``' Instruction
5136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5137
5138Syntax:
5139"""""""
5140
5141::
5142
5143 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5144
5145Overview:
5146"""""""""
5147
5148The '``trunc``' instruction truncates its operand to the type ``ty2``.
5149
5150Arguments:
5151""""""""""
5152
5153The '``trunc``' instruction takes a value to trunc, and a type to trunc
5154it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5155of the same number of integers. The bit size of the ``value`` must be
5156larger than the bit size of the destination type, ``ty2``. Equal sized
5157types are not allowed.
5158
5159Semantics:
5160""""""""""
5161
5162The '``trunc``' instruction truncates the high order bits in ``value``
5163and converts the remaining bits to ``ty2``. Since the source size must
5164be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5165It will always truncate bits.
5166
5167Example:
5168""""""""
5169
5170.. code-block:: llvm
5171
5172 %X = trunc i32 257 to i8 ; yields i8:1
5173 %Y = trunc i32 123 to i1 ; yields i1:true
5174 %Z = trunc i32 122 to i1 ; yields i1:false
5175 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5176
5177'``zext .. to``' Instruction
5178^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5179
5180Syntax:
5181"""""""
5182
5183::
5184
5185 <result> = zext <ty> <value> to <ty2> ; yields ty2
5186
5187Overview:
5188"""""""""
5189
5190The '``zext``' instruction zero extends its operand to type ``ty2``.
5191
5192Arguments:
5193""""""""""
5194
5195The '``zext``' instruction takes a value to cast, and a type to cast it
5196to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5197the same number of integers. The bit size of the ``value`` must be
5198smaller than the bit size of the destination type, ``ty2``.
5199
5200Semantics:
5201""""""""""
5202
5203The ``zext`` fills the high order bits of the ``value`` with zero bits
5204until it reaches the size of the destination type, ``ty2``.
5205
5206When zero extending from i1, the result will always be either 0 or 1.
5207
5208Example:
5209""""""""
5210
5211.. code-block:: llvm
5212
5213 %X = zext i32 257 to i64 ; yields i64:257
5214 %Y = zext i1 true to i32 ; yields i32:1
5215 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5216
5217'``sext .. to``' Instruction
5218^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5219
5220Syntax:
5221"""""""
5222
5223::
5224
5225 <result> = sext <ty> <value> to <ty2> ; yields ty2
5226
5227Overview:
5228"""""""""
5229
5230The '``sext``' sign extends ``value`` to the type ``ty2``.
5231
5232Arguments:
5233""""""""""
5234
5235The '``sext``' instruction takes a value to cast, and a type to cast it
5236to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5237the same number of integers. The bit size of the ``value`` must be
5238smaller than the bit size of the destination type, ``ty2``.
5239
5240Semantics:
5241""""""""""
5242
5243The '``sext``' instruction performs a sign extension by copying the sign
5244bit (highest order bit) of the ``value`` until it reaches the bit size
5245of the type ``ty2``.
5246
5247When sign extending from i1, the extension always results in -1 or 0.
5248
5249Example:
5250""""""""
5251
5252.. code-block:: llvm
5253
5254 %X = sext i8 -1 to i16 ; yields i16 :65535
5255 %Y = sext i1 true to i32 ; yields i32:-1
5256 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5257
5258'``fptrunc .. to``' Instruction
5259^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5260
5261Syntax:
5262"""""""
5263
5264::
5265
5266 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5267
5268Overview:
5269"""""""""
5270
5271The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5272
5273Arguments:
5274""""""""""
5275
5276The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5277value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5278The size of ``value`` must be larger than the size of ``ty2``. This
5279implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5280
5281Semantics:
5282""""""""""
5283
5284The '``fptrunc``' instruction truncates a ``value`` from a larger
5285:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5286point <t_floating>` type. If the value cannot fit within the
5287destination type, ``ty2``, then the results are undefined.
5288
5289Example:
5290""""""""
5291
5292.. code-block:: llvm
5293
5294 %X = fptrunc double 123.0 to float ; yields float:123.0
5295 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5296
5297'``fpext .. to``' Instruction
5298^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5299
5300Syntax:
5301"""""""
5302
5303::
5304
5305 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5306
5307Overview:
5308"""""""""
5309
5310The '``fpext``' extends a floating point ``value`` to a larger floating
5311point value.
5312
5313Arguments:
5314""""""""""
5315
5316The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5317``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5318to. The source type must be smaller than the destination type.
5319
5320Semantics:
5321""""""""""
5322
5323The '``fpext``' instruction extends the ``value`` from a smaller
5324:ref:`floating point <t_floating>` type to a larger :ref:`floating
5325point <t_floating>` type. The ``fpext`` cannot be used to make a
5326*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5327*no-op cast* for a floating point cast.
5328
5329Example:
5330""""""""
5331
5332.. code-block:: llvm
5333
5334 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5335 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5336
5337'``fptoui .. to``' Instruction
5338^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5339
5340Syntax:
5341"""""""
5342
5343::
5344
5345 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5346
5347Overview:
5348"""""""""
5349
5350The '``fptoui``' converts a floating point ``value`` to its unsigned
5351integer equivalent of type ``ty2``.
5352
5353Arguments:
5354""""""""""
5355
5356The '``fptoui``' instruction takes a value to cast, which must be a
5357scalar or vector :ref:`floating point <t_floating>` value, and a type to
5358cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5359``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5360type with the same number of elements as ``ty``
5361
5362Semantics:
5363""""""""""
5364
5365The '``fptoui``' instruction converts its :ref:`floating
5366point <t_floating>` operand into the nearest (rounding towards zero)
5367unsigned integer value. If the value cannot fit in ``ty2``, the results
5368are undefined.
5369
5370Example:
5371""""""""
5372
5373.. code-block:: llvm
5374
5375 %X = fptoui double 123.0 to i32 ; yields i32:123
5376 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5377 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5378
5379'``fptosi .. to``' Instruction
5380^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5381
5382Syntax:
5383"""""""
5384
5385::
5386
5387 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5388
5389Overview:
5390"""""""""
5391
5392The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5393``value`` to type ``ty2``.
5394
5395Arguments:
5396""""""""""
5397
5398The '``fptosi``' instruction takes a value to cast, which must be a
5399scalar or vector :ref:`floating point <t_floating>` value, and a type to
5400cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5401``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5402type with the same number of elements as ``ty``
5403
5404Semantics:
5405""""""""""
5406
5407The '``fptosi``' instruction converts its :ref:`floating
5408point <t_floating>` operand into the nearest (rounding towards zero)
5409signed integer value. If the value cannot fit in ``ty2``, the results
5410are undefined.
5411
5412Example:
5413""""""""
5414
5415.. code-block:: llvm
5416
5417 %X = fptosi double -123.0 to i32 ; yields i32:-123
5418 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5419 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5420
5421'``uitofp .. to``' Instruction
5422^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5423
5424Syntax:
5425"""""""
5426
5427::
5428
5429 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5430
5431Overview:
5432"""""""""
5433
5434The '``uitofp``' instruction regards ``value`` as an unsigned integer
5435and converts that value to the ``ty2`` type.
5436
5437Arguments:
5438""""""""""
5439
5440The '``uitofp``' instruction takes a value to cast, which must be a
5441scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5442``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5443``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5444type with the same number of elements as ``ty``
5445
5446Semantics:
5447""""""""""
5448
5449The '``uitofp``' instruction interprets its operand as an unsigned
5450integer quantity and converts it to the corresponding floating point
5451value. If the value cannot fit in the floating point value, the results
5452are undefined.
5453
5454Example:
5455""""""""
5456
5457.. code-block:: llvm
5458
5459 %X = uitofp i32 257 to float ; yields float:257.0
5460 %Y = uitofp i8 -1 to double ; yields double:255.0
5461
5462'``sitofp .. to``' Instruction
5463^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5464
5465Syntax:
5466"""""""
5467
5468::
5469
5470 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5471
5472Overview:
5473"""""""""
5474
5475The '``sitofp``' instruction regards ``value`` as a signed integer and
5476converts that value to the ``ty2`` type.
5477
5478Arguments:
5479""""""""""
5480
5481The '``sitofp``' instruction takes a value to cast, which must be a
5482scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5483``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5484``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5485type with the same number of elements as ``ty``
5486
5487Semantics:
5488""""""""""
5489
5490The '``sitofp``' instruction interprets its operand as a signed integer
5491quantity and converts it to the corresponding floating point value. If
5492the value cannot fit in the floating point value, the results are
5493undefined.
5494
5495Example:
5496""""""""
5497
5498.. code-block:: llvm
5499
5500 %X = sitofp i32 257 to float ; yields float:257.0
5501 %Y = sitofp i8 -1 to double ; yields double:-1.0
5502
5503.. _i_ptrtoint:
5504
5505'``ptrtoint .. to``' Instruction
5506^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5507
5508Syntax:
5509"""""""
5510
5511::
5512
5513 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5514
5515Overview:
5516"""""""""
5517
5518The '``ptrtoint``' instruction converts the pointer or a vector of
5519pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5520
5521Arguments:
5522""""""""""
5523
5524The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5525a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5526type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5527a vector of integers type.
5528
5529Semantics:
5530""""""""""
5531
5532The '``ptrtoint``' instruction converts ``value`` to integer type
5533``ty2`` by interpreting the pointer value as an integer and either
5534truncating or zero extending that value to the size of the integer type.
5535If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5536``value`` is larger than ``ty2`` then a truncation is done. If they are
5537the same size, then nothing is done (*no-op cast*) other than a type
5538change.
5539
5540Example:
5541""""""""
5542
5543.. code-block:: llvm
5544
5545 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5546 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5547 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5548
5549.. _i_inttoptr:
5550
5551'``inttoptr .. to``' Instruction
5552^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5553
5554Syntax:
5555"""""""
5556
5557::
5558
5559 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5560
5561Overview:
5562"""""""""
5563
5564The '``inttoptr``' instruction converts an integer ``value`` to a
5565pointer type, ``ty2``.
5566
5567Arguments:
5568""""""""""
5569
5570The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5571cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5572type.
5573
5574Semantics:
5575""""""""""
5576
5577The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5578applying either a zero extension or a truncation depending on the size
5579of the integer ``value``. If ``value`` is larger than the size of a
5580pointer then a truncation is done. If ``value`` is smaller than the size
5581of a pointer then a zero extension is done. If they are the same size,
5582nothing is done (*no-op cast*).
5583
5584Example:
5585""""""""
5586
5587.. code-block:: llvm
5588
5589 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5590 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5591 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5592 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5593
5594.. _i_bitcast:
5595
5596'``bitcast .. to``' Instruction
5597^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5598
5599Syntax:
5600"""""""
5601
5602::
5603
5604 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5605
5606Overview:
5607"""""""""
5608
5609The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5610changing any bits.
5611
5612Arguments:
5613""""""""""
5614
5615The '``bitcast``' instruction takes a value to cast, which must be a
5616non-aggregate first class value, and a type to cast it to, which must
5617also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5618sizes of ``value`` and the destination type, ``ty2``, must be identical.
5619If the source type is a pointer, the destination type must also be a
5620pointer. This instruction supports bitwise conversion of vectors to
5621integers and to vectors of other types (as long as they have the same
5622size).
5623
5624Semantics:
5625""""""""""
5626
5627The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5628always a *no-op cast* because no bits change with this conversion. The
5629conversion is done as if the ``value`` had been stored to memory and
5630read back as type ``ty2``. Pointer (or vector of pointers) types may
5631only be converted to other pointer (or vector of pointers) types with
5632this instruction. To convert pointers to other types, use the
5633:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5634first.
5635
5636Example:
5637""""""""
5638
5639.. code-block:: llvm
5640
5641 %X = bitcast i8 255 to i8 ; yields i8 :-1
5642 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5643 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5644 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5645
5646.. _otherops:
5647
5648Other Operations
5649----------------
5650
5651The instructions in this category are the "miscellaneous" instructions,
5652which defy better classification.
5653
5654.. _i_icmp:
5655
5656'``icmp``' Instruction
5657^^^^^^^^^^^^^^^^^^^^^^
5658
5659Syntax:
5660"""""""
5661
5662::
5663
5664 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5665
5666Overview:
5667"""""""""
5668
5669The '``icmp``' instruction returns a boolean value or a vector of
5670boolean values based on comparison of its two integer, integer vector,
5671pointer, or pointer vector operands.
5672
5673Arguments:
5674""""""""""
5675
5676The '``icmp``' instruction takes three operands. The first operand is
5677the condition code indicating the kind of comparison to perform. It is
5678not a value, just a keyword. The possible condition code are:
5679
5680#. ``eq``: equal
5681#. ``ne``: not equal
5682#. ``ugt``: unsigned greater than
5683#. ``uge``: unsigned greater or equal
5684#. ``ult``: unsigned less than
5685#. ``ule``: unsigned less or equal
5686#. ``sgt``: signed greater than
5687#. ``sge``: signed greater or equal
5688#. ``slt``: signed less than
5689#. ``sle``: signed less or equal
5690
5691The remaining two arguments must be :ref:`integer <t_integer>` or
5692:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5693must also be identical types.
5694
5695Semantics:
5696""""""""""
5697
5698The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5699code given as ``cond``. The comparison performed always yields either an
5700:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5701
5702#. ``eq``: yields ``true`` if the operands are equal, ``false``
5703 otherwise. No sign interpretation is necessary or performed.
5704#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5705 otherwise. No sign interpretation is necessary or performed.
5706#. ``ugt``: interprets the operands as unsigned values and yields
5707 ``true`` if ``op1`` is greater than ``op2``.
5708#. ``uge``: interprets the operands as unsigned values and yields
5709 ``true`` if ``op1`` is greater than or equal to ``op2``.
5710#. ``ult``: interprets the operands as unsigned values and yields
5711 ``true`` if ``op1`` is less than ``op2``.
5712#. ``ule``: interprets the operands as unsigned values and yields
5713 ``true`` if ``op1`` is less than or equal to ``op2``.
5714#. ``sgt``: interprets the operands as signed values and yields ``true``
5715 if ``op1`` is greater than ``op2``.
5716#. ``sge``: interprets the operands as signed values and yields ``true``
5717 if ``op1`` is greater than or equal to ``op2``.
5718#. ``slt``: interprets the operands as signed values and yields ``true``
5719 if ``op1`` is less than ``op2``.
5720#. ``sle``: interprets the operands as signed values and yields ``true``
5721 if ``op1`` is less than or equal to ``op2``.
5722
5723If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5724are compared as if they were integers.
5725
5726If the operands are integer vectors, then they are compared element by
5727element. The result is an ``i1`` vector with the same number of elements
5728as the values being compared. Otherwise, the result is an ``i1``.
5729
5730Example:
5731""""""""
5732
5733.. code-block:: llvm
5734
5735 <result> = icmp eq i32 4, 5 ; yields: result=false
5736 <result> = icmp ne float* %X, %X ; yields: result=false
5737 <result> = icmp ult i16 4, 5 ; yields: result=true
5738 <result> = icmp sgt i16 4, 5 ; yields: result=false
5739 <result> = icmp ule i16 -4, 5 ; yields: result=false
5740 <result> = icmp sge i16 4, 5 ; yields: result=false
5741
5742Note that the code generator does not yet support vector types with the
5743``icmp`` instruction.
5744
5745.. _i_fcmp:
5746
5747'``fcmp``' Instruction
5748^^^^^^^^^^^^^^^^^^^^^^
5749
5750Syntax:
5751"""""""
5752
5753::
5754
5755 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5756
5757Overview:
5758"""""""""
5759
5760The '``fcmp``' instruction returns a boolean value or vector of boolean
5761values based on comparison of its operands.
5762
5763If the operands are floating point scalars, then the result type is a
5764boolean (:ref:`i1 <t_integer>`).
5765
5766If the operands are floating point vectors, then the result type is a
5767vector of boolean with the same number of elements as the operands being
5768compared.
5769
5770Arguments:
5771""""""""""
5772
5773The '``fcmp``' instruction takes three operands. The first operand is
5774the condition code indicating the kind of comparison to perform. It is
5775not a value, just a keyword. The possible condition code are:
5776
5777#. ``false``: no comparison, always returns false
5778#. ``oeq``: ordered and equal
5779#. ``ogt``: ordered and greater than
5780#. ``oge``: ordered and greater than or equal
5781#. ``olt``: ordered and less than
5782#. ``ole``: ordered and less than or equal
5783#. ``one``: ordered and not equal
5784#. ``ord``: ordered (no nans)
5785#. ``ueq``: unordered or equal
5786#. ``ugt``: unordered or greater than
5787#. ``uge``: unordered or greater than or equal
5788#. ``ult``: unordered or less than
5789#. ``ule``: unordered or less than or equal
5790#. ``une``: unordered or not equal
5791#. ``uno``: unordered (either nans)
5792#. ``true``: no comparison, always returns true
5793
5794*Ordered* means that neither operand is a QNAN while *unordered* means
5795that either operand may be a QNAN.
5796
5797Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5798point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5799type. They must have identical types.
5800
5801Semantics:
5802""""""""""
5803
5804The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5805condition code given as ``cond``. If the operands are vectors, then the
5806vectors are compared element by element. Each comparison performed
5807always yields an :ref:`i1 <t_integer>` result, as follows:
5808
5809#. ``false``: always yields ``false``, regardless of operands.
5810#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5811 is equal to ``op2``.
5812#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5813 is greater than ``op2``.
5814#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5815 is greater than or equal to ``op2``.
5816#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5817 is less than ``op2``.
5818#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5819 is less than or equal to ``op2``.
5820#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5821 is not equal to ``op2``.
5822#. ``ord``: yields ``true`` if both operands are not a QNAN.
5823#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5824 equal to ``op2``.
5825#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5826 greater than ``op2``.
5827#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5828 greater than or equal to ``op2``.
5829#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5830 less than ``op2``.
5831#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5832 less than or equal to ``op2``.
5833#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5834 not equal to ``op2``.
5835#. ``uno``: yields ``true`` if either operand is a QNAN.
5836#. ``true``: always yields ``true``, regardless of operands.
5837
5838Example:
5839""""""""
5840
5841.. code-block:: llvm
5842
5843 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5844 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5845 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5846 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5847
5848Note that the code generator does not yet support vector types with the
5849``fcmp`` instruction.
5850
5851.. _i_phi:
5852
5853'``phi``' Instruction
5854^^^^^^^^^^^^^^^^^^^^^
5855
5856Syntax:
5857"""""""
5858
5859::
5860
5861 <result> = phi <ty> [ <val0>, <label0>], ...
5862
5863Overview:
5864"""""""""
5865
5866The '``phi``' instruction is used to implement the φ node in the SSA
5867graph representing the function.
5868
5869Arguments:
5870""""""""""
5871
5872The type of the incoming values is specified with the first type field.
5873After this, the '``phi``' instruction takes a list of pairs as
5874arguments, with one pair for each predecessor basic block of the current
5875block. Only values of :ref:`first class <t_firstclass>` type may be used as
5876the value arguments to the PHI node. Only labels may be used as the
5877label arguments.
5878
5879There must be no non-phi instructions between the start of a basic block
5880and the PHI instructions: i.e. PHI instructions must be first in a basic
5881block.
5882
5883For the purposes of the SSA form, the use of each incoming value is
5884deemed to occur on the edge from the corresponding predecessor block to
5885the current block (but after any definition of an '``invoke``'
5886instruction's return value on the same edge).
5887
5888Semantics:
5889""""""""""
5890
5891At runtime, the '``phi``' instruction logically takes on the value
5892specified by the pair corresponding to the predecessor basic block that
5893executed just prior to the current block.
5894
5895Example:
5896""""""""
5897
5898.. code-block:: llvm
5899
5900 Loop: ; Infinite loop that counts from 0 on up...
5901 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5902 %nextindvar = add i32 %indvar, 1
5903 br label %Loop
5904
5905.. _i_select:
5906
5907'``select``' Instruction
5908^^^^^^^^^^^^^^^^^^^^^^^^
5909
5910Syntax:
5911"""""""
5912
5913::
5914
5915 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5916
5917 selty is either i1 or {<N x i1>}
5918
5919Overview:
5920"""""""""
5921
5922The '``select``' instruction is used to choose one value based on a
5923condition, without branching.
5924
5925Arguments:
5926""""""""""
5927
5928The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5929values indicating the condition, and two values of the same :ref:`first
5930class <t_firstclass>` type. If the val1/val2 are vectors and the
5931condition is a scalar, then entire vectors are selected, not individual
5932elements.
5933
5934Semantics:
5935""""""""""
5936
5937If the condition is an i1 and it evaluates to 1, the instruction returns
5938the first value argument; otherwise, it returns the second value
5939argument.
5940
5941If the condition is a vector of i1, then the value arguments must be
5942vectors of the same size, and the selection is done element by element.
5943
5944Example:
5945""""""""
5946
5947.. code-block:: llvm
5948
5949 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5950
5951.. _i_call:
5952
5953'``call``' Instruction
5954^^^^^^^^^^^^^^^^^^^^^^
5955
5956Syntax:
5957"""""""
5958
5959::
5960
5961 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5962
5963Overview:
5964"""""""""
5965
5966The '``call``' instruction represents a simple function call.
5967
5968Arguments:
5969""""""""""
5970
5971This instruction requires several arguments:
5972
5973#. The optional "tail" marker indicates that the callee function does
5974 not access any allocas or varargs in the caller. Note that calls may
5975 be marked "tail" even if they do not occur before a
5976 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5977 function call is eligible for tail call optimization, but `might not
5978 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5979 The code generator may optimize calls marked "tail" with either 1)
5980 automatic `sibling call
5981 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5982 callee have matching signatures, or 2) forced tail call optimization
5983 when the following extra requirements are met:
5984
5985 - Caller and callee both have the calling convention ``fastcc``.
5986 - The call is in tail position (ret immediately follows call and ret
5987 uses value of call or is void).
5988 - Option ``-tailcallopt`` is enabled, or
5989 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5990 - `Platform specific constraints are
5991 met. <CodeGenerator.html#tailcallopt>`_
5992
5993#. The optional "cconv" marker indicates which :ref:`calling
5994 convention <callingconv>` the call should use. If none is
5995 specified, the call defaults to using C calling conventions. The
5996 calling convention of the call must match the calling convention of
5997 the target function, or else the behavior is undefined.
5998#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5999 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6000 are valid here.
6001#. '``ty``': the type of the call instruction itself which is also the
6002 type of the return value. Functions that return no value are marked
6003 ``void``.
6004#. '``fnty``': shall be the signature of the pointer to function value
6005 being invoked. The argument types must match the types implied by
6006 this signature. This type can be omitted if the function is not
6007 varargs and if the function type does not return a pointer to a
6008 function.
6009#. '``fnptrval``': An LLVM value containing a pointer to a function to
6010 be invoked. In most cases, this is a direct function invocation, but
6011 indirect ``call``'s are just as possible, calling an arbitrary pointer
6012 to function value.
6013#. '``function args``': argument list whose types match the function
6014 signature argument types and parameter attributes. All arguments must
6015 be of :ref:`first class <t_firstclass>` type. If the function signature
6016 indicates the function accepts a variable number of arguments, the
6017 extra arguments can be specified.
6018#. The optional :ref:`function attributes <fnattrs>` list. Only
6019 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6020 attributes are valid here.
6021
6022Semantics:
6023""""""""""
6024
6025The '``call``' instruction is used to cause control flow to transfer to
6026a specified function, with its incoming arguments bound to the specified
6027values. Upon a '``ret``' instruction in the called function, control
6028flow continues with the instruction after the function call, and the
6029return value of the function is bound to the result argument.
6030
6031Example:
6032""""""""
6033
6034.. code-block:: llvm
6035
6036 %retval = call i32 @test(i32 %argc)
6037 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6038 %X = tail call i32 @foo() ; yields i32
6039 %Y = tail call fastcc i32 @foo() ; yields i32
6040 call void %foo(i8 97 signext)
6041
6042 %struct.A = type { i32, i8 }
6043 %r = call %struct.A @foo() ; yields { 32, i8 }
6044 %gr = extractvalue %struct.A %r, 0 ; yields i32
6045 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6046 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6047 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6048
6049llvm treats calls to some functions with names and arguments that match
6050the standard C99 library as being the C99 library functions, and may
6051perform optimizations or generate code for them under that assumption.
6052This is something we'd like to change in the future to provide better
6053support for freestanding environments and non-C-based languages.
6054
6055.. _i_va_arg:
6056
6057'``va_arg``' Instruction
6058^^^^^^^^^^^^^^^^^^^^^^^^
6059
6060Syntax:
6061"""""""
6062
6063::
6064
6065 <resultval> = va_arg <va_list*> <arglist>, <argty>
6066
6067Overview:
6068"""""""""
6069
6070The '``va_arg``' instruction is used to access arguments passed through
6071the "variable argument" area of a function call. It is used to implement
6072the ``va_arg`` macro in C.
6073
6074Arguments:
6075""""""""""
6076
6077This instruction takes a ``va_list*`` value and the type of the
6078argument. It returns a value of the specified argument type and
6079increments the ``va_list`` to point to the next argument. The actual
6080type of ``va_list`` is target specific.
6081
6082Semantics:
6083""""""""""
6084
6085The '``va_arg``' instruction loads an argument of the specified type
6086from the specified ``va_list`` and causes the ``va_list`` to point to
6087the next argument. For more information, see the variable argument
6088handling :ref:`Intrinsic Functions <int_varargs>`.
6089
6090It is legal for this instruction to be called in a function which does
6091not take a variable number of arguments, for example, the ``vfprintf``
6092function.
6093
6094``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6095function <intrinsics>` because it takes a type as an argument.
6096
6097Example:
6098""""""""
6099
6100See the :ref:`variable argument processing <int_varargs>` section.
6101
6102Note that the code generator does not yet fully support va\_arg on many
6103targets. Also, it does not currently support va\_arg with aggregate
6104types on any target.
6105
6106.. _i_landingpad:
6107
6108'``landingpad``' Instruction
6109^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6110
6111Syntax:
6112"""""""
6113
6114::
6115
6116 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6117 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6118
6119 <clause> := catch <type> <value>
6120 <clause> := filter <array constant type> <array constant>
6121
6122Overview:
6123"""""""""
6124
6125The '``landingpad``' instruction is used by `LLVM's exception handling
6126system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006127is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006128code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6129defines values supplied by the personality function (``pers_fn``) upon
6130re-entry to the function. The ``resultval`` has the type ``resultty``.
6131
6132Arguments:
6133""""""""""
6134
6135This instruction takes a ``pers_fn`` value. This is the personality
6136function associated with the unwinding mechanism. The optional
6137``cleanup`` flag indicates that the landing pad block is a cleanup.
6138
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006139A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006140contains the global variable representing the "type" that may be caught
6141or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6142clause takes an array constant as its argument. Use
6143"``[0 x i8**] undef``" for a filter which cannot throw. The
6144'``landingpad``' instruction must contain *at least* one ``clause`` or
6145the ``cleanup`` flag.
6146
6147Semantics:
6148""""""""""
6149
6150The '``landingpad``' instruction defines the values which are set by the
6151personality function (``pers_fn``) upon re-entry to the function, and
6152therefore the "result type" of the ``landingpad`` instruction. As with
6153calling conventions, how the personality function results are
6154represented in LLVM IR is target specific.
6155
6156The clauses are applied in order from top to bottom. If two
6157``landingpad`` instructions are merged together through inlining, the
6158clauses from the calling function are appended to the list of clauses.
6159When the call stack is being unwound due to an exception being thrown,
6160the exception is compared against each ``clause`` in turn. If it doesn't
6161match any of the clauses, and the ``cleanup`` flag is not set, then
6162unwinding continues further up the call stack.
6163
6164The ``landingpad`` instruction has several restrictions:
6165
6166- A landing pad block is a basic block which is the unwind destination
6167 of an '``invoke``' instruction.
6168- A landing pad block must have a '``landingpad``' instruction as its
6169 first non-PHI instruction.
6170- There can be only one '``landingpad``' instruction within the landing
6171 pad block.
6172- A basic block that is not a landing pad block may not include a
6173 '``landingpad``' instruction.
6174- All '``landingpad``' instructions in a function must have the same
6175 personality function.
6176
6177Example:
6178""""""""
6179
6180.. code-block:: llvm
6181
6182 ;; A landing pad which can catch an integer.
6183 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6184 catch i8** @_ZTIi
6185 ;; A landing pad that is a cleanup.
6186 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6187 cleanup
6188 ;; A landing pad which can catch an integer and can only throw a double.
6189 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6190 catch i8** @_ZTIi
6191 filter [1 x i8**] [@_ZTId]
6192
6193.. _intrinsics:
6194
6195Intrinsic Functions
6196===================
6197
6198LLVM supports the notion of an "intrinsic function". These functions
6199have well known names and semantics and are required to follow certain
6200restrictions. Overall, these intrinsics represent an extension mechanism
6201for the LLVM language that does not require changing all of the
6202transformations in LLVM when adding to the language (or the bitcode
6203reader/writer, the parser, etc...).
6204
6205Intrinsic function names must all start with an "``llvm.``" prefix. This
6206prefix is reserved in LLVM for intrinsic names; thus, function names may
6207not begin with this prefix. Intrinsic functions must always be external
6208functions: you cannot define the body of intrinsic functions. Intrinsic
6209functions may only be used in call or invoke instructions: it is illegal
6210to take the address of an intrinsic function. Additionally, because
6211intrinsic functions are part of the LLVM language, it is required if any
6212are added that they be documented here.
6213
6214Some intrinsic functions can be overloaded, i.e., the intrinsic
6215represents a family of functions that perform the same operation but on
6216different data types. Because LLVM can represent over 8 million
6217different integer types, overloading is used commonly to allow an
6218intrinsic function to operate on any integer type. One or more of the
6219argument types or the result type can be overloaded to accept any
6220integer type. Argument types may also be defined as exactly matching a
6221previous argument's type or the result type. This allows an intrinsic
6222function which accepts multiple arguments, but needs all of them to be
6223of the same type, to only be overloaded with respect to a single
6224argument or the result.
6225
6226Overloaded intrinsics will have the names of its overloaded argument
6227types encoded into its function name, each preceded by a period. Only
6228those types which are overloaded result in a name suffix. Arguments
6229whose type is matched against another type do not. For example, the
6230``llvm.ctpop`` function can take an integer of any width and returns an
6231integer of exactly the same integer width. This leads to a family of
6232functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6233``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6234overloaded, and only one type suffix is required. Because the argument's
6235type is matched against the return type, it does not require its own
6236name suffix.
6237
6238To learn how to add an intrinsic function, please see the `Extending
6239LLVM Guide <ExtendingLLVM.html>`_.
6240
6241.. _int_varargs:
6242
6243Variable Argument Handling Intrinsics
6244-------------------------------------
6245
6246Variable argument support is defined in LLVM with the
6247:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6248functions. These functions are related to the similarly named macros
6249defined in the ``<stdarg.h>`` header file.
6250
6251All of these functions operate on arguments that use a target-specific
6252value type "``va_list``". The LLVM assembly language reference manual
6253does not define what this type is, so all transformations should be
6254prepared to handle these functions regardless of the type used.
6255
6256This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6257variable argument handling intrinsic functions are used.
6258
6259.. code-block:: llvm
6260
6261 define i32 @test(i32 %X, ...) {
6262 ; Initialize variable argument processing
6263 %ap = alloca i8*
6264 %ap2 = bitcast i8** %ap to i8*
6265 call void @llvm.va_start(i8* %ap2)
6266
6267 ; Read a single integer argument
6268 %tmp = va_arg i8** %ap, i32
6269
6270 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6271 %aq = alloca i8*
6272 %aq2 = bitcast i8** %aq to i8*
6273 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6274 call void @llvm.va_end(i8* %aq2)
6275
6276 ; Stop processing of arguments.
6277 call void @llvm.va_end(i8* %ap2)
6278 ret i32 %tmp
6279 }
6280
6281 declare void @llvm.va_start(i8*)
6282 declare void @llvm.va_copy(i8*, i8*)
6283 declare void @llvm.va_end(i8*)
6284
6285.. _int_va_start:
6286
6287'``llvm.va_start``' Intrinsic
6288^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6289
6290Syntax:
6291"""""""
6292
6293::
6294
6295 declare void %llvm.va_start(i8* <arglist>)
6296
6297Overview:
6298"""""""""
6299
6300The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6301subsequent use by ``va_arg``.
6302
6303Arguments:
6304""""""""""
6305
6306The argument is a pointer to a ``va_list`` element to initialize.
6307
6308Semantics:
6309""""""""""
6310
6311The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6312available in C. In a target-dependent way, it initializes the
6313``va_list`` element to which the argument points, so that the next call
6314to ``va_arg`` will produce the first variable argument passed to the
6315function. Unlike the C ``va_start`` macro, this intrinsic does not need
6316to know the last argument of the function as the compiler can figure
6317that out.
6318
6319'``llvm.va_end``' Intrinsic
6320^^^^^^^^^^^^^^^^^^^^^^^^^^^
6321
6322Syntax:
6323"""""""
6324
6325::
6326
6327 declare void @llvm.va_end(i8* <arglist>)
6328
6329Overview:
6330"""""""""
6331
6332The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6333initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6334
6335Arguments:
6336""""""""""
6337
6338The argument is a pointer to a ``va_list`` to destroy.
6339
6340Semantics:
6341""""""""""
6342
6343The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6344available in C. In a target-dependent way, it destroys the ``va_list``
6345element to which the argument points. Calls to
6346:ref:`llvm.va_start <int_va_start>` and
6347:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6348``llvm.va_end``.
6349
6350.. _int_va_copy:
6351
6352'``llvm.va_copy``' Intrinsic
6353^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6354
6355Syntax:
6356"""""""
6357
6358::
6359
6360 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6361
6362Overview:
6363"""""""""
6364
6365The '``llvm.va_copy``' intrinsic copies the current argument position
6366from the source argument list to the destination argument list.
6367
6368Arguments:
6369""""""""""
6370
6371The first argument is a pointer to a ``va_list`` element to initialize.
6372The second argument is a pointer to a ``va_list`` element to copy from.
6373
6374Semantics:
6375""""""""""
6376
6377The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6378available in C. In a target-dependent way, it copies the source
6379``va_list`` element into the destination ``va_list`` element. This
6380intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6381arbitrarily complex and require, for example, memory allocation.
6382
6383Accurate Garbage Collection Intrinsics
6384--------------------------------------
6385
6386LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6387(GC) requires the implementation and generation of these intrinsics.
6388These intrinsics allow identification of :ref:`GC roots on the
6389stack <int_gcroot>`, as well as garbage collector implementations that
6390require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6391Front-ends for type-safe garbage collected languages should generate
6392these intrinsics to make use of the LLVM garbage collectors. For more
6393details, see `Accurate Garbage Collection with
6394LLVM <GarbageCollection.html>`_.
6395
6396The garbage collection intrinsics only operate on objects in the generic
6397address space (address space zero).
6398
6399.. _int_gcroot:
6400
6401'``llvm.gcroot``' Intrinsic
6402^^^^^^^^^^^^^^^^^^^^^^^^^^^
6403
6404Syntax:
6405"""""""
6406
6407::
6408
6409 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6410
6411Overview:
6412"""""""""
6413
6414The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6415the code generator, and allows some metadata to be associated with it.
6416
6417Arguments:
6418""""""""""
6419
6420The first argument specifies the address of a stack object that contains
6421the root pointer. The second pointer (which must be either a constant or
6422a global value address) contains the meta-data to be associated with the
6423root.
6424
6425Semantics:
6426""""""""""
6427
6428At runtime, a call to this intrinsic stores a null pointer into the
6429"ptrloc" location. At compile-time, the code generator generates
6430information to allow the runtime to find the pointer at GC safe points.
6431The '``llvm.gcroot``' intrinsic may only be used in a function which
6432:ref:`specifies a GC algorithm <gc>`.
6433
6434.. _int_gcread:
6435
6436'``llvm.gcread``' Intrinsic
6437^^^^^^^^^^^^^^^^^^^^^^^^^^^
6438
6439Syntax:
6440"""""""
6441
6442::
6443
6444 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6445
6446Overview:
6447"""""""""
6448
6449The '``llvm.gcread``' intrinsic identifies reads of references from heap
6450locations, allowing garbage collector implementations that require read
6451barriers.
6452
6453Arguments:
6454""""""""""
6455
6456The second argument is the address to read from, which should be an
6457address allocated from the garbage collector. The first object is a
6458pointer to the start of the referenced object, if needed by the language
6459runtime (otherwise null).
6460
6461Semantics:
6462""""""""""
6463
6464The '``llvm.gcread``' intrinsic has the same semantics as a load
6465instruction, but may be replaced with substantially more complex code by
6466the garbage collector runtime, as needed. The '``llvm.gcread``'
6467intrinsic may only be used in a function which :ref:`specifies a GC
6468algorithm <gc>`.
6469
6470.. _int_gcwrite:
6471
6472'``llvm.gcwrite``' Intrinsic
6473^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6474
6475Syntax:
6476"""""""
6477
6478::
6479
6480 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6481
6482Overview:
6483"""""""""
6484
6485The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6486locations, allowing garbage collector implementations that require write
6487barriers (such as generational or reference counting collectors).
6488
6489Arguments:
6490""""""""""
6491
6492The first argument is the reference to store, the second is the start of
6493the object to store it to, and the third is the address of the field of
6494Obj to store to. If the runtime does not require a pointer to the
6495object, Obj may be null.
6496
6497Semantics:
6498""""""""""
6499
6500The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6501instruction, but may be replaced with substantially more complex code by
6502the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6503intrinsic may only be used in a function which :ref:`specifies a GC
6504algorithm <gc>`.
6505
6506Code Generator Intrinsics
6507-------------------------
6508
6509These intrinsics are provided by LLVM to expose special features that
6510may only be implemented with code generator support.
6511
6512'``llvm.returnaddress``' Intrinsic
6513^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6514
6515Syntax:
6516"""""""
6517
6518::
6519
6520 declare i8 *@llvm.returnaddress(i32 <level>)
6521
6522Overview:
6523"""""""""
6524
6525The '``llvm.returnaddress``' intrinsic attempts to compute a
6526target-specific value indicating the return address of the current
6527function or one of its callers.
6528
6529Arguments:
6530""""""""""
6531
6532The argument to this intrinsic indicates which function to return the
6533address for. Zero indicates the calling function, one indicates its
6534caller, etc. The argument is **required** to be a constant integer
6535value.
6536
6537Semantics:
6538""""""""""
6539
6540The '``llvm.returnaddress``' intrinsic either returns a pointer
6541indicating the return address of the specified call frame, or zero if it
6542cannot be identified. The value returned by this intrinsic is likely to
6543be incorrect or 0 for arguments other than zero, so it should only be
6544used for debugging purposes.
6545
6546Note that calling this intrinsic does not prevent function inlining or
6547other aggressive transformations, so the value returned may not be that
6548of the obvious source-language caller.
6549
6550'``llvm.frameaddress``' Intrinsic
6551^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6552
6553Syntax:
6554"""""""
6555
6556::
6557
6558 declare i8* @llvm.frameaddress(i32 <level>)
6559
6560Overview:
6561"""""""""
6562
6563The '``llvm.frameaddress``' intrinsic attempts to return the
6564target-specific frame pointer value for the specified stack frame.
6565
6566Arguments:
6567""""""""""
6568
6569The argument to this intrinsic indicates which function to return the
6570frame pointer for. Zero indicates the calling function, one indicates
6571its caller, etc. The argument is **required** to be a constant integer
6572value.
6573
6574Semantics:
6575""""""""""
6576
6577The '``llvm.frameaddress``' intrinsic either returns a pointer
6578indicating the frame address of the specified call frame, or zero if it
6579cannot be identified. The value returned by this intrinsic is likely to
6580be incorrect or 0 for arguments other than zero, so it should only be
6581used for debugging purposes.
6582
6583Note that calling this intrinsic does not prevent function inlining or
6584other aggressive transformations, so the value returned may not be that
6585of the obvious source-language caller.
6586
6587.. _int_stacksave:
6588
6589'``llvm.stacksave``' Intrinsic
6590^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6591
6592Syntax:
6593"""""""
6594
6595::
6596
6597 declare i8* @llvm.stacksave()
6598
6599Overview:
6600"""""""""
6601
6602The '``llvm.stacksave``' intrinsic is used to remember the current state
6603of the function stack, for use with
6604:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6605implementing language features like scoped automatic variable sized
6606arrays in C99.
6607
6608Semantics:
6609""""""""""
6610
6611This intrinsic returns a opaque pointer value that can be passed to
6612:ref:`llvm.stackrestore <int_stackrestore>`. When an
6613``llvm.stackrestore`` intrinsic is executed with a value saved from
6614``llvm.stacksave``, it effectively restores the state of the stack to
6615the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6616practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6617were allocated after the ``llvm.stacksave`` was executed.
6618
6619.. _int_stackrestore:
6620
6621'``llvm.stackrestore``' Intrinsic
6622^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6623
6624Syntax:
6625"""""""
6626
6627::
6628
6629 declare void @llvm.stackrestore(i8* %ptr)
6630
6631Overview:
6632"""""""""
6633
6634The '``llvm.stackrestore``' intrinsic is used to restore the state of
6635the function stack to the state it was in when the corresponding
6636:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6637useful for implementing language features like scoped automatic variable
6638sized arrays in C99.
6639
6640Semantics:
6641""""""""""
6642
6643See the description for :ref:`llvm.stacksave <int_stacksave>`.
6644
6645'``llvm.prefetch``' Intrinsic
6646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6647
6648Syntax:
6649"""""""
6650
6651::
6652
6653 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6654
6655Overview:
6656"""""""""
6657
6658The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6659insert a prefetch instruction if supported; otherwise, it is a noop.
6660Prefetches have no effect on the behavior of the program but can change
6661its performance characteristics.
6662
6663Arguments:
6664""""""""""
6665
6666``address`` is the address to be prefetched, ``rw`` is the specifier
6667determining if the fetch should be for a read (0) or write (1), and
6668``locality`` is a temporal locality specifier ranging from (0) - no
6669locality, to (3) - extremely local keep in cache. The ``cache type``
6670specifies whether the prefetch is performed on the data (1) or
6671instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6672arguments must be constant integers.
6673
6674Semantics:
6675""""""""""
6676
6677This intrinsic does not modify the behavior of the program. In
6678particular, prefetches cannot trap and do not produce a value. On
6679targets that support this intrinsic, the prefetch can provide hints to
6680the processor cache for better performance.
6681
6682'``llvm.pcmarker``' Intrinsic
6683^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6684
6685Syntax:
6686"""""""
6687
6688::
6689
6690 declare void @llvm.pcmarker(i32 <id>)
6691
6692Overview:
6693"""""""""
6694
6695The '``llvm.pcmarker``' intrinsic is a method to export a Program
6696Counter (PC) in a region of code to simulators and other tools. The
6697method is target specific, but it is expected that the marker will use
6698exported symbols to transmit the PC of the marker. The marker makes no
6699guarantees that it will remain with any specific instruction after
6700optimizations. It is possible that the presence of a marker will inhibit
6701optimizations. The intended use is to be inserted after optimizations to
6702allow correlations of simulation runs.
6703
6704Arguments:
6705""""""""""
6706
6707``id`` is a numerical id identifying the marker.
6708
6709Semantics:
6710""""""""""
6711
6712This intrinsic does not modify the behavior of the program. Backends
6713that do not support this intrinsic may ignore it.
6714
6715'``llvm.readcyclecounter``' Intrinsic
6716^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6717
6718Syntax:
6719"""""""
6720
6721::
6722
6723 declare i64 @llvm.readcyclecounter()
6724
6725Overview:
6726"""""""""
6727
6728The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6729counter register (or similar low latency, high accuracy clocks) on those
6730targets that support it. On X86, it should map to RDTSC. On Alpha, it
6731should map to RPCC. As the backing counters overflow quickly (on the
6732order of 9 seconds on alpha), this should only be used for small
6733timings.
6734
6735Semantics:
6736""""""""""
6737
6738When directly supported, reading the cycle counter should not modify any
6739memory. Implementations are allowed to either return a application
6740specific value or a system wide value. On backends without support, this
6741is lowered to a constant 0.
6742
Tim Northover5a02fc42013-05-23 19:11:20 +00006743Note that runtime support may be conditional on the privilege-level code is
6744running at and the host platform.
6745
Sean Silvaf722b002012-12-07 10:36:55 +00006746Standard C Library Intrinsics
6747-----------------------------
6748
6749LLVM provides intrinsics for a few important standard C library
6750functions. These intrinsics allow source-language front-ends to pass
6751information about the alignment of the pointer arguments to the code
6752generator, providing opportunity for more efficient code generation.
6753
6754.. _int_memcpy:
6755
6756'``llvm.memcpy``' Intrinsic
6757^^^^^^^^^^^^^^^^^^^^^^^^^^^
6758
6759Syntax:
6760"""""""
6761
6762This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6763integer bit width and for different address spaces. Not all targets
6764support all bit widths however.
6765
6766::
6767
6768 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6769 i32 <len>, i32 <align>, i1 <isvolatile>)
6770 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6771 i64 <len>, i32 <align>, i1 <isvolatile>)
6772
6773Overview:
6774"""""""""
6775
6776The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6777source location to the destination location.
6778
6779Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6780intrinsics do not return a value, takes extra alignment/isvolatile
6781arguments and the pointers can be in specified address spaces.
6782
6783Arguments:
6784""""""""""
6785
6786The first argument is a pointer to the destination, the second is a
6787pointer to the source. The third argument is an integer argument
6788specifying the number of bytes to copy, the fourth argument is the
6789alignment of the source and destination locations, and the fifth is a
6790boolean indicating a volatile access.
6791
6792If the call to this intrinsic has an alignment value that is not 0 or 1,
6793then the caller guarantees that both the source and destination pointers
6794are aligned to that boundary.
6795
6796If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6797a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6798very cleanly specified and it is unwise to depend on it.
6799
6800Semantics:
6801""""""""""
6802
6803The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6804source location to the destination location, which are not allowed to
6805overlap. It copies "len" bytes of memory over. If the argument is known
6806to be aligned to some boundary, this can be specified as the fourth
6807argument, otherwise it should be set to 0 or 1.
6808
6809'``llvm.memmove``' Intrinsic
6810^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6811
6812Syntax:
6813"""""""
6814
6815This is an overloaded intrinsic. You can use llvm.memmove on any integer
6816bit width and for different address space. Not all targets support all
6817bit widths however.
6818
6819::
6820
6821 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6822 i32 <len>, i32 <align>, i1 <isvolatile>)
6823 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6824 i64 <len>, i32 <align>, i1 <isvolatile>)
6825
6826Overview:
6827"""""""""
6828
6829The '``llvm.memmove.*``' intrinsics move a block of memory from the
6830source location to the destination location. It is similar to the
6831'``llvm.memcpy``' intrinsic but allows the two memory locations to
6832overlap.
6833
6834Note that, unlike the standard libc function, the ``llvm.memmove.*``
6835intrinsics do not return a value, takes extra alignment/isvolatile
6836arguments and the pointers can be in specified address spaces.
6837
6838Arguments:
6839""""""""""
6840
6841The first argument is a pointer to the destination, the second is a
6842pointer to the source. The third argument is an integer argument
6843specifying the number of bytes to copy, the fourth argument is the
6844alignment of the source and destination locations, and the fifth is a
6845boolean indicating a volatile access.
6846
6847If the call to this intrinsic has an alignment value that is not 0 or 1,
6848then the caller guarantees that the source and destination pointers are
6849aligned to that boundary.
6850
6851If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6852is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6853not very cleanly specified and it is unwise to depend on it.
6854
6855Semantics:
6856""""""""""
6857
6858The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6859source location to the destination location, which may overlap. It
6860copies "len" bytes of memory over. If the argument is known to be
6861aligned to some boundary, this can be specified as the fourth argument,
6862otherwise it should be set to 0 or 1.
6863
6864'``llvm.memset.*``' Intrinsics
6865^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6866
6867Syntax:
6868"""""""
6869
6870This is an overloaded intrinsic. You can use llvm.memset on any integer
6871bit width and for different address spaces. However, not all targets
6872support all bit widths.
6873
6874::
6875
6876 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6877 i32 <len>, i32 <align>, i1 <isvolatile>)
6878 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6879 i64 <len>, i32 <align>, i1 <isvolatile>)
6880
6881Overview:
6882"""""""""
6883
6884The '``llvm.memset.*``' intrinsics fill a block of memory with a
6885particular byte value.
6886
6887Note that, unlike the standard libc function, the ``llvm.memset``
6888intrinsic does not return a value and takes extra alignment/volatile
6889arguments. Also, the destination can be in an arbitrary address space.
6890
6891Arguments:
6892""""""""""
6893
6894The first argument is a pointer to the destination to fill, the second
6895is the byte value with which to fill it, the third argument is an
6896integer argument specifying the number of bytes to fill, and the fourth
6897argument is the known alignment of the destination location.
6898
6899If the call to this intrinsic has an alignment value that is not 0 or 1,
6900then the caller guarantees that the destination pointer is aligned to
6901that boundary.
6902
6903If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6904a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6905very cleanly specified and it is unwise to depend on it.
6906
6907Semantics:
6908""""""""""
6909
6910The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6911at the destination location. If the argument is known to be aligned to
6912some boundary, this can be specified as the fourth argument, otherwise
6913it should be set to 0 or 1.
6914
6915'``llvm.sqrt.*``' Intrinsic
6916^^^^^^^^^^^^^^^^^^^^^^^^^^^
6917
6918Syntax:
6919"""""""
6920
6921This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6922floating point or vector of floating point type. Not all targets support
6923all types however.
6924
6925::
6926
6927 declare float @llvm.sqrt.f32(float %Val)
6928 declare double @llvm.sqrt.f64(double %Val)
6929 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6930 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6931 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6932
6933Overview:
6934"""""""""
6935
6936The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6937returning the same value as the libm '``sqrt``' functions would. Unlike
6938``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6939negative numbers other than -0.0 (which allows for better optimization,
6940because there is no need to worry about errno being set).
6941``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6942
6943Arguments:
6944""""""""""
6945
6946The argument and return value are floating point numbers of the same
6947type.
6948
6949Semantics:
6950""""""""""
6951
6952This function returns the sqrt of the specified operand if it is a
6953nonnegative floating point number.
6954
6955'``llvm.powi.*``' Intrinsic
6956^^^^^^^^^^^^^^^^^^^^^^^^^^^
6957
6958Syntax:
6959"""""""
6960
6961This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6962floating point or vector of floating point type. Not all targets support
6963all types however.
6964
6965::
6966
6967 declare float @llvm.powi.f32(float %Val, i32 %power)
6968 declare double @llvm.powi.f64(double %Val, i32 %power)
6969 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6970 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6971 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6972
6973Overview:
6974"""""""""
6975
6976The '``llvm.powi.*``' intrinsics return the first operand raised to the
6977specified (positive or negative) power. The order of evaluation of
6978multiplications is not defined. When a vector of floating point type is
6979used, the second argument remains a scalar integer value.
6980
6981Arguments:
6982""""""""""
6983
6984The second argument is an integer power, and the first is a value to
6985raise to that power.
6986
6987Semantics:
6988""""""""""
6989
6990This function returns the first value raised to the second power with an
6991unspecified sequence of rounding operations.
6992
6993'``llvm.sin.*``' Intrinsic
6994^^^^^^^^^^^^^^^^^^^^^^^^^^
6995
6996Syntax:
6997"""""""
6998
6999This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7000floating point or vector of floating point type. Not all targets support
7001all types however.
7002
7003::
7004
7005 declare float @llvm.sin.f32(float %Val)
7006 declare double @llvm.sin.f64(double %Val)
7007 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7008 declare fp128 @llvm.sin.f128(fp128 %Val)
7009 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7010
7011Overview:
7012"""""""""
7013
7014The '``llvm.sin.*``' intrinsics return the sine of the operand.
7015
7016Arguments:
7017""""""""""
7018
7019The argument and return value are floating point numbers of the same
7020type.
7021
7022Semantics:
7023""""""""""
7024
7025This function returns the sine of the specified operand, returning the
7026same values as the libm ``sin`` functions would, and handles error
7027conditions in the same way.
7028
7029'``llvm.cos.*``' Intrinsic
7030^^^^^^^^^^^^^^^^^^^^^^^^^^
7031
7032Syntax:
7033"""""""
7034
7035This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7036floating point or vector of floating point type. Not all targets support
7037all types however.
7038
7039::
7040
7041 declare float @llvm.cos.f32(float %Val)
7042 declare double @llvm.cos.f64(double %Val)
7043 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7044 declare fp128 @llvm.cos.f128(fp128 %Val)
7045 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7046
7047Overview:
7048"""""""""
7049
7050The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7051
7052Arguments:
7053""""""""""
7054
7055The argument and return value are floating point numbers of the same
7056type.
7057
7058Semantics:
7059""""""""""
7060
7061This function returns the cosine of the specified operand, returning the
7062same values as the libm ``cos`` functions would, and handles error
7063conditions in the same way.
7064
7065'``llvm.pow.*``' Intrinsic
7066^^^^^^^^^^^^^^^^^^^^^^^^^^
7067
7068Syntax:
7069"""""""
7070
7071This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7072floating point or vector of floating point type. Not all targets support
7073all types however.
7074
7075::
7076
7077 declare float @llvm.pow.f32(float %Val, float %Power)
7078 declare double @llvm.pow.f64(double %Val, double %Power)
7079 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7080 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7081 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7082
7083Overview:
7084"""""""""
7085
7086The '``llvm.pow.*``' intrinsics return the first operand raised to the
7087specified (positive or negative) power.
7088
7089Arguments:
7090""""""""""
7091
7092The second argument is a floating point power, and the first is a value
7093to raise to that power.
7094
7095Semantics:
7096""""""""""
7097
7098This function returns the first value raised to the second power,
7099returning the same values as the libm ``pow`` functions would, and
7100handles error conditions in the same way.
7101
7102'``llvm.exp.*``' Intrinsic
7103^^^^^^^^^^^^^^^^^^^^^^^^^^
7104
7105Syntax:
7106"""""""
7107
7108This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7109floating point or vector of floating point type. Not all targets support
7110all types however.
7111
7112::
7113
7114 declare float @llvm.exp.f32(float %Val)
7115 declare double @llvm.exp.f64(double %Val)
7116 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7117 declare fp128 @llvm.exp.f128(fp128 %Val)
7118 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7119
7120Overview:
7121"""""""""
7122
7123The '``llvm.exp.*``' intrinsics perform the exp function.
7124
7125Arguments:
7126""""""""""
7127
7128The argument and return value are floating point numbers of the same
7129type.
7130
7131Semantics:
7132""""""""""
7133
7134This function returns the same values as the libm ``exp`` functions
7135would, and handles error conditions in the same way.
7136
7137'``llvm.exp2.*``' Intrinsic
7138^^^^^^^^^^^^^^^^^^^^^^^^^^^
7139
7140Syntax:
7141"""""""
7142
7143This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7144floating point or vector of floating point type. Not all targets support
7145all types however.
7146
7147::
7148
7149 declare float @llvm.exp2.f32(float %Val)
7150 declare double @llvm.exp2.f64(double %Val)
7151 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7152 declare fp128 @llvm.exp2.f128(fp128 %Val)
7153 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7154
7155Overview:
7156"""""""""
7157
7158The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7159
7160Arguments:
7161""""""""""
7162
7163The argument and return value are floating point numbers of the same
7164type.
7165
7166Semantics:
7167""""""""""
7168
7169This function returns the same values as the libm ``exp2`` functions
7170would, and handles error conditions in the same way.
7171
7172'``llvm.log.*``' Intrinsic
7173^^^^^^^^^^^^^^^^^^^^^^^^^^
7174
7175Syntax:
7176"""""""
7177
7178This is an overloaded intrinsic. You can use ``llvm.log`` on any
7179floating point or vector of floating point type. Not all targets support
7180all types however.
7181
7182::
7183
7184 declare float @llvm.log.f32(float %Val)
7185 declare double @llvm.log.f64(double %Val)
7186 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7187 declare fp128 @llvm.log.f128(fp128 %Val)
7188 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7189
7190Overview:
7191"""""""""
7192
7193The '``llvm.log.*``' intrinsics perform the log function.
7194
7195Arguments:
7196""""""""""
7197
7198The argument and return value are floating point numbers of the same
7199type.
7200
7201Semantics:
7202""""""""""
7203
7204This function returns the same values as the libm ``log`` functions
7205would, and handles error conditions in the same way.
7206
7207'``llvm.log10.*``' Intrinsic
7208^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7209
7210Syntax:
7211"""""""
7212
7213This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7214floating point or vector of floating point type. Not all targets support
7215all types however.
7216
7217::
7218
7219 declare float @llvm.log10.f32(float %Val)
7220 declare double @llvm.log10.f64(double %Val)
7221 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7222 declare fp128 @llvm.log10.f128(fp128 %Val)
7223 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7224
7225Overview:
7226"""""""""
7227
7228The '``llvm.log10.*``' intrinsics perform the log10 function.
7229
7230Arguments:
7231""""""""""
7232
7233The argument and return value are floating point numbers of the same
7234type.
7235
7236Semantics:
7237""""""""""
7238
7239This function returns the same values as the libm ``log10`` functions
7240would, and handles error conditions in the same way.
7241
7242'``llvm.log2.*``' Intrinsic
7243^^^^^^^^^^^^^^^^^^^^^^^^^^^
7244
7245Syntax:
7246"""""""
7247
7248This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7249floating point or vector of floating point type. Not all targets support
7250all types however.
7251
7252::
7253
7254 declare float @llvm.log2.f32(float %Val)
7255 declare double @llvm.log2.f64(double %Val)
7256 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7257 declare fp128 @llvm.log2.f128(fp128 %Val)
7258 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7259
7260Overview:
7261"""""""""
7262
7263The '``llvm.log2.*``' intrinsics perform the log2 function.
7264
7265Arguments:
7266""""""""""
7267
7268The argument and return value are floating point numbers of the same
7269type.
7270
7271Semantics:
7272""""""""""
7273
7274This function returns the same values as the libm ``log2`` functions
7275would, and handles error conditions in the same way.
7276
7277'``llvm.fma.*``' Intrinsic
7278^^^^^^^^^^^^^^^^^^^^^^^^^^
7279
7280Syntax:
7281"""""""
7282
7283This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7284floating point or vector of floating point type. Not all targets support
7285all types however.
7286
7287::
7288
7289 declare float @llvm.fma.f32(float %a, float %b, float %c)
7290 declare double @llvm.fma.f64(double %a, double %b, double %c)
7291 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7292 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7293 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7294
7295Overview:
7296"""""""""
7297
7298The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7299operation.
7300
7301Arguments:
7302""""""""""
7303
7304The argument and return value are floating point numbers of the same
7305type.
7306
7307Semantics:
7308""""""""""
7309
7310This function returns the same values as the libm ``fma`` functions
7311would.
7312
7313'``llvm.fabs.*``' Intrinsic
7314^^^^^^^^^^^^^^^^^^^^^^^^^^^
7315
7316Syntax:
7317"""""""
7318
7319This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7320floating point or vector of floating point type. Not all targets support
7321all types however.
7322
7323::
7324
7325 declare float @llvm.fabs.f32(float %Val)
7326 declare double @llvm.fabs.f64(double %Val)
7327 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7328 declare fp128 @llvm.fabs.f128(fp128 %Val)
7329 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7330
7331Overview:
7332"""""""""
7333
7334The '``llvm.fabs.*``' intrinsics return the absolute value of the
7335operand.
7336
7337Arguments:
7338""""""""""
7339
7340The argument and return value are floating point numbers of the same
7341type.
7342
7343Semantics:
7344""""""""""
7345
7346This function returns the same values as the libm ``fabs`` functions
7347would, and handles error conditions in the same way.
7348
7349'``llvm.floor.*``' Intrinsic
7350^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7351
7352Syntax:
7353"""""""
7354
7355This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7356floating point or vector of floating point type. Not all targets support
7357all types however.
7358
7359::
7360
7361 declare float @llvm.floor.f32(float %Val)
7362 declare double @llvm.floor.f64(double %Val)
7363 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7364 declare fp128 @llvm.floor.f128(fp128 %Val)
7365 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7366
7367Overview:
7368"""""""""
7369
7370The '``llvm.floor.*``' intrinsics return the floor of the operand.
7371
7372Arguments:
7373""""""""""
7374
7375The argument and return value are floating point numbers of the same
7376type.
7377
7378Semantics:
7379""""""""""
7380
7381This function returns the same values as the libm ``floor`` functions
7382would, and handles error conditions in the same way.
7383
7384'``llvm.ceil.*``' Intrinsic
7385^^^^^^^^^^^^^^^^^^^^^^^^^^^
7386
7387Syntax:
7388"""""""
7389
7390This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7391floating point or vector of floating point type. Not all targets support
7392all types however.
7393
7394::
7395
7396 declare float @llvm.ceil.f32(float %Val)
7397 declare double @llvm.ceil.f64(double %Val)
7398 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7399 declare fp128 @llvm.ceil.f128(fp128 %Val)
7400 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7401
7402Overview:
7403"""""""""
7404
7405The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7406
7407Arguments:
7408""""""""""
7409
7410The argument and return value are floating point numbers of the same
7411type.
7412
7413Semantics:
7414""""""""""
7415
7416This function returns the same values as the libm ``ceil`` functions
7417would, and handles error conditions in the same way.
7418
7419'``llvm.trunc.*``' Intrinsic
7420^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7421
7422Syntax:
7423"""""""
7424
7425This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7426floating point or vector of floating point type. Not all targets support
7427all types however.
7428
7429::
7430
7431 declare float @llvm.trunc.f32(float %Val)
7432 declare double @llvm.trunc.f64(double %Val)
7433 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7434 declare fp128 @llvm.trunc.f128(fp128 %Val)
7435 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7436
7437Overview:
7438"""""""""
7439
7440The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7441nearest integer not larger in magnitude than the operand.
7442
7443Arguments:
7444""""""""""
7445
7446The argument and return value are floating point numbers of the same
7447type.
7448
7449Semantics:
7450""""""""""
7451
7452This function returns the same values as the libm ``trunc`` functions
7453would, and handles error conditions in the same way.
7454
7455'``llvm.rint.*``' Intrinsic
7456^^^^^^^^^^^^^^^^^^^^^^^^^^^
7457
7458Syntax:
7459"""""""
7460
7461This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7462floating point or vector of floating point type. Not all targets support
7463all types however.
7464
7465::
7466
7467 declare float @llvm.rint.f32(float %Val)
7468 declare double @llvm.rint.f64(double %Val)
7469 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7470 declare fp128 @llvm.rint.f128(fp128 %Val)
7471 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7472
7473Overview:
7474"""""""""
7475
7476The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7477nearest integer. It may raise an inexact floating-point exception if the
7478operand isn't an integer.
7479
7480Arguments:
7481""""""""""
7482
7483The argument and return value are floating point numbers of the same
7484type.
7485
7486Semantics:
7487""""""""""
7488
7489This function returns the same values as the libm ``rint`` functions
7490would, and handles error conditions in the same way.
7491
7492'``llvm.nearbyint.*``' Intrinsic
7493^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7494
7495Syntax:
7496"""""""
7497
7498This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7499floating point or vector of floating point type. Not all targets support
7500all types however.
7501
7502::
7503
7504 declare float @llvm.nearbyint.f32(float %Val)
7505 declare double @llvm.nearbyint.f64(double %Val)
7506 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7507 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7508 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7509
7510Overview:
7511"""""""""
7512
7513The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7514nearest integer.
7515
7516Arguments:
7517""""""""""
7518
7519The argument and return value are floating point numbers of the same
7520type.
7521
7522Semantics:
7523""""""""""
7524
7525This function returns the same values as the libm ``nearbyint``
7526functions would, and handles error conditions in the same way.
7527
7528Bit Manipulation Intrinsics
7529---------------------------
7530
7531LLVM provides intrinsics for a few important bit manipulation
7532operations. These allow efficient code generation for some algorithms.
7533
7534'``llvm.bswap.*``' Intrinsics
7535^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7536
7537Syntax:
7538"""""""
7539
7540This is an overloaded intrinsic function. You can use bswap on any
7541integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7542
7543::
7544
7545 declare i16 @llvm.bswap.i16(i16 <id>)
7546 declare i32 @llvm.bswap.i32(i32 <id>)
7547 declare i64 @llvm.bswap.i64(i64 <id>)
7548
7549Overview:
7550"""""""""
7551
7552The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7553values with an even number of bytes (positive multiple of 16 bits).
7554These are useful for performing operations on data that is not in the
7555target's native byte order.
7556
7557Semantics:
7558""""""""""
7559
7560The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7561and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7562intrinsic returns an i32 value that has the four bytes of the input i32
7563swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7564returned i32 will have its bytes in 3, 2, 1, 0 order. The
7565``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7566concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7567respectively).
7568
7569'``llvm.ctpop.*``' Intrinsic
7570^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7571
7572Syntax:
7573"""""""
7574
7575This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7576bit width, or on any vector with integer elements. Not all targets
7577support all bit widths or vector types, however.
7578
7579::
7580
7581 declare i8 @llvm.ctpop.i8(i8 <src>)
7582 declare i16 @llvm.ctpop.i16(i16 <src>)
7583 declare i32 @llvm.ctpop.i32(i32 <src>)
7584 declare i64 @llvm.ctpop.i64(i64 <src>)
7585 declare i256 @llvm.ctpop.i256(i256 <src>)
7586 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7587
7588Overview:
7589"""""""""
7590
7591The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7592in a value.
7593
7594Arguments:
7595""""""""""
7596
7597The only argument is the value to be counted. The argument may be of any
7598integer type, or a vector with integer elements. The return type must
7599match the argument type.
7600
7601Semantics:
7602""""""""""
7603
7604The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7605each element of a vector.
7606
7607'``llvm.ctlz.*``' Intrinsic
7608^^^^^^^^^^^^^^^^^^^^^^^^^^^
7609
7610Syntax:
7611"""""""
7612
7613This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7614integer bit width, or any vector whose elements are integers. Not all
7615targets support all bit widths or vector types, however.
7616
7617::
7618
7619 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7620 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7621 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7622 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7623 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7624 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7625
7626Overview:
7627"""""""""
7628
7629The '``llvm.ctlz``' family of intrinsic functions counts the number of
7630leading zeros in a variable.
7631
7632Arguments:
7633""""""""""
7634
7635The first argument is the value to be counted. This argument may be of
7636any integer type, or a vectory with integer element type. The return
7637type must match the first argument type.
7638
7639The second argument must be a constant and is a flag to indicate whether
7640the intrinsic should ensure that a zero as the first argument produces a
7641defined result. Historically some architectures did not provide a
7642defined result for zero values as efficiently, and many algorithms are
7643now predicated on avoiding zero-value inputs.
7644
7645Semantics:
7646""""""""""
7647
7648The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7649zeros in a variable, or within each element of the vector. If
7650``src == 0`` then the result is the size in bits of the type of ``src``
7651if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7652``llvm.ctlz(i32 2) = 30``.
7653
7654'``llvm.cttz.*``' Intrinsic
7655^^^^^^^^^^^^^^^^^^^^^^^^^^^
7656
7657Syntax:
7658"""""""
7659
7660This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7661integer bit width, or any vector of integer elements. Not all targets
7662support all bit widths or vector types, however.
7663
7664::
7665
7666 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7667 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7668 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7669 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7670 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7671 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7672
7673Overview:
7674"""""""""
7675
7676The '``llvm.cttz``' family of intrinsic functions counts the number of
7677trailing zeros.
7678
7679Arguments:
7680""""""""""
7681
7682The first argument is the value to be counted. This argument may be of
7683any integer type, or a vectory with integer element type. The return
7684type must match the first argument type.
7685
7686The second argument must be a constant and is a flag to indicate whether
7687the intrinsic should ensure that a zero as the first argument produces a
7688defined result. Historically some architectures did not provide a
7689defined result for zero values as efficiently, and many algorithms are
7690now predicated on avoiding zero-value inputs.
7691
7692Semantics:
7693""""""""""
7694
7695The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7696zeros in a variable, or within each element of a vector. If ``src == 0``
7697then the result is the size in bits of the type of ``src`` if
7698``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7699``llvm.cttz(2) = 1``.
7700
7701Arithmetic with Overflow Intrinsics
7702-----------------------------------
7703
7704LLVM provides intrinsics for some arithmetic with overflow operations.
7705
7706'``llvm.sadd.with.overflow.*``' Intrinsics
7707^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7708
7709Syntax:
7710"""""""
7711
7712This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7713on any integer bit width.
7714
7715::
7716
7717 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7718 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7719 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7720
7721Overview:
7722"""""""""
7723
7724The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7725a signed addition of the two arguments, and indicate whether an overflow
7726occurred during the signed summation.
7727
7728Arguments:
7729""""""""""
7730
7731The arguments (%a and %b) and the first element of the result structure
7732may be of integer types of any bit width, but they must have the same
7733bit width. The second element of the result structure must be of type
7734``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7735addition.
7736
7737Semantics:
7738""""""""""
7739
7740The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007741a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007742first element of which is the signed summation, and the second element
7743of which is a bit specifying if the signed summation resulted in an
7744overflow.
7745
7746Examples:
7747"""""""""
7748
7749.. code-block:: llvm
7750
7751 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7752 %sum = extractvalue {i32, i1} %res, 0
7753 %obit = extractvalue {i32, i1} %res, 1
7754 br i1 %obit, label %overflow, label %normal
7755
7756'``llvm.uadd.with.overflow.*``' Intrinsics
7757^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7758
7759Syntax:
7760"""""""
7761
7762This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7763on any integer bit width.
7764
7765::
7766
7767 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7768 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7769 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7770
7771Overview:
7772"""""""""
7773
7774The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7775an unsigned addition of the two arguments, and indicate whether a carry
7776occurred during the unsigned summation.
7777
7778Arguments:
7779""""""""""
7780
7781The arguments (%a and %b) and the first element of the result structure
7782may be of integer types of any bit width, but they must have the same
7783bit width. The second element of the result structure must be of type
7784``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7785addition.
7786
7787Semantics:
7788""""""""""
7789
7790The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007791an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007792first element of which is the sum, and the second element of which is a
7793bit specifying if the unsigned summation resulted in a carry.
7794
7795Examples:
7796"""""""""
7797
7798.. code-block:: llvm
7799
7800 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7801 %sum = extractvalue {i32, i1} %res, 0
7802 %obit = extractvalue {i32, i1} %res, 1
7803 br i1 %obit, label %carry, label %normal
7804
7805'``llvm.ssub.with.overflow.*``' Intrinsics
7806^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7807
7808Syntax:
7809"""""""
7810
7811This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7812on any integer bit width.
7813
7814::
7815
7816 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7817 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7818 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7819
7820Overview:
7821"""""""""
7822
7823The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7824a signed subtraction of the two arguments, and indicate whether an
7825overflow occurred during the signed subtraction.
7826
7827Arguments:
7828""""""""""
7829
7830The arguments (%a and %b) and the first element of the result structure
7831may be of integer types of any bit width, but they must have the same
7832bit width. The second element of the result structure must be of type
7833``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7834subtraction.
7835
7836Semantics:
7837""""""""""
7838
7839The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007840a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007841first element of which is the subtraction, and the second element of
7842which is a bit specifying if the signed subtraction resulted in an
7843overflow.
7844
7845Examples:
7846"""""""""
7847
7848.. code-block:: llvm
7849
7850 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7851 %sum = extractvalue {i32, i1} %res, 0
7852 %obit = extractvalue {i32, i1} %res, 1
7853 br i1 %obit, label %overflow, label %normal
7854
7855'``llvm.usub.with.overflow.*``' Intrinsics
7856^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7857
7858Syntax:
7859"""""""
7860
7861This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7862on any integer bit width.
7863
7864::
7865
7866 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7867 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7868 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7869
7870Overview:
7871"""""""""
7872
7873The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7874an unsigned subtraction of the two arguments, and indicate whether an
7875overflow occurred during the unsigned subtraction.
7876
7877Arguments:
7878""""""""""
7879
7880The arguments (%a and %b) and the first element of the result structure
7881may be of integer types of any bit width, but they must have the same
7882bit width. The second element of the result structure must be of type
7883``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7884subtraction.
7885
7886Semantics:
7887""""""""""
7888
7889The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007890an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007891the first element of which is the subtraction, and the second element of
7892which is a bit specifying if the unsigned subtraction resulted in an
7893overflow.
7894
7895Examples:
7896"""""""""
7897
7898.. code-block:: llvm
7899
7900 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7901 %sum = extractvalue {i32, i1} %res, 0
7902 %obit = extractvalue {i32, i1} %res, 1
7903 br i1 %obit, label %overflow, label %normal
7904
7905'``llvm.smul.with.overflow.*``' Intrinsics
7906^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7907
7908Syntax:
7909"""""""
7910
7911This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7912on any integer bit width.
7913
7914::
7915
7916 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7917 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7918 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7919
7920Overview:
7921"""""""""
7922
7923The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7924a signed multiplication of the two arguments, and indicate whether an
7925overflow occurred during the signed multiplication.
7926
7927Arguments:
7928""""""""""
7929
7930The arguments (%a and %b) and the first element of the result structure
7931may be of integer types of any bit width, but they must have the same
7932bit width. The second element of the result structure must be of type
7933``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7934multiplication.
7935
7936Semantics:
7937""""""""""
7938
7939The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007940a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007941the first element of which is the multiplication, and the second element
7942of which is a bit specifying if the signed multiplication resulted in an
7943overflow.
7944
7945Examples:
7946"""""""""
7947
7948.. code-block:: llvm
7949
7950 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7951 %sum = extractvalue {i32, i1} %res, 0
7952 %obit = extractvalue {i32, i1} %res, 1
7953 br i1 %obit, label %overflow, label %normal
7954
7955'``llvm.umul.with.overflow.*``' Intrinsics
7956^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7957
7958Syntax:
7959"""""""
7960
7961This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7962on any integer bit width.
7963
7964::
7965
7966 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7967 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7968 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7969
7970Overview:
7971"""""""""
7972
7973The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7974a unsigned multiplication of the two arguments, and indicate whether an
7975overflow occurred during the unsigned multiplication.
7976
7977Arguments:
7978""""""""""
7979
7980The arguments (%a and %b) and the first element of the result structure
7981may be of integer types of any bit width, but they must have the same
7982bit width. The second element of the result structure must be of type
7983``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7984multiplication.
7985
7986Semantics:
7987""""""""""
7988
7989The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007990an unsigned multiplication of the two arguments. They return a structure ---
7991the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00007992element of which is a bit specifying if the unsigned multiplication
7993resulted in an overflow.
7994
7995Examples:
7996"""""""""
7997
7998.. code-block:: llvm
7999
8000 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8001 %sum = extractvalue {i32, i1} %res, 0
8002 %obit = extractvalue {i32, i1} %res, 1
8003 br i1 %obit, label %overflow, label %normal
8004
8005Specialised Arithmetic Intrinsics
8006---------------------------------
8007
8008'``llvm.fmuladd.*``' Intrinsic
8009^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8010
8011Syntax:
8012"""""""
8013
8014::
8015
8016 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8017 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8018
8019Overview:
8020"""""""""
8021
8022The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00008023expressions that can be fused if the code generator determines that (a) the
8024target instruction set has support for a fused operation, and (b) that the
8025fused operation is more efficient than the equivalent, separate pair of mul
8026and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00008027
8028Arguments:
8029""""""""""
8030
8031The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8032multiplicands, a and b, and an addend c.
8033
8034Semantics:
8035""""""""""
8036
8037The expression:
8038
8039::
8040
8041 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8042
8043is equivalent to the expression a \* b + c, except that rounding will
8044not be performed between the multiplication and addition steps if the
8045code generator fuses the operations. Fusion is not guaranteed, even if
8046the target platform supports it. If a fused multiply-add is required the
8047corresponding llvm.fma.\* intrinsic function should be used instead.
8048
8049Examples:
8050"""""""""
8051
8052.. code-block:: llvm
8053
8054 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8055
8056Half Precision Floating Point Intrinsics
8057----------------------------------------
8058
8059For most target platforms, half precision floating point is a
8060storage-only format. This means that it is a dense encoding (in memory)
8061but does not support computation in the format.
8062
8063This means that code must first load the half-precision floating point
8064value as an i16, then convert it to float with
8065:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8066then be performed on the float value (including extending to double
8067etc). To store the value back to memory, it is first converted to float
8068if needed, then converted to i16 with
8069:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8070i16 value.
8071
8072.. _int_convert_to_fp16:
8073
8074'``llvm.convert.to.fp16``' Intrinsic
8075^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8076
8077Syntax:
8078"""""""
8079
8080::
8081
8082 declare i16 @llvm.convert.to.fp16(f32 %a)
8083
8084Overview:
8085"""""""""
8086
8087The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8088from single precision floating point format to half precision floating
8089point format.
8090
8091Arguments:
8092""""""""""
8093
8094The intrinsic function contains single argument - the value to be
8095converted.
8096
8097Semantics:
8098""""""""""
8099
8100The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8101from single precision floating point format to half precision floating
8102point format. The return value is an ``i16`` which contains the
8103converted number.
8104
8105Examples:
8106"""""""""
8107
8108.. code-block:: llvm
8109
8110 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8111 store i16 %res, i16* @x, align 2
8112
8113.. _int_convert_from_fp16:
8114
8115'``llvm.convert.from.fp16``' Intrinsic
8116^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8117
8118Syntax:
8119"""""""
8120
8121::
8122
8123 declare f32 @llvm.convert.from.fp16(i16 %a)
8124
8125Overview:
8126"""""""""
8127
8128The '``llvm.convert.from.fp16``' intrinsic function performs a
8129conversion from half precision floating point format to single precision
8130floating point format.
8131
8132Arguments:
8133""""""""""
8134
8135The intrinsic function contains single argument - the value to be
8136converted.
8137
8138Semantics:
8139""""""""""
8140
8141The '``llvm.convert.from.fp16``' intrinsic function performs a
8142conversion from half single precision floating point format to single
8143precision floating point format. The input half-float value is
8144represented by an ``i16`` value.
8145
8146Examples:
8147"""""""""
8148
8149.. code-block:: llvm
8150
8151 %a = load i16* @x, align 2
8152 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8153
8154Debugger Intrinsics
8155-------------------
8156
8157The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8158prefix), are described in the `LLVM Source Level
8159Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8160document.
8161
8162Exception Handling Intrinsics
8163-----------------------------
8164
8165The LLVM exception handling intrinsics (which all start with
8166``llvm.eh.`` prefix), are described in the `LLVM Exception
8167Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8168
8169.. _int_trampoline:
8170
8171Trampoline Intrinsics
8172---------------------
8173
8174These intrinsics make it possible to excise one parameter, marked with
8175the :ref:`nest <nest>` attribute, from a function. The result is a
8176callable function pointer lacking the nest parameter - the caller does
8177not need to provide a value for it. Instead, the value to use is stored
8178in advance in a "trampoline", a block of memory usually allocated on the
8179stack, which also contains code to splice the nest value into the
8180argument list. This is used to implement the GCC nested function address
8181extension.
8182
8183For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8184then the resulting function pointer has signature ``i32 (i32, i32)*``.
8185It can be created as follows:
8186
8187.. code-block:: llvm
8188
8189 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8190 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8191 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8192 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8193 %fp = bitcast i8* %p to i32 (i32, i32)*
8194
8195The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8196``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8197
8198.. _int_it:
8199
8200'``llvm.init.trampoline``' Intrinsic
8201^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8202
8203Syntax:
8204"""""""
8205
8206::
8207
8208 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8209
8210Overview:
8211"""""""""
8212
8213This fills the memory pointed to by ``tramp`` with executable code,
8214turning it into a trampoline.
8215
8216Arguments:
8217""""""""""
8218
8219The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8220pointers. The ``tramp`` argument must point to a sufficiently large and
8221sufficiently aligned block of memory; this memory is written to by the
8222intrinsic. Note that the size and the alignment are target-specific -
8223LLVM currently provides no portable way of determining them, so a
8224front-end that generates this intrinsic needs to have some
8225target-specific knowledge. The ``func`` argument must hold a function
8226bitcast to an ``i8*``.
8227
8228Semantics:
8229""""""""""
8230
8231The block of memory pointed to by ``tramp`` is filled with target
8232dependent code, turning it into a function. Then ``tramp`` needs to be
8233passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8234be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8235function's signature is the same as that of ``func`` with any arguments
8236marked with the ``nest`` attribute removed. At most one such ``nest``
8237argument is allowed, and it must be of pointer type. Calling the new
8238function is equivalent to calling ``func`` with the same argument list,
8239but with ``nval`` used for the missing ``nest`` argument. If, after
8240calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8241modified, then the effect of any later call to the returned function
8242pointer is undefined.
8243
8244.. _int_at:
8245
8246'``llvm.adjust.trampoline``' Intrinsic
8247^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8248
8249Syntax:
8250"""""""
8251
8252::
8253
8254 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8255
8256Overview:
8257"""""""""
8258
8259This performs any required machine-specific adjustment to the address of
8260a trampoline (passed as ``tramp``).
8261
8262Arguments:
8263""""""""""
8264
8265``tramp`` must point to a block of memory which already has trampoline
8266code filled in by a previous call to
8267:ref:`llvm.init.trampoline <int_it>`.
8268
8269Semantics:
8270""""""""""
8271
8272On some architectures the address of the code to be executed needs to be
8273different to the address where the trampoline is actually stored. This
8274intrinsic returns the executable address corresponding to ``tramp``
8275after performing the required machine specific adjustments. The pointer
8276returned can then be :ref:`bitcast and executed <int_trampoline>`.
8277
8278Memory Use Markers
8279------------------
8280
8281This class of intrinsics exists to information about the lifetime of
8282memory objects and ranges where variables are immutable.
8283
8284'``llvm.lifetime.start``' Intrinsic
8285^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8286
8287Syntax:
8288"""""""
8289
8290::
8291
8292 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8293
8294Overview:
8295"""""""""
8296
8297The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8298object's lifetime.
8299
8300Arguments:
8301""""""""""
8302
8303The first argument is a constant integer representing the size of the
8304object, or -1 if it is variable sized. The second argument is a pointer
8305to the object.
8306
8307Semantics:
8308""""""""""
8309
8310This intrinsic indicates that before this point in the code, the value
8311of the memory pointed to by ``ptr`` is dead. This means that it is known
8312to never be used and has an undefined value. A load from the pointer
8313that precedes this intrinsic can be replaced with ``'undef'``.
8314
8315'``llvm.lifetime.end``' Intrinsic
8316^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8317
8318Syntax:
8319"""""""
8320
8321::
8322
8323 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8324
8325Overview:
8326"""""""""
8327
8328The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8329object's lifetime.
8330
8331Arguments:
8332""""""""""
8333
8334The first argument is a constant integer representing the size of the
8335object, or -1 if it is variable sized. The second argument is a pointer
8336to the object.
8337
8338Semantics:
8339""""""""""
8340
8341This intrinsic indicates that after this point in the code, the value of
8342the memory pointed to by ``ptr`` is dead. This means that it is known to
8343never be used and has an undefined value. Any stores into the memory
8344object following this intrinsic may be removed as dead.
8345
8346'``llvm.invariant.start``' Intrinsic
8347^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8348
8349Syntax:
8350"""""""
8351
8352::
8353
8354 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8355
8356Overview:
8357"""""""""
8358
8359The '``llvm.invariant.start``' intrinsic specifies that the contents of
8360a memory object will not change.
8361
8362Arguments:
8363""""""""""
8364
8365The first argument is a constant integer representing the size of the
8366object, or -1 if it is variable sized. The second argument is a pointer
8367to the object.
8368
8369Semantics:
8370""""""""""
8371
8372This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8373the return value, the referenced memory location is constant and
8374unchanging.
8375
8376'``llvm.invariant.end``' Intrinsic
8377^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8378
8379Syntax:
8380"""""""
8381
8382::
8383
8384 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8385
8386Overview:
8387"""""""""
8388
8389The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8390memory object are mutable.
8391
8392Arguments:
8393""""""""""
8394
8395The first argument is the matching ``llvm.invariant.start`` intrinsic.
8396The second argument is a constant integer representing the size of the
8397object, or -1 if it is variable sized and the third argument is a
8398pointer to the object.
8399
8400Semantics:
8401""""""""""
8402
8403This intrinsic indicates that the memory is mutable again.
8404
8405General Intrinsics
8406------------------
8407
8408This class of intrinsics is designed to be generic and has no specific
8409purpose.
8410
8411'``llvm.var.annotation``' Intrinsic
8412^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8413
8414Syntax:
8415"""""""
8416
8417::
8418
8419 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8420
8421Overview:
8422"""""""""
8423
8424The '``llvm.var.annotation``' intrinsic.
8425
8426Arguments:
8427""""""""""
8428
8429The first argument is a pointer to a value, the second is a pointer to a
8430global string, the third is a pointer to a global string which is the
8431source file name, and the last argument is the line number.
8432
8433Semantics:
8434""""""""""
8435
8436This intrinsic allows annotation of local variables with arbitrary
8437strings. This can be useful for special purpose optimizations that want
8438to look for these annotations. These have no other defined use; they are
8439ignored by code generation and optimization.
8440
Michael Gottesman872b4e52013-03-26 00:34:27 +00008441'``llvm.ptr.annotation.*``' Intrinsic
8442^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8443
8444Syntax:
8445"""""""
8446
8447This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8448pointer to an integer of any width. *NOTE* you must specify an address space for
8449the pointer. The identifier for the default address space is the integer
8450'``0``'.
8451
8452::
8453
8454 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8455 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8456 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8457 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8458 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8459
8460Overview:
8461"""""""""
8462
8463The '``llvm.ptr.annotation``' intrinsic.
8464
8465Arguments:
8466""""""""""
8467
8468The first argument is a pointer to an integer value of arbitrary bitwidth
8469(result of some expression), the second is a pointer to a global string, the
8470third is a pointer to a global string which is the source file name, and the
8471last argument is the line number. It returns the value of the first argument.
8472
8473Semantics:
8474""""""""""
8475
8476This intrinsic allows annotation of a pointer to an integer with arbitrary
8477strings. This can be useful for special purpose optimizations that want to look
8478for these annotations. These have no other defined use; they are ignored by code
8479generation and optimization.
8480
Sean Silvaf722b002012-12-07 10:36:55 +00008481'``llvm.annotation.*``' Intrinsic
8482^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8483
8484Syntax:
8485"""""""
8486
8487This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8488any integer bit width.
8489
8490::
8491
8492 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8493 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8494 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8495 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8496 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8497
8498Overview:
8499"""""""""
8500
8501The '``llvm.annotation``' intrinsic.
8502
8503Arguments:
8504""""""""""
8505
8506The first argument is an integer value (result of some expression), the
8507second is a pointer to a global string, the third is a pointer to a
8508global string which is the source file name, and the last argument is
8509the line number. It returns the value of the first argument.
8510
8511Semantics:
8512""""""""""
8513
8514This intrinsic allows annotations to be put on arbitrary expressions
8515with arbitrary strings. This can be useful for special purpose
8516optimizations that want to look for these annotations. These have no
8517other defined use; they are ignored by code generation and optimization.
8518
8519'``llvm.trap``' Intrinsic
8520^^^^^^^^^^^^^^^^^^^^^^^^^
8521
8522Syntax:
8523"""""""
8524
8525::
8526
8527 declare void @llvm.trap() noreturn nounwind
8528
8529Overview:
8530"""""""""
8531
8532The '``llvm.trap``' intrinsic.
8533
8534Arguments:
8535""""""""""
8536
8537None.
8538
8539Semantics:
8540""""""""""
8541
8542This intrinsic is lowered to the target dependent trap instruction. If
8543the target does not have a trap instruction, this intrinsic will be
8544lowered to a call of the ``abort()`` function.
8545
8546'``llvm.debugtrap``' Intrinsic
8547^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8548
8549Syntax:
8550"""""""
8551
8552::
8553
8554 declare void @llvm.debugtrap() nounwind
8555
8556Overview:
8557"""""""""
8558
8559The '``llvm.debugtrap``' intrinsic.
8560
8561Arguments:
8562""""""""""
8563
8564None.
8565
8566Semantics:
8567""""""""""
8568
8569This intrinsic is lowered to code which is intended to cause an
8570execution trap with the intention of requesting the attention of a
8571debugger.
8572
8573'``llvm.stackprotector``' Intrinsic
8574^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8575
8576Syntax:
8577"""""""
8578
8579::
8580
8581 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8582
8583Overview:
8584"""""""""
8585
8586The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8587onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8588is placed on the stack before local variables.
8589
8590Arguments:
8591""""""""""
8592
8593The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8594The first argument is the value loaded from the stack guard
8595``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8596enough space to hold the value of the guard.
8597
8598Semantics:
8599""""""""""
8600
8601This intrinsic causes the prologue/epilogue inserter to force the
8602position of the ``AllocaInst`` stack slot to be before local variables
8603on the stack. This is to ensure that if a local variable on the stack is
8604overwritten, it will destroy the value of the guard. When the function
8605exits, the guard on the stack is checked against the original guard. If
8606they are different, then the program aborts by calling the
8607``__stack_chk_fail()`` function.
8608
8609'``llvm.objectsize``' Intrinsic
8610^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8611
8612Syntax:
8613"""""""
8614
8615::
8616
8617 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8618 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8619
8620Overview:
8621"""""""""
8622
8623The ``llvm.objectsize`` intrinsic is designed to provide information to
8624the optimizers to determine at compile time whether a) an operation
8625(like memcpy) will overflow a buffer that corresponds to an object, or
8626b) that a runtime check for overflow isn't necessary. An object in this
8627context means an allocation of a specific class, structure, array, or
8628other object.
8629
8630Arguments:
8631""""""""""
8632
8633The ``llvm.objectsize`` intrinsic takes two arguments. The first
8634argument is a pointer to or into the ``object``. The second argument is
8635a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8636or -1 (if false) when the object size is unknown. The second argument
8637only accepts constants.
8638
8639Semantics:
8640""""""""""
8641
8642The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8643the size of the object concerned. If the size cannot be determined at
8644compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8645on the ``min`` argument).
8646
8647'``llvm.expect``' Intrinsic
8648^^^^^^^^^^^^^^^^^^^^^^^^^^^
8649
8650Syntax:
8651"""""""
8652
8653::
8654
8655 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8656 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8657
8658Overview:
8659"""""""""
8660
8661The ``llvm.expect`` intrinsic provides information about expected (the
8662most probable) value of ``val``, which can be used by optimizers.
8663
8664Arguments:
8665""""""""""
8666
8667The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8668a value. The second argument is an expected value, this needs to be a
8669constant value, variables are not allowed.
8670
8671Semantics:
8672""""""""""
8673
8674This intrinsic is lowered to the ``val``.
8675
8676'``llvm.donothing``' Intrinsic
8677^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8678
8679Syntax:
8680"""""""
8681
8682::
8683
8684 declare void @llvm.donothing() nounwind readnone
8685
8686Overview:
8687"""""""""
8688
8689The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8690only intrinsic that can be called with an invoke instruction.
8691
8692Arguments:
8693""""""""""
8694
8695None.
8696
8697Semantics:
8698""""""""""
8699
8700This intrinsic does nothing, and it's removed by optimizers and ignored
8701by codegen.