blob: fde157d60fc0bb229d09c1620d411a3109a1ee13 [file] [log] [blame]
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001//===-- APFloat.cpp - Implement APFloat class -----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Chris Lattnerb39cdde2007-08-20 22:49:32 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision floating
11// point values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattner36d26c22007-12-08 19:00:03 +000015#include "llvm/ADT/APFloat.h"
Ted Kremenek1f801fa2008-02-11 17:24:50 +000016#include "llvm/ADT/FoldingSet.h"
Dale Johannesend3b51fd2007-08-24 05:08:11 +000017#include "llvm/Support/MathExtras.h"
Chris Lattnerfad86b02008-08-17 07:19:36 +000018#include <cstring>
Chris Lattnerb39cdde2007-08-20 22:49:32 +000019
20using namespace llvm;
21
22#define convolve(lhs, rhs) ((lhs) * 4 + (rhs))
23
Neil Bootha30b0ee2007-10-03 22:26:02 +000024/* Assumed in hexadecimal significand parsing, and conversion to
25 hexadecimal strings. */
Chris Lattner9f17eb02008-08-17 04:58:58 +000026#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerb39cdde2007-08-20 22:49:32 +000027COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
28
29namespace llvm {
30
31 /* Represents floating point arithmetic semantics. */
32 struct fltSemantics {
33 /* The largest E such that 2^E is representable; this matches the
34 definition of IEEE 754. */
35 exponent_t maxExponent;
36
37 /* The smallest E such that 2^E is a normalized number; this
38 matches the definition of IEEE 754. */
39 exponent_t minExponent;
40
41 /* Number of bits in the significand. This includes the integer
42 bit. */
Neil Booth7a951ca2007-10-12 15:33:27 +000043 unsigned int precision;
Neil Boothcaf19d72007-10-14 10:29:28 +000044
45 /* True if arithmetic is supported. */
46 unsigned int arithmeticOK;
Chris Lattnerb39cdde2007-08-20 22:49:32 +000047 };
48
Neil Boothcaf19d72007-10-14 10:29:28 +000049 const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
50 const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
51 const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
52 const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, true };
53 const fltSemantics APFloat::Bogus = { 0, 0, 0, true };
Dale Johannesena471c2e2007-10-11 18:07:22 +000054
55 // The PowerPC format consists of two doubles. It does not map cleanly
56 // onto the usual format above. For now only storage of constants of
57 // this type is supported, no arithmetic.
Neil Boothcaf19d72007-10-14 10:29:28 +000058 const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022, 106, false };
Neil Booth96c74712007-10-12 16:02:31 +000059
60 /* A tight upper bound on number of parts required to hold the value
61 pow(5, power) is
62
Neil Booth686700e2007-10-15 15:00:55 +000063 power * 815 / (351 * integerPartWidth) + 1
Neil Booth96c74712007-10-12 16:02:31 +000064
65 However, whilst the result may require only this many parts,
66 because we are multiplying two values to get it, the
67 multiplication may require an extra part with the excess part
68 being zero (consider the trivial case of 1 * 1, tcFullMultiply
69 requires two parts to hold the single-part result). So we add an
70 extra one to guarantee enough space whilst multiplying. */
71 const unsigned int maxExponent = 16383;
72 const unsigned int maxPrecision = 113;
73 const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
Neil Booth686700e2007-10-15 15:00:55 +000074 const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
75 / (351 * integerPartWidth));
Chris Lattnerb39cdde2007-08-20 22:49:32 +000076}
77
78/* Put a bunch of private, handy routines in an anonymous namespace. */
79namespace {
80
Dan Gohman3bd659b2008-04-10 21:11:47 +000081 static inline unsigned int
Chris Lattnerb39cdde2007-08-20 22:49:32 +000082 partCountForBits(unsigned int bits)
83 {
84 return ((bits) + integerPartWidth - 1) / integerPartWidth;
85 }
86
Neil Booth1870f292007-10-14 10:16:12 +000087 /* Returns 0U-9U. Return values >= 10U are not digits. */
Dan Gohman3bd659b2008-04-10 21:11:47 +000088 static inline unsigned int
Neil Booth1870f292007-10-14 10:16:12 +000089 decDigitValue(unsigned int c)
Chris Lattnerb39cdde2007-08-20 22:49:32 +000090 {
Neil Booth1870f292007-10-14 10:16:12 +000091 return c - '0';
Chris Lattnerb39cdde2007-08-20 22:49:32 +000092 }
93
Dan Gohman3bd659b2008-04-10 21:11:47 +000094 static unsigned int
Neil Booth96c74712007-10-12 16:02:31 +000095 hexDigitValue(unsigned int c)
Chris Lattnerb39cdde2007-08-20 22:49:32 +000096 {
97 unsigned int r;
98
99 r = c - '0';
100 if(r <= 9)
101 return r;
102
103 r = c - 'A';
104 if(r <= 5)
105 return r + 10;
106
107 r = c - 'a';
108 if(r <= 5)
109 return r + 10;
110
111 return -1U;
112 }
113
Dan Gohman3bd659b2008-04-10 21:11:47 +0000114 static inline void
Neil Boothcaf19d72007-10-14 10:29:28 +0000115 assertArithmeticOK(const llvm::fltSemantics &semantics) {
116 assert(semantics.arithmeticOK
117 && "Compile-time arithmetic does not support these semantics");
118 }
119
Neil Booth1870f292007-10-14 10:16:12 +0000120 /* Return the value of a decimal exponent of the form
121 [+-]ddddddd.
122
123 If the exponent overflows, returns a large exponent with the
124 appropriate sign. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000125 static int
Neil Booth1870f292007-10-14 10:16:12 +0000126 readExponent(const char *p)
127 {
128 bool isNegative;
129 unsigned int absExponent;
130 const unsigned int overlargeExponent = 24000; /* FIXME. */
131
132 isNegative = (*p == '-');
133 if (*p == '-' || *p == '+')
134 p++;
135
136 absExponent = decDigitValue(*p++);
137 assert (absExponent < 10U);
138
139 for (;;) {
140 unsigned int value;
141
142 value = decDigitValue(*p);
143 if (value >= 10U)
144 break;
145
146 p++;
147 value += absExponent * 10;
148 if (absExponent >= overlargeExponent) {
149 absExponent = overlargeExponent;
150 break;
151 }
152 absExponent = value;
153 }
154
155 if (isNegative)
156 return -(int) absExponent;
157 else
158 return (int) absExponent;
159 }
160
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000161 /* This is ugly and needs cleaning up, but I don't immediately see
162 how whilst remaining safe. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000163 static int
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000164 totalExponent(const char *p, int exponentAdjustment)
165 {
Evan Cheng48e8c802008-05-02 21:15:08 +0000166 int unsignedExponent;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000167 bool negative, overflow;
Evan Cheng48e8c802008-05-02 21:15:08 +0000168 int exponent;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000169
170 /* Move past the exponent letter and sign to the digits. */
171 p++;
172 negative = *p == '-';
173 if(*p == '-' || *p == '+')
174 p++;
175
176 unsignedExponent = 0;
177 overflow = false;
178 for(;;) {
179 unsigned int value;
180
Neil Booth1870f292007-10-14 10:16:12 +0000181 value = decDigitValue(*p);
182 if(value >= 10U)
Neil Booth4f881702007-09-26 21:33:42 +0000183 break;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000184
185 p++;
186 unsignedExponent = unsignedExponent * 10 + value;
187 if(unsignedExponent > 65535)
Neil Booth4f881702007-09-26 21:33:42 +0000188 overflow = true;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000189 }
190
191 if(exponentAdjustment > 65535 || exponentAdjustment < -65536)
192 overflow = true;
193
194 if(!overflow) {
195 exponent = unsignedExponent;
196 if(negative)
Neil Booth4f881702007-09-26 21:33:42 +0000197 exponent = -exponent;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000198 exponent += exponentAdjustment;
199 if(exponent > 65535 || exponent < -65536)
Neil Booth4f881702007-09-26 21:33:42 +0000200 overflow = true;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000201 }
202
203 if(overflow)
204 exponent = negative ? -65536: 65535;
205
206 return exponent;
207 }
208
Dan Gohman3bd659b2008-04-10 21:11:47 +0000209 static const char *
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000210 skipLeadingZeroesAndAnyDot(const char *p, const char **dot)
211 {
212 *dot = 0;
213 while(*p == '0')
214 p++;
215
216 if(*p == '.') {
217 *dot = p++;
218 while(*p == '0')
Neil Booth4f881702007-09-26 21:33:42 +0000219 p++;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000220 }
221
222 return p;
223 }
224
Neil Booth1870f292007-10-14 10:16:12 +0000225 /* Given a normal decimal floating point number of the form
226
227 dddd.dddd[eE][+-]ddd
228
229 where the decimal point and exponent are optional, fill out the
Neil Booth686700e2007-10-15 15:00:55 +0000230 structure D. Exponent is appropriate if the significand is
231 treated as an integer, and normalizedExponent if the significand
232 is taken to have the decimal point after a single leading
233 non-zero digit.
234
Neil Bootha89e45f2007-12-05 13:01:24 +0000235 If the value is zero, V->firstSigDigit points to a non-digit, and
236 the return exponent is zero.
Neil Booth686700e2007-10-15 15:00:55 +0000237 */
Neil Booth1870f292007-10-14 10:16:12 +0000238 struct decimalInfo {
239 const char *firstSigDigit;
240 const char *lastSigDigit;
241 int exponent;
Neil Booth686700e2007-10-15 15:00:55 +0000242 int normalizedExponent;
Neil Booth1870f292007-10-14 10:16:12 +0000243 };
244
Dan Gohman3bd659b2008-04-10 21:11:47 +0000245 static void
Neil Booth1870f292007-10-14 10:16:12 +0000246 interpretDecimal(const char *p, decimalInfo *D)
247 {
248 const char *dot;
249
250 p = skipLeadingZeroesAndAnyDot (p, &dot);
251
252 D->firstSigDigit = p;
253 D->exponent = 0;
Neil Booth686700e2007-10-15 15:00:55 +0000254 D->normalizedExponent = 0;
Neil Booth1870f292007-10-14 10:16:12 +0000255
256 for (;;) {
257 if (*p == '.') {
258 assert(dot == 0);
259 dot = p++;
260 }
261 if (decDigitValue(*p) >= 10U)
262 break;
263 p++;
264 }
265
266 /* If number is all zerooes accept any exponent. */
Neil Boothcc233592007-12-05 13:06:04 +0000267 if (p != D->firstSigDigit) {
Neil Booth1870f292007-10-14 10:16:12 +0000268 if (*p == 'e' || *p == 'E')
269 D->exponent = readExponent(p + 1);
270
271 /* Implied decimal point? */
272 if (!dot)
273 dot = p;
274
275 /* Drop insignificant trailing zeroes. */
276 do
277 do
278 p--;
279 while (*p == '0');
280 while (*p == '.');
281
Neil Booth686700e2007-10-15 15:00:55 +0000282 /* Adjust the exponents for any decimal point. */
Evan Cheng48e8c802008-05-02 21:15:08 +0000283 D->exponent += static_cast<exponent_t>((dot - p) - (dot > p));
284 D->normalizedExponent = (D->exponent +
285 static_cast<exponent_t>((p - D->firstSigDigit)
286 - (dot > D->firstSigDigit && dot < p)));
Neil Booth1870f292007-10-14 10:16:12 +0000287 }
288
289 D->lastSigDigit = p;
290 }
291
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000292 /* Return the trailing fraction of a hexadecimal number.
293 DIGITVALUE is the first hex digit of the fraction, P points to
294 the next digit. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000295 static lostFraction
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000296 trailingHexadecimalFraction(const char *p, unsigned int digitValue)
297 {
298 unsigned int hexDigit;
299
300 /* If the first trailing digit isn't 0 or 8 we can work out the
301 fraction immediately. */
302 if(digitValue > 8)
303 return lfMoreThanHalf;
304 else if(digitValue < 8 && digitValue > 0)
305 return lfLessThanHalf;
306
307 /* Otherwise we need to find the first non-zero digit. */
308 while(*p == '0')
309 p++;
310
311 hexDigit = hexDigitValue(*p);
312
313 /* If we ran off the end it is exactly zero or one-half, otherwise
314 a little more. */
315 if(hexDigit == -1U)
316 return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
317 else
318 return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
319 }
320
Neil Boothb7dea4c2007-10-03 15:16:41 +0000321 /* Return the fraction lost were a bignum truncated losing the least
322 significant BITS bits. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000323 static lostFraction
Neil Bootha30b0ee2007-10-03 22:26:02 +0000324 lostFractionThroughTruncation(const integerPart *parts,
Neil Booth4f881702007-09-26 21:33:42 +0000325 unsigned int partCount,
326 unsigned int bits)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000327 {
328 unsigned int lsb;
329
330 lsb = APInt::tcLSB(parts, partCount);
331
332 /* Note this is guaranteed true if bits == 0, or LSB == -1U. */
333 if(bits <= lsb)
334 return lfExactlyZero;
335 if(bits == lsb + 1)
336 return lfExactlyHalf;
337 if(bits <= partCount * integerPartWidth
338 && APInt::tcExtractBit(parts, bits - 1))
339 return lfMoreThanHalf;
340
341 return lfLessThanHalf;
342 }
343
344 /* Shift DST right BITS bits noting lost fraction. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000345 static lostFraction
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000346 shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
347 {
348 lostFraction lost_fraction;
349
350 lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
351
352 APInt::tcShiftRight(dst, parts, bits);
353
354 return lost_fraction;
355 }
Neil Bootha30b0ee2007-10-03 22:26:02 +0000356
Neil Booth33d4c922007-10-07 08:51:21 +0000357 /* Combine the effect of two lost fractions. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000358 static lostFraction
Neil Booth33d4c922007-10-07 08:51:21 +0000359 combineLostFractions(lostFraction moreSignificant,
360 lostFraction lessSignificant)
361 {
362 if(lessSignificant != lfExactlyZero) {
363 if(moreSignificant == lfExactlyZero)
364 moreSignificant = lfLessThanHalf;
365 else if(moreSignificant == lfExactlyHalf)
366 moreSignificant = lfMoreThanHalf;
367 }
368
369 return moreSignificant;
370 }
Neil Bootha30b0ee2007-10-03 22:26:02 +0000371
Neil Booth96c74712007-10-12 16:02:31 +0000372 /* The error from the true value, in half-ulps, on multiplying two
373 floating point numbers, which differ from the value they
374 approximate by at most HUE1 and HUE2 half-ulps, is strictly less
375 than the returned value.
376
377 See "How to Read Floating Point Numbers Accurately" by William D
378 Clinger. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000379 static unsigned int
Neil Booth96c74712007-10-12 16:02:31 +0000380 HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
381 {
382 assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
383
384 if (HUerr1 + HUerr2 == 0)
385 return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */
386 else
387 return inexactMultiply + 2 * (HUerr1 + HUerr2);
388 }
389
390 /* The number of ulps from the boundary (zero, or half if ISNEAREST)
391 when the least significant BITS are truncated. BITS cannot be
392 zero. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000393 static integerPart
Neil Booth96c74712007-10-12 16:02:31 +0000394 ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
395 {
396 unsigned int count, partBits;
397 integerPart part, boundary;
398
399 assert (bits != 0);
400
401 bits--;
402 count = bits / integerPartWidth;
403 partBits = bits % integerPartWidth + 1;
404
405 part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
406
407 if (isNearest)
408 boundary = (integerPart) 1 << (partBits - 1);
409 else
410 boundary = 0;
411
412 if (count == 0) {
413 if (part - boundary <= boundary - part)
414 return part - boundary;
415 else
416 return boundary - part;
417 }
418
419 if (part == boundary) {
420 while (--count)
421 if (parts[count])
422 return ~(integerPart) 0; /* A lot. */
423
424 return parts[0];
425 } else if (part == boundary - 1) {
426 while (--count)
427 if (~parts[count])
428 return ~(integerPart) 0; /* A lot. */
429
430 return -parts[0];
431 }
432
433 return ~(integerPart) 0; /* A lot. */
434 }
435
436 /* Place pow(5, power) in DST, and return the number of parts used.
437 DST must be at least one part larger than size of the answer. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000438 static unsigned int
Neil Booth96c74712007-10-12 16:02:31 +0000439 powerOf5(integerPart *dst, unsigned int power)
440 {
Dan Gohman7c2e4f22008-05-12 16:38:14 +0000441 static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
442 15625, 78125 };
Neil Booth96c74712007-10-12 16:02:31 +0000443 static integerPart pow5s[maxPowerOfFiveParts * 2 + 5] = { 78125 * 5 };
444 static unsigned int partsCount[16] = { 1 };
445
446 integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
447 unsigned int result;
448
449 assert(power <= maxExponent);
450
451 p1 = dst;
452 p2 = scratch;
453
454 *p1 = firstEightPowers[power & 7];
455 power >>= 3;
456
457 result = 1;
458 pow5 = pow5s;
459
460 for (unsigned int n = 0; power; power >>= 1, n++) {
461 unsigned int pc;
462
463 pc = partsCount[n];
464
465 /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */
466 if (pc == 0) {
467 pc = partsCount[n - 1];
468 APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
469 pc *= 2;
470 if (pow5[pc - 1] == 0)
471 pc--;
472 partsCount[n] = pc;
473 }
474
475 if (power & 1) {
476 integerPart *tmp;
477
478 APInt::tcFullMultiply(p2, p1, pow5, result, pc);
479 result += pc;
480 if (p2[result - 1] == 0)
481 result--;
482
483 /* Now result is in p1 with partsCount parts and p2 is scratch
484 space. */
485 tmp = p1, p1 = p2, p2 = tmp;
486 }
487
488 pow5 += pc;
489 }
490
491 if (p1 != dst)
492 APInt::tcAssign(dst, p1, result);
493
494 return result;
495 }
496
Neil Bootha30b0ee2007-10-03 22:26:02 +0000497 /* Zero at the end to avoid modular arithmetic when adding one; used
498 when rounding up during hexadecimal output. */
499 static const char hexDigitsLower[] = "0123456789abcdef0";
500 static const char hexDigitsUpper[] = "0123456789ABCDEF0";
501 static const char infinityL[] = "infinity";
502 static const char infinityU[] = "INFINITY";
503 static const char NaNL[] = "nan";
504 static const char NaNU[] = "NAN";
505
506 /* Write out an integerPart in hexadecimal, starting with the most
507 significant nibble. Write out exactly COUNT hexdigits, return
508 COUNT. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000509 static unsigned int
Neil Bootha30b0ee2007-10-03 22:26:02 +0000510 partAsHex (char *dst, integerPart part, unsigned int count,
511 const char *hexDigitChars)
512 {
513 unsigned int result = count;
514
515 assert (count != 0 && count <= integerPartWidth / 4);
516
517 part >>= (integerPartWidth - 4 * count);
518 while (count--) {
519 dst[count] = hexDigitChars[part & 0xf];
520 part >>= 4;
521 }
522
523 return result;
524 }
525
Neil Booth92f7e8d2007-10-06 07:29:25 +0000526 /* Write out an unsigned decimal integer. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000527 static char *
Neil Booth92f7e8d2007-10-06 07:29:25 +0000528 writeUnsignedDecimal (char *dst, unsigned int n)
Neil Bootha30b0ee2007-10-03 22:26:02 +0000529 {
Neil Booth92f7e8d2007-10-06 07:29:25 +0000530 char buff[40], *p;
Neil Bootha30b0ee2007-10-03 22:26:02 +0000531
Neil Booth92f7e8d2007-10-06 07:29:25 +0000532 p = buff;
533 do
534 *p++ = '0' + n % 10;
535 while (n /= 10);
536
537 do
538 *dst++ = *--p;
539 while (p != buff);
540
541 return dst;
542 }
543
544 /* Write out a signed decimal integer. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000545 static char *
Neil Booth92f7e8d2007-10-06 07:29:25 +0000546 writeSignedDecimal (char *dst, int value)
547 {
548 if (value < 0) {
Neil Bootha30b0ee2007-10-03 22:26:02 +0000549 *dst++ = '-';
Neil Booth92f7e8d2007-10-06 07:29:25 +0000550 dst = writeUnsignedDecimal(dst, -(unsigned) value);
551 } else
552 dst = writeUnsignedDecimal(dst, value);
Neil Bootha30b0ee2007-10-03 22:26:02 +0000553
554 return dst;
555 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000556}
557
558/* Constructors. */
559void
560APFloat::initialize(const fltSemantics *ourSemantics)
561{
562 unsigned int count;
563
564 semantics = ourSemantics;
565 count = partCount();
566 if(count > 1)
567 significand.parts = new integerPart[count];
568}
569
570void
571APFloat::freeSignificand()
572{
573 if(partCount() > 1)
574 delete [] significand.parts;
575}
576
577void
578APFloat::assign(const APFloat &rhs)
579{
580 assert(semantics == rhs.semantics);
581
582 sign = rhs.sign;
583 category = rhs.category;
584 exponent = rhs.exponent;
Dale Johannesena471c2e2007-10-11 18:07:22 +0000585 sign2 = rhs.sign2;
586 exponent2 = rhs.exponent2;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000587 if(category == fcNormal || category == fcNaN)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000588 copySignificand(rhs);
589}
590
591void
592APFloat::copySignificand(const APFloat &rhs)
593{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000594 assert(category == fcNormal || category == fcNaN);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000595 assert(rhs.partCount() >= partCount());
596
597 APInt::tcAssign(significandParts(), rhs.significandParts(),
Neil Booth4f881702007-09-26 21:33:42 +0000598 partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000599}
600
Neil Boothe5e01942007-10-14 10:39:51 +0000601/* Make this number a NaN, with an arbitrary but deterministic value
602 for the significand. */
603void
604APFloat::makeNaN(void)
605{
606 category = fcNaN;
607 APInt::tcSet(significandParts(), ~0U, partCount());
608}
609
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000610APFloat &
611APFloat::operator=(const APFloat &rhs)
612{
613 if(this != &rhs) {
614 if(semantics != rhs.semantics) {
615 freeSignificand();
616 initialize(rhs.semantics);
617 }
618 assign(rhs);
619 }
620
621 return *this;
622}
623
Dale Johannesen343e7702007-08-24 00:56:33 +0000624bool
Dale Johannesen12595d72007-08-24 22:09:56 +0000625APFloat::bitwiseIsEqual(const APFloat &rhs) const {
Dale Johannesen343e7702007-08-24 00:56:33 +0000626 if (this == &rhs)
627 return true;
628 if (semantics != rhs.semantics ||
Dale Johanneseneaf08942007-08-31 04:03:46 +0000629 category != rhs.category ||
630 sign != rhs.sign)
Dale Johannesen343e7702007-08-24 00:56:33 +0000631 return false;
Dan Gohmanb10abe12008-01-29 12:08:20 +0000632 if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
Dale Johannesena471c2e2007-10-11 18:07:22 +0000633 sign2 != rhs.sign2)
634 return false;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000635 if (category==fcZero || category==fcInfinity)
Dale Johannesen343e7702007-08-24 00:56:33 +0000636 return true;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000637 else if (category==fcNormal && exponent!=rhs.exponent)
638 return false;
Dan Gohmanb10abe12008-01-29 12:08:20 +0000639 else if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
Dale Johannesena471c2e2007-10-11 18:07:22 +0000640 exponent2!=rhs.exponent2)
641 return false;
Dale Johannesen343e7702007-08-24 00:56:33 +0000642 else {
Dale Johannesen343e7702007-08-24 00:56:33 +0000643 int i= partCount();
644 const integerPart* p=significandParts();
645 const integerPart* q=rhs.significandParts();
646 for (; i>0; i--, p++, q++) {
647 if (*p != *q)
648 return false;
649 }
650 return true;
651 }
652}
653
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000654APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
655{
Neil Boothcaf19d72007-10-14 10:29:28 +0000656 assertArithmeticOK(ourSemantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000657 initialize(&ourSemantics);
658 sign = 0;
659 zeroSignificand();
660 exponent = ourSemantics.precision - 1;
661 significandParts()[0] = value;
662 normalize(rmNearestTiesToEven, lfExactlyZero);
663}
664
665APFloat::APFloat(const fltSemantics &ourSemantics,
Neil Booth4f881702007-09-26 21:33:42 +0000666 fltCategory ourCategory, bool negative)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000667{
Neil Boothcaf19d72007-10-14 10:29:28 +0000668 assertArithmeticOK(ourSemantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000669 initialize(&ourSemantics);
670 category = ourCategory;
671 sign = negative;
672 if(category == fcNormal)
673 category = fcZero;
Neil Boothe5e01942007-10-14 10:39:51 +0000674 else if (ourCategory == fcNaN)
675 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000676}
677
678APFloat::APFloat(const fltSemantics &ourSemantics, const char *text)
679{
Neil Boothcaf19d72007-10-14 10:29:28 +0000680 assertArithmeticOK(ourSemantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000681 initialize(&ourSemantics);
682 convertFromString(text, rmNearestTiesToEven);
683}
684
685APFloat::APFloat(const APFloat &rhs)
686{
687 initialize(rhs.semantics);
688 assign(rhs);
689}
690
691APFloat::~APFloat()
692{
693 freeSignificand();
694}
695
Ted Kremenek1f801fa2008-02-11 17:24:50 +0000696// Profile - This method 'profiles' an APFloat for use with FoldingSet.
697void APFloat::Profile(FoldingSetNodeID& ID) const {
Dale Johannesen7111b022008-10-09 18:53:47 +0000698 ID.Add(bitcastToAPInt());
Ted Kremenek1f801fa2008-02-11 17:24:50 +0000699}
700
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000701unsigned int
702APFloat::partCount() const
703{
Dale Johannesena72a5a02007-09-20 23:47:58 +0000704 return partCountForBits(semantics->precision + 1);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000705}
706
707unsigned int
708APFloat::semanticsPrecision(const fltSemantics &semantics)
709{
710 return semantics.precision;
711}
712
713const integerPart *
714APFloat::significandParts() const
715{
716 return const_cast<APFloat *>(this)->significandParts();
717}
718
719integerPart *
720APFloat::significandParts()
721{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000722 assert(category == fcNormal || category == fcNaN);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000723
724 if(partCount() > 1)
725 return significand.parts;
726 else
727 return &significand.part;
728}
729
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000730void
731APFloat::zeroSignificand()
732{
733 category = fcNormal;
734 APInt::tcSet(significandParts(), 0, partCount());
735}
736
737/* Increment an fcNormal floating point number's significand. */
738void
739APFloat::incrementSignificand()
740{
741 integerPart carry;
742
743 carry = APInt::tcIncrement(significandParts(), partCount());
744
745 /* Our callers should never cause us to overflow. */
746 assert(carry == 0);
747}
748
749/* Add the significand of the RHS. Returns the carry flag. */
750integerPart
751APFloat::addSignificand(const APFloat &rhs)
752{
753 integerPart *parts;
754
755 parts = significandParts();
756
757 assert(semantics == rhs.semantics);
758 assert(exponent == rhs.exponent);
759
760 return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
761}
762
763/* Subtract the significand of the RHS with a borrow flag. Returns
764 the borrow flag. */
765integerPart
766APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
767{
768 integerPart *parts;
769
770 parts = significandParts();
771
772 assert(semantics == rhs.semantics);
773 assert(exponent == rhs.exponent);
774
775 return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
Neil Booth4f881702007-09-26 21:33:42 +0000776 partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000777}
778
779/* Multiply the significand of the RHS. If ADDEND is non-NULL, add it
780 on to the full-precision result of the multiplication. Returns the
781 lost fraction. */
782lostFraction
783APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
784{
Neil Booth4f881702007-09-26 21:33:42 +0000785 unsigned int omsb; // One, not zero, based MSB.
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000786 unsigned int partsCount, newPartsCount, precision;
787 integerPart *lhsSignificand;
788 integerPart scratch[4];
789 integerPart *fullSignificand;
790 lostFraction lost_fraction;
Dale Johannesen23a98552008-10-09 23:00:39 +0000791 bool ignored;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000792
793 assert(semantics == rhs.semantics);
794
795 precision = semantics->precision;
796 newPartsCount = partCountForBits(precision * 2);
797
798 if(newPartsCount > 4)
799 fullSignificand = new integerPart[newPartsCount];
800 else
801 fullSignificand = scratch;
802
803 lhsSignificand = significandParts();
804 partsCount = partCount();
805
806 APInt::tcFullMultiply(fullSignificand, lhsSignificand,
Neil Booth978661d2007-10-06 00:24:48 +0000807 rhs.significandParts(), partsCount, partsCount);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000808
809 lost_fraction = lfExactlyZero;
810 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
811 exponent += rhs.exponent;
812
813 if(addend) {
814 Significand savedSignificand = significand;
815 const fltSemantics *savedSemantics = semantics;
816 fltSemantics extendedSemantics;
817 opStatus status;
818 unsigned int extendedPrecision;
819
820 /* Normalize our MSB. */
821 extendedPrecision = precision + precision - 1;
822 if(omsb != extendedPrecision)
823 {
Neil Booth4f881702007-09-26 21:33:42 +0000824 APInt::tcShiftLeft(fullSignificand, newPartsCount,
825 extendedPrecision - omsb);
826 exponent -= extendedPrecision - omsb;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000827 }
828
829 /* Create new semantics. */
830 extendedSemantics = *semantics;
831 extendedSemantics.precision = extendedPrecision;
832
833 if(newPartsCount == 1)
834 significand.part = fullSignificand[0];
835 else
836 significand.parts = fullSignificand;
837 semantics = &extendedSemantics;
838
839 APFloat extendedAddend(*addend);
Dale Johannesen23a98552008-10-09 23:00:39 +0000840 status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000841 assert(status == opOK);
842 lost_fraction = addOrSubtractSignificand(extendedAddend, false);
843
844 /* Restore our state. */
845 if(newPartsCount == 1)
846 fullSignificand[0] = significand.part;
847 significand = savedSignificand;
848 semantics = savedSemantics;
849
850 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
851 }
852
853 exponent -= (precision - 1);
854
855 if(omsb > precision) {
856 unsigned int bits, significantParts;
857 lostFraction lf;
858
859 bits = omsb - precision;
860 significantParts = partCountForBits(omsb);
861 lf = shiftRight(fullSignificand, significantParts, bits);
862 lost_fraction = combineLostFractions(lf, lost_fraction);
863 exponent += bits;
864 }
865
866 APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
867
868 if(newPartsCount > 4)
869 delete [] fullSignificand;
870
871 return lost_fraction;
872}
873
874/* Multiply the significands of LHS and RHS to DST. */
875lostFraction
876APFloat::divideSignificand(const APFloat &rhs)
877{
878 unsigned int bit, i, partsCount;
879 const integerPart *rhsSignificand;
880 integerPart *lhsSignificand, *dividend, *divisor;
881 integerPart scratch[4];
882 lostFraction lost_fraction;
883
884 assert(semantics == rhs.semantics);
885
886 lhsSignificand = significandParts();
887 rhsSignificand = rhs.significandParts();
888 partsCount = partCount();
889
890 if(partsCount > 2)
891 dividend = new integerPart[partsCount * 2];
892 else
893 dividend = scratch;
894
895 divisor = dividend + partsCount;
896
897 /* Copy the dividend and divisor as they will be modified in-place. */
898 for(i = 0; i < partsCount; i++) {
899 dividend[i] = lhsSignificand[i];
900 divisor[i] = rhsSignificand[i];
901 lhsSignificand[i] = 0;
902 }
903
904 exponent -= rhs.exponent;
905
906 unsigned int precision = semantics->precision;
907
908 /* Normalize the divisor. */
909 bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
910 if(bit) {
911 exponent += bit;
912 APInt::tcShiftLeft(divisor, partsCount, bit);
913 }
914
915 /* Normalize the dividend. */
916 bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
917 if(bit) {
918 exponent -= bit;
919 APInt::tcShiftLeft(dividend, partsCount, bit);
920 }
921
Neil Booth96c74712007-10-12 16:02:31 +0000922 /* Ensure the dividend >= divisor initially for the loop below.
923 Incidentally, this means that the division loop below is
924 guaranteed to set the integer bit to one. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000925 if(APInt::tcCompare(dividend, divisor, partsCount) < 0) {
926 exponent--;
927 APInt::tcShiftLeft(dividend, partsCount, 1);
928 assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
929 }
930
931 /* Long division. */
932 for(bit = precision; bit; bit -= 1) {
933 if(APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
934 APInt::tcSubtract(dividend, divisor, 0, partsCount);
935 APInt::tcSetBit(lhsSignificand, bit - 1);
936 }
937
938 APInt::tcShiftLeft(dividend, partsCount, 1);
939 }
940
941 /* Figure out the lost fraction. */
942 int cmp = APInt::tcCompare(dividend, divisor, partsCount);
943
944 if(cmp > 0)
945 lost_fraction = lfMoreThanHalf;
946 else if(cmp == 0)
947 lost_fraction = lfExactlyHalf;
948 else if(APInt::tcIsZero(dividend, partsCount))
949 lost_fraction = lfExactlyZero;
950 else
951 lost_fraction = lfLessThanHalf;
952
953 if(partsCount > 2)
954 delete [] dividend;
955
956 return lost_fraction;
957}
958
959unsigned int
960APFloat::significandMSB() const
961{
962 return APInt::tcMSB(significandParts(), partCount());
963}
964
965unsigned int
966APFloat::significandLSB() const
967{
968 return APInt::tcLSB(significandParts(), partCount());
969}
970
971/* Note that a zero result is NOT normalized to fcZero. */
972lostFraction
973APFloat::shiftSignificandRight(unsigned int bits)
974{
975 /* Our exponent should not overflow. */
976 assert((exponent_t) (exponent + bits) >= exponent);
977
978 exponent += bits;
979
980 return shiftRight(significandParts(), partCount(), bits);
981}
982
983/* Shift the significand left BITS bits, subtract BITS from its exponent. */
984void
985APFloat::shiftSignificandLeft(unsigned int bits)
986{
987 assert(bits < semantics->precision);
988
989 if(bits) {
990 unsigned int partsCount = partCount();
991
992 APInt::tcShiftLeft(significandParts(), partsCount, bits);
993 exponent -= bits;
994
995 assert(!APInt::tcIsZero(significandParts(), partsCount));
996 }
997}
998
999APFloat::cmpResult
1000APFloat::compareAbsoluteValue(const APFloat &rhs) const
1001{
1002 int compare;
1003
1004 assert(semantics == rhs.semantics);
1005 assert(category == fcNormal);
1006 assert(rhs.category == fcNormal);
1007
1008 compare = exponent - rhs.exponent;
1009
1010 /* If exponents are equal, do an unsigned bignum comparison of the
1011 significands. */
1012 if(compare == 0)
1013 compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
Neil Booth4f881702007-09-26 21:33:42 +00001014 partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001015
1016 if(compare > 0)
1017 return cmpGreaterThan;
1018 else if(compare < 0)
1019 return cmpLessThan;
1020 else
1021 return cmpEqual;
1022}
1023
1024/* Handle overflow. Sign is preserved. We either become infinity or
1025 the largest finite number. */
1026APFloat::opStatus
1027APFloat::handleOverflow(roundingMode rounding_mode)
1028{
1029 /* Infinity? */
1030 if(rounding_mode == rmNearestTiesToEven
1031 || rounding_mode == rmNearestTiesToAway
1032 || (rounding_mode == rmTowardPositive && !sign)
1033 || (rounding_mode == rmTowardNegative && sign))
1034 {
1035 category = fcInfinity;
1036 return (opStatus) (opOverflow | opInexact);
1037 }
1038
1039 /* Otherwise we become the largest finite number. */
1040 category = fcNormal;
1041 exponent = semantics->maxExponent;
1042 APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
Neil Booth4f881702007-09-26 21:33:42 +00001043 semantics->precision);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001044
1045 return opInexact;
1046}
1047
Neil Boothb7dea4c2007-10-03 15:16:41 +00001048/* Returns TRUE if, when truncating the current number, with BIT the
1049 new LSB, with the given lost fraction and rounding mode, the result
1050 would need to be rounded away from zero (i.e., by increasing the
1051 signficand). This routine must work for fcZero of both signs, and
1052 fcNormal numbers. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001053bool
1054APFloat::roundAwayFromZero(roundingMode rounding_mode,
Neil Boothb7dea4c2007-10-03 15:16:41 +00001055 lostFraction lost_fraction,
1056 unsigned int bit) const
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001057{
Dale Johanneseneaf08942007-08-31 04:03:46 +00001058 /* NaNs and infinities should not have lost fractions. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001059 assert(category == fcNormal || category == fcZero);
1060
Neil Boothb7dea4c2007-10-03 15:16:41 +00001061 /* Current callers never pass this so we don't handle it. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001062 assert(lost_fraction != lfExactlyZero);
1063
1064 switch(rounding_mode) {
1065 default:
1066 assert(0);
1067
1068 case rmNearestTiesToAway:
1069 return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
1070
1071 case rmNearestTiesToEven:
1072 if(lost_fraction == lfMoreThanHalf)
1073 return true;
1074
1075 /* Our zeroes don't have a significand to test. */
1076 if(lost_fraction == lfExactlyHalf && category != fcZero)
Neil Boothb7dea4c2007-10-03 15:16:41 +00001077 return APInt::tcExtractBit(significandParts(), bit);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001078
1079 return false;
1080
1081 case rmTowardZero:
1082 return false;
1083
1084 case rmTowardPositive:
1085 return sign == false;
1086
1087 case rmTowardNegative:
1088 return sign == true;
1089 }
1090}
1091
1092APFloat::opStatus
1093APFloat::normalize(roundingMode rounding_mode,
Neil Booth4f881702007-09-26 21:33:42 +00001094 lostFraction lost_fraction)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001095{
Neil Booth4f881702007-09-26 21:33:42 +00001096 unsigned int omsb; /* One, not zero, based MSB. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001097 int exponentChange;
1098
1099 if(category != fcNormal)
1100 return opOK;
1101
1102 /* Before rounding normalize the exponent of fcNormal numbers. */
1103 omsb = significandMSB() + 1;
1104
1105 if(omsb) {
1106 /* OMSB is numbered from 1. We want to place it in the integer
1107 bit numbered PRECISON if possible, with a compensating change in
1108 the exponent. */
1109 exponentChange = omsb - semantics->precision;
1110
1111 /* If the resulting exponent is too high, overflow according to
1112 the rounding mode. */
1113 if(exponent + exponentChange > semantics->maxExponent)
1114 return handleOverflow(rounding_mode);
1115
1116 /* Subnormal numbers have exponent minExponent, and their MSB
1117 is forced based on that. */
1118 if(exponent + exponentChange < semantics->minExponent)
1119 exponentChange = semantics->minExponent - exponent;
1120
1121 /* Shifting left is easy as we don't lose precision. */
1122 if(exponentChange < 0) {
1123 assert(lost_fraction == lfExactlyZero);
1124
1125 shiftSignificandLeft(-exponentChange);
1126
1127 return opOK;
1128 }
1129
1130 if(exponentChange > 0) {
1131 lostFraction lf;
1132
1133 /* Shift right and capture any new lost fraction. */
1134 lf = shiftSignificandRight(exponentChange);
1135
1136 lost_fraction = combineLostFractions(lf, lost_fraction);
1137
1138 /* Keep OMSB up-to-date. */
1139 if(omsb > (unsigned) exponentChange)
Neil Booth96c74712007-10-12 16:02:31 +00001140 omsb -= exponentChange;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001141 else
Neil Booth4f881702007-09-26 21:33:42 +00001142 omsb = 0;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001143 }
1144 }
1145
1146 /* Now round the number according to rounding_mode given the lost
1147 fraction. */
1148
1149 /* As specified in IEEE 754, since we do not trap we do not report
1150 underflow for exact results. */
1151 if(lost_fraction == lfExactlyZero) {
1152 /* Canonicalize zeroes. */
1153 if(omsb == 0)
1154 category = fcZero;
1155
1156 return opOK;
1157 }
1158
1159 /* Increment the significand if we're rounding away from zero. */
Neil Boothb7dea4c2007-10-03 15:16:41 +00001160 if(roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001161 if(omsb == 0)
1162 exponent = semantics->minExponent;
1163
1164 incrementSignificand();
1165 omsb = significandMSB() + 1;
1166
1167 /* Did the significand increment overflow? */
1168 if(omsb == (unsigned) semantics->precision + 1) {
1169 /* Renormalize by incrementing the exponent and shifting our
Neil Booth4f881702007-09-26 21:33:42 +00001170 significand right one. However if we already have the
1171 maximum exponent we overflow to infinity. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001172 if(exponent == semantics->maxExponent) {
Neil Booth4f881702007-09-26 21:33:42 +00001173 category = fcInfinity;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001174
Neil Booth4f881702007-09-26 21:33:42 +00001175 return (opStatus) (opOverflow | opInexact);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001176 }
1177
1178 shiftSignificandRight(1);
1179
1180 return opInexact;
1181 }
1182 }
1183
1184 /* The normal case - we were and are not denormal, and any
1185 significand increment above didn't overflow. */
1186 if(omsb == semantics->precision)
1187 return opInexact;
1188
1189 /* We have a non-zero denormal. */
1190 assert(omsb < semantics->precision);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001191
1192 /* Canonicalize zeroes. */
1193 if(omsb == 0)
1194 category = fcZero;
1195
1196 /* The fcZero case is a denormal that underflowed to zero. */
1197 return (opStatus) (opUnderflow | opInexact);
1198}
1199
1200APFloat::opStatus
1201APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
1202{
1203 switch(convolve(category, rhs.category)) {
1204 default:
1205 assert(0);
1206
Dale Johanneseneaf08942007-08-31 04:03:46 +00001207 case convolve(fcNaN, fcZero):
1208 case convolve(fcNaN, fcNormal):
1209 case convolve(fcNaN, fcInfinity):
1210 case convolve(fcNaN, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001211 case convolve(fcNormal, fcZero):
1212 case convolve(fcInfinity, fcNormal):
1213 case convolve(fcInfinity, fcZero):
1214 return opOK;
1215
Dale Johanneseneaf08942007-08-31 04:03:46 +00001216 case convolve(fcZero, fcNaN):
1217 case convolve(fcNormal, fcNaN):
1218 case convolve(fcInfinity, fcNaN):
1219 category = fcNaN;
1220 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001221 return opOK;
1222
1223 case convolve(fcNormal, fcInfinity):
1224 case convolve(fcZero, fcInfinity):
1225 category = fcInfinity;
1226 sign = rhs.sign ^ subtract;
1227 return opOK;
1228
1229 case convolve(fcZero, fcNormal):
1230 assign(rhs);
1231 sign = rhs.sign ^ subtract;
1232 return opOK;
1233
1234 case convolve(fcZero, fcZero):
1235 /* Sign depends on rounding mode; handled by caller. */
1236 return opOK;
1237
1238 case convolve(fcInfinity, fcInfinity):
1239 /* Differently signed infinities can only be validly
1240 subtracted. */
Hartmut Kaiser8df77a92007-10-25 23:15:31 +00001241 if((sign ^ rhs.sign) != subtract) {
Neil Boothe5e01942007-10-14 10:39:51 +00001242 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001243 return opInvalidOp;
1244 }
1245
1246 return opOK;
1247
1248 case convolve(fcNormal, fcNormal):
1249 return opDivByZero;
1250 }
1251}
1252
1253/* Add or subtract two normal numbers. */
1254lostFraction
1255APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
1256{
1257 integerPart carry;
1258 lostFraction lost_fraction;
1259 int bits;
1260
1261 /* Determine if the operation on the absolute values is effectively
1262 an addition or subtraction. */
Hartmut Kaiser8df77a92007-10-25 23:15:31 +00001263 subtract ^= (sign ^ rhs.sign) ? true : false;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001264
1265 /* Are we bigger exponent-wise than the RHS? */
1266 bits = exponent - rhs.exponent;
1267
1268 /* Subtraction is more subtle than one might naively expect. */
1269 if(subtract) {
1270 APFloat temp_rhs(rhs);
1271 bool reverse;
1272
Chris Lattnerada530b2007-08-24 03:02:34 +00001273 if (bits == 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001274 reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
1275 lost_fraction = lfExactlyZero;
Chris Lattnerada530b2007-08-24 03:02:34 +00001276 } else if (bits > 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001277 lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
1278 shiftSignificandLeft(1);
1279 reverse = false;
Chris Lattnerada530b2007-08-24 03:02:34 +00001280 } else {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001281 lost_fraction = shiftSignificandRight(-bits - 1);
1282 temp_rhs.shiftSignificandLeft(1);
1283 reverse = true;
1284 }
1285
Chris Lattnerada530b2007-08-24 03:02:34 +00001286 if (reverse) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001287 carry = temp_rhs.subtractSignificand
Neil Booth4f881702007-09-26 21:33:42 +00001288 (*this, lost_fraction != lfExactlyZero);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001289 copySignificand(temp_rhs);
1290 sign = !sign;
1291 } else {
1292 carry = subtractSignificand
Neil Booth4f881702007-09-26 21:33:42 +00001293 (temp_rhs, lost_fraction != lfExactlyZero);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001294 }
1295
1296 /* Invert the lost fraction - it was on the RHS and
1297 subtracted. */
1298 if(lost_fraction == lfLessThanHalf)
1299 lost_fraction = lfMoreThanHalf;
1300 else if(lost_fraction == lfMoreThanHalf)
1301 lost_fraction = lfLessThanHalf;
1302
1303 /* The code above is intended to ensure that no borrow is
1304 necessary. */
1305 assert(!carry);
1306 } else {
1307 if(bits > 0) {
1308 APFloat temp_rhs(rhs);
1309
1310 lost_fraction = temp_rhs.shiftSignificandRight(bits);
1311 carry = addSignificand(temp_rhs);
1312 } else {
1313 lost_fraction = shiftSignificandRight(-bits);
1314 carry = addSignificand(rhs);
1315 }
1316
1317 /* We have a guard bit; generating a carry cannot happen. */
1318 assert(!carry);
1319 }
1320
1321 return lost_fraction;
1322}
1323
1324APFloat::opStatus
1325APFloat::multiplySpecials(const APFloat &rhs)
1326{
1327 switch(convolve(category, rhs.category)) {
1328 default:
1329 assert(0);
1330
Dale Johanneseneaf08942007-08-31 04:03:46 +00001331 case convolve(fcNaN, fcZero):
1332 case convolve(fcNaN, fcNormal):
1333 case convolve(fcNaN, fcInfinity):
1334 case convolve(fcNaN, fcNaN):
1335 return opOK;
1336
1337 case convolve(fcZero, fcNaN):
1338 case convolve(fcNormal, fcNaN):
1339 case convolve(fcInfinity, fcNaN):
1340 category = fcNaN;
1341 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001342 return opOK;
1343
1344 case convolve(fcNormal, fcInfinity):
1345 case convolve(fcInfinity, fcNormal):
1346 case convolve(fcInfinity, fcInfinity):
1347 category = fcInfinity;
1348 return opOK;
1349
1350 case convolve(fcZero, fcNormal):
1351 case convolve(fcNormal, fcZero):
1352 case convolve(fcZero, fcZero):
1353 category = fcZero;
1354 return opOK;
1355
1356 case convolve(fcZero, fcInfinity):
1357 case convolve(fcInfinity, fcZero):
Neil Boothe5e01942007-10-14 10:39:51 +00001358 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001359 return opInvalidOp;
1360
1361 case convolve(fcNormal, fcNormal):
1362 return opOK;
1363 }
1364}
1365
1366APFloat::opStatus
1367APFloat::divideSpecials(const APFloat &rhs)
1368{
1369 switch(convolve(category, rhs.category)) {
1370 default:
1371 assert(0);
1372
Dale Johanneseneaf08942007-08-31 04:03:46 +00001373 case convolve(fcNaN, fcZero):
1374 case convolve(fcNaN, fcNormal):
1375 case convolve(fcNaN, fcInfinity):
1376 case convolve(fcNaN, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001377 case convolve(fcInfinity, fcZero):
1378 case convolve(fcInfinity, fcNormal):
1379 case convolve(fcZero, fcInfinity):
1380 case convolve(fcZero, fcNormal):
1381 return opOK;
1382
Dale Johanneseneaf08942007-08-31 04:03:46 +00001383 case convolve(fcZero, fcNaN):
1384 case convolve(fcNormal, fcNaN):
1385 case convolve(fcInfinity, fcNaN):
1386 category = fcNaN;
1387 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001388 return opOK;
1389
1390 case convolve(fcNormal, fcInfinity):
1391 category = fcZero;
1392 return opOK;
1393
1394 case convolve(fcNormal, fcZero):
1395 category = fcInfinity;
1396 return opDivByZero;
1397
1398 case convolve(fcInfinity, fcInfinity):
1399 case convolve(fcZero, fcZero):
Neil Boothe5e01942007-10-14 10:39:51 +00001400 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001401 return opInvalidOp;
1402
1403 case convolve(fcNormal, fcNormal):
1404 return opOK;
1405 }
1406}
1407
1408/* Change sign. */
1409void
1410APFloat::changeSign()
1411{
1412 /* Look mummy, this one's easy. */
1413 sign = !sign;
1414}
1415
Dale Johannesene15c2db2007-08-31 23:35:31 +00001416void
1417APFloat::clearSign()
1418{
1419 /* So is this one. */
1420 sign = 0;
1421}
1422
1423void
1424APFloat::copySign(const APFloat &rhs)
1425{
1426 /* And this one. */
1427 sign = rhs.sign;
1428}
1429
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001430/* Normalized addition or subtraction. */
1431APFloat::opStatus
1432APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
Neil Booth4f881702007-09-26 21:33:42 +00001433 bool subtract)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001434{
1435 opStatus fs;
1436
Neil Boothcaf19d72007-10-14 10:29:28 +00001437 assertArithmeticOK(*semantics);
1438
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001439 fs = addOrSubtractSpecials(rhs, subtract);
1440
1441 /* This return code means it was not a simple case. */
1442 if(fs == opDivByZero) {
1443 lostFraction lost_fraction;
1444
1445 lost_fraction = addOrSubtractSignificand(rhs, subtract);
1446 fs = normalize(rounding_mode, lost_fraction);
1447
1448 /* Can only be zero if we lost no fraction. */
1449 assert(category != fcZero || lost_fraction == lfExactlyZero);
1450 }
1451
1452 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1453 positive zero unless rounding to minus infinity, except that
1454 adding two like-signed zeroes gives that zero. */
1455 if(category == fcZero) {
1456 if(rhs.category != fcZero || (sign == rhs.sign) == subtract)
1457 sign = (rounding_mode == rmTowardNegative);
1458 }
1459
1460 return fs;
1461}
1462
1463/* Normalized addition. */
1464APFloat::opStatus
1465APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
1466{
1467 return addOrSubtract(rhs, rounding_mode, false);
1468}
1469
1470/* Normalized subtraction. */
1471APFloat::opStatus
1472APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
1473{
1474 return addOrSubtract(rhs, rounding_mode, true);
1475}
1476
1477/* Normalized multiply. */
1478APFloat::opStatus
1479APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
1480{
1481 opStatus fs;
1482
Neil Boothcaf19d72007-10-14 10:29:28 +00001483 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001484 sign ^= rhs.sign;
1485 fs = multiplySpecials(rhs);
1486
1487 if(category == fcNormal) {
1488 lostFraction lost_fraction = multiplySignificand(rhs, 0);
1489 fs = normalize(rounding_mode, lost_fraction);
1490 if(lost_fraction != lfExactlyZero)
1491 fs = (opStatus) (fs | opInexact);
1492 }
1493
1494 return fs;
1495}
1496
1497/* Normalized divide. */
1498APFloat::opStatus
1499APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
1500{
1501 opStatus fs;
1502
Neil Boothcaf19d72007-10-14 10:29:28 +00001503 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001504 sign ^= rhs.sign;
1505 fs = divideSpecials(rhs);
1506
1507 if(category == fcNormal) {
1508 lostFraction lost_fraction = divideSignificand(rhs);
1509 fs = normalize(rounding_mode, lost_fraction);
1510 if(lost_fraction != lfExactlyZero)
1511 fs = (opStatus) (fs | opInexact);
1512 }
1513
1514 return fs;
1515}
1516
Neil Bootha30b0ee2007-10-03 22:26:02 +00001517/* Normalized remainder. This is not currently doing TRT. */
Dale Johannesene15c2db2007-08-31 23:35:31 +00001518APFloat::opStatus
1519APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
1520{
1521 opStatus fs;
1522 APFloat V = *this;
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001523 unsigned int origSign = sign;
Neil Boothcaf19d72007-10-14 10:29:28 +00001524
1525 assertArithmeticOK(*semantics);
Dale Johannesene15c2db2007-08-31 23:35:31 +00001526 fs = V.divide(rhs, rmNearestTiesToEven);
1527 if (fs == opDivByZero)
1528 return fs;
1529
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001530 int parts = partCount();
1531 integerPart *x = new integerPart[parts];
Dale Johannesen23a98552008-10-09 23:00:39 +00001532 bool ignored;
Neil Booth4f881702007-09-26 21:33:42 +00001533 fs = V.convertToInteger(x, parts * integerPartWidth, true,
Dale Johannesen1f54f582009-01-19 21:17:05 +00001534 rmTowardZero, &ignored);
Dale Johannesene15c2db2007-08-31 23:35:31 +00001535 if (fs==opInvalidOp)
1536 return fs;
1537
Neil Boothccf596a2007-10-07 11:45:55 +00001538 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1539 rmNearestTiesToEven);
Dale Johannesene15c2db2007-08-31 23:35:31 +00001540 assert(fs==opOK); // should always work
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001541
Dale Johannesene15c2db2007-08-31 23:35:31 +00001542 fs = V.multiply(rhs, rounding_mode);
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001543 assert(fs==opOK || fs==opInexact); // should not overflow or underflow
1544
Dale Johannesene15c2db2007-08-31 23:35:31 +00001545 fs = subtract(V, rounding_mode);
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001546 assert(fs==opOK || fs==opInexact); // likewise
1547
1548 if (isZero())
1549 sign = origSign; // IEEE754 requires this
1550 delete[] x;
Dale Johannesene15c2db2007-08-31 23:35:31 +00001551 return fs;
1552}
1553
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001554/* Normalized fused-multiply-add. */
1555APFloat::opStatus
1556APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
Neil Booth4f881702007-09-26 21:33:42 +00001557 const APFloat &addend,
1558 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001559{
1560 opStatus fs;
1561
Neil Boothcaf19d72007-10-14 10:29:28 +00001562 assertArithmeticOK(*semantics);
1563
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001564 /* Post-multiplication sign, before addition. */
1565 sign ^= multiplicand.sign;
1566
1567 /* If and only if all arguments are normal do we need to do an
1568 extended-precision calculation. */
1569 if(category == fcNormal
1570 && multiplicand.category == fcNormal
1571 && addend.category == fcNormal) {
1572 lostFraction lost_fraction;
1573
1574 lost_fraction = multiplySignificand(multiplicand, &addend);
1575 fs = normalize(rounding_mode, lost_fraction);
1576 if(lost_fraction != lfExactlyZero)
1577 fs = (opStatus) (fs | opInexact);
1578
1579 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1580 positive zero unless rounding to minus infinity, except that
1581 adding two like-signed zeroes gives that zero. */
1582 if(category == fcZero && sign != addend.sign)
1583 sign = (rounding_mode == rmTowardNegative);
1584 } else {
1585 fs = multiplySpecials(multiplicand);
1586
1587 /* FS can only be opOK or opInvalidOp. There is no more work
1588 to do in the latter case. The IEEE-754R standard says it is
1589 implementation-defined in this case whether, if ADDEND is a
Dale Johanneseneaf08942007-08-31 04:03:46 +00001590 quiet NaN, we raise invalid op; this implementation does so.
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001591
1592 If we need to do the addition we can do so with normal
1593 precision. */
1594 if(fs == opOK)
1595 fs = addOrSubtract(addend, rounding_mode, false);
1596 }
1597
1598 return fs;
1599}
1600
1601/* Comparison requires normalized numbers. */
1602APFloat::cmpResult
1603APFloat::compare(const APFloat &rhs) const
1604{
1605 cmpResult result;
1606
Neil Boothcaf19d72007-10-14 10:29:28 +00001607 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001608 assert(semantics == rhs.semantics);
1609
1610 switch(convolve(category, rhs.category)) {
1611 default:
1612 assert(0);
1613
Dale Johanneseneaf08942007-08-31 04:03:46 +00001614 case convolve(fcNaN, fcZero):
1615 case convolve(fcNaN, fcNormal):
1616 case convolve(fcNaN, fcInfinity):
1617 case convolve(fcNaN, fcNaN):
1618 case convolve(fcZero, fcNaN):
1619 case convolve(fcNormal, fcNaN):
1620 case convolve(fcInfinity, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001621 return cmpUnordered;
1622
1623 case convolve(fcInfinity, fcNormal):
1624 case convolve(fcInfinity, fcZero):
1625 case convolve(fcNormal, fcZero):
1626 if(sign)
1627 return cmpLessThan;
1628 else
1629 return cmpGreaterThan;
1630
1631 case convolve(fcNormal, fcInfinity):
1632 case convolve(fcZero, fcInfinity):
1633 case convolve(fcZero, fcNormal):
1634 if(rhs.sign)
1635 return cmpGreaterThan;
1636 else
1637 return cmpLessThan;
1638
1639 case convolve(fcInfinity, fcInfinity):
1640 if(sign == rhs.sign)
1641 return cmpEqual;
1642 else if(sign)
1643 return cmpLessThan;
1644 else
1645 return cmpGreaterThan;
1646
1647 case convolve(fcZero, fcZero):
1648 return cmpEqual;
1649
1650 case convolve(fcNormal, fcNormal):
1651 break;
1652 }
1653
1654 /* Two normal numbers. Do they have the same sign? */
1655 if(sign != rhs.sign) {
1656 if(sign)
1657 result = cmpLessThan;
1658 else
1659 result = cmpGreaterThan;
1660 } else {
1661 /* Compare absolute values; invert result if negative. */
1662 result = compareAbsoluteValue(rhs);
1663
1664 if(sign) {
1665 if(result == cmpLessThan)
Neil Booth4f881702007-09-26 21:33:42 +00001666 result = cmpGreaterThan;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001667 else if(result == cmpGreaterThan)
Neil Booth4f881702007-09-26 21:33:42 +00001668 result = cmpLessThan;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001669 }
1670 }
1671
1672 return result;
1673}
1674
Dale Johannesen23a98552008-10-09 23:00:39 +00001675/// APFloat::convert - convert a value of one floating point type to another.
1676/// The return value corresponds to the IEEE754 exceptions. *losesInfo
1677/// records whether the transformation lost information, i.e. whether
1678/// converting the result back to the original type will produce the
1679/// original value (this is almost the same as return value==fsOK, but there
1680/// are edge cases where this is not so).
1681
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001682APFloat::opStatus
1683APFloat::convert(const fltSemantics &toSemantics,
Dale Johannesen23a98552008-10-09 23:00:39 +00001684 roundingMode rounding_mode, bool *losesInfo)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001685{
Neil Boothc8db43d2007-09-22 02:56:19 +00001686 lostFraction lostFraction;
1687 unsigned int newPartCount, oldPartCount;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001688 opStatus fs;
Neil Booth4f881702007-09-26 21:33:42 +00001689
Neil Boothcaf19d72007-10-14 10:29:28 +00001690 assertArithmeticOK(*semantics);
Dale Johannesen79f82f92008-04-20 01:34:03 +00001691 assertArithmeticOK(toSemantics);
Neil Boothc8db43d2007-09-22 02:56:19 +00001692 lostFraction = lfExactlyZero;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001693 newPartCount = partCountForBits(toSemantics.precision + 1);
Neil Boothc8db43d2007-09-22 02:56:19 +00001694 oldPartCount = partCount();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001695
Neil Boothc8db43d2007-09-22 02:56:19 +00001696 /* Handle storage complications. If our new form is wider,
1697 re-allocate our bit pattern into wider storage. If it is
1698 narrower, we ignore the excess parts, but if narrowing to a
Dale Johannesen902ff942007-09-25 17:25:00 +00001699 single part we need to free the old storage.
1700 Be careful not to reference significandParts for zeroes
1701 and infinities, since it aborts. */
Neil Boothc8db43d2007-09-22 02:56:19 +00001702 if (newPartCount > oldPartCount) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001703 integerPart *newParts;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001704 newParts = new integerPart[newPartCount];
1705 APInt::tcSet(newParts, 0, newPartCount);
Dale Johannesen902ff942007-09-25 17:25:00 +00001706 if (category==fcNormal || category==fcNaN)
1707 APInt::tcAssign(newParts, significandParts(), oldPartCount);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001708 freeSignificand();
1709 significand.parts = newParts;
Neil Boothc8db43d2007-09-22 02:56:19 +00001710 } else if (newPartCount < oldPartCount) {
1711 /* Capture any lost fraction through truncation of parts so we get
1712 correct rounding whilst normalizing. */
Dale Johannesen902ff942007-09-25 17:25:00 +00001713 if (category==fcNormal)
1714 lostFraction = lostFractionThroughTruncation
1715 (significandParts(), oldPartCount, toSemantics.precision);
1716 if (newPartCount == 1) {
1717 integerPart newPart = 0;
Neil Booth4f881702007-09-26 21:33:42 +00001718 if (category==fcNormal || category==fcNaN)
Dale Johannesen902ff942007-09-25 17:25:00 +00001719 newPart = significandParts()[0];
1720 freeSignificand();
1721 significand.part = newPart;
1722 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001723 }
1724
1725 if(category == fcNormal) {
1726 /* Re-interpret our bit-pattern. */
1727 exponent += toSemantics.precision - semantics->precision;
1728 semantics = &toSemantics;
Neil Boothc8db43d2007-09-22 02:56:19 +00001729 fs = normalize(rounding_mode, lostFraction);
Dale Johannesen23a98552008-10-09 23:00:39 +00001730 *losesInfo = (fs != opOK);
Dale Johannesen902ff942007-09-25 17:25:00 +00001731 } else if (category == fcNaN) {
1732 int shift = toSemantics.precision - semantics->precision;
Dale Johannesenb63fa052008-01-31 18:34:01 +00001733 // Do this now so significandParts gets the right answer
Dale Johannesen2df5eec2008-10-06 22:59:10 +00001734 const fltSemantics *oldSemantics = semantics;
Dale Johannesenb63fa052008-01-31 18:34:01 +00001735 semantics = &toSemantics;
Dale Johannesen23a98552008-10-09 23:00:39 +00001736 *losesInfo = false;
Dale Johannesen902ff942007-09-25 17:25:00 +00001737 // No normalization here, just truncate
1738 if (shift>0)
1739 APInt::tcShiftLeft(significandParts(), newPartCount, shift);
Dale Johannesen2df5eec2008-10-06 22:59:10 +00001740 else if (shift < 0) {
1741 unsigned ushift = -shift;
Dale Johannesen23a98552008-10-09 23:00:39 +00001742 // Figure out if we are losing information. This happens
Dale Johannesen2df5eec2008-10-06 22:59:10 +00001743 // if are shifting out something other than 0s, or if the x87 long
1744 // double input did not have its integer bit set (pseudo-NaN), or if the
1745 // x87 long double input did not have its QNan bit set (because the x87
1746 // hardware sets this bit when converting a lower-precision NaN to
1747 // x87 long double).
1748 if (APInt::tcLSB(significandParts(), newPartCount) < ushift)
Dale Johannesen23a98552008-10-09 23:00:39 +00001749 *losesInfo = true;
Dale Johannesen2df5eec2008-10-06 22:59:10 +00001750 if (oldSemantics == &APFloat::x87DoubleExtended &&
1751 (!(*significandParts() & 0x8000000000000000ULL) ||
1752 !(*significandParts() & 0x4000000000000000ULL)))
Dale Johannesen23a98552008-10-09 23:00:39 +00001753 *losesInfo = true;
Dale Johannesen2df5eec2008-10-06 22:59:10 +00001754 APInt::tcShiftRight(significandParts(), newPartCount, ushift);
1755 }
Dale Johannesen902ff942007-09-25 17:25:00 +00001756 // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
1757 // does not give you back the same bits. This is dubious, and we
1758 // don't currently do it. You're really supposed to get
1759 // an invalid operation signal at runtime, but nobody does that.
Dale Johannesen23a98552008-10-09 23:00:39 +00001760 fs = opOK;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001761 } else {
1762 semantics = &toSemantics;
1763 fs = opOK;
Dale Johannesen23a98552008-10-09 23:00:39 +00001764 *losesInfo = false;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001765 }
1766
1767 return fs;
1768}
1769
1770/* Convert a floating point number to an integer according to the
1771 rounding mode. If the rounded integer value is out of range this
Neil Boothee7ae382007-11-01 22:43:37 +00001772 returns an invalid operation exception and the contents of the
1773 destination parts are unspecified. If the rounded value is in
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001774 range but the floating point number is not the exact integer, the C
1775 standard doesn't require an inexact exception to be raised. IEEE
1776 854 does require it so we do that.
1777
1778 Note that for conversions to integer type the C standard requires
1779 round-to-zero to always be used. */
1780APFloat::opStatus
Neil Boothee7ae382007-11-01 22:43:37 +00001781APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
1782 bool isSigned,
Dale Johannesen23a98552008-10-09 23:00:39 +00001783 roundingMode rounding_mode,
1784 bool *isExact) const
Neil Boothee7ae382007-11-01 22:43:37 +00001785{
1786 lostFraction lost_fraction;
1787 const integerPart *src;
1788 unsigned int dstPartsCount, truncatedBits;
1789
Evan Cheng794a7db2008-11-26 01:11:57 +00001790 assertArithmeticOK(*semantics);
Neil Boothe3d936a2007-11-02 15:10:05 +00001791
Dale Johannesen23a98552008-10-09 23:00:39 +00001792 *isExact = false;
1793
Neil Boothee7ae382007-11-01 22:43:37 +00001794 /* Handle the three special cases first. */
1795 if(category == fcInfinity || category == fcNaN)
1796 return opInvalidOp;
1797
1798 dstPartsCount = partCountForBits(width);
1799
1800 if(category == fcZero) {
1801 APInt::tcSet(parts, 0, dstPartsCount);
Dale Johannesene4a42452008-10-07 00:40:01 +00001802 // Negative zero can't be represented as an int.
Dale Johannesen23a98552008-10-09 23:00:39 +00001803 *isExact = !sign;
1804 return opOK;
Neil Boothee7ae382007-11-01 22:43:37 +00001805 }
1806
1807 src = significandParts();
1808
1809 /* Step 1: place our absolute value, with any fraction truncated, in
1810 the destination. */
1811 if (exponent < 0) {
1812 /* Our absolute value is less than one; truncate everything. */
1813 APInt::tcSet(parts, 0, dstPartsCount);
Dale Johannesen1f54f582009-01-19 21:17:05 +00001814 /* For exponent -1 the integer bit represents .5, look at that.
1815 For smaller exponents leftmost truncated bit is 0. */
1816 truncatedBits = semantics->precision -1U - exponent;
Neil Boothee7ae382007-11-01 22:43:37 +00001817 } else {
1818 /* We want the most significant (exponent + 1) bits; the rest are
1819 truncated. */
1820 unsigned int bits = exponent + 1U;
1821
1822 /* Hopelessly large in magnitude? */
1823 if (bits > width)
1824 return opInvalidOp;
1825
1826 if (bits < semantics->precision) {
1827 /* We truncate (semantics->precision - bits) bits. */
1828 truncatedBits = semantics->precision - bits;
1829 APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
1830 } else {
1831 /* We want at least as many bits as are available. */
1832 APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
1833 APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
1834 truncatedBits = 0;
1835 }
1836 }
1837
1838 /* Step 2: work out any lost fraction, and increment the absolute
1839 value if we would round away from zero. */
1840 if (truncatedBits) {
1841 lost_fraction = lostFractionThroughTruncation(src, partCount(),
1842 truncatedBits);
1843 if (lost_fraction != lfExactlyZero
1844 && roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
1845 if (APInt::tcIncrement(parts, dstPartsCount))
1846 return opInvalidOp; /* Overflow. */
1847 }
1848 } else {
1849 lost_fraction = lfExactlyZero;
1850 }
1851
1852 /* Step 3: check if we fit in the destination. */
1853 unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
1854
1855 if (sign) {
1856 if (!isSigned) {
1857 /* Negative numbers cannot be represented as unsigned. */
1858 if (omsb != 0)
1859 return opInvalidOp;
1860 } else {
1861 /* It takes omsb bits to represent the unsigned integer value.
1862 We lose a bit for the sign, but care is needed as the
1863 maximally negative integer is a special case. */
1864 if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
1865 return opInvalidOp;
1866
1867 /* This case can happen because of rounding. */
1868 if (omsb > width)
1869 return opInvalidOp;
1870 }
1871
1872 APInt::tcNegate (parts, dstPartsCount);
1873 } else {
1874 if (omsb >= width + !isSigned)
1875 return opInvalidOp;
1876 }
1877
Dale Johannesen23a98552008-10-09 23:00:39 +00001878 if (lost_fraction == lfExactlyZero) {
1879 *isExact = true;
Neil Boothee7ae382007-11-01 22:43:37 +00001880 return opOK;
Dale Johannesen23a98552008-10-09 23:00:39 +00001881 } else
Neil Boothee7ae382007-11-01 22:43:37 +00001882 return opInexact;
1883}
1884
1885/* Same as convertToSignExtendedInteger, except we provide
1886 deterministic values in case of an invalid operation exception,
1887 namely zero for NaNs and the minimal or maximal value respectively
Dale Johannesen23a98552008-10-09 23:00:39 +00001888 for underflow or overflow.
1889 The *isExact output tells whether the result is exact, in the sense
1890 that converting it back to the original floating point type produces
1891 the original value. This is almost equivalent to result==opOK,
1892 except for negative zeroes.
1893*/
Neil Boothee7ae382007-11-01 22:43:37 +00001894APFloat::opStatus
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001895APFloat::convertToInteger(integerPart *parts, unsigned int width,
Neil Booth4f881702007-09-26 21:33:42 +00001896 bool isSigned,
Dale Johannesen23a98552008-10-09 23:00:39 +00001897 roundingMode rounding_mode, bool *isExact) const
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001898{
Neil Boothee7ae382007-11-01 22:43:37 +00001899 opStatus fs;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001900
Dale Johannesen23a98552008-10-09 23:00:39 +00001901 fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
1902 isExact);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001903
Neil Boothee7ae382007-11-01 22:43:37 +00001904 if (fs == opInvalidOp) {
1905 unsigned int bits, dstPartsCount;
1906
1907 dstPartsCount = partCountForBits(width);
1908
1909 if (category == fcNaN)
1910 bits = 0;
1911 else if (sign)
1912 bits = isSigned;
1913 else
1914 bits = width - isSigned;
1915
1916 APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
1917 if (sign && isSigned)
1918 APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001919 }
1920
Neil Boothee7ae382007-11-01 22:43:37 +00001921 return fs;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001922}
1923
Neil Booth643ce592007-10-07 12:07:53 +00001924/* Convert an unsigned integer SRC to a floating point number,
1925 rounding according to ROUNDING_MODE. The sign of the floating
1926 point number is not modified. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001927APFloat::opStatus
Neil Booth643ce592007-10-07 12:07:53 +00001928APFloat::convertFromUnsignedParts(const integerPart *src,
1929 unsigned int srcCount,
1930 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001931{
Neil Booth5477f852007-10-08 14:39:42 +00001932 unsigned int omsb, precision, dstCount;
Neil Booth643ce592007-10-07 12:07:53 +00001933 integerPart *dst;
Neil Booth5477f852007-10-08 14:39:42 +00001934 lostFraction lost_fraction;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001935
Neil Boothcaf19d72007-10-14 10:29:28 +00001936 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001937 category = fcNormal;
Neil Booth5477f852007-10-08 14:39:42 +00001938 omsb = APInt::tcMSB(src, srcCount) + 1;
Neil Booth643ce592007-10-07 12:07:53 +00001939 dst = significandParts();
1940 dstCount = partCount();
Neil Booth5477f852007-10-08 14:39:42 +00001941 precision = semantics->precision;
Neil Booth643ce592007-10-07 12:07:53 +00001942
Neil Booth5477f852007-10-08 14:39:42 +00001943 /* We want the most significant PRECISON bits of SRC. There may not
1944 be that many; extract what we can. */
1945 if (precision <= omsb) {
1946 exponent = omsb - 1;
Neil Booth643ce592007-10-07 12:07:53 +00001947 lost_fraction = lostFractionThroughTruncation(src, srcCount,
Neil Booth5477f852007-10-08 14:39:42 +00001948 omsb - precision);
1949 APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
1950 } else {
1951 exponent = precision - 1;
1952 lost_fraction = lfExactlyZero;
1953 APInt::tcExtract(dst, dstCount, src, omsb, 0);
Neil Booth643ce592007-10-07 12:07:53 +00001954 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001955
1956 return normalize(rounding_mode, lost_fraction);
1957}
1958
Dan Gohman93c276e2008-02-29 01:26:11 +00001959APFloat::opStatus
1960APFloat::convertFromAPInt(const APInt &Val,
1961 bool isSigned,
1962 roundingMode rounding_mode)
1963{
1964 unsigned int partCount = Val.getNumWords();
1965 APInt api = Val;
1966
1967 sign = false;
1968 if (isSigned && api.isNegative()) {
1969 sign = true;
1970 api = -api;
1971 }
1972
1973 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
1974}
1975
Neil Boothf16c5952007-10-07 12:15:41 +00001976/* Convert a two's complement integer SRC to a floating point number,
1977 rounding according to ROUNDING_MODE. ISSIGNED is true if the
1978 integer is signed, in which case it must be sign-extended. */
1979APFloat::opStatus
1980APFloat::convertFromSignExtendedInteger(const integerPart *src,
1981 unsigned int srcCount,
1982 bool isSigned,
1983 roundingMode rounding_mode)
1984{
1985 opStatus status;
1986
Neil Boothcaf19d72007-10-14 10:29:28 +00001987 assertArithmeticOK(*semantics);
Neil Boothf16c5952007-10-07 12:15:41 +00001988 if (isSigned
1989 && APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
1990 integerPart *copy;
1991
1992 /* If we're signed and negative negate a copy. */
1993 sign = true;
1994 copy = new integerPart[srcCount];
1995 APInt::tcAssign(copy, src, srcCount);
1996 APInt::tcNegate(copy, srcCount);
1997 status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
1998 delete [] copy;
1999 } else {
2000 sign = false;
2001 status = convertFromUnsignedParts(src, srcCount, rounding_mode);
2002 }
2003
2004 return status;
2005}
2006
Neil Boothccf596a2007-10-07 11:45:55 +00002007/* FIXME: should this just take a const APInt reference? */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002008APFloat::opStatus
Neil Boothccf596a2007-10-07 11:45:55 +00002009APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
2010 unsigned int width, bool isSigned,
2011 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002012{
Dale Johannesen910993e2007-09-21 22:09:37 +00002013 unsigned int partCount = partCountForBits(width);
Dale Johannesen910993e2007-09-21 22:09:37 +00002014 APInt api = APInt(width, partCount, parts);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002015
2016 sign = false;
Dale Johannesencce23a42007-09-30 18:17:01 +00002017 if(isSigned && APInt::tcExtractBit(parts, width - 1)) {
2018 sign = true;
2019 api = -api;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002020 }
2021
Neil Booth7a7bc0f2007-10-07 12:10:57 +00002022 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002023}
2024
2025APFloat::opStatus
2026APFloat::convertFromHexadecimalString(const char *p,
Neil Booth4f881702007-09-26 21:33:42 +00002027 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002028{
2029 lostFraction lost_fraction;
2030 integerPart *significand;
2031 unsigned int bitPos, partsCount;
2032 const char *dot, *firstSignificantDigit;
2033
2034 zeroSignificand();
2035 exponent = 0;
2036 category = fcNormal;
2037
2038 significand = significandParts();
2039 partsCount = partCount();
2040 bitPos = partsCount * integerPartWidth;
2041
Neil Booth33d4c922007-10-07 08:51:21 +00002042 /* Skip leading zeroes and any (hexa)decimal point. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002043 p = skipLeadingZeroesAndAnyDot(p, &dot);
2044 firstSignificantDigit = p;
2045
2046 for(;;) {
Dale Johannesen386f3e92008-05-14 22:53:25 +00002047 integerPart hex_value;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002048
2049 if(*p == '.') {
2050 assert(dot == 0);
2051 dot = p++;
2052 }
2053
2054 hex_value = hexDigitValue(*p);
2055 if(hex_value == -1U) {
2056 lost_fraction = lfExactlyZero;
2057 break;
2058 }
2059
2060 p++;
2061
2062 /* Store the number whilst 4-bit nibbles remain. */
2063 if(bitPos) {
2064 bitPos -= 4;
2065 hex_value <<= bitPos % integerPartWidth;
2066 significand[bitPos / integerPartWidth] |= hex_value;
2067 } else {
2068 lost_fraction = trailingHexadecimalFraction(p, hex_value);
2069 while(hexDigitValue(*p) != -1U)
Neil Booth4f881702007-09-26 21:33:42 +00002070 p++;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002071 break;
2072 }
2073 }
2074
2075 /* Hex floats require an exponent but not a hexadecimal point. */
2076 assert(*p == 'p' || *p == 'P');
2077
2078 /* Ignore the exponent if we are zero. */
2079 if(p != firstSignificantDigit) {
2080 int expAdjustment;
2081
2082 /* Implicit hexadecimal point? */
2083 if(!dot)
2084 dot = p;
2085
2086 /* Calculate the exponent adjustment implicit in the number of
2087 significant digits. */
Evan Cheng48e8c802008-05-02 21:15:08 +00002088 expAdjustment = static_cast<int>(dot - firstSignificantDigit);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002089 if(expAdjustment < 0)
2090 expAdjustment++;
2091 expAdjustment = expAdjustment * 4 - 1;
2092
2093 /* Adjust for writing the significand starting at the most
2094 significant nibble. */
2095 expAdjustment += semantics->precision;
2096 expAdjustment -= partsCount * integerPartWidth;
2097
2098 /* Adjust for the given exponent. */
2099 exponent = totalExponent(p, expAdjustment);
2100 }
2101
2102 return normalize(rounding_mode, lost_fraction);
2103}
2104
2105APFloat::opStatus
Neil Booth96c74712007-10-12 16:02:31 +00002106APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
2107 unsigned sigPartCount, int exp,
2108 roundingMode rounding_mode)
2109{
2110 unsigned int parts, pow5PartCount;
Neil Boothcaf19d72007-10-14 10:29:28 +00002111 fltSemantics calcSemantics = { 32767, -32767, 0, true };
Neil Booth96c74712007-10-12 16:02:31 +00002112 integerPart pow5Parts[maxPowerOfFiveParts];
2113 bool isNearest;
2114
2115 isNearest = (rounding_mode == rmNearestTiesToEven
2116 || rounding_mode == rmNearestTiesToAway);
2117
2118 parts = partCountForBits(semantics->precision + 11);
2119
2120 /* Calculate pow(5, abs(exp)). */
2121 pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
2122
2123 for (;; parts *= 2) {
2124 opStatus sigStatus, powStatus;
2125 unsigned int excessPrecision, truncatedBits;
2126
2127 calcSemantics.precision = parts * integerPartWidth - 1;
2128 excessPrecision = calcSemantics.precision - semantics->precision;
2129 truncatedBits = excessPrecision;
2130
2131 APFloat decSig(calcSemantics, fcZero, sign);
2132 APFloat pow5(calcSemantics, fcZero, false);
2133
2134 sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
2135 rmNearestTiesToEven);
2136 powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
2137 rmNearestTiesToEven);
2138 /* Add exp, as 10^n = 5^n * 2^n. */
2139 decSig.exponent += exp;
2140
2141 lostFraction calcLostFraction;
Evan Cheng48e8c802008-05-02 21:15:08 +00002142 integerPart HUerr, HUdistance;
2143 unsigned int powHUerr;
Neil Booth96c74712007-10-12 16:02:31 +00002144
2145 if (exp >= 0) {
2146 /* multiplySignificand leaves the precision-th bit set to 1. */
2147 calcLostFraction = decSig.multiplySignificand(pow5, NULL);
2148 powHUerr = powStatus != opOK;
2149 } else {
2150 calcLostFraction = decSig.divideSignificand(pow5);
2151 /* Denormal numbers have less precision. */
2152 if (decSig.exponent < semantics->minExponent) {
2153 excessPrecision += (semantics->minExponent - decSig.exponent);
2154 truncatedBits = excessPrecision;
2155 if (excessPrecision > calcSemantics.precision)
2156 excessPrecision = calcSemantics.precision;
2157 }
2158 /* Extra half-ulp lost in reciprocal of exponent. */
Evan Cheng48e8c802008-05-02 21:15:08 +00002159 powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
Neil Booth96c74712007-10-12 16:02:31 +00002160 }
2161
2162 /* Both multiplySignificand and divideSignificand return the
2163 result with the integer bit set. */
2164 assert (APInt::tcExtractBit
2165 (decSig.significandParts(), calcSemantics.precision - 1) == 1);
2166
2167 HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
2168 powHUerr);
2169 HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
2170 excessPrecision, isNearest);
2171
2172 /* Are we guaranteed to round correctly if we truncate? */
2173 if (HUdistance >= HUerr) {
2174 APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
2175 calcSemantics.precision - excessPrecision,
2176 excessPrecision);
2177 /* Take the exponent of decSig. If we tcExtract-ed less bits
2178 above we must adjust our exponent to compensate for the
2179 implicit right shift. */
2180 exponent = (decSig.exponent + semantics->precision
2181 - (calcSemantics.precision - excessPrecision));
2182 calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
2183 decSig.partCount(),
2184 truncatedBits);
2185 return normalize(rounding_mode, calcLostFraction);
2186 }
2187 }
2188}
2189
2190APFloat::opStatus
2191APFloat::convertFromDecimalString(const char *p, roundingMode rounding_mode)
2192{
Neil Booth1870f292007-10-14 10:16:12 +00002193 decimalInfo D;
Neil Booth96c74712007-10-12 16:02:31 +00002194 opStatus fs;
2195
Neil Booth1870f292007-10-14 10:16:12 +00002196 /* Scan the text. */
2197 interpretDecimal(p, &D);
Neil Booth96c74712007-10-12 16:02:31 +00002198
Neil Booth686700e2007-10-15 15:00:55 +00002199 /* Handle the quick cases. First the case of no significant digits,
2200 i.e. zero, and then exponents that are obviously too large or too
2201 small. Writing L for log 10 / log 2, a number d.ddddd*10^exp
2202 definitely overflows if
2203
2204 (exp - 1) * L >= maxExponent
2205
2206 and definitely underflows to zero where
2207
2208 (exp + 1) * L <= minExponent - precision
2209
2210 With integer arithmetic the tightest bounds for L are
2211
2212 93/28 < L < 196/59 [ numerator <= 256 ]
2213 42039/12655 < L < 28738/8651 [ numerator <= 65536 ]
2214 */
2215
Neil Boothcc233592007-12-05 13:06:04 +00002216 if (decDigitValue(*D.firstSigDigit) >= 10U) {
Neil Booth96c74712007-10-12 16:02:31 +00002217 category = fcZero;
2218 fs = opOK;
Neil Booth686700e2007-10-15 15:00:55 +00002219 } else if ((D.normalizedExponent + 1) * 28738
2220 <= 8651 * (semantics->minExponent - (int) semantics->precision)) {
2221 /* Underflow to zero and round. */
2222 zeroSignificand();
2223 fs = normalize(rounding_mode, lfLessThanHalf);
2224 } else if ((D.normalizedExponent - 1) * 42039
2225 >= 12655 * semantics->maxExponent) {
2226 /* Overflow and round. */
2227 fs = handleOverflow(rounding_mode);
Neil Booth96c74712007-10-12 16:02:31 +00002228 } else {
Neil Booth1870f292007-10-14 10:16:12 +00002229 integerPart *decSignificand;
2230 unsigned int partCount;
Neil Booth96c74712007-10-12 16:02:31 +00002231
Neil Booth1870f292007-10-14 10:16:12 +00002232 /* A tight upper bound on number of bits required to hold an
Neil Booth686700e2007-10-15 15:00:55 +00002233 N-digit decimal integer is N * 196 / 59. Allocate enough space
Neil Booth1870f292007-10-14 10:16:12 +00002234 to hold the full significand, and an extra part required by
2235 tcMultiplyPart. */
Evan Cheng48e8c802008-05-02 21:15:08 +00002236 partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
Neil Booth686700e2007-10-15 15:00:55 +00002237 partCount = partCountForBits(1 + 196 * partCount / 59);
Neil Booth1870f292007-10-14 10:16:12 +00002238 decSignificand = new integerPart[partCount + 1];
2239 partCount = 0;
Neil Booth96c74712007-10-12 16:02:31 +00002240
Neil Booth1870f292007-10-14 10:16:12 +00002241 /* Convert to binary efficiently - we do almost all multiplication
2242 in an integerPart. When this would overflow do we do a single
2243 bignum multiplication, and then revert again to multiplication
2244 in an integerPart. */
2245 do {
2246 integerPart decValue, val, multiplier;
2247
2248 val = 0;
2249 multiplier = 1;
2250
2251 do {
2252 if (*p == '.')
2253 p++;
2254
2255 decValue = decDigitValue(*p++);
2256 multiplier *= 10;
2257 val = val * 10 + decValue;
2258 /* The maximum number that can be multiplied by ten with any
2259 digit added without overflowing an integerPart. */
2260 } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
2261
2262 /* Multiply out the current part. */
2263 APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
2264 partCount, partCount + 1, false);
2265
2266 /* If we used another part (likely but not guaranteed), increase
2267 the count. */
2268 if (decSignificand[partCount])
2269 partCount++;
2270 } while (p <= D.lastSigDigit);
Neil Booth96c74712007-10-12 16:02:31 +00002271
Neil Booth43a4b282007-11-01 22:51:07 +00002272 category = fcNormal;
Neil Booth96c74712007-10-12 16:02:31 +00002273 fs = roundSignificandWithExponent(decSignificand, partCount,
Neil Booth1870f292007-10-14 10:16:12 +00002274 D.exponent, rounding_mode);
Neil Booth96c74712007-10-12 16:02:31 +00002275
Neil Booth1870f292007-10-14 10:16:12 +00002276 delete [] decSignificand;
2277 }
Neil Booth96c74712007-10-12 16:02:31 +00002278
2279 return fs;
2280}
2281
2282APFloat::opStatus
Neil Booth4f881702007-09-26 21:33:42 +00002283APFloat::convertFromString(const char *p, roundingMode rounding_mode)
2284{
Neil Boothcaf19d72007-10-14 10:29:28 +00002285 assertArithmeticOK(*semantics);
2286
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002287 /* Handle a leading minus sign. */
2288 if(*p == '-')
2289 sign = 1, p++;
2290 else
2291 sign = 0;
2292
2293 if(p[0] == '0' && (p[1] == 'x' || p[1] == 'X'))
2294 return convertFromHexadecimalString(p + 2, rounding_mode);
Bill Wendlingb7c0d942008-11-27 08:00:12 +00002295
2296 return convertFromDecimalString(p, rounding_mode);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002297}
Dale Johannesen343e7702007-08-24 00:56:33 +00002298
Neil Bootha30b0ee2007-10-03 22:26:02 +00002299/* Write out a hexadecimal representation of the floating point value
2300 to DST, which must be of sufficient size, in the C99 form
2301 [-]0xh.hhhhp[+-]d. Return the number of characters written,
2302 excluding the terminating NUL.
2303
2304 If UPPERCASE, the output is in upper case, otherwise in lower case.
2305
2306 HEXDIGITS digits appear altogether, rounding the value if
2307 necessary. If HEXDIGITS is 0, the minimal precision to display the
2308 number precisely is used instead. If nothing would appear after
2309 the decimal point it is suppressed.
2310
2311 The decimal exponent is always printed and has at least one digit.
2312 Zero values display an exponent of zero. Infinities and NaNs
2313 appear as "infinity" or "nan" respectively.
2314
2315 The above rules are as specified by C99. There is ambiguity about
2316 what the leading hexadecimal digit should be. This implementation
2317 uses whatever is necessary so that the exponent is displayed as
2318 stored. This implies the exponent will fall within the IEEE format
2319 range, and the leading hexadecimal digit will be 0 (for denormals),
2320 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
2321 any other digits zero).
2322*/
2323unsigned int
2324APFloat::convertToHexString(char *dst, unsigned int hexDigits,
2325 bool upperCase, roundingMode rounding_mode) const
2326{
2327 char *p;
2328
Neil Boothcaf19d72007-10-14 10:29:28 +00002329 assertArithmeticOK(*semantics);
2330
Neil Bootha30b0ee2007-10-03 22:26:02 +00002331 p = dst;
2332 if (sign)
2333 *dst++ = '-';
2334
2335 switch (category) {
2336 case fcInfinity:
2337 memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
2338 dst += sizeof infinityL - 1;
2339 break;
2340
2341 case fcNaN:
2342 memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
2343 dst += sizeof NaNU - 1;
2344 break;
2345
2346 case fcZero:
2347 *dst++ = '0';
2348 *dst++ = upperCase ? 'X': 'x';
2349 *dst++ = '0';
2350 if (hexDigits > 1) {
2351 *dst++ = '.';
2352 memset (dst, '0', hexDigits - 1);
2353 dst += hexDigits - 1;
2354 }
2355 *dst++ = upperCase ? 'P': 'p';
2356 *dst++ = '0';
2357 break;
2358
2359 case fcNormal:
2360 dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
2361 break;
2362 }
2363
2364 *dst = 0;
2365
Evan Cheng48e8c802008-05-02 21:15:08 +00002366 return static_cast<unsigned int>(dst - p);
Neil Bootha30b0ee2007-10-03 22:26:02 +00002367}
2368
2369/* Does the hard work of outputting the correctly rounded hexadecimal
2370 form of a normal floating point number with the specified number of
2371 hexadecimal digits. If HEXDIGITS is zero the minimum number of
2372 digits necessary to print the value precisely is output. */
2373char *
2374APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
2375 bool upperCase,
2376 roundingMode rounding_mode) const
2377{
2378 unsigned int count, valueBits, shift, partsCount, outputDigits;
2379 const char *hexDigitChars;
2380 const integerPart *significand;
2381 char *p;
2382 bool roundUp;
2383
2384 *dst++ = '0';
2385 *dst++ = upperCase ? 'X': 'x';
2386
2387 roundUp = false;
2388 hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
2389
2390 significand = significandParts();
2391 partsCount = partCount();
2392
2393 /* +3 because the first digit only uses the single integer bit, so
2394 we have 3 virtual zero most-significant-bits. */
2395 valueBits = semantics->precision + 3;
2396 shift = integerPartWidth - valueBits % integerPartWidth;
2397
2398 /* The natural number of digits required ignoring trailing
2399 insignificant zeroes. */
2400 outputDigits = (valueBits - significandLSB () + 3) / 4;
2401
2402 /* hexDigits of zero means use the required number for the
2403 precision. Otherwise, see if we are truncating. If we are,
Neil Booth978661d2007-10-06 00:24:48 +00002404 find out if we need to round away from zero. */
Neil Bootha30b0ee2007-10-03 22:26:02 +00002405 if (hexDigits) {
2406 if (hexDigits < outputDigits) {
2407 /* We are dropping non-zero bits, so need to check how to round.
2408 "bits" is the number of dropped bits. */
2409 unsigned int bits;
2410 lostFraction fraction;
2411
2412 bits = valueBits - hexDigits * 4;
2413 fraction = lostFractionThroughTruncation (significand, partsCount, bits);
2414 roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
2415 }
2416 outputDigits = hexDigits;
2417 }
2418
2419 /* Write the digits consecutively, and start writing in the location
2420 of the hexadecimal point. We move the most significant digit
2421 left and add the hexadecimal point later. */
2422 p = ++dst;
2423
2424 count = (valueBits + integerPartWidth - 1) / integerPartWidth;
2425
2426 while (outputDigits && count) {
2427 integerPart part;
2428
2429 /* Put the most significant integerPartWidth bits in "part". */
2430 if (--count == partsCount)
2431 part = 0; /* An imaginary higher zero part. */
2432 else
2433 part = significand[count] << shift;
2434
2435 if (count && shift)
2436 part |= significand[count - 1] >> (integerPartWidth - shift);
2437
2438 /* Convert as much of "part" to hexdigits as we can. */
2439 unsigned int curDigits = integerPartWidth / 4;
2440
2441 if (curDigits > outputDigits)
2442 curDigits = outputDigits;
2443 dst += partAsHex (dst, part, curDigits, hexDigitChars);
2444 outputDigits -= curDigits;
2445 }
2446
2447 if (roundUp) {
2448 char *q = dst;
2449
2450 /* Note that hexDigitChars has a trailing '0'. */
2451 do {
2452 q--;
2453 *q = hexDigitChars[hexDigitValue (*q) + 1];
Neil Booth978661d2007-10-06 00:24:48 +00002454 } while (*q == '0');
2455 assert (q >= p);
Neil Bootha30b0ee2007-10-03 22:26:02 +00002456 } else {
2457 /* Add trailing zeroes. */
2458 memset (dst, '0', outputDigits);
2459 dst += outputDigits;
2460 }
2461
2462 /* Move the most significant digit to before the point, and if there
2463 is something after the decimal point add it. This must come
2464 after rounding above. */
2465 p[-1] = p[0];
2466 if (dst -1 == p)
2467 dst--;
2468 else
2469 p[0] = '.';
2470
2471 /* Finally output the exponent. */
2472 *dst++ = upperCase ? 'P': 'p';
2473
Neil Booth92f7e8d2007-10-06 07:29:25 +00002474 return writeSignedDecimal (dst, exponent);
Neil Bootha30b0ee2007-10-03 22:26:02 +00002475}
2476
Dale Johannesen343e7702007-08-24 00:56:33 +00002477// For good performance it is desirable for different APFloats
2478// to produce different integers.
2479uint32_t
Neil Booth4f881702007-09-26 21:33:42 +00002480APFloat::getHashValue() const
2481{
Dale Johannesen343e7702007-08-24 00:56:33 +00002482 if (category==fcZero) return sign<<8 | semantics->precision ;
2483 else if (category==fcInfinity) return sign<<9 | semantics->precision;
Dale Johanneseneaf08942007-08-31 04:03:46 +00002484 else if (category==fcNaN) return 1<<10 | semantics->precision;
Dale Johannesen343e7702007-08-24 00:56:33 +00002485 else {
2486 uint32_t hash = sign<<11 | semantics->precision | exponent<<12;
2487 const integerPart* p = significandParts();
2488 for (int i=partCount(); i>0; i--, p++)
Evan Cheng48e8c802008-05-02 21:15:08 +00002489 hash ^= ((uint32_t)*p) ^ (uint32_t)((*p)>>32);
Dale Johannesen343e7702007-08-24 00:56:33 +00002490 return hash;
2491 }
2492}
2493
2494// Conversion from APFloat to/from host float/double. It may eventually be
2495// possible to eliminate these and have everybody deal with APFloats, but that
2496// will take a while. This approach will not easily extend to long double.
Dale Johannesena72a5a02007-09-20 23:47:58 +00002497// Current implementation requires integerPartWidth==64, which is correct at
2498// the moment but could be made more general.
Dale Johannesen343e7702007-08-24 00:56:33 +00002499
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002500// Denormals have exponent minExponent in APFloat, but minExponent-1 in
Dale Johannesena72a5a02007-09-20 23:47:58 +00002501// the actual IEEE respresentations. We compensate for that here.
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002502
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002503APInt
Neil Booth4f881702007-09-26 21:33:42 +00002504APFloat::convertF80LongDoubleAPFloatToAPInt() const
2505{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002506 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
Dale Johannesena72a5a02007-09-20 23:47:58 +00002507 assert (partCount()==2);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002508
2509 uint64_t myexponent, mysignificand;
2510
2511 if (category==fcNormal) {
2512 myexponent = exponent+16383; //bias
Dale Johannesena72a5a02007-09-20 23:47:58 +00002513 mysignificand = significandParts()[0];
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002514 if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
2515 myexponent = 0; // denormal
2516 } else if (category==fcZero) {
2517 myexponent = 0;
2518 mysignificand = 0;
2519 } else if (category==fcInfinity) {
2520 myexponent = 0x7fff;
2521 mysignificand = 0x8000000000000000ULL;
Chris Lattnera11ef822007-10-06 06:13:42 +00002522 } else {
2523 assert(category == fcNaN && "Unknown category");
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002524 myexponent = 0x7fff;
Dale Johannesena72a5a02007-09-20 23:47:58 +00002525 mysignificand = significandParts()[0];
Chris Lattnera11ef822007-10-06 06:13:42 +00002526 }
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002527
2528 uint64_t words[2];
Evan Cheng48e8c802008-05-02 21:15:08 +00002529 words[0] = ((uint64_t)(sign & 1) << 63) |
2530 ((myexponent & 0x7fffLL) << 48) |
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002531 ((mysignificand >>16) & 0xffffffffffffLL);
2532 words[1] = mysignificand & 0xffff;
Chris Lattnera11ef822007-10-06 06:13:42 +00002533 return APInt(80, 2, words);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002534}
2535
2536APInt
Dale Johannesena471c2e2007-10-11 18:07:22 +00002537APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
2538{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002539 assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
Dale Johannesena471c2e2007-10-11 18:07:22 +00002540 assert (partCount()==2);
2541
2542 uint64_t myexponent, mysignificand, myexponent2, mysignificand2;
2543
2544 if (category==fcNormal) {
2545 myexponent = exponent + 1023; //bias
2546 myexponent2 = exponent2 + 1023;
2547 mysignificand = significandParts()[0];
2548 mysignificand2 = significandParts()[1];
2549 if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2550 myexponent = 0; // denormal
2551 if (myexponent2==1 && !(mysignificand2 & 0x10000000000000LL))
2552 myexponent2 = 0; // denormal
2553 } else if (category==fcZero) {
2554 myexponent = 0;
2555 mysignificand = 0;
2556 myexponent2 = 0;
2557 mysignificand2 = 0;
2558 } else if (category==fcInfinity) {
2559 myexponent = 0x7ff;
2560 myexponent2 = 0;
2561 mysignificand = 0;
2562 mysignificand2 = 0;
2563 } else {
2564 assert(category == fcNaN && "Unknown category");
2565 myexponent = 0x7ff;
2566 mysignificand = significandParts()[0];
2567 myexponent2 = exponent2;
2568 mysignificand2 = significandParts()[1];
2569 }
2570
2571 uint64_t words[2];
Evan Cheng48e8c802008-05-02 21:15:08 +00002572 words[0] = ((uint64_t)(sign & 1) << 63) |
Dale Johannesena471c2e2007-10-11 18:07:22 +00002573 ((myexponent & 0x7ff) << 52) |
2574 (mysignificand & 0xfffffffffffffLL);
Evan Cheng48e8c802008-05-02 21:15:08 +00002575 words[1] = ((uint64_t)(sign2 & 1) << 63) |
Dale Johannesena471c2e2007-10-11 18:07:22 +00002576 ((myexponent2 & 0x7ff) << 52) |
2577 (mysignificand2 & 0xfffffffffffffLL);
2578 return APInt(128, 2, words);
2579}
2580
2581APInt
Neil Booth4f881702007-09-26 21:33:42 +00002582APFloat::convertDoubleAPFloatToAPInt() const
2583{
Dan Gohmancb648f92007-09-14 20:08:19 +00002584 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
Dale Johannesen343e7702007-08-24 00:56:33 +00002585 assert (partCount()==1);
2586
Dale Johanneseneaf08942007-08-31 04:03:46 +00002587 uint64_t myexponent, mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002588
2589 if (category==fcNormal) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002590 myexponent = exponent+1023; //bias
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002591 mysignificand = *significandParts();
2592 if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2593 myexponent = 0; // denormal
Dale Johannesen343e7702007-08-24 00:56:33 +00002594 } else if (category==fcZero) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002595 myexponent = 0;
2596 mysignificand = 0;
2597 } else if (category==fcInfinity) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002598 myexponent = 0x7ff;
2599 mysignificand = 0;
Chris Lattnera11ef822007-10-06 06:13:42 +00002600 } else {
2601 assert(category == fcNaN && "Unknown category!");
Dale Johannesen343e7702007-08-24 00:56:33 +00002602 myexponent = 0x7ff;
Dale Johanneseneaf08942007-08-31 04:03:46 +00002603 mysignificand = *significandParts();
Chris Lattnera11ef822007-10-06 06:13:42 +00002604 }
Dale Johannesen343e7702007-08-24 00:56:33 +00002605
Evan Cheng48e8c802008-05-02 21:15:08 +00002606 return APInt(64, ((((uint64_t)(sign & 1) << 63) |
Chris Lattnera11ef822007-10-06 06:13:42 +00002607 ((myexponent & 0x7ff) << 52) |
2608 (mysignificand & 0xfffffffffffffLL))));
Dale Johannesen343e7702007-08-24 00:56:33 +00002609}
2610
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002611APInt
Neil Booth4f881702007-09-26 21:33:42 +00002612APFloat::convertFloatAPFloatToAPInt() const
2613{
Dan Gohmancb648f92007-09-14 20:08:19 +00002614 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
Dale Johannesen343e7702007-08-24 00:56:33 +00002615 assert (partCount()==1);
Neil Booth4f881702007-09-26 21:33:42 +00002616
Dale Johanneseneaf08942007-08-31 04:03:46 +00002617 uint32_t myexponent, mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002618
2619 if (category==fcNormal) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002620 myexponent = exponent+127; //bias
Evan Cheng48e8c802008-05-02 21:15:08 +00002621 mysignificand = (uint32_t)*significandParts();
Dale Johannesend0763b92007-11-17 01:02:27 +00002622 if (myexponent == 1 && !(mysignificand & 0x800000))
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002623 myexponent = 0; // denormal
Dale Johannesen343e7702007-08-24 00:56:33 +00002624 } else if (category==fcZero) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002625 myexponent = 0;
2626 mysignificand = 0;
2627 } else if (category==fcInfinity) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002628 myexponent = 0xff;
2629 mysignificand = 0;
Chris Lattnera11ef822007-10-06 06:13:42 +00002630 } else {
2631 assert(category == fcNaN && "Unknown category!");
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002632 myexponent = 0xff;
Evan Cheng48e8c802008-05-02 21:15:08 +00002633 mysignificand = (uint32_t)*significandParts();
Chris Lattnera11ef822007-10-06 06:13:42 +00002634 }
Dale Johannesen343e7702007-08-24 00:56:33 +00002635
Chris Lattnera11ef822007-10-06 06:13:42 +00002636 return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
2637 (mysignificand & 0x7fffff)));
Dale Johannesen343e7702007-08-24 00:56:33 +00002638}
2639
Dale Johannesena471c2e2007-10-11 18:07:22 +00002640// This function creates an APInt that is just a bit map of the floating
2641// point constant as it would appear in memory. It is not a conversion,
2642// and treating the result as a normal integer is unlikely to be useful.
2643
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002644APInt
Dale Johannesen7111b022008-10-09 18:53:47 +00002645APFloat::bitcastToAPInt() const
Neil Booth4f881702007-09-26 21:33:42 +00002646{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002647 if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002648 return convertFloatAPFloatToAPInt();
Chris Lattnera11ef822007-10-06 06:13:42 +00002649
Dan Gohmanb10abe12008-01-29 12:08:20 +00002650 if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002651 return convertDoubleAPFloatToAPInt();
Neil Booth4f881702007-09-26 21:33:42 +00002652
Dan Gohmanb10abe12008-01-29 12:08:20 +00002653 if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
Dale Johannesena471c2e2007-10-11 18:07:22 +00002654 return convertPPCDoubleDoubleAPFloatToAPInt();
2655
Dan Gohmanb10abe12008-01-29 12:08:20 +00002656 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
Chris Lattnera11ef822007-10-06 06:13:42 +00002657 "unknown format!");
2658 return convertF80LongDoubleAPFloatToAPInt();
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002659}
2660
Neil Booth4f881702007-09-26 21:33:42 +00002661float
2662APFloat::convertToFloat() const
2663{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002664 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
Dale Johannesen7111b022008-10-09 18:53:47 +00002665 APInt api = bitcastToAPInt();
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002666 return api.bitsToFloat();
2667}
2668
Neil Booth4f881702007-09-26 21:33:42 +00002669double
2670APFloat::convertToDouble() const
2671{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002672 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
Dale Johannesen7111b022008-10-09 18:53:47 +00002673 APInt api = bitcastToAPInt();
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002674 return api.bitsToDouble();
2675}
2676
Dale Johannesend3d8ce32008-10-06 18:22:29 +00002677/// Integer bit is explicit in this format. Intel hardware (387 and later)
2678/// does not support these bit patterns:
2679/// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
2680/// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
2681/// exponent = 0, integer bit 1 ("pseudodenormal")
2682/// exponent!=0 nor all 1's, integer bit 0 ("unnormal")
2683/// At the moment, the first two are treated as NaNs, the second two as Normal.
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002684void
Neil Booth4f881702007-09-26 21:33:42 +00002685APFloat::initFromF80LongDoubleAPInt(const APInt &api)
2686{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002687 assert(api.getBitWidth()==80);
2688 uint64_t i1 = api.getRawData()[0];
2689 uint64_t i2 = api.getRawData()[1];
2690 uint64_t myexponent = (i1 >> 48) & 0x7fff;
2691 uint64_t mysignificand = ((i1 << 16) & 0xffffffffffff0000ULL) |
2692 (i2 & 0xffff);
2693
2694 initialize(&APFloat::x87DoubleExtended);
Dale Johannesena72a5a02007-09-20 23:47:58 +00002695 assert(partCount()==2);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002696
Evan Cheng48e8c802008-05-02 21:15:08 +00002697 sign = static_cast<unsigned int>(i1>>63);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002698 if (myexponent==0 && mysignificand==0) {
2699 // exponent, significand meaningless
2700 category = fcZero;
2701 } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
2702 // exponent, significand meaningless
2703 category = fcInfinity;
2704 } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
2705 // exponent meaningless
2706 category = fcNaN;
Dale Johannesena72a5a02007-09-20 23:47:58 +00002707 significandParts()[0] = mysignificand;
2708 significandParts()[1] = 0;
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002709 } else {
2710 category = fcNormal;
2711 exponent = myexponent - 16383;
Dale Johannesena72a5a02007-09-20 23:47:58 +00002712 significandParts()[0] = mysignificand;
2713 significandParts()[1] = 0;
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002714 if (myexponent==0) // denormal
2715 exponent = -16382;
Neil Booth4f881702007-09-26 21:33:42 +00002716 }
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002717}
2718
2719void
Dale Johannesena471c2e2007-10-11 18:07:22 +00002720APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
2721{
2722 assert(api.getBitWidth()==128);
2723 uint64_t i1 = api.getRawData()[0];
2724 uint64_t i2 = api.getRawData()[1];
2725 uint64_t myexponent = (i1 >> 52) & 0x7ff;
2726 uint64_t mysignificand = i1 & 0xfffffffffffffLL;
2727 uint64_t myexponent2 = (i2 >> 52) & 0x7ff;
2728 uint64_t mysignificand2 = i2 & 0xfffffffffffffLL;
2729
2730 initialize(&APFloat::PPCDoubleDouble);
2731 assert(partCount()==2);
2732
Evan Cheng48e8c802008-05-02 21:15:08 +00002733 sign = static_cast<unsigned int>(i1>>63);
2734 sign2 = static_cast<unsigned int>(i2>>63);
Dale Johannesena471c2e2007-10-11 18:07:22 +00002735 if (myexponent==0 && mysignificand==0) {
2736 // exponent, significand meaningless
2737 // exponent2 and significand2 are required to be 0; we don't check
2738 category = fcZero;
2739 } else if (myexponent==0x7ff && mysignificand==0) {
2740 // exponent, significand meaningless
2741 // exponent2 and significand2 are required to be 0; we don't check
2742 category = fcInfinity;
2743 } else if (myexponent==0x7ff && mysignificand!=0) {
2744 // exponent meaningless. So is the whole second word, but keep it
2745 // for determinism.
2746 category = fcNaN;
2747 exponent2 = myexponent2;
2748 significandParts()[0] = mysignificand;
2749 significandParts()[1] = mysignificand2;
2750 } else {
2751 category = fcNormal;
2752 // Note there is no category2; the second word is treated as if it is
2753 // fcNormal, although it might be something else considered by itself.
2754 exponent = myexponent - 1023;
2755 exponent2 = myexponent2 - 1023;
2756 significandParts()[0] = mysignificand;
2757 significandParts()[1] = mysignificand2;
2758 if (myexponent==0) // denormal
2759 exponent = -1022;
2760 else
2761 significandParts()[0] |= 0x10000000000000LL; // integer bit
2762 if (myexponent2==0)
2763 exponent2 = -1022;
2764 else
2765 significandParts()[1] |= 0x10000000000000LL; // integer bit
2766 }
2767}
2768
2769void
Neil Booth4f881702007-09-26 21:33:42 +00002770APFloat::initFromDoubleAPInt(const APInt &api)
2771{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002772 assert(api.getBitWidth()==64);
2773 uint64_t i = *api.getRawData();
Dale Johannesend3b51fd2007-08-24 05:08:11 +00002774 uint64_t myexponent = (i >> 52) & 0x7ff;
2775 uint64_t mysignificand = i & 0xfffffffffffffLL;
2776
Dale Johannesen343e7702007-08-24 00:56:33 +00002777 initialize(&APFloat::IEEEdouble);
Dale Johannesen343e7702007-08-24 00:56:33 +00002778 assert(partCount()==1);
2779
Evan Cheng48e8c802008-05-02 21:15:08 +00002780 sign = static_cast<unsigned int>(i>>63);
Dale Johannesen343e7702007-08-24 00:56:33 +00002781 if (myexponent==0 && mysignificand==0) {
2782 // exponent, significand meaningless
2783 category = fcZero;
Dale Johannesen343e7702007-08-24 00:56:33 +00002784 } else if (myexponent==0x7ff && mysignificand==0) {
2785 // exponent, significand meaningless
2786 category = fcInfinity;
Dale Johanneseneaf08942007-08-31 04:03:46 +00002787 } else if (myexponent==0x7ff && mysignificand!=0) {
2788 // exponent meaningless
2789 category = fcNaN;
2790 *significandParts() = mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002791 } else {
Dale Johannesen343e7702007-08-24 00:56:33 +00002792 category = fcNormal;
2793 exponent = myexponent - 1023;
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002794 *significandParts() = mysignificand;
2795 if (myexponent==0) // denormal
2796 exponent = -1022;
2797 else
2798 *significandParts() |= 0x10000000000000LL; // integer bit
Neil Booth4f881702007-09-26 21:33:42 +00002799 }
Dale Johannesen343e7702007-08-24 00:56:33 +00002800}
2801
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002802void
Neil Booth4f881702007-09-26 21:33:42 +00002803APFloat::initFromFloatAPInt(const APInt & api)
2804{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002805 assert(api.getBitWidth()==32);
2806 uint32_t i = (uint32_t)*api.getRawData();
Dale Johannesend3b51fd2007-08-24 05:08:11 +00002807 uint32_t myexponent = (i >> 23) & 0xff;
2808 uint32_t mysignificand = i & 0x7fffff;
2809
Dale Johannesen343e7702007-08-24 00:56:33 +00002810 initialize(&APFloat::IEEEsingle);
Dale Johannesen343e7702007-08-24 00:56:33 +00002811 assert(partCount()==1);
2812
Dale Johanneseneaf08942007-08-31 04:03:46 +00002813 sign = i >> 31;
Dale Johannesen343e7702007-08-24 00:56:33 +00002814 if (myexponent==0 && mysignificand==0) {
2815 // exponent, significand meaningless
2816 category = fcZero;
Dale Johannesen343e7702007-08-24 00:56:33 +00002817 } else if (myexponent==0xff && mysignificand==0) {
2818 // exponent, significand meaningless
2819 category = fcInfinity;
Dale Johannesen902ff942007-09-25 17:25:00 +00002820 } else if (myexponent==0xff && mysignificand!=0) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002821 // sign, exponent, significand meaningless
Dale Johanneseneaf08942007-08-31 04:03:46 +00002822 category = fcNaN;
2823 *significandParts() = mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002824 } else {
2825 category = fcNormal;
Dale Johannesen343e7702007-08-24 00:56:33 +00002826 exponent = myexponent - 127; //bias
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002827 *significandParts() = mysignificand;
2828 if (myexponent==0) // denormal
2829 exponent = -126;
2830 else
2831 *significandParts() |= 0x800000; // integer bit
Dale Johannesen343e7702007-08-24 00:56:33 +00002832 }
2833}
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002834
2835/// Treat api as containing the bits of a floating point number. Currently
Dale Johannesena471c2e2007-10-11 18:07:22 +00002836/// we infer the floating point type from the size of the APInt. The
2837/// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
2838/// when the size is anything else).
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002839void
Dale Johannesena471c2e2007-10-11 18:07:22 +00002840APFloat::initFromAPInt(const APInt& api, bool isIEEE)
Neil Booth4f881702007-09-26 21:33:42 +00002841{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002842 if (api.getBitWidth() == 32)
2843 return initFromFloatAPInt(api);
2844 else if (api.getBitWidth()==64)
2845 return initFromDoubleAPInt(api);
2846 else if (api.getBitWidth()==80)
2847 return initFromF80LongDoubleAPInt(api);
Dale Johannesena471c2e2007-10-11 18:07:22 +00002848 else if (api.getBitWidth()==128 && !isIEEE)
2849 return initFromPPCDoubleDoubleAPInt(api);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002850 else
2851 assert(0);
2852}
2853
Dale Johannesena471c2e2007-10-11 18:07:22 +00002854APFloat::APFloat(const APInt& api, bool isIEEE)
Neil Booth4f881702007-09-26 21:33:42 +00002855{
Dale Johannesena471c2e2007-10-11 18:07:22 +00002856 initFromAPInt(api, isIEEE);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002857}
2858
Neil Booth4f881702007-09-26 21:33:42 +00002859APFloat::APFloat(float f)
2860{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002861 APInt api = APInt(32, 0);
2862 initFromAPInt(api.floatToBits(f));
2863}
2864
Neil Booth4f881702007-09-26 21:33:42 +00002865APFloat::APFloat(double d)
2866{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002867 APInt api = APInt(64, 0);
2868 initFromAPInt(api.doubleToBits(d));
2869}