blob: 834037475018a07bcde58a474266b29e4e6f673c [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This library converts LLVM code to C code, compilable by GCC and other C
11// compilers.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000021#include "llvm/Pass.h"
22#include "llvm/PassManager.h"
23#include "llvm/TypeSymbolTable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Analysis/ConstantsScanner.h"
28#include "llvm/Analysis/FindUsedTypes.h"
29#include "llvm/Analysis/LoopInfo.h"
Gordon Henriksendf87fdc2008-01-07 01:30:38 +000030#include "llvm/CodeGen/Passes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000031#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/Transforms/Scalar.h"
33#include "llvm/Target/TargetMachineRegistry.h"
34#include "llvm/Target/TargetAsmInfo.h"
35#include "llvm/Target/TargetData.h"
36#include "llvm/Support/CallSite.h"
37#include "llvm/Support/CFG.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/InstVisitor.h"
40#include "llvm/Support/Mangler.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/ADT/StringExtras.h"
43#include "llvm/ADT/STLExtras.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Config/config.h"
46#include <algorithm>
47#include <sstream>
48using namespace llvm;
49
Dan Gohman089efff2008-05-13 00:00:25 +000050// Register the target.
51static RegisterTarget<CTargetMachine> X("c", " C backend");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000052
Dan Gohman089efff2008-05-13 00:00:25 +000053namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000054 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
55 /// any unnamed structure types that are used by the program, and merges
56 /// external functions with the same name.
57 ///
58 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
59 public:
60 static char ID;
61 CBackendNameAllUsedStructsAndMergeFunctions()
62 : ModulePass((intptr_t)&ID) {}
63 void getAnalysisUsage(AnalysisUsage &AU) const {
64 AU.addRequired<FindUsedTypes>();
65 }
66
67 virtual const char *getPassName() const {
68 return "C backend type canonicalizer";
69 }
70
71 virtual bool runOnModule(Module &M);
72 };
73
74 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
75
76 /// CWriter - This class is the main chunk of code that converts an LLVM
77 /// module to a C translation unit.
78 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
79 std::ostream &Out;
80 IntrinsicLowering *IL;
81 Mangler *Mang;
82 LoopInfo *LI;
83 const Module *TheModule;
84 const TargetAsmInfo* TAsm;
85 const TargetData* TD;
86 std::map<const Type *, std::string> TypeNames;
87 std::map<const ConstantFP *, unsigned> FPConstantMap;
88 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
Chris Lattner8bbc8592008-03-02 08:07:24 +000089 std::set<const Argument*> ByValParams;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000090
91 public:
92 static char ID;
Dan Gohman40bd38e2008-03-25 22:06:05 +000093 explicit CWriter(std::ostream &o)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000094 : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
95 TheModule(0), TAsm(0), TD(0) {}
96
97 virtual const char *getPassName() const { return "C backend"; }
98
99 void getAnalysisUsage(AnalysisUsage &AU) const {
100 AU.addRequired<LoopInfo>();
101 AU.setPreservesAll();
102 }
103
104 virtual bool doInitialization(Module &M);
105
106 bool runOnFunction(Function &F) {
107 LI = &getAnalysis<LoopInfo>();
108
109 // Get rid of intrinsics we can't handle.
110 lowerIntrinsics(F);
111
112 // Output all floating point constants that cannot be printed accurately.
113 printFloatingPointConstants(F);
114
115 printFunction(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000116 return false;
117 }
118
119 virtual bool doFinalization(Module &M) {
120 // Free memory...
121 delete Mang;
Evan Cheng17254e62008-01-11 09:12:49 +0000122 FPConstantMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000123 TypeNames.clear();
Evan Cheng17254e62008-01-11 09:12:49 +0000124 ByValParams.clear();
Chris Lattner8bbc8592008-03-02 08:07:24 +0000125 intrinsicPrototypesAlreadyGenerated.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000126 return false;
127 }
128
129 std::ostream &printType(std::ostream &Out, const Type *Ty,
130 bool isSigned = false,
131 const std::string &VariableName = "",
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000132 bool IgnoreName = false,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000133 const PAListPtr &PAL = PAListPtr());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000134 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
Chris Lattner63fb1f02008-03-02 03:16:38 +0000135 bool isSigned,
136 const std::string &NameSoFar = "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000137
138 void printStructReturnPointerFunctionType(std::ostream &Out,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000139 const PAListPtr &PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000140 const PointerType *Ty);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000141
142 /// writeOperandDeref - Print the result of dereferencing the specified
143 /// operand with '*'. This is equivalent to printing '*' then using
144 /// writeOperand, but avoids excess syntax in some cases.
145 void writeOperandDeref(Value *Operand) {
146 if (isAddressExposed(Operand)) {
147 // Already something with an address exposed.
148 writeOperandInternal(Operand);
149 } else {
150 Out << "*(";
151 writeOperand(Operand);
152 Out << ")";
153 }
154 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000155
156 void writeOperand(Value *Operand);
157 void writeOperandRaw(Value *Operand);
Chris Lattnerd70f5a82008-05-31 09:23:55 +0000158 void writeInstComputationInline(Instruction &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000159 void writeOperandInternal(Value *Operand);
160 void writeOperandWithCast(Value* Operand, unsigned Opcode);
Chris Lattner389c9142007-09-15 06:51:03 +0000161 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000162 bool writeInstructionCast(const Instruction &I);
163
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +0000164 void writeMemoryAccess(Value *Operand, const Type *OperandType,
165 bool IsVolatile, unsigned Alignment);
166
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000167 private :
168 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
169
170 void lowerIntrinsics(Function &F);
171
172 void printModule(Module *M);
173 void printModuleTypes(const TypeSymbolTable &ST);
Dan Gohman5d995b02008-06-02 21:30:49 +0000174 void printContainedStructs(const Type *Ty, std::set<const Type *> &);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000175 void printFloatingPointConstants(Function &F);
176 void printFunctionSignature(const Function *F, bool Prototype);
177
178 void printFunction(Function &);
179 void printBasicBlock(BasicBlock *BB);
180 void printLoop(Loop *L);
181
182 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
183 void printConstant(Constant *CPV);
184 void printConstantWithCast(Constant *CPV, unsigned Opcode);
185 bool printConstExprCast(const ConstantExpr *CE);
186 void printConstantArray(ConstantArray *CPA);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000187 void printConstantVector(ConstantVector *CV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000188
Chris Lattner8bbc8592008-03-02 08:07:24 +0000189 /// isAddressExposed - Return true if the specified value's name needs to
190 /// have its address taken in order to get a C value of the correct type.
191 /// This happens for global variables, byval parameters, and direct allocas.
192 bool isAddressExposed(const Value *V) const {
193 if (const Argument *A = dyn_cast<Argument>(V))
194 return ByValParams.count(A);
195 return isa<GlobalVariable>(V) || isDirectAlloca(V);
196 }
197
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000198 // isInlinableInst - Attempt to inline instructions into their uses to build
199 // trees as much as possible. To do this, we have to consistently decide
200 // what is acceptable to inline, so that variable declarations don't get
201 // printed and an extra copy of the expr is not emitted.
202 //
203 static bool isInlinableInst(const Instruction &I) {
204 // Always inline cmp instructions, even if they are shared by multiple
205 // expressions. GCC generates horrible code if we don't.
206 if (isa<CmpInst>(I))
207 return true;
208
209 // Must be an expression, must be used exactly once. If it is dead, we
210 // emit it inline where it would go.
211 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
212 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
Dan Gohman5d995b02008-06-02 21:30:49 +0000213 isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) ||
214 isa<InsertValueInst>(I))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000215 // Don't inline a load across a store or other bad things!
216 return false;
217
Chris Lattnerf858a042008-03-02 05:41:07 +0000218 // Must not be used in inline asm, extractelement, or shufflevector.
219 if (I.hasOneUse()) {
220 const Instruction &User = cast<Instruction>(*I.use_back());
221 if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
222 isa<ShuffleVectorInst>(User))
223 return false;
224 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000225
226 // Only inline instruction it if it's use is in the same BB as the inst.
227 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
228 }
229
230 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
231 // variables which are accessed with the & operator. This causes GCC to
232 // generate significantly better code than to emit alloca calls directly.
233 //
234 static const AllocaInst *isDirectAlloca(const Value *V) {
235 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
236 if (!AI) return false;
237 if (AI->isArrayAllocation())
238 return 0; // FIXME: we can also inline fixed size array allocas!
239 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
240 return 0;
241 return AI;
242 }
243
244 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
245 static bool isInlineAsm(const Instruction& I) {
246 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
247 return true;
248 return false;
249 }
250
251 // Instruction visitation functions
252 friend class InstVisitor<CWriter>;
253
254 void visitReturnInst(ReturnInst &I);
255 void visitBranchInst(BranchInst &I);
256 void visitSwitchInst(SwitchInst &I);
257 void visitInvokeInst(InvokeInst &I) {
258 assert(0 && "Lowerinvoke pass didn't work!");
259 }
260
261 void visitUnwindInst(UnwindInst &I) {
262 assert(0 && "Lowerinvoke pass didn't work!");
263 }
264 void visitUnreachableInst(UnreachableInst &I);
265
266 void visitPHINode(PHINode &I);
267 void visitBinaryOperator(Instruction &I);
268 void visitICmpInst(ICmpInst &I);
269 void visitFCmpInst(FCmpInst &I);
270
271 void visitCastInst (CastInst &I);
272 void visitSelectInst(SelectInst &I);
273 void visitCallInst (CallInst &I);
274 void visitInlineAsm(CallInst &I);
Chris Lattnera74b9182008-03-02 08:29:41 +0000275 bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000276
277 void visitMallocInst(MallocInst &I);
278 void visitAllocaInst(AllocaInst &I);
279 void visitFreeInst (FreeInst &I);
280 void visitLoadInst (LoadInst &I);
281 void visitStoreInst (StoreInst &I);
282 void visitGetElementPtrInst(GetElementPtrInst &I);
283 void visitVAArgInst (VAArgInst &I);
Chris Lattnerf41a7942008-03-02 03:52:39 +0000284
285 void visitInsertElementInst(InsertElementInst &I);
Chris Lattnera5f0bc02008-03-02 03:57:08 +0000286 void visitExtractElementInst(ExtractElementInst &I);
Chris Lattnerf858a042008-03-02 05:41:07 +0000287 void visitShuffleVectorInst(ShuffleVectorInst &SVI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000288
Dan Gohman5d995b02008-06-02 21:30:49 +0000289 void visitInsertValueInst(InsertValueInst &I);
290 void visitExtractValueInst(ExtractValueInst &I);
291
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000292 void visitInstruction(Instruction &I) {
293 cerr << "C Writer does not know about " << I;
294 abort();
295 }
296
297 void outputLValue(Instruction *I) {
298 Out << " " << GetValueName(I) << " = ";
299 }
300
301 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
302 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
303 BasicBlock *Successor, unsigned Indent);
304 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
305 unsigned Indent);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000306 void printGEPExpression(Value *Ptr, gep_type_iterator I,
307 gep_type_iterator E);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000308
309 std::string GetValueName(const Value *Operand);
310 };
311}
312
313char CWriter::ID = 0;
314
315/// This method inserts names for any unnamed structure types that are used by
316/// the program, and removes names from structure types that are not used by the
317/// program.
318///
319bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
320 // Get a set of types that are used by the program...
321 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
322
323 // Loop over the module symbol table, removing types from UT that are
324 // already named, and removing names for types that are not used.
325 //
326 TypeSymbolTable &TST = M.getTypeSymbolTable();
327 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
328 TI != TE; ) {
329 TypeSymbolTable::iterator I = TI++;
330
Dan Gohman5d995b02008-06-02 21:30:49 +0000331 // If this isn't a struct or array type, remove it from our set of types
332 // to name. This simplifies emission later.
333 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second) &&
334 !isa<ArrayType>(I->second)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000335 TST.remove(I);
336 } else {
337 // If this is not used, remove it from the symbol table.
338 std::set<const Type *>::iterator UTI = UT.find(I->second);
339 if (UTI == UT.end())
340 TST.remove(I);
341 else
342 UT.erase(UTI); // Only keep one name for this type.
343 }
344 }
345
346 // UT now contains types that are not named. Loop over it, naming
347 // structure types.
348 //
349 bool Changed = false;
350 unsigned RenameCounter = 0;
351 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
352 I != E; ++I)
Dan Gohman5d995b02008-06-02 21:30:49 +0000353 if (isa<StructType>(*I) || isa<ArrayType>(*I)) {
354 while (M.addTypeName("unnamed"+utostr(RenameCounter), *I))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000355 ++RenameCounter;
356 Changed = true;
357 }
358
359
360 // Loop over all external functions and globals. If we have two with
361 // identical names, merge them.
362 // FIXME: This code should disappear when we don't allow values with the same
363 // names when they have different types!
364 std::map<std::string, GlobalValue*> ExtSymbols;
365 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
366 Function *GV = I++;
367 if (GV->isDeclaration() && GV->hasName()) {
368 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
369 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
370 if (!X.second) {
371 // Found a conflict, replace this global with the previous one.
372 GlobalValue *OldGV = X.first->second;
373 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
374 GV->eraseFromParent();
375 Changed = true;
376 }
377 }
378 }
379 // Do the same for globals.
380 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
381 I != E;) {
382 GlobalVariable *GV = I++;
383 if (GV->isDeclaration() && GV->hasName()) {
384 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
385 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
386 if (!X.second) {
387 // Found a conflict, replace this global with the previous one.
388 GlobalValue *OldGV = X.first->second;
389 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
390 GV->eraseFromParent();
391 Changed = true;
392 }
393 }
394 }
395
396 return Changed;
397}
398
399/// printStructReturnPointerFunctionType - This is like printType for a struct
400/// return type, except, instead of printing the type as void (*)(Struct*, ...)
401/// print it as "Struct (*)(...)", for struct return functions.
402void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000403 const PAListPtr &PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000404 const PointerType *TheTy) {
405 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
406 std::stringstream FunctionInnards;
407 FunctionInnards << " (*) (";
408 bool PrintedType = false;
409
410 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
411 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
412 unsigned Idx = 1;
Evan Cheng2054cb02008-01-11 03:07:46 +0000413 for (++I, ++Idx; I != E; ++I, ++Idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000414 if (PrintedType)
415 FunctionInnards << ", ";
Evan Cheng2054cb02008-01-11 03:07:46 +0000416 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +0000417 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Cheng17254e62008-01-11 09:12:49 +0000418 assert(isa<PointerType>(ArgTy));
419 ArgTy = cast<PointerType>(ArgTy)->getElementType();
420 }
Evan Cheng2054cb02008-01-11 03:07:46 +0000421 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000422 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000423 PrintedType = true;
424 }
425 if (FTy->isVarArg()) {
426 if (PrintedType)
427 FunctionInnards << ", ...";
428 } else if (!PrintedType) {
429 FunctionInnards << "void";
430 }
431 FunctionInnards << ')';
432 std::string tstr = FunctionInnards.str();
433 printType(Out, RetTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000434 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000435}
436
437std::ostream &
438CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
Chris Lattnerd8090712008-03-02 03:41:23 +0000439 const std::string &NameSoFar) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000440 assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000441 "Invalid type for printSimpleType");
442 switch (Ty->getTypeID()) {
443 case Type::VoidTyID: return Out << "void " << NameSoFar;
444 case Type::IntegerTyID: {
445 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
446 if (NumBits == 1)
447 return Out << "bool " << NameSoFar;
448 else if (NumBits <= 8)
449 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
450 else if (NumBits <= 16)
451 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
452 else if (NumBits <= 32)
453 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
Dan Gohmana2245af2008-04-02 19:40:14 +0000454 else if (NumBits <= 64)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000455 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
Dan Gohmana2245af2008-04-02 19:40:14 +0000456 else {
457 assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
458 return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000459 }
460 }
461 case Type::FloatTyID: return Out << "float " << NameSoFar;
462 case Type::DoubleTyID: return Out << "double " << NameSoFar;
Dale Johannesen137cef62007-09-17 00:38:27 +0000463 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
464 // present matches host 'long double'.
465 case Type::X86_FP80TyID:
466 case Type::PPC_FP128TyID:
467 case Type::FP128TyID: return Out << "long double " << NameSoFar;
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000468
469 case Type::VectorTyID: {
470 const VectorType *VTy = cast<VectorType>(Ty);
Chris Lattnerd8090712008-03-02 03:41:23 +0000471 return printSimpleType(Out, VTy->getElementType(), isSigned,
Chris Lattnerfddca552008-03-02 03:39:43 +0000472 " __attribute__((vector_size(" +
473 utostr(TD->getABITypeSize(VTy)) + " ))) " + NameSoFar);
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000474 }
475
476 default:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000477 cerr << "Unknown primitive type: " << *Ty << "\n";
478 abort();
479 }
480}
481
482// Pass the Type* and the variable name and this prints out the variable
483// declaration.
484//
485std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
486 bool isSigned, const std::string &NameSoFar,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000487 bool IgnoreName, const PAListPtr &PAL) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000488 if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000489 printSimpleType(Out, Ty, isSigned, NameSoFar);
490 return Out;
491 }
492
493 // Check to see if the type is named.
494 if (!IgnoreName || isa<OpaqueType>(Ty)) {
495 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
496 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
497 }
498
499 switch (Ty->getTypeID()) {
500 case Type::FunctionTyID: {
501 const FunctionType *FTy = cast<FunctionType>(Ty);
502 std::stringstream FunctionInnards;
503 FunctionInnards << " (" << NameSoFar << ") (";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000504 unsigned Idx = 1;
505 for (FunctionType::param_iterator I = FTy->param_begin(),
506 E = FTy->param_end(); I != E; ++I) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000507 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +0000508 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000509 assert(isa<PointerType>(ArgTy));
510 ArgTy = cast<PointerType>(ArgTy)->getElementType();
511 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000512 if (I != FTy->param_begin())
513 FunctionInnards << ", ";
Evan Chengb8a072c2008-01-12 18:53:07 +0000514 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000515 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000516 ++Idx;
517 }
518 if (FTy->isVarArg()) {
519 if (FTy->getNumParams())
520 FunctionInnards << ", ...";
521 } else if (!FTy->getNumParams()) {
522 FunctionInnards << "void";
523 }
524 FunctionInnards << ')';
525 std::string tstr = FunctionInnards.str();
526 printType(Out, FTy->getReturnType(),
Chris Lattner1c8733e2008-03-12 17:45:29 +0000527 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000528 return Out;
529 }
530 case Type::StructTyID: {
531 const StructType *STy = cast<StructType>(Ty);
532 Out << NameSoFar + " {\n";
533 unsigned Idx = 0;
534 for (StructType::element_iterator I = STy->element_begin(),
535 E = STy->element_end(); I != E; ++I) {
536 Out << " ";
537 printType(Out, *I, false, "field" + utostr(Idx++));
538 Out << ";\n";
539 }
540 Out << '}';
541 if (STy->isPacked())
542 Out << " __attribute__ ((packed))";
543 return Out;
544 }
545
546 case Type::PointerTyID: {
547 const PointerType *PTy = cast<PointerType>(Ty);
548 std::string ptrName = "*" + NameSoFar;
549
550 if (isa<ArrayType>(PTy->getElementType()) ||
551 isa<VectorType>(PTy->getElementType()))
552 ptrName = "(" + ptrName + ")";
553
Chris Lattner1c8733e2008-03-12 17:45:29 +0000554 if (!PAL.isEmpty())
Evan Chengb8a072c2008-01-12 18:53:07 +0000555 // Must be a function ptr cast!
556 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000557 return printType(Out, PTy->getElementType(), false, ptrName);
558 }
559
560 case Type::ArrayTyID: {
561 const ArrayType *ATy = cast<ArrayType>(Ty);
562 unsigned NumElements = ATy->getNumElements();
563 if (NumElements == 0) NumElements = 1;
Dan Gohman5d995b02008-06-02 21:30:49 +0000564 // Arrays are wrapped in structs to allow them to have normal
565 // value semantics (avoiding the array "decay").
566 Out << NameSoFar << " { ";
567 printType(Out, ATy->getElementType(), false,
568 "array[" + utostr(NumElements) + "]");
569 return Out << "; }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000570 }
571
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000572 case Type::OpaqueTyID: {
573 static int Count = 0;
574 std::string TyName = "struct opaque_" + itostr(Count++);
575 assert(TypeNames.find(Ty) == TypeNames.end());
576 TypeNames[Ty] = TyName;
577 return Out << TyName << ' ' << NameSoFar;
578 }
579 default:
580 assert(0 && "Unhandled case in getTypeProps!");
581 abort();
582 }
583
584 return Out;
585}
586
587void CWriter::printConstantArray(ConstantArray *CPA) {
588
589 // As a special case, print the array as a string if it is an array of
590 // ubytes or an array of sbytes with positive values.
591 //
592 const Type *ETy = CPA->getType()->getElementType();
593 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
594
595 // Make sure the last character is a null char, as automatically added by C
596 if (isString && (CPA->getNumOperands() == 0 ||
597 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
598 isString = false;
599
600 if (isString) {
601 Out << '\"';
602 // Keep track of whether the last number was a hexadecimal escape
603 bool LastWasHex = false;
604
605 // Do not include the last character, which we know is null
606 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
607 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
608
609 // Print it out literally if it is a printable character. The only thing
610 // to be careful about is when the last letter output was a hex escape
611 // code, in which case we have to be careful not to print out hex digits
612 // explicitly (the C compiler thinks it is a continuation of the previous
613 // character, sheesh...)
614 //
615 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
616 LastWasHex = false;
617 if (C == '"' || C == '\\')
618 Out << "\\" << C;
619 else
620 Out << C;
621 } else {
622 LastWasHex = false;
623 switch (C) {
624 case '\n': Out << "\\n"; break;
625 case '\t': Out << "\\t"; break;
626 case '\r': Out << "\\r"; break;
627 case '\v': Out << "\\v"; break;
628 case '\a': Out << "\\a"; break;
629 case '\"': Out << "\\\""; break;
630 case '\'': Out << "\\\'"; break;
631 default:
632 Out << "\\x";
633 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
634 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
635 LastWasHex = true;
636 break;
637 }
638 }
639 }
640 Out << '\"';
641 } else {
642 Out << '{';
643 if (CPA->getNumOperands()) {
644 Out << ' ';
645 printConstant(cast<Constant>(CPA->getOperand(0)));
646 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
647 Out << ", ";
648 printConstant(cast<Constant>(CPA->getOperand(i)));
649 }
650 }
651 Out << " }";
652 }
653}
654
655void CWriter::printConstantVector(ConstantVector *CP) {
656 Out << '{';
657 if (CP->getNumOperands()) {
658 Out << ' ';
659 printConstant(cast<Constant>(CP->getOperand(0)));
660 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
661 Out << ", ";
662 printConstant(cast<Constant>(CP->getOperand(i)));
663 }
664 }
665 Out << " }";
666}
667
668// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
669// textually as a double (rather than as a reference to a stack-allocated
670// variable). We decide this by converting CFP to a string and back into a
671// double, and then checking whether the conversion results in a bit-equal
672// double to the original value of CFP. This depends on us and the target C
673// compiler agreeing on the conversion process (which is pretty likely since we
674// only deal in IEEE FP).
675//
676static bool isFPCSafeToPrint(const ConstantFP *CFP) {
Dale Johannesen137cef62007-09-17 00:38:27 +0000677 // Do long doubles in hex for now.
Dale Johannesen2fc20782007-09-14 22:26:36 +0000678 if (CFP->getType()!=Type::FloatTy && CFP->getType()!=Type::DoubleTy)
679 return false;
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000680 APFloat APF = APFloat(CFP->getValueAPF()); // copy
681 if (CFP->getType()==Type::FloatTy)
682 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000683#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
684 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000685 sprintf(Buffer, "%a", APF.convertToDouble());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000686 if (!strncmp(Buffer, "0x", 2) ||
687 !strncmp(Buffer, "-0x", 3) ||
688 !strncmp(Buffer, "+0x", 3))
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000689 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000690 return false;
691#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000692 std::string StrVal = ftostr(APF);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000693
694 while (StrVal[0] == ' ')
695 StrVal.erase(StrVal.begin());
696
697 // Check to make sure that the stringized number is not some string like "Inf"
698 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
699 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
700 ((StrVal[0] == '-' || StrVal[0] == '+') &&
701 (StrVal[1] >= '0' && StrVal[1] <= '9')))
702 // Reparse stringized version!
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000703 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000704 return false;
705#endif
706}
707
708/// Print out the casting for a cast operation. This does the double casting
709/// necessary for conversion to the destination type, if necessary.
710/// @brief Print a cast
711void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
712 // Print the destination type cast
713 switch (opc) {
714 case Instruction::UIToFP:
715 case Instruction::SIToFP:
716 case Instruction::IntToPtr:
717 case Instruction::Trunc:
718 case Instruction::BitCast:
719 case Instruction::FPExt:
720 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
721 Out << '(';
722 printType(Out, DstTy);
723 Out << ')';
724 break;
725 case Instruction::ZExt:
726 case Instruction::PtrToInt:
727 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
728 Out << '(';
729 printSimpleType(Out, DstTy, false);
730 Out << ')';
731 break;
732 case Instruction::SExt:
733 case Instruction::FPToSI: // For these, make sure we get a signed dest
734 Out << '(';
735 printSimpleType(Out, DstTy, true);
736 Out << ')';
737 break;
738 default:
739 assert(0 && "Invalid cast opcode");
740 }
741
742 // Print the source type cast
743 switch (opc) {
744 case Instruction::UIToFP:
745 case Instruction::ZExt:
746 Out << '(';
747 printSimpleType(Out, SrcTy, false);
748 Out << ')';
749 break;
750 case Instruction::SIToFP:
751 case Instruction::SExt:
752 Out << '(';
753 printSimpleType(Out, SrcTy, true);
754 Out << ')';
755 break;
756 case Instruction::IntToPtr:
757 case Instruction::PtrToInt:
758 // Avoid "cast to pointer from integer of different size" warnings
759 Out << "(unsigned long)";
760 break;
761 case Instruction::Trunc:
762 case Instruction::BitCast:
763 case Instruction::FPExt:
764 case Instruction::FPTrunc:
765 case Instruction::FPToSI:
766 case Instruction::FPToUI:
767 break; // These don't need a source cast.
768 default:
769 assert(0 && "Invalid cast opcode");
770 break;
771 }
772}
773
774// printConstant - The LLVM Constant to C Constant converter.
775void CWriter::printConstant(Constant *CPV) {
776 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
777 switch (CE->getOpcode()) {
778 case Instruction::Trunc:
779 case Instruction::ZExt:
780 case Instruction::SExt:
781 case Instruction::FPTrunc:
782 case Instruction::FPExt:
783 case Instruction::UIToFP:
784 case Instruction::SIToFP:
785 case Instruction::FPToUI:
786 case Instruction::FPToSI:
787 case Instruction::PtrToInt:
788 case Instruction::IntToPtr:
789 case Instruction::BitCast:
790 Out << "(";
791 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
792 if (CE->getOpcode() == Instruction::SExt &&
793 CE->getOperand(0)->getType() == Type::Int1Ty) {
794 // Make sure we really sext from bool here by subtracting from 0
795 Out << "0-";
796 }
797 printConstant(CE->getOperand(0));
798 if (CE->getType() == Type::Int1Ty &&
799 (CE->getOpcode() == Instruction::Trunc ||
800 CE->getOpcode() == Instruction::FPToUI ||
801 CE->getOpcode() == Instruction::FPToSI ||
802 CE->getOpcode() == Instruction::PtrToInt)) {
803 // Make sure we really truncate to bool here by anding with 1
804 Out << "&1u";
805 }
806 Out << ')';
807 return;
808
809 case Instruction::GetElementPtr:
Chris Lattner8bbc8592008-03-02 08:07:24 +0000810 Out << "(";
811 printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
812 gep_type_end(CPV));
813 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000814 return;
815 case Instruction::Select:
816 Out << '(';
817 printConstant(CE->getOperand(0));
818 Out << '?';
819 printConstant(CE->getOperand(1));
820 Out << ':';
821 printConstant(CE->getOperand(2));
822 Out << ')';
823 return;
824 case Instruction::Add:
825 case Instruction::Sub:
826 case Instruction::Mul:
827 case Instruction::SDiv:
828 case Instruction::UDiv:
829 case Instruction::FDiv:
830 case Instruction::URem:
831 case Instruction::SRem:
832 case Instruction::FRem:
833 case Instruction::And:
834 case Instruction::Or:
835 case Instruction::Xor:
836 case Instruction::ICmp:
837 case Instruction::Shl:
838 case Instruction::LShr:
839 case Instruction::AShr:
840 {
841 Out << '(';
842 bool NeedsClosingParens = printConstExprCast(CE);
843 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
844 switch (CE->getOpcode()) {
845 case Instruction::Add: Out << " + "; break;
846 case Instruction::Sub: Out << " - "; break;
847 case Instruction::Mul: Out << " * "; break;
848 case Instruction::URem:
849 case Instruction::SRem:
850 case Instruction::FRem: Out << " % "; break;
851 case Instruction::UDiv:
852 case Instruction::SDiv:
853 case Instruction::FDiv: Out << " / "; break;
854 case Instruction::And: Out << " & "; break;
855 case Instruction::Or: Out << " | "; break;
856 case Instruction::Xor: Out << " ^ "; break;
857 case Instruction::Shl: Out << " << "; break;
858 case Instruction::LShr:
859 case Instruction::AShr: Out << " >> "; break;
860 case Instruction::ICmp:
861 switch (CE->getPredicate()) {
862 case ICmpInst::ICMP_EQ: Out << " == "; break;
863 case ICmpInst::ICMP_NE: Out << " != "; break;
864 case ICmpInst::ICMP_SLT:
865 case ICmpInst::ICMP_ULT: Out << " < "; break;
866 case ICmpInst::ICMP_SLE:
867 case ICmpInst::ICMP_ULE: Out << " <= "; break;
868 case ICmpInst::ICMP_SGT:
869 case ICmpInst::ICMP_UGT: Out << " > "; break;
870 case ICmpInst::ICMP_SGE:
871 case ICmpInst::ICMP_UGE: Out << " >= "; break;
872 default: assert(0 && "Illegal ICmp predicate");
873 }
874 break;
875 default: assert(0 && "Illegal opcode here!");
876 }
877 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
878 if (NeedsClosingParens)
879 Out << "))";
880 Out << ')';
881 return;
882 }
883 case Instruction::FCmp: {
884 Out << '(';
885 bool NeedsClosingParens = printConstExprCast(CE);
886 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
887 Out << "0";
888 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
889 Out << "1";
890 else {
891 const char* op = 0;
892 switch (CE->getPredicate()) {
893 default: assert(0 && "Illegal FCmp predicate");
894 case FCmpInst::FCMP_ORD: op = "ord"; break;
895 case FCmpInst::FCMP_UNO: op = "uno"; break;
896 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
897 case FCmpInst::FCMP_UNE: op = "une"; break;
898 case FCmpInst::FCMP_ULT: op = "ult"; break;
899 case FCmpInst::FCMP_ULE: op = "ule"; break;
900 case FCmpInst::FCMP_UGT: op = "ugt"; break;
901 case FCmpInst::FCMP_UGE: op = "uge"; break;
902 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
903 case FCmpInst::FCMP_ONE: op = "one"; break;
904 case FCmpInst::FCMP_OLT: op = "olt"; break;
905 case FCmpInst::FCMP_OLE: op = "ole"; break;
906 case FCmpInst::FCMP_OGT: op = "ogt"; break;
907 case FCmpInst::FCMP_OGE: op = "oge"; break;
908 }
909 Out << "llvm_fcmp_" << op << "(";
910 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
911 Out << ", ";
912 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
913 Out << ")";
914 }
915 if (NeedsClosingParens)
916 Out << "))";
917 Out << ')';
Anton Korobeynikov44891ce2007-12-21 23:33:44 +0000918 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000919 }
920 default:
921 cerr << "CWriter Error: Unhandled constant expression: "
922 << *CE << "\n";
923 abort();
924 }
Dan Gohman76c2cb42008-05-23 16:57:00 +0000925 } else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000926 Out << "((";
927 printType(Out, CPV->getType()); // sign doesn't matter
Chris Lattnerc72d9e32008-03-02 08:14:45 +0000928 Out << ")/*UNDEF*/";
929 if (!isa<VectorType>(CPV->getType())) {
930 Out << "0)";
931 } else {
932 Out << "{})";
933 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000934 return;
935 }
936
937 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
938 const Type* Ty = CI->getType();
939 if (Ty == Type::Int1Ty)
Chris Lattner63fb1f02008-03-02 03:16:38 +0000940 Out << (CI->getZExtValue() ? '1' : '0');
941 else if (Ty == Type::Int32Ty)
942 Out << CI->getZExtValue() << 'u';
943 else if (Ty->getPrimitiveSizeInBits() > 32)
944 Out << CI->getZExtValue() << "ull";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000945 else {
946 Out << "((";
947 printSimpleType(Out, Ty, false) << ')';
948 if (CI->isMinValue(true))
949 Out << CI->getZExtValue() << 'u';
950 else
951 Out << CI->getSExtValue();
Chris Lattner63fb1f02008-03-02 03:16:38 +0000952 Out << ')';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000953 }
954 return;
955 }
956
957 switch (CPV->getType()->getTypeID()) {
958 case Type::FloatTyID:
Dale Johannesen137cef62007-09-17 00:38:27 +0000959 case Type::DoubleTyID:
960 case Type::X86_FP80TyID:
961 case Type::PPC_FP128TyID:
962 case Type::FP128TyID: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000963 ConstantFP *FPC = cast<ConstantFP>(CPV);
964 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
965 if (I != FPConstantMap.end()) {
966 // Because of FP precision problems we must load from a stack allocated
967 // value that holds the value in hex.
Dale Johannesen137cef62007-09-17 00:38:27 +0000968 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
969 FPC->getType() == Type::DoubleTy ? "double" :
970 "long double")
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000971 << "*)&FPConstant" << I->second << ')';
972 } else {
Dale Johannesen137cef62007-09-17 00:38:27 +0000973 assert(FPC->getType() == Type::FloatTy ||
974 FPC->getType() == Type::DoubleTy);
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000975 double V = FPC->getType() == Type::FloatTy ?
976 FPC->getValueAPF().convertToFloat() :
977 FPC->getValueAPF().convertToDouble();
978 if (IsNAN(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000979 // The value is NaN
980
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000981 // FIXME the actual NaN bits should be emitted.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000982 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
983 // it's 0x7ff4.
984 const unsigned long QuietNaN = 0x7ff8UL;
985 //const unsigned long SignalNaN = 0x7ff4UL;
986
987 // We need to grab the first part of the FP #
988 char Buffer[100];
989
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000990 uint64_t ll = DoubleToBits(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000991 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
992
993 std::string Num(&Buffer[0], &Buffer[6]);
994 unsigned long Val = strtoul(Num.c_str(), 0, 16);
995
996 if (FPC->getType() == Type::FloatTy)
997 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
998 << Buffer << "\") /*nan*/ ";
999 else
1000 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
1001 << Buffer << "\") /*nan*/ ";
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001002 } else if (IsInf(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001003 // The value is Inf
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001004 if (V < 0) Out << '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001005 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
1006 << " /*inf*/ ";
1007 } else {
1008 std::string Num;
1009#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
1010 // Print out the constant as a floating point number.
1011 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001012 sprintf(Buffer, "%a", V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001013 Num = Buffer;
1014#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001015 Num = ftostr(FPC->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001016#endif
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001017 Out << Num;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001018 }
1019 }
1020 break;
1021 }
1022
1023 case Type::ArrayTyID:
Dan Gohman29b19472008-07-23 18:41:03 +00001024 // Use C99 compound expression literal initializer syntax.
1025 Out << "(";
1026 printType(Out, CPV->getType());
1027 Out << ")";
Dan Gohman5d995b02008-06-02 21:30:49 +00001028 Out << "{ "; // Arrays are wrapped in struct types.
Chris Lattner8673e322008-03-02 05:46:57 +00001029 if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
Chris Lattner6d4cd9b2008-03-02 03:18:46 +00001030 printConstantArray(CA);
Chris Lattner63fb1f02008-03-02 03:16:38 +00001031 } else {
1032 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001033 const ArrayType *AT = cast<ArrayType>(CPV->getType());
1034 Out << '{';
1035 if (AT->getNumElements()) {
1036 Out << ' ';
1037 Constant *CZ = Constant::getNullValue(AT->getElementType());
1038 printConstant(CZ);
1039 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
1040 Out << ", ";
1041 printConstant(CZ);
1042 }
1043 }
1044 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001045 }
Dan Gohman5d995b02008-06-02 21:30:49 +00001046 Out << " }"; // Arrays are wrapped in struct types.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001047 break;
1048
1049 case Type::VectorTyID:
Chris Lattner70f0f672008-03-02 03:29:50 +00001050 // Use C99 compound expression literal initializer syntax.
1051 Out << "(";
1052 printType(Out, CPV->getType());
1053 Out << ")";
Chris Lattner8673e322008-03-02 05:46:57 +00001054 if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001055 printConstantVector(CV);
1056 } else {
1057 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1058 const VectorType *VT = cast<VectorType>(CPV->getType());
1059 Out << "{ ";
1060 Constant *CZ = Constant::getNullValue(VT->getElementType());
1061 printConstant(CZ);
Chris Lattner6d4cd9b2008-03-02 03:18:46 +00001062 for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001063 Out << ", ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001064 printConstant(CZ);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001065 }
1066 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001067 }
1068 break;
1069
1070 case Type::StructTyID:
Dan Gohman29b19472008-07-23 18:41:03 +00001071 // Use C99 compound expression literal initializer syntax.
1072 Out << "(";
1073 printType(Out, CPV->getType());
1074 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001075 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
1076 const StructType *ST = cast<StructType>(CPV->getType());
1077 Out << '{';
1078 if (ST->getNumElements()) {
1079 Out << ' ';
1080 printConstant(Constant::getNullValue(ST->getElementType(0)));
1081 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
1082 Out << ", ";
1083 printConstant(Constant::getNullValue(ST->getElementType(i)));
1084 }
1085 }
1086 Out << " }";
1087 } else {
1088 Out << '{';
1089 if (CPV->getNumOperands()) {
1090 Out << ' ';
1091 printConstant(cast<Constant>(CPV->getOperand(0)));
1092 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1093 Out << ", ";
1094 printConstant(cast<Constant>(CPV->getOperand(i)));
1095 }
1096 }
1097 Out << " }";
1098 }
1099 break;
1100
1101 case Type::PointerTyID:
1102 if (isa<ConstantPointerNull>(CPV)) {
1103 Out << "((";
1104 printType(Out, CPV->getType()); // sign doesn't matter
1105 Out << ")/*NULL*/0)";
1106 break;
1107 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1108 writeOperand(GV);
1109 break;
1110 }
1111 // FALL THROUGH
1112 default:
1113 cerr << "Unknown constant type: " << *CPV << "\n";
1114 abort();
1115 }
1116}
1117
1118// Some constant expressions need to be casted back to the original types
1119// because their operands were casted to the expected type. This function takes
1120// care of detecting that case and printing the cast for the ConstantExpr.
1121bool CWriter::printConstExprCast(const ConstantExpr* CE) {
1122 bool NeedsExplicitCast = false;
1123 const Type *Ty = CE->getOperand(0)->getType();
1124 bool TypeIsSigned = false;
1125 switch (CE->getOpcode()) {
Dan Gohmane1790de2008-07-18 18:43:12 +00001126 case Instruction::Add:
1127 case Instruction::Sub:
1128 case Instruction::Mul:
1129 // We need to cast integer arithmetic so that it is always performed
1130 // as unsigned, to avoid undefined behavior on overflow.
1131 if (!Ty->isIntOrIntVector()) break;
1132 // FALL THROUGH
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001133 case Instruction::LShr:
1134 case Instruction::URem:
1135 case Instruction::UDiv: NeedsExplicitCast = true; break;
1136 case Instruction::AShr:
1137 case Instruction::SRem:
1138 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1139 case Instruction::SExt:
1140 Ty = CE->getType();
1141 NeedsExplicitCast = true;
1142 TypeIsSigned = true;
1143 break;
1144 case Instruction::ZExt:
1145 case Instruction::Trunc:
1146 case Instruction::FPTrunc:
1147 case Instruction::FPExt:
1148 case Instruction::UIToFP:
1149 case Instruction::SIToFP:
1150 case Instruction::FPToUI:
1151 case Instruction::FPToSI:
1152 case Instruction::PtrToInt:
1153 case Instruction::IntToPtr:
1154 case Instruction::BitCast:
1155 Ty = CE->getType();
1156 NeedsExplicitCast = true;
1157 break;
1158 default: break;
1159 }
1160 if (NeedsExplicitCast) {
1161 Out << "((";
1162 if (Ty->isInteger() && Ty != Type::Int1Ty)
1163 printSimpleType(Out, Ty, TypeIsSigned);
1164 else
1165 printType(Out, Ty); // not integer, sign doesn't matter
1166 Out << ")(";
1167 }
1168 return NeedsExplicitCast;
1169}
1170
1171// Print a constant assuming that it is the operand for a given Opcode. The
1172// opcodes that care about sign need to cast their operands to the expected
1173// type before the operation proceeds. This function does the casting.
1174void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1175
1176 // Extract the operand's type, we'll need it.
1177 const Type* OpTy = CPV->getType();
1178
1179 // Indicate whether to do the cast or not.
1180 bool shouldCast = false;
1181 bool typeIsSigned = false;
1182
1183 // Based on the Opcode for which this Constant is being written, determine
1184 // the new type to which the operand should be casted by setting the value
1185 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1186 // casted below.
1187 switch (Opcode) {
1188 default:
1189 // for most instructions, it doesn't matter
1190 break;
Dan Gohmane1790de2008-07-18 18:43:12 +00001191 case Instruction::Add:
1192 case Instruction::Sub:
1193 case Instruction::Mul:
1194 // We need to cast integer arithmetic so that it is always performed
1195 // as unsigned, to avoid undefined behavior on overflow.
1196 if (!OpTy->isIntOrIntVector()) break;
1197 // FALL THROUGH
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001198 case Instruction::LShr:
1199 case Instruction::UDiv:
1200 case Instruction::URem:
1201 shouldCast = true;
1202 break;
1203 case Instruction::AShr:
1204 case Instruction::SDiv:
1205 case Instruction::SRem:
1206 shouldCast = true;
1207 typeIsSigned = true;
1208 break;
1209 }
1210
1211 // Write out the casted constant if we should, otherwise just write the
1212 // operand.
1213 if (shouldCast) {
1214 Out << "((";
1215 printSimpleType(Out, OpTy, typeIsSigned);
1216 Out << ")";
1217 printConstant(CPV);
1218 Out << ")";
1219 } else
1220 printConstant(CPV);
1221}
1222
1223std::string CWriter::GetValueName(const Value *Operand) {
1224 std::string Name;
1225
1226 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1227 std::string VarName;
1228
1229 Name = Operand->getName();
1230 VarName.reserve(Name.capacity());
1231
1232 for (std::string::iterator I = Name.begin(), E = Name.end();
1233 I != E; ++I) {
1234 char ch = *I;
1235
1236 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
Lauro Ramos Venancio66842ee2008-02-28 20:26:04 +00001237 (ch >= '0' && ch <= '9') || ch == '_')) {
1238 char buffer[5];
1239 sprintf(buffer, "_%x_", ch);
1240 VarName += buffer;
1241 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001242 VarName += ch;
1243 }
1244
1245 Name = "llvm_cbe_" + VarName;
1246 } else {
1247 Name = Mang->getValueName(Operand);
1248 }
1249
1250 return Name;
1251}
1252
Chris Lattnerd70f5a82008-05-31 09:23:55 +00001253/// writeInstComputationInline - Emit the computation for the specified
1254/// instruction inline, with no destination provided.
1255void CWriter::writeInstComputationInline(Instruction &I) {
1256 // If this is a non-trivial bool computation, make sure to truncate down to
1257 // a 1 bit value. This is important because we want "add i1 x, y" to return
1258 // "0" when x and y are true, not "2" for example.
1259 bool NeedBoolTrunc = false;
1260 if (I.getType() == Type::Int1Ty && !isa<ICmpInst>(I) && !isa<FCmpInst>(I))
1261 NeedBoolTrunc = true;
1262
1263 if (NeedBoolTrunc)
1264 Out << "((";
1265
1266 visit(I);
1267
1268 if (NeedBoolTrunc)
1269 Out << ")&1)";
1270}
1271
1272
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001273void CWriter::writeOperandInternal(Value *Operand) {
1274 if (Instruction *I = dyn_cast<Instruction>(Operand))
Chris Lattnerd70f5a82008-05-31 09:23:55 +00001275 // Should we inline this instruction to build a tree?
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001276 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001277 Out << '(';
Chris Lattnerd70f5a82008-05-31 09:23:55 +00001278 writeInstComputationInline(*I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001279 Out << ')';
1280 return;
1281 }
1282
1283 Constant* CPV = dyn_cast<Constant>(Operand);
1284
1285 if (CPV && !isa<GlobalValue>(CPV))
1286 printConstant(CPV);
1287 else
1288 Out << GetValueName(Operand);
1289}
1290
1291void CWriter::writeOperandRaw(Value *Operand) {
1292 Constant* CPV = dyn_cast<Constant>(Operand);
1293 if (CPV && !isa<GlobalValue>(CPV)) {
1294 printConstant(CPV);
1295 } else {
1296 Out << GetValueName(Operand);
1297 }
1298}
1299
1300void CWriter::writeOperand(Value *Operand) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00001301 bool isAddressImplicit = isAddressExposed(Operand);
1302 if (isAddressImplicit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001303 Out << "(&"; // Global variables are referenced as their addresses by llvm
1304
1305 writeOperandInternal(Operand);
1306
Chris Lattner8bbc8592008-03-02 08:07:24 +00001307 if (isAddressImplicit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001308 Out << ')';
1309}
1310
1311// Some instructions need to have their result value casted back to the
1312// original types because their operands were casted to the expected type.
1313// This function takes care of detecting that case and printing the cast
1314// for the Instruction.
1315bool CWriter::writeInstructionCast(const Instruction &I) {
1316 const Type *Ty = I.getOperand(0)->getType();
1317 switch (I.getOpcode()) {
Dan Gohmane1790de2008-07-18 18:43:12 +00001318 case Instruction::Add:
1319 case Instruction::Sub:
1320 case Instruction::Mul:
1321 // We need to cast integer arithmetic so that it is always performed
1322 // as unsigned, to avoid undefined behavior on overflow.
1323 if (!Ty->isIntOrIntVector()) break;
1324 // FALL THROUGH
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001325 case Instruction::LShr:
1326 case Instruction::URem:
1327 case Instruction::UDiv:
1328 Out << "((";
1329 printSimpleType(Out, Ty, false);
1330 Out << ")(";
1331 return true;
1332 case Instruction::AShr:
1333 case Instruction::SRem:
1334 case Instruction::SDiv:
1335 Out << "((";
1336 printSimpleType(Out, Ty, true);
1337 Out << ")(";
1338 return true;
1339 default: break;
1340 }
1341 return false;
1342}
1343
1344// Write the operand with a cast to another type based on the Opcode being used.
1345// This will be used in cases where an instruction has specific type
1346// requirements (usually signedness) for its operands.
1347void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1348
1349 // Extract the operand's type, we'll need it.
1350 const Type* OpTy = Operand->getType();
1351
1352 // Indicate whether to do the cast or not.
1353 bool shouldCast = false;
1354
1355 // Indicate whether the cast should be to a signed type or not.
1356 bool castIsSigned = false;
1357
1358 // Based on the Opcode for which this Operand is being written, determine
1359 // the new type to which the operand should be casted by setting the value
1360 // of OpTy. If we change OpTy, also set shouldCast to true.
1361 switch (Opcode) {
1362 default:
1363 // for most instructions, it doesn't matter
1364 break;
Dan Gohmane1790de2008-07-18 18:43:12 +00001365 case Instruction::Add:
1366 case Instruction::Sub:
1367 case Instruction::Mul:
1368 // We need to cast integer arithmetic so that it is always performed
1369 // as unsigned, to avoid undefined behavior on overflow.
1370 if (!OpTy->isIntOrIntVector()) break;
1371 // FALL THROUGH
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001372 case Instruction::LShr:
1373 case Instruction::UDiv:
1374 case Instruction::URem: // Cast to unsigned first
1375 shouldCast = true;
1376 castIsSigned = false;
1377 break;
Chris Lattner7ce1ee42007-09-22 20:16:48 +00001378 case Instruction::GetElementPtr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001379 case Instruction::AShr:
1380 case Instruction::SDiv:
1381 case Instruction::SRem: // Cast to signed first
1382 shouldCast = true;
1383 castIsSigned = true;
1384 break;
1385 }
1386
1387 // Write out the casted operand if we should, otherwise just write the
1388 // operand.
1389 if (shouldCast) {
1390 Out << "((";
1391 printSimpleType(Out, OpTy, castIsSigned);
1392 Out << ")";
1393 writeOperand(Operand);
1394 Out << ")";
1395 } else
1396 writeOperand(Operand);
1397}
1398
1399// Write the operand with a cast to another type based on the icmp predicate
1400// being used.
Chris Lattner389c9142007-09-15 06:51:03 +00001401void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1402 // This has to do a cast to ensure the operand has the right signedness.
1403 // Also, if the operand is a pointer, we make sure to cast to an integer when
1404 // doing the comparison both for signedness and so that the C compiler doesn't
1405 // optimize things like "p < NULL" to false (p may contain an integer value
1406 // f.e.).
1407 bool shouldCast = Cmp.isRelational();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001408
1409 // Write out the casted operand if we should, otherwise just write the
1410 // operand.
Chris Lattner389c9142007-09-15 06:51:03 +00001411 if (!shouldCast) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001412 writeOperand(Operand);
Chris Lattner389c9142007-09-15 06:51:03 +00001413 return;
1414 }
1415
1416 // Should this be a signed comparison? If so, convert to signed.
1417 bool castIsSigned = Cmp.isSignedPredicate();
1418
1419 // If the operand was a pointer, convert to a large integer type.
1420 const Type* OpTy = Operand->getType();
1421 if (isa<PointerType>(OpTy))
1422 OpTy = TD->getIntPtrType();
1423
1424 Out << "((";
1425 printSimpleType(Out, OpTy, castIsSigned);
1426 Out << ")";
1427 writeOperand(Operand);
1428 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001429}
1430
1431// generateCompilerSpecificCode - This is where we add conditional compilation
1432// directives to cater to specific compilers as need be.
1433//
Dan Gohman3f795232008-04-02 23:52:49 +00001434static void generateCompilerSpecificCode(std::ostream& Out,
1435 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001436 // Alloca is hard to get, and we don't want to include stdlib.h here.
1437 Out << "/* get a declaration for alloca */\n"
1438 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1439 << "#define alloca(x) __builtin_alloca((x))\n"
1440 << "#define _alloca(x) __builtin_alloca((x))\n"
1441 << "#elif defined(__APPLE__)\n"
1442 << "extern void *__builtin_alloca(unsigned long);\n"
1443 << "#define alloca(x) __builtin_alloca(x)\n"
1444 << "#define longjmp _longjmp\n"
1445 << "#define setjmp _setjmp\n"
1446 << "#elif defined(__sun__)\n"
1447 << "#if defined(__sparcv9)\n"
1448 << "extern void *__builtin_alloca(unsigned long);\n"
1449 << "#else\n"
1450 << "extern void *__builtin_alloca(unsigned int);\n"
1451 << "#endif\n"
1452 << "#define alloca(x) __builtin_alloca(x)\n"
Matthijs Kooijman331217d2008-06-26 10:36:58 +00001453 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001454 << "#define alloca(x) __builtin_alloca(x)\n"
1455 << "#elif defined(_MSC_VER)\n"
1456 << "#define inline _inline\n"
1457 << "#define alloca(x) _alloca(x)\n"
1458 << "#else\n"
1459 << "#include <alloca.h>\n"
1460 << "#endif\n\n";
1461
1462 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1463 // If we aren't being compiled with GCC, just drop these attributes.
1464 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1465 << "#define __attribute__(X)\n"
1466 << "#endif\n\n";
1467
1468 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1469 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1470 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1471 << "#elif defined(__GNUC__)\n"
1472 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1473 << "#else\n"
1474 << "#define __EXTERNAL_WEAK__\n"
1475 << "#endif\n\n";
1476
1477 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1478 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1479 << "#define __ATTRIBUTE_WEAK__\n"
1480 << "#elif defined(__GNUC__)\n"
1481 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1482 << "#else\n"
1483 << "#define __ATTRIBUTE_WEAK__\n"
1484 << "#endif\n\n";
1485
1486 // Add hidden visibility support. FIXME: APPLE_CC?
1487 Out << "#if defined(__GNUC__)\n"
1488 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1489 << "#endif\n\n";
1490
1491 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1492 // From the GCC documentation:
1493 //
1494 // double __builtin_nan (const char *str)
1495 //
1496 // This is an implementation of the ISO C99 function nan.
1497 //
1498 // Since ISO C99 defines this function in terms of strtod, which we do
1499 // not implement, a description of the parsing is in order. The string is
1500 // parsed as by strtol; that is, the base is recognized by leading 0 or
1501 // 0x prefixes. The number parsed is placed in the significand such that
1502 // the least significant bit of the number is at the least significant
1503 // bit of the significand. The number is truncated to fit the significand
1504 // field provided. The significand is forced to be a quiet NaN.
1505 //
1506 // This function, if given a string literal, is evaluated early enough
1507 // that it is considered a compile-time constant.
1508 //
1509 // float __builtin_nanf (const char *str)
1510 //
1511 // Similar to __builtin_nan, except the return type is float.
1512 //
1513 // double __builtin_inf (void)
1514 //
1515 // Similar to __builtin_huge_val, except a warning is generated if the
1516 // target floating-point format does not support infinities. This
1517 // function is suitable for implementing the ISO C99 macro INFINITY.
1518 //
1519 // float __builtin_inff (void)
1520 //
1521 // Similar to __builtin_inf, except the return type is float.
1522 Out << "#ifdef __GNUC__\n"
1523 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1524 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1525 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1526 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1527 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1528 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1529 << "#define LLVM_PREFETCH(addr,rw,locality) "
1530 "__builtin_prefetch(addr,rw,locality)\n"
1531 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1532 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1533 << "#define LLVM_ASM __asm__\n"
1534 << "#else\n"
1535 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1536 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1537 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1538 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1539 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1540 << "#define LLVM_INFF 0.0F /* Float */\n"
1541 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1542 << "#define __ATTRIBUTE_CTOR__\n"
1543 << "#define __ATTRIBUTE_DTOR__\n"
1544 << "#define LLVM_ASM(X)\n"
1545 << "#endif\n\n";
1546
1547 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1548 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1549 << "#define __builtin_stack_restore(X) /* noop */\n"
1550 << "#endif\n\n";
1551
Dan Gohman3f795232008-04-02 23:52:49 +00001552 // Output typedefs for 128-bit integers. If these are needed with a
1553 // 32-bit target or with a C compiler that doesn't support mode(TI),
1554 // more drastic measures will be needed.
Chris Lattnerab6d3382008-06-16 04:25:29 +00001555 Out << "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n"
1556 << "typedef int __attribute__((mode(TI))) llvmInt128;\n"
1557 << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
1558 << "#endif\n\n";
Dan Gohmana2245af2008-04-02 19:40:14 +00001559
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001560 // Output target-specific code that should be inserted into main.
1561 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001562}
1563
1564/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1565/// the StaticTors set.
1566static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1567 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1568 if (!InitList) return;
1569
1570 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1571 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1572 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1573
1574 if (CS->getOperand(1)->isNullValue())
1575 return; // Found a null terminator, exit printing.
1576 Constant *FP = CS->getOperand(1);
1577 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1578 if (CE->isCast())
1579 FP = CE->getOperand(0);
1580 if (Function *F = dyn_cast<Function>(FP))
1581 StaticTors.insert(F);
1582 }
1583}
1584
1585enum SpecialGlobalClass {
1586 NotSpecial = 0,
1587 GlobalCtors, GlobalDtors,
1588 NotPrinted
1589};
1590
1591/// getGlobalVariableClass - If this is a global that is specially recognized
1592/// by LLVM, return a code that indicates how we should handle it.
1593static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1594 // If this is a global ctors/dtors list, handle it now.
1595 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1596 if (GV->getName() == "llvm.global_ctors")
1597 return GlobalCtors;
1598 else if (GV->getName() == "llvm.global_dtors")
1599 return GlobalDtors;
1600 }
1601
1602 // Otherwise, it it is other metadata, don't print it. This catches things
1603 // like debug information.
1604 if (GV->getSection() == "llvm.metadata")
1605 return NotPrinted;
1606
1607 return NotSpecial;
1608}
1609
1610
1611bool CWriter::doInitialization(Module &M) {
1612 // Initialize
1613 TheModule = &M;
1614
1615 TD = new TargetData(&M);
1616 IL = new IntrinsicLowering(*TD);
1617 IL->AddPrototypes(M);
1618
1619 // Ensure that all structure types have names...
1620 Mang = new Mangler(M);
1621 Mang->markCharUnacceptable('.');
1622
1623 // Keep track of which functions are static ctors/dtors so they can have
1624 // an attribute added to their prototypes.
1625 std::set<Function*> StaticCtors, StaticDtors;
1626 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1627 I != E; ++I) {
1628 switch (getGlobalVariableClass(I)) {
1629 default: break;
1630 case GlobalCtors:
1631 FindStaticTors(I, StaticCtors);
1632 break;
1633 case GlobalDtors:
1634 FindStaticTors(I, StaticDtors);
1635 break;
1636 }
1637 }
1638
1639 // get declaration for alloca
1640 Out << "/* Provide Declarations */\n";
1641 Out << "#include <stdarg.h>\n"; // Varargs support
1642 Out << "#include <setjmp.h>\n"; // Unwind support
Dan Gohman3f795232008-04-02 23:52:49 +00001643 generateCompilerSpecificCode(Out, TD);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001644
1645 // Provide a definition for `bool' if not compiling with a C++ compiler.
1646 Out << "\n"
1647 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1648
1649 << "\n\n/* Support for floating point constants */\n"
1650 << "typedef unsigned long long ConstantDoubleTy;\n"
1651 << "typedef unsigned int ConstantFloatTy;\n"
Dale Johannesen137cef62007-09-17 00:38:27 +00001652 << "typedef struct { unsigned long long f1; unsigned short f2; "
1653 "unsigned short pad[3]; } ConstantFP80Ty;\n"
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001654 // This is used for both kinds of 128-bit long double; meaning differs.
Dale Johannesen137cef62007-09-17 00:38:27 +00001655 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1656 " ConstantFP128Ty;\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001657 << "\n\n/* Global Declarations */\n";
1658
1659 // First output all the declarations for the program, because C requires
1660 // Functions & globals to be declared before they are used.
1661 //
1662
1663 // Loop over the symbol table, emitting all named constants...
1664 printModuleTypes(M.getTypeSymbolTable());
1665
1666 // Global variable declarations...
1667 if (!M.global_empty()) {
1668 Out << "\n/* External Global Variable Declarations */\n";
1669 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1670 I != E; ++I) {
1671
Dale Johannesen49c44122008-05-14 20:12:51 +00001672 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() ||
1673 I->hasCommonLinkage())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001674 Out << "extern ";
1675 else if (I->hasDLLImportLinkage())
1676 Out << "__declspec(dllimport) ";
1677 else
1678 continue; // Internal Global
1679
1680 // Thread Local Storage
1681 if (I->isThreadLocal())
1682 Out << "__thread ";
1683
1684 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1685
1686 if (I->hasExternalWeakLinkage())
1687 Out << " __EXTERNAL_WEAK__";
1688 Out << ";\n";
1689 }
1690 }
1691
1692 // Function declarations
1693 Out << "\n/* Function Declarations */\n";
1694 Out << "double fmod(double, double);\n"; // Support for FP rem
1695 Out << "float fmodf(float, float);\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001696 Out << "long double fmodl(long double, long double);\n";
Evan Chengd2d22fe2008-06-07 07:50:29 +00001697
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001698 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1699 // Don't print declarations for intrinsic functions.
Duncan Sands79d28872007-12-03 20:06:50 +00001700 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001701 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1702 if (I->hasExternalWeakLinkage())
1703 Out << "extern ";
1704 printFunctionSignature(I, true);
Evan Chengd2d22fe2008-06-07 07:50:29 +00001705 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001706 Out << " __ATTRIBUTE_WEAK__";
1707 if (I->hasExternalWeakLinkage())
1708 Out << " __EXTERNAL_WEAK__";
1709 if (StaticCtors.count(I))
1710 Out << " __ATTRIBUTE_CTOR__";
1711 if (StaticDtors.count(I))
1712 Out << " __ATTRIBUTE_DTOR__";
1713 if (I->hasHiddenVisibility())
1714 Out << " __HIDDEN__";
Evan Chengd2d22fe2008-06-07 07:50:29 +00001715
1716 if (I->hasName() && I->getName()[0] == 1)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001717 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
Evan Chengd2d22fe2008-06-07 07:50:29 +00001718
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001719 Out << ";\n";
1720 }
1721 }
1722
1723 // Output the global variable declarations
1724 if (!M.global_empty()) {
1725 Out << "\n\n/* Global Variable Declarations */\n";
1726 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1727 I != E; ++I)
1728 if (!I->isDeclaration()) {
1729 // Ignore special globals, such as debug info.
1730 if (getGlobalVariableClass(I))
1731 continue;
1732
1733 if (I->hasInternalLinkage())
1734 Out << "static ";
1735 else
1736 Out << "extern ";
1737
1738 // Thread Local Storage
1739 if (I->isThreadLocal())
1740 Out << "__thread ";
1741
1742 printType(Out, I->getType()->getElementType(), false,
1743 GetValueName(I));
1744
1745 if (I->hasLinkOnceLinkage())
1746 Out << " __attribute__((common))";
Dale Johannesen49c44122008-05-14 20:12:51 +00001747 else if (I->hasCommonLinkage()) // FIXME is this right?
1748 Out << " __ATTRIBUTE_WEAK__";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001749 else if (I->hasWeakLinkage())
1750 Out << " __ATTRIBUTE_WEAK__";
1751 else if (I->hasExternalWeakLinkage())
1752 Out << " __EXTERNAL_WEAK__";
1753 if (I->hasHiddenVisibility())
1754 Out << " __HIDDEN__";
1755 Out << ";\n";
1756 }
1757 }
1758
1759 // Output the global variable definitions and contents...
1760 if (!M.global_empty()) {
1761 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
Evan Chengd2d22fe2008-06-07 07:50:29 +00001762 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001763 I != E; ++I)
1764 if (!I->isDeclaration()) {
1765 // Ignore special globals, such as debug info.
1766 if (getGlobalVariableClass(I))
1767 continue;
1768
1769 if (I->hasInternalLinkage())
1770 Out << "static ";
1771 else if (I->hasDLLImportLinkage())
1772 Out << "__declspec(dllimport) ";
1773 else if (I->hasDLLExportLinkage())
1774 Out << "__declspec(dllexport) ";
1775
1776 // Thread Local Storage
1777 if (I->isThreadLocal())
1778 Out << "__thread ";
1779
1780 printType(Out, I->getType()->getElementType(), false,
1781 GetValueName(I));
1782 if (I->hasLinkOnceLinkage())
1783 Out << " __attribute__((common))";
1784 else if (I->hasWeakLinkage())
1785 Out << " __ATTRIBUTE_WEAK__";
Dale Johannesen49c44122008-05-14 20:12:51 +00001786 else if (I->hasCommonLinkage())
1787 Out << " __ATTRIBUTE_WEAK__";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001788
1789 if (I->hasHiddenVisibility())
1790 Out << " __HIDDEN__";
1791
1792 // If the initializer is not null, emit the initializer. If it is null,
1793 // we try to avoid emitting large amounts of zeros. The problem with
1794 // this, however, occurs when the variable has weak linkage. In this
1795 // case, the assembler will complain about the variable being both weak
1796 // and common, so we disable this optimization.
Dale Johannesen49c44122008-05-14 20:12:51 +00001797 // FIXME common linkage should avoid this problem.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001798 if (!I->getInitializer()->isNullValue()) {
1799 Out << " = " ;
1800 writeOperand(I->getInitializer());
1801 } else if (I->hasWeakLinkage()) {
1802 // We have to specify an initializer, but it doesn't have to be
1803 // complete. If the value is an aggregate, print out { 0 }, and let
1804 // the compiler figure out the rest of the zeros.
1805 Out << " = " ;
1806 if (isa<StructType>(I->getInitializer()->getType()) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001807 isa<VectorType>(I->getInitializer()->getType())) {
1808 Out << "{ 0 }";
Dan Gohman5d995b02008-06-02 21:30:49 +00001809 } else if (isa<ArrayType>(I->getInitializer()->getType())) {
1810 // As with structs and vectors, but with an extra set of braces
1811 // because arrays are wrapped in structs.
1812 Out << "{ { 0 } }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001813 } else {
1814 // Just print it out normally.
1815 writeOperand(I->getInitializer());
1816 }
1817 }
1818 Out << ";\n";
1819 }
1820 }
1821
1822 if (!M.empty())
1823 Out << "\n\n/* Function Bodies */\n";
1824
1825 // Emit some helper functions for dealing with FCMP instruction's
1826 // predicates
1827 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
1828 Out << "return X == X && Y == Y; }\n";
1829 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
1830 Out << "return X != X || Y != Y; }\n";
1831 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
1832 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
1833 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
1834 Out << "return X != Y; }\n";
1835 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
1836 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
1837 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
1838 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
1839 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
1840 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
1841 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
1842 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
1843 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
1844 Out << "return X == Y ; }\n";
1845 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
1846 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
1847 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
1848 Out << "return X < Y ; }\n";
1849 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
1850 Out << "return X > Y ; }\n";
1851 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
1852 Out << "return X <= Y ; }\n";
1853 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
1854 Out << "return X >= Y ; }\n";
1855 return false;
1856}
1857
1858
1859/// Output all floating point constants that cannot be printed accurately...
1860void CWriter::printFloatingPointConstants(Function &F) {
1861 // Scan the module for floating point constants. If any FP constant is used
1862 // in the function, we want to redirect it here so that we do not depend on
1863 // the precision of the printed form, unless the printed form preserves
1864 // precision.
1865 //
1866 static unsigned FPCounter = 0;
1867 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
1868 I != E; ++I)
1869 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
1870 if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
1871 !FPConstantMap.count(FPC)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001872 FPConstantMap[FPC] = FPCounter; // Number the FP constants
1873
1874 if (FPC->getType() == Type::DoubleTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001875 double Val = FPC->getValueAPF().convertToDouble();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001876 uint64_t i = FPC->getValueAPF().convertToAPInt().getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001877 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001878 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001879 << "ULL; /* " << Val << " */\n";
1880 } else if (FPC->getType() == Type::FloatTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001881 float Val = FPC->getValueAPF().convertToFloat();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001882 uint32_t i = (uint32_t)FPC->getValueAPF().convertToAPInt().
1883 getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001884 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001885 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001886 << "U; /* " << Val << " */\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001887 } else if (FPC->getType() == Type::X86_FP80Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +00001888 // api needed to prevent premature destruction
1889 APInt api = FPC->getValueAPF().convertToAPInt();
1890 const uint64_t *p = api.getRawData();
Dale Johannesen137cef62007-09-17 00:38:27 +00001891 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
1892 << " = { 0x" << std::hex
1893 << ((uint16_t)p[1] | (p[0] & 0xffffffffffffLL)<<16)
Duncan Sands48d91af2008-05-24 01:00:52 +00001894 << "ULL, 0x" << (uint16_t)(p[0] >> 48) << ",{0,0,0}"
Dale Johannesen137cef62007-09-17 00:38:27 +00001895 << "}; /* Long double constant */\n" << std::dec;
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001896 } else if (FPC->getType() == Type::PPC_FP128Ty) {
1897 APInt api = FPC->getValueAPF().convertToAPInt();
1898 const uint64_t *p = api.getRawData();
1899 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
1900 << " = { 0x" << std::hex
1901 << p[0] << ", 0x" << p[1]
1902 << "}; /* Long double constant */\n" << std::dec;
1903
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001904 } else
1905 assert(0 && "Unknown float type!");
1906 }
1907
1908 Out << '\n';
1909}
1910
1911
1912/// printSymbolTable - Run through symbol table looking for type names. If a
1913/// type name is found, emit its declaration...
1914///
1915void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
1916 Out << "/* Helper union for bitcasts */\n";
1917 Out << "typedef union {\n";
1918 Out << " unsigned int Int32;\n";
1919 Out << " unsigned long long Int64;\n";
1920 Out << " float Float;\n";
1921 Out << " double Double;\n";
1922 Out << "} llvmBitCastUnion;\n";
1923
1924 // We are only interested in the type plane of the symbol table.
1925 TypeSymbolTable::const_iterator I = TST.begin();
1926 TypeSymbolTable::const_iterator End = TST.end();
1927
1928 // If there are no type names, exit early.
1929 if (I == End) return;
1930
1931 // Print out forward declarations for structure types before anything else!
1932 Out << "/* Structure forward decls */\n";
1933 for (; I != End; ++I) {
1934 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
1935 Out << Name << ";\n";
1936 TypeNames.insert(std::make_pair(I->second, Name));
1937 }
1938
1939 Out << '\n';
1940
1941 // Now we can print out typedefs. Above, we guaranteed that this can only be
1942 // for struct or opaque types.
1943 Out << "/* Typedefs */\n";
1944 for (I = TST.begin(); I != End; ++I) {
1945 std::string Name = "l_" + Mang->makeNameProper(I->first);
1946 Out << "typedef ";
1947 printType(Out, I->second, false, Name);
1948 Out << ";\n";
1949 }
1950
1951 Out << '\n';
1952
1953 // Keep track of which structures have been printed so far...
Dan Gohman5d995b02008-06-02 21:30:49 +00001954 std::set<const Type *> StructPrinted;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001955
1956 // Loop over all structures then push them into the stack so they are
1957 // printed in the correct order.
1958 //
1959 Out << "/* Structure contents */\n";
1960 for (I = TST.begin(); I != End; ++I)
Dan Gohman5d995b02008-06-02 21:30:49 +00001961 if (isa<StructType>(I->second) || isa<ArrayType>(I->second))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001962 // Only print out used types!
Dan Gohman5d995b02008-06-02 21:30:49 +00001963 printContainedStructs(I->second, StructPrinted);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001964}
1965
1966// Push the struct onto the stack and recursively push all structs
1967// this one depends on.
1968//
1969// TODO: Make this work properly with vector types
1970//
1971void CWriter::printContainedStructs(const Type *Ty,
Dan Gohman5d995b02008-06-02 21:30:49 +00001972 std::set<const Type*> &StructPrinted) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001973 // Don't walk through pointers.
1974 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
1975
1976 // Print all contained types first.
1977 for (Type::subtype_iterator I = Ty->subtype_begin(),
1978 E = Ty->subtype_end(); I != E; ++I)
1979 printContainedStructs(*I, StructPrinted);
1980
Dan Gohman5d995b02008-06-02 21:30:49 +00001981 if (isa<StructType>(Ty) || isa<ArrayType>(Ty)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001982 // Check to see if we have already printed this struct.
Dan Gohman5d995b02008-06-02 21:30:49 +00001983 if (StructPrinted.insert(Ty).second) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001984 // Print structure type out.
Dan Gohman5d995b02008-06-02 21:30:49 +00001985 std::string Name = TypeNames[Ty];
1986 printType(Out, Ty, false, Name, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001987 Out << ";\n\n";
1988 }
1989 }
1990}
1991
1992void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
1993 /// isStructReturn - Should this function actually return a struct by-value?
Devang Patel949a4b72008-03-03 21:46:28 +00001994 bool isStructReturn = F->hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001995
1996 if (F->hasInternalLinkage()) Out << "static ";
1997 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
1998 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
1999 switch (F->getCallingConv()) {
2000 case CallingConv::X86_StdCall:
2001 Out << "__stdcall ";
2002 break;
2003 case CallingConv::X86_FastCall:
2004 Out << "__fastcall ";
2005 break;
2006 }
2007
2008 // Loop over the arguments, printing them...
2009 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
Chris Lattner1c8733e2008-03-12 17:45:29 +00002010 const PAListPtr &PAL = F->getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002011
2012 std::stringstream FunctionInnards;
2013
2014 // Print out the name...
2015 FunctionInnards << GetValueName(F) << '(';
2016
2017 bool PrintedArg = false;
2018 if (!F->isDeclaration()) {
2019 if (!F->arg_empty()) {
2020 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
Evan Cheng2054cb02008-01-11 03:07:46 +00002021 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002022
2023 // If this is a struct-return function, don't print the hidden
2024 // struct-return argument.
2025 if (isStructReturn) {
2026 assert(I != E && "Invalid struct return function!");
2027 ++I;
Evan Cheng2054cb02008-01-11 03:07:46 +00002028 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002029 }
2030
2031 std::string ArgName;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002032 for (; I != E; ++I) {
2033 if (PrintedArg) FunctionInnards << ", ";
2034 if (I->hasName() || !Prototype)
2035 ArgName = GetValueName(I);
2036 else
2037 ArgName = "";
Evan Cheng2054cb02008-01-11 03:07:46 +00002038 const Type *ArgTy = I->getType();
Chris Lattner1c8733e2008-03-12 17:45:29 +00002039 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Cheng17254e62008-01-11 09:12:49 +00002040 ArgTy = cast<PointerType>(ArgTy)->getElementType();
Chris Lattner8bbc8592008-03-02 08:07:24 +00002041 ByValParams.insert(I);
Evan Cheng17254e62008-01-11 09:12:49 +00002042 }
Evan Cheng2054cb02008-01-11 03:07:46 +00002043 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00002044 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002045 ArgName);
2046 PrintedArg = true;
2047 ++Idx;
2048 }
2049 }
2050 } else {
2051 // Loop over the arguments, printing them.
2052 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
Evan Chengf8956382008-01-11 23:10:11 +00002053 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002054
2055 // If this is a struct-return function, don't print the hidden
2056 // struct-return argument.
2057 if (isStructReturn) {
2058 assert(I != E && "Invalid struct return function!");
2059 ++I;
Evan Chengf8956382008-01-11 23:10:11 +00002060 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002061 }
2062
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002063 for (; I != E; ++I) {
2064 if (PrintedArg) FunctionInnards << ", ";
Evan Chengf8956382008-01-11 23:10:11 +00002065 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +00002066 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Chengf8956382008-01-11 23:10:11 +00002067 assert(isa<PointerType>(ArgTy));
2068 ArgTy = cast<PointerType>(ArgTy)->getElementType();
2069 }
2070 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00002071 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002072 PrintedArg = true;
2073 ++Idx;
2074 }
2075 }
2076
2077 // Finish printing arguments... if this is a vararg function, print the ...,
2078 // unless there are no known types, in which case, we just emit ().
2079 //
2080 if (FT->isVarArg() && PrintedArg) {
2081 if (PrintedArg) FunctionInnards << ", ";
2082 FunctionInnards << "..."; // Output varargs portion of signature!
2083 } else if (!FT->isVarArg() && !PrintedArg) {
2084 FunctionInnards << "void"; // ret() -> ret(void) in C.
2085 }
2086 FunctionInnards << ')';
2087
2088 // Get the return tpe for the function.
2089 const Type *RetTy;
2090 if (!isStructReturn)
2091 RetTy = F->getReturnType();
2092 else {
2093 // If this is a struct-return function, print the struct-return type.
2094 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
2095 }
2096
2097 // Print out the return type and the signature built above.
2098 printType(Out, RetTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00002099 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002100 FunctionInnards.str());
2101}
2102
2103static inline bool isFPIntBitCast(const Instruction &I) {
2104 if (!isa<BitCastInst>(I))
2105 return false;
2106 const Type *SrcTy = I.getOperand(0)->getType();
2107 const Type *DstTy = I.getType();
2108 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
2109 (DstTy->isFloatingPoint() && SrcTy->isInteger());
2110}
2111
2112void CWriter::printFunction(Function &F) {
2113 /// isStructReturn - Should this function actually return a struct by-value?
Devang Patel949a4b72008-03-03 21:46:28 +00002114 bool isStructReturn = F.hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002115
2116 printFunctionSignature(&F, false);
2117 Out << " {\n";
2118
2119 // If this is a struct return function, handle the result with magic.
2120 if (isStructReturn) {
2121 const Type *StructTy =
2122 cast<PointerType>(F.arg_begin()->getType())->getElementType();
2123 Out << " ";
2124 printType(Out, StructTy, false, "StructReturn");
2125 Out << "; /* Struct return temporary */\n";
2126
2127 Out << " ";
2128 printType(Out, F.arg_begin()->getType(), false,
2129 GetValueName(F.arg_begin()));
2130 Out << " = &StructReturn;\n";
2131 }
2132
2133 bool PrintedVar = false;
2134
2135 // print local variable information for the function
2136 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2137 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
2138 Out << " ";
2139 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
2140 Out << "; /* Address-exposed local */\n";
2141 PrintedVar = true;
2142 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
2143 Out << " ";
2144 printType(Out, I->getType(), false, GetValueName(&*I));
2145 Out << ";\n";
2146
2147 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
2148 Out << " ";
2149 printType(Out, I->getType(), false,
2150 GetValueName(&*I)+"__PHI_TEMPORARY");
2151 Out << ";\n";
2152 }
2153 PrintedVar = true;
2154 }
2155 // We need a temporary for the BitCast to use so it can pluck a value out
2156 // of a union to do the BitCast. This is separate from the need for a
2157 // variable to hold the result of the BitCast.
2158 if (isFPIntBitCast(*I)) {
2159 Out << " llvmBitCastUnion " << GetValueName(&*I)
2160 << "__BITCAST_TEMPORARY;\n";
2161 PrintedVar = true;
2162 }
2163 }
2164
2165 if (PrintedVar)
2166 Out << '\n';
2167
2168 if (F.hasExternalLinkage() && F.getName() == "main")
2169 Out << " CODE_FOR_MAIN();\n";
2170
2171 // print the basic blocks
2172 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2173 if (Loop *L = LI->getLoopFor(BB)) {
2174 if (L->getHeader() == BB && L->getParentLoop() == 0)
2175 printLoop(L);
2176 } else {
2177 printBasicBlock(BB);
2178 }
2179 }
2180
2181 Out << "}\n\n";
2182}
2183
2184void CWriter::printLoop(Loop *L) {
2185 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2186 << "' to make GCC happy */\n";
2187 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2188 BasicBlock *BB = L->getBlocks()[i];
2189 Loop *BBLoop = LI->getLoopFor(BB);
2190 if (BBLoop == L)
2191 printBasicBlock(BB);
2192 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2193 printLoop(BBLoop);
2194 }
2195 Out << " } while (1); /* end of syntactic loop '"
2196 << L->getHeader()->getName() << "' */\n";
2197}
2198
2199void CWriter::printBasicBlock(BasicBlock *BB) {
2200
2201 // Don't print the label for the basic block if there are no uses, or if
2202 // the only terminator use is the predecessor basic block's terminator.
2203 // We have to scan the use list because PHI nodes use basic blocks too but
2204 // do not require a label to be generated.
2205 //
2206 bool NeedsLabel = false;
2207 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2208 if (isGotoCodeNecessary(*PI, BB)) {
2209 NeedsLabel = true;
2210 break;
2211 }
2212
2213 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2214
2215 // Output all of the instructions in the basic block...
2216 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2217 ++II) {
2218 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2219 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2220 outputLValue(II);
2221 else
2222 Out << " ";
Chris Lattnerd70f5a82008-05-31 09:23:55 +00002223 writeInstComputationInline(*II);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002224 Out << ";\n";
2225 }
2226 }
2227
Chris Lattnerd70f5a82008-05-31 09:23:55 +00002228 // Don't emit prefix or suffix for the terminator.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002229 visit(*BB->getTerminator());
2230}
2231
2232
2233// Specific Instruction type classes... note that all of the casts are
2234// necessary because we use the instruction classes as opaque types...
2235//
2236void CWriter::visitReturnInst(ReturnInst &I) {
2237 // If this is a struct return function, return the temporary struct.
Devang Patel949a4b72008-03-03 21:46:28 +00002238 bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002239
2240 if (isStructReturn) {
2241 Out << " return StructReturn;\n";
2242 return;
2243 }
2244
2245 // Don't output a void return if this is the last basic block in the function
2246 if (I.getNumOperands() == 0 &&
2247 &*--I.getParent()->getParent()->end() == I.getParent() &&
2248 !I.getParent()->size() == 1) {
2249 return;
2250 }
2251
Dan Gohman93d04582008-04-23 21:49:29 +00002252 if (I.getNumOperands() > 1) {
2253 Out << " {\n";
2254 Out << " ";
2255 printType(Out, I.getParent()->getParent()->getReturnType());
2256 Out << " llvm_cbe_mrv_temp = {\n";
2257 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
2258 Out << " ";
2259 writeOperand(I.getOperand(i));
2260 if (i != e - 1)
2261 Out << ",";
2262 Out << "\n";
2263 }
2264 Out << " };\n";
2265 Out << " return llvm_cbe_mrv_temp;\n";
2266 Out << " }\n";
2267 return;
2268 }
2269
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002270 Out << " return";
2271 if (I.getNumOperands()) {
2272 Out << ' ';
2273 writeOperand(I.getOperand(0));
2274 }
2275 Out << ";\n";
2276}
2277
2278void CWriter::visitSwitchInst(SwitchInst &SI) {
2279
2280 Out << " switch (";
2281 writeOperand(SI.getOperand(0));
2282 Out << ") {\n default:\n";
2283 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2284 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2285 Out << ";\n";
2286 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2287 Out << " case ";
2288 writeOperand(SI.getOperand(i));
2289 Out << ":\n";
2290 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2291 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2292 printBranchToBlock(SI.getParent(), Succ, 2);
2293 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2294 Out << " break;\n";
2295 }
2296 Out << " }\n";
2297}
2298
2299void CWriter::visitUnreachableInst(UnreachableInst &I) {
2300 Out << " /*UNREACHABLE*/;\n";
2301}
2302
2303bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2304 /// FIXME: This should be reenabled, but loop reordering safe!!
2305 return true;
2306
2307 if (next(Function::iterator(From)) != Function::iterator(To))
2308 return true; // Not the direct successor, we need a goto.
2309
2310 //isa<SwitchInst>(From->getTerminator())
2311
2312 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2313 return true;
2314 return false;
2315}
2316
2317void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2318 BasicBlock *Successor,
2319 unsigned Indent) {
2320 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2321 PHINode *PN = cast<PHINode>(I);
2322 // Now we have to do the printing.
2323 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2324 if (!isa<UndefValue>(IV)) {
2325 Out << std::string(Indent, ' ');
2326 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2327 writeOperand(IV);
2328 Out << "; /* for PHI node */\n";
2329 }
2330 }
2331}
2332
2333void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2334 unsigned Indent) {
2335 if (isGotoCodeNecessary(CurBB, Succ)) {
2336 Out << std::string(Indent, ' ') << " goto ";
2337 writeOperand(Succ);
2338 Out << ";\n";
2339 }
2340}
2341
2342// Branch instruction printing - Avoid printing out a branch to a basic block
2343// that immediately succeeds the current one.
2344//
2345void CWriter::visitBranchInst(BranchInst &I) {
2346
2347 if (I.isConditional()) {
2348 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2349 Out << " if (";
2350 writeOperand(I.getCondition());
2351 Out << ") {\n";
2352
2353 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2354 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2355
2356 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2357 Out << " } else {\n";
2358 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2359 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2360 }
2361 } else {
2362 // First goto not necessary, assume second one is...
2363 Out << " if (!";
2364 writeOperand(I.getCondition());
2365 Out << ") {\n";
2366
2367 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2368 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2369 }
2370
2371 Out << " }\n";
2372 } else {
2373 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2374 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2375 }
2376 Out << "\n";
2377}
2378
2379// PHI nodes get copied into temporary values at the end of predecessor basic
2380// blocks. We now need to copy these temporary values into the REAL value for
2381// the PHI.
2382void CWriter::visitPHINode(PHINode &I) {
2383 writeOperand(&I);
2384 Out << "__PHI_TEMPORARY";
2385}
2386
2387
2388void CWriter::visitBinaryOperator(Instruction &I) {
2389 // binary instructions, shift instructions, setCond instructions.
2390 assert(!isa<PointerType>(I.getType()));
2391
2392 // We must cast the results of binary operations which might be promoted.
2393 bool needsCast = false;
2394 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2395 || (I.getType() == Type::FloatTy)) {
2396 needsCast = true;
2397 Out << "((";
2398 printType(Out, I.getType(), false);
2399 Out << ")(";
2400 }
2401
2402 // If this is a negation operation, print it out as such. For FP, we don't
2403 // want to print "-0.0 - X".
2404 if (BinaryOperator::isNeg(&I)) {
2405 Out << "-(";
2406 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2407 Out << ")";
2408 } else if (I.getOpcode() == Instruction::FRem) {
2409 // Output a call to fmod/fmodf instead of emitting a%b
2410 if (I.getType() == Type::FloatTy)
2411 Out << "fmodf(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002412 else if (I.getType() == Type::DoubleTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002413 Out << "fmod(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002414 else // all 3 flavors of long double
2415 Out << "fmodl(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002416 writeOperand(I.getOperand(0));
2417 Out << ", ";
2418 writeOperand(I.getOperand(1));
2419 Out << ")";
2420 } else {
2421
2422 // Write out the cast of the instruction's value back to the proper type
2423 // if necessary.
2424 bool NeedsClosingParens = writeInstructionCast(I);
2425
2426 // Certain instructions require the operand to be forced to a specific type
2427 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2428 // below for operand 1
2429 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2430
2431 switch (I.getOpcode()) {
2432 case Instruction::Add: Out << " + "; break;
2433 case Instruction::Sub: Out << " - "; break;
2434 case Instruction::Mul: Out << " * "; break;
2435 case Instruction::URem:
2436 case Instruction::SRem:
2437 case Instruction::FRem: Out << " % "; break;
2438 case Instruction::UDiv:
2439 case Instruction::SDiv:
2440 case Instruction::FDiv: Out << " / "; break;
2441 case Instruction::And: Out << " & "; break;
2442 case Instruction::Or: Out << " | "; break;
2443 case Instruction::Xor: Out << " ^ "; break;
2444 case Instruction::Shl : Out << " << "; break;
2445 case Instruction::LShr:
2446 case Instruction::AShr: Out << " >> "; break;
2447 default: cerr << "Invalid operator type!" << I; abort();
2448 }
2449
2450 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2451 if (NeedsClosingParens)
2452 Out << "))";
2453 }
2454
2455 if (needsCast) {
2456 Out << "))";
2457 }
2458}
2459
2460void CWriter::visitICmpInst(ICmpInst &I) {
2461 // We must cast the results of icmp which might be promoted.
2462 bool needsCast = false;
2463
2464 // Write out the cast of the instruction's value back to the proper type
2465 // if necessary.
2466 bool NeedsClosingParens = writeInstructionCast(I);
2467
2468 // Certain icmp predicate require the operand to be forced to a specific type
2469 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2470 // below for operand 1
Chris Lattner389c9142007-09-15 06:51:03 +00002471 writeOperandWithCast(I.getOperand(0), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002472
2473 switch (I.getPredicate()) {
2474 case ICmpInst::ICMP_EQ: Out << " == "; break;
2475 case ICmpInst::ICMP_NE: Out << " != "; break;
2476 case ICmpInst::ICMP_ULE:
2477 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2478 case ICmpInst::ICMP_UGE:
2479 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2480 case ICmpInst::ICMP_ULT:
2481 case ICmpInst::ICMP_SLT: Out << " < "; break;
2482 case ICmpInst::ICMP_UGT:
2483 case ICmpInst::ICMP_SGT: Out << " > "; break;
2484 default: cerr << "Invalid icmp predicate!" << I; abort();
2485 }
2486
Chris Lattner389c9142007-09-15 06:51:03 +00002487 writeOperandWithCast(I.getOperand(1), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002488 if (NeedsClosingParens)
2489 Out << "))";
2490
2491 if (needsCast) {
2492 Out << "))";
2493 }
2494}
2495
2496void CWriter::visitFCmpInst(FCmpInst &I) {
2497 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2498 Out << "0";
2499 return;
2500 }
2501 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2502 Out << "1";
2503 return;
2504 }
2505
2506 const char* op = 0;
2507 switch (I.getPredicate()) {
2508 default: assert(0 && "Illegal FCmp predicate");
2509 case FCmpInst::FCMP_ORD: op = "ord"; break;
2510 case FCmpInst::FCMP_UNO: op = "uno"; break;
2511 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2512 case FCmpInst::FCMP_UNE: op = "une"; break;
2513 case FCmpInst::FCMP_ULT: op = "ult"; break;
2514 case FCmpInst::FCMP_ULE: op = "ule"; break;
2515 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2516 case FCmpInst::FCMP_UGE: op = "uge"; break;
2517 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2518 case FCmpInst::FCMP_ONE: op = "one"; break;
2519 case FCmpInst::FCMP_OLT: op = "olt"; break;
2520 case FCmpInst::FCMP_OLE: op = "ole"; break;
2521 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2522 case FCmpInst::FCMP_OGE: op = "oge"; break;
2523 }
2524
2525 Out << "llvm_fcmp_" << op << "(";
2526 // Write the first operand
2527 writeOperand(I.getOperand(0));
2528 Out << ", ";
2529 // Write the second operand
2530 writeOperand(I.getOperand(1));
2531 Out << ")";
2532}
2533
2534static const char * getFloatBitCastField(const Type *Ty) {
2535 switch (Ty->getTypeID()) {
2536 default: assert(0 && "Invalid Type");
2537 case Type::FloatTyID: return "Float";
2538 case Type::DoubleTyID: return "Double";
2539 case Type::IntegerTyID: {
2540 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2541 if (NumBits <= 32)
2542 return "Int32";
2543 else
2544 return "Int64";
2545 }
2546 }
2547}
2548
2549void CWriter::visitCastInst(CastInst &I) {
2550 const Type *DstTy = I.getType();
2551 const Type *SrcTy = I.getOperand(0)->getType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002552 if (isFPIntBitCast(I)) {
Chris Lattnerd70f5a82008-05-31 09:23:55 +00002553 Out << '(';
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002554 // These int<->float and long<->double casts need to be handled specially
2555 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2556 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2557 writeOperand(I.getOperand(0));
2558 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2559 << getFloatBitCastField(I.getType());
Chris Lattnerd70f5a82008-05-31 09:23:55 +00002560 Out << ')';
2561 return;
2562 }
2563
2564 Out << '(';
2565 printCast(I.getOpcode(), SrcTy, DstTy);
2566
2567 // Make a sext from i1 work by subtracting the i1 from 0 (an int).
2568 if (SrcTy == Type::Int1Ty && I.getOpcode() == Instruction::SExt)
2569 Out << "0-";
2570
2571 writeOperand(I.getOperand(0));
2572
2573 if (DstTy == Type::Int1Ty &&
2574 (I.getOpcode() == Instruction::Trunc ||
2575 I.getOpcode() == Instruction::FPToUI ||
2576 I.getOpcode() == Instruction::FPToSI ||
2577 I.getOpcode() == Instruction::PtrToInt)) {
2578 // Make sure we really get a trunc to bool by anding the operand with 1
2579 Out << "&1u";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002580 }
2581 Out << ')';
2582}
2583
2584void CWriter::visitSelectInst(SelectInst &I) {
2585 Out << "((";
2586 writeOperand(I.getCondition());
2587 Out << ") ? (";
2588 writeOperand(I.getTrueValue());
2589 Out << ") : (";
2590 writeOperand(I.getFalseValue());
2591 Out << "))";
2592}
2593
2594
2595void CWriter::lowerIntrinsics(Function &F) {
2596 // This is used to keep track of intrinsics that get generated to a lowered
2597 // function. We must generate the prototypes before the function body which
2598 // will only be expanded on first use (by the loop below).
2599 std::vector<Function*> prototypesToGen;
2600
2601 // Examine all the instructions in this function to find the intrinsics that
2602 // need to be lowered.
2603 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2604 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2605 if (CallInst *CI = dyn_cast<CallInst>(I++))
2606 if (Function *F = CI->getCalledFunction())
2607 switch (F->getIntrinsicID()) {
2608 case Intrinsic::not_intrinsic:
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002609 case Intrinsic::memory_barrier:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002610 case Intrinsic::vastart:
2611 case Intrinsic::vacopy:
2612 case Intrinsic::vaend:
2613 case Intrinsic::returnaddress:
2614 case Intrinsic::frameaddress:
2615 case Intrinsic::setjmp:
2616 case Intrinsic::longjmp:
2617 case Intrinsic::prefetch:
2618 case Intrinsic::dbg_stoppoint:
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002619 case Intrinsic::powi:
Chris Lattner6a947cb2008-03-02 08:47:13 +00002620 case Intrinsic::x86_sse_cmp_ss:
2621 case Intrinsic::x86_sse_cmp_ps:
2622 case Intrinsic::x86_sse2_cmp_sd:
2623 case Intrinsic::x86_sse2_cmp_pd:
Chris Lattner709df322008-03-02 08:54:27 +00002624 case Intrinsic::ppc_altivec_lvsl:
Chris Lattner6a947cb2008-03-02 08:47:13 +00002625 // We directly implement these intrinsics
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002626 break;
2627 default:
2628 // If this is an intrinsic that directly corresponds to a GCC
2629 // builtin, we handle it.
2630 const char *BuiltinName = "";
2631#define GET_GCC_BUILTIN_NAME
2632#include "llvm/Intrinsics.gen"
2633#undef GET_GCC_BUILTIN_NAME
2634 // If we handle it, don't lower it.
2635 if (BuiltinName[0]) break;
2636
2637 // All other intrinsic calls we must lower.
2638 Instruction *Before = 0;
2639 if (CI != &BB->front())
2640 Before = prior(BasicBlock::iterator(CI));
2641
2642 IL->LowerIntrinsicCall(CI);
2643 if (Before) { // Move iterator to instruction after call
2644 I = Before; ++I;
2645 } else {
2646 I = BB->begin();
2647 }
2648 // If the intrinsic got lowered to another call, and that call has
2649 // a definition then we need to make sure its prototype is emitted
2650 // before any calls to it.
2651 if (CallInst *Call = dyn_cast<CallInst>(I))
2652 if (Function *NewF = Call->getCalledFunction())
2653 if (!NewF->isDeclaration())
2654 prototypesToGen.push_back(NewF);
2655
2656 break;
2657 }
2658
2659 // We may have collected some prototypes to emit in the loop above.
2660 // Emit them now, before the function that uses them is emitted. But,
2661 // be careful not to emit them twice.
2662 std::vector<Function*>::iterator I = prototypesToGen.begin();
2663 std::vector<Function*>::iterator E = prototypesToGen.end();
2664 for ( ; I != E; ++I) {
2665 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2666 Out << '\n';
2667 printFunctionSignature(*I, true);
2668 Out << ";\n";
2669 }
2670 }
2671}
2672
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002673void CWriter::visitCallInst(CallInst &I) {
Chris Lattner8a3b6e42008-05-22 06:19:37 +00002674 if (isa<InlineAsm>(I.getOperand(0)))
2675 return visitInlineAsm(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002676
2677 bool WroteCallee = false;
2678
2679 // Handle intrinsic function calls first...
2680 if (Function *F = I.getCalledFunction())
Chris Lattnera74b9182008-03-02 08:29:41 +00002681 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2682 if (visitBuiltinCall(I, ID, WroteCallee))
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002683 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002684
2685 Value *Callee = I.getCalledValue();
2686
2687 const PointerType *PTy = cast<PointerType>(Callee->getType());
2688 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2689
2690 // If this is a call to a struct-return function, assign to the first
2691 // parameter instead of passing it to the call.
Chris Lattner1c8733e2008-03-12 17:45:29 +00002692 const PAListPtr &PAL = I.getParamAttrs();
Evan Chengb8a072c2008-01-12 18:53:07 +00002693 bool hasByVal = I.hasByValArgument();
Devang Patel949a4b72008-03-03 21:46:28 +00002694 bool isStructRet = I.hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002695 if (isStructRet) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00002696 writeOperandDeref(I.getOperand(1));
Evan Chengf8956382008-01-11 23:10:11 +00002697 Out << " = ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002698 }
2699
2700 if (I.isTailCall()) Out << " /*tail*/ ";
2701
2702 if (!WroteCallee) {
2703 // If this is an indirect call to a struct return function, we need to cast
Evan Chengb8a072c2008-01-12 18:53:07 +00002704 // the pointer. Ditto for indirect calls with byval arguments.
2705 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002706
2707 // GCC is a real PITA. It does not permit codegening casts of functions to
2708 // function pointers if they are in a call (it generates a trap instruction
2709 // instead!). We work around this by inserting a cast to void* in between
2710 // the function and the function pointer cast. Unfortunately, we can't just
2711 // form the constant expression here, because the folder will immediately
2712 // nuke it.
2713 //
2714 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2715 // that void* and function pointers have the same size. :( To deal with this
2716 // in the common case, we handle casts where the number of arguments passed
2717 // match exactly.
2718 //
2719 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2720 if (CE->isCast())
2721 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2722 NeedsCast = true;
2723 Callee = RF;
2724 }
2725
2726 if (NeedsCast) {
2727 // Ok, just cast the pointer type.
2728 Out << "((";
Evan Chengb8a072c2008-01-12 18:53:07 +00002729 if (isStructRet)
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002730 printStructReturnPointerFunctionType(Out, PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002731 cast<PointerType>(I.getCalledValue()->getType()));
Evan Chengb8a072c2008-01-12 18:53:07 +00002732 else if (hasByVal)
2733 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
2734 else
2735 printType(Out, I.getCalledValue()->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002736 Out << ")(void*)";
2737 }
2738 writeOperand(Callee);
2739 if (NeedsCast) Out << ')';
2740 }
2741
2742 Out << '(';
2743
2744 unsigned NumDeclaredParams = FTy->getNumParams();
2745
2746 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2747 unsigned ArgNo = 0;
2748 if (isStructRet) { // Skip struct return argument.
2749 ++AI;
2750 ++ArgNo;
2751 }
2752
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002753 bool PrintedArg = false;
Evan Chengf8956382008-01-11 23:10:11 +00002754 for (; AI != AE; ++AI, ++ArgNo) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002755 if (PrintedArg) Out << ", ";
2756 if (ArgNo < NumDeclaredParams &&
2757 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2758 Out << '(';
2759 printType(Out, FTy->getParamType(ArgNo),
Chris Lattner1c8733e2008-03-12 17:45:29 +00002760 /*isSigned=*/PAL.paramHasAttr(ArgNo+1, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002761 Out << ')';
2762 }
Evan Chengf8956382008-01-11 23:10:11 +00002763 // Check if the argument is expected to be passed by value.
Chris Lattner8bbc8592008-03-02 08:07:24 +00002764 if (I.paramHasAttr(ArgNo+1, ParamAttr::ByVal))
2765 writeOperandDeref(*AI);
2766 else
2767 writeOperand(*AI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002768 PrintedArg = true;
2769 }
2770 Out << ')';
2771}
2772
Chris Lattnera74b9182008-03-02 08:29:41 +00002773/// visitBuiltinCall - Handle the call to the specified builtin. Returns true
2774/// if the entire call is handled, return false it it wasn't handled, and
2775/// optionally set 'WroteCallee' if the callee has already been printed out.
2776bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
2777 bool &WroteCallee) {
2778 switch (ID) {
2779 default: {
2780 // If this is an intrinsic that directly corresponds to a GCC
2781 // builtin, we emit it here.
2782 const char *BuiltinName = "";
2783 Function *F = I.getCalledFunction();
2784#define GET_GCC_BUILTIN_NAME
2785#include "llvm/Intrinsics.gen"
2786#undef GET_GCC_BUILTIN_NAME
2787 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2788
2789 Out << BuiltinName;
2790 WroteCallee = true;
2791 return false;
2792 }
2793 case Intrinsic::memory_barrier:
Andrew Lenharth5c976182008-03-05 23:41:37 +00002794 Out << "__sync_synchronize()";
Chris Lattnera74b9182008-03-02 08:29:41 +00002795 return true;
2796 case Intrinsic::vastart:
2797 Out << "0; ";
2798
2799 Out << "va_start(*(va_list*)";
2800 writeOperand(I.getOperand(1));
2801 Out << ", ";
2802 // Output the last argument to the enclosing function.
2803 if (I.getParent()->getParent()->arg_empty()) {
2804 cerr << "The C backend does not currently support zero "
2805 << "argument varargs functions, such as '"
2806 << I.getParent()->getParent()->getName() << "'!\n";
2807 abort();
2808 }
2809 writeOperand(--I.getParent()->getParent()->arg_end());
2810 Out << ')';
2811 return true;
2812 case Intrinsic::vaend:
2813 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
2814 Out << "0; va_end(*(va_list*)";
2815 writeOperand(I.getOperand(1));
2816 Out << ')';
2817 } else {
2818 Out << "va_end(*(va_list*)0)";
2819 }
2820 return true;
2821 case Intrinsic::vacopy:
2822 Out << "0; ";
2823 Out << "va_copy(*(va_list*)";
2824 writeOperand(I.getOperand(1));
2825 Out << ", *(va_list*)";
2826 writeOperand(I.getOperand(2));
2827 Out << ')';
2828 return true;
2829 case Intrinsic::returnaddress:
2830 Out << "__builtin_return_address(";
2831 writeOperand(I.getOperand(1));
2832 Out << ')';
2833 return true;
2834 case Intrinsic::frameaddress:
2835 Out << "__builtin_frame_address(";
2836 writeOperand(I.getOperand(1));
2837 Out << ')';
2838 return true;
2839 case Intrinsic::powi:
2840 Out << "__builtin_powi(";
2841 writeOperand(I.getOperand(1));
2842 Out << ", ";
2843 writeOperand(I.getOperand(2));
2844 Out << ')';
2845 return true;
2846 case Intrinsic::setjmp:
2847 Out << "setjmp(*(jmp_buf*)";
2848 writeOperand(I.getOperand(1));
2849 Out << ')';
2850 return true;
2851 case Intrinsic::longjmp:
2852 Out << "longjmp(*(jmp_buf*)";
2853 writeOperand(I.getOperand(1));
2854 Out << ", ";
2855 writeOperand(I.getOperand(2));
2856 Out << ')';
2857 return true;
2858 case Intrinsic::prefetch:
2859 Out << "LLVM_PREFETCH((const void *)";
2860 writeOperand(I.getOperand(1));
2861 Out << ", ";
2862 writeOperand(I.getOperand(2));
2863 Out << ", ";
2864 writeOperand(I.getOperand(3));
2865 Out << ")";
2866 return true;
2867 case Intrinsic::stacksave:
2868 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
2869 // to work around GCC bugs (see PR1809).
2870 Out << "0; *((void**)&" << GetValueName(&I)
2871 << ") = __builtin_stack_save()";
2872 return true;
2873 case Intrinsic::dbg_stoppoint: {
2874 // If we use writeOperand directly we get a "u" suffix which is rejected
2875 // by gcc.
2876 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2877 Out << "\n#line "
2878 << SPI.getLine()
2879 << " \"" << SPI.getDirectory()
2880 << SPI.getFileName() << "\"\n";
2881 return true;
2882 }
Chris Lattner6a947cb2008-03-02 08:47:13 +00002883 case Intrinsic::x86_sse_cmp_ss:
2884 case Intrinsic::x86_sse_cmp_ps:
2885 case Intrinsic::x86_sse2_cmp_sd:
2886 case Intrinsic::x86_sse2_cmp_pd:
2887 Out << '(';
2888 printType(Out, I.getType());
2889 Out << ')';
2890 // Multiple GCC builtins multiplex onto this intrinsic.
2891 switch (cast<ConstantInt>(I.getOperand(3))->getZExtValue()) {
2892 default: assert(0 && "Invalid llvm.x86.sse.cmp!");
2893 case 0: Out << "__builtin_ia32_cmpeq"; break;
2894 case 1: Out << "__builtin_ia32_cmplt"; break;
2895 case 2: Out << "__builtin_ia32_cmple"; break;
2896 case 3: Out << "__builtin_ia32_cmpunord"; break;
2897 case 4: Out << "__builtin_ia32_cmpneq"; break;
2898 case 5: Out << "__builtin_ia32_cmpnlt"; break;
2899 case 6: Out << "__builtin_ia32_cmpnle"; break;
2900 case 7: Out << "__builtin_ia32_cmpord"; break;
2901 }
2902 if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
2903 Out << 'p';
2904 else
2905 Out << 's';
2906 if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
2907 Out << 's';
2908 else
2909 Out << 'd';
2910
2911 Out << "(";
2912 writeOperand(I.getOperand(1));
2913 Out << ", ";
2914 writeOperand(I.getOperand(2));
2915 Out << ")";
2916 return true;
Chris Lattner709df322008-03-02 08:54:27 +00002917 case Intrinsic::ppc_altivec_lvsl:
2918 Out << '(';
2919 printType(Out, I.getType());
2920 Out << ')';
2921 Out << "__builtin_altivec_lvsl(0, (void*)";
2922 writeOperand(I.getOperand(1));
2923 Out << ")";
2924 return true;
Chris Lattnera74b9182008-03-02 08:29:41 +00002925 }
2926}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002927
2928//This converts the llvm constraint string to something gcc is expecting.
2929//TODO: work out platform independent constraints and factor those out
2930// of the per target tables
2931// handle multiple constraint codes
2932std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
2933
2934 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
2935
Dan Gohman12300e12008-03-25 21:45:14 +00002936 const char *const *table = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002937
2938 //Grab the translation table from TargetAsmInfo if it exists
2939 if (!TAsm) {
2940 std::string E;
Gordon Henriksen99e34ab2007-10-17 21:28:48 +00002941 const TargetMachineRegistry::entry* Match =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002942 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
2943 if (Match) {
2944 //Per platform Target Machines don't exist, so create it
2945 // this must be done only once
2946 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
2947 TAsm = TM->getTargetAsmInfo();
2948 }
2949 }
2950 if (TAsm)
2951 table = TAsm->getAsmCBE();
2952
2953 //Search the translation table if it exists
2954 for (int i = 0; table && table[i]; i += 2)
2955 if (c.Codes[0] == table[i])
2956 return table[i+1];
2957
2958 //default is identity
2959 return c.Codes[0];
2960}
2961
2962//TODO: import logic from AsmPrinter.cpp
2963static std::string gccifyAsm(std::string asmstr) {
2964 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
2965 if (asmstr[i] == '\n')
2966 asmstr.replace(i, 1, "\\n");
2967 else if (asmstr[i] == '\t')
2968 asmstr.replace(i, 1, "\\t");
2969 else if (asmstr[i] == '$') {
2970 if (asmstr[i + 1] == '{') {
2971 std::string::size_type a = asmstr.find_first_of(':', i + 1);
2972 std::string::size_type b = asmstr.find_first_of('}', i + 1);
2973 std::string n = "%" +
2974 asmstr.substr(a + 1, b - a - 1) +
2975 asmstr.substr(i + 2, a - i - 2);
2976 asmstr.replace(i, b - i + 1, n);
2977 i += n.size() - 1;
2978 } else
2979 asmstr.replace(i, 1, "%");
2980 }
2981 else if (asmstr[i] == '%')//grr
2982 { asmstr.replace(i, 1, "%%"); ++i;}
2983
2984 return asmstr;
2985}
2986
2987//TODO: assumptions about what consume arguments from the call are likely wrong
2988// handle communitivity
2989void CWriter::visitInlineAsm(CallInst &CI) {
2990 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
2991 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
Chris Lattner8a3b6e42008-05-22 06:19:37 +00002992
2993 std::vector<std::pair<Value*, int> > ResultVals;
2994 if (CI.getType() == Type::VoidTy)
2995 ;
2996 else if (const StructType *ST = dyn_cast<StructType>(CI.getType())) {
2997 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
2998 ResultVals.push_back(std::make_pair(&CI, (int)i));
2999 } else {
3000 ResultVals.push_back(std::make_pair(&CI, -1));
3001 }
3002
Chris Lattnera605a9c2008-06-04 18:03:28 +00003003 // Fix up the asm string for gcc and emit it.
3004 Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n";
3005 Out << " :";
3006
3007 unsigned ValueCount = 0;
3008 bool IsFirst = true;
3009
3010 // Convert over all the output constraints.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003011 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
Chris Lattnera605a9c2008-06-04 18:03:28 +00003012 E = Constraints.end(); I != E; ++I) {
3013
3014 if (I->Type != InlineAsm::isOutput) {
3015 ++ValueCount;
3016 continue; // Ignore non-output constraints.
3017 }
3018
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003019 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
Chris Lattner8a3b6e42008-05-22 06:19:37 +00003020 std::string C = InterpretASMConstraint(*I);
3021 if (C.empty()) continue;
3022
Chris Lattnera605a9c2008-06-04 18:03:28 +00003023 if (!IsFirst) {
Chris Lattner8a3b6e42008-05-22 06:19:37 +00003024 Out << ", ";
Chris Lattnera605a9c2008-06-04 18:03:28 +00003025 IsFirst = false;
3026 }
3027
3028 // Unpack the dest.
3029 Value *DestVal;
3030 int DestValNo = -1;
3031
3032 if (ValueCount < ResultVals.size()) {
3033 DestVal = ResultVals[ValueCount].first;
3034 DestValNo = ResultVals[ValueCount].second;
3035 } else
3036 DestVal = CI.getOperand(ValueCount-ResultVals.size()+1);
3037
3038 if (I->isEarlyClobber)
3039 C = "&"+C;
3040
3041 Out << "\"=" << C << "\"(" << GetValueName(DestVal);
3042 if (DestValNo != -1)
3043 Out << ".field" << DestValNo; // Multiple retvals.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003044 Out << ")";
Chris Lattnera605a9c2008-06-04 18:03:28 +00003045 ++ValueCount;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003046 }
Chris Lattnera605a9c2008-06-04 18:03:28 +00003047
3048
3049 // Convert over all the input constraints.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003050 Out << "\n :";
Chris Lattnera605a9c2008-06-04 18:03:28 +00003051 IsFirst = true;
3052 ValueCount = 0;
3053 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
3054 E = Constraints.end(); I != E; ++I) {
3055 if (I->Type != InlineAsm::isInput) {
3056 ++ValueCount;
3057 continue; // Ignore non-input constraints.
3058 }
3059
3060 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
3061 std::string C = InterpretASMConstraint(*I);
3062 if (C.empty()) continue;
3063
3064 if (!IsFirst) {
Chris Lattner5fee1202008-05-22 06:29:38 +00003065 Out << ", ";
Chris Lattnera605a9c2008-06-04 18:03:28 +00003066 IsFirst = false;
3067 }
3068
3069 assert(ValueCount >= ResultVals.size() && "Input can't refer to result");
3070 Value *SrcVal = CI.getOperand(ValueCount-ResultVals.size()+1);
3071
3072 Out << "\"" << C << "\"(";
3073 if (!I->isIndirect)
3074 writeOperand(SrcVal);
3075 else
3076 writeOperandDeref(SrcVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003077 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003078 }
Chris Lattnera605a9c2008-06-04 18:03:28 +00003079
3080 // Convert over the clobber constraints.
3081 IsFirst = true;
3082 ValueCount = 0;
3083 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
3084 E = Constraints.end(); I != E; ++I) {
3085 if (I->Type != InlineAsm::isClobber)
3086 continue; // Ignore non-input constraints.
3087
3088 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
3089 std::string C = InterpretASMConstraint(*I);
3090 if (C.empty()) continue;
3091
3092 if (!IsFirst) {
3093 Out << ", ";
3094 IsFirst = false;
3095 }
3096
3097 Out << '\"' << C << '"';
3098 }
3099
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003100 Out << ")";
3101}
3102
3103void CWriter::visitMallocInst(MallocInst &I) {
3104 assert(0 && "lowerallocations pass didn't work!");
3105}
3106
3107void CWriter::visitAllocaInst(AllocaInst &I) {
3108 Out << '(';
3109 printType(Out, I.getType());
3110 Out << ") alloca(sizeof(";
3111 printType(Out, I.getType()->getElementType());
3112 Out << ')';
3113 if (I.isArrayAllocation()) {
3114 Out << " * " ;
3115 writeOperand(I.getOperand(0));
3116 }
3117 Out << ')';
3118}
3119
3120void CWriter::visitFreeInst(FreeInst &I) {
3121 assert(0 && "lowerallocations pass didn't work!");
3122}
3123
Chris Lattner8bbc8592008-03-02 08:07:24 +00003124void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
3125 gep_type_iterator E) {
3126
3127 // If there are no indices, just print out the pointer.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003128 if (I == E) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00003129 writeOperand(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003130 return;
3131 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00003132
3133 // Find out if the last index is into a vector. If so, we have to print this
3134 // specially. Since vectors can't have elements of indexable type, only the
3135 // last index could possibly be of a vector element.
3136 const VectorType *LastIndexIsVector = 0;
3137 {
3138 for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
3139 LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003140 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00003141
3142 Out << "(";
3143
3144 // If the last index is into a vector, we can't print it as &a[i][j] because
3145 // we can't index into a vector with j in GCC. Instead, emit this as
3146 // (((float*)&a[i])+j)
3147 if (LastIndexIsVector) {
3148 Out << "((";
3149 printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
3150 Out << ")(";
3151 }
3152
3153 Out << '&';
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003154
Chris Lattner8bbc8592008-03-02 08:07:24 +00003155 // If the first index is 0 (very typical) we can do a number of
3156 // simplifications to clean up the code.
3157 Value *FirstOp = I.getOperand();
3158 if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
3159 // First index isn't simple, print it the hard way.
3160 writeOperand(Ptr);
3161 } else {
3162 ++I; // Skip the zero index.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003163
Chris Lattner8bbc8592008-03-02 08:07:24 +00003164 // Okay, emit the first operand. If Ptr is something that is already address
3165 // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
3166 if (isAddressExposed(Ptr)) {
3167 writeOperandInternal(Ptr);
3168 } else if (I != E && isa<StructType>(*I)) {
3169 // If we didn't already emit the first operand, see if we can print it as
3170 // P->f instead of "P[0].f"
3171 writeOperand(Ptr);
3172 Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
3173 ++I; // eat the struct index as well.
3174 } else {
3175 // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
3176 Out << "(*";
3177 writeOperand(Ptr);
3178 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003179 }
3180 }
3181
Chris Lattner8bbc8592008-03-02 08:07:24 +00003182 for (; I != E; ++I) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003183 if (isa<StructType>(*I)) {
3184 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
Dan Gohman5d995b02008-06-02 21:30:49 +00003185 } else if (isa<ArrayType>(*I)) {
3186 Out << ".array[";
3187 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3188 Out << ']';
Chris Lattner8bbc8592008-03-02 08:07:24 +00003189 } else if (!isa<VectorType>(*I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003190 Out << '[';
Chris Lattner7ce1ee42007-09-22 20:16:48 +00003191 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003192 Out << ']';
Chris Lattner8bbc8592008-03-02 08:07:24 +00003193 } else {
3194 // If the last index is into a vector, then print it out as "+j)". This
3195 // works with the 'LastIndexIsVector' code above.
3196 if (isa<Constant>(I.getOperand()) &&
3197 cast<Constant>(I.getOperand())->isNullValue()) {
3198 Out << "))"; // avoid "+0".
3199 } else {
3200 Out << ")+(";
3201 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3202 Out << "))";
3203 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003204 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00003205 }
3206 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003207}
3208
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003209void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
3210 bool IsVolatile, unsigned Alignment) {
3211
3212 bool IsUnaligned = Alignment &&
3213 Alignment < TD->getABITypeAlignment(OperandType);
3214
3215 if (!IsUnaligned)
3216 Out << '*';
3217 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003218 Out << "((";
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003219 if (IsUnaligned)
3220 Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
3221 printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
3222 if (IsUnaligned) {
3223 Out << "; } ";
3224 if (IsVolatile) Out << "volatile ";
3225 Out << "*";
3226 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003227 Out << ")";
3228 }
3229
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003230 writeOperand(Operand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003231
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003232 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003233 Out << ')';
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003234 if (IsUnaligned)
3235 Out << "->data";
3236 }
3237}
3238
3239void CWriter::visitLoadInst(LoadInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003240 writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
3241 I.getAlignment());
3242
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003243}
3244
3245void CWriter::visitStoreInst(StoreInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003246 writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
3247 I.isVolatile(), I.getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003248 Out << " = ";
3249 Value *Operand = I.getOperand(0);
3250 Constant *BitMask = 0;
3251 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
3252 if (!ITy->isPowerOf2ByteWidth())
3253 // We have a bit width that doesn't match an even power-of-2 byte
3254 // size. Consequently we must & the value with the type's bit mask
3255 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
3256 if (BitMask)
3257 Out << "((";
3258 writeOperand(Operand);
3259 if (BitMask) {
3260 Out << ") & ";
3261 printConstant(BitMask);
3262 Out << ")";
3263 }
3264}
3265
3266void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00003267 printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
3268 gep_type_end(I));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003269}
3270
3271void CWriter::visitVAArgInst(VAArgInst &I) {
3272 Out << "va_arg(*(va_list*)";
3273 writeOperand(I.getOperand(0));
3274 Out << ", ";
3275 printType(Out, I.getType());
3276 Out << ");\n ";
3277}
3278
Chris Lattnerf41a7942008-03-02 03:52:39 +00003279void CWriter::visitInsertElementInst(InsertElementInst &I) {
3280 const Type *EltTy = I.getType()->getElementType();
3281 writeOperand(I.getOperand(0));
3282 Out << ";\n ";
3283 Out << "((";
3284 printType(Out, PointerType::getUnqual(EltTy));
3285 Out << ")(&" << GetValueName(&I) << "))[";
Chris Lattnerf41a7942008-03-02 03:52:39 +00003286 writeOperand(I.getOperand(2));
Chris Lattner09418362008-03-02 08:10:16 +00003287 Out << "] = (";
3288 writeOperand(I.getOperand(1));
Chris Lattnerf41a7942008-03-02 03:52:39 +00003289 Out << ")";
3290}
3291
Chris Lattnera5f0bc02008-03-02 03:57:08 +00003292void CWriter::visitExtractElementInst(ExtractElementInst &I) {
3293 // We know that our operand is not inlined.
3294 Out << "((";
3295 const Type *EltTy =
3296 cast<VectorType>(I.getOperand(0)->getType())->getElementType();
3297 printType(Out, PointerType::getUnqual(EltTy));
3298 Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
3299 writeOperand(I.getOperand(1));
3300 Out << "]";
3301}
3302
Chris Lattnerf858a042008-03-02 05:41:07 +00003303void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
3304 Out << "(";
3305 printType(Out, SVI.getType());
3306 Out << "){ ";
3307 const VectorType *VT = SVI.getType();
3308 unsigned NumElts = VT->getNumElements();
3309 const Type *EltTy = VT->getElementType();
3310
3311 for (unsigned i = 0; i != NumElts; ++i) {
3312 if (i) Out << ", ";
3313 int SrcVal = SVI.getMaskValue(i);
3314 if ((unsigned)SrcVal >= NumElts*2) {
3315 Out << " 0/*undef*/ ";
3316 } else {
3317 Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
3318 if (isa<Instruction>(Op)) {
3319 // Do an extractelement of this value from the appropriate input.
3320 Out << "((";
3321 printType(Out, PointerType::getUnqual(EltTy));
3322 Out << ")(&" << GetValueName(Op)
Duncan Sandsf6890712008-05-27 11:50:51 +00003323 << "))[" << (SrcVal & (NumElts-1)) << "]";
Chris Lattnerf858a042008-03-02 05:41:07 +00003324 } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
3325 Out << "0";
3326 } else {
Duncan Sandsf6890712008-05-27 11:50:51 +00003327 printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal &
3328 (NumElts-1)));
Chris Lattnerf858a042008-03-02 05:41:07 +00003329 }
3330 }
3331 }
3332 Out << "}";
3333}
Chris Lattnera5f0bc02008-03-02 03:57:08 +00003334
Dan Gohman5d995b02008-06-02 21:30:49 +00003335void CWriter::visitInsertValueInst(InsertValueInst &IVI) {
3336 // Start by copying the entire aggregate value into the result variable.
3337 writeOperand(IVI.getOperand(0));
3338 Out << ";\n ";
3339
3340 // Then do the insert to update the field.
3341 Out << GetValueName(&IVI);
3342 for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end();
3343 i != e; ++i) {
3344 const Type *IndexedTy =
3345 ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(), b, i+1);
3346 if (isa<ArrayType>(IndexedTy))
3347 Out << ".array[" << *i << "]";
3348 else
3349 Out << ".field" << *i;
3350 }
3351 Out << " = ";
3352 writeOperand(IVI.getOperand(1));
3353}
3354
3355void CWriter::visitExtractValueInst(ExtractValueInst &EVI) {
3356 Out << "(";
3357 if (isa<UndefValue>(EVI.getOperand(0))) {
3358 Out << "(";
3359 printType(Out, EVI.getType());
3360 Out << ") 0/*UNDEF*/";
3361 } else {
3362 Out << GetValueName(EVI.getOperand(0));
3363 for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end();
3364 i != e; ++i) {
3365 const Type *IndexedTy =
3366 ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(), b, i+1);
3367 if (isa<ArrayType>(IndexedTy))
3368 Out << ".array[" << *i << "]";
3369 else
3370 Out << ".field" << *i;
3371 }
3372 }
3373 Out << ")";
3374}
3375
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003376//===----------------------------------------------------------------------===//
3377// External Interface declaration
3378//===----------------------------------------------------------------------===//
3379
3380bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
3381 std::ostream &o,
3382 CodeGenFileType FileType,
3383 bool Fast) {
3384 if (FileType != TargetMachine::AssemblyFile) return true;
3385
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003386 PM.add(createGCLoweringPass());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003387 PM.add(createLowerAllocationsPass(true));
3388 PM.add(createLowerInvokePass());
3389 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
3390 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3391 PM.add(new CWriter(o));
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003392 PM.add(createCollectorMetadataDeleter());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003393 return false;
3394}