Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 1 | //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 2 | // |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by the LLVM research group and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 7 | // |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This implements the TargetLowering class. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Target/TargetLowering.h" |
Owen Anderson | 07000c6 | 2006-05-12 06:33:49 +0000 | [diff] [blame] | 15 | #include "llvm/Target/TargetData.h" |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 16 | #include "llvm/Target/TargetMachine.h" |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 17 | #include "llvm/Target/MRegisterInfo.h" |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 18 | #include "llvm/DerivedTypes.h" |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 19 | #include "llvm/CodeGen/SelectionDAG.h" |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 20 | #include "llvm/ADT/StringExtras.h" |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 21 | #include "llvm/Support/MathExtras.h" |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 22 | using namespace llvm; |
| 23 | |
Evan Cheng | 5696622 | 2007-01-12 02:11:51 +0000 | [diff] [blame] | 24 | /// InitLibcallNames - Set default libcall names. |
| 25 | /// |
Evan Cheng | 79cca50 | 2007-01-12 22:51:10 +0000 | [diff] [blame^] | 26 | static void InitLibcallNames(const char **Names) { |
Evan Cheng | 5696622 | 2007-01-12 02:11:51 +0000 | [diff] [blame] | 27 | Names[RTLIB::SHL_I32] = "__ashlsi3"; |
| 28 | Names[RTLIB::SHL_I64] = "__ashldi3"; |
| 29 | Names[RTLIB::SRL_I32] = "__lshrsi3"; |
| 30 | Names[RTLIB::SRL_I64] = "__lshrdi3"; |
| 31 | Names[RTLIB::SRA_I32] = "__ashrsi3"; |
| 32 | Names[RTLIB::SRA_I64] = "__ashrdi3"; |
| 33 | Names[RTLIB::MUL_I32] = "__mulsi3"; |
| 34 | Names[RTLIB::MUL_I64] = "__muldi3"; |
| 35 | Names[RTLIB::SDIV_I32] = "__divsi3"; |
| 36 | Names[RTLIB::SDIV_I64] = "__divdi3"; |
| 37 | Names[RTLIB::UDIV_I32] = "__udivsi3"; |
| 38 | Names[RTLIB::UDIV_I64] = "__udivdi3"; |
| 39 | Names[RTLIB::SREM_I32] = "__modsi3"; |
| 40 | Names[RTLIB::SREM_I64] = "__moddi3"; |
| 41 | Names[RTLIB::UREM_I32] = "__umodsi3"; |
| 42 | Names[RTLIB::UREM_I64] = "__umoddi3"; |
| 43 | Names[RTLIB::NEG_I32] = "__negsi2"; |
| 44 | Names[RTLIB::NEG_I64] = "__negdi2"; |
| 45 | Names[RTLIB::ADD_F32] = "__addsf3"; |
| 46 | Names[RTLIB::ADD_F64] = "__adddf3"; |
| 47 | Names[RTLIB::SUB_F32] = "__subsf3"; |
| 48 | Names[RTLIB::SUB_F64] = "__subdf3"; |
| 49 | Names[RTLIB::MUL_F32] = "__mulsf3"; |
| 50 | Names[RTLIB::MUL_F64] = "__muldf3"; |
| 51 | Names[RTLIB::DIV_F32] = "__divsf3"; |
| 52 | Names[RTLIB::DIV_F64] = "__divdf3"; |
| 53 | Names[RTLIB::REM_F32] = "fmodf"; |
| 54 | Names[RTLIB::REM_F64] = "fmod"; |
| 55 | Names[RTLIB::NEG_F32] = "__negsf2"; |
| 56 | Names[RTLIB::NEG_F64] = "__negdf2"; |
| 57 | Names[RTLIB::POWI_F32] = "__powisf2"; |
| 58 | Names[RTLIB::POWI_F64] = "__powidf2"; |
| 59 | Names[RTLIB::SQRT_F32] = "sqrtf"; |
| 60 | Names[RTLIB::SQRT_F64] = "sqrt"; |
| 61 | Names[RTLIB::SIN_F32] = "sinf"; |
| 62 | Names[RTLIB::SIN_F64] = "sin"; |
| 63 | Names[RTLIB::COS_F32] = "cosf"; |
| 64 | Names[RTLIB::COS_F64] = "cos"; |
| 65 | Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; |
| 66 | Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; |
| 67 | Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; |
| 68 | Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; |
| 69 | Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; |
| 70 | Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; |
| 71 | Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; |
| 72 | Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi"; |
| 73 | Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi"; |
| 74 | Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi"; |
| 75 | Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; |
| 76 | Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; |
| 77 | Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; |
| 78 | Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; |
| 79 | Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; |
| 80 | Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; |
| 81 | Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; |
| 82 | Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; |
| 83 | Names[RTLIB::OEQ_F32] = "__eqsf2"; |
| 84 | Names[RTLIB::OEQ_F64] = "__eqdf2"; |
| 85 | Names[RTLIB::UNE_F32] = "__nesf2"; |
| 86 | Names[RTLIB::UNE_F64] = "__nedf2"; |
| 87 | Names[RTLIB::OGE_F32] = "__gesf2"; |
| 88 | Names[RTLIB::OGE_F64] = "__gedf2"; |
| 89 | Names[RTLIB::OLT_F32] = "__ltsf2"; |
| 90 | Names[RTLIB::OLT_F64] = "__ltdf2"; |
| 91 | Names[RTLIB::OLE_F32] = "__lesf2"; |
| 92 | Names[RTLIB::OLE_F64] = "__ledf2"; |
| 93 | Names[RTLIB::OGT_F32] = "__gtsf2"; |
| 94 | Names[RTLIB::OGT_F64] = "__gtdf2"; |
| 95 | Names[RTLIB::UO_F32] = "__unordsf2"; |
| 96 | Names[RTLIB::UO_F64] = "__unorddf2"; |
| 97 | } |
| 98 | |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 99 | TargetLowering::TargetLowering(TargetMachine &tm) |
Chris Lattner | 3e6e8cc | 2006-01-29 08:41:12 +0000 | [diff] [blame] | 100 | : TM(tm), TD(TM.getTargetData()) { |
Evan Cheng | 33143dc | 2006-03-03 06:58:59 +0000 | [diff] [blame] | 101 | assert(ISD::BUILTIN_OP_END <= 156 && |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 102 | "Fixed size array in TargetLowering is not large enough!"); |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 103 | // All operations default to being supported. |
| 104 | memset(OpActions, 0, sizeof(OpActions)); |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 105 | memset(LoadXActions, 0, sizeof(LoadXActions)); |
Evan Cheng | 8b2794a | 2006-10-13 21:14:26 +0000 | [diff] [blame] | 106 | memset(&StoreXActions, 0, sizeof(StoreXActions)); |
Evan Cheng | 5ff839f | 2006-11-09 18:56:43 +0000 | [diff] [blame] | 107 | // Initialize all indexed load / store to expand. |
| 108 | for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) { |
| 109 | for (unsigned IM = (unsigned)ISD::PRE_INC; |
| 110 | IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { |
| 111 | setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand); |
| 112 | setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand); |
| 113 | } |
| 114 | } |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 115 | |
Owen Anderson | a69571c | 2006-05-03 01:29:57 +0000 | [diff] [blame] | 116 | IsLittleEndian = TD->isLittleEndian(); |
Chris Lattner | cf9668f | 2006-10-06 22:52:08 +0000 | [diff] [blame] | 117 | UsesGlobalOffsetTable = false; |
Owen Anderson | a69571c | 2006-05-03 01:29:57 +0000 | [diff] [blame] | 118 | ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType()); |
Chris Lattner | d6e4967 | 2005-01-19 03:36:14 +0000 | [diff] [blame] | 119 | ShiftAmtHandling = Undefined; |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 120 | memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); |
Chris Lattner | 00ffed0 | 2006-03-01 04:52:55 +0000 | [diff] [blame] | 121 | memset(TargetDAGCombineArray, 0, |
| 122 | sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0])); |
Evan Cheng | a03a5dc | 2006-02-14 08:38:30 +0000 | [diff] [blame] | 123 | maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8; |
Reid Spencer | 0f9beca | 2005-08-27 19:09:02 +0000 | [diff] [blame] | 124 | allowUnalignedMemoryAccesses = false; |
Anton Korobeynikov | d27a258 | 2006-12-10 23:12:42 +0000 | [diff] [blame] | 125 | UseUnderscoreSetJmp = false; |
| 126 | UseUnderscoreLongJmp = false; |
Nate Begeman | 405e3ec | 2005-10-21 00:02:42 +0000 | [diff] [blame] | 127 | IntDivIsCheap = false; |
| 128 | Pow2DivIsCheap = false; |
Chris Lattner | ee4a765 | 2006-01-25 18:57:15 +0000 | [diff] [blame] | 129 | StackPointerRegisterToSaveRestore = 0; |
Evan Cheng | 0577a22 | 2006-01-25 18:52:42 +0000 | [diff] [blame] | 130 | SchedPreferenceInfo = SchedulingForLatency; |
Chris Lattner | 7acf5f3 | 2006-09-05 17:39:15 +0000 | [diff] [blame] | 131 | JumpBufSize = 0; |
Duraid Madina | 0c9e0ff | 2006-09-04 07:44:11 +0000 | [diff] [blame] | 132 | JumpBufAlignment = 0; |
Evan Cheng | 5696622 | 2007-01-12 02:11:51 +0000 | [diff] [blame] | 133 | |
| 134 | InitLibcallNames(LibcallRoutineNames); |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 135 | } |
| 136 | |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 137 | TargetLowering::~TargetLowering() {} |
| 138 | |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 139 | /// setValueTypeAction - Set the action for a particular value type. This |
| 140 | /// assumes an action has not already been set for this value type. |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 141 | static void SetValueTypeAction(MVT::ValueType VT, |
| 142 | TargetLowering::LegalizeAction Action, |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 143 | TargetLowering &TLI, |
| 144 | MVT::ValueType *TransformToType, |
Chris Lattner | 3e6e8cc | 2006-01-29 08:41:12 +0000 | [diff] [blame] | 145 | TargetLowering::ValueTypeActionImpl &ValueTypeActions) { |
| 146 | ValueTypeActions.setTypeAction(VT, Action); |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 147 | if (Action == TargetLowering::Promote) { |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 148 | MVT::ValueType PromoteTo; |
| 149 | if (VT == MVT::f32) |
| 150 | PromoteTo = MVT::f64; |
| 151 | else { |
| 152 | unsigned LargerReg = VT+1; |
Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 153 | while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) { |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 154 | ++LargerReg; |
| 155 | assert(MVT::isInteger((MVT::ValueType)LargerReg) && |
| 156 | "Nothing to promote to??"); |
| 157 | } |
| 158 | PromoteTo = (MVT::ValueType)LargerReg; |
| 159 | } |
| 160 | |
| 161 | assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) && |
| 162 | MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) && |
| 163 | "Can only promote from int->int or fp->fp!"); |
| 164 | assert(VT < PromoteTo && "Must promote to a larger type!"); |
| 165 | TransformToType[VT] = PromoteTo; |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 166 | } else if (Action == TargetLowering::Expand) { |
Evan Cheng | 1a8f1fe | 2006-12-09 02:42:38 +0000 | [diff] [blame] | 167 | // f32 and f64 is each expanded to corresponding integer type of same size. |
| 168 | if (VT == MVT::f32) |
| 169 | TransformToType[VT] = MVT::i32; |
| 170 | else if (VT == MVT::f64) |
| 171 | TransformToType[VT] = MVT::i64; |
| 172 | else { |
| 173 | assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 && |
| 174 | "Cannot expand this type: target must support SOME integer reg!"); |
| 175 | // Expand to the next smaller integer type! |
| 176 | TransformToType[VT] = (MVT::ValueType)(VT-1); |
| 177 | } |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 178 | } |
| 179 | } |
| 180 | |
| 181 | |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 182 | /// computeRegisterProperties - Once all of the register classes are added, |
| 183 | /// this allows us to compute derived properties we expose. |
| 184 | void TargetLowering::computeRegisterProperties() { |
Nate Begeman | 6a64861 | 2005-11-29 05:45:29 +0000 | [diff] [blame] | 185 | assert(MVT::LAST_VALUETYPE <= 32 && |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 186 | "Too many value types for ValueTypeActions to hold!"); |
| 187 | |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 188 | // Everything defaults to one. |
| 189 | for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) |
| 190 | NumElementsForVT[i] = 1; |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 191 | |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 192 | // Find the largest integer register class. |
| 193 | unsigned LargestIntReg = MVT::i128; |
| 194 | for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg) |
| 195 | assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); |
| 196 | |
| 197 | // Every integer value type larger than this largest register takes twice as |
| 198 | // many registers to represent as the previous ValueType. |
| 199 | unsigned ExpandedReg = LargestIntReg; ++LargestIntReg; |
| 200 | for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg) |
| 201 | NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1]; |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 202 | |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 203 | // Inspect all of the ValueType's possible, deciding how to process them. |
| 204 | for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg) |
| 205 | // If we are expanding this type, expand it! |
| 206 | if (getNumElements((MVT::ValueType)IntReg) != 1) |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 207 | SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType, |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 208 | ValueTypeActions); |
Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 209 | else if (!isTypeLegal((MVT::ValueType)IntReg)) |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 210 | // Otherwise, if we don't have native support, we must promote to a |
| 211 | // larger type. |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 212 | SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this, |
| 213 | TransformToType, ValueTypeActions); |
Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 214 | else |
| 215 | TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg; |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 216 | |
Evan Cheng | 1a8f1fe | 2006-12-09 02:42:38 +0000 | [diff] [blame] | 217 | // If the target does not have native F64 support, expand it to I64. We will |
| 218 | // be generating soft float library calls. If the target does not have native |
| 219 | // support for F32, promote it to F64 if it is legal. Otherwise, expand it to |
| 220 | // I32. |
| 221 | if (isTypeLegal(MVT::f64)) |
| 222 | TransformToType[MVT::f64] = MVT::f64; |
| 223 | else { |
| 224 | NumElementsForVT[MVT::f64] = NumElementsForVT[MVT::i64]; |
| 225 | SetValueTypeAction(MVT::f64, Expand, *this, TransformToType, |
| 226 | ValueTypeActions); |
| 227 | } |
| 228 | if (isTypeLegal(MVT::f32)) |
Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 229 | TransformToType[MVT::f32] = MVT::f32; |
Evan Cheng | 1a8f1fe | 2006-12-09 02:42:38 +0000 | [diff] [blame] | 230 | else if (isTypeLegal(MVT::f64)) |
| 231 | SetValueTypeAction(MVT::f32, Promote, *this, TransformToType, |
| 232 | ValueTypeActions); |
| 233 | else { |
| 234 | NumElementsForVT[MVT::f32] = NumElementsForVT[MVT::i32]; |
| 235 | SetValueTypeAction(MVT::f32, Expand, *this, TransformToType, |
| 236 | ValueTypeActions); |
| 237 | } |
Nate Begeman | 4ef3b81 | 2005-11-22 01:29:36 +0000 | [diff] [blame] | 238 | |
| 239 | // Set MVT::Vector to always be Expanded |
| 240 | SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType, |
| 241 | ValueTypeActions); |
Chris Lattner | 3a593584 | 2006-03-16 19:50:01 +0000 | [diff] [blame] | 242 | |
| 243 | // Loop over all of the legal vector value types, specifying an identity type |
| 244 | // transformation. |
| 245 | for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; |
Evan Cheng | 677274b | 2006-03-23 23:24:51 +0000 | [diff] [blame] | 246 | i <= MVT::LAST_VECTOR_VALUETYPE; ++i) { |
Chris Lattner | 3a593584 | 2006-03-16 19:50:01 +0000 | [diff] [blame] | 247 | if (isTypeLegal((MVT::ValueType)i)) |
| 248 | TransformToType[i] = (MVT::ValueType)i; |
| 249 | } |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 250 | } |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 251 | |
Evan Cheng | 7226158 | 2005-12-20 06:22:03 +0000 | [diff] [blame] | 252 | const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { |
| 253 | return NULL; |
| 254 | } |
Evan Cheng | 3a03ebb | 2005-12-21 23:05:39 +0000 | [diff] [blame] | 255 | |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 256 | /// getPackedTypeBreakdown - Packed types are broken down into some number of |
Evan Cheng | 7e399c1 | 2006-05-17 18:22:14 +0000 | [diff] [blame] | 257 | /// legal first class types. For example, <8 x float> maps to 2 MVT::v4f32 |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 258 | /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. |
| 259 | /// |
| 260 | /// This method returns the number and type of the resultant breakdown. |
| 261 | /// |
Chris Lattner | 79227e2 | 2006-03-31 00:46:36 +0000 | [diff] [blame] | 262 | unsigned TargetLowering::getPackedTypeBreakdown(const PackedType *PTy, |
| 263 | MVT::ValueType &PTyElementVT, |
| 264 | MVT::ValueType &PTyLegalElementVT) const { |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 265 | // Figure out the right, legal destination reg to copy into. |
| 266 | unsigned NumElts = PTy->getNumElements(); |
| 267 | MVT::ValueType EltTy = getValueType(PTy->getElementType()); |
| 268 | |
| 269 | unsigned NumVectorRegs = 1; |
| 270 | |
| 271 | // Divide the input until we get to a supported size. This will always |
| 272 | // end with a scalar if the target doesn't support vectors. |
| 273 | while (NumElts > 1 && !isTypeLegal(getVectorType(EltTy, NumElts))) { |
| 274 | NumElts >>= 1; |
| 275 | NumVectorRegs <<= 1; |
| 276 | } |
| 277 | |
| 278 | MVT::ValueType VT; |
Chris Lattner | a6c9de4 | 2006-03-31 01:50:09 +0000 | [diff] [blame] | 279 | if (NumElts == 1) { |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 280 | VT = EltTy; |
Chris Lattner | a6c9de4 | 2006-03-31 01:50:09 +0000 | [diff] [blame] | 281 | } else { |
| 282 | VT = getVectorType(EltTy, NumElts); |
| 283 | } |
| 284 | PTyElementVT = VT; |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 285 | |
| 286 | MVT::ValueType DestVT = getTypeToTransformTo(VT); |
Chris Lattner | 79227e2 | 2006-03-31 00:46:36 +0000 | [diff] [blame] | 287 | PTyLegalElementVT = DestVT; |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 288 | if (DestVT < VT) { |
| 289 | // Value is expanded, e.g. i64 -> i16. |
Chris Lattner | 79227e2 | 2006-03-31 00:46:36 +0000 | [diff] [blame] | 290 | return NumVectorRegs*(MVT::getSizeInBits(VT)/MVT::getSizeInBits(DestVT)); |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 291 | } else { |
| 292 | // Otherwise, promotion or legal types use the same number of registers as |
| 293 | // the vector decimated to the appropriate level. |
Chris Lattner | 79227e2 | 2006-03-31 00:46:36 +0000 | [diff] [blame] | 294 | return NumVectorRegs; |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 295 | } |
| 296 | |
Evan Cheng | e9b3da1 | 2006-05-17 18:10:06 +0000 | [diff] [blame] | 297 | return 1; |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 298 | } |
| 299 | |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 300 | //===----------------------------------------------------------------------===// |
| 301 | // Optimization Methods |
| 302 | //===----------------------------------------------------------------------===// |
| 303 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 304 | /// ShrinkDemandedConstant - Check to see if the specified operand of the |
| 305 | /// specified instruction is a constant integer. If so, check to see if there |
| 306 | /// are any bits set in the constant that are not demanded. If so, shrink the |
| 307 | /// constant and return true. |
| 308 | bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op, |
| 309 | uint64_t Demanded) { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 310 | // FIXME: ISD::SELECT, ISD::SELECT_CC |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 311 | switch(Op.getOpcode()) { |
| 312 | default: break; |
Nate Begeman | de99629 | 2006-02-03 22:24:05 +0000 | [diff] [blame] | 313 | case ISD::AND: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 314 | case ISD::OR: |
| 315 | case ISD::XOR: |
| 316 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) |
| 317 | if ((~Demanded & C->getValue()) != 0) { |
| 318 | MVT::ValueType VT = Op.getValueType(); |
| 319 | SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0), |
| 320 | DAG.getConstant(Demanded & C->getValue(), |
| 321 | VT)); |
| 322 | return CombineTo(Op, New); |
Nate Begeman | de99629 | 2006-02-03 22:24:05 +0000 | [diff] [blame] | 323 | } |
Nate Begeman | de99629 | 2006-02-03 22:24:05 +0000 | [diff] [blame] | 324 | break; |
| 325 | } |
| 326 | return false; |
| 327 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 328 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 329 | /// SimplifyDemandedBits - Look at Op. At this point, we know that only the |
| 330 | /// DemandedMask bits of the result of Op are ever used downstream. If we can |
| 331 | /// use this information to simplify Op, create a new simplified DAG node and |
| 332 | /// return true, returning the original and new nodes in Old and New. Otherwise, |
| 333 | /// analyze the expression and return a mask of KnownOne and KnownZero bits for |
| 334 | /// the expression (used to simplify the caller). The KnownZero/One bits may |
| 335 | /// only be accurate for those bits in the DemandedMask. |
| 336 | bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask, |
| 337 | uint64_t &KnownZero, |
| 338 | uint64_t &KnownOne, |
| 339 | TargetLoweringOpt &TLO, |
| 340 | unsigned Depth) const { |
| 341 | KnownZero = KnownOne = 0; // Don't know anything. |
| 342 | // Other users may use these bits. |
| 343 | if (!Op.Val->hasOneUse()) { |
| 344 | if (Depth != 0) { |
| 345 | // If not at the root, Just compute the KnownZero/KnownOne bits to |
| 346 | // simplify things downstream. |
| 347 | ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth); |
| 348 | return false; |
| 349 | } |
| 350 | // If this is the root being simplified, allow it to have multiple uses, |
| 351 | // just set the DemandedMask to all bits. |
| 352 | DemandedMask = MVT::getIntVTBitMask(Op.getValueType()); |
| 353 | } else if (DemandedMask == 0) { |
| 354 | // Not demanding any bits from Op. |
| 355 | if (Op.getOpcode() != ISD::UNDEF) |
| 356 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType())); |
| 357 | return false; |
| 358 | } else if (Depth == 6) { // Limit search depth. |
| 359 | return false; |
| 360 | } |
| 361 | |
| 362 | uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 363 | switch (Op.getOpcode()) { |
| 364 | case ISD::Constant: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 365 | // We know all of the bits for a constant! |
| 366 | KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask; |
| 367 | KnownZero = ~KnownOne & DemandedMask; |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 368 | return false; // Don't fall through, will infinitely loop. |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 369 | case ISD::AND: |
Chris Lattner | 81cd355 | 2006-02-27 00:36:27 +0000 | [diff] [blame] | 370 | // If the RHS is a constant, check to see if the LHS would be zero without |
| 371 | // using the bits from the RHS. Below, we use knowledge about the RHS to |
| 372 | // simplify the LHS, here we're using information from the LHS to simplify |
| 373 | // the RHS. |
| 374 | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 375 | uint64_t LHSZero, LHSOne; |
| 376 | ComputeMaskedBits(Op.getOperand(0), DemandedMask, |
| 377 | LHSZero, LHSOne, Depth+1); |
| 378 | // If the LHS already has zeros where RHSC does, this and is dead. |
| 379 | if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask)) |
| 380 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 381 | // If any of the set bits in the RHS are known zero on the LHS, shrink |
| 382 | // the constant. |
| 383 | if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask)) |
| 384 | return true; |
| 385 | } |
| 386 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 387 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, |
| 388 | KnownOne, TLO, Depth+1)) |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 389 | return true; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 390 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 391 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero, |
| 392 | KnownZero2, KnownOne2, TLO, Depth+1)) |
| 393 | return true; |
| 394 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 395 | |
| 396 | // If all of the demanded bits are known one on one side, return the other. |
| 397 | // These bits cannot contribute to the result of the 'and'. |
| 398 | if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2)) |
| 399 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 400 | if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero)) |
| 401 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 402 | // If all of the demanded bits in the inputs are known zeros, return zero. |
| 403 | if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask) |
| 404 | return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); |
| 405 | // If the RHS is a constant, see if we can simplify it. |
| 406 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2)) |
| 407 | return true; |
Chris Lattner | 5f0c658 | 2006-02-27 00:22:28 +0000 | [diff] [blame] | 408 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 409 | // Output known-1 bits are only known if set in both the LHS & RHS. |
| 410 | KnownOne &= KnownOne2; |
| 411 | // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| 412 | KnownZero |= KnownZero2; |
| 413 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 414 | case ISD::OR: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 415 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, |
| 416 | KnownOne, TLO, Depth+1)) |
| 417 | return true; |
| 418 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 419 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne, |
| 420 | KnownZero2, KnownOne2, TLO, Depth+1)) |
| 421 | return true; |
| 422 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 423 | |
| 424 | // If all of the demanded bits are known zero on one side, return the other. |
| 425 | // These bits cannot contribute to the result of the 'or'. |
Jeff Cohen | 5755b17 | 2006-02-17 02:12:18 +0000 | [diff] [blame] | 426 | if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2)) |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 427 | return TLO.CombineTo(Op, Op.getOperand(0)); |
Jeff Cohen | 5755b17 | 2006-02-17 02:12:18 +0000 | [diff] [blame] | 428 | if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne)) |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 429 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 430 | // If all of the potentially set bits on one side are known to be set on |
| 431 | // the other side, just use the 'other' side. |
| 432 | if ((DemandedMask & (~KnownZero) & KnownOne2) == |
| 433 | (DemandedMask & (~KnownZero))) |
| 434 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 435 | if ((DemandedMask & (~KnownZero2) & KnownOne) == |
| 436 | (DemandedMask & (~KnownZero2))) |
| 437 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 438 | // If the RHS is a constant, see if we can simplify it. |
| 439 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 440 | return true; |
| 441 | |
| 442 | // Output known-0 bits are only known if clear in both the LHS & RHS. |
| 443 | KnownZero &= KnownZero2; |
| 444 | // Output known-1 are known to be set if set in either the LHS | RHS. |
| 445 | KnownOne |= KnownOne2; |
| 446 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 447 | case ISD::XOR: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 448 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, |
| 449 | KnownOne, TLO, Depth+1)) |
| 450 | return true; |
| 451 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 452 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2, |
| 453 | KnownOne2, TLO, Depth+1)) |
| 454 | return true; |
| 455 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 456 | |
| 457 | // If all of the demanded bits are known zero on one side, return the other. |
| 458 | // These bits cannot contribute to the result of the 'xor'. |
| 459 | if ((DemandedMask & KnownZero) == DemandedMask) |
| 460 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 461 | if ((DemandedMask & KnownZero2) == DemandedMask) |
| 462 | return TLO.CombineTo(Op, Op.getOperand(1)); |
Chris Lattner | 3687c1a | 2006-11-27 21:50:02 +0000 | [diff] [blame] | 463 | |
| 464 | // If all of the unknown bits are known to be zero on one side or the other |
| 465 | // (but not both) turn this into an *inclusive* or. |
| 466 | // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 |
| 467 | if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0) |
| 468 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(), |
| 469 | Op.getOperand(0), |
| 470 | Op.getOperand(1))); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 471 | |
| 472 | // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| 473 | KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); |
| 474 | // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| 475 | KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); |
| 476 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 477 | // If all of the demanded bits on one side are known, and all of the set |
| 478 | // bits on that side are also known to be set on the other side, turn this |
| 479 | // into an AND, as we know the bits will be cleared. |
| 480 | // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 |
| 481 | if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known |
| 482 | if ((KnownOne & KnownOne2) == KnownOne) { |
| 483 | MVT::ValueType VT = Op.getValueType(); |
| 484 | SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT); |
| 485 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0), |
| 486 | ANDC)); |
| 487 | } |
| 488 | } |
| 489 | |
| 490 | // If the RHS is a constant, see if we can simplify it. |
| 491 | // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. |
| 492 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 493 | return true; |
| 494 | |
| 495 | KnownZero = KnownZeroOut; |
| 496 | KnownOne = KnownOneOut; |
| 497 | break; |
| 498 | case ISD::SETCC: |
| 499 | // If we know the result of a setcc has the top bits zero, use this info. |
| 500 | if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) |
| 501 | KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); |
| 502 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 503 | case ISD::SELECT: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 504 | if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero, |
| 505 | KnownOne, TLO, Depth+1)) |
| 506 | return true; |
| 507 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2, |
| 508 | KnownOne2, TLO, Depth+1)) |
| 509 | return true; |
| 510 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 511 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 512 | |
| 513 | // If the operands are constants, see if we can simplify them. |
| 514 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 515 | return true; |
| 516 | |
| 517 | // Only known if known in both the LHS and RHS. |
| 518 | KnownOne &= KnownOne2; |
| 519 | KnownZero &= KnownZero2; |
| 520 | break; |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 521 | case ISD::SELECT_CC: |
| 522 | if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero, |
| 523 | KnownOne, TLO, Depth+1)) |
| 524 | return true; |
| 525 | if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2, |
| 526 | KnownOne2, TLO, Depth+1)) |
| 527 | return true; |
| 528 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 529 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 530 | |
| 531 | // If the operands are constants, see if we can simplify them. |
| 532 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 533 | return true; |
| 534 | |
| 535 | // Only known if known in both the LHS and RHS. |
| 536 | KnownOne &= KnownOne2; |
| 537 | KnownZero &= KnownZero2; |
| 538 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 539 | case ISD::SHL: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 540 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 541 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> SA->getValue(), |
| 542 | KnownZero, KnownOne, TLO, Depth+1)) |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 543 | return true; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 544 | KnownZero <<= SA->getValue(); |
| 545 | KnownOne <<= SA->getValue(); |
| 546 | KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero. |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 547 | } |
| 548 | break; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 549 | case ISD::SRL: |
| 550 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 551 | MVT::ValueType VT = Op.getValueType(); |
| 552 | unsigned ShAmt = SA->getValue(); |
| 553 | |
| 554 | // Compute the new bits that are at the top now. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 555 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 556 | if (SimplifyDemandedBits(Op.getOperand(0), |
| 557 | (DemandedMask << ShAmt) & TypeMask, |
| 558 | KnownZero, KnownOne, TLO, Depth+1)) |
| 559 | return true; |
| 560 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 561 | KnownZero &= TypeMask; |
| 562 | KnownOne &= TypeMask; |
| 563 | KnownZero >>= ShAmt; |
| 564 | KnownOne >>= ShAmt; |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 565 | |
| 566 | uint64_t HighBits = (1ULL << ShAmt)-1; |
| 567 | HighBits <<= MVT::getSizeInBits(VT) - ShAmt; |
| 568 | KnownZero |= HighBits; // High bits known zero. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 569 | } |
| 570 | break; |
| 571 | case ISD::SRA: |
| 572 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 573 | MVT::ValueType VT = Op.getValueType(); |
| 574 | unsigned ShAmt = SA->getValue(); |
| 575 | |
| 576 | // Compute the new bits that are at the top now. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 577 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); |
| 578 | |
Chris Lattner | 1b73713 | 2006-05-08 17:22:53 +0000 | [diff] [blame] | 579 | uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask; |
| 580 | |
| 581 | // If any of the demanded bits are produced by the sign extension, we also |
| 582 | // demand the input sign bit. |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 583 | uint64_t HighBits = (1ULL << ShAmt)-1; |
| 584 | HighBits <<= MVT::getSizeInBits(VT) - ShAmt; |
Chris Lattner | 1b73713 | 2006-05-08 17:22:53 +0000 | [diff] [blame] | 585 | if (HighBits & DemandedMask) |
| 586 | InDemandedMask |= MVT::getIntVTSignBit(VT); |
| 587 | |
| 588 | if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 589 | KnownZero, KnownOne, TLO, Depth+1)) |
| 590 | return true; |
| 591 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 592 | KnownZero &= TypeMask; |
| 593 | KnownOne &= TypeMask; |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 594 | KnownZero >>= ShAmt; |
| 595 | KnownOne >>= ShAmt; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 596 | |
| 597 | // Handle the sign bits. |
| 598 | uint64_t SignBit = MVT::getIntVTSignBit(VT); |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 599 | SignBit >>= ShAmt; // Adjust to where it is now in the mask. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 600 | |
| 601 | // If the input sign bit is known to be zero, or if none of the top bits |
| 602 | // are demanded, turn this into an unsigned shift right. |
| 603 | if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) { |
| 604 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0), |
| 605 | Op.getOperand(1))); |
| 606 | } else if (KnownOne & SignBit) { // New bits are known one. |
| 607 | KnownOne |= HighBits; |
| 608 | } |
| 609 | } |
| 610 | break; |
| 611 | case ISD::SIGN_EXTEND_INREG: { |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 612 | MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| 613 | |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 614 | // Sign extension. Compute the demanded bits in the result that are not |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 615 | // present in the input. |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 616 | uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 617 | |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 618 | // If none of the extended bits are demanded, eliminate the sextinreg. |
| 619 | if (NewBits == 0) |
| 620 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 621 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 622 | uint64_t InSignBit = MVT::getIntVTSignBit(EVT); |
| 623 | int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT); |
| 624 | |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 625 | // Since the sign extended bits are demanded, we know that the sign |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 626 | // bit is demanded. |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 627 | InputDemandedBits |= InSignBit; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 628 | |
| 629 | if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, |
| 630 | KnownZero, KnownOne, TLO, Depth+1)) |
| 631 | return true; |
| 632 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 633 | |
| 634 | // If the sign bit of the input is known set or clear, then we know the |
| 635 | // top bits of the result. |
| 636 | |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 637 | // If the input sign bit is known zero, convert this into a zero extension. |
| 638 | if (KnownZero & InSignBit) |
| 639 | return TLO.CombineTo(Op, |
| 640 | TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT)); |
| 641 | |
| 642 | if (KnownOne & InSignBit) { // Input sign bit known set |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 643 | KnownOne |= NewBits; |
| 644 | KnownZero &= ~NewBits; |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 645 | } else { // Input sign bit unknown |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 646 | KnownZero &= ~NewBits; |
| 647 | KnownOne &= ~NewBits; |
| 648 | } |
| 649 | break; |
| 650 | } |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 651 | case ISD::CTTZ: |
| 652 | case ISD::CTLZ: |
| 653 | case ISD::CTPOP: { |
| 654 | MVT::ValueType VT = Op.getValueType(); |
| 655 | unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1; |
| 656 | KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT); |
| 657 | KnownOne = 0; |
| 658 | break; |
| 659 | } |
Evan Cheng | 466685d | 2006-10-09 20:57:25 +0000 | [diff] [blame] | 660 | case ISD::LOAD: { |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 661 | if (ISD::isZEXTLoad(Op.Val)) { |
Evan Cheng | 466685d | 2006-10-09 20:57:25 +0000 | [diff] [blame] | 662 | LoadSDNode *LD = cast<LoadSDNode>(Op); |
Evan Cheng | 2e49f09 | 2006-10-11 07:10:22 +0000 | [diff] [blame] | 663 | MVT::ValueType VT = LD->getLoadedVT(); |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 664 | KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask; |
| 665 | } |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 666 | break; |
| 667 | } |
| 668 | case ISD::ZERO_EXTEND: { |
| 669 | uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); |
| 670 | |
| 671 | // If none of the top bits are demanded, convert this into an any_extend. |
| 672 | uint64_t NewBits = (~InMask) & DemandedMask; |
| 673 | if (NewBits == 0) |
| 674 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, |
| 675 | Op.getValueType(), |
| 676 | Op.getOperand(0))); |
| 677 | |
| 678 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask, |
| 679 | KnownZero, KnownOne, TLO, Depth+1)) |
| 680 | return true; |
| 681 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 682 | KnownZero |= NewBits; |
| 683 | break; |
| 684 | } |
| 685 | case ISD::SIGN_EXTEND: { |
| 686 | MVT::ValueType InVT = Op.getOperand(0).getValueType(); |
| 687 | uint64_t InMask = MVT::getIntVTBitMask(InVT); |
| 688 | uint64_t InSignBit = MVT::getIntVTSignBit(InVT); |
| 689 | uint64_t NewBits = (~InMask) & DemandedMask; |
| 690 | |
| 691 | // If none of the top bits are demanded, convert this into an any_extend. |
| 692 | if (NewBits == 0) |
| 693 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(), |
| 694 | Op.getOperand(0))); |
| 695 | |
| 696 | // Since some of the sign extended bits are demanded, we know that the sign |
| 697 | // bit is demanded. |
| 698 | uint64_t InDemandedBits = DemandedMask & InMask; |
| 699 | InDemandedBits |= InSignBit; |
| 700 | |
| 701 | if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, |
| 702 | KnownOne, TLO, Depth+1)) |
| 703 | return true; |
| 704 | |
| 705 | // If the sign bit is known zero, convert this to a zero extend. |
| 706 | if (KnownZero & InSignBit) |
| 707 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, |
| 708 | Op.getValueType(), |
| 709 | Op.getOperand(0))); |
| 710 | |
| 711 | // If the sign bit is known one, the top bits match. |
| 712 | if (KnownOne & InSignBit) { |
| 713 | KnownOne |= NewBits; |
| 714 | KnownZero &= ~NewBits; |
| 715 | } else { // Otherwise, top bits aren't known. |
| 716 | KnownOne &= ~NewBits; |
| 717 | KnownZero &= ~NewBits; |
| 718 | } |
| 719 | break; |
| 720 | } |
| 721 | case ISD::ANY_EXTEND: { |
| 722 | uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); |
| 723 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask, |
| 724 | KnownZero, KnownOne, TLO, Depth+1)) |
| 725 | return true; |
| 726 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 727 | break; |
| 728 | } |
Chris Lattner | fe8babf | 2006-05-05 22:32:12 +0000 | [diff] [blame] | 729 | case ISD::TRUNCATE: { |
Chris Lattner | c93dfda | 2006-05-06 00:11:52 +0000 | [diff] [blame] | 730 | // Simplify the input, using demanded bit information, and compute the known |
| 731 | // zero/one bits live out. |
Chris Lattner | fe8babf | 2006-05-05 22:32:12 +0000 | [diff] [blame] | 732 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, |
| 733 | KnownZero, KnownOne, TLO, Depth+1)) |
| 734 | return true; |
Chris Lattner | c93dfda | 2006-05-06 00:11:52 +0000 | [diff] [blame] | 735 | |
| 736 | // If the input is only used by this truncate, see if we can shrink it based |
| 737 | // on the known demanded bits. |
| 738 | if (Op.getOperand(0).Val->hasOneUse()) { |
| 739 | SDOperand In = Op.getOperand(0); |
| 740 | switch (In.getOpcode()) { |
| 741 | default: break; |
| 742 | case ISD::SRL: |
| 743 | // Shrink SRL by a constant if none of the high bits shifted in are |
| 744 | // demanded. |
| 745 | if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){ |
| 746 | uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType()); |
| 747 | HighBits &= ~MVT::getIntVTBitMask(Op.getValueType()); |
| 748 | HighBits >>= ShAmt->getValue(); |
| 749 | |
| 750 | if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) && |
| 751 | (DemandedMask & HighBits) == 0) { |
| 752 | // None of the shifted in bits are needed. Add a truncate of the |
| 753 | // shift input, then shift it. |
| 754 | SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, |
| 755 | Op.getValueType(), |
| 756 | In.getOperand(0)); |
| 757 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(), |
| 758 | NewTrunc, In.getOperand(1))); |
| 759 | } |
| 760 | } |
| 761 | break; |
| 762 | } |
| 763 | } |
| 764 | |
Chris Lattner | fe8babf | 2006-05-05 22:32:12 +0000 | [diff] [blame] | 765 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 766 | uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType()); |
| 767 | KnownZero &= OutMask; |
| 768 | KnownOne &= OutMask; |
| 769 | break; |
| 770 | } |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 771 | case ISD::AssertZext: { |
| 772 | MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| 773 | uint64_t InMask = MVT::getIntVTBitMask(VT); |
| 774 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask, |
| 775 | KnownZero, KnownOne, TLO, Depth+1)) |
| 776 | return true; |
| 777 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 778 | KnownZero |= ~InMask & DemandedMask; |
| 779 | break; |
| 780 | } |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 781 | case ISD::ADD: |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 782 | case ISD::SUB: |
Chris Lattner | 1482b5f | 2006-04-02 06:15:09 +0000 | [diff] [blame] | 783 | case ISD::INTRINSIC_WO_CHAIN: |
| 784 | case ISD::INTRINSIC_W_CHAIN: |
| 785 | case ISD::INTRINSIC_VOID: |
| 786 | // Just use ComputeMaskedBits to compute output bits. |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 787 | ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth); |
| 788 | break; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 789 | } |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 790 | |
| 791 | // If we know the value of all of the demanded bits, return this as a |
| 792 | // constant. |
| 793 | if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) |
| 794 | return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); |
| 795 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 796 | return false; |
| 797 | } |
| 798 | |
| 799 | /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use |
| 800 | /// this predicate to simplify operations downstream. Mask is known to be zero |
| 801 | /// for bits that V cannot have. |
| 802 | bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask, |
| 803 | unsigned Depth) const { |
| 804 | uint64_t KnownZero, KnownOne; |
| 805 | ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); |
| 806 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 807 | return (KnownZero & Mask) == Mask; |
| 808 | } |
| 809 | |
| 810 | /// ComputeMaskedBits - Determine which of the bits specified in Mask are |
| 811 | /// known to be either zero or one and return them in the KnownZero/KnownOne |
| 812 | /// bitsets. This code only analyzes bits in Mask, in order to short-circuit |
| 813 | /// processing. |
| 814 | void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask, |
| 815 | uint64_t &KnownZero, uint64_t &KnownOne, |
| 816 | unsigned Depth) const { |
| 817 | KnownZero = KnownOne = 0; // Don't know anything. |
| 818 | if (Depth == 6 || Mask == 0) |
| 819 | return; // Limit search depth. |
| 820 | |
| 821 | uint64_t KnownZero2, KnownOne2; |
| 822 | |
| 823 | switch (Op.getOpcode()) { |
| 824 | case ISD::Constant: |
| 825 | // We know all of the bits for a constant! |
| 826 | KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask; |
| 827 | KnownZero = ~KnownOne & Mask; |
| 828 | return; |
| 829 | case ISD::AND: |
| 830 | // If either the LHS or the RHS are Zero, the result is zero. |
| 831 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 832 | Mask &= ~KnownZero; |
| 833 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 834 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 835 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 836 | |
| 837 | // Output known-1 bits are only known if set in both the LHS & RHS. |
| 838 | KnownOne &= KnownOne2; |
| 839 | // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| 840 | KnownZero |= KnownZero2; |
| 841 | return; |
| 842 | case ISD::OR: |
| 843 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 844 | Mask &= ~KnownOne; |
| 845 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 846 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 847 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 848 | |
| 849 | // Output known-0 bits are only known if clear in both the LHS & RHS. |
| 850 | KnownZero &= KnownZero2; |
| 851 | // Output known-1 are known to be set if set in either the LHS | RHS. |
| 852 | KnownOne |= KnownOne2; |
| 853 | return; |
| 854 | case ISD::XOR: { |
| 855 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 856 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 857 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 858 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 859 | |
| 860 | // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| 861 | uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); |
| 862 | // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| 863 | KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); |
| 864 | KnownZero = KnownZeroOut; |
| 865 | return; |
| 866 | } |
| 867 | case ISD::SELECT: |
| 868 | ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1); |
| 869 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1); |
| 870 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 871 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 872 | |
| 873 | // Only known if known in both the LHS and RHS. |
| 874 | KnownOne &= KnownOne2; |
| 875 | KnownZero &= KnownZero2; |
| 876 | return; |
| 877 | case ISD::SELECT_CC: |
| 878 | ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1); |
| 879 | ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1); |
| 880 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 881 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 882 | |
| 883 | // Only known if known in both the LHS and RHS. |
| 884 | KnownOne &= KnownOne2; |
| 885 | KnownZero &= KnownZero2; |
| 886 | return; |
| 887 | case ISD::SETCC: |
| 888 | // If we know the result of a setcc has the top bits zero, use this info. |
| 889 | if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) |
| 890 | KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); |
| 891 | return; |
| 892 | case ISD::SHL: |
| 893 | // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 |
| 894 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 895 | ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(), |
| 896 | KnownZero, KnownOne, Depth+1); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 897 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 898 | KnownZero <<= SA->getValue(); |
| 899 | KnownOne <<= SA->getValue(); |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 900 | KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 901 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 902 | return; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 903 | case ISD::SRL: |
| 904 | // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 |
| 905 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 906 | MVT::ValueType VT = Op.getValueType(); |
| 907 | unsigned ShAmt = SA->getValue(); |
| 908 | |
| 909 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); |
| 910 | ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask, |
| 911 | KnownZero, KnownOne, Depth+1); |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 912 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 913 | KnownZero &= TypeMask; |
| 914 | KnownOne &= TypeMask; |
| 915 | KnownZero >>= ShAmt; |
| 916 | KnownOne >>= ShAmt; |
| 917 | |
| 918 | uint64_t HighBits = (1ULL << ShAmt)-1; |
| 919 | HighBits <<= MVT::getSizeInBits(VT)-ShAmt; |
| 920 | KnownZero |= HighBits; // High bits known zero. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 921 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 922 | return; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 923 | case ISD::SRA: |
| 924 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 925 | MVT::ValueType VT = Op.getValueType(); |
| 926 | unsigned ShAmt = SA->getValue(); |
| 927 | |
| 928 | // Compute the new bits that are at the top now. |
| 929 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); |
| 930 | |
| 931 | uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask; |
| 932 | // If any of the demanded bits are produced by the sign extension, we also |
| 933 | // demand the input sign bit. |
| 934 | uint64_t HighBits = (1ULL << ShAmt)-1; |
| 935 | HighBits <<= MVT::getSizeInBits(VT) - ShAmt; |
| 936 | if (HighBits & Mask) |
| 937 | InDemandedMask |= MVT::getIntVTSignBit(VT); |
| 938 | |
| 939 | ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne, |
| 940 | Depth+1); |
| 941 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 942 | KnownZero &= TypeMask; |
| 943 | KnownOne &= TypeMask; |
| 944 | KnownZero >>= ShAmt; |
| 945 | KnownOne >>= ShAmt; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 946 | |
| 947 | // Handle the sign bits. |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 948 | uint64_t SignBit = MVT::getIntVTSignBit(VT); |
| 949 | SignBit >>= ShAmt; // Adjust to where it is now in the mask. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 950 | |
Jim Laskey | 9bfa2dc | 2006-06-13 13:08:58 +0000 | [diff] [blame] | 951 | if (KnownZero & SignBit) { |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 952 | KnownZero |= HighBits; // New bits are known zero. |
Jim Laskey | 9bfa2dc | 2006-06-13 13:08:58 +0000 | [diff] [blame] | 953 | } else if (KnownOne & SignBit) { |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 954 | KnownOne |= HighBits; // New bits are known one. |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 955 | } |
| 956 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 957 | return; |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 958 | case ISD::SIGN_EXTEND_INREG: { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 959 | MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| 960 | |
| 961 | // Sign extension. Compute the demanded bits in the result that are not |
| 962 | // present in the input. |
| 963 | uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask; |
| 964 | |
| 965 | uint64_t InSignBit = MVT::getIntVTSignBit(EVT); |
| 966 | int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT); |
| 967 | |
| 968 | // If the sign extended bits are demanded, we know that the sign |
| 969 | // bit is demanded. |
| 970 | if (NewBits) |
| 971 | InputDemandedBits |= InSignBit; |
| 972 | |
| 973 | ComputeMaskedBits(Op.getOperand(0), InputDemandedBits, |
| 974 | KnownZero, KnownOne, Depth+1); |
| 975 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 976 | |
| 977 | // If the sign bit of the input is known set or clear, then we know the |
| 978 | // top bits of the result. |
| 979 | if (KnownZero & InSignBit) { // Input sign bit known clear |
| 980 | KnownZero |= NewBits; |
| 981 | KnownOne &= ~NewBits; |
| 982 | } else if (KnownOne & InSignBit) { // Input sign bit known set |
| 983 | KnownOne |= NewBits; |
| 984 | KnownZero &= ~NewBits; |
| 985 | } else { // Input sign bit unknown |
| 986 | KnownZero &= ~NewBits; |
| 987 | KnownOne &= ~NewBits; |
| 988 | } |
| 989 | return; |
| 990 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 991 | case ISD::CTTZ: |
| 992 | case ISD::CTLZ: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 993 | case ISD::CTPOP: { |
| 994 | MVT::ValueType VT = Op.getValueType(); |
| 995 | unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1; |
| 996 | KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT); |
| 997 | KnownOne = 0; |
| 998 | return; |
| 999 | } |
Evan Cheng | 466685d | 2006-10-09 20:57:25 +0000 | [diff] [blame] | 1000 | case ISD::LOAD: { |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1001 | if (ISD::isZEXTLoad(Op.Val)) { |
Evan Cheng | 466685d | 2006-10-09 20:57:25 +0000 | [diff] [blame] | 1002 | LoadSDNode *LD = cast<LoadSDNode>(Op); |
Evan Cheng | 2e49f09 | 2006-10-11 07:10:22 +0000 | [diff] [blame] | 1003 | MVT::ValueType VT = LD->getLoadedVT(); |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1004 | KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask; |
| 1005 | } |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1006 | return; |
| 1007 | } |
| 1008 | case ISD::ZERO_EXTEND: { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 1009 | uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); |
| 1010 | uint64_t NewBits = (~InMask) & Mask; |
| 1011 | ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, |
| 1012 | KnownOne, Depth+1); |
| 1013 | KnownZero |= NewBits & Mask; |
| 1014 | KnownOne &= ~NewBits; |
| 1015 | return; |
| 1016 | } |
| 1017 | case ISD::SIGN_EXTEND: { |
| 1018 | MVT::ValueType InVT = Op.getOperand(0).getValueType(); |
| 1019 | unsigned InBits = MVT::getSizeInBits(InVT); |
| 1020 | uint64_t InMask = MVT::getIntVTBitMask(InVT); |
| 1021 | uint64_t InSignBit = 1ULL << (InBits-1); |
| 1022 | uint64_t NewBits = (~InMask) & Mask; |
| 1023 | uint64_t InDemandedBits = Mask & InMask; |
| 1024 | |
| 1025 | // If any of the sign extended bits are demanded, we know that the sign |
| 1026 | // bit is demanded. |
| 1027 | if (NewBits & Mask) |
| 1028 | InDemandedBits |= InSignBit; |
| 1029 | |
| 1030 | ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero, |
| 1031 | KnownOne, Depth+1); |
| 1032 | // If the sign bit is known zero or one, the top bits match. |
| 1033 | if (KnownZero & InSignBit) { |
| 1034 | KnownZero |= NewBits; |
| 1035 | KnownOne &= ~NewBits; |
| 1036 | } else if (KnownOne & InSignBit) { |
| 1037 | KnownOne |= NewBits; |
| 1038 | KnownZero &= ~NewBits; |
| 1039 | } else { // Otherwise, top bits aren't known. |
| 1040 | KnownOne &= ~NewBits; |
| 1041 | KnownZero &= ~NewBits; |
| 1042 | } |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1043 | return; |
| 1044 | } |
| 1045 | case ISD::ANY_EXTEND: { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 1046 | MVT::ValueType VT = Op.getOperand(0).getValueType(); |
| 1047 | ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT), |
| 1048 | KnownZero, KnownOne, Depth+1); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1049 | return; |
| 1050 | } |
Chris Lattner | fe8babf | 2006-05-05 22:32:12 +0000 | [diff] [blame] | 1051 | case ISD::TRUNCATE: { |
| 1052 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
| 1053 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 1054 | uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType()); |
| 1055 | KnownZero &= OutMask; |
| 1056 | KnownOne &= OutMask; |
| 1057 | break; |
| 1058 | } |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1059 | case ISD::AssertZext: { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 1060 | MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| 1061 | uint64_t InMask = MVT::getIntVTBitMask(VT); |
| 1062 | ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, |
| 1063 | KnownOne, Depth+1); |
| 1064 | KnownZero |= (~InMask) & Mask; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1065 | return; |
| 1066 | } |
| 1067 | case ISD::ADD: { |
| 1068 | // If either the LHS or the RHS are Zero, the result is zero. |
| 1069 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 1070 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 1071 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 1072 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 1073 | |
| 1074 | // Output known-0 bits are known if clear or set in both the low clear bits |
Chris Lattner | b6b17ff | 2006-03-13 06:42:16 +0000 | [diff] [blame] | 1075 | // common to both LHS & RHS. For example, 8+(X<<3) is known to have the |
| 1076 | // low 3 bits clear. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1077 | uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero), |
| 1078 | CountTrailingZeros_64(~KnownZero2)); |
| 1079 | |
| 1080 | KnownZero = (1ULL << KnownZeroOut) - 1; |
| 1081 | KnownOne = 0; |
| 1082 | return; |
| 1083 | } |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 1084 | case ISD::SUB: { |
| 1085 | ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)); |
| 1086 | if (!CLHS) return; |
| 1087 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1088 | // We know that the top bits of C-X are clear if X contains less bits |
| 1089 | // than C (i.e. no wrap-around can happen). For example, 20-X is |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 1090 | // positive if we can prove that X is >= 0 and < 16. |
| 1091 | MVT::ValueType VT = CLHS->getValueType(0); |
| 1092 | if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear |
| 1093 | unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1); |
| 1094 | uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit |
| 1095 | MaskV = ~MaskV & MVT::getIntVTBitMask(VT); |
| 1096 | ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1); |
| 1097 | |
| 1098 | // If all of the MaskV bits are known to be zero, then we know the output |
| 1099 | // top bits are zero, because we now know that the output is from [0-C]. |
| 1100 | if ((KnownZero & MaskV) == MaskV) { |
| 1101 | unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue()); |
| 1102 | KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero. |
| 1103 | KnownOne = 0; // No one bits known. |
| 1104 | } else { |
Evan Cheng | 42f75a9 | 2006-07-07 21:37:21 +0000 | [diff] [blame] | 1105 | KnownZero = KnownOne = 0; // Otherwise, nothing known. |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 1106 | } |
| 1107 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 1108 | return; |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 1109 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 1110 | default: |
| 1111 | // Allow the target to implement this method for its nodes. |
Chris Lattner | 1482b5f | 2006-04-02 06:15:09 +0000 | [diff] [blame] | 1112 | if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { |
| 1113 | case ISD::INTRINSIC_WO_CHAIN: |
| 1114 | case ISD::INTRINSIC_W_CHAIN: |
| 1115 | case ISD::INTRINSIC_VOID: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1116 | computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne); |
Chris Lattner | 1482b5f | 2006-04-02 06:15:09 +0000 | [diff] [blame] | 1117 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 1118 | return; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 1119 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 1120 | } |
| 1121 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1122 | /// computeMaskedBitsForTargetNode - Determine which of the bits specified |
| 1123 | /// in Mask are known to be either zero or one and return them in the |
| 1124 | /// KnownZero/KnownOne bitsets. |
| 1125 | void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, |
| 1126 | uint64_t Mask, |
| 1127 | uint64_t &KnownZero, |
| 1128 | uint64_t &KnownOne, |
| 1129 | unsigned Depth) const { |
Chris Lattner | 1b5232a | 2006-04-02 06:19:46 +0000 | [diff] [blame] | 1130 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 1131 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| 1132 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| 1133 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 1134 | "Should use MaskedValueIsZero if you don't know whether Op" |
| 1135 | " is a target node!"); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1136 | KnownZero = 0; |
| 1137 | KnownOne = 0; |
Evan Cheng | 3a03ebb | 2005-12-21 23:05:39 +0000 | [diff] [blame] | 1138 | } |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1139 | |
Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1140 | /// ComputeNumSignBits - Return the number of times the sign bit of the |
| 1141 | /// register is replicated into the other bits. We know that at least 1 bit |
| 1142 | /// is always equal to the sign bit (itself), but other cases can give us |
| 1143 | /// information. For example, immediately after an "SRA X, 2", we know that |
| 1144 | /// the top 3 bits are all equal to each other, so we return 3. |
| 1145 | unsigned TargetLowering::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{ |
| 1146 | MVT::ValueType VT = Op.getValueType(); |
| 1147 | assert(MVT::isInteger(VT) && "Invalid VT!"); |
| 1148 | unsigned VTBits = MVT::getSizeInBits(VT); |
| 1149 | unsigned Tmp, Tmp2; |
| 1150 | |
| 1151 | if (Depth == 6) |
| 1152 | return 1; // Limit search depth. |
| 1153 | |
| 1154 | switch (Op.getOpcode()) { |
Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1155 | default: break; |
Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1156 | case ISD::AssertSext: |
| 1157 | Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); |
| 1158 | return VTBits-Tmp+1; |
| 1159 | case ISD::AssertZext: |
| 1160 | Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); |
| 1161 | return VTBits-Tmp; |
Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1162 | |
| 1163 | case ISD::Constant: { |
| 1164 | uint64_t Val = cast<ConstantSDNode>(Op)->getValue(); |
| 1165 | // If negative, invert the bits, then look at it. |
| 1166 | if (Val & MVT::getIntVTSignBit(VT)) |
| 1167 | Val = ~Val; |
| 1168 | |
| 1169 | // Shift the bits so they are the leading bits in the int64_t. |
| 1170 | Val <<= 64-VTBits; |
| 1171 | |
| 1172 | // Return # leading zeros. We use 'min' here in case Val was zero before |
| 1173 | // shifting. We don't want to return '64' as for an i32 "0". |
| 1174 | return std::min(VTBits, CountLeadingZeros_64(Val)); |
| 1175 | } |
| 1176 | |
| 1177 | case ISD::SIGN_EXTEND: |
| 1178 | Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType()); |
| 1179 | return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; |
| 1180 | |
Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1181 | case ISD::SIGN_EXTEND_INREG: |
| 1182 | // Max of the input and what this extends. |
| 1183 | Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); |
| 1184 | Tmp = VTBits-Tmp+1; |
| 1185 | |
| 1186 | Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1187 | return std::max(Tmp, Tmp2); |
| 1188 | |
| 1189 | case ISD::SRA: |
| 1190 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1191 | // SRA X, C -> adds C sign bits. |
| 1192 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 1193 | Tmp += C->getValue(); |
| 1194 | if (Tmp > VTBits) Tmp = VTBits; |
| 1195 | } |
| 1196 | return Tmp; |
Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1197 | case ISD::SHL: |
| 1198 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 1199 | // shl destroys sign bits. |
| 1200 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1201 | if (C->getValue() >= VTBits || // Bad shift. |
| 1202 | C->getValue() >= Tmp) break; // Shifted all sign bits out. |
| 1203 | return Tmp - C->getValue(); |
| 1204 | } |
| 1205 | break; |
Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1206 | case ISD::AND: |
| 1207 | case ISD::OR: |
| 1208 | case ISD::XOR: // NOT is handled here. |
| 1209 | // Logical binary ops preserve the number of sign bits. |
| 1210 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1211 | if (Tmp == 1) return 1; // Early out. |
| 1212 | Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| 1213 | return std::min(Tmp, Tmp2); |
| 1214 | |
| 1215 | case ISD::SELECT: |
| 1216 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1217 | if (Tmp == 1) return 1; // Early out. |
| 1218 | Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| 1219 | return std::min(Tmp, Tmp2); |
| 1220 | |
| 1221 | case ISD::SETCC: |
| 1222 | // If setcc returns 0/-1, all bits are sign bits. |
| 1223 | if (getSetCCResultContents() == ZeroOrNegativeOneSetCCResult) |
| 1224 | return VTBits; |
| 1225 | break; |
Chris Lattner | e60351b | 2006-05-06 23:40:29 +0000 | [diff] [blame] | 1226 | case ISD::ROTL: |
| 1227 | case ISD::ROTR: |
| 1228 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 1229 | unsigned RotAmt = C->getValue() & (VTBits-1); |
| 1230 | |
| 1231 | // Handle rotate right by N like a rotate left by 32-N. |
| 1232 | if (Op.getOpcode() == ISD::ROTR) |
| 1233 | RotAmt = (VTBits-RotAmt) & (VTBits-1); |
| 1234 | |
| 1235 | // If we aren't rotating out all of the known-in sign bits, return the |
| 1236 | // number that are left. This handles rotl(sext(x), 1) for example. |
| 1237 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1238 | if (Tmp > RotAmt+1) return Tmp-RotAmt; |
| 1239 | } |
| 1240 | break; |
| 1241 | case ISD::ADD: |
| 1242 | // Add can have at most one carry bit. Thus we know that the output |
| 1243 | // is, at worst, one more bit than the inputs. |
| 1244 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1245 | if (Tmp == 1) return 1; // Early out. |
| 1246 | |
| 1247 | // Special case decrementing a value (ADD X, -1): |
| 1248 | if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) |
| 1249 | if (CRHS->isAllOnesValue()) { |
| 1250 | uint64_t KnownZero, KnownOne; |
| 1251 | uint64_t Mask = MVT::getIntVTBitMask(VT); |
| 1252 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
| 1253 | |
| 1254 | // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| 1255 | // sign bits set. |
| 1256 | if ((KnownZero|1) == Mask) |
| 1257 | return VTBits; |
| 1258 | |
| 1259 | // If we are subtracting one from a positive number, there is no carry |
| 1260 | // out of the result. |
| 1261 | if (KnownZero & MVT::getIntVTSignBit(VT)) |
| 1262 | return Tmp; |
| 1263 | } |
| 1264 | |
| 1265 | Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| 1266 | if (Tmp2 == 1) return 1; |
| 1267 | return std::min(Tmp, Tmp2)-1; |
| 1268 | break; |
| 1269 | |
| 1270 | case ISD::SUB: |
| 1271 | Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| 1272 | if (Tmp2 == 1) return 1; |
| 1273 | |
| 1274 | // Handle NEG. |
| 1275 | if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) |
| 1276 | if (CLHS->getValue() == 0) { |
| 1277 | uint64_t KnownZero, KnownOne; |
| 1278 | uint64_t Mask = MVT::getIntVTBitMask(VT); |
| 1279 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 1280 | // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| 1281 | // sign bits set. |
| 1282 | if ((KnownZero|1) == Mask) |
| 1283 | return VTBits; |
| 1284 | |
| 1285 | // If the input is known to be positive (the sign bit is known clear), |
| 1286 | // the output of the NEG has the same number of sign bits as the input. |
| 1287 | if (KnownZero & MVT::getIntVTSignBit(VT)) |
| 1288 | return Tmp2; |
| 1289 | |
| 1290 | // Otherwise, we treat this like a SUB. |
| 1291 | } |
| 1292 | |
| 1293 | // Sub can have at most one carry bit. Thus we know that the output |
| 1294 | // is, at worst, one more bit than the inputs. |
| 1295 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1296 | if (Tmp == 1) return 1; // Early out. |
| 1297 | return std::min(Tmp, Tmp2)-1; |
| 1298 | break; |
| 1299 | case ISD::TRUNCATE: |
| 1300 | // FIXME: it's tricky to do anything useful for this, but it is an important |
| 1301 | // case for targets like X86. |
| 1302 | break; |
Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1303 | } |
| 1304 | |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1305 | // Handle LOADX separately here. EXTLOAD case will fallthrough. |
Evan Cheng | 466685d | 2006-10-09 20:57:25 +0000 | [diff] [blame] | 1306 | if (Op.getOpcode() == ISD::LOAD) { |
| 1307 | LoadSDNode *LD = cast<LoadSDNode>(Op); |
| 1308 | unsigned ExtType = LD->getExtensionType(); |
| 1309 | switch (ExtType) { |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1310 | default: break; |
| 1311 | case ISD::SEXTLOAD: // '17' bits known |
Evan Cheng | 2e49f09 | 2006-10-11 07:10:22 +0000 | [diff] [blame] | 1312 | Tmp = MVT::getSizeInBits(LD->getLoadedVT()); |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1313 | return VTBits-Tmp+1; |
| 1314 | case ISD::ZEXTLOAD: // '16' bits known |
Evan Cheng | 2e49f09 | 2006-10-11 07:10:22 +0000 | [diff] [blame] | 1315 | Tmp = MVT::getSizeInBits(LD->getLoadedVT()); |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1316 | return VTBits-Tmp; |
| 1317 | } |
| 1318 | } |
| 1319 | |
Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1320 | // Allow the target to implement this method for its nodes. |
| 1321 | if (Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 1322 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| 1323 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| 1324 | Op.getOpcode() == ISD::INTRINSIC_VOID) { |
| 1325 | unsigned NumBits = ComputeNumSignBitsForTargetNode(Op, Depth); |
| 1326 | if (NumBits > 1) return NumBits; |
| 1327 | } |
| 1328 | |
Chris Lattner | 822db93 | 2006-05-06 23:48:13 +0000 | [diff] [blame] | 1329 | // Finally, if we can prove that the top bits of the result are 0's or 1's, |
| 1330 | // use this information. |
| 1331 | uint64_t KnownZero, KnownOne; |
| 1332 | uint64_t Mask = MVT::getIntVTBitMask(VT); |
| 1333 | ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); |
| 1334 | |
| 1335 | uint64_t SignBit = MVT::getIntVTSignBit(VT); |
| 1336 | if (KnownZero & SignBit) { // SignBit is 0 |
| 1337 | Mask = KnownZero; |
| 1338 | } else if (KnownOne & SignBit) { // SignBit is 1; |
| 1339 | Mask = KnownOne; |
| 1340 | } else { |
| 1341 | // Nothing known. |
| 1342 | return 1; |
| 1343 | } |
| 1344 | |
| 1345 | // Okay, we know that the sign bit in Mask is set. Use CLZ to determine |
| 1346 | // the number of identical bits in the top of the input value. |
| 1347 | Mask ^= ~0ULL; |
| 1348 | Mask <<= 64-VTBits; |
| 1349 | // Return # leading zeros. We use 'min' here in case Val was zero before |
| 1350 | // shifting. We don't want to return '64' as for an i32 "0". |
| 1351 | return std::min(VTBits, CountLeadingZeros_64(Mask)); |
Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1352 | } |
| 1353 | |
| 1354 | |
| 1355 | |
| 1356 | /// ComputeNumSignBitsForTargetNode - This method can be implemented by |
| 1357 | /// targets that want to expose additional information about sign bits to the |
| 1358 | /// DAG Combiner. |
| 1359 | unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op, |
| 1360 | unsigned Depth) const { |
| 1361 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 1362 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| 1363 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| 1364 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
| 1365 | "Should use ComputeNumSignBits if you don't know whether Op" |
| 1366 | " is a target node!"); |
| 1367 | return 1; |
| 1368 | } |
| 1369 | |
| 1370 | |
Chris Lattner | 00ffed0 | 2006-03-01 04:52:55 +0000 | [diff] [blame] | 1371 | SDOperand TargetLowering:: |
| 1372 | PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { |
| 1373 | // Default implementation: no optimization. |
| 1374 | return SDOperand(); |
| 1375 | } |
| 1376 | |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1377 | //===----------------------------------------------------------------------===// |
| 1378 | // Inline Assembler Implementation Methods |
| 1379 | //===----------------------------------------------------------------------===// |
| 1380 | |
| 1381 | TargetLowering::ConstraintType |
| 1382 | TargetLowering::getConstraintType(char ConstraintLetter) const { |
| 1383 | // FIXME: lots more standard ones to handle. |
| 1384 | switch (ConstraintLetter) { |
| 1385 | default: return C_Unknown; |
| 1386 | case 'r': return C_RegisterClass; |
Chris Lattner | 2b7401e | 2006-02-24 01:10:46 +0000 | [diff] [blame] | 1387 | case 'm': // memory |
| 1388 | case 'o': // offsetable |
| 1389 | case 'V': // not offsetable |
| 1390 | return C_Memory; |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1391 | case 'i': // Simple Integer or Relocatable Constant |
| 1392 | case 'n': // Simple Integer |
| 1393 | case 's': // Relocatable Constant |
| 1394 | case 'I': // Target registers. |
| 1395 | case 'J': |
| 1396 | case 'K': |
| 1397 | case 'L': |
| 1398 | case 'M': |
| 1399 | case 'N': |
| 1400 | case 'O': |
Chris Lattner | 2b7401e | 2006-02-24 01:10:46 +0000 | [diff] [blame] | 1401 | case 'P': |
| 1402 | return C_Other; |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1403 | } |
| 1404 | } |
| 1405 | |
Chris Lattner | dba1aee | 2006-10-31 19:40:43 +0000 | [diff] [blame] | 1406 | /// isOperandValidForConstraint - Return the specified operand (possibly |
| 1407 | /// modified) if the specified SDOperand is valid for the specified target |
| 1408 | /// constraint letter, otherwise return null. |
| 1409 | SDOperand TargetLowering::isOperandValidForConstraint(SDOperand Op, |
| 1410 | char ConstraintLetter, |
| 1411 | SelectionDAG &DAG) { |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1412 | switch (ConstraintLetter) { |
Chris Lattner | dba1aee | 2006-10-31 19:40:43 +0000 | [diff] [blame] | 1413 | default: return SDOperand(0,0); |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1414 | case 'i': // Simple Integer or Relocatable Constant |
| 1415 | case 'n': // Simple Integer |
| 1416 | case 's': // Relocatable Constant |
Chris Lattner | dba1aee | 2006-10-31 19:40:43 +0000 | [diff] [blame] | 1417 | return Op; // FIXME: not right. |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1418 | } |
| 1419 | } |
| 1420 | |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1421 | std::vector<unsigned> TargetLowering:: |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1422 | getRegClassForInlineAsmConstraint(const std::string &Constraint, |
| 1423 | MVT::ValueType VT) const { |
| 1424 | return std::vector<unsigned>(); |
| 1425 | } |
| 1426 | |
| 1427 | |
| 1428 | std::pair<unsigned, const TargetRegisterClass*> TargetLowering:: |
Chris Lattner | 4217ca8dc | 2006-02-21 23:11:00 +0000 | [diff] [blame] | 1429 | getRegForInlineAsmConstraint(const std::string &Constraint, |
| 1430 | MVT::ValueType VT) const { |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1431 | if (Constraint[0] != '{') |
| 1432 | return std::pair<unsigned, const TargetRegisterClass*>(0, 0); |
Chris Lattner | a55079a | 2006-02-01 01:29:47 +0000 | [diff] [blame] | 1433 | assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); |
| 1434 | |
| 1435 | // Remove the braces from around the name. |
| 1436 | std::string RegName(Constraint.begin()+1, Constraint.end()-1); |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1437 | |
| 1438 | // Figure out which register class contains this reg. |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1439 | const MRegisterInfo *RI = TM.getRegisterInfo(); |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1440 | for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), |
| 1441 | E = RI->regclass_end(); RCI != E; ++RCI) { |
| 1442 | const TargetRegisterClass *RC = *RCI; |
Chris Lattner | b3befd4 | 2006-02-22 23:00:51 +0000 | [diff] [blame] | 1443 | |
| 1444 | // If none of the the value types for this register class are valid, we |
| 1445 | // can't use it. For example, 64-bit reg classes on 32-bit targets. |
| 1446 | bool isLegal = false; |
| 1447 | for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); |
| 1448 | I != E; ++I) { |
| 1449 | if (isTypeLegal(*I)) { |
| 1450 | isLegal = true; |
| 1451 | break; |
| 1452 | } |
| 1453 | } |
| 1454 | |
| 1455 | if (!isLegal) continue; |
| 1456 | |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1457 | for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); |
| 1458 | I != E; ++I) { |
Chris Lattner | b3befd4 | 2006-02-22 23:00:51 +0000 | [diff] [blame] | 1459 | if (StringsEqualNoCase(RegName, RI->get(*I).Name)) |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1460 | return std::make_pair(*I, RC); |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1461 | } |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1462 | } |
Chris Lattner | a55079a | 2006-02-01 01:29:47 +0000 | [diff] [blame] | 1463 | |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1464 | return std::pair<unsigned, const TargetRegisterClass*>(0, 0); |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1465 | } |
Evan Cheng | 30b37b5 | 2006-03-13 23:18:16 +0000 | [diff] [blame] | 1466 | |
| 1467 | //===----------------------------------------------------------------------===// |
| 1468 | // Loop Strength Reduction hooks |
| 1469 | //===----------------------------------------------------------------------===// |
| 1470 | |
| 1471 | /// isLegalAddressImmediate - Return true if the integer value or |
| 1472 | /// GlobalValue can be used as the offset of the target addressing mode. |
| 1473 | bool TargetLowering::isLegalAddressImmediate(int64_t V) const { |
| 1474 | return false; |
| 1475 | } |
| 1476 | bool TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const { |
| 1477 | return false; |
| 1478 | } |
Andrew Lenharth | dae9cbe | 2006-05-16 17:42:15 +0000 | [diff] [blame] | 1479 | |
| 1480 | |
| 1481 | // Magic for divide replacement |
| 1482 | |
| 1483 | struct ms { |
| 1484 | int64_t m; // magic number |
| 1485 | int64_t s; // shift amount |
| 1486 | }; |
| 1487 | |
| 1488 | struct mu { |
| 1489 | uint64_t m; // magic number |
| 1490 | int64_t a; // add indicator |
| 1491 | int64_t s; // shift amount |
| 1492 | }; |
| 1493 | |
| 1494 | /// magic - calculate the magic numbers required to codegen an integer sdiv as |
| 1495 | /// a sequence of multiply and shifts. Requires that the divisor not be 0, 1, |
| 1496 | /// or -1. |
| 1497 | static ms magic32(int32_t d) { |
| 1498 | int32_t p; |
| 1499 | uint32_t ad, anc, delta, q1, r1, q2, r2, t; |
| 1500 | const uint32_t two31 = 0x80000000U; |
| 1501 | struct ms mag; |
| 1502 | |
| 1503 | ad = abs(d); |
| 1504 | t = two31 + ((uint32_t)d >> 31); |
| 1505 | anc = t - 1 - t%ad; // absolute value of nc |
| 1506 | p = 31; // initialize p |
| 1507 | q1 = two31/anc; // initialize q1 = 2p/abs(nc) |
| 1508 | r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc)) |
| 1509 | q2 = two31/ad; // initialize q2 = 2p/abs(d) |
| 1510 | r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d)) |
| 1511 | do { |
| 1512 | p = p + 1; |
| 1513 | q1 = 2*q1; // update q1 = 2p/abs(nc) |
| 1514 | r1 = 2*r1; // update r1 = rem(2p/abs(nc)) |
| 1515 | if (r1 >= anc) { // must be unsigned comparison |
| 1516 | q1 = q1 + 1; |
| 1517 | r1 = r1 - anc; |
| 1518 | } |
| 1519 | q2 = 2*q2; // update q2 = 2p/abs(d) |
| 1520 | r2 = 2*r2; // update r2 = rem(2p/abs(d)) |
| 1521 | if (r2 >= ad) { // must be unsigned comparison |
| 1522 | q2 = q2 + 1; |
| 1523 | r2 = r2 - ad; |
| 1524 | } |
| 1525 | delta = ad - r2; |
| 1526 | } while (q1 < delta || (q1 == delta && r1 == 0)); |
| 1527 | |
| 1528 | mag.m = (int32_t)(q2 + 1); // make sure to sign extend |
| 1529 | if (d < 0) mag.m = -mag.m; // resulting magic number |
| 1530 | mag.s = p - 32; // resulting shift |
| 1531 | return mag; |
| 1532 | } |
| 1533 | |
| 1534 | /// magicu - calculate the magic numbers required to codegen an integer udiv as |
| 1535 | /// a sequence of multiply, add and shifts. Requires that the divisor not be 0. |
| 1536 | static mu magicu32(uint32_t d) { |
| 1537 | int32_t p; |
| 1538 | uint32_t nc, delta, q1, r1, q2, r2; |
| 1539 | struct mu magu; |
| 1540 | magu.a = 0; // initialize "add" indicator |
| 1541 | nc = - 1 - (-d)%d; |
| 1542 | p = 31; // initialize p |
| 1543 | q1 = 0x80000000/nc; // initialize q1 = 2p/nc |
| 1544 | r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc) |
| 1545 | q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d |
| 1546 | r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d) |
| 1547 | do { |
| 1548 | p = p + 1; |
| 1549 | if (r1 >= nc - r1 ) { |
| 1550 | q1 = 2*q1 + 1; // update q1 |
| 1551 | r1 = 2*r1 - nc; // update r1 |
| 1552 | } |
| 1553 | else { |
| 1554 | q1 = 2*q1; // update q1 |
| 1555 | r1 = 2*r1; // update r1 |
| 1556 | } |
| 1557 | if (r2 + 1 >= d - r2) { |
| 1558 | if (q2 >= 0x7FFFFFFF) magu.a = 1; |
| 1559 | q2 = 2*q2 + 1; // update q2 |
| 1560 | r2 = 2*r2 + 1 - d; // update r2 |
| 1561 | } |
| 1562 | else { |
| 1563 | if (q2 >= 0x80000000) magu.a = 1; |
| 1564 | q2 = 2*q2; // update q2 |
| 1565 | r2 = 2*r2 + 1; // update r2 |
| 1566 | } |
| 1567 | delta = d - 1 - r2; |
| 1568 | } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0))); |
| 1569 | magu.m = q2 + 1; // resulting magic number |
| 1570 | magu.s = p - 32; // resulting shift |
| 1571 | return magu; |
| 1572 | } |
| 1573 | |
| 1574 | /// magic - calculate the magic numbers required to codegen an integer sdiv as |
| 1575 | /// a sequence of multiply and shifts. Requires that the divisor not be 0, 1, |
| 1576 | /// or -1. |
| 1577 | static ms magic64(int64_t d) { |
| 1578 | int64_t p; |
| 1579 | uint64_t ad, anc, delta, q1, r1, q2, r2, t; |
| 1580 | const uint64_t two63 = 9223372036854775808ULL; // 2^63 |
| 1581 | struct ms mag; |
| 1582 | |
| 1583 | ad = d >= 0 ? d : -d; |
| 1584 | t = two63 + ((uint64_t)d >> 63); |
| 1585 | anc = t - 1 - t%ad; // absolute value of nc |
| 1586 | p = 63; // initialize p |
| 1587 | q1 = two63/anc; // initialize q1 = 2p/abs(nc) |
| 1588 | r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc)) |
| 1589 | q2 = two63/ad; // initialize q2 = 2p/abs(d) |
| 1590 | r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d)) |
| 1591 | do { |
| 1592 | p = p + 1; |
| 1593 | q1 = 2*q1; // update q1 = 2p/abs(nc) |
| 1594 | r1 = 2*r1; // update r1 = rem(2p/abs(nc)) |
| 1595 | if (r1 >= anc) { // must be unsigned comparison |
| 1596 | q1 = q1 + 1; |
| 1597 | r1 = r1 - anc; |
| 1598 | } |
| 1599 | q2 = 2*q2; // update q2 = 2p/abs(d) |
| 1600 | r2 = 2*r2; // update r2 = rem(2p/abs(d)) |
| 1601 | if (r2 >= ad) { // must be unsigned comparison |
| 1602 | q2 = q2 + 1; |
| 1603 | r2 = r2 - ad; |
| 1604 | } |
| 1605 | delta = ad - r2; |
| 1606 | } while (q1 < delta || (q1 == delta && r1 == 0)); |
| 1607 | |
| 1608 | mag.m = q2 + 1; |
| 1609 | if (d < 0) mag.m = -mag.m; // resulting magic number |
| 1610 | mag.s = p - 64; // resulting shift |
| 1611 | return mag; |
| 1612 | } |
| 1613 | |
| 1614 | /// magicu - calculate the magic numbers required to codegen an integer udiv as |
| 1615 | /// a sequence of multiply, add and shifts. Requires that the divisor not be 0. |
| 1616 | static mu magicu64(uint64_t d) |
| 1617 | { |
| 1618 | int64_t p; |
| 1619 | uint64_t nc, delta, q1, r1, q2, r2; |
| 1620 | struct mu magu; |
| 1621 | magu.a = 0; // initialize "add" indicator |
| 1622 | nc = - 1 - (-d)%d; |
| 1623 | p = 63; // initialize p |
| 1624 | q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc |
| 1625 | r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc) |
| 1626 | q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d |
| 1627 | r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d) |
| 1628 | do { |
| 1629 | p = p + 1; |
| 1630 | if (r1 >= nc - r1 ) { |
| 1631 | q1 = 2*q1 + 1; // update q1 |
| 1632 | r1 = 2*r1 - nc; // update r1 |
| 1633 | } |
| 1634 | else { |
| 1635 | q1 = 2*q1; // update q1 |
| 1636 | r1 = 2*r1; // update r1 |
| 1637 | } |
| 1638 | if (r2 + 1 >= d - r2) { |
| 1639 | if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1; |
| 1640 | q2 = 2*q2 + 1; // update q2 |
| 1641 | r2 = 2*r2 + 1 - d; // update r2 |
| 1642 | } |
| 1643 | else { |
| 1644 | if (q2 >= 0x8000000000000000ull) magu.a = 1; |
| 1645 | q2 = 2*q2; // update q2 |
| 1646 | r2 = 2*r2 + 1; // update r2 |
| 1647 | } |
| 1648 | delta = d - 1 - r2; |
Andrew Lenharth | 3e34849 | 2006-05-16 17:45:23 +0000 | [diff] [blame] | 1649 | } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0))); |
Andrew Lenharth | dae9cbe | 2006-05-16 17:42:15 +0000 | [diff] [blame] | 1650 | magu.m = q2 + 1; // resulting magic number |
| 1651 | magu.s = p - 64; // resulting shift |
| 1652 | return magu; |
| 1653 | } |
| 1654 | |
| 1655 | /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, |
| 1656 | /// return a DAG expression to select that will generate the same value by |
| 1657 | /// multiplying by a magic number. See: |
| 1658 | /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> |
| 1659 | SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, |
Andrew Lenharth | 232c910 | 2006-06-12 16:07:18 +0000 | [diff] [blame] | 1660 | std::vector<SDNode*>* Created) const { |
Andrew Lenharth | dae9cbe | 2006-05-16 17:42:15 +0000 | [diff] [blame] | 1661 | MVT::ValueType VT = N->getValueType(0); |
| 1662 | |
| 1663 | // Check to see if we can do this. |
| 1664 | if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64)) |
| 1665 | return SDOperand(); // BuildSDIV only operates on i32 or i64 |
| 1666 | if (!isOperationLegal(ISD::MULHS, VT)) |
| 1667 | return SDOperand(); // Make sure the target supports MULHS. |
| 1668 | |
| 1669 | int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended(); |
| 1670 | ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d); |
| 1671 | |
| 1672 | // Multiply the numerator (operand 0) by the magic value |
| 1673 | SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0), |
| 1674 | DAG.getConstant(magics.m, VT)); |
| 1675 | // If d > 0 and m < 0, add the numerator |
| 1676 | if (d > 0 && magics.m < 0) { |
| 1677 | Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0)); |
| 1678 | if (Created) |
| 1679 | Created->push_back(Q.Val); |
| 1680 | } |
| 1681 | // If d < 0 and m > 0, subtract the numerator. |
| 1682 | if (d < 0 && magics.m > 0) { |
| 1683 | Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0)); |
| 1684 | if (Created) |
| 1685 | Created->push_back(Q.Val); |
| 1686 | } |
| 1687 | // Shift right algebraic if shift value is nonzero |
| 1688 | if (magics.s > 0) { |
| 1689 | Q = DAG.getNode(ISD::SRA, VT, Q, |
| 1690 | DAG.getConstant(magics.s, getShiftAmountTy())); |
| 1691 | if (Created) |
| 1692 | Created->push_back(Q.Val); |
| 1693 | } |
| 1694 | // Extract the sign bit and add it to the quotient |
| 1695 | SDOperand T = |
| 1696 | DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1, |
| 1697 | getShiftAmountTy())); |
| 1698 | if (Created) |
| 1699 | Created->push_back(T.Val); |
| 1700 | return DAG.getNode(ISD::ADD, VT, Q, T); |
| 1701 | } |
| 1702 | |
| 1703 | /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, |
| 1704 | /// return a DAG expression to select that will generate the same value by |
| 1705 | /// multiplying by a magic number. See: |
| 1706 | /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> |
| 1707 | SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, |
Andrew Lenharth | 232c910 | 2006-06-12 16:07:18 +0000 | [diff] [blame] | 1708 | std::vector<SDNode*>* Created) const { |
Andrew Lenharth | dae9cbe | 2006-05-16 17:42:15 +0000 | [diff] [blame] | 1709 | MVT::ValueType VT = N->getValueType(0); |
| 1710 | |
| 1711 | // Check to see if we can do this. |
| 1712 | if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64)) |
| 1713 | return SDOperand(); // BuildUDIV only operates on i32 or i64 |
| 1714 | if (!isOperationLegal(ISD::MULHU, VT)) |
| 1715 | return SDOperand(); // Make sure the target supports MULHU. |
| 1716 | |
| 1717 | uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue(); |
| 1718 | mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d); |
| 1719 | |
| 1720 | // Multiply the numerator (operand 0) by the magic value |
| 1721 | SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0), |
| 1722 | DAG.getConstant(magics.m, VT)); |
| 1723 | if (Created) |
| 1724 | Created->push_back(Q.Val); |
| 1725 | |
| 1726 | if (magics.a == 0) { |
| 1727 | return DAG.getNode(ISD::SRL, VT, Q, |
| 1728 | DAG.getConstant(magics.s, getShiftAmountTy())); |
| 1729 | } else { |
| 1730 | SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q); |
| 1731 | if (Created) |
| 1732 | Created->push_back(NPQ.Val); |
| 1733 | NPQ = DAG.getNode(ISD::SRL, VT, NPQ, |
| 1734 | DAG.getConstant(1, getShiftAmountTy())); |
| 1735 | if (Created) |
| 1736 | Created->push_back(NPQ.Val); |
| 1737 | NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q); |
| 1738 | if (Created) |
| 1739 | Created->push_back(NPQ.Val); |
| 1740 | return DAG.getNode(ISD::SRL, VT, NPQ, |
| 1741 | DAG.getConstant(magics.s-1, getShiftAmountTy())); |
| 1742 | } |
| 1743 | } |