blob: 37572aaefd4980c25b1a0a5a55f17a28ff14539b [file] [log] [blame]
Misha Brukman91b5ca82004-07-26 18:45:48 +00001//===-- X86ISelSimple.cpp - A simple instruction selector for x86 ---------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3e130a22003-01-13 00:32:26 +000010// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "X86InstrBuilder.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000016#include "X86InstrInfo.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000020#include "llvm/Instructions.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000021#include "llvm/Pass.h"
Chris Lattner30483732004-06-20 07:49:54 +000022#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000023#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner341a9372002-10-29 17:43:55 +000025#include "llvm/CodeGen/MachineFunction.h"
Chris Lattner94af4142002-12-25 05:13:53 +000026#include "llvm/CodeGen/SSARegMap.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000027#include "llvm/Target/MRegisterInfo.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000028#include "llvm/Target/TargetMachine.h"
Chris Lattner3f1e8e72004-02-22 07:04:00 +000029#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000030#include "llvm/Support/InstVisitor.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000031#include "llvm/ADT/Statistic.h"
Chris Lattner44827152003-12-28 09:47:19 +000032using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000033
Chris Lattner986618e2004-02-22 19:47:26 +000034namespace {
35 Statistic<>
36 NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
Chris Lattner427aeb42004-04-11 19:21:59 +000037
38 /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
39 /// Representation.
40 ///
41 enum TypeClass {
42 cByte, cShort, cInt, cFP, cLong
43 };
44}
45
46/// getClass - Turn a primitive type into a "class" number which is based on the
47/// size of the type, and whether or not it is floating point.
48///
49static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerf70c22b2004-06-17 18:19:28 +000050 switch (Ty->getTypeID()) {
Chris Lattner427aeb42004-04-11 19:21:59 +000051 case Type::SByteTyID:
52 case Type::UByteTyID: return cByte; // Byte operands are class #0
53 case Type::ShortTyID:
54 case Type::UShortTyID: return cShort; // Short operands are class #1
55 case Type::IntTyID:
56 case Type::UIntTyID:
57 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
58
59 case Type::FloatTyID:
60 case Type::DoubleTyID: return cFP; // Floating Point is #3
61
62 case Type::LongTyID:
63 case Type::ULongTyID: return cLong; // Longs are class #4
64 default:
65 assert(0 && "Invalid type to getClass!");
66 return cByte; // not reached
67 }
68}
69
70// getClassB - Just like getClass, but treat boolean values as bytes.
71static inline TypeClass getClassB(const Type *Ty) {
72 if (Ty == Type::BoolTy) return cByte;
73 return getClass(Ty);
Chris Lattner986618e2004-02-22 19:47:26 +000074}
Chris Lattnercf93cdd2004-01-30 22:13:44 +000075
Chris Lattner72614082002-10-25 22:55:53 +000076namespace {
Misha Brukmaneae1bf12004-09-21 18:21:21 +000077 struct X86ISel : public FunctionPass, InstVisitor<X86ISel> {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000078 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000079 MachineFunction *F; // The function we are compiling into
80 MachineBasicBlock *BB; // The current MBB we are compiling
81 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner0e5b79c2004-02-15 01:04:03 +000082 int ReturnAddressIndex; // FrameIndex for the return address
Chris Lattner72614082002-10-25 22:55:53 +000083
Chris Lattner72614082002-10-25 22:55:53 +000084 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
85
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 // MBBMap - Mapping between LLVM BB -> Machine BB
87 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
88
Chris Lattnercb2fd552004-05-13 07:40:27 +000089 // AllocaMap - Mapping from fixed sized alloca instructions to the
90 // FrameIndex for the alloca.
91 std::map<AllocaInst*, unsigned> AllocaMap;
92
Misha Brukmaneae1bf12004-09-21 18:21:21 +000093 X86ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000094
95 /// runOnFunction - Top level implementation of instruction selection for
96 /// the entire function.
97 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000098 bool runOnFunction(Function &Fn) {
Chris Lattner44827152003-12-28 09:47:19 +000099 // First pass over the function, lower any unknown intrinsic functions
100 // with the IntrinsicLowering class.
101 LowerUnknownIntrinsicFunctionCalls(Fn);
102
Chris Lattner36b36032002-10-29 23:40:58 +0000103 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000104
Chris Lattner065faeb2002-12-28 20:24:02 +0000105 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +0000106 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
107 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
108
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000109 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +0000110
Chris Lattner0e5b79c2004-02-15 01:04:03 +0000111 // Set up a frame object for the return address. This is used by the
112 // llvm.returnaddress & llvm.frameaddress intrinisics.
113 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
114
Chris Lattnerdbd73722003-05-06 21:32:22 +0000115 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000116 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000117
Chris Lattner333b2fa2002-12-13 10:09:43 +0000118 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000119 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000120
121 // Select the PHI nodes
122 SelectPHINodes();
123
Chris Lattner986618e2004-02-22 19:47:26 +0000124 // Insert the FP_REG_KILL instructions into blocks that need them.
125 InsertFPRegKills();
126
Chris Lattner72614082002-10-25 22:55:53 +0000127 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000128 MBBMap.clear();
Chris Lattnercb2fd552004-05-13 07:40:27 +0000129 AllocaMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000130 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +0000131 // We always build a machine code representation for the function
132 return true;
Chris Lattner72614082002-10-25 22:55:53 +0000133 }
134
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000135 virtual const char *getPassName() const {
136 return "X86 Simple Instruction Selection";
137 }
138
Chris Lattner72614082002-10-25 22:55:53 +0000139 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000140 /// block. This simply creates a new MachineBasicBlock to emit code into
141 /// and adds it to the current MachineFunction. Subsequent visit* for
142 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000143 ///
144 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000145 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000146 }
147
Chris Lattner44827152003-12-28 09:47:19 +0000148 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
149 /// function, lowering any calls to unknown intrinsic functions into the
150 /// equivalent LLVM code.
Misha Brukman538607f2004-03-01 23:53:11 +0000151 ///
Chris Lattner44827152003-12-28 09:47:19 +0000152 void LowerUnknownIntrinsicFunctionCalls(Function &F);
153
Chris Lattner065faeb2002-12-28 20:24:02 +0000154 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
155 /// from the stack into virtual registers.
156 ///
157 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000158
159 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
160 /// because we have to generate our sources into the source basic blocks,
161 /// not the current one.
162 ///
163 void SelectPHINodes();
164
Chris Lattner986618e2004-02-22 19:47:26 +0000165 /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks
166 /// that need them. This only occurs due to the floating point stackifier
167 /// not being aggressive enough to handle arbitrary global stackification.
168 ///
169 void InsertFPRegKills();
170
Chris Lattner72614082002-10-25 22:55:53 +0000171 // Visitation methods for various instructions. These methods simply emit
172 // fixed X86 code for each instruction.
173 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000174
175 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000176 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000177 void visitBranchInst(BranchInst &BI);
Chris Lattner30483b02004-10-16 18:13:05 +0000178 void visitUnreachableInst(UnreachableInst &UI) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000179
180 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000181 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000182 unsigned Reg;
183 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000184 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
185 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000186 };
187 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000188 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000189 void visitCallInst(CallInst &I);
Brian Gaeked0fde302003-11-11 22:41:34 +0000190 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000191
192 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000193 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000194 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
195 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattnerca9671d2002-11-02 20:28:58 +0000196 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000197
Chris Lattnerf01729e2002-11-02 20:54:46 +0000198 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
199 void visitRem(BinaryOperator &B) { visitDivRem(B); }
200 void visitDivRem(BinaryOperator &B);
201
Chris Lattnere2954c82002-11-02 20:04:26 +0000202 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000203 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
204 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
205 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000206
Chris Lattner6d40c192003-01-16 16:43:00 +0000207 // Comparison operators...
208 void visitSetCondInst(SetCondInst &I);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000209 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
210 MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000211 MachineBasicBlock::iterator MBBI);
Chris Lattner12d96a02004-03-30 21:22:00 +0000212 void visitSelectInst(SelectInst &SI);
213
Chris Lattnerb2acc512003-10-19 21:09:10 +0000214
Chris Lattner6fc3c522002-11-17 21:11:55 +0000215 // Memory Instructions
216 void visitLoadInst(LoadInst &I);
217 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000218 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000219 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000220 void visitMallocInst(MallocInst &I);
221 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000222
Chris Lattnere2954c82002-11-02 20:04:26 +0000223 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000224 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000225 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000226 void visitCastInst(CastInst &I);
Chris Lattner73815062003-10-18 05:56:40 +0000227 void visitVANextInst(VANextInst &I);
228 void visitVAArgInst(VAArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000229
230 void visitInstruction(Instruction &I) {
231 std::cerr << "Cannot instruction select: " << I;
232 abort();
233 }
234
Brian Gaeke95780cc2002-12-13 07:56:18 +0000235 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000236 ///
237 void promote32(unsigned targetReg, const ValueRecord &VR);
238
Chris Lattner721d2d42004-03-08 01:18:36 +0000239 /// getAddressingMode - Get the addressing mode to use to address the
240 /// specified value. The returned value should be used with addFullAddress.
Reid Spencerfc989e12004-08-30 00:13:26 +0000241 void getAddressingMode(Value *Addr, X86AddressMode &AM);
Chris Lattner721d2d42004-03-08 01:18:36 +0000242
243
244 /// getGEPIndex - This is used to fold GEP instructions into X86 addressing
245 /// expressions.
Chris Lattnerb6bac512004-02-25 06:13:04 +0000246 void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
247 std::vector<Value*> &GEPOps,
Reid Spencerfc989e12004-08-30 00:13:26 +0000248 std::vector<const Type*> &GEPTypes,
249 X86AddressMode &AM);
Chris Lattnerb6bac512004-02-25 06:13:04 +0000250
251 /// isGEPFoldable - Return true if the specified GEP can be completely
252 /// folded into the addressing mode of a load/store or lea instruction.
253 bool isGEPFoldable(MachineBasicBlock *MBB,
254 Value *Src, User::op_iterator IdxBegin,
Reid Spencerfc989e12004-08-30 00:13:26 +0000255 User::op_iterator IdxEnd, X86AddressMode &AM);
Chris Lattnerb6bac512004-02-25 06:13:04 +0000256
Chris Lattner3e130a22003-01-13 00:32:26 +0000257 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
258 /// constant expression GEP support.
259 ///
Chris Lattner827832c2004-02-22 17:05:38 +0000260 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000261 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000262 User::op_iterator IdxEnd, unsigned TargetReg);
263
Chris Lattner548f61d2003-04-23 17:22:12 +0000264 /// emitCastOperation - Common code shared between visitCastInst and
265 /// constant expression cast support.
Misha Brukman538607f2004-03-01 23:53:11 +0000266 ///
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000267 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
Chris Lattner548f61d2003-04-23 17:22:12 +0000268 Value *Src, const Type *DestTy, unsigned TargetReg);
269
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000270 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
271 /// and constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000272 ///
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000273 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000274 MachineBasicBlock::iterator IP,
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000275 Value *Op0, Value *Op1,
276 unsigned OperatorClass, unsigned TargetReg);
277
Chris Lattner6621ed92004-04-11 21:23:56 +0000278 /// emitBinaryFPOperation - This method handles emission of floating point
279 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
280 void emitBinaryFPOperation(MachineBasicBlock *BB,
281 MachineBasicBlock::iterator IP,
282 Value *Op0, Value *Op1,
283 unsigned OperatorClass, unsigned TargetReg);
284
Chris Lattner462fa822004-04-11 20:56:28 +0000285 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
286 Value *Op0, Value *Op1, unsigned TargetReg);
287
288 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
289 unsigned DestReg, const Type *DestTy,
290 unsigned Op0Reg, unsigned Op1Reg);
291 void doMultiplyConst(MachineBasicBlock *MBB,
292 MachineBasicBlock::iterator MBBI,
293 unsigned DestReg, const Type *DestTy,
294 unsigned Op0Reg, unsigned Op1Val);
295
Chris Lattnercadff442003-10-23 17:21:43 +0000296 void emitDivRemOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000297 MachineBasicBlock::iterator IP,
Chris Lattner462fa822004-04-11 20:56:28 +0000298 Value *Op0, Value *Op1, bool isDiv,
299 unsigned TargetReg);
Chris Lattnercadff442003-10-23 17:21:43 +0000300
Chris Lattner58c41fe2003-08-24 19:19:47 +0000301 /// emitSetCCOperation - Common code shared between visitSetCondInst and
302 /// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000303 ///
Chris Lattner58c41fe2003-08-24 19:19:47 +0000304 void emitSetCCOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000305 MachineBasicBlock::iterator IP,
Chris Lattner58c41fe2003-08-24 19:19:47 +0000306 Value *Op0, Value *Op1, unsigned Opcode,
307 unsigned TargetReg);
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000308
309 /// emitShiftOperation - Common code shared between visitShiftInst and
310 /// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000311 ///
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000312 void emitShiftOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000313 MachineBasicBlock::iterator IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000314 Value *Op, Value *ShiftAmount, bool isLeftShift,
315 const Type *ResultTy, unsigned DestReg);
316
Chris Lattner12d96a02004-03-30 21:22:00 +0000317 /// emitSelectOperation - Common code shared between visitSelectInst and the
318 /// constant expression support.
319 void emitSelectOperation(MachineBasicBlock *MBB,
320 MachineBasicBlock::iterator IP,
321 Value *Cond, Value *TrueVal, Value *FalseVal,
322 unsigned DestReg);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000323
Chris Lattnerc5291f52002-10-27 21:16:59 +0000324 /// copyConstantToRegister - Output the instructions required to put the
325 /// specified constant into the specified register.
326 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000327 void copyConstantToRegister(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000328 MachineBasicBlock::iterator MBBI,
Chris Lattner8a307e82002-12-16 19:32:50 +0000329 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000330
Chris Lattner01cdb1b2004-06-11 05:33:49 +0000331 void emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
332 unsigned LHS, unsigned RHS);
333
Chris Lattner3e130a22003-01-13 00:32:26 +0000334 /// makeAnotherReg - This method returns the next register number we haven't
335 /// yet used.
336 ///
337 /// Long values are handled somewhat specially. They are always allocated
338 /// as pairs of 32 bit integer values. The register number returned is the
339 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
340 /// of the long value.
341 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000342 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000343 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
344 "Current target doesn't have X86 reg info??");
345 const X86RegisterInfo *MRI =
346 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000347 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000348 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
349 // Create the lower part
350 F->getSSARegMap()->createVirtualRegister(RC);
351 // Create the upper part.
352 return F->getSSARegMap()->createVirtualRegister(RC)-1;
Chris Lattner3e130a22003-01-13 00:32:26 +0000353 }
354
Chris Lattnerc0812d82002-12-13 06:56:29 +0000355 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000356 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000357 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000358 }
359
Chris Lattnercb2fd552004-05-13 07:40:27 +0000360 /// getReg - This method turns an LLVM value into a register number.
Chris Lattner72614082002-10-25 22:55:53 +0000361 ///
362 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000363 unsigned getReg(Value *V) {
364 // Just append to the end of the current bb.
365 MachineBasicBlock::iterator It = BB->end();
366 return getReg(V, BB, It);
367 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000368 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnercb2fd552004-05-13 07:40:27 +0000369 MachineBasicBlock::iterator IPt);
Chris Lattner427aeb42004-04-11 19:21:59 +0000370
Chris Lattnercb2fd552004-05-13 07:40:27 +0000371 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
372 /// that is to be statically allocated with the initial stack frame
373 /// adjustment.
374 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
Chris Lattner72614082002-10-25 22:55:53 +0000375 };
376}
377
Chris Lattnercb2fd552004-05-13 07:40:27 +0000378/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
379/// instruction in the entry block, return it. Otherwise, return a null
380/// pointer.
381static AllocaInst *dyn_castFixedAlloca(Value *V) {
382 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
383 BasicBlock *BB = AI->getParent();
384 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
385 return AI;
386 }
387 return 0;
388}
389
390/// getReg - This method turns an LLVM value into a register number.
391///
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000392unsigned X86ISel::getReg(Value *V, MachineBasicBlock *MBB,
393 MachineBasicBlock::iterator IPt) {
Chris Lattnercb2fd552004-05-13 07:40:27 +0000394 // If this operand is a constant, emit the code to copy the constant into
395 // the register here...
Chris Lattnercb2fd552004-05-13 07:40:27 +0000396 if (Constant *C = dyn_cast<Constant>(V)) {
397 unsigned Reg = makeAnotherReg(V->getType());
398 copyConstantToRegister(MBB, IPt, C, Reg);
399 return Reg;
Chris Lattnercb2fd552004-05-13 07:40:27 +0000400 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
Chris Lattner8b486a12004-06-29 00:14:38 +0000401 // Do not emit noop casts at all, unless it's a double -> float cast.
402 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()) &&
403 (CI->getType() != Type::FloatTy ||
404 CI->getOperand(0)->getType() != Type::DoubleTy))
Chris Lattnercb2fd552004-05-13 07:40:27 +0000405 return getReg(CI->getOperand(0), MBB, IPt);
406 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
407 // If the alloca address couldn't be folded into the instruction addressing,
408 // emit an explicit LEA as appropriate.
409 unsigned Reg = makeAnotherReg(V->getType());
410 unsigned FI = getFixedSizedAllocaFI(AI);
411 addFrameReference(BuildMI(*MBB, IPt, X86::LEA32r, 4, Reg), FI);
412 return Reg;
413 }
414
415 unsigned &Reg = RegMap[V];
416 if (Reg == 0) {
417 Reg = makeAnotherReg(V->getType());
418 RegMap[V] = Reg;
419 }
420
421 return Reg;
422}
423
424/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
425/// that is to be statically allocated with the initial stack frame
426/// adjustment.
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000427unsigned X86ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
Chris Lattnercb2fd552004-05-13 07:40:27 +0000428 // Already computed this?
429 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
430 if (I != AllocaMap.end() && I->first == AI) return I->second;
431
432 const Type *Ty = AI->getAllocatedType();
433 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
434 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
435 TySize *= CUI->getValue(); // Get total allocated size...
436 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
437
438 // Create a new stack object using the frame manager...
439 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
440 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
441 return FrameIdx;
442}
443
444
Chris Lattnerc5291f52002-10-27 21:16:59 +0000445/// copyConstantToRegister - Output the instructions required to put the
446/// specified constant into the specified register.
447///
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000448void X86ISel::copyConstantToRegister(MachineBasicBlock *MBB,
449 MachineBasicBlock::iterator IP,
450 Constant *C, unsigned R) {
Chris Lattner30483b02004-10-16 18:13:05 +0000451 if (isa<UndefValue>(C)) {
452 switch (getClassB(C->getType())) {
453 case cFP:
454 // FIXME: SHOULD TEACH STACKIFIER ABOUT UNDEF VALUES!
455 BuildMI(*MBB, IP, X86::FLD0, 0, R);
456 return;
457 case cLong:
458 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, R+1);
459 // FALL THROUGH
460 default:
461 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, R);
462 return;
463 }
464 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000465 unsigned Class = 0;
466 switch (CE->getOpcode()) {
467 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000468 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000469 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000470 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000471 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000472 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000473 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000474
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000475 case Instruction::Xor: ++Class; // FALL THROUGH
476 case Instruction::Or: ++Class; // FALL THROUGH
477 case Instruction::And: ++Class; // FALL THROUGH
478 case Instruction::Sub: ++Class; // FALL THROUGH
479 case Instruction::Add:
480 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
481 Class, R);
482 return;
483
Chris Lattner462fa822004-04-11 20:56:28 +0000484 case Instruction::Mul:
485 emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
Chris Lattnercadff442003-10-23 17:21:43 +0000486 return;
Chris Lattner462fa822004-04-11 20:56:28 +0000487
Chris Lattnercadff442003-10-23 17:21:43 +0000488 case Instruction::Div:
Chris Lattner462fa822004-04-11 20:56:28 +0000489 case Instruction::Rem:
490 emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
491 CE->getOpcode() == Instruction::Div, R);
Chris Lattnercadff442003-10-23 17:21:43 +0000492 return;
Chris Lattnercadff442003-10-23 17:21:43 +0000493
Chris Lattner58c41fe2003-08-24 19:19:47 +0000494 case Instruction::SetNE:
495 case Instruction::SetEQ:
496 case Instruction::SetLT:
497 case Instruction::SetGT:
498 case Instruction::SetLE:
499 case Instruction::SetGE:
500 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
501 CE->getOpcode(), R);
502 return;
503
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000504 case Instruction::Shl:
505 case Instruction::Shr:
506 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000507 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
508 return;
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000509
Chris Lattner12d96a02004-03-30 21:22:00 +0000510 case Instruction::Select:
511 emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
512 CE->getOperand(2), R);
513 return;
514
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000515 default:
Chris Lattner76e2df22004-07-15 02:14:30 +0000516 std::cerr << "Offending expr: " << *C << "\n";
Chris Lattnerb2acc512003-10-19 21:09:10 +0000517 assert(0 && "Constant expression not yet handled!\n");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000518 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000519 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000520
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000521 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000522 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000523
524 if (Class == cLong) {
525 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000526 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000527 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF);
528 BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32);
Chris Lattner3e130a22003-01-13 00:32:26 +0000529 return;
530 }
531
Chris Lattner94af4142002-12-25 05:13:53 +0000532 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000533
534 static const unsigned IntegralOpcodeTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000535 X86::MOV8ri, X86::MOV16ri, X86::MOV32ri
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000536 };
537
Chris Lattner6b993cc2002-12-15 08:02:15 +0000538 if (C->getType() == Type::BoolTy) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000539 BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000540 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000541 ConstantInt *CI = cast<ConstantInt>(C);
Chris Lattneree352852004-02-29 07:22:16 +0000542 BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000543 }
Chris Lattner94af4142002-12-25 05:13:53 +0000544 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Chris Lattneraf703622004-02-02 18:56:30 +0000545 if (CFP->isExactlyValue(+0.0))
Chris Lattneree352852004-02-29 07:22:16 +0000546 BuildMI(*MBB, IP, X86::FLD0, 0, R);
Chris Lattneraf703622004-02-02 18:56:30 +0000547 else if (CFP->isExactlyValue(+1.0))
Chris Lattneree352852004-02-29 07:22:16 +0000548 BuildMI(*MBB, IP, X86::FLD1, 0, R);
Chris Lattner94af4142002-12-25 05:13:53 +0000549 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000550 // Otherwise we need to spill the constant to memory...
551 MachineConstantPool *CP = F->getConstantPool();
552 unsigned CPI = CP->getConstantPoolIndex(CFP);
Chris Lattner6c09db22003-10-20 04:11:23 +0000553 const Type *Ty = CFP->getType();
554
555 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000556 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m;
Chris Lattneree352852004-02-29 07:22:16 +0000557 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000558 }
559
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000560 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000561 // Copy zero (null pointer) to the register.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000562 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0);
Reid Spencer8863f182004-07-18 00:38:32 +0000563 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
564 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(GV);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000565 } else {
Chris Lattner76e2df22004-07-15 02:14:30 +0000566 std::cerr << "Offending constant: " << *C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000567 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000568 }
569}
570
Chris Lattner065faeb2002-12-28 20:24:02 +0000571/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
572/// the stack into virtual registers.
573///
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000574void X86ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000575 // Emit instructions to load the arguments... On entry to a function on the
576 // X86, the stack frame looks like this:
577 //
578 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000579 // [ESP + 4] -- first argument (leftmost lexically)
580 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000581 // ...
582 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000583 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000584 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000585
586 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
Chris Lattner427aeb42004-04-11 19:21:59 +0000587 bool ArgLive = !I->use_empty();
588 unsigned Reg = ArgLive ? getReg(*I) : 0;
Chris Lattner065faeb2002-12-28 20:24:02 +0000589 int FI; // Frame object index
Chris Lattner427aeb42004-04-11 19:21:59 +0000590
Chris Lattner065faeb2002-12-28 20:24:02 +0000591 switch (getClassB(I->getType())) {
592 case cByte:
Chris Lattner427aeb42004-04-11 19:21:59 +0000593 if (ArgLive) {
594 FI = MFI->CreateFixedObject(1, ArgOffset);
595 addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI);
596 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000597 break;
598 case cShort:
Chris Lattner427aeb42004-04-11 19:21:59 +0000599 if (ArgLive) {
600 FI = MFI->CreateFixedObject(2, ArgOffset);
601 addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI);
602 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000603 break;
604 case cInt:
Chris Lattner427aeb42004-04-11 19:21:59 +0000605 if (ArgLive) {
606 FI = MFI->CreateFixedObject(4, ArgOffset);
607 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
608 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000609 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000610 case cLong:
Chris Lattner427aeb42004-04-11 19:21:59 +0000611 if (ArgLive) {
612 FI = MFI->CreateFixedObject(8, ArgOffset);
613 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
614 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4);
615 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000616 ArgOffset += 4; // longs require 4 additional bytes
617 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000618 case cFP:
Chris Lattner427aeb42004-04-11 19:21:59 +0000619 if (ArgLive) {
620 unsigned Opcode;
621 if (I->getType() == Type::FloatTy) {
622 Opcode = X86::FLD32m;
623 FI = MFI->CreateFixedObject(4, ArgOffset);
624 } else {
625 Opcode = X86::FLD64m;
626 FI = MFI->CreateFixedObject(8, ArgOffset);
627 }
628 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
Chris Lattner065faeb2002-12-28 20:24:02 +0000629 }
Chris Lattner427aeb42004-04-11 19:21:59 +0000630 if (I->getType() == Type::DoubleTy)
631 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000632 break;
633 default:
634 assert(0 && "Unhandled argument type!");
635 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000636 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000637 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000638
639 // If the function takes variable number of arguments, add a frame offset for
640 // the start of the first vararg value... this is used to expand
641 // llvm.va_start.
642 if (Fn.getFunctionType()->isVarArg())
643 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000644}
645
646
Chris Lattner333b2fa2002-12-13 10:09:43 +0000647/// SelectPHINodes - Insert machine code to generate phis. This is tricky
648/// because we have to generate our sources into the source basic blocks, not
649/// the current one.
650///
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000651void X86ISel::SelectPHINodes() {
Chris Lattnerd029cd22004-06-02 05:55:25 +0000652 const TargetInstrInfo &TII = *TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000653 const Function &LF = *F->getFunction(); // The LLVM function...
654 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
655 const BasicBlock *BB = I;
Chris Lattner168aa902004-02-29 07:10:16 +0000656 MachineBasicBlock &MBB = *MBBMap[I];
Chris Lattner333b2fa2002-12-13 10:09:43 +0000657
658 // Loop over all of the PHI nodes in the LLVM basic block...
Chris Lattner168aa902004-02-29 07:10:16 +0000659 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
Reid Spencer2da5c3d2004-09-15 17:06:42 +0000660 for (BasicBlock::const_iterator I = BB->begin(); isa<PHINode>(I); ++I) {
661 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I));
Chris Lattner3e130a22003-01-13 00:32:26 +0000662
Chris Lattner333b2fa2002-12-13 10:09:43 +0000663 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000664 unsigned PHIReg = getReg(*PN);
Chris Lattner168aa902004-02-29 07:10:16 +0000665 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
666 X86::PHI, PN->getNumOperands(), PHIReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000667
668 MachineInstr *LongPhiMI = 0;
Chris Lattner168aa902004-02-29 07:10:16 +0000669 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
670 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
671 X86::PHI, PN->getNumOperands(), PHIReg+1);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000672
Chris Lattnera6e73f12003-05-12 14:22:21 +0000673 // PHIValues - Map of blocks to incoming virtual registers. We use this
674 // so that we only initialize one incoming value for a particular block,
675 // even if the block has multiple entries in the PHI node.
676 //
677 std::map<MachineBasicBlock*, unsigned> PHIValues;
678
Chris Lattner333b2fa2002-12-13 10:09:43 +0000679 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
680 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000681 unsigned ValReg;
682 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
683 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000684
Chris Lattnera6e73f12003-05-12 14:22:21 +0000685 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
686 // We already inserted an initialization of the register for this
687 // predecessor. Recycle it.
688 ValReg = EntryIt->second;
689
690 } else {
Chris Lattnera81fc682003-10-19 00:26:11 +0000691 // Get the incoming value into a virtual register.
Chris Lattnera6e73f12003-05-12 14:22:21 +0000692 //
Chris Lattnera81fc682003-10-19 00:26:11 +0000693 Value *Val = PN->getIncomingValue(i);
694
695 // If this is a constant or GlobalValue, we may have to insert code
696 // into the basic block to compute it into a virtual register.
Reid Spencer8863f182004-07-18 00:38:32 +0000697 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val))) {
Chris Lattnercb2fd552004-05-13 07:40:27 +0000698 // Simple constants get emitted at the end of the basic block,
699 // before any terminator instructions. We "know" that the code to
700 // move a constant into a register will never clobber any flags.
701 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
Chris Lattnera81fc682003-10-19 00:26:11 +0000702 } else {
Chris Lattnercb2fd552004-05-13 07:40:27 +0000703 // Because we don't want to clobber any values which might be in
704 // physical registers with the computation of this constant (which
705 // might be arbitrarily complex if it is a constant expression),
706 // just insert the computation at the top of the basic block.
707 MachineBasicBlock::iterator PI = PredMBB->begin();
708
709 // Skip over any PHI nodes though!
710 while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
711 ++PI;
712
713 ValReg = getReg(Val, PredMBB, PI);
Chris Lattnera81fc682003-10-19 00:26:11 +0000714 }
Chris Lattnera6e73f12003-05-12 14:22:21 +0000715
716 // Remember that we inserted a value for this PHI for this predecessor
717 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
718 }
719
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000720 PhiMI->addRegOperand(ValReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000721 PhiMI->addMachineBasicBlockOperand(PredMBB);
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000722 if (LongPhiMI) {
723 LongPhiMI->addRegOperand(ValReg+1);
724 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
725 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000726 }
Chris Lattner168aa902004-02-29 07:10:16 +0000727
728 // Now that we emitted all of the incoming values for the PHI node, make
729 // sure to reposition the InsertPoint after the PHI that we just added.
730 // This is needed because we might have inserted a constant into this
731 // block, right after the PHI's which is before the old insert point!
732 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
733 ++PHIInsertPoint;
Chris Lattner333b2fa2002-12-13 10:09:43 +0000734 }
735 }
736}
737
Chris Lattner986618e2004-02-22 19:47:26 +0000738/// RequiresFPRegKill - The floating point stackifier pass cannot insert
739/// compensation code on critical edges. As such, it requires that we kill all
740/// FP registers on the exit from any blocks that either ARE critical edges, or
741/// branch to a block that has incoming critical edges.
742///
743/// Note that this kill instruction will eventually be eliminated when
744/// restrictions in the stackifier are relaxed.
745///
Brian Gaeke1afe7732004-04-28 04:45:55 +0000746static bool RequiresFPRegKill(const MachineBasicBlock *MBB) {
Chris Lattner986618e2004-02-22 19:47:26 +0000747#if 0
Brian Gaeke1afe7732004-04-28 04:45:55 +0000748 const BasicBlock *BB = MBB->getBasicBlock ();
Chris Lattner986618e2004-02-22 19:47:26 +0000749 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
750 const BasicBlock *Succ = *SI;
751 pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
752 ++PI; // Block have at least one predecessory
753 if (PI != PE) { // If it has exactly one, this isn't crit edge
754 // If this block has more than one predecessor, check all of the
755 // predecessors to see if they have multiple successors. If so, then the
756 // block we are analyzing needs an FPRegKill.
757 for (PI = pred_begin(Succ); PI != PE; ++PI) {
758 const BasicBlock *Pred = *PI;
759 succ_const_iterator SI2 = succ_begin(Pred);
760 ++SI2; // There must be at least one successor of this block.
761 if (SI2 != succ_end(Pred))
762 return true; // Yes, we must insert the kill on this edge.
763 }
764 }
765 }
766 // If we got this far, there is no need to insert the kill instruction.
767 return false;
768#else
769 return true;
770#endif
771}
772
773// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that
774// need them. This only occurs due to the floating point stackifier not being
775// aggressive enough to handle arbitrary global stackification.
776//
777// Currently we insert an FP_REG_KILL instruction into each block that uses or
778// defines a floating point virtual register.
779//
780// When the global register allocators (like linear scan) finally update live
781// variable analysis, we can keep floating point values in registers across
782// portions of the CFG that do not involve critical edges. This will be a big
783// win, but we are waiting on the global allocators before we can do this.
784//
785// With a bit of work, the floating point stackifier pass can be enhanced to
786// break critical edges as needed (to make a place to put compensation code),
787// but this will require some infrastructure improvements as well.
788//
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000789void X86ISel::InsertFPRegKills() {
Chris Lattner986618e2004-02-22 19:47:26 +0000790 SSARegMap &RegMap = *F->getSSARegMap();
Chris Lattner986618e2004-02-22 19:47:26 +0000791
792 for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
Chris Lattner986618e2004-02-22 19:47:26 +0000793 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
Alkis Evlogimenos71e353e2004-02-26 22:00:20 +0000794 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
795 MachineOperand& MO = I->getOperand(i);
796 if (MO.isRegister() && MO.getReg()) {
797 unsigned Reg = MO.getReg();
Chris Lattner986618e2004-02-22 19:47:26 +0000798 if (MRegisterInfo::isVirtualRegister(Reg))
Chris Lattner65cf42d2004-02-23 07:29:45 +0000799 if (RegMap.getRegClass(Reg)->getSize() == 10)
800 goto UsesFPReg;
Chris Lattner986618e2004-02-22 19:47:26 +0000801 }
Alkis Evlogimenos71e353e2004-02-26 22:00:20 +0000802 }
Chris Lattner65cf42d2004-02-23 07:29:45 +0000803 // If we haven't found an FP register use or def in this basic block, check
804 // to see if any of our successors has an FP PHI node, which will cause a
805 // copy to be inserted into this block.
Brian Gaeke235aa5e2004-04-28 04:34:16 +0000806 for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
807 SE = BB->succ_end(); SI != SE; ++SI) {
808 MachineBasicBlock *SBB = *SI;
Chris Lattnerfbc39d52004-02-23 07:42:19 +0000809 for (MachineBasicBlock::iterator I = SBB->begin();
810 I != SBB->end() && I->getOpcode() == X86::PHI; ++I) {
811 if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10)
812 goto UsesFPReg;
Chris Lattner986618e2004-02-22 19:47:26 +0000813 }
Chris Lattnerfbc39d52004-02-23 07:42:19 +0000814 }
Chris Lattner65cf42d2004-02-23 07:29:45 +0000815 continue;
816 UsesFPReg:
817 // Okay, this block uses an FP register. If the block has successors (ie,
818 // it's not an unwind/return), insert the FP_REG_KILL instruction.
Brian Gaeke1afe7732004-04-28 04:45:55 +0000819 if (BB->succ_size () && RequiresFPRegKill(BB)) {
Chris Lattneree352852004-02-29 07:22:16 +0000820 BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
Chris Lattner65cf42d2004-02-23 07:29:45 +0000821 ++NumFPKill;
Chris Lattner986618e2004-02-22 19:47:26 +0000822 }
823 }
824}
825
826
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000827void X86ISel::getAddressingMode(Value *Addr, X86AddressMode &AM) {
Reid Spencerfc989e12004-08-30 00:13:26 +0000828 AM.BaseType = X86AddressMode::RegBase;
829 AM.Base.Reg = 0; AM.Scale = 1; AM.IndexReg = 0; AM.Disp = 0;
Chris Lattner9f1b5312004-05-13 15:12:43 +0000830 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) {
831 if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(),
Reid Spencerfc989e12004-08-30 00:13:26 +0000832 AM))
Chris Lattner9f1b5312004-05-13 15:12:43 +0000833 return;
834 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
835 if (CE->getOpcode() == Instruction::GetElementPtr)
836 if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(),
Reid Spencerfc989e12004-08-30 00:13:26 +0000837 AM))
Chris Lattner9f1b5312004-05-13 15:12:43 +0000838 return;
Reid Spencerfc989e12004-08-30 00:13:26 +0000839 } else if (AllocaInst *AI = dyn_castFixedAlloca(Addr)) {
840 AM.BaseType = X86AddressMode::FrameIndexBase;
841 AM.Base.FrameIndex = getFixedSizedAllocaFI(AI);
842 return;
Chris Lattner358a9022004-10-15 05:05:29 +0000843 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
844 AM.GV = GV;
845 return;
Chris Lattner9f1b5312004-05-13 15:12:43 +0000846 }
847
848 // If it's not foldable, reset addr mode.
Reid Spencerfc989e12004-08-30 00:13:26 +0000849 AM.BaseType = X86AddressMode::RegBase;
850 AM.Base.Reg = getReg(Addr);
851 AM.Scale = 1; AM.IndexReg = 0; AM.Disp = 0;
Chris Lattner9f1b5312004-05-13 15:12:43 +0000852}
853
Chris Lattner307ecba2004-03-30 22:39:09 +0000854// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
855// it into the conditional branch or select instruction which is the only user
856// of the cc instruction. This is the case if the conditional branch is the
Chris Lattnera6f9fe62004-06-18 00:29:22 +0000857// only user of the setcc. We also don't handle long arguments below, so we
858// reject them here as well.
Chris Lattner6d40c192003-01-16 16:43:00 +0000859//
Chris Lattner307ecba2004-03-30 22:39:09 +0000860static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000861 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattner307ecba2004-03-30 22:39:09 +0000862 if (SCI->hasOneUse()) {
863 Instruction *User = cast<Instruction>(SCI->use_back());
864 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
Chris Lattner48c937e2004-04-06 17:34:50 +0000865 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
866 SCI->getOpcode() == Instruction::SetEQ ||
Chris Lattnerd04cd552004-10-08 16:34:13 +0000867 SCI->getOpcode() == Instruction::SetNE) &&
Chris Lattnerb0f4e382004-10-08 22:24:31 +0000868 (isa<BranchInst>(User) || User->getOperand(0) == V))
Chris Lattner6d40c192003-01-16 16:43:00 +0000869 return SCI;
870 }
871 return 0;
872}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000873
Chris Lattner6d40c192003-01-16 16:43:00 +0000874// Return a fixed numbering for setcc instructions which does not depend on the
875// order of the opcodes.
876//
877static unsigned getSetCCNumber(unsigned Opcode) {
878 switch(Opcode) {
879 default: assert(0 && "Unknown setcc instruction!");
880 case Instruction::SetEQ: return 0;
881 case Instruction::SetNE: return 1;
882 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000883 case Instruction::SetGE: return 3;
884 case Instruction::SetGT: return 4;
885 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000886 }
887}
Chris Lattner06925362002-11-17 21:56:38 +0000888
Chris Lattner6d40c192003-01-16 16:43:00 +0000889// LLVM -> X86 signed X86 unsigned
890// ----- ---------- ------------
891// seteq -> sete sete
892// setne -> setne setne
893// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000894// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000895// setgt -> setg seta
896// setle -> setle setbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000897// ----
898// sets // Used by comparison with 0 optimization
899// setns
900static const unsigned SetCCOpcodeTab[2][8] = {
901 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
902 0, 0 },
903 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
904 X86::SETSr, X86::SETNSr },
Chris Lattner6d40c192003-01-16 16:43:00 +0000905};
906
Chris Lattner01cdb1b2004-06-11 05:33:49 +0000907/// emitUCOMr - In the future when we support processors before the P6, this
908/// wraps the logic for emitting an FUCOMr vs FUCOMIr.
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000909void X86ISel::emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
910 unsigned LHS, unsigned RHS) {
Chris Lattner01cdb1b2004-06-11 05:33:49 +0000911 if (0) { // for processors prior to the P6
912 BuildMI(*MBB, IP, X86::FUCOMr, 2).addReg(LHS).addReg(RHS);
913 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
914 BuildMI(*MBB, IP, X86::SAHF, 1);
915 } else {
916 BuildMI(*MBB, IP, X86::FUCOMIr, 2).addReg(LHS).addReg(RHS);
917 }
918}
919
Chris Lattnerb2acc512003-10-19 21:09:10 +0000920// EmitComparison - This function emits a comparison of the two operands,
921// returning the extended setcc code to use.
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000922unsigned X86ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
923 MachineBasicBlock *MBB,
924 MachineBasicBlock::iterator IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000925 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000926 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000927 unsigned Class = getClassB(CompTy);
Chris Lattner333864d2003-06-05 19:30:30 +0000928
929 // Special case handling of: cmp R, i
Chris Lattner260195d2004-05-07 19:55:55 +0000930 if (isa<ConstantPointerNull>(Op1)) {
Chris Lattnerde95c9e2004-10-17 06:10:40 +0000931 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner260195d2004-05-07 19:55:55 +0000932 if (OpNum < 2) // seteq/setne -> test
933 BuildMI(*MBB, IP, X86::TEST32rr, 2).addReg(Op0r).addReg(Op0r);
934 else
935 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(0);
936 return OpNum;
937
938 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnere80e6372004-04-06 16:02:27 +0000939 if (Class == cByte || Class == cShort || Class == cInt) {
940 unsigned Op1v = CI->getRawValue();
Chris Lattnerc07736a2003-07-23 15:22:26 +0000941
Chris Lattner333864d2003-06-05 19:30:30 +0000942 // Mask off any upper bits of the constant, if there are any...
943 Op1v &= (1ULL << (8 << Class)) - 1;
944
Chris Lattnerb2acc512003-10-19 21:09:10 +0000945 // If this is a comparison against zero, emit more efficient code. We
946 // can't handle unsigned comparisons against zero unless they are == or
947 // !=. These should have been strength reduced already anyway.
948 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
Chris Lattnerde95c9e2004-10-17 06:10:40 +0000949
950 // If this is a comparison against zero and the LHS is an and of a
951 // register with a constant, use the test to do the and.
952 if (Instruction *Op0I = dyn_cast<Instruction>(Op0))
953 if (Op0I->getOpcode() == Instruction::And && Op0->hasOneUse() &&
954 isa<ConstantInt>(Op0I->getOperand(1))) {
955 static const unsigned TESTTab[] = {
956 X86::TEST8ri, X86::TEST16ri, X86::TEST32ri
957 };
958
959 // Emit test X, i
960 unsigned LHS = getReg(Op0I->getOperand(0), MBB, IP);
961 unsigned Imm =
962 cast<ConstantInt>(Op0I->getOperand(1))->getRawValue();
963 BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(LHS).addImm(Imm);
964
Chris Lattnerde95c9e2004-10-17 06:10:40 +0000965 if (OpNum == 2) return 6; // Map jl -> js
966 if (OpNum == 3) return 7; // Map jg -> jns
967 return OpNum;
968 }
969
970 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000971 static const unsigned TESTTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000972 X86::TEST8rr, X86::TEST16rr, X86::TEST32rr
Chris Lattnerb2acc512003-10-19 21:09:10 +0000973 };
Chris Lattneree352852004-02-29 07:22:16 +0000974 BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000975
976 if (OpNum == 2) return 6; // Map jl -> js
977 if (OpNum == 3) return 7; // Map jg -> jns
978 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000979 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000980
981 static const unsigned CMPTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000982 X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
Chris Lattnerb2acc512003-10-19 21:09:10 +0000983 };
984
Chris Lattnerde95c9e2004-10-17 06:10:40 +0000985 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattneree352852004-02-29 07:22:16 +0000986 BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000987 return OpNum;
Chris Lattnere80e6372004-04-06 16:02:27 +0000988 } else {
Chris Lattnerde95c9e2004-10-17 06:10:40 +0000989 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattnere80e6372004-04-06 16:02:27 +0000990 assert(Class == cLong && "Unknown integer class!");
991 unsigned LowCst = CI->getRawValue();
992 unsigned HiCst = CI->getRawValue() >> 32;
993 if (OpNum < 2) { // seteq, setne
994 unsigned LoTmp = Op0r;
995 if (LowCst != 0) {
996 LoTmp = makeAnotherReg(Type::IntTy);
997 BuildMI(*MBB, IP, X86::XOR32ri, 2, LoTmp).addReg(Op0r).addImm(LowCst);
998 }
999 unsigned HiTmp = Op0r+1;
1000 if (HiCst != 0) {
1001 HiTmp = makeAnotherReg(Type::IntTy);
Chris Lattner48c937e2004-04-06 17:34:50 +00001002 BuildMI(*MBB, IP, X86::XOR32ri, 2,HiTmp).addReg(Op0r+1).addImm(HiCst);
Chris Lattnere80e6372004-04-06 16:02:27 +00001003 }
1004 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
1005 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
1006 return OpNum;
Chris Lattner48c937e2004-04-06 17:34:50 +00001007 } else {
1008 // Emit a sequence of code which compares the high and low parts once
1009 // each, then uses a conditional move to handle the overflow case. For
1010 // example, a setlt for long would generate code like this:
1011 //
Chris Lattner9984fd02004-05-09 23:16:33 +00001012 // AL = lo(op1) < lo(op2) // Always unsigned comparison
1013 // BL = hi(op1) < hi(op2) // Signedness depends on operands
1014 // dest = hi(op1) == hi(op2) ? BL : AL;
Chris Lattner48c937e2004-04-06 17:34:50 +00001015 //
1016
1017 // FIXME: This would be much better if we had hierarchical register
1018 // classes! Until then, hardcode registers so that we can deal with
1019 // their aliases (because we don't have conditional byte moves).
1020 //
1021 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(LowCst);
1022 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
1023 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r+1).addImm(HiCst);
1024 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0,X86::BL);
1025 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
1026 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
1027 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
1028 .addReg(X86::AX);
1029 // NOTE: visitSetCondInst knows that the value is dumped into the BL
1030 // register at this point for long values...
1031 return OpNum;
Chris Lattnere80e6372004-04-06 16:02:27 +00001032 }
Chris Lattner333864d2003-06-05 19:30:30 +00001033 }
Chris Lattnere80e6372004-04-06 16:02:27 +00001034 }
Chris Lattner333864d2003-06-05 19:30:30 +00001035
Chris Lattnerde95c9e2004-10-17 06:10:40 +00001036 unsigned Op0r = getReg(Op0, MBB, IP);
1037
Chris Lattner9f08a922004-02-03 18:54:04 +00001038 // Special case handling of comparison against +/- 0.0
1039 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
1040 if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
Chris Lattneree352852004-02-29 07:22:16 +00001041 BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001042 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
Chris Lattneree352852004-02-29 07:22:16 +00001043 BuildMI(*MBB, IP, X86::SAHF, 1);
Chris Lattner9f08a922004-02-03 18:54:04 +00001044 return OpNum;
1045 }
1046
Chris Lattner58c41fe2003-08-24 19:19:47 +00001047 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001048 switch (Class) {
1049 default: assert(0 && "Unknown type class!");
1050 // Emit: cmp <var1>, <var2> (do the comparison). We can
1051 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
1052 // 32-bit.
1053 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001054 BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001055 break;
1056 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001057 BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001058 break;
1059 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001060 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001061 break;
1062 case cFP:
Chris Lattner01cdb1b2004-06-11 05:33:49 +00001063 emitUCOMr(MBB, IP, Op0r, Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001064 break;
1065
1066 case cLong:
1067 if (OpNum < 2) { // seteq, setne
1068 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1069 unsigned HiTmp = makeAnotherReg(Type::IntTy);
1070 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001071 BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r);
1072 BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
1073 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +00001074 break; // Allow the sete or setne to be generated from flags set by OR
1075 } else {
1076 // Emit a sequence of code which compares the high and low parts once
1077 // each, then uses a conditional move to handle the overflow case. For
1078 // example, a setlt for long would generate code like this:
1079 //
1080 // AL = lo(op1) < lo(op2) // Signedness depends on operands
1081 // BL = hi(op1) < hi(op2) // Always unsigned comparison
Chris Lattner9984fd02004-05-09 23:16:33 +00001082 // dest = hi(op1) == hi(op2) ? BL : AL;
Chris Lattner3e130a22003-01-13 00:32:26 +00001083 //
1084
Chris Lattner6d40c192003-01-16 16:43:00 +00001085 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +00001086 // classes! Until then, hardcode registers so that we can deal with their
1087 // aliases (because we don't have conditional byte moves).
1088 //
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001089 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattneree352852004-02-29 07:22:16 +00001090 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001091 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattneree352852004-02-29 07:22:16 +00001092 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
1093 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
1094 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001095 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
Chris Lattneree352852004-02-29 07:22:16 +00001096 .addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +00001097 // NOTE: visitSetCondInst knows that the value is dumped into the BL
1098 // register at this point for long values...
Chris Lattnerb2acc512003-10-19 21:09:10 +00001099 return OpNum;
Chris Lattner3e130a22003-01-13 00:32:26 +00001100 }
1101 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001102 return OpNum;
Chris Lattner6d40c192003-01-16 16:43:00 +00001103}
Chris Lattner3e130a22003-01-13 00:32:26 +00001104
Chris Lattner6d40c192003-01-16 16:43:00 +00001105/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
1106/// register, then move it to wherever the result should be.
1107///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001108void X86ISel::visitSetCondInst(SetCondInst &I) {
Chris Lattner307ecba2004-03-30 22:39:09 +00001109 if (canFoldSetCCIntoBranchOrSelect(&I))
1110 return; // Fold this into a branch or select.
Chris Lattner6d40c192003-01-16 16:43:00 +00001111
Chris Lattner6d40c192003-01-16 16:43:00 +00001112 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +00001113 MachineBasicBlock::iterator MII = BB->end();
1114 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
1115 DestReg);
1116}
Chris Lattner6d40c192003-01-16 16:43:00 +00001117
Chris Lattner58c41fe2003-08-24 19:19:47 +00001118/// emitSetCCOperation - Common code shared between visitSetCondInst and
1119/// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +00001120///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001121void X86ISel::emitSetCCOperation(MachineBasicBlock *MBB,
1122 MachineBasicBlock::iterator IP,
1123 Value *Op0, Value *Op1, unsigned Opcode,
1124 unsigned TargetReg) {
Chris Lattner58c41fe2003-08-24 19:19:47 +00001125 unsigned OpNum = getSetCCNumber(Opcode);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001126 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
Chris Lattner58c41fe2003-08-24 19:19:47 +00001127
Chris Lattnerb2acc512003-10-19 21:09:10 +00001128 const Type *CompTy = Op0->getType();
1129 unsigned CompClass = getClassB(CompTy);
1130 bool isSigned = CompTy->isSigned() && CompClass != cFP;
1131
1132 if (CompClass != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +00001133 // Handle normal comparisons with a setcc instruction...
Chris Lattneree352852004-02-29 07:22:16 +00001134 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +00001135 } else {
1136 // Handle long comparisons by copying the value which is already in BL into
1137 // the register we want...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001138 BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +00001139 }
Brian Gaeke1749d632002-11-07 17:59:21 +00001140}
Chris Lattner51b49a92002-11-02 19:45:49 +00001141
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001142void X86ISel::visitSelectInst(SelectInst &SI) {
Chris Lattner12d96a02004-03-30 21:22:00 +00001143 unsigned DestReg = getReg(SI);
1144 MachineBasicBlock::iterator MII = BB->end();
1145 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1146 SI.getFalseValue(), DestReg);
1147}
1148
1149/// emitSelect - Common code shared between visitSelectInst and the constant
1150/// expression support.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001151void X86ISel::emitSelectOperation(MachineBasicBlock *MBB,
1152 MachineBasicBlock::iterator IP,
1153 Value *Cond, Value *TrueVal, Value *FalseVal,
1154 unsigned DestReg) {
Chris Lattner12d96a02004-03-30 21:22:00 +00001155 unsigned SelectClass = getClassB(TrueVal->getType());
1156
1157 // We don't support 8-bit conditional moves. If we have incoming constants,
1158 // transform them into 16-bit constants to avoid having a run-time conversion.
1159 if (SelectClass == cByte) {
1160 if (Constant *T = dyn_cast<Constant>(TrueVal))
1161 TrueVal = ConstantExpr::getCast(T, Type::ShortTy);
1162 if (Constant *F = dyn_cast<Constant>(FalseVal))
1163 FalseVal = ConstantExpr::getCast(F, Type::ShortTy);
1164 }
1165
Chris Lattner82c5a992004-04-13 21:56:09 +00001166 unsigned TrueReg = getReg(TrueVal, MBB, IP);
1167 unsigned FalseReg = getReg(FalseVal, MBB, IP);
1168 if (TrueReg == FalseReg) {
1169 static const unsigned Opcode[] = {
1170 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
1171 };
1172 BuildMI(*MBB, IP, Opcode[SelectClass], 1, DestReg).addReg(TrueReg);
1173 if (SelectClass == cLong)
1174 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(TrueReg+1);
1175 return;
1176 }
1177
Chris Lattner307ecba2004-03-30 22:39:09 +00001178 unsigned Opcode;
1179 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1180 // We successfully folded the setcc into the select instruction.
1181
1182 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1183 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
1184 IP);
1185
1186 const Type *CompTy = SCI->getOperand(0)->getType();
1187 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1188
1189 // LLVM -> X86 signed X86 unsigned
1190 // ----- ---------- ------------
1191 // seteq -> cmovNE cmovNE
1192 // setne -> cmovE cmovE
1193 // setlt -> cmovGE cmovAE
1194 // setge -> cmovL cmovB
1195 // setgt -> cmovLE cmovBE
1196 // setle -> cmovG cmovA
1197 // ----
1198 // cmovNS // Used by comparison with 0 optimization
1199 // cmovS
1200
1201 switch (SelectClass) {
Chris Lattner352eb482004-03-31 22:03:35 +00001202 default: assert(0 && "Unknown value class!");
1203 case cFP: {
1204 // Annoyingly, we don't have a full set of floating point conditional
1205 // moves. :(
1206 static const unsigned OpcodeTab[2][8] = {
1207 { X86::FCMOVNE, X86::FCMOVE, X86::FCMOVAE, X86::FCMOVB,
1208 X86::FCMOVBE, X86::FCMOVA, 0, 0 },
1209 { X86::FCMOVNE, X86::FCMOVE, 0, 0, 0, 0, 0, 0 },
1210 };
1211 Opcode = OpcodeTab[isSigned][OpNum];
1212
1213 // If opcode == 0, we hit a case that we don't support. Output a setcc
1214 // and compare the result against zero.
1215 if (Opcode == 0) {
1216 unsigned CompClass = getClassB(CompTy);
1217 unsigned CondReg;
1218 if (CompClass != cLong || OpNum < 2) {
1219 CondReg = makeAnotherReg(Type::BoolTy);
1220 // Handle normal comparisons with a setcc instruction...
1221 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, CondReg);
1222 } else {
1223 // Long comparisons end up in the BL register.
1224 CondReg = X86::BL;
1225 }
1226
Chris Lattner68626c22004-03-31 22:22:36 +00001227 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
Chris Lattner352eb482004-03-31 22:03:35 +00001228 Opcode = X86::FCMOVE;
1229 }
1230 break;
1231 }
Chris Lattner307ecba2004-03-30 22:39:09 +00001232 case cByte:
1233 case cShort: {
1234 static const unsigned OpcodeTab[2][8] = {
1235 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVAE16rr, X86::CMOVB16rr,
1236 X86::CMOVBE16rr, X86::CMOVA16rr, 0, 0 },
1237 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVGE16rr, X86::CMOVL16rr,
1238 X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVNS16rr, X86::CMOVS16rr },
1239 };
1240 Opcode = OpcodeTab[isSigned][OpNum];
1241 break;
1242 }
1243 case cInt:
1244 case cLong: {
1245 static const unsigned OpcodeTab[2][8] = {
1246 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVAE32rr, X86::CMOVB32rr,
1247 X86::CMOVBE32rr, X86::CMOVA32rr, 0, 0 },
1248 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVGE32rr, X86::CMOVL32rr,
1249 X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVNS32rr, X86::CMOVS32rr },
1250 };
1251 Opcode = OpcodeTab[isSigned][OpNum];
1252 break;
1253 }
1254 }
1255 } else {
1256 // Get the value being branched on, and use it to set the condition codes.
1257 unsigned CondReg = getReg(Cond, MBB, IP);
Chris Lattner68626c22004-03-31 22:22:36 +00001258 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
Chris Lattner307ecba2004-03-30 22:39:09 +00001259 switch (SelectClass) {
Chris Lattner352eb482004-03-31 22:03:35 +00001260 default: assert(0 && "Unknown value class!");
1261 case cFP: Opcode = X86::FCMOVE; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001262 case cByte:
Chris Lattner352eb482004-03-31 22:03:35 +00001263 case cShort: Opcode = X86::CMOVE16rr; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001264 case cInt:
Chris Lattner352eb482004-03-31 22:03:35 +00001265 case cLong: Opcode = X86::CMOVE32rr; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001266 }
1267 }
Chris Lattner12d96a02004-03-30 21:22:00 +00001268
Chris Lattner12d96a02004-03-30 21:22:00 +00001269 unsigned RealDestReg = DestReg;
Chris Lattner12d96a02004-03-30 21:22:00 +00001270
Chris Lattner12d96a02004-03-30 21:22:00 +00001271
1272 // Annoyingly enough, X86 doesn't HAVE 8-bit conditional moves. Because of
1273 // this, we have to promote the incoming values to 16 bits, perform a 16-bit
1274 // cmove, then truncate the result.
1275 if (SelectClass == cByte) {
1276 DestReg = makeAnotherReg(Type::ShortTy);
1277 if (getClassB(TrueVal->getType()) == cByte) {
1278 // Promote the true value, by storing it into AL, and reading from AX.
1279 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::AL).addReg(TrueReg);
1280 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::AH).addImm(0);
1281 TrueReg = makeAnotherReg(Type::ShortTy);
1282 BuildMI(*MBB, IP, X86::MOV16rr, 1, TrueReg).addReg(X86::AX);
1283 }
1284 if (getClassB(FalseVal->getType()) == cByte) {
1285 // Promote the true value, by storing it into CL, and reading from CX.
1286 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(FalseReg);
1287 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::CH).addImm(0);
1288 FalseReg = makeAnotherReg(Type::ShortTy);
1289 BuildMI(*MBB, IP, X86::MOV16rr, 1, FalseReg).addReg(X86::CX);
1290 }
1291 }
1292
1293 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(TrueReg).addReg(FalseReg);
1294
1295 switch (SelectClass) {
1296 case cByte:
1297 // We did the computation with 16-bit registers. Truncate back to our
1298 // result by copying into AX then copying out AL.
1299 BuildMI(*MBB, IP, X86::MOV16rr, 1, X86::AX).addReg(DestReg);
1300 BuildMI(*MBB, IP, X86::MOV8rr, 1, RealDestReg).addReg(X86::AL);
1301 break;
1302 case cLong:
1303 // Move the upper half of the value as well.
1304 BuildMI(*MBB, IP, Opcode, 2,DestReg+1).addReg(TrueReg+1).addReg(FalseReg+1);
1305 break;
1306 }
1307}
Chris Lattner58c41fe2003-08-24 19:19:47 +00001308
1309
1310
Brian Gaekec2505982002-11-30 11:57:28 +00001311/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1312/// operand, in the specified target register.
Misha Brukman538607f2004-03-01 23:53:11 +00001313///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001314void X86ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
Chris Lattner9984fd02004-05-09 23:16:33 +00001315 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001316
Chris Lattner29bf0622004-04-06 01:21:00 +00001317 Value *Val = VR.Val;
1318 const Type *Ty = VR.Ty;
Chris Lattner502e36c2004-04-06 01:25:33 +00001319 if (Val) {
Chris Lattner29bf0622004-04-06 01:21:00 +00001320 if (Constant *C = dyn_cast<Constant>(Val)) {
1321 Val = ConstantExpr::getCast(C, Type::IntTy);
1322 Ty = Type::IntTy;
1323 }
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001324
Chris Lattner502e36c2004-04-06 01:25:33 +00001325 // If this is a simple constant, just emit a MOVri directly to avoid the
1326 // copy.
1327 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1328 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
Chris Lattner2b10b082004-05-12 16:35:04 +00001329 BuildMI(BB, X86::MOV32ri, 1, targetReg).addImm(TheVal);
Chris Lattner502e36c2004-04-06 01:25:33 +00001330 return;
1331 }
1332 }
1333
Chris Lattner29bf0622004-04-06 01:21:00 +00001334 // Make sure we have the register number for this value...
1335 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1336
1337 switch (getClassB(Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +00001338 case cByte:
1339 // Extend value into target register (8->32)
1340 if (isUnsigned)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001341 BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001342 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001343 BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001344 break;
1345 case cShort:
1346 // Extend value into target register (16->32)
1347 if (isUnsigned)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001348 BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001349 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001350 BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001351 break;
1352 case cInt:
1353 // Move value into target register (32->32)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001354 BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001355 break;
1356 default:
1357 assert(0 && "Unpromotable operand class in promote32");
1358 }
Brian Gaekec2505982002-11-30 11:57:28 +00001359}
Chris Lattnerc5291f52002-10-27 21:16:59 +00001360
Chris Lattner72614082002-10-25 22:55:53 +00001361/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
1362/// we have the following possibilities:
1363///
1364/// ret void: No return value, simply emit a 'ret' instruction
1365/// ret sbyte, ubyte : Extend value into EAX and return
1366/// ret short, ushort: Extend value into EAX and return
1367/// ret int, uint : Move value into EAX and return
1368/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +00001369/// ret long, ulong : Move value into EAX/EDX and return
1370/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +00001371///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001372void X86ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001373 if (I.getNumOperands() == 0) {
1374 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
1375 return;
1376 }
1377
1378 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001379 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +00001380 case cByte: // integral return values: extend or move into EAX and return
1381 case cShort:
1382 case cInt:
Chris Lattner29bf0622004-04-06 01:21:00 +00001383 promote32(X86::EAX, ValueRecord(RetVal));
Chris Lattnerdbd73722003-05-06 21:32:22 +00001384 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +00001385 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +00001386 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001387 case cFP: { // Floats & Doubles: Return in ST(0)
1388 unsigned RetReg = getReg(RetVal);
Chris Lattner3e130a22003-01-13 00:32:26 +00001389 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +00001390 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +00001391 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +00001392 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001393 }
1394 case cLong: {
1395 unsigned RetReg = getReg(RetVal);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001396 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg);
1397 BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +00001398 // Declare that EAX & EDX are live on exit
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001399 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
1400 .addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001401 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001402 }
Chris Lattner94af4142002-12-25 05:13:53 +00001403 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001404 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001405 }
Chris Lattner43189d12002-11-17 20:07:45 +00001406 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +00001407 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +00001408}
1409
Chris Lattner55f6fab2003-01-16 18:07:23 +00001410// getBlockAfter - Return the basic block which occurs lexically after the
1411// specified one.
1412static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1413 Function::iterator I = BB; ++I; // Get iterator to next block
1414 return I != BB->getParent()->end() ? &*I : 0;
1415}
1416
Chris Lattner51b49a92002-11-02 19:45:49 +00001417/// visitBranchInst - Handle conditional and unconditional branches here. Note
1418/// that since code layout is frozen at this point, that if we are trying to
1419/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +00001420/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +00001421///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001422void X86ISel::visitBranchInst(BranchInst &BI) {
Brian Gaekeea9ca672004-04-28 04:19:37 +00001423 // Update machine-CFG edges
1424 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1425 if (BI.isConditional())
1426 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
1427
Chris Lattner55f6fab2003-01-16 18:07:23 +00001428 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1429
1430 if (!BI.isConditional()) { // Unconditional branch?
Chris Lattnercf93cdd2004-01-30 22:13:44 +00001431 if (BI.getSuccessor(0) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001432 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner6d40c192003-01-16 16:43:00 +00001433 return;
1434 }
1435
1436 // See if we can fold the setcc into the branch itself...
Chris Lattner307ecba2004-03-30 22:39:09 +00001437 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
Chris Lattner6d40c192003-01-16 16:43:00 +00001438 if (SCI == 0) {
1439 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1440 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +00001441 unsigned condReg = getReg(BI.getCondition());
Chris Lattner68626c22004-03-31 22:22:36 +00001442 BuildMI(BB, X86::TEST8rr, 2).addReg(condReg).addReg(condReg);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001443 if (BI.getSuccessor(1) == NextBB) {
1444 if (BI.getSuccessor(0) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001445 BuildMI(BB, X86::JNE, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001446 } else {
Brian Gaeke9f088e42004-05-14 06:54:56 +00001447 BuildMI(BB, X86::JE, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001448
1449 if (BI.getSuccessor(0) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001450 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001451 }
Chris Lattner6d40c192003-01-16 16:43:00 +00001452 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001453 }
Chris Lattner6d40c192003-01-16 16:43:00 +00001454
1455 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +00001456 MachineBasicBlock::iterator MII = BB->end();
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001457 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001458
1459 const Type *CompTy = SCI->getOperand(0)->getType();
1460 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
Chris Lattner6d40c192003-01-16 16:43:00 +00001461
Chris Lattnerb2acc512003-10-19 21:09:10 +00001462
Chris Lattner6d40c192003-01-16 16:43:00 +00001463 // LLVM -> X86 signed X86 unsigned
1464 // ----- ---------- ------------
1465 // seteq -> je je
1466 // setne -> jne jne
1467 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +00001468 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +00001469 // setgt -> jg ja
1470 // setle -> jle jbe
Chris Lattnerb2acc512003-10-19 21:09:10 +00001471 // ----
1472 // js // Used by comparison with 0 optimization
1473 // jns
1474
1475 static const unsigned OpcodeTab[2][8] = {
1476 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
1477 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
1478 X86::JS, X86::JNS },
Chris Lattner6d40c192003-01-16 16:43:00 +00001479 };
1480
Chris Lattner55f6fab2003-01-16 18:07:23 +00001481 if (BI.getSuccessor(0) != NextBB) {
Brian Gaeke9f088e42004-05-14 06:54:56 +00001482 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
1483 .addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001484 if (BI.getSuccessor(1) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001485 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001486 } else {
1487 // Change to the inverse condition...
1488 if (BI.getSuccessor(1) != NextBB) {
1489 OpNum ^= 1;
Brian Gaeke9f088e42004-05-14 06:54:56 +00001490 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
1491 .addMBB(MBBMap[BI.getSuccessor(1)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001492 }
1493 }
Chris Lattner2df035b2002-11-02 19:27:56 +00001494}
1495
Chris Lattner3e130a22003-01-13 00:32:26 +00001496
1497/// doCall - This emits an abstract call instruction, setting up the arguments
1498/// and the return value as appropriate. For the actual function call itself,
1499/// it inserts the specified CallMI instruction into the stream.
1500///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001501void X86ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
1502 const std::vector<ValueRecord> &Args) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001503 // Count how many bytes are to be pushed on the stack...
1504 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001505
Chris Lattner3e130a22003-01-13 00:32:26 +00001506 if (!Args.empty()) {
1507 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1508 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001509 case cByte: case cShort: case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001510 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001511 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001512 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001513 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001514 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1515 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001516 default: assert(0 && "Unknown class!");
1517 }
1518
1519 // Adjust the stack pointer for the new arguments...
Chris Lattneree352852004-02-29 07:22:16 +00001520 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
Chris Lattner065faeb2002-12-28 20:24:02 +00001521
1522 // Arguments go on the stack in reverse order, as specified by the ABI.
1523 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +00001524 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattnerce6096f2004-03-01 02:34:08 +00001525 unsigned ArgReg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001526 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001527 case cByte:
Chris Lattner2b10b082004-05-12 16:35:04 +00001528 if (Args[i].Val && isa<ConstantBool>(Args[i].Val)) {
1529 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1530 .addImm(Args[i].Val == ConstantBool::True);
1531 break;
1532 }
1533 // FALL THROUGH
Chris Lattner21585222004-03-01 02:42:43 +00001534 case cShort:
1535 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1536 // Zero/Sign extend constant, then stuff into memory.
1537 ConstantInt *Val = cast<ConstantInt>(Args[i].Val);
1538 Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy));
1539 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1540 .addImm(Val->getRawValue() & 0xFFFFFFFF);
1541 } else {
1542 // Promote arg to 32 bits wide into a temporary register...
1543 ArgReg = makeAnotherReg(Type::UIntTy);
1544 promote32(ArgReg, Args[i]);
1545 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1546 X86::ESP, ArgOffset).addReg(ArgReg);
1547 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001548 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001549 case cInt:
Chris Lattner21585222004-03-01 02:42:43 +00001550 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1551 unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1552 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1553 X86::ESP, ArgOffset).addImm(Val);
Chris Lattnerb7cb9ff2004-05-13 15:26:48 +00001554 } else if (Args[i].Val && isa<ConstantPointerNull>(Args[i].Val)) {
1555 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1556 X86::ESP, ArgOffset).addImm(0);
Chris Lattner21585222004-03-01 02:42:43 +00001557 } else {
1558 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1559 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1560 X86::ESP, ArgOffset).addReg(ArgReg);
1561 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001562 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001563 case cLong:
Chris Lattner92900a62004-04-06 03:23:00 +00001564 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1565 uint64_t Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1566 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1567 X86::ESP, ArgOffset).addImm(Val & ~0U);
1568 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1569 X86::ESP, ArgOffset+4).addImm(Val >> 32ULL);
1570 } else {
1571 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1572 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1573 X86::ESP, ArgOffset).addReg(ArgReg);
1574 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1575 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1576 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001577 ArgOffset += 4; // 8 byte entry, not 4.
1578 break;
1579
Chris Lattner065faeb2002-12-28 20:24:02 +00001580 case cFP:
Chris Lattnerce6096f2004-03-01 02:34:08 +00001581 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001582 if (Args[i].Ty == Type::FloatTy) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001583 addRegOffset(BuildMI(BB, X86::FST32m, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001584 X86::ESP, ArgOffset).addReg(ArgReg);
1585 } else {
1586 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001587 addRegOffset(BuildMI(BB, X86::FST64m, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001588 X86::ESP, ArgOffset).addReg(ArgReg);
1589 ArgOffset += 4; // 8 byte entry, not 4.
1590 }
1591 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001592
Chris Lattner3e130a22003-01-13 00:32:26 +00001593 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +00001594 }
1595 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +00001596 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001597 } else {
Chris Lattneree352852004-02-29 07:22:16 +00001598 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +00001599 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +00001600
Chris Lattner3e130a22003-01-13 00:32:26 +00001601 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001602
Chris Lattneree352852004-02-29 07:22:16 +00001603 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +00001604
1605 // If there is a return value, scavenge the result from the location the call
1606 // leaves it in...
1607 //
Chris Lattner3e130a22003-01-13 00:32:26 +00001608 if (Ret.Ty != Type::VoidTy) {
1609 unsigned DestClass = getClassB(Ret.Ty);
1610 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001611 case cByte:
1612 case cShort:
1613 case cInt: {
1614 // Integral results are in %eax, or the appropriate portion
1615 // thereof.
1616 static const unsigned regRegMove[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001617 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr
Brian Gaeke20244b72002-12-12 15:33:40 +00001618 };
1619 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001620 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001621 break;
Brian Gaeke20244b72002-12-12 15:33:40 +00001622 }
Chris Lattner94af4142002-12-25 05:13:53 +00001623 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +00001624 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001625 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001626 case cLong: // Long values are left in EDX:EAX
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001627 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX);
1628 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX);
Chris Lattner3e130a22003-01-13 00:32:26 +00001629 break;
1630 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001631 }
Chris Lattnera3243642002-12-04 23:45:28 +00001632 }
Brian Gaekefa8d5712002-11-22 11:07:01 +00001633}
Chris Lattner2df035b2002-11-02 19:27:56 +00001634
Chris Lattner3e130a22003-01-13 00:32:26 +00001635
1636/// visitCallInst - Push args on stack and do a procedure call instruction.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001637void X86ISel::visitCallInst(CallInst &CI) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001638 MachineInstr *TheCall;
1639 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001640 // Is it an intrinsic function call?
Brian Gaeked0fde302003-11-11 22:41:34 +00001641 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001642 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1643 return;
1644 }
1645
Chris Lattner3e130a22003-01-13 00:32:26 +00001646 // Emit a CALL instruction with PC-relative displacement.
1647 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1648 } else { // Emit an indirect call...
1649 unsigned Reg = getReg(CI.getCalledValue());
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001650 TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001651 }
1652
1653 std::vector<ValueRecord> Args;
1654 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001655 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001656
1657 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1658 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001659}
Chris Lattner3e130a22003-01-13 00:32:26 +00001660
Chris Lattner44827152003-12-28 09:47:19 +00001661/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1662/// function, lowering any calls to unknown intrinsic functions into the
1663/// equivalent LLVM code.
Misha Brukman538607f2004-03-01 23:53:11 +00001664///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001665void X86ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
Chris Lattner44827152003-12-28 09:47:19 +00001666 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1667 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1668 if (CallInst *CI = dyn_cast<CallInst>(I++))
1669 if (Function *F = CI->getCalledFunction())
1670 switch (F->getIntrinsicID()) {
Chris Lattneraed386e2003-12-28 09:53:23 +00001671 case Intrinsic::not_intrinsic:
Chris Lattner317201d2004-03-13 00:24:00 +00001672 case Intrinsic::vastart:
1673 case Intrinsic::vacopy:
1674 case Intrinsic::vaend:
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001675 case Intrinsic::returnaddress:
1676 case Intrinsic::frameaddress:
Chris Lattner915e5e52004-02-12 17:53:22 +00001677 case Intrinsic::memcpy:
Chris Lattner2a0f2242004-02-14 04:46:05 +00001678 case Intrinsic::memset:
Chris Lattnerdc572442004-06-15 21:36:44 +00001679 case Intrinsic::isunordered:
John Criswell4ffff9e2004-04-08 20:31:47 +00001680 case Intrinsic::readport:
1681 case Intrinsic::writeport:
Chris Lattner44827152003-12-28 09:47:19 +00001682 // We directly implement these intrinsics
1683 break;
John Criswelle5a4c152004-04-13 22:13:14 +00001684 case Intrinsic::readio: {
1685 // On X86, memory operations are in-order. Lower this intrinsic
1686 // into a volatile load.
1687 Instruction *Before = CI->getPrev();
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001688 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1689 CI->replaceAllUsesWith(LI);
1690 BB->getInstList().erase(CI);
John Criswelle5a4c152004-04-13 22:13:14 +00001691 break;
1692 }
1693 case Intrinsic::writeio: {
1694 // On X86, memory operations are in-order. Lower this intrinsic
1695 // into a volatile store.
1696 Instruction *Before = CI->getPrev();
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001697 StoreInst *LI = new StoreInst(CI->getOperand(1),
1698 CI->getOperand(2), true, CI);
1699 CI->replaceAllUsesWith(LI);
1700 BB->getInstList().erase(CI);
John Criswelle5a4c152004-04-13 22:13:14 +00001701 break;
1702 }
Chris Lattner44827152003-12-28 09:47:19 +00001703 default:
1704 // All other intrinsic calls we must lower.
1705 Instruction *Before = CI->getPrev();
Chris Lattnerf70e0c22003-12-28 21:23:38 +00001706 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
Chris Lattner44827152003-12-28 09:47:19 +00001707 if (Before) { // Move iterator to instruction after call
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001708 I = Before; ++I;
Chris Lattner44827152003-12-28 09:47:19 +00001709 } else {
1710 I = BB->begin();
1711 }
1712 }
Chris Lattner44827152003-12-28 09:47:19 +00001713}
1714
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001715void X86ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001716 unsigned TmpReg1, TmpReg2;
1717 switch (ID) {
Chris Lattner5634b9f2004-03-13 00:24:52 +00001718 case Intrinsic::vastart:
Chris Lattnereca195e2003-05-08 19:44:13 +00001719 // Get the address of the first vararg value...
Chris Lattner73815062003-10-18 05:56:40 +00001720 TmpReg1 = getReg(CI);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001721 addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex);
Chris Lattnereca195e2003-05-08 19:44:13 +00001722 return;
1723
Chris Lattner5634b9f2004-03-13 00:24:52 +00001724 case Intrinsic::vacopy:
Chris Lattner73815062003-10-18 05:56:40 +00001725 TmpReg1 = getReg(CI);
1726 TmpReg2 = getReg(CI.getOperand(1));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001727 BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2);
Chris Lattnereca195e2003-05-08 19:44:13 +00001728 return;
Chris Lattner5634b9f2004-03-13 00:24:52 +00001729 case Intrinsic::vaend: return; // Noop on X86
Chris Lattnereca195e2003-05-08 19:44:13 +00001730
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001731 case Intrinsic::returnaddress:
1732 case Intrinsic::frameaddress:
1733 TmpReg1 = getReg(CI);
1734 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1735 if (ID == Intrinsic::returnaddress) {
1736 // Just load the return address
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001737 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1),
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001738 ReturnAddressIndex);
1739 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001740 addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1),
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001741 ReturnAddressIndex, -4);
1742 }
1743 } else {
1744 // Values other than zero are not implemented yet.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001745 BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0);
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001746 }
1747 return;
1748
Chris Lattnerdc572442004-06-15 21:36:44 +00001749 case Intrinsic::isunordered:
1750 TmpReg1 = getReg(CI.getOperand(1));
1751 TmpReg2 = getReg(CI.getOperand(2));
1752 emitUCOMr(BB, BB->end(), TmpReg2, TmpReg1);
1753 TmpReg2 = getReg(CI);
1754 BuildMI(BB, X86::SETPr, 0, TmpReg2);
1755 return;
1756
Chris Lattner915e5e52004-02-12 17:53:22 +00001757 case Intrinsic::memcpy: {
1758 assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
1759 unsigned Align = 1;
1760 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1761 Align = AlignC->getRawValue();
1762 if (Align == 0) Align = 1;
1763 }
1764
1765 // Turn the byte code into # iterations
Chris Lattner915e5e52004-02-12 17:53:22 +00001766 unsigned CountReg;
Chris Lattner2a0f2242004-02-14 04:46:05 +00001767 unsigned Opcode;
Chris Lattner915e5e52004-02-12 17:53:22 +00001768 switch (Align & 3) {
1769 case 2: // WORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001770 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1771 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
1772 } else {
1773 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001774 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001775 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
Chris Lattner07122832004-02-13 23:36:47 +00001776 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001777 Opcode = X86::REP_MOVSW;
Chris Lattner915e5e52004-02-12 17:53:22 +00001778 break;
1779 case 0: // DWORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001780 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1781 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
1782 } else {
1783 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001784 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001785 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
Chris Lattner07122832004-02-13 23:36:47 +00001786 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001787 Opcode = X86::REP_MOVSD;
Chris Lattner915e5e52004-02-12 17:53:22 +00001788 break;
Chris Lattner8dd8d262004-02-26 01:20:02 +00001789 default: // BYTE aligned
Chris Lattner07122832004-02-13 23:36:47 +00001790 CountReg = getReg(CI.getOperand(3));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001791 Opcode = X86::REP_MOVSB;
Chris Lattner915e5e52004-02-12 17:53:22 +00001792 break;
1793 }
1794
1795 // No matter what the alignment is, we put the source in ESI, the
1796 // destination in EDI, and the count in ECX.
1797 TmpReg1 = getReg(CI.getOperand(1));
1798 TmpReg2 = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001799 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1800 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
1801 BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001802 BuildMI(BB, Opcode, 0);
1803 return;
1804 }
1805 case Intrinsic::memset: {
1806 assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
1807 unsigned Align = 1;
1808 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1809 Align = AlignC->getRawValue();
1810 if (Align == 0) Align = 1;
Chris Lattner915e5e52004-02-12 17:53:22 +00001811 }
1812
Chris Lattner2a0f2242004-02-14 04:46:05 +00001813 // Turn the byte code into # iterations
Chris Lattner2a0f2242004-02-14 04:46:05 +00001814 unsigned CountReg;
1815 unsigned Opcode;
1816 if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
1817 unsigned Val = ValC->getRawValue() & 255;
1818
1819 // If the value is a constant, then we can potentially use larger copies.
1820 switch (Align & 3) {
1821 case 2: // WORD aligned
1822 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001823 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001824 } else {
1825 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001826 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001827 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001828 }
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001829 BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001830 Opcode = X86::REP_STOSW;
1831 break;
1832 case 0: // DWORD aligned
1833 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001834 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001835 } else {
1836 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001837 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001838 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001839 }
1840 Val = (Val << 8) | Val;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001841 BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001842 Opcode = X86::REP_STOSD;
1843 break;
Chris Lattner8dd8d262004-02-26 01:20:02 +00001844 default: // BYTE aligned
Chris Lattner2a0f2242004-02-14 04:46:05 +00001845 CountReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001846 BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001847 Opcode = X86::REP_STOSB;
1848 break;
1849 }
1850 } else {
1851 // If it's not a constant value we are storing, just fall back. We could
1852 // try to be clever to form 16 bit and 32 bit values, but we don't yet.
1853 unsigned ValReg = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001854 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001855 CountReg = getReg(CI.getOperand(3));
1856 Opcode = X86::REP_STOSB;
1857 }
1858
1859 // No matter what the alignment is, we put the source in ESI, the
1860 // destination in EDI, and the count in ECX.
1861 TmpReg1 = getReg(CI.getOperand(1));
1862 //TmpReg2 = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001863 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1864 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001865 BuildMI(BB, Opcode, 0);
Chris Lattner915e5e52004-02-12 17:53:22 +00001866 return;
1867 }
1868
Chris Lattner87e18de2004-04-13 17:20:37 +00001869 case Intrinsic::readport: {
1870 // First, determine that the size of the operand falls within the acceptable
1871 // range for this architecture.
John Criswell4ffff9e2004-04-08 20:31:47 +00001872 //
Chris Lattner87e18de2004-04-13 17:20:37 +00001873 if (getClassB(CI.getOperand(1)->getType()) != cShort) {
John Criswellca6ea0f2004-04-08 22:39:13 +00001874 std::cerr << "llvm.readport: Address size is not 16 bits\n";
Chris Lattner87e18de2004-04-13 17:20:37 +00001875 exit(1);
John Criswellca6ea0f2004-04-08 22:39:13 +00001876 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001877
John Criswell4ffff9e2004-04-08 20:31:47 +00001878 // Now, move the I/O port address into the DX register and use the IN
1879 // instruction to get the input data.
1880 //
Chris Lattner87e18de2004-04-13 17:20:37 +00001881 unsigned Class = getClass(CI.getCalledFunction()->getReturnType());
1882 unsigned DestReg = getReg(CI);
John Criswell4ffff9e2004-04-08 20:31:47 +00001883
Chris Lattner87e18de2004-04-13 17:20:37 +00001884 // If the port is a single-byte constant, use the immediate form.
1885 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(1)))
1886 if ((C->getRawValue() & 255) == C->getRawValue()) {
1887 switch (Class) {
1888 case cByte:
1889 BuildMI(BB, X86::IN8ri, 1).addImm((unsigned char)C->getRawValue());
1890 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1891 return;
1892 case cShort:
1893 BuildMI(BB, X86::IN16ri, 1).addImm((unsigned char)C->getRawValue());
1894 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1895 return;
1896 case cInt:
1897 BuildMI(BB, X86::IN32ri, 1).addImm((unsigned char)C->getRawValue());
1898 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
1899 return;
1900 }
1901 }
1902
1903 unsigned Reg = getReg(CI.getOperand(1));
1904 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
1905 switch (Class) {
1906 case cByte:
1907 BuildMI(BB, X86::IN8rr, 0);
1908 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1909 break;
1910 case cShort:
1911 BuildMI(BB, X86::IN16rr, 0);
1912 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1913 break;
1914 case cInt:
1915 BuildMI(BB, X86::IN32rr, 0);
1916 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
1917 break;
1918 default:
1919 std::cerr << "Cannot do input on this data type";
John Criswellca6ea0f2004-04-08 22:39:13 +00001920 exit (1);
1921 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001922 return;
Chris Lattner87e18de2004-04-13 17:20:37 +00001923 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001924
Chris Lattner87e18de2004-04-13 17:20:37 +00001925 case Intrinsic::writeport: {
1926 // First, determine that the size of the operand falls within the
1927 // acceptable range for this architecture.
1928 if (getClass(CI.getOperand(2)->getType()) != cShort) {
1929 std::cerr << "llvm.writeport: Address size is not 16 bits\n";
1930 exit(1);
1931 }
1932
1933 unsigned Class = getClassB(CI.getOperand(1)->getType());
1934 unsigned ValReg = getReg(CI.getOperand(1));
1935 switch (Class) {
1936 case cByte:
1937 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
1938 break;
1939 case cShort:
1940 BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(ValReg);
1941 break;
1942 case cInt:
1943 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(ValReg);
1944 break;
1945 default:
1946 std::cerr << "llvm.writeport: invalid data type for X86 target";
1947 exit(1);
1948 }
1949
1950
1951 // If the port is a single-byte constant, use the immediate form.
1952 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(2)))
1953 if ((C->getRawValue() & 255) == C->getRawValue()) {
1954 static const unsigned O[] = { X86::OUT8ir, X86::OUT16ir, X86::OUT32ir };
1955 BuildMI(BB, O[Class], 1).addImm((unsigned char)C->getRawValue());
1956 return;
1957 }
1958
1959 // Otherwise, move the I/O port address into the DX register and the value
1960 // to write into the AL/AX/EAX register.
1961 static const unsigned Opc[] = { X86::OUT8rr, X86::OUT16rr, X86::OUT32rr };
1962 unsigned Reg = getReg(CI.getOperand(2));
1963 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
1964 BuildMI(BB, Opc[Class], 0);
1965 return;
1966 }
1967
Chris Lattner44827152003-12-28 09:47:19 +00001968 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001969 }
1970}
1971
Chris Lattner7dee5da2004-03-08 01:58:35 +00001972static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) {
1973 if (LI.getParent() != User.getParent())
1974 return false;
1975 BasicBlock::iterator It = &LI;
1976 // Check all of the instructions between the load and the user. We should
1977 // really use alias analysis here, but for now we just do something simple.
1978 for (++It; It != BasicBlock::iterator(&User); ++It) {
1979 switch (It->getOpcode()) {
Chris Lattner85c84e72004-03-18 06:29:54 +00001980 case Instruction::Free:
Chris Lattner7dee5da2004-03-08 01:58:35 +00001981 case Instruction::Store:
1982 case Instruction::Call:
1983 case Instruction::Invoke:
1984 return false;
Chris Lattner133dbb12004-04-12 03:02:48 +00001985 case Instruction::Load:
1986 if (cast<LoadInst>(It)->isVolatile() && LI.isVolatile())
1987 return false;
1988 break;
Chris Lattner7dee5da2004-03-08 01:58:35 +00001989 }
1990 }
1991 return true;
1992}
1993
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001994/// visitSimpleBinary - Implement simple binary operators for integral types...
1995/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1996/// Xor.
Misha Brukman538607f2004-03-01 23:53:11 +00001997///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001998void X86ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001999 unsigned DestReg = getReg(B);
2000 MachineBasicBlock::iterator MI = BB->end();
Chris Lattner721d2d42004-03-08 01:18:36 +00002001 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
Chris Lattnerc81e6ba2004-05-10 15:15:55 +00002002 unsigned Class = getClassB(B.getType());
Chris Lattner721d2d42004-03-08 01:18:36 +00002003
Chris Lattnerde95c9e2004-10-17 06:10:40 +00002004 // If this is AND X, C, and it is only used by a setcc instruction, it will
2005 // be folded. There is no need to emit this instruction.
2006 if (B.hasOneUse() && OperatorClass == 2 && isa<ConstantInt>(Op1))
2007 if (Class == cByte || Class == cShort || Class == cInt) {
2008 Instruction *Use = cast<Instruction>(B.use_back());
2009 if (isa<SetCondInst>(Use) &&
2010 Use->getOperand(1) == Constant::getNullValue(B.getType())) {
2011 switch (getSetCCNumber(Use->getOpcode())) {
2012 case 0:
2013 case 1:
2014 return;
2015 default:
2016 if (B.getType()->isSigned()) return;
2017 }
2018 }
2019 }
2020
Chris Lattner7dee5da2004-03-08 01:58:35 +00002021 // Special case: op Reg, load [mem]
Chris Lattnerc81e6ba2004-05-10 15:15:55 +00002022 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1) && Class != cLong &&
Chris Lattnerccd97962004-06-17 22:15:25 +00002023 Op0->hasOneUse() &&
Chris Lattnerc81e6ba2004-05-10 15:15:55 +00002024 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B))
Chris Lattner7dee5da2004-03-08 01:58:35 +00002025 if (!B.swapOperands())
2026 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
2027
Chris Lattnerccd97962004-06-17 22:15:25 +00002028 if (isa<LoadInst>(Op1) && Class != cLong && Op1->hasOneUse() &&
Chris Lattner7dee5da2004-03-08 01:58:35 +00002029 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op1), B)) {
2030
Chris Lattner95157f72004-04-11 22:05:45 +00002031 unsigned Opcode;
2032 if (Class != cFP) {
2033 static const unsigned OpcodeTab[][3] = {
2034 // Arithmetic operators
2035 { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD
2036 { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB
2037
2038 // Bitwise operators
2039 { X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND
2040 { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR
2041 { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm }, // XOR
2042 };
2043 Opcode = OpcodeTab[OperatorClass][Class];
2044 } else {
2045 static const unsigned OpcodeTab[][2] = {
2046 { X86::FADD32m, X86::FADD64m }, // ADD
2047 { X86::FSUB32m, X86::FSUB64m }, // SUB
2048 };
2049 const Type *Ty = Op0->getType();
2050 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2051 Opcode = OpcodeTab[OperatorClass][Ty == Type::DoubleTy];
2052 }
Chris Lattner7dee5da2004-03-08 01:58:35 +00002053
Chris Lattner7dee5da2004-03-08 01:58:35 +00002054 unsigned Op0r = getReg(Op0);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002055 if (AllocaInst *AI =
2056 dyn_castFixedAlloca(cast<LoadInst>(Op1)->getOperand(0))) {
2057 unsigned FI = getFixedSizedAllocaFI(AI);
2058 addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), FI);
2059
2060 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00002061 X86AddressMode AM;
2062 getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002063
Reid Spencerfc989e12004-08-30 00:13:26 +00002064 addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002065 }
Chris Lattner7dee5da2004-03-08 01:58:35 +00002066 return;
2067 }
2068
Chris Lattner95157f72004-04-11 22:05:45 +00002069 // If this is a floating point subtract, check to see if we can fold the first
2070 // operand in.
2071 if (Class == cFP && OperatorClass == 1 &&
2072 isa<LoadInst>(Op0) &&
2073 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) {
2074 const Type *Ty = Op0->getType();
2075 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2076 unsigned Opcode = Ty == Type::FloatTy ? X86::FSUBR32m : X86::FSUBR64m;
2077
Chris Lattner95157f72004-04-11 22:05:45 +00002078 unsigned Op1r = getReg(Op1);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002079 if (AllocaInst *AI =
2080 dyn_castFixedAlloca(cast<LoadInst>(Op0)->getOperand(0))) {
2081 unsigned FI = getFixedSizedAllocaFI(AI);
2082 addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), FI);
2083 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00002084 X86AddressMode AM;
2085 getAddressingMode(cast<LoadInst>(Op0)->getOperand(0), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002086
Reid Spencerfc989e12004-08-30 00:13:26 +00002087 addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002088 }
Chris Lattner95157f72004-04-11 22:05:45 +00002089 return;
2090 }
2091
Chris Lattner721d2d42004-03-08 01:18:36 +00002092 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002093}
Chris Lattner3e130a22003-01-13 00:32:26 +00002094
Chris Lattner6621ed92004-04-11 21:23:56 +00002095
2096/// emitBinaryFPOperation - This method handles emission of floating point
2097/// Add (0), Sub (1), Mul (2), and Div (3) operations.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002098void X86ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
2099 MachineBasicBlock::iterator IP,
2100 Value *Op0, Value *Op1,
2101 unsigned OperatorClass, unsigned DestReg) {
Chris Lattner6621ed92004-04-11 21:23:56 +00002102 // Special case: op Reg, <const fp>
2103 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1))
2104 if (!Op1C->isExactlyValue(+0.0) && !Op1C->isExactlyValue(+1.0)) {
2105 // Create a constant pool entry for this constant.
2106 MachineConstantPool *CP = F->getConstantPool();
2107 unsigned CPI = CP->getConstantPoolIndex(Op1C);
2108 const Type *Ty = Op1->getType();
2109
2110 static const unsigned OpcodeTab[][4] = {
2111 { X86::FADD32m, X86::FSUB32m, X86::FMUL32m, X86::FDIV32m }, // Float
2112 { X86::FADD64m, X86::FSUB64m, X86::FMUL64m, X86::FDIV64m }, // Double
2113 };
2114
2115 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2116 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
2117 unsigned Op0r = getReg(Op0, BB, IP);
2118 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
2119 DestReg).addReg(Op0r), CPI);
2120 return;
2121 }
2122
Chris Lattner13c07fe2004-04-12 00:12:04 +00002123 // Special case: R1 = op <const fp>, R2
Chris Lattner6621ed92004-04-11 21:23:56 +00002124 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
2125 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
2126 // -0.0 - X === -X
2127 unsigned op1Reg = getReg(Op1, BB, IP);
2128 BuildMI(*BB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
2129 return;
2130 } else if (!CFP->isExactlyValue(+0.0) && !CFP->isExactlyValue(+1.0)) {
Chris Lattner13c07fe2004-04-12 00:12:04 +00002131 // R1 = op CST, R2 --> R1 = opr R2, CST
Chris Lattner6621ed92004-04-11 21:23:56 +00002132
2133 // Create a constant pool entry for this constant.
2134 MachineConstantPool *CP = F->getConstantPool();
2135 unsigned CPI = CP->getConstantPoolIndex(CFP);
2136 const Type *Ty = CFP->getType();
2137
2138 static const unsigned OpcodeTab[][4] = {
2139 { X86::FADD32m, X86::FSUBR32m, X86::FMUL32m, X86::FDIVR32m }, // Float
2140 { X86::FADD64m, X86::FSUBR64m, X86::FMUL64m, X86::FDIVR64m }, // Double
2141 };
2142
2143 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2144 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
2145 unsigned Op1r = getReg(Op1, BB, IP);
2146 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
2147 DestReg).addReg(Op1r), CPI);
2148 return;
2149 }
2150
2151 // General case.
2152 static const unsigned OpcodeTab[4] = {
2153 X86::FpADD, X86::FpSUB, X86::FpMUL, X86::FpDIV
2154 };
2155
2156 unsigned Opcode = OpcodeTab[OperatorClass];
2157 unsigned Op0r = getReg(Op0, BB, IP);
2158 unsigned Op1r = getReg(Op1, BB, IP);
2159 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2160}
2161
Chris Lattnerb2acc512003-10-19 21:09:10 +00002162/// emitSimpleBinaryOperation - Implement simple binary operators for integral
2163/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
2164/// Or, 4 for Xor.
Chris Lattner68aad932002-11-02 20:13:22 +00002165///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002166/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
2167/// and constant expression support.
Chris Lattnerb2acc512003-10-19 21:09:10 +00002168///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002169void X86ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
2170 MachineBasicBlock::iterator IP,
2171 Value *Op0, Value *Op1,
2172 unsigned OperatorClass,
2173 unsigned DestReg) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002174 unsigned Class = getClassB(Op0->getType());
Chris Lattnerb2acc512003-10-19 21:09:10 +00002175
Chris Lattner6621ed92004-04-11 21:23:56 +00002176 if (Class == cFP) {
2177 assert(OperatorClass < 2 && "No logical ops for FP!");
2178 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
2179 return;
2180 }
2181
Chris Lattner48b0c972004-04-11 20:26:20 +00002182 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
Chris Lattner667ea022004-06-18 00:50:37 +00002183 if (OperatorClass == 1) {
Chris Lattner48b0c972004-04-11 20:26:20 +00002184 static unsigned const NEGTab[] = {
2185 X86::NEG8r, X86::NEG16r, X86::NEG32r, 0, X86::NEG32r
2186 };
Chris Lattner667ea022004-06-18 00:50:37 +00002187
2188 // sub 0, X -> neg X
2189 if (CI->isNullValue()) {
2190 unsigned op1Reg = getReg(Op1, MBB, IP);
2191 BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg);
Chris Lattner48b0c972004-04-11 20:26:20 +00002192
Chris Lattner667ea022004-06-18 00:50:37 +00002193 if (Class == cLong) {
2194 // We just emitted: Dl = neg Sl
2195 // Now emit : T = addc Sh, 0
2196 // : Dh = neg T
2197 unsigned T = makeAnotherReg(Type::IntTy);
2198 BuildMI(*MBB, IP, X86::ADC32ri, 2, T).addReg(op1Reg+1).addImm(0);
2199 BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg+1).addReg(T);
2200 }
2201 return;
2202 } else if (Op1->hasOneUse() && Class != cLong) {
2203 // sub C, X -> tmp = neg X; DestReg = add tmp, C. This is better
2204 // than copying C into a temporary register, because of register
2205 // pressure (tmp and destreg can share a register.
2206 static unsigned const ADDRITab[] = {
2207 X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri
2208 };
2209 unsigned op1Reg = getReg(Op1, MBB, IP);
2210 unsigned Tmp = makeAnotherReg(Op0->getType());
2211 BuildMI(*MBB, IP, NEGTab[Class], 1, Tmp).addReg(op1Reg);
Chris Lattner30483732004-06-20 07:49:54 +00002212 BuildMI(*MBB, IP, ADDRITab[Class], 2,
2213 DestReg).addReg(Tmp).addImm(CI->getRawValue());
Chris Lattner667ea022004-06-18 00:50:37 +00002214 return;
Chris Lattnerb2acc512003-10-19 21:09:10 +00002215 }
Chris Lattner48b0c972004-04-11 20:26:20 +00002216 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002217
Chris Lattner48b0c972004-04-11 20:26:20 +00002218 // Special case: op Reg, <const int>
2219 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner721d2d42004-03-08 01:18:36 +00002220 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002221
Chris Lattner721d2d42004-03-08 01:18:36 +00002222 // xor X, -1 -> not X
2223 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002224 static unsigned const NOTTab[] = {
2225 X86::NOT8r, X86::NOT16r, X86::NOT32r, 0, X86::NOT32r
2226 };
Chris Lattner721d2d42004-03-08 01:18:36 +00002227 BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002228 if (Class == cLong) // Invert the top part too
2229 BuildMI(*MBB, IP, X86::NOT32r, 1, DestReg+1).addReg(Op0r+1);
Chris Lattner721d2d42004-03-08 01:18:36 +00002230 return;
2231 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002232
Chris Lattner721d2d42004-03-08 01:18:36 +00002233 // add X, -1 -> dec X
Chris Lattner06521672004-04-06 03:36:57 +00002234 if (OperatorClass == 0 && Op1C->isAllOnesValue() && Class != cLong) {
2235 // Note that we can't use dec for 64-bit decrements, because it does not
2236 // set the carry flag!
2237 static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r };
Chris Lattner721d2d42004-03-08 01:18:36 +00002238 BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
2239 return;
2240 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002241
Chris Lattner721d2d42004-03-08 01:18:36 +00002242 // add X, 1 -> inc X
Chris Lattner06521672004-04-06 03:36:57 +00002243 if (OperatorClass == 0 && Op1C->equalsInt(1) && Class != cLong) {
2244 // Note that we can't use inc for 64-bit increments, because it does not
2245 // set the carry flag!
2246 static unsigned const INCTab[] = { X86::INC8r, X86::INC16r, X86::INC32r };
Alkis Evlogimenosbee8a092004-04-02 18:11:32 +00002247 BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r);
Chris Lattner721d2d42004-03-08 01:18:36 +00002248 return;
2249 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002250
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002251 static const unsigned OpcodeTab[][5] = {
Chris Lattner721d2d42004-03-08 01:18:36 +00002252 // Arithmetic operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002253 { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri }, // ADD
2254 { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri }, // SUB
Chris Lattnerb2acc512003-10-19 21:09:10 +00002255
Chris Lattner721d2d42004-03-08 01:18:36 +00002256 // Bitwise operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002257 { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri }, // AND
2258 { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri }, // OR
2259 { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri }, // XOR
Chris Lattner721d2d42004-03-08 01:18:36 +00002260 };
2261
Chris Lattner721d2d42004-03-08 01:18:36 +00002262 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner33f7fa32004-04-06 03:15:53 +00002263 unsigned Op1l = cast<ConstantInt>(Op1C)->getRawValue();
Chris Lattner721d2d42004-03-08 01:18:36 +00002264
Chris Lattner33f7fa32004-04-06 03:15:53 +00002265 if (Class != cLong) {
2266 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2267 return;
Chris Lattner6621ed92004-04-11 21:23:56 +00002268 }
2269
2270 // If this is a long value and the high or low bits have a special
2271 // property, emit some special cases.
2272 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
2273
2274 // If the constant is zero in the low 32-bits, just copy the low part
2275 // across and apply the normal 32-bit operation to the high parts. There
2276 // will be no carry or borrow into the top.
2277 if (Op1l == 0) {
2278 if (OperatorClass != 2) // All but and...
2279 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0r);
2280 else
2281 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2282 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg+1)
2283 .addReg(Op0r+1).addImm(Op1h);
Chris Lattner33f7fa32004-04-06 03:15:53 +00002284 return;
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002285 }
Chris Lattner6621ed92004-04-11 21:23:56 +00002286
2287 // If this is a logical operation and the top 32-bits are zero, just
2288 // operate on the lower 32.
2289 if (Op1h == 0 && OperatorClass > 1) {
2290 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg)
2291 .addReg(Op0r).addImm(Op1l);
2292 if (OperatorClass != 2) // All but and
2293 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(Op0r+1);
2294 else
2295 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
2296 return;
2297 }
2298
2299 // TODO: We could handle lots of other special cases here, such as AND'ing
2300 // with 0xFFFFFFFF00000000 -> noop, etc.
2301
2302 // Otherwise, code generate the full operation with a constant.
2303 static const unsigned TopTab[] = {
2304 X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri
2305 };
2306
2307 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2308 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1)
2309 .addReg(Op0r+1).addImm(Op1h);
2310 return;
Chris Lattner721d2d42004-03-08 01:18:36 +00002311 }
2312
2313 // Finally, handle the general case now.
Chris Lattner7ba92302004-04-06 02:13:25 +00002314 static const unsigned OpcodeTab[][5] = {
Chris Lattner721d2d42004-03-08 01:18:36 +00002315 // Arithmetic operators
Chris Lattner6621ed92004-04-11 21:23:56 +00002316 { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, 0, X86::ADD32rr }, // ADD
2317 { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, 0, X86::SUB32rr }, // SUB
Chris Lattner721d2d42004-03-08 01:18:36 +00002318
Chris Lattnerb2acc512003-10-19 21:09:10 +00002319 // Bitwise operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002320 { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr }, // AND
2321 { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr }, // OR
2322 { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr }, // XOR
Chris Lattnerb2acc512003-10-19 21:09:10 +00002323 };
Chris Lattner721d2d42004-03-08 01:18:36 +00002324
Chris Lattnerb2acc512003-10-19 21:09:10 +00002325 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner721d2d42004-03-08 01:18:36 +00002326 unsigned Op0r = getReg(Op0, MBB, IP);
2327 unsigned Op1r = getReg(Op1, MBB, IP);
2328 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2329
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002330 if (Class == cLong) { // Handle the upper 32 bits of long values...
Chris Lattner721d2d42004-03-08 01:18:36 +00002331 static const unsigned TopTab[] = {
2332 X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr
2333 };
2334 BuildMI(*MBB, IP, TopTab[OperatorClass], 2,
2335 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
2336 }
Chris Lattnere2954c82002-11-02 20:04:26 +00002337}
2338
Chris Lattner3e130a22003-01-13 00:32:26 +00002339/// doMultiply - Emit appropriate instructions to multiply together the
2340/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
2341/// result should be given as DestTy.
2342///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002343void X86ISel::doMultiply(MachineBasicBlock *MBB,
2344 MachineBasicBlock::iterator MBBI,
2345 unsigned DestReg, const Type *DestTy,
2346 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002347 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00002348 switch (Class) {
Chris Lattner0f1c4612003-06-21 17:16:58 +00002349 case cInt:
2350 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002351 BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg)
Chris Lattner0f1c4612003-06-21 17:16:58 +00002352 .addReg(op0Reg).addReg(op1Reg);
2353 return;
2354 case cByte:
2355 // Must use the MUL instruction, which forces use of AL...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002356 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg);
2357 BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg);
2358 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
Chris Lattner0f1c4612003-06-21 17:16:58 +00002359 return;
Chris Lattner94af4142002-12-25 05:13:53 +00002360 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00002361 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00002362 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002363}
2364
Chris Lattnerb2acc512003-10-19 21:09:10 +00002365// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
2366// returns zero when the input is not exactly a power of two.
2367static unsigned ExactLog2(unsigned Val) {
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002368 if (Val == 0 || (Val & (Val-1))) return 0;
Chris Lattnerb2acc512003-10-19 21:09:10 +00002369 unsigned Count = 0;
2370 while (Val != 1) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00002371 Val >>= 1;
2372 ++Count;
2373 }
2374 return Count+1;
2375}
2376
Chris Lattner462fa822004-04-11 20:56:28 +00002377
2378/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
2379/// 16, or 32-bit integer multiply by a constant.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002380void X86ISel::doMultiplyConst(MachineBasicBlock *MBB,
2381 MachineBasicBlock::iterator IP,
2382 unsigned DestReg, const Type *DestTy,
2383 unsigned op0Reg, unsigned ConstRHS) {
Chris Lattner6ab06d52004-04-06 04:55:43 +00002384 static const unsigned MOVrrTab[] = {X86::MOV8rr, X86::MOV16rr, X86::MOV32rr};
2385 static const unsigned MOVriTab[] = {X86::MOV8ri, X86::MOV16ri, X86::MOV32ri};
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002386 static const unsigned ADDrrTab[] = {X86::ADD8rr, X86::ADD16rr, X86::ADD32rr};
Chris Lattner596b97f2004-07-19 23:47:21 +00002387 static const unsigned NEGrTab[] = {X86::NEG8r , X86::NEG16r , X86::NEG32r };
Chris Lattner6ab06d52004-04-06 04:55:43 +00002388
Chris Lattnerb2acc512003-10-19 21:09:10 +00002389 unsigned Class = getClass(DestTy);
Chris Lattner596b97f2004-07-19 23:47:21 +00002390 unsigned TmpReg;
Chris Lattnerb2acc512003-10-19 21:09:10 +00002391
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002392 // Handle special cases here.
2393 switch (ConstRHS) {
Chris Lattner596b97f2004-07-19 23:47:21 +00002394 case -2:
2395 TmpReg = makeAnotherReg(DestTy);
2396 BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg);
2397 BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(TmpReg).addReg(TmpReg);
2398 return;
2399 case -1:
2400 BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(op0Reg);
2401 return;
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002402 case 0:
Chris Lattner6ab06d52004-04-06 04:55:43 +00002403 BuildMI(*MBB, IP, MOVriTab[Class], 1, DestReg).addImm(0);
2404 return;
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002405 case 1:
Chris Lattner6ab06d52004-04-06 04:55:43 +00002406 BuildMI(*MBB, IP, MOVrrTab[Class], 1, DestReg).addReg(op0Reg);
2407 return;
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002408 case 2:
2409 BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(op0Reg).addReg(op0Reg);
2410 return;
2411 case 3:
2412 case 5:
2413 case 9:
2414 if (Class == cInt) {
Reid Spencerfc989e12004-08-30 00:13:26 +00002415 X86AddressMode AM;
2416 AM.BaseType = X86AddressMode::RegBase;
2417 AM.Base.Reg = op0Reg;
2418 AM.Scale = ConstRHS-1;
2419 AM.IndexReg = op0Reg;
2420 AM.Disp = 0;
2421 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, DestReg), AM);
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002422 return;
2423 }
Chris Lattner596b97f2004-07-19 23:47:21 +00002424 case -3:
2425 case -5:
2426 case -9:
2427 if (Class == cInt) {
2428 TmpReg = makeAnotherReg(DestTy);
Reid Spencerfc989e12004-08-30 00:13:26 +00002429 X86AddressMode AM;
2430 AM.BaseType = X86AddressMode::RegBase;
2431 AM.Base.Reg = op0Reg;
2432 AM.Scale = -ConstRHS-1;
2433 AM.IndexReg = op0Reg;
2434 AM.Disp = 0;
2435 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TmpReg), AM);
Chris Lattner596b97f2004-07-19 23:47:21 +00002436 BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(TmpReg);
2437 return;
2438 }
Chris Lattner6ab06d52004-04-06 04:55:43 +00002439 }
2440
Chris Lattnerb2acc512003-10-19 21:09:10 +00002441 // If the element size is exactly a power of 2, use a shift to get it.
2442 if (unsigned Shift = ExactLog2(ConstRHS)) {
2443 switch (Class) {
2444 default: assert(0 && "Unknown class for this function!");
2445 case cByte:
Chris Lattner596b97f2004-07-19 23:47:21 +00002446 BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002447 return;
2448 case cShort:
Chris Lattner596b97f2004-07-19 23:47:21 +00002449 BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002450 return;
2451 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002452 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002453 return;
2454 }
2455 }
Chris Lattner596b97f2004-07-19 23:47:21 +00002456
2457 // If the element size is a negative power of 2, use a shift/neg to get it.
2458 if (unsigned Shift = ExactLog2(-ConstRHS)) {
2459 TmpReg = makeAnotherReg(DestTy);
2460 BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg);
2461 switch (Class) {
2462 default: assert(0 && "Unknown class for this function!");
2463 case cByte:
2464 BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
2465 return;
2466 case cShort:
2467 BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
2468 return;
2469 case cInt:
2470 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
2471 return;
2472 }
2473 }
Chris Lattnerc01d1232003-10-20 03:42:58 +00002474
2475 if (Class == cShort) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002476 BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00002477 return;
2478 } else if (Class == cInt) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002479 BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00002480 return;
2481 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002482
2483 // Most general case, emit a normal multiply...
Chris Lattner596b97f2004-07-19 23:47:21 +00002484 TmpReg = makeAnotherReg(DestTy);
Chris Lattneree352852004-02-29 07:22:16 +00002485 BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002486
2487 // Emit a MUL to multiply the register holding the index by
2488 // elementSize, putting the result in OffsetReg.
2489 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
2490}
2491
Chris Lattnerca9671d2002-11-02 20:28:58 +00002492/// visitMul - Multiplies are not simple binary operators because they must deal
2493/// with the EAX register explicitly.
2494///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002495void X86ISel::visitMul(BinaryOperator &I) {
Chris Lattner462fa822004-04-11 20:56:28 +00002496 unsigned ResultReg = getReg(I);
2497
Chris Lattner95157f72004-04-11 22:05:45 +00002498 Value *Op0 = I.getOperand(0);
2499 Value *Op1 = I.getOperand(1);
2500
2501 // Fold loads into floating point multiplies.
2502 if (getClass(Op0->getType()) == cFP) {
2503 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1))
2504 if (!I.swapOperands())
2505 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
2506 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2507 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2508 const Type *Ty = Op0->getType();
2509 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2510 unsigned Opcode = Ty == Type::FloatTy ? X86::FMUL32m : X86::FMUL64m;
2511
Chris Lattner95157f72004-04-11 22:05:45 +00002512 unsigned Op0r = getReg(Op0);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002513 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2514 unsigned FI = getFixedSizedAllocaFI(AI);
2515 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
2516 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00002517 X86AddressMode AM;
2518 getAddressingMode(LI->getOperand(0), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002519
Reid Spencerfc989e12004-08-30 00:13:26 +00002520 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002521 }
Chris Lattner95157f72004-04-11 22:05:45 +00002522 return;
2523 }
2524 }
2525
Chris Lattner462fa822004-04-11 20:56:28 +00002526 MachineBasicBlock::iterator IP = BB->end();
Chris Lattner95157f72004-04-11 22:05:45 +00002527 emitMultiply(BB, IP, Op0, Op1, ResultReg);
Chris Lattner462fa822004-04-11 20:56:28 +00002528}
2529
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002530void X86ISel::emitMultiply(MachineBasicBlock *MBB,
2531 MachineBasicBlock::iterator IP,
2532 Value *Op0, Value *Op1, unsigned DestReg) {
Chris Lattner462fa822004-04-11 20:56:28 +00002533 MachineBasicBlock &BB = *MBB;
2534 TypeClass Class = getClass(Op0->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +00002535
2536 // Simple scalar multiply?
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002537 unsigned Op0Reg = getReg(Op0, &BB, IP);
Chris Lattner462fa822004-04-11 20:56:28 +00002538 switch (Class) {
2539 case cByte:
2540 case cShort:
2541 case cInt:
2542 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner462fa822004-04-11 20:56:28 +00002543 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
2544 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002545 } else {
Chris Lattner462fa822004-04-11 20:56:28 +00002546 unsigned Op1Reg = getReg(Op1, &BB, IP);
2547 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002548 }
Chris Lattner462fa822004-04-11 20:56:28 +00002549 return;
2550 case cFP:
Chris Lattner6621ed92004-04-11 21:23:56 +00002551 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2552 return;
Chris Lattner462fa822004-04-11 20:56:28 +00002553 case cLong:
2554 break;
2555 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002556
Chris Lattner462fa822004-04-11 20:56:28 +00002557 // Long value. We have to do things the hard way...
2558 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2559 unsigned CLow = CI->getRawValue();
2560 unsigned CHi = CI->getRawValue() >> 32;
2561
2562 if (CLow == 0) {
2563 // If the low part of the constant is all zeros, things are simple.
2564 BuildMI(BB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2565 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
2566 return;
2567 }
2568
2569 // Multiply the two low parts... capturing carry into EDX
2570 unsigned OverflowReg = 0;
2571 if (CLow == 1) {
2572 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg);
Chris Lattner028adc42004-04-06 04:29:36 +00002573 } else {
Chris Lattner462fa822004-04-11 20:56:28 +00002574 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
2575 OverflowReg = makeAnotherReg(Type::UIntTy);
2576 BuildMI(BB, IP, X86::MOV32ri, 1, Op1RegL).addImm(CLow);
2577 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2578 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1RegL); // AL*BL
Chris Lattner028adc42004-04-06 04:29:36 +00002579
Chris Lattner462fa822004-04-11 20:56:28 +00002580 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2581 BuildMI(BB, IP, X86::MOV32rr, 1,
2582 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2583 }
2584
2585 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2586 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
2587
2588 unsigned AHBLplusOverflowReg;
2589 if (OverflowReg) {
2590 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2591 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
Chris Lattner028adc42004-04-06 04:29:36 +00002592 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
Chris Lattner462fa822004-04-11 20:56:28 +00002593 } else {
2594 AHBLplusOverflowReg = AHBLReg;
2595 }
2596
2597 if (CHi == 0) {
2598 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(AHBLplusOverflowReg);
2599 } else {
Chris Lattner028adc42004-04-06 04:29:36 +00002600 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
Chris Lattner462fa822004-04-11 20:56:28 +00002601 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
Chris Lattner028adc42004-04-06 04:29:36 +00002602
Chris Lattner462fa822004-04-11 20:56:28 +00002603 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
Chris Lattner028adc42004-04-06 04:29:36 +00002604 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2605 }
Chris Lattner462fa822004-04-11 20:56:28 +00002606 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00002607 }
Chris Lattner462fa822004-04-11 20:56:28 +00002608
2609 // General 64x64 multiply
2610
2611 unsigned Op1Reg = getReg(Op1, &BB, IP);
2612 // Multiply the two low parts... capturing carry into EDX
2613 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2614 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL
2615
2616 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
2617 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2618 BuildMI(BB, IP, X86::MOV32rr, 1,
2619 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2620
2621 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2622 BuildMI(BB, IP, X86::IMUL32rr, 2,
2623 AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
2624
2625 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2626 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
2627 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
2628
2629 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
2630 BuildMI(BB, IP, X86::IMUL32rr, 2,
2631 ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
2632
2633 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
2634 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002635}
Chris Lattnerca9671d2002-11-02 20:28:58 +00002636
Chris Lattner06925362002-11-17 21:56:38 +00002637
Chris Lattnerf01729e2002-11-02 20:54:46 +00002638/// visitDivRem - Handle division and remainder instructions... these
2639/// instruction both require the same instructions to be generated, they just
2640/// select the result from a different register. Note that both of these
2641/// instructions work differently for signed and unsigned operands.
2642///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002643void X86ISel::visitDivRem(BinaryOperator &I) {
Chris Lattnercadff442003-10-23 17:21:43 +00002644 unsigned ResultReg = getReg(I);
Chris Lattner95157f72004-04-11 22:05:45 +00002645 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2646
2647 // Fold loads into floating point divides.
2648 if (getClass(Op0->getType()) == cFP) {
2649 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2650 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2651 const Type *Ty = Op0->getType();
2652 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2653 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIV32m : X86::FDIV64m;
2654
Chris Lattner95157f72004-04-11 22:05:45 +00002655 unsigned Op0r = getReg(Op0);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002656 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2657 unsigned FI = getFixedSizedAllocaFI(AI);
2658 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
2659 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00002660 X86AddressMode AM;
2661 getAddressingMode(LI->getOperand(0), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002662
Reid Spencerfc989e12004-08-30 00:13:26 +00002663 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002664 }
Chris Lattner95157f72004-04-11 22:05:45 +00002665 return;
2666 }
2667
2668 if (LoadInst *LI = dyn_cast<LoadInst>(Op0))
2669 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2670 const Type *Ty = Op0->getType();
2671 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2672 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIVR32m : X86::FDIVR64m;
2673
Chris Lattner95157f72004-04-11 22:05:45 +00002674 unsigned Op1r = getReg(Op1);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002675 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2676 unsigned FI = getFixedSizedAllocaFI(AI);
2677 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), FI);
2678 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00002679 X86AddressMode AM;
2680 getAddressingMode(LI->getOperand(0), AM);
2681 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002682 }
Chris Lattner95157f72004-04-11 22:05:45 +00002683 return;
2684 }
2685 }
2686
Chris Lattner94af4142002-12-25 05:13:53 +00002687
Chris Lattnercadff442003-10-23 17:21:43 +00002688 MachineBasicBlock::iterator IP = BB->end();
Chris Lattner95157f72004-04-11 22:05:45 +00002689 emitDivRemOperation(BB, IP, Op0, Op1,
Chris Lattner462fa822004-04-11 20:56:28 +00002690 I.getOpcode() == Instruction::Div, ResultReg);
Chris Lattnercadff442003-10-23 17:21:43 +00002691}
2692
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002693void X86ISel::emitDivRemOperation(MachineBasicBlock *BB,
2694 MachineBasicBlock::iterator IP,
2695 Value *Op0, Value *Op1, bool isDiv,
2696 unsigned ResultReg) {
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002697 const Type *Ty = Op0->getType();
2698 unsigned Class = getClass(Ty);
Chris Lattner94af4142002-12-25 05:13:53 +00002699 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002700 case cFP: // Floating point divide
Chris Lattnercadff442003-10-23 17:21:43 +00002701 if (isDiv) {
Chris Lattner6621ed92004-04-11 21:23:56 +00002702 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2703 return;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002704 } else { // Floating point remainder...
Chris Lattner462fa822004-04-11 20:56:28 +00002705 unsigned Op0Reg = getReg(Op0, BB, IP);
2706 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00002707 MachineInstr *TheCall =
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002708 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002709 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00002710 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2711 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00002712 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
2713 }
Chris Lattner94af4142002-12-25 05:13:53 +00002714 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00002715 case cLong: {
2716 static const char *FnName[] =
2717 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
Chris Lattner462fa822004-04-11 20:56:28 +00002718 unsigned Op0Reg = getReg(Op0, BB, IP);
2719 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002720 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
Chris Lattner3e130a22003-01-13 00:32:26 +00002721 MachineInstr *TheCall =
2722 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
2723
2724 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00002725 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2726 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00002727 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
2728 return;
2729 }
2730 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00002731 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00002732 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00002733 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00002734
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002735 static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr };
Chris Lattner2483f672004-10-06 05:01:07 +00002736 static const unsigned NEGOpcode[]={ X86::NEG8r, X86::NEG16r, X86::NEG32r };
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002737 static const unsigned SAROpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri };
2738 static const unsigned SHROpcode[]={ X86::SHR8ri, X86::SHR16ri, X86::SHR32ri };
2739 static const unsigned ADDOpcode[]={ X86::ADD8rr, X86::ADD16rr, X86::ADD32rr };
2740
2741 // Special case signed division by power of 2.
Chris Lattner2483f672004-10-06 05:01:07 +00002742 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1))
2743 if (isDiv) {
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002744 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2745 int V = CI->getValue();
2746
2747 if (V == 1) { // X /s 1 => X
2748 unsigned Op0Reg = getReg(Op0, BB, IP);
2749 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2750 return;
2751 }
2752
2753 if (V == -1) { // X /s -1 => -X
2754 unsigned Op0Reg = getReg(Op0, BB, IP);
2755 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2756 return;
2757 }
2758
Chris Lattner610f1e22004-10-06 04:02:39 +00002759 if (V == 2 || V == -2) { // X /s 2
2760 static const unsigned CMPOpcode[] = {
2761 X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
2762 };
2763 static const unsigned SBBOpcode[] = {
2764 X86::SBB8ri, X86::SBB16ri, X86::SBB32ri
2765 };
2766 unsigned Op0Reg = getReg(Op0, BB, IP);
2767 unsigned SignBit = 1 << (CI->getType()->getPrimitiveSize()*8-1);
2768 BuildMI(*BB, IP, CMPOpcode[Class], 2).addReg(Op0Reg).addImm(SignBit);
2769
2770 unsigned TmpReg = makeAnotherReg(Op0->getType());
2771 BuildMI(*BB, IP, SBBOpcode[Class], 2, TmpReg).addReg(Op0Reg).addImm(-1);
2772
2773 unsigned TmpReg2 = V == 2 ? ResultReg : makeAnotherReg(Op0->getType());
2774 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg2).addReg(TmpReg).addImm(1);
2775 if (V == -2) {
2776 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg2);
2777 }
2778 return;
2779 }
2780
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002781 bool isNeg = false;
2782 if (V < 0) { // Not a positive power of 2?
2783 V = -V;
2784 isNeg = true; // Maybe it's a negative power of 2.
2785 }
2786 if (unsigned Log = ExactLog2(V)) {
2787 --Log;
2788 unsigned Op0Reg = getReg(Op0, BB, IP);
2789 unsigned TmpReg = makeAnotherReg(Op0->getType());
Chris Lattner3ffdff62004-10-06 04:19:43 +00002790 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg)
2791 .addReg(Op0Reg).addImm(Log-1);
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002792 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2793 BuildMI(*BB, IP, SHROpcode[Class], 2, TmpReg2)
2794 .addReg(TmpReg).addImm(32-Log);
2795 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
2796 BuildMI(*BB, IP, ADDOpcode[Class], 2, TmpReg3)
2797 .addReg(Op0Reg).addReg(TmpReg2);
2798
2799 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
2800 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg4)
Chris Lattner3ffdff62004-10-06 04:19:43 +00002801 .addReg(TmpReg3).addImm(Log);
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002802 if (isNeg)
2803 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg4);
2804 return;
2805 }
Chris Lattner2483f672004-10-06 05:01:07 +00002806 } else { // X % C
2807 assert(Class != cLong && "This doesn't handle 64-bit remainder!");
2808 int V = CI->getValue();
2809
2810 if (V == 2 || V == -2) { // X % 2, X % -2
Chris Lattner2483f672004-10-06 05:01:07 +00002811 static const unsigned SExtOpcode[] = { X86::CBW, X86::CWD, X86::CDQ };
2812 static const unsigned BaseReg[] = { X86::AL , X86::AX , X86::EAX };
2813 static const unsigned SExtReg[] = { X86::AH , X86::DX , X86::EDX };
2814 static const unsigned ANDOpcode[] = {
2815 X86::AND8ri, X86::AND16ri, X86::AND32ri
2816 };
2817 static const unsigned XOROpcode[] = {
2818 X86::XOR8rr, X86::XOR16rr, X86::XOR32rr
2819 };
2820 static const unsigned SUBOpcode[] = {
2821 X86::SUB8rr, X86::SUB16rr, X86::SUB32rr
2822 };
2823
2824 // Sign extend result into reg of -1 or 0.
2825 unsigned Op0Reg = getReg(Op0, BB, IP);
2826 BuildMI(*BB, IP, MovOpcode[Class], 1, BaseReg[Class]).addReg(Op0Reg);
2827 BuildMI(*BB, IP, SExtOpcode[Class], 0);
2828 unsigned TmpReg0 = makeAnotherReg(Op0->getType());
2829 BuildMI(*BB, IP, MovOpcode[Class], 1, TmpReg0).addReg(SExtReg[Class]);
2830
2831 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2832 BuildMI(*BB, IP, ANDOpcode[Class], 2, TmpReg1).addReg(Op0Reg).addImm(1);
2833
2834 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2835 BuildMI(*BB, IP, XOROpcode[Class], 2,
2836 TmpReg2).addReg(TmpReg1).addReg(TmpReg0);
2837 BuildMI(*BB, IP, SUBOpcode[Class], 2,
2838 ResultReg).addReg(TmpReg2).addReg(TmpReg0);
2839 return;
2840 }
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002841 }
2842
2843 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002844 static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri };
Chris Lattnerf01729e2002-11-02 20:54:46 +00002845 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
2846
2847 static const unsigned DivOpcode[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002848 { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division
2849 { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00002850 };
2851
Chris Lattnerf01729e2002-11-02 20:54:46 +00002852 unsigned Reg = Regs[Class];
2853 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00002854
2855 // Put the first operand into one of the A registers...
Chris Lattner462fa822004-04-11 20:56:28 +00002856 unsigned Op0Reg = getReg(Op0, BB, IP);
2857 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattneree352852004-02-29 07:22:16 +00002858 BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002859
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002860 if (Ty->isSigned()) {
Chris Lattnerf01729e2002-11-02 20:54:46 +00002861 // Emit a sign extension instruction...
Chris Lattner462fa822004-04-11 20:56:28 +00002862 unsigned ShiftResult = makeAnotherReg(Op0->getType());
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002863 BuildMI(*BB, IP, SAROpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31);
Chris Lattneree352852004-02-29 07:22:16 +00002864 BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002865
2866 // Emit the appropriate divide or remainder instruction...
2867 BuildMI(*BB, IP, DivOpcode[1][Class], 1).addReg(Op1Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002868 } else {
Alkis Evlogimenosf998a7e2004-01-12 07:22:45 +00002869 // If unsigned, emit a zeroing instruction... (reg = 0)
Chris Lattneree352852004-02-29 07:22:16 +00002870 BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002871
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002872 // Emit the appropriate divide or remainder instruction...
2873 BuildMI(*BB, IP, DivOpcode[0][Class], 1).addReg(Op1Reg);
2874 }
Chris Lattner06925362002-11-17 21:56:38 +00002875
Chris Lattnerf01729e2002-11-02 20:54:46 +00002876 // Figure out which register we want to pick the result out of...
Chris Lattnercadff442003-10-23 17:21:43 +00002877 unsigned DestReg = isDiv ? Reg : ExtReg;
Chris Lattnerf01729e2002-11-02 20:54:46 +00002878
Chris Lattnerf01729e2002-11-02 20:54:46 +00002879 // Put the result into the destination register...
Chris Lattneree352852004-02-29 07:22:16 +00002880 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00002881}
Chris Lattnere2954c82002-11-02 20:04:26 +00002882
Chris Lattner06925362002-11-17 21:56:38 +00002883
Brian Gaekea1719c92002-10-31 23:03:59 +00002884/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2885/// for constant immediate shift values, and for constant immediate
2886/// shift values equal to 1. Even the general case is sort of special,
2887/// because the shift amount has to be in CL, not just any old register.
2888///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002889void X86ISel::visitShiftInst(ShiftInst &I) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002890 MachineBasicBlock::iterator IP = BB->end ();
2891 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
2892 I.getOpcode () == Instruction::Shl, I.getType (),
2893 getReg (I));
2894}
2895
2896/// emitShiftOperation - Common code shared between visitShiftInst and
2897/// constant expression support.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002898void X86ISel::emitShiftOperation(MachineBasicBlock *MBB,
2899 MachineBasicBlock::iterator IP,
2900 Value *Op, Value *ShiftAmount,
2901 bool isLeftShift, const Type *ResultTy,
2902 unsigned DestReg) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002903 unsigned SrcReg = getReg (Op, MBB, IP);
2904 bool isSigned = ResultTy->isSigned ();
2905 unsigned Class = getClass (ResultTy);
Chris Lattnerde95c9e2004-10-17 06:10:40 +00002906
Chris Lattner3e130a22003-01-13 00:32:26 +00002907 static const unsigned ConstantOperand[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002908 { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri, X86::SHRD32rri8 }, // SHR
2909 { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri, X86::SHRD32rri8 }, // SAR
2910 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SHL
2911 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SAL = SHL
Chris Lattner3e130a22003-01-13 00:32:26 +00002912 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002913
Chris Lattner3e130a22003-01-13 00:32:26 +00002914 static const unsigned NonConstantOperand[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002915 { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR
2916 { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR
2917 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL
2918 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL
Chris Lattner3e130a22003-01-13 00:32:26 +00002919 };
Chris Lattner796df732002-11-02 00:44:25 +00002920
Chris Lattner3e130a22003-01-13 00:32:26 +00002921 // Longs, as usual, are handled specially...
2922 if (Class == cLong) {
2923 // If we have a constant shift, we can generate much more efficient code
2924 // than otherwise...
2925 //
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002926 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002927 unsigned Amount = CUI->getValue();
Chris Lattner62f5a942004-11-13 20:04:38 +00002928 if (Amount == 1 && isLeftShift) { // X << 1 == X+X
Chris Lattner44205ca2004-11-13 20:03:48 +00002929 BuildMI(*MBB, IP, X86::ADD32rr, 2,
2930 DestReg).addReg(SrcReg).addReg(SrcReg);
2931 BuildMI(*MBB, IP, X86::ADC32rr, 2,
2932 DestReg+1).addReg(SrcReg+1).addReg(SrcReg+1);
2933 } else if (Amount < 32) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002934 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
2935 if (isLeftShift) {
Chris Lattneree352852004-02-29 07:22:16 +00002936 BuildMI(*MBB, IP, Opc[3], 3,
2937 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addImm(Amount);
2938 BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002939 } else {
Chris Lattneree352852004-02-29 07:22:16 +00002940 BuildMI(*MBB, IP, Opc[3], 3,
2941 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount);
2942 BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002943 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002944 } else { // Shifting more than 32 bits
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002945 Amount -= 32;
2946 if (isLeftShift) {
Chris Lattner722070e2004-04-06 03:42:38 +00002947 if (Amount != 0) {
2948 BuildMI(*MBB, IP, X86::SHL32ri, 2,
2949 DestReg + 1).addReg(SrcReg).addImm(Amount);
2950 } else {
2951 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg);
2952 }
2953 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002954 } else {
Chris Lattner722070e2004-04-06 03:42:38 +00002955 if (Amount != 0) {
2956 BuildMI(*MBB, IP, isSigned ? X86::SAR32ri : X86::SHR32ri, 2,
2957 DestReg).addReg(SrcReg+1).addImm(Amount);
2958 } else {
2959 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg+1);
2960 }
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002961 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002962 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002963 }
2964 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00002965 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Chris Lattner9171ef52003-06-01 01:56:54 +00002966 if (!isLeftShift && isSigned) {
2967 // If this is a SHR of a Long, then we need to do funny sign extension
2968 // stuff. TmpReg gets the value to use as the high-part if we are
2969 // shifting more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002970 BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31);
Chris Lattner9171ef52003-06-01 01:56:54 +00002971 } else {
2972 // Other shifts use a fixed zero value if the shift is more than 32
2973 // bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002974 BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0);
Chris Lattner9171ef52003-06-01 01:56:54 +00002975 }
2976
2977 // Initialize CL with the shift amount...
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002978 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002979 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002980
2981 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
2982 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2983 if (isLeftShift) {
2984 // TmpReg2 = shld inHi, inLo
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002985 BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1)
Chris Lattneree352852004-02-29 07:22:16 +00002986 .addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002987 // TmpReg3 = shl inLo, CL
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002988 BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002989
2990 // Set the flags to indicate whether the shift was by more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002991 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00002992
2993 // DestHi = (>32) ? TmpReg3 : TmpReg2;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002994 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00002995 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
2996 // DestLo = (>32) ? TmpReg : TmpReg3;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002997 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002998 DestReg).addReg(TmpReg3).addReg(TmpReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002999 } else {
3000 // TmpReg2 = shrd inLo, inHi
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003001 BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg)
Chris Lattneree352852004-02-29 07:22:16 +00003002 .addReg(SrcReg+1);
Chris Lattner9171ef52003-06-01 01:56:54 +00003003 // TmpReg3 = s[ah]r inHi, CL
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003004 BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3)
Chris Lattner9171ef52003-06-01 01:56:54 +00003005 .addReg(SrcReg+1);
3006
3007 // Set the flags to indicate whether the shift was by more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003008 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00003009
3010 // DestLo = (>32) ? TmpReg3 : TmpReg2;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003011 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00003012 DestReg).addReg(TmpReg2).addReg(TmpReg3);
3013
3014 // DestHi = (>32) ? TmpReg : TmpReg3;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003015 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00003016 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
3017 }
Brian Gaekea1719c92002-10-31 23:03:59 +00003018 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003019 return;
3020 }
Chris Lattnere9913f22002-11-02 01:41:55 +00003021
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00003022 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003023 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
3024 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00003025
Chris Lattner44205ca2004-11-13 20:03:48 +00003026 if (CUI->getValue() == 1 && isLeftShift) { // X << 1 -> X+X
3027 static const int AddOpC[] = { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr };
3028 BuildMI(*MBB, IP, AddOpC[Class], 2,DestReg).addReg(SrcReg).addReg(SrcReg);
3029 } else {
3030 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
3031 BuildMI(*MBB, IP, Opc[Class], 2,
3032 DestReg).addReg(SrcReg).addImm(CUI->getValue());
3033 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003034 } else { // The shift amount is non-constant.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00003035 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003036 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +00003037
Chris Lattner3e130a22003-01-13 00:32:26 +00003038 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
Chris Lattneree352852004-02-29 07:22:16 +00003039 BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003040 }
3041}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00003042
Chris Lattner3e130a22003-01-13 00:32:26 +00003043
Chris Lattner6fc3c522002-11-17 21:11:55 +00003044/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00003045/// instruction. The load and store instructions are the only place where we
3046/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00003047///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003048void X86ISel::visitLoadInst(LoadInst &I) {
Chris Lattner7dee5da2004-03-08 01:58:35 +00003049 // Check to see if this load instruction is going to be folded into a binary
3050 // instruction, like add. If so, we don't want to emit it. Wouldn't a real
3051 // pattern matching instruction selector be nice?
Chris Lattner95157f72004-04-11 22:05:45 +00003052 unsigned Class = getClassB(I.getType());
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003053 if (I.hasOneUse()) {
Chris Lattner7dee5da2004-03-08 01:58:35 +00003054 Instruction *User = cast<Instruction>(I.use_back());
3055 switch (User->getOpcode()) {
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003056 case Instruction::Cast:
3057 // If this is a cast from a signed-integer type to a floating point type,
3058 // fold the cast here.
John Criswell6b5bd582004-06-09 15:18:51 +00003059 if (getClassB(User->getType()) == cFP &&
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003060 (I.getType() == Type::ShortTy || I.getType() == Type::IntTy ||
3061 I.getType() == Type::LongTy)) {
3062 unsigned DestReg = getReg(User);
3063 static const unsigned Opcode[] = {
3064 0/*BYTE*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m
3065 };
Chris Lattner9f1b5312004-05-13 15:12:43 +00003066
3067 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
3068 unsigned FI = getFixedSizedAllocaFI(AI);
3069 addFrameReference(BuildMI(BB, Opcode[Class], 4, DestReg), FI);
3070 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00003071 X86AddressMode AM;
3072 getAddressingMode(I.getOperand(0), AM);
3073 addFullAddress(BuildMI(BB, Opcode[Class], 4, DestReg), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00003074 }
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003075 return;
3076 } else {
3077 User = 0;
3078 }
3079 break;
Chris Lattner13c07fe2004-04-12 00:12:04 +00003080
Chris Lattner7dee5da2004-03-08 01:58:35 +00003081 case Instruction::Add:
3082 case Instruction::Sub:
3083 case Instruction::And:
3084 case Instruction::Or:
3085 case Instruction::Xor:
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003086 if (Class == cLong) User = 0;
Chris Lattner7dee5da2004-03-08 01:58:35 +00003087 break;
Chris Lattner95157f72004-04-11 22:05:45 +00003088 case Instruction::Mul:
3089 case Instruction::Div:
Chris Lattner13c07fe2004-04-12 00:12:04 +00003090 if (Class != cFP) User = 0;
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003091 break; // Folding only implemented for floating point.
Chris Lattner95157f72004-04-11 22:05:45 +00003092 default: User = 0; break;
Chris Lattner7dee5da2004-03-08 01:58:35 +00003093 }
3094
3095 if (User) {
3096 // Okay, we found a user. If the load is the first operand and there is
3097 // no second operand load, reverse the operand ordering. Note that this
3098 // can fail for a subtract (ie, no change will be made).
Chris Lattner3dbb5042004-07-21 21:28:26 +00003099 bool Swapped = false;
Chris Lattner7dee5da2004-03-08 01:58:35 +00003100 if (!isa<LoadInst>(User->getOperand(1)))
Chris Lattner3dbb5042004-07-21 21:28:26 +00003101 Swapped = !cast<BinaryOperator>(User)->swapOperands();
Chris Lattner7dee5da2004-03-08 01:58:35 +00003102
3103 // Okay, now that everything is set up, if this load is used by the second
3104 // operand, and if there are no instructions that invalidate the load
3105 // before the binary operator, eliminate the load.
3106 if (User->getOperand(1) == &I &&
3107 isSafeToFoldLoadIntoInstruction(I, *User))
3108 return; // Eliminate the load!
Chris Lattner95157f72004-04-11 22:05:45 +00003109
3110 // If this is a floating point sub or div, we won't be able to swap the
3111 // operands, but we will still be able to eliminate the load.
3112 if (Class == cFP && User->getOperand(0) == &I &&
3113 !isa<LoadInst>(User->getOperand(1)) &&
3114 (User->getOpcode() == Instruction::Sub ||
3115 User->getOpcode() == Instruction::Div) &&
3116 isSafeToFoldLoadIntoInstruction(I, *User))
3117 return; // Eliminate the load!
Chris Lattner3dbb5042004-07-21 21:28:26 +00003118
3119 // If we swapped the operands to the instruction, but couldn't fold the
3120 // load anyway, swap them back. We don't want to break add X, int
3121 // folding.
3122 if (Swapped) cast<BinaryOperator>(User)->swapOperands();
Chris Lattner7dee5da2004-03-08 01:58:35 +00003123 }
3124 }
3125
Chris Lattner6ac1d712003-10-20 04:48:06 +00003126 static const unsigned Opcodes[] = {
Chris Lattner9f1b5312004-05-13 15:12:43 +00003127 X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m, X86::MOV32rm
Chris Lattner3e130a22003-01-13 00:32:26 +00003128 };
Chris Lattner6ac1d712003-10-20 04:48:06 +00003129 unsigned Opcode = Opcodes[Class];
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003130 if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m;
Chris Lattner9f1b5312004-05-13 15:12:43 +00003131
3132 unsigned DestReg = getReg(I);
3133
3134 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
3135 unsigned FI = getFixedSizedAllocaFI(AI);
3136 if (Class == cLong) {
3137 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg), FI);
3138 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), FI, 4);
3139 } else {
3140 addFrameReference(BuildMI(BB, Opcode, 4, DestReg), FI);
3141 }
3142 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00003143 X86AddressMode AM;
3144 getAddressingMode(I.getOperand(0), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00003145
3146 if (Class == cLong) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003147 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg), AM);
3148 AM.Disp += 4;
3149 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00003150 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00003151 addFullAddress(BuildMI(BB, Opcode, 4, DestReg), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00003152 }
3153 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003154}
3155
Chris Lattner6fc3c522002-11-17 21:11:55 +00003156/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
3157/// instruction.
3158///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003159void X86ISel::visitStoreInst(StoreInst &I) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003160 X86AddressMode AM;
3161 getAddressingMode(I.getOperand(1), AM);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003162
Chris Lattner6c09db22003-10-20 04:11:23 +00003163 const Type *ValTy = I.getOperand(0)->getType();
3164 unsigned Class = getClassB(ValTy);
Chris Lattner6ac1d712003-10-20 04:48:06 +00003165
Chris Lattner5a830962004-02-25 02:56:58 +00003166 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) {
3167 uint64_t Val = CI->getRawValue();
3168 if (Class == cLong) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003169 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(Val & ~0U);
3170 AM.Disp += 4;
3171 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(Val>>32);
Chris Lattner5a830962004-02-25 02:56:58 +00003172 } else {
3173 static const unsigned Opcodes[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003174 X86::MOV8mi, X86::MOV16mi, X86::MOV32mi
Chris Lattner5a830962004-02-25 02:56:58 +00003175 };
3176 unsigned Opcode = Opcodes[Class];
Reid Spencerfc989e12004-08-30 00:13:26 +00003177 addFullAddress(BuildMI(BB, Opcode, 5), AM).addImm(Val);
Chris Lattner5a830962004-02-25 02:56:58 +00003178 }
Chris Lattnerb7cb9ff2004-05-13 15:26:48 +00003179 } else if (isa<ConstantPointerNull>(I.getOperand(0))) {
Chris Lattner358a9022004-10-15 05:05:29 +00003180 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(0);
Chris Lattner5a830962004-02-25 02:56:58 +00003181 } else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003182 addFullAddress(BuildMI(BB, X86::MOV8mi, 5), AM).addImm(CB->getValue());
Chris Lattnere7a31c92004-05-07 21:18:15 +00003183 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) {
3184 // Store constant FP values with integer instructions to avoid having to
3185 // load the constants from the constant pool then do a store.
3186 if (CFP->getType() == Type::FloatTy) {
3187 union {
3188 unsigned I;
3189 float F;
3190 } V;
3191 V.F = CFP->getValue();
Reid Spencerfc989e12004-08-30 00:13:26 +00003192 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(V.I);
Chris Lattner5a830962004-02-25 02:56:58 +00003193 } else {
Chris Lattnere7a31c92004-05-07 21:18:15 +00003194 union {
3195 uint64_t I;
3196 double F;
3197 } V;
3198 V.F = CFP->getValue();
Reid Spencerfc989e12004-08-30 00:13:26 +00003199 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm((unsigned)V.I);
3200 AM.Disp += 4;
3201 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(
Chris Lattnere7a31c92004-05-07 21:18:15 +00003202 unsigned(V.I >> 32));
Chris Lattner5a830962004-02-25 02:56:58 +00003203 }
Chris Lattnere7a31c92004-05-07 21:18:15 +00003204
3205 } else if (Class == cLong) {
3206 unsigned ValReg = getReg(I.getOperand(0));
Reid Spencerfc989e12004-08-30 00:13:26 +00003207 addFullAddress(BuildMI(BB, X86::MOV32mr, 5), AM).addReg(ValReg);
3208 AM.Disp += 4;
3209 addFullAddress(BuildMI(BB, X86::MOV32mr, 5), AM).addReg(ValReg+1);
Chris Lattnere7a31c92004-05-07 21:18:15 +00003210 } else {
Chris Lattner358a9022004-10-15 05:05:29 +00003211 // FIXME: stop emitting these two instructions:
3212 // movl $global,%eax
3213 // movl %eax,(%ebx)
3214 // when one instruction will suffice. That includes when the global
3215 // has an offset applied to it.
Chris Lattnere7a31c92004-05-07 21:18:15 +00003216 unsigned ValReg = getReg(I.getOperand(0));
3217 static const unsigned Opcodes[] = {
3218 X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m
3219 };
3220 unsigned Opcode = Opcodes[Class];
3221 if (ValTy == Type::DoubleTy) Opcode = X86::FST64m;
Chris Lattner9f1b5312004-05-13 15:12:43 +00003222
Reid Spencerfc989e12004-08-30 00:13:26 +00003223 addFullAddress(BuildMI(BB, Opcode, 1+4), AM).addReg(ValReg);
Chris Lattner94af4142002-12-25 05:13:53 +00003224 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00003225}
3226
3227
Misha Brukman538607f2004-03-01 23:53:11 +00003228/// visitCastInst - Here we have various kinds of copying with or without sign
3229/// extension going on.
3230///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003231void X86ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00003232 Value *Op = CI.getOperand(0);
Chris Lattner427aeb42004-04-11 19:21:59 +00003233
Chris Lattner99382862004-04-12 00:23:04 +00003234 unsigned SrcClass = getClassB(Op->getType());
3235 unsigned DestClass = getClassB(CI.getType());
3236 // Noop casts are not emitted: getReg will return the source operand as the
3237 // register to use for any uses of the noop cast.
Chris Lattner8b486a12004-06-29 00:14:38 +00003238 if (DestClass == SrcClass) {
3239 // The only detail in this plan is that casts from double -> float are
3240 // truncating operations that we have to codegen through memory (despite
3241 // the fact that the source/dest registers are the same class).
3242 if (CI.getType() != Type::FloatTy || Op->getType() != Type::DoubleTy)
3243 return;
3244 }
Chris Lattner427aeb42004-04-11 19:21:59 +00003245
Chris Lattnerf5854472003-06-21 16:01:24 +00003246 // If this is a cast from a 32-bit integer to a Long type, and the only uses
3247 // of the case are GEP instructions, then the cast does not need to be
3248 // generated explicitly, it will be folded into the GEP.
Chris Lattner99382862004-04-12 00:23:04 +00003249 if (DestClass == cLong && SrcClass == cInt) {
Chris Lattnerf5854472003-06-21 16:01:24 +00003250 bool AllUsesAreGEPs = true;
3251 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
3252 if (!isa<GetElementPtrInst>(*I)) {
3253 AllUsesAreGEPs = false;
3254 break;
3255 }
3256
3257 // No need to codegen this cast if all users are getelementptr instrs...
3258 if (AllUsesAreGEPs) return;
3259 }
3260
Chris Lattner99382862004-04-12 00:23:04 +00003261 // If this cast converts a load from a short,int, or long integer to a FP
3262 // value, we will have folded this cast away.
3263 if (DestClass == cFP && isa<LoadInst>(Op) && Op->hasOneUse() &&
3264 (Op->getType() == Type::ShortTy || Op->getType() == Type::IntTy ||
3265 Op->getType() == Type::LongTy))
3266 return;
3267
3268
Chris Lattner548f61d2003-04-23 17:22:12 +00003269 unsigned DestReg = getReg(CI);
3270 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00003271 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00003272}
3273
Misha Brukman538607f2004-03-01 23:53:11 +00003274/// emitCastOperation - Common code shared between visitCastInst and constant
3275/// expression cast support.
3276///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003277void X86ISel::emitCastOperation(MachineBasicBlock *BB,
3278 MachineBasicBlock::iterator IP,
3279 Value *Src, const Type *DestTy,
3280 unsigned DestReg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003281 const Type *SrcTy = Src->getType();
3282 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00003283 unsigned DestClass = getClassB(DestTy);
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003284 unsigned SrcReg = getReg(Src, BB, IP);
3285
Chris Lattner3e130a22003-01-13 00:32:26 +00003286 // Implement casts to bool by using compare on the operand followed by set if
3287 // not zero on the result.
3288 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00003289 switch (SrcClass) {
3290 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003291 BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00003292 break;
3293 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003294 BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00003295 break;
3296 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003297 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00003298 break;
3299 case cLong: {
3300 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003301 BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
Chris Lattner20772542003-06-01 03:38:24 +00003302 break;
3303 }
3304 case cFP:
Chris Lattneree352852004-02-29 07:22:16 +00003305 BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003306 BuildMI(*BB, IP, X86::FNSTSW8r, 0);
Chris Lattneree352852004-02-29 07:22:16 +00003307 BuildMI(*BB, IP, X86::SAHF, 1);
Chris Lattner311ca2e2004-02-23 03:21:41 +00003308 break;
Chris Lattner20772542003-06-01 03:38:24 +00003309 }
3310
3311 // If the zero flag is not set, then the value is true, set the byte to
3312 // true.
Chris Lattneree352852004-02-29 07:22:16 +00003313 BuildMI(*BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00003314 return;
3315 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003316
3317 static const unsigned RegRegMove[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003318 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
Chris Lattner3e130a22003-01-13 00:32:26 +00003319 };
3320
3321 // Implement casts between values of the same type class (as determined by
3322 // getClass) by using a register-to-register move.
3323 if (SrcClass == DestClass) {
3324 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattneree352852004-02-29 07:22:16 +00003325 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003326 } else if (SrcClass == cFP) {
3327 if (SrcTy == Type::FloatTy) { // double -> float
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003328 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
Chris Lattneree352852004-02-29 07:22:16 +00003329 BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003330 } else { // float -> double
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003331 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
3332 "Unknown cFP member!");
3333 // Truncate from double to float by storing to memory as short, then
3334 // reading it back.
3335 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
Chris Lattner3e130a22003-01-13 00:32:26 +00003336 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003337 addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg);
3338 addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003339 }
3340 } else if (SrcClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003341 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
3342 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003343 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00003344 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00003345 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00003346 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003347 return;
3348 }
3349
3350 // Handle cast of SMALLER int to LARGER int using a move with sign extension
3351 // or zero extension, depending on whether the source type was signed.
3352 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
3353 SrcClass < DestClass) {
3354 bool isLong = DestClass == cLong;
3355 if (isLong) DestClass = cInt;
3356
3357 static const unsigned Opc[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003358 { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s
3359 { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u
Chris Lattner3e130a22003-01-13 00:32:26 +00003360 };
3361
Chris Lattner96e3b422004-05-09 22:28:45 +00003362 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Chris Lattneree352852004-02-29 07:22:16 +00003363 BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
Chris Lattner548f61d2003-04-23 17:22:12 +00003364 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003365
3366 if (isLong) { // Handle upper 32 bits as appropriate...
3367 if (isUnsigned) // Zero out top bits...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003368 BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00003369 else // Sign extend bottom half...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003370 BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00003371 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003372 return;
3373 }
3374
3375 // Special case long -> int ...
3376 if (SrcClass == cLong && DestClass == cInt) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003377 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003378 return;
3379 }
3380
3381 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
3382 // move out of AX or AL.
3383 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
3384 && SrcClass > DestClass) {
3385 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattneree352852004-02-29 07:22:16 +00003386 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
3387 BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00003388 return;
3389 }
3390
3391 // Handle casts from integer to floating point now...
3392 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003393 // Promote the integer to a type supported by FLD. We do this because there
3394 // are no unsigned FLD instructions, so we must promote an unsigned value to
3395 // a larger signed value, then use FLD on the larger value.
3396 //
3397 const Type *PromoteType = 0;
Chris Lattner85aa7092004-04-10 18:32:01 +00003398 unsigned PromoteOpcode = 0;
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003399 unsigned RealDestReg = DestReg;
Chris Lattnerf70c22b2004-06-17 18:19:28 +00003400 switch (SrcTy->getTypeID()) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003401 case Type::BoolTyID:
3402 case Type::SByteTyID:
3403 // We don't have the facilities for directly loading byte sized data from
3404 // memory (even signed). Promote it to 16 bits.
3405 PromoteType = Type::ShortTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003406 PromoteOpcode = X86::MOVSX16rr8;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003407 break;
3408 case Type::UByteTyID:
3409 PromoteType = Type::ShortTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003410 PromoteOpcode = X86::MOVZX16rr8;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003411 break;
3412 case Type::UShortTyID:
3413 PromoteType = Type::IntTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003414 PromoteOpcode = X86::MOVZX32rr16;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003415 break;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003416 case Type::ULongTyID:
Chris Lattner56a31c62004-10-17 08:01:28 +00003417 case Type::UIntTyID:
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003418 // Don't fild into the read destination.
3419 DestReg = makeAnotherReg(Type::DoubleTy);
3420 break;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003421 default: // No promotion needed...
3422 break;
3423 }
3424
3425 if (PromoteType) {
3426 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner7b92de1e2004-04-06 19:29:36 +00003427 BuildMI(*BB, IP, PromoteOpcode, 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003428 SrcTy = PromoteType;
3429 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00003430 SrcReg = TmpReg;
3431 }
3432
3433 // Spill the integer to memory and reload it from there...
Chris Lattnerb6bac512004-02-25 06:13:04 +00003434 int FrameIdx =
3435 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
Chris Lattner3e130a22003-01-13 00:32:26 +00003436
3437 if (SrcClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003438 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
Chris Lattneree352852004-02-29 07:22:16 +00003439 FrameIdx).addReg(SrcReg);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003440 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003441 FrameIdx, 4).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003442 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003443 static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr };
Chris Lattneree352852004-02-29 07:22:16 +00003444 addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5),
3445 FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003446 }
3447
3448 static const unsigned Op2[] =
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003449 { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m };
Chris Lattneree352852004-02-29 07:22:16 +00003450 addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003451
Chris Lattner56a31c62004-10-17 08:01:28 +00003452 if (SrcTy == Type::UIntTy) {
3453 // If this is a cast from uint -> double, we need to be careful about if
3454 // the "sign" bit is set. If so, we don't want to make a negative number,
3455 // we want to make a positive number. Emit code to add an offset if the
3456 // sign bit is set.
3457
3458 // Compute whether the sign bit is set by shifting the reg right 31 bits.
3459 unsigned IsNeg = makeAnotherReg(Type::IntTy);
3460 BuildMI(BB, X86::SHR32ri, 2, IsNeg).addReg(SrcReg).addImm(31);
3461
3462 // Create a CP value that has the offset in one word and 0 in the other.
3463 static ConstantInt *TheOffset = ConstantUInt::get(Type::ULongTy,
3464 0x4f80000000000000ULL);
3465 unsigned CPI = F->getConstantPool()->getConstantPoolIndex(TheOffset);
3466 BuildMI(BB, X86::FADD32m, 5, RealDestReg).addReg(DestReg)
3467 .addConstantPoolIndex(CPI).addZImm(4).addReg(IsNeg).addSImm(0);
3468
3469 } else if (SrcTy == Type::ULongTy) {
3470 // We need special handling for unsigned 64-bit integer sources. If the
3471 // input number has the "sign bit" set, then we loaded it incorrectly as a
3472 // negative 64-bit number. In this case, add an offset value.
3473
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003474 // Emit a test instruction to see if the dynamic input value was signed.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003475 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003476
Chris Lattnerb6bac512004-02-25 06:13:04 +00003477 // If the sign bit is set, get a pointer to an offset, otherwise get a
3478 // pointer to a zero.
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003479 MachineConstantPool *CP = F->getConstantPool();
3480 unsigned Zero = makeAnotherReg(Type::IntTy);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003481 Constant *Null = Constant::getNullValue(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003482 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero),
Chris Lattnerb6bac512004-02-25 06:13:04 +00003483 CP->getConstantPoolIndex(Null));
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003484 unsigned Offset = makeAnotherReg(Type::IntTy);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003485 Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000);
3486
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003487 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset),
Chris Lattnerb6bac512004-02-25 06:13:04 +00003488 CP->getConstantPoolIndex(OffsetCst));
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003489 unsigned Addr = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003490 BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003491
3492 // Load the constant for an add. FIXME: this could make an 'fadd' that
3493 // reads directly from memory, but we don't support these yet.
3494 unsigned ConstReg = makeAnotherReg(Type::DoubleTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003495 addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003496
Chris Lattneree352852004-02-29 07:22:16 +00003497 BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg)
3498 .addReg(ConstReg).addReg(DestReg);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003499 }
3500
Chris Lattner3e130a22003-01-13 00:32:26 +00003501 return;
3502 }
3503
3504 // Handle casts from floating point to integer now...
3505 if (SrcClass == cFP) {
3506 // Change the floating point control register to use "round towards zero"
3507 // mode when truncating to an integer value.
3508 //
3509 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003510 addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003511
3512 // Load the old value of the high byte of the control word...
3513 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003514 addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW),
Chris Lattneree352852004-02-29 07:22:16 +00003515 CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003516
3517 // Set the high part to be round to zero...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003518 addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5),
Chris Lattneree352852004-02-29 07:22:16 +00003519 CWFrameIdx, 1).addImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00003520
3521 // Reload the modified control word now...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003522 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003523
3524 // Restore the memory image of control word to original value
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003525 addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003526 CWFrameIdx, 1).addReg(HighPartOfCW);
Chris Lattner3e130a22003-01-13 00:32:26 +00003527
3528 // We don't have the facilities for directly storing byte sized data to
3529 // memory. Promote it to 16 bits. We also must promote unsigned values to
3530 // larger classes because we only have signed FP stores.
3531 unsigned StoreClass = DestClass;
3532 const Type *StoreTy = DestTy;
3533 if (StoreClass == cByte || DestTy->isUnsigned())
3534 switch (StoreClass) {
3535 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
3536 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
3537 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00003538 // The following treatment of cLong may not be perfectly right,
3539 // but it survives chains of casts of the form
3540 // double->ulong->double.
3541 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00003542 default: assert(0 && "Unknown store class!");
3543 }
3544
3545 // Spill the integer to memory and reload it from there...
3546 int FrameIdx =
3547 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
3548
3549 static const unsigned Op1[] =
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003550 { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m };
Chris Lattneree352852004-02-29 07:22:16 +00003551 addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5),
3552 FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003553
3554 if (DestClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003555 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx);
3556 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1),
Chris Lattneree352852004-02-29 07:22:16 +00003557 FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00003558 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003559 static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm };
Chris Lattneree352852004-02-29 07:22:16 +00003560 addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003561 }
3562
3563 // Reload the original control word now...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003564 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003565 return;
3566 }
3567
Brian Gaeked474e9c2002-12-06 10:49:33 +00003568 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00003569 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00003570 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00003571}
Brian Gaekea1719c92002-10-31 23:03:59 +00003572
Chris Lattner73815062003-10-18 05:56:40 +00003573/// visitVANextInst - Implement the va_next instruction...
Chris Lattnereca195e2003-05-08 19:44:13 +00003574///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003575void X86ISel::visitVANextInst(VANextInst &I) {
Chris Lattner73815062003-10-18 05:56:40 +00003576 unsigned VAList = getReg(I.getOperand(0));
Chris Lattnereca195e2003-05-08 19:44:13 +00003577 unsigned DestReg = getReg(I);
3578
Chris Lattnereca195e2003-05-08 19:44:13 +00003579 unsigned Size;
Chris Lattnerf70c22b2004-06-17 18:19:28 +00003580 switch (I.getArgType()->getTypeID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00003581 default:
3582 std::cerr << I;
Chris Lattner73815062003-10-18 05:56:40 +00003583 assert(0 && "Error: bad type for va_next instruction!");
Chris Lattnereca195e2003-05-08 19:44:13 +00003584 return;
3585 case Type::PointerTyID:
3586 case Type::UIntTyID:
3587 case Type::IntTyID:
3588 Size = 4;
Chris Lattnereca195e2003-05-08 19:44:13 +00003589 break;
3590 case Type::ULongTyID:
3591 case Type::LongTyID:
Chris Lattnereca195e2003-05-08 19:44:13 +00003592 case Type::DoubleTyID:
3593 Size = 8;
Chris Lattnereca195e2003-05-08 19:44:13 +00003594 break;
3595 }
3596
3597 // Increment the VAList pointer...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003598 BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size);
Chris Lattner73815062003-10-18 05:56:40 +00003599}
Chris Lattnereca195e2003-05-08 19:44:13 +00003600
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003601void X86ISel::visitVAArgInst(VAArgInst &I) {
Chris Lattner73815062003-10-18 05:56:40 +00003602 unsigned VAList = getReg(I.getOperand(0));
3603 unsigned DestReg = getReg(I);
3604
Chris Lattnerf70c22b2004-06-17 18:19:28 +00003605 switch (I.getType()->getTypeID()) {
Chris Lattner73815062003-10-18 05:56:40 +00003606 default:
3607 std::cerr << I;
3608 assert(0 && "Error: bad type for va_next instruction!");
3609 return;
3610 case Type::PointerTyID:
3611 case Type::UIntTyID:
3612 case Type::IntTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003613 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
Chris Lattner73815062003-10-18 05:56:40 +00003614 break;
3615 case Type::ULongTyID:
3616 case Type::LongTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003617 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
3618 addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4);
Chris Lattner73815062003-10-18 05:56:40 +00003619 break;
3620 case Type::DoubleTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003621 addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList);
Chris Lattner73815062003-10-18 05:56:40 +00003622 break;
3623 }
Chris Lattnereca195e2003-05-08 19:44:13 +00003624}
3625
Misha Brukman538607f2004-03-01 23:53:11 +00003626/// visitGetElementPtrInst - instruction-select GEP instructions
3627///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003628void X86ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00003629 // If this GEP instruction will be folded into all of its users, we don't need
3630 // to explicitly calculate it!
Reid Spencerfc989e12004-08-30 00:13:26 +00003631 X86AddressMode AM;
3632 if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), AM)) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00003633 // Check all of the users of the instruction to see if they are loads and
3634 // stores.
3635 bool AllWillFold = true;
3636 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI)
3637 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load)
3638 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store ||
3639 cast<Instruction>(*UI)->getOperand(0) == &I) {
3640 AllWillFold = false;
3641 break;
3642 }
3643
3644 // If the instruction is foldable, and will be folded into all users, don't
3645 // emit it!
3646 if (AllWillFold) return;
3647 }
3648
Chris Lattner3e130a22003-01-13 00:32:26 +00003649 unsigned outputReg = getReg(I);
Chris Lattner827832c2004-02-22 17:05:38 +00003650 emitGEPOperation(BB, BB->end(), I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00003651 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00003652}
3653
Chris Lattner985fe3d2004-02-25 03:45:50 +00003654/// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and
3655/// GEPTypes (the derived types being stepped through at each level). On return
3656/// from this function, if some indexes of the instruction are representable as
3657/// an X86 lea instruction, the machine operands are put into the Ops
3658/// instruction and the consumed indexes are poped from the GEPOps/GEPTypes
3659/// lists. Otherwise, GEPOps.size() is returned. If this returns a an
3660/// addressing mode that only partially consumes the input, the BaseReg input of
3661/// the addressing mode must be left free.
3662///
3663/// Note that there is one fewer entry in GEPTypes than there is in GEPOps.
3664///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003665void X86ISel::getGEPIndex(MachineBasicBlock *MBB,
3666 MachineBasicBlock::iterator IP,
3667 std::vector<Value*> &GEPOps,
3668 std::vector<const Type*> &GEPTypes,
3669 X86AddressMode &AM) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00003670 const TargetData &TD = TM.getTargetData();
3671
Chris Lattner985fe3d2004-02-25 03:45:50 +00003672 // Clear out the state we are working with...
Reid Spencerfc989e12004-08-30 00:13:26 +00003673 AM.BaseType = X86AddressMode::RegBase;
3674 AM.Base.Reg = 0; // No base register
3675 AM.Scale = 1; // Unit scale
3676 AM.IndexReg = 0; // No index register
3677 AM.Disp = 0; // No displacement
Chris Lattnerb6bac512004-02-25 06:13:04 +00003678
Chris Lattner985fe3d2004-02-25 03:45:50 +00003679 // While there are GEP indexes that can be folded into the current address,
3680 // keep processing them.
3681 while (!GEPTypes.empty()) {
3682 if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
3683 // It's a struct access. CUI is the index into the structure,
3684 // which names the field. This index must have unsigned type.
3685 const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
3686
3687 // Use the TargetData structure to pick out what the layout of the
3688 // structure is in memory. Since the structure index must be constant, we
3689 // can get its value and use it to find the right byte offset from the
3690 // StructLayout class's list of structure member offsets.
Reid Spencerfc989e12004-08-30 00:13:26 +00003691 AM.Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
Chris Lattner985fe3d2004-02-25 03:45:50 +00003692 GEPOps.pop_back(); // Consume a GEP operand
3693 GEPTypes.pop_back();
3694 } else {
3695 // It's an array or pointer access: [ArraySize x ElementType].
3696 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3697 Value *idx = GEPOps.back();
3698
3699 // idx is the index into the array. Unlike with structure
3700 // indices, we may not know its actual value at code-generation
3701 // time.
Chris Lattner985fe3d2004-02-25 03:45:50 +00003702
3703 // If idx is a constant, fold it into the offset.
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003704 unsigned TypeSize = TD.getTypeSize(SqTy->getElementType());
Chris Lattner985fe3d2004-02-25 03:45:50 +00003705 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003706 AM.Disp += TypeSize*CSI->getValue();
Chris Lattner28977af2004-04-05 01:30:19 +00003707 } else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(idx)) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003708 AM.Disp += TypeSize*CUI->getValue();
Chris Lattner985fe3d2004-02-25 03:45:50 +00003709 } else {
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003710 // If the index reg is already taken, we can't handle this index.
Reid Spencerfc989e12004-08-30 00:13:26 +00003711 if (AM.IndexReg) return;
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003712
3713 // If this is a size that we can handle, then add the index as
3714 switch (TypeSize) {
3715 case 1: case 2: case 4: case 8:
3716 // These are all acceptable scales on X86.
Reid Spencerfc989e12004-08-30 00:13:26 +00003717 AM.Scale = TypeSize;
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003718 break;
3719 default:
3720 // Otherwise, we can't handle this scale
3721 return;
3722 }
3723
3724 if (CastInst *CI = dyn_cast<CastInst>(idx))
3725 if (CI->getOperand(0)->getType() == Type::IntTy ||
3726 CI->getOperand(0)->getType() == Type::UIntTy)
3727 idx = CI->getOperand(0);
3728
Reid Spencerfc989e12004-08-30 00:13:26 +00003729 AM.IndexReg = MBB ? getReg(idx, MBB, IP) : 1;
Chris Lattner985fe3d2004-02-25 03:45:50 +00003730 }
3731
3732 GEPOps.pop_back(); // Consume a GEP operand
3733 GEPTypes.pop_back();
3734 }
3735 }
Chris Lattnerb6bac512004-02-25 06:13:04 +00003736
Chris Lattnerdf040972004-05-23 21:23:12 +00003737 // GEPTypes is empty, which means we have a single operand left. Set it as
3738 // the base register.
Chris Lattnerb6bac512004-02-25 06:13:04 +00003739 //
Reid Spencerfc989e12004-08-30 00:13:26 +00003740 assert(AM.Base.Reg == 0);
Chris Lattnerdf040972004-05-23 21:23:12 +00003741
Reid Spencerfc989e12004-08-30 00:13:26 +00003742 if (AllocaInst *AI = dyn_castFixedAlloca(GEPOps.back())) {
3743 AM.BaseType = X86AddressMode::FrameIndexBase;
3744 AM.Base.FrameIndex = getFixedSizedAllocaFI(AI);
Chris Lattnerdf040972004-05-23 21:23:12 +00003745 GEPOps.pop_back();
3746 return;
Reid Spencerfc989e12004-08-30 00:13:26 +00003747 }
3748
Chris Lattner358a9022004-10-15 05:05:29 +00003749 if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps.back())) {
3750 AM.GV = GV;
3751 GEPOps.pop_back();
3752 return;
Chris Lattnerdf040972004-05-23 21:23:12 +00003753 }
Chris Lattnerdf040972004-05-23 21:23:12 +00003754
Reid Spencerfc989e12004-08-30 00:13:26 +00003755 AM.Base.Reg = MBB ? getReg(GEPOps[0], MBB, IP) : 1;
Chris Lattnerb6bac512004-02-25 06:13:04 +00003756 GEPOps.pop_back(); // Consume the last GEP operand
Chris Lattner985fe3d2004-02-25 03:45:50 +00003757}
3758
3759
Chris Lattnerb6bac512004-02-25 06:13:04 +00003760/// isGEPFoldable - Return true if the specified GEP can be completely
3761/// folded into the addressing mode of a load/store or lea instruction.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003762bool X86ISel::isGEPFoldable(MachineBasicBlock *MBB,
3763 Value *Src, User::op_iterator IdxBegin,
3764 User::op_iterator IdxEnd, X86AddressMode &AM) {
Chris Lattner7ca04092004-02-22 17:35:42 +00003765
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003766 std::vector<Value*> GEPOps;
3767 GEPOps.resize(IdxEnd-IdxBegin+1);
3768 GEPOps[0] = Src;
3769 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3770
Chris Lattnerdf040972004-05-23 21:23:12 +00003771 std::vector<const Type*>
3772 GEPTypes(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3773 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003774
Chris Lattnerb6bac512004-02-25 06:13:04 +00003775 MachineBasicBlock::iterator IP;
3776 if (MBB) IP = MBB->end();
Reid Spencerfc989e12004-08-30 00:13:26 +00003777 getGEPIndex(MBB, IP, GEPOps, GEPTypes, AM);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003778
3779 // We can fold it away iff the getGEPIndex call eliminated all operands.
3780 return GEPOps.empty();
3781}
3782
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003783void X86ISel::emitGEPOperation(MachineBasicBlock *MBB,
3784 MachineBasicBlock::iterator IP,
3785 Value *Src, User::op_iterator IdxBegin,
3786 User::op_iterator IdxEnd, unsigned TargetReg) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00003787 const TargetData &TD = TM.getTargetData();
Chris Lattnerb6bac512004-02-25 06:13:04 +00003788
Chris Lattnerd2995df2004-07-15 00:58:53 +00003789 // If this is a getelementptr null, with all constant integer indices, just
3790 // replace it with TargetReg = 42.
3791 if (isa<ConstantPointerNull>(Src)) {
3792 User::op_iterator I = IdxBegin;
3793 for (; I != IdxEnd; ++I)
3794 if (!isa<ConstantInt>(*I))
3795 break;
3796 if (I == IdxEnd) { // All constant indices
3797 unsigned Offset = TD.getIndexedOffset(Src->getType(),
3798 std::vector<Value*>(IdxBegin, IdxEnd));
3799 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addImm(Offset);
3800 return;
3801 }
3802 }
3803
Chris Lattnerb6bac512004-02-25 06:13:04 +00003804 std::vector<Value*> GEPOps;
3805 GEPOps.resize(IdxEnd-IdxBegin+1);
3806 GEPOps[0] = Src;
3807 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3808
3809 std::vector<const Type*> GEPTypes;
3810 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3811 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
Chris Lattner985fe3d2004-02-25 03:45:50 +00003812
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003813 // Keep emitting instructions until we consume the entire GEP instruction.
3814 while (!GEPOps.empty()) {
3815 unsigned OldSize = GEPOps.size();
Reid Spencerfc989e12004-08-30 00:13:26 +00003816 X86AddressMode AM;
3817 getGEPIndex(MBB, IP, GEPOps, GEPTypes, AM);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003818
Chris Lattner985fe3d2004-02-25 03:45:50 +00003819 if (GEPOps.size() != OldSize) {
3820 // getGEPIndex consumed some of the input. Build an LEA instruction here.
Chris Lattnerb6bac512004-02-25 06:13:04 +00003821 unsigned NextTarget = 0;
3822 if (!GEPOps.empty()) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003823 assert(AM.Base.Reg == 0 &&
Chris Lattnerb6bac512004-02-25 06:13:04 +00003824 "getGEPIndex should have left the base register open for chaining!");
Reid Spencerfc989e12004-08-30 00:13:26 +00003825 NextTarget = AM.Base.Reg = makeAnotherReg(Type::UIntTy);
Chris Lattner985fe3d2004-02-25 03:45:50 +00003826 }
Chris Lattnerb6bac512004-02-25 06:13:04 +00003827
Reid Spencerfc989e12004-08-30 00:13:26 +00003828 if (AM.BaseType == X86AddressMode::RegBase &&
Chris Lattner358a9022004-10-15 05:05:29 +00003829 AM.IndexReg == 0 && AM.Disp == 0 && !AM.GV)
Reid Spencerfc989e12004-08-30 00:13:26 +00003830 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(AM.Base.Reg);
Chris Lattner358a9022004-10-15 05:05:29 +00003831 else if (AM.BaseType == X86AddressMode::RegBase && AM.Base.Reg == 0 &&
3832 AM.IndexReg == 0 && AM.Disp == 0)
3833 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(AM.GV);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003834 else
Reid Spencerfc989e12004-08-30 00:13:26 +00003835 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg), AM);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003836 --IP;
3837 TargetReg = NextTarget;
Chris Lattner985fe3d2004-02-25 03:45:50 +00003838 } else if (GEPTypes.empty()) {
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003839 // The getGEPIndex operation didn't want to build an LEA. Check to see if
3840 // all operands are consumed but the base pointer. If so, just load it
3841 // into the register.
Chris Lattner7ca04092004-02-22 17:35:42 +00003842 if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003843 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV);
Chris Lattner7ca04092004-02-22 17:35:42 +00003844 } else {
3845 unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003846 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
Chris Lattner7ca04092004-02-22 17:35:42 +00003847 }
3848 break; // we are now done
Chris Lattnerb6bac512004-02-25 06:13:04 +00003849
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003850 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +00003851 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003852 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3853 Value *idx = GEPOps.back();
3854 GEPOps.pop_back(); // Consume a GEP operand
3855 GEPTypes.pop_back();
Chris Lattner8a307e82002-12-16 19:32:50 +00003856
Chris Lattner28977af2004-04-05 01:30:19 +00003857 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
Chris Lattnerf5854472003-06-21 16:01:24 +00003858 // operand on X86. Handle this case directly now...
3859 if (CastInst *CI = dyn_cast<CastInst>(idx))
3860 if (CI->getOperand(0)->getType() == Type::IntTy ||
3861 CI->getOperand(0)->getType() == Type::UIntTy)
3862 idx = CI->getOperand(0);
3863
Chris Lattner3e130a22003-01-13 00:32:26 +00003864 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00003865 // must find the size of the pointed-to type (Not coincidentally, the next
3866 // type is the type of the elements in the array).
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003867 const Type *ElTy = SqTy->getElementType();
3868 unsigned elementSize = TD.getTypeSize(ElTy);
Chris Lattner8a307e82002-12-16 19:32:50 +00003869
3870 // If idxReg is a constant, we don't need to perform the multiply!
Chris Lattner28977af2004-04-05 01:30:19 +00003871 if (ConstantInt *CSI = dyn_cast<ConstantInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003872 if (!CSI->isNullValue()) {
Chris Lattner28977af2004-04-05 01:30:19 +00003873 unsigned Offset = elementSize*CSI->getRawValue();
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003874 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003875 BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg)
Chris Lattneree352852004-02-29 07:22:16 +00003876 .addReg(Reg).addImm(Offset);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003877 --IP; // Insert the next instruction before this one.
3878 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003879 }
3880 } else if (elementSize == 1) {
3881 // If the element size is 1, we don't have to multiply, just add
3882 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003883 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003884 BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003885 --IP; // Insert the next instruction before this one.
3886 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003887 } else {
3888 unsigned idxReg = getReg(idx, MBB, IP);
3889 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00003890
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003891 // Make sure we can back the iterator up to point to the first
3892 // instruction emitted.
3893 MachineBasicBlock::iterator BeforeIt = IP;
3894 if (IP == MBB->begin())
3895 BeforeIt = MBB->end();
3896 else
3897 --BeforeIt;
Chris Lattnerb2acc512003-10-19 21:09:10 +00003898 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
3899
Chris Lattner8a307e82002-12-16 19:32:50 +00003900 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003901 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003902 BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg)
Chris Lattneree352852004-02-29 07:22:16 +00003903 .addReg(Reg).addReg(OffsetReg);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003904
3905 // Step to the first instruction of the multiply.
3906 if (BeforeIt == MBB->end())
3907 IP = MBB->begin();
3908 else
3909 IP = ++BeforeIt;
3910
3911 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003912 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003913 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003914 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003915}
3916
Chris Lattner065faeb2002-12-28 20:24:02 +00003917/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
3918/// frame manager, otherwise do it the hard way.
3919///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003920void X86ISel::visitAllocaInst(AllocaInst &I) {
Chris Lattner9f1b5312004-05-13 15:12:43 +00003921 // If this is a fixed size alloca in the entry block for the function, we
3922 // statically stack allocate the space, so we don't need to do anything here.
3923 //
Chris Lattnercb2fd552004-05-13 07:40:27 +00003924 if (dyn_castFixedAlloca(&I)) return;
Chris Lattner9f1b5312004-05-13 15:12:43 +00003925
Brian Gaekee48ec012002-12-13 06:46:31 +00003926 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00003927 const Type *Ty = I.getAllocatedType();
3928 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
3929
Chris Lattner065faeb2002-12-28 20:24:02 +00003930 // Create a register to hold the temporary result of multiplying the type size
3931 // constant by the variable amount.
3932 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
3933 unsigned SrcReg1 = getReg(I.getArraySize());
Chris Lattner065faeb2002-12-28 20:24:02 +00003934
3935 // TotalSizeReg = mul <numelements>, <TypeSize>
3936 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00003937 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
Chris Lattner065faeb2002-12-28 20:24:02 +00003938
3939 // AddedSize = add <TotalSizeReg>, 15
3940 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003941 BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
Chris Lattner065faeb2002-12-28 20:24:02 +00003942
3943 // AlignedSize = and <AddedSize>, ~15
3944 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003945 BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15);
Chris Lattner065faeb2002-12-28 20:24:02 +00003946
Brian Gaekee48ec012002-12-13 06:46:31 +00003947 // Subtract size from stack pointer, thereby allocating some space.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003948 BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00003949
Brian Gaekee48ec012002-12-13 06:46:31 +00003950 // Put a pointer to the space into the result register, by copying
3951 // the stack pointer.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003952 BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP);
Chris Lattner065faeb2002-12-28 20:24:02 +00003953
Misha Brukman48196b32003-05-03 02:18:17 +00003954 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00003955 // object.
3956 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00003957}
Chris Lattner3e130a22003-01-13 00:32:26 +00003958
3959/// visitMallocInst - Malloc instructions are code generated into direct calls
3960/// to the library malloc.
3961///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003962void X86ISel::visitMallocInst(MallocInst &I) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003963 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
3964 unsigned Arg;
3965
3966 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
3967 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
3968 } else {
3969 Arg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00003970 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00003971 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00003972 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
Chris Lattner3e130a22003-01-13 00:32:26 +00003973 }
3974
3975 std::vector<ValueRecord> Args;
3976 Args.push_back(ValueRecord(Arg, Type::UIntTy));
3977 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003978 1).addExternalSymbol("malloc", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00003979 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
3980}
3981
3982
3983/// visitFreeInst - Free instructions are code gen'd to call the free libc
3984/// function.
3985///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003986void X86ISel::visitFreeInst(FreeInst &I) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003987 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00003988 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00003989 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003990 1).addExternalSymbol("free", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00003991 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
3992}
3993
Chris Lattnerd281de22003-07-26 23:49:58 +00003994/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00003995/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00003996/// generated code sucks but the implementation is nice and simple.
3997///
Chris Lattnerf70e0c22003-12-28 21:23:38 +00003998FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003999 return new X86ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00004000}