blob: 34511e8a3a81291349430b6744aec058540116a2 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This library converts LLVM code to C code, compilable by GCC and other C
11// compilers.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000021#include "llvm/Pass.h"
22#include "llvm/PassManager.h"
23#include "llvm/TypeSymbolTable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Analysis/ConstantsScanner.h"
28#include "llvm/Analysis/FindUsedTypes.h"
29#include "llvm/Analysis/LoopInfo.h"
Gordon Henriksendf87fdc2008-01-07 01:30:38 +000030#include "llvm/CodeGen/Passes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000031#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/Transforms/Scalar.h"
33#include "llvm/Target/TargetMachineRegistry.h"
34#include "llvm/Target/TargetAsmInfo.h"
35#include "llvm/Target/TargetData.h"
36#include "llvm/Support/CallSite.h"
37#include "llvm/Support/CFG.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/InstVisitor.h"
40#include "llvm/Support/Mangler.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/ADT/StringExtras.h"
43#include "llvm/ADT/STLExtras.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Config/config.h"
46#include <algorithm>
47#include <sstream>
48using namespace llvm;
49
Dan Gohman089efff2008-05-13 00:00:25 +000050// Register the target.
51static RegisterTarget<CTargetMachine> X("c", " C backend");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000052
Dan Gohman089efff2008-05-13 00:00:25 +000053namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000054 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
55 /// any unnamed structure types that are used by the program, and merges
56 /// external functions with the same name.
57 ///
58 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
59 public:
60 static char ID;
61 CBackendNameAllUsedStructsAndMergeFunctions()
62 : ModulePass((intptr_t)&ID) {}
63 void getAnalysisUsage(AnalysisUsage &AU) const {
64 AU.addRequired<FindUsedTypes>();
65 }
66
67 virtual const char *getPassName() const {
68 return "C backend type canonicalizer";
69 }
70
71 virtual bool runOnModule(Module &M);
72 };
73
74 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
75
76 /// CWriter - This class is the main chunk of code that converts an LLVM
77 /// module to a C translation unit.
78 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
79 std::ostream &Out;
80 IntrinsicLowering *IL;
81 Mangler *Mang;
82 LoopInfo *LI;
83 const Module *TheModule;
84 const TargetAsmInfo* TAsm;
85 const TargetData* TD;
86 std::map<const Type *, std::string> TypeNames;
87 std::map<const ConstantFP *, unsigned> FPConstantMap;
88 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
Chris Lattner8bbc8592008-03-02 08:07:24 +000089 std::set<const Argument*> ByValParams;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000090
91 public:
92 static char ID;
Dan Gohman40bd38e2008-03-25 22:06:05 +000093 explicit CWriter(std::ostream &o)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000094 : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
95 TheModule(0), TAsm(0), TD(0) {}
96
97 virtual const char *getPassName() const { return "C backend"; }
98
99 void getAnalysisUsage(AnalysisUsage &AU) const {
100 AU.addRequired<LoopInfo>();
101 AU.setPreservesAll();
102 }
103
104 virtual bool doInitialization(Module &M);
105
106 bool runOnFunction(Function &F) {
107 LI = &getAnalysis<LoopInfo>();
108
109 // Get rid of intrinsics we can't handle.
110 lowerIntrinsics(F);
111
112 // Output all floating point constants that cannot be printed accurately.
113 printFloatingPointConstants(F);
114
115 printFunction(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000116 return false;
117 }
118
119 virtual bool doFinalization(Module &M) {
120 // Free memory...
121 delete Mang;
Evan Cheng17254e62008-01-11 09:12:49 +0000122 FPConstantMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000123 TypeNames.clear();
Evan Cheng17254e62008-01-11 09:12:49 +0000124 ByValParams.clear();
Chris Lattner8bbc8592008-03-02 08:07:24 +0000125 intrinsicPrototypesAlreadyGenerated.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000126 return false;
127 }
128
129 std::ostream &printType(std::ostream &Out, const Type *Ty,
130 bool isSigned = false,
131 const std::string &VariableName = "",
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000132 bool IgnoreName = false,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000133 const PAListPtr &PAL = PAListPtr());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000134 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
Chris Lattner63fb1f02008-03-02 03:16:38 +0000135 bool isSigned,
136 const std::string &NameSoFar = "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000137
138 void printStructReturnPointerFunctionType(std::ostream &Out,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000139 const PAListPtr &PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000140 const PointerType *Ty);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000141
142 /// writeOperandDeref - Print the result of dereferencing the specified
143 /// operand with '*'. This is equivalent to printing '*' then using
144 /// writeOperand, but avoids excess syntax in some cases.
145 void writeOperandDeref(Value *Operand) {
146 if (isAddressExposed(Operand)) {
147 // Already something with an address exposed.
148 writeOperandInternal(Operand);
149 } else {
150 Out << "*(";
151 writeOperand(Operand);
152 Out << ")";
153 }
154 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000155
156 void writeOperand(Value *Operand);
157 void writeOperandRaw(Value *Operand);
Chris Lattnerd70f5a82008-05-31 09:23:55 +0000158 void writeInstComputationInline(Instruction &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000159 void writeOperandInternal(Value *Operand);
160 void writeOperandWithCast(Value* Operand, unsigned Opcode);
Chris Lattner389c9142007-09-15 06:51:03 +0000161 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000162 bool writeInstructionCast(const Instruction &I);
163
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +0000164 void writeMemoryAccess(Value *Operand, const Type *OperandType,
165 bool IsVolatile, unsigned Alignment);
166
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000167 private :
168 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
169
170 void lowerIntrinsics(Function &F);
171
172 void printModule(Module *M);
173 void printModuleTypes(const TypeSymbolTable &ST);
Dan Gohman5d995b02008-06-02 21:30:49 +0000174 void printContainedStructs(const Type *Ty, std::set<const Type *> &);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000175 void printFloatingPointConstants(Function &F);
176 void printFunctionSignature(const Function *F, bool Prototype);
177
178 void printFunction(Function &);
179 void printBasicBlock(BasicBlock *BB);
180 void printLoop(Loop *L);
181
182 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
183 void printConstant(Constant *CPV);
184 void printConstantWithCast(Constant *CPV, unsigned Opcode);
185 bool printConstExprCast(const ConstantExpr *CE);
186 void printConstantArray(ConstantArray *CPA);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000187 void printConstantVector(ConstantVector *CV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000188
Chris Lattner8bbc8592008-03-02 08:07:24 +0000189 /// isAddressExposed - Return true if the specified value's name needs to
190 /// have its address taken in order to get a C value of the correct type.
191 /// This happens for global variables, byval parameters, and direct allocas.
192 bool isAddressExposed(const Value *V) const {
193 if (const Argument *A = dyn_cast<Argument>(V))
194 return ByValParams.count(A);
195 return isa<GlobalVariable>(V) || isDirectAlloca(V);
196 }
197
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000198 // isInlinableInst - Attempt to inline instructions into their uses to build
199 // trees as much as possible. To do this, we have to consistently decide
200 // what is acceptable to inline, so that variable declarations don't get
201 // printed and an extra copy of the expr is not emitted.
202 //
203 static bool isInlinableInst(const Instruction &I) {
204 // Always inline cmp instructions, even if they are shared by multiple
205 // expressions. GCC generates horrible code if we don't.
206 if (isa<CmpInst>(I))
207 return true;
208
209 // Must be an expression, must be used exactly once. If it is dead, we
210 // emit it inline where it would go.
211 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
212 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
Dan Gohman5d995b02008-06-02 21:30:49 +0000213 isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) ||
214 isa<InsertValueInst>(I))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000215 // Don't inline a load across a store or other bad things!
216 return false;
217
Chris Lattnerf858a042008-03-02 05:41:07 +0000218 // Must not be used in inline asm, extractelement, or shufflevector.
219 if (I.hasOneUse()) {
220 const Instruction &User = cast<Instruction>(*I.use_back());
221 if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
222 isa<ShuffleVectorInst>(User))
223 return false;
224 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000225
226 // Only inline instruction it if it's use is in the same BB as the inst.
227 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
228 }
229
230 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
231 // variables which are accessed with the & operator. This causes GCC to
232 // generate significantly better code than to emit alloca calls directly.
233 //
234 static const AllocaInst *isDirectAlloca(const Value *V) {
235 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
236 if (!AI) return false;
237 if (AI->isArrayAllocation())
238 return 0; // FIXME: we can also inline fixed size array allocas!
239 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
240 return 0;
241 return AI;
242 }
243
244 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
245 static bool isInlineAsm(const Instruction& I) {
246 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
247 return true;
248 return false;
249 }
250
251 // Instruction visitation functions
252 friend class InstVisitor<CWriter>;
253
254 void visitReturnInst(ReturnInst &I);
255 void visitBranchInst(BranchInst &I);
256 void visitSwitchInst(SwitchInst &I);
257 void visitInvokeInst(InvokeInst &I) {
258 assert(0 && "Lowerinvoke pass didn't work!");
259 }
260
261 void visitUnwindInst(UnwindInst &I) {
262 assert(0 && "Lowerinvoke pass didn't work!");
263 }
264 void visitUnreachableInst(UnreachableInst &I);
265
266 void visitPHINode(PHINode &I);
267 void visitBinaryOperator(Instruction &I);
268 void visitICmpInst(ICmpInst &I);
269 void visitFCmpInst(FCmpInst &I);
270
271 void visitCastInst (CastInst &I);
272 void visitSelectInst(SelectInst &I);
273 void visitCallInst (CallInst &I);
274 void visitInlineAsm(CallInst &I);
Chris Lattnera74b9182008-03-02 08:29:41 +0000275 bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000276
277 void visitMallocInst(MallocInst &I);
278 void visitAllocaInst(AllocaInst &I);
279 void visitFreeInst (FreeInst &I);
280 void visitLoadInst (LoadInst &I);
281 void visitStoreInst (StoreInst &I);
282 void visitGetElementPtrInst(GetElementPtrInst &I);
283 void visitVAArgInst (VAArgInst &I);
Chris Lattnerf41a7942008-03-02 03:52:39 +0000284
285 void visitInsertElementInst(InsertElementInst &I);
Chris Lattnera5f0bc02008-03-02 03:57:08 +0000286 void visitExtractElementInst(ExtractElementInst &I);
Chris Lattnerf858a042008-03-02 05:41:07 +0000287 void visitShuffleVectorInst(ShuffleVectorInst &SVI);
Dan Gohman93d04582008-04-23 21:49:29 +0000288 void visitGetResultInst(GetResultInst &GRI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000289
Dan Gohman5d995b02008-06-02 21:30:49 +0000290 void visitInsertValueInst(InsertValueInst &I);
291 void visitExtractValueInst(ExtractValueInst &I);
292
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000293 void visitInstruction(Instruction &I) {
294 cerr << "C Writer does not know about " << I;
295 abort();
296 }
297
298 void outputLValue(Instruction *I) {
299 Out << " " << GetValueName(I) << " = ";
300 }
301
302 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
303 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
304 BasicBlock *Successor, unsigned Indent);
305 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
306 unsigned Indent);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000307 void printGEPExpression(Value *Ptr, gep_type_iterator I,
308 gep_type_iterator E);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000309
310 std::string GetValueName(const Value *Operand);
311 };
312}
313
314char CWriter::ID = 0;
315
316/// This method inserts names for any unnamed structure types that are used by
317/// the program, and removes names from structure types that are not used by the
318/// program.
319///
320bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
321 // Get a set of types that are used by the program...
322 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
323
324 // Loop over the module symbol table, removing types from UT that are
325 // already named, and removing names for types that are not used.
326 //
327 TypeSymbolTable &TST = M.getTypeSymbolTable();
328 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
329 TI != TE; ) {
330 TypeSymbolTable::iterator I = TI++;
331
Dan Gohman5d995b02008-06-02 21:30:49 +0000332 // If this isn't a struct or array type, remove it from our set of types
333 // to name. This simplifies emission later.
334 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second) &&
335 !isa<ArrayType>(I->second)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000336 TST.remove(I);
337 } else {
338 // If this is not used, remove it from the symbol table.
339 std::set<const Type *>::iterator UTI = UT.find(I->second);
340 if (UTI == UT.end())
341 TST.remove(I);
342 else
343 UT.erase(UTI); // Only keep one name for this type.
344 }
345 }
346
347 // UT now contains types that are not named. Loop over it, naming
348 // structure types.
349 //
350 bool Changed = false;
351 unsigned RenameCounter = 0;
352 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
353 I != E; ++I)
Dan Gohman5d995b02008-06-02 21:30:49 +0000354 if (isa<StructType>(*I) || isa<ArrayType>(*I)) {
355 while (M.addTypeName("unnamed"+utostr(RenameCounter), *I))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000356 ++RenameCounter;
357 Changed = true;
358 }
359
360
361 // Loop over all external functions and globals. If we have two with
362 // identical names, merge them.
363 // FIXME: This code should disappear when we don't allow values with the same
364 // names when they have different types!
365 std::map<std::string, GlobalValue*> ExtSymbols;
366 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
367 Function *GV = I++;
368 if (GV->isDeclaration() && GV->hasName()) {
369 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
370 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
371 if (!X.second) {
372 // Found a conflict, replace this global with the previous one.
373 GlobalValue *OldGV = X.first->second;
374 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
375 GV->eraseFromParent();
376 Changed = true;
377 }
378 }
379 }
380 // Do the same for globals.
381 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
382 I != E;) {
383 GlobalVariable *GV = I++;
384 if (GV->isDeclaration() && GV->hasName()) {
385 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
386 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
387 if (!X.second) {
388 // Found a conflict, replace this global with the previous one.
389 GlobalValue *OldGV = X.first->second;
390 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
391 GV->eraseFromParent();
392 Changed = true;
393 }
394 }
395 }
396
397 return Changed;
398}
399
400/// printStructReturnPointerFunctionType - This is like printType for a struct
401/// return type, except, instead of printing the type as void (*)(Struct*, ...)
402/// print it as "Struct (*)(...)", for struct return functions.
403void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000404 const PAListPtr &PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405 const PointerType *TheTy) {
406 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
407 std::stringstream FunctionInnards;
408 FunctionInnards << " (*) (";
409 bool PrintedType = false;
410
411 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
412 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
413 unsigned Idx = 1;
Evan Cheng2054cb02008-01-11 03:07:46 +0000414 for (++I, ++Idx; I != E; ++I, ++Idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000415 if (PrintedType)
416 FunctionInnards << ", ";
Evan Cheng2054cb02008-01-11 03:07:46 +0000417 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +0000418 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Cheng17254e62008-01-11 09:12:49 +0000419 assert(isa<PointerType>(ArgTy));
420 ArgTy = cast<PointerType>(ArgTy)->getElementType();
421 }
Evan Cheng2054cb02008-01-11 03:07:46 +0000422 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000423 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000424 PrintedType = true;
425 }
426 if (FTy->isVarArg()) {
427 if (PrintedType)
428 FunctionInnards << ", ...";
429 } else if (!PrintedType) {
430 FunctionInnards << "void";
431 }
432 FunctionInnards << ')';
433 std::string tstr = FunctionInnards.str();
434 printType(Out, RetTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000435 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000436}
437
438std::ostream &
439CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
Chris Lattnerd8090712008-03-02 03:41:23 +0000440 const std::string &NameSoFar) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000441 assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000442 "Invalid type for printSimpleType");
443 switch (Ty->getTypeID()) {
444 case Type::VoidTyID: return Out << "void " << NameSoFar;
445 case Type::IntegerTyID: {
446 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
447 if (NumBits == 1)
448 return Out << "bool " << NameSoFar;
449 else if (NumBits <= 8)
450 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
451 else if (NumBits <= 16)
452 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
453 else if (NumBits <= 32)
454 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
Dan Gohmana2245af2008-04-02 19:40:14 +0000455 else if (NumBits <= 64)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000456 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
Dan Gohmana2245af2008-04-02 19:40:14 +0000457 else {
458 assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
459 return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000460 }
461 }
462 case Type::FloatTyID: return Out << "float " << NameSoFar;
463 case Type::DoubleTyID: return Out << "double " << NameSoFar;
Dale Johannesen137cef62007-09-17 00:38:27 +0000464 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
465 // present matches host 'long double'.
466 case Type::X86_FP80TyID:
467 case Type::PPC_FP128TyID:
468 case Type::FP128TyID: return Out << "long double " << NameSoFar;
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000469
470 case Type::VectorTyID: {
471 const VectorType *VTy = cast<VectorType>(Ty);
Chris Lattnerd8090712008-03-02 03:41:23 +0000472 return printSimpleType(Out, VTy->getElementType(), isSigned,
Chris Lattnerfddca552008-03-02 03:39:43 +0000473 " __attribute__((vector_size(" +
474 utostr(TD->getABITypeSize(VTy)) + " ))) " + NameSoFar);
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000475 }
476
477 default:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000478 cerr << "Unknown primitive type: " << *Ty << "\n";
479 abort();
480 }
481}
482
483// Pass the Type* and the variable name and this prints out the variable
484// declaration.
485//
486std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
487 bool isSigned, const std::string &NameSoFar,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000488 bool IgnoreName, const PAListPtr &PAL) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000489 if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000490 printSimpleType(Out, Ty, isSigned, NameSoFar);
491 return Out;
492 }
493
494 // Check to see if the type is named.
495 if (!IgnoreName || isa<OpaqueType>(Ty)) {
496 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
497 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
498 }
499
500 switch (Ty->getTypeID()) {
501 case Type::FunctionTyID: {
502 const FunctionType *FTy = cast<FunctionType>(Ty);
503 std::stringstream FunctionInnards;
504 FunctionInnards << " (" << NameSoFar << ") (";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000505 unsigned Idx = 1;
506 for (FunctionType::param_iterator I = FTy->param_begin(),
507 E = FTy->param_end(); I != E; ++I) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000508 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +0000509 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000510 assert(isa<PointerType>(ArgTy));
511 ArgTy = cast<PointerType>(ArgTy)->getElementType();
512 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000513 if (I != FTy->param_begin())
514 FunctionInnards << ", ";
Evan Chengb8a072c2008-01-12 18:53:07 +0000515 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000516 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000517 ++Idx;
518 }
519 if (FTy->isVarArg()) {
520 if (FTy->getNumParams())
521 FunctionInnards << ", ...";
522 } else if (!FTy->getNumParams()) {
523 FunctionInnards << "void";
524 }
525 FunctionInnards << ')';
526 std::string tstr = FunctionInnards.str();
527 printType(Out, FTy->getReturnType(),
Chris Lattner1c8733e2008-03-12 17:45:29 +0000528 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000529 return Out;
530 }
531 case Type::StructTyID: {
532 const StructType *STy = cast<StructType>(Ty);
533 Out << NameSoFar + " {\n";
534 unsigned Idx = 0;
535 for (StructType::element_iterator I = STy->element_begin(),
536 E = STy->element_end(); I != E; ++I) {
537 Out << " ";
538 printType(Out, *I, false, "field" + utostr(Idx++));
539 Out << ";\n";
540 }
541 Out << '}';
542 if (STy->isPacked())
543 Out << " __attribute__ ((packed))";
544 return Out;
545 }
546
547 case Type::PointerTyID: {
548 const PointerType *PTy = cast<PointerType>(Ty);
549 std::string ptrName = "*" + NameSoFar;
550
551 if (isa<ArrayType>(PTy->getElementType()) ||
552 isa<VectorType>(PTy->getElementType()))
553 ptrName = "(" + ptrName + ")";
554
Chris Lattner1c8733e2008-03-12 17:45:29 +0000555 if (!PAL.isEmpty())
Evan Chengb8a072c2008-01-12 18:53:07 +0000556 // Must be a function ptr cast!
557 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000558 return printType(Out, PTy->getElementType(), false, ptrName);
559 }
560
561 case Type::ArrayTyID: {
562 const ArrayType *ATy = cast<ArrayType>(Ty);
563 unsigned NumElements = ATy->getNumElements();
564 if (NumElements == 0) NumElements = 1;
Dan Gohman5d995b02008-06-02 21:30:49 +0000565 // Arrays are wrapped in structs to allow them to have normal
566 // value semantics (avoiding the array "decay").
567 Out << NameSoFar << " { ";
568 printType(Out, ATy->getElementType(), false,
569 "array[" + utostr(NumElements) + "]");
570 return Out << "; }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000571 }
572
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000573 case Type::OpaqueTyID: {
574 static int Count = 0;
575 std::string TyName = "struct opaque_" + itostr(Count++);
576 assert(TypeNames.find(Ty) == TypeNames.end());
577 TypeNames[Ty] = TyName;
578 return Out << TyName << ' ' << NameSoFar;
579 }
580 default:
581 assert(0 && "Unhandled case in getTypeProps!");
582 abort();
583 }
584
585 return Out;
586}
587
588void CWriter::printConstantArray(ConstantArray *CPA) {
589
590 // As a special case, print the array as a string if it is an array of
591 // ubytes or an array of sbytes with positive values.
592 //
593 const Type *ETy = CPA->getType()->getElementType();
594 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
595
596 // Make sure the last character is a null char, as automatically added by C
597 if (isString && (CPA->getNumOperands() == 0 ||
598 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
599 isString = false;
600
601 if (isString) {
602 Out << '\"';
603 // Keep track of whether the last number was a hexadecimal escape
604 bool LastWasHex = false;
605
606 // Do not include the last character, which we know is null
607 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
608 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
609
610 // Print it out literally if it is a printable character. The only thing
611 // to be careful about is when the last letter output was a hex escape
612 // code, in which case we have to be careful not to print out hex digits
613 // explicitly (the C compiler thinks it is a continuation of the previous
614 // character, sheesh...)
615 //
616 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
617 LastWasHex = false;
618 if (C == '"' || C == '\\')
619 Out << "\\" << C;
620 else
621 Out << C;
622 } else {
623 LastWasHex = false;
624 switch (C) {
625 case '\n': Out << "\\n"; break;
626 case '\t': Out << "\\t"; break;
627 case '\r': Out << "\\r"; break;
628 case '\v': Out << "\\v"; break;
629 case '\a': Out << "\\a"; break;
630 case '\"': Out << "\\\""; break;
631 case '\'': Out << "\\\'"; break;
632 default:
633 Out << "\\x";
634 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
635 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
636 LastWasHex = true;
637 break;
638 }
639 }
640 }
641 Out << '\"';
642 } else {
643 Out << '{';
644 if (CPA->getNumOperands()) {
645 Out << ' ';
646 printConstant(cast<Constant>(CPA->getOperand(0)));
647 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
648 Out << ", ";
649 printConstant(cast<Constant>(CPA->getOperand(i)));
650 }
651 }
652 Out << " }";
653 }
654}
655
656void CWriter::printConstantVector(ConstantVector *CP) {
657 Out << '{';
658 if (CP->getNumOperands()) {
659 Out << ' ';
660 printConstant(cast<Constant>(CP->getOperand(0)));
661 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
662 Out << ", ";
663 printConstant(cast<Constant>(CP->getOperand(i)));
664 }
665 }
666 Out << " }";
667}
668
669// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
670// textually as a double (rather than as a reference to a stack-allocated
671// variable). We decide this by converting CFP to a string and back into a
672// double, and then checking whether the conversion results in a bit-equal
673// double to the original value of CFP. This depends on us and the target C
674// compiler agreeing on the conversion process (which is pretty likely since we
675// only deal in IEEE FP).
676//
677static bool isFPCSafeToPrint(const ConstantFP *CFP) {
Dale Johannesen137cef62007-09-17 00:38:27 +0000678 // Do long doubles in hex for now.
Dale Johannesen2fc20782007-09-14 22:26:36 +0000679 if (CFP->getType()!=Type::FloatTy && CFP->getType()!=Type::DoubleTy)
680 return false;
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000681 APFloat APF = APFloat(CFP->getValueAPF()); // copy
682 if (CFP->getType()==Type::FloatTy)
683 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000684#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
685 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000686 sprintf(Buffer, "%a", APF.convertToDouble());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000687 if (!strncmp(Buffer, "0x", 2) ||
688 !strncmp(Buffer, "-0x", 3) ||
689 !strncmp(Buffer, "+0x", 3))
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000690 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000691 return false;
692#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000693 std::string StrVal = ftostr(APF);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000694
695 while (StrVal[0] == ' ')
696 StrVal.erase(StrVal.begin());
697
698 // Check to make sure that the stringized number is not some string like "Inf"
699 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
700 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
701 ((StrVal[0] == '-' || StrVal[0] == '+') &&
702 (StrVal[1] >= '0' && StrVal[1] <= '9')))
703 // Reparse stringized version!
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000704 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000705 return false;
706#endif
707}
708
709/// Print out the casting for a cast operation. This does the double casting
710/// necessary for conversion to the destination type, if necessary.
711/// @brief Print a cast
712void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
713 // Print the destination type cast
714 switch (opc) {
715 case Instruction::UIToFP:
716 case Instruction::SIToFP:
717 case Instruction::IntToPtr:
718 case Instruction::Trunc:
719 case Instruction::BitCast:
720 case Instruction::FPExt:
721 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
722 Out << '(';
723 printType(Out, DstTy);
724 Out << ')';
725 break;
726 case Instruction::ZExt:
727 case Instruction::PtrToInt:
728 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
729 Out << '(';
730 printSimpleType(Out, DstTy, false);
731 Out << ')';
732 break;
733 case Instruction::SExt:
734 case Instruction::FPToSI: // For these, make sure we get a signed dest
735 Out << '(';
736 printSimpleType(Out, DstTy, true);
737 Out << ')';
738 break;
739 default:
740 assert(0 && "Invalid cast opcode");
741 }
742
743 // Print the source type cast
744 switch (opc) {
745 case Instruction::UIToFP:
746 case Instruction::ZExt:
747 Out << '(';
748 printSimpleType(Out, SrcTy, false);
749 Out << ')';
750 break;
751 case Instruction::SIToFP:
752 case Instruction::SExt:
753 Out << '(';
754 printSimpleType(Out, SrcTy, true);
755 Out << ')';
756 break;
757 case Instruction::IntToPtr:
758 case Instruction::PtrToInt:
759 // Avoid "cast to pointer from integer of different size" warnings
760 Out << "(unsigned long)";
761 break;
762 case Instruction::Trunc:
763 case Instruction::BitCast:
764 case Instruction::FPExt:
765 case Instruction::FPTrunc:
766 case Instruction::FPToSI:
767 case Instruction::FPToUI:
768 break; // These don't need a source cast.
769 default:
770 assert(0 && "Invalid cast opcode");
771 break;
772 }
773}
774
775// printConstant - The LLVM Constant to C Constant converter.
776void CWriter::printConstant(Constant *CPV) {
777 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
778 switch (CE->getOpcode()) {
779 case Instruction::Trunc:
780 case Instruction::ZExt:
781 case Instruction::SExt:
782 case Instruction::FPTrunc:
783 case Instruction::FPExt:
784 case Instruction::UIToFP:
785 case Instruction::SIToFP:
786 case Instruction::FPToUI:
787 case Instruction::FPToSI:
788 case Instruction::PtrToInt:
789 case Instruction::IntToPtr:
790 case Instruction::BitCast:
791 Out << "(";
792 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
793 if (CE->getOpcode() == Instruction::SExt &&
794 CE->getOperand(0)->getType() == Type::Int1Ty) {
795 // Make sure we really sext from bool here by subtracting from 0
796 Out << "0-";
797 }
798 printConstant(CE->getOperand(0));
799 if (CE->getType() == Type::Int1Ty &&
800 (CE->getOpcode() == Instruction::Trunc ||
801 CE->getOpcode() == Instruction::FPToUI ||
802 CE->getOpcode() == Instruction::FPToSI ||
803 CE->getOpcode() == Instruction::PtrToInt)) {
804 // Make sure we really truncate to bool here by anding with 1
805 Out << "&1u";
806 }
807 Out << ')';
808 return;
809
810 case Instruction::GetElementPtr:
Chris Lattner8bbc8592008-03-02 08:07:24 +0000811 Out << "(";
812 printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
813 gep_type_end(CPV));
814 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000815 return;
816 case Instruction::Select:
817 Out << '(';
818 printConstant(CE->getOperand(0));
819 Out << '?';
820 printConstant(CE->getOperand(1));
821 Out << ':';
822 printConstant(CE->getOperand(2));
823 Out << ')';
824 return;
825 case Instruction::Add:
826 case Instruction::Sub:
827 case Instruction::Mul:
828 case Instruction::SDiv:
829 case Instruction::UDiv:
830 case Instruction::FDiv:
831 case Instruction::URem:
832 case Instruction::SRem:
833 case Instruction::FRem:
834 case Instruction::And:
835 case Instruction::Or:
836 case Instruction::Xor:
837 case Instruction::ICmp:
838 case Instruction::Shl:
839 case Instruction::LShr:
840 case Instruction::AShr:
841 {
842 Out << '(';
843 bool NeedsClosingParens = printConstExprCast(CE);
844 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
845 switch (CE->getOpcode()) {
846 case Instruction::Add: Out << " + "; break;
847 case Instruction::Sub: Out << " - "; break;
848 case Instruction::Mul: Out << " * "; break;
849 case Instruction::URem:
850 case Instruction::SRem:
851 case Instruction::FRem: Out << " % "; break;
852 case Instruction::UDiv:
853 case Instruction::SDiv:
854 case Instruction::FDiv: Out << " / "; break;
855 case Instruction::And: Out << " & "; break;
856 case Instruction::Or: Out << " | "; break;
857 case Instruction::Xor: Out << " ^ "; break;
858 case Instruction::Shl: Out << " << "; break;
859 case Instruction::LShr:
860 case Instruction::AShr: Out << " >> "; break;
861 case Instruction::ICmp:
862 switch (CE->getPredicate()) {
863 case ICmpInst::ICMP_EQ: Out << " == "; break;
864 case ICmpInst::ICMP_NE: Out << " != "; break;
865 case ICmpInst::ICMP_SLT:
866 case ICmpInst::ICMP_ULT: Out << " < "; break;
867 case ICmpInst::ICMP_SLE:
868 case ICmpInst::ICMP_ULE: Out << " <= "; break;
869 case ICmpInst::ICMP_SGT:
870 case ICmpInst::ICMP_UGT: Out << " > "; break;
871 case ICmpInst::ICMP_SGE:
872 case ICmpInst::ICMP_UGE: Out << " >= "; break;
873 default: assert(0 && "Illegal ICmp predicate");
874 }
875 break;
876 default: assert(0 && "Illegal opcode here!");
877 }
878 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
879 if (NeedsClosingParens)
880 Out << "))";
881 Out << ')';
882 return;
883 }
884 case Instruction::FCmp: {
885 Out << '(';
886 bool NeedsClosingParens = printConstExprCast(CE);
887 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
888 Out << "0";
889 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
890 Out << "1";
891 else {
892 const char* op = 0;
893 switch (CE->getPredicate()) {
894 default: assert(0 && "Illegal FCmp predicate");
895 case FCmpInst::FCMP_ORD: op = "ord"; break;
896 case FCmpInst::FCMP_UNO: op = "uno"; break;
897 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
898 case FCmpInst::FCMP_UNE: op = "une"; break;
899 case FCmpInst::FCMP_ULT: op = "ult"; break;
900 case FCmpInst::FCMP_ULE: op = "ule"; break;
901 case FCmpInst::FCMP_UGT: op = "ugt"; break;
902 case FCmpInst::FCMP_UGE: op = "uge"; break;
903 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
904 case FCmpInst::FCMP_ONE: op = "one"; break;
905 case FCmpInst::FCMP_OLT: op = "olt"; break;
906 case FCmpInst::FCMP_OLE: op = "ole"; break;
907 case FCmpInst::FCMP_OGT: op = "ogt"; break;
908 case FCmpInst::FCMP_OGE: op = "oge"; break;
909 }
910 Out << "llvm_fcmp_" << op << "(";
911 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
912 Out << ", ";
913 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
914 Out << ")";
915 }
916 if (NeedsClosingParens)
917 Out << "))";
918 Out << ')';
Anton Korobeynikov44891ce2007-12-21 23:33:44 +0000919 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000920 }
921 default:
922 cerr << "CWriter Error: Unhandled constant expression: "
923 << *CE << "\n";
924 abort();
925 }
Dan Gohman76c2cb42008-05-23 16:57:00 +0000926 } else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000927 Out << "((";
928 printType(Out, CPV->getType()); // sign doesn't matter
Chris Lattnerc72d9e32008-03-02 08:14:45 +0000929 Out << ")/*UNDEF*/";
930 if (!isa<VectorType>(CPV->getType())) {
931 Out << "0)";
932 } else {
933 Out << "{})";
934 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000935 return;
936 }
937
938 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
939 const Type* Ty = CI->getType();
940 if (Ty == Type::Int1Ty)
Chris Lattner63fb1f02008-03-02 03:16:38 +0000941 Out << (CI->getZExtValue() ? '1' : '0');
942 else if (Ty == Type::Int32Ty)
943 Out << CI->getZExtValue() << 'u';
944 else if (Ty->getPrimitiveSizeInBits() > 32)
945 Out << CI->getZExtValue() << "ull";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000946 else {
947 Out << "((";
948 printSimpleType(Out, Ty, false) << ')';
949 if (CI->isMinValue(true))
950 Out << CI->getZExtValue() << 'u';
951 else
952 Out << CI->getSExtValue();
Chris Lattner63fb1f02008-03-02 03:16:38 +0000953 Out << ')';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000954 }
955 return;
956 }
957
958 switch (CPV->getType()->getTypeID()) {
959 case Type::FloatTyID:
Dale Johannesen137cef62007-09-17 00:38:27 +0000960 case Type::DoubleTyID:
961 case Type::X86_FP80TyID:
962 case Type::PPC_FP128TyID:
963 case Type::FP128TyID: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000964 ConstantFP *FPC = cast<ConstantFP>(CPV);
965 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
966 if (I != FPConstantMap.end()) {
967 // Because of FP precision problems we must load from a stack allocated
968 // value that holds the value in hex.
Dale Johannesen137cef62007-09-17 00:38:27 +0000969 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
970 FPC->getType() == Type::DoubleTy ? "double" :
971 "long double")
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000972 << "*)&FPConstant" << I->second << ')';
973 } else {
Dale Johannesen137cef62007-09-17 00:38:27 +0000974 assert(FPC->getType() == Type::FloatTy ||
975 FPC->getType() == Type::DoubleTy);
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000976 double V = FPC->getType() == Type::FloatTy ?
977 FPC->getValueAPF().convertToFloat() :
978 FPC->getValueAPF().convertToDouble();
979 if (IsNAN(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000980 // The value is NaN
981
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000982 // FIXME the actual NaN bits should be emitted.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000983 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
984 // it's 0x7ff4.
985 const unsigned long QuietNaN = 0x7ff8UL;
986 //const unsigned long SignalNaN = 0x7ff4UL;
987
988 // We need to grab the first part of the FP #
989 char Buffer[100];
990
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000991 uint64_t ll = DoubleToBits(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000992 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
993
994 std::string Num(&Buffer[0], &Buffer[6]);
995 unsigned long Val = strtoul(Num.c_str(), 0, 16);
996
997 if (FPC->getType() == Type::FloatTy)
998 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
999 << Buffer << "\") /*nan*/ ";
1000 else
1001 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
1002 << Buffer << "\") /*nan*/ ";
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001003 } else if (IsInf(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001004 // The value is Inf
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001005 if (V < 0) Out << '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001006 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
1007 << " /*inf*/ ";
1008 } else {
1009 std::string Num;
1010#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
1011 // Print out the constant as a floating point number.
1012 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001013 sprintf(Buffer, "%a", V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001014 Num = Buffer;
1015#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001016 Num = ftostr(FPC->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001017#endif
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001018 Out << Num;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001019 }
1020 }
1021 break;
1022 }
1023
1024 case Type::ArrayTyID:
Dan Gohman5d995b02008-06-02 21:30:49 +00001025 Out << "{ "; // Arrays are wrapped in struct types.
Chris Lattner8673e322008-03-02 05:46:57 +00001026 if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
Chris Lattner6d4cd9b2008-03-02 03:18:46 +00001027 printConstantArray(CA);
Chris Lattner63fb1f02008-03-02 03:16:38 +00001028 } else {
1029 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001030 const ArrayType *AT = cast<ArrayType>(CPV->getType());
1031 Out << '{';
1032 if (AT->getNumElements()) {
1033 Out << ' ';
1034 Constant *CZ = Constant::getNullValue(AT->getElementType());
1035 printConstant(CZ);
1036 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
1037 Out << ", ";
1038 printConstant(CZ);
1039 }
1040 }
1041 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001042 }
Dan Gohman5d995b02008-06-02 21:30:49 +00001043 Out << " }"; // Arrays are wrapped in struct types.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001044 break;
1045
1046 case Type::VectorTyID:
Chris Lattner70f0f672008-03-02 03:29:50 +00001047 // Use C99 compound expression literal initializer syntax.
1048 Out << "(";
1049 printType(Out, CPV->getType());
1050 Out << ")";
Chris Lattner8673e322008-03-02 05:46:57 +00001051 if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001052 printConstantVector(CV);
1053 } else {
1054 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1055 const VectorType *VT = cast<VectorType>(CPV->getType());
1056 Out << "{ ";
1057 Constant *CZ = Constant::getNullValue(VT->getElementType());
1058 printConstant(CZ);
Chris Lattner6d4cd9b2008-03-02 03:18:46 +00001059 for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001060 Out << ", ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001061 printConstant(CZ);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001062 }
1063 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001064 }
1065 break;
1066
1067 case Type::StructTyID:
1068 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
1069 const StructType *ST = cast<StructType>(CPV->getType());
1070 Out << '{';
1071 if (ST->getNumElements()) {
1072 Out << ' ';
1073 printConstant(Constant::getNullValue(ST->getElementType(0)));
1074 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
1075 Out << ", ";
1076 printConstant(Constant::getNullValue(ST->getElementType(i)));
1077 }
1078 }
1079 Out << " }";
1080 } else {
1081 Out << '{';
1082 if (CPV->getNumOperands()) {
1083 Out << ' ';
1084 printConstant(cast<Constant>(CPV->getOperand(0)));
1085 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1086 Out << ", ";
1087 printConstant(cast<Constant>(CPV->getOperand(i)));
1088 }
1089 }
1090 Out << " }";
1091 }
1092 break;
1093
1094 case Type::PointerTyID:
1095 if (isa<ConstantPointerNull>(CPV)) {
1096 Out << "((";
1097 printType(Out, CPV->getType()); // sign doesn't matter
1098 Out << ")/*NULL*/0)";
1099 break;
1100 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1101 writeOperand(GV);
1102 break;
1103 }
1104 // FALL THROUGH
1105 default:
1106 cerr << "Unknown constant type: " << *CPV << "\n";
1107 abort();
1108 }
1109}
1110
1111// Some constant expressions need to be casted back to the original types
1112// because their operands were casted to the expected type. This function takes
1113// care of detecting that case and printing the cast for the ConstantExpr.
1114bool CWriter::printConstExprCast(const ConstantExpr* CE) {
1115 bool NeedsExplicitCast = false;
1116 const Type *Ty = CE->getOperand(0)->getType();
1117 bool TypeIsSigned = false;
1118 switch (CE->getOpcode()) {
Dan Gohmane1790de2008-07-18 18:43:12 +00001119 case Instruction::Add:
1120 case Instruction::Sub:
1121 case Instruction::Mul:
1122 // We need to cast integer arithmetic so that it is always performed
1123 // as unsigned, to avoid undefined behavior on overflow.
1124 if (!Ty->isIntOrIntVector()) break;
1125 // FALL THROUGH
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001126 case Instruction::LShr:
1127 case Instruction::URem:
1128 case Instruction::UDiv: NeedsExplicitCast = true; break;
1129 case Instruction::AShr:
1130 case Instruction::SRem:
1131 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1132 case Instruction::SExt:
1133 Ty = CE->getType();
1134 NeedsExplicitCast = true;
1135 TypeIsSigned = true;
1136 break;
1137 case Instruction::ZExt:
1138 case Instruction::Trunc:
1139 case Instruction::FPTrunc:
1140 case Instruction::FPExt:
1141 case Instruction::UIToFP:
1142 case Instruction::SIToFP:
1143 case Instruction::FPToUI:
1144 case Instruction::FPToSI:
1145 case Instruction::PtrToInt:
1146 case Instruction::IntToPtr:
1147 case Instruction::BitCast:
1148 Ty = CE->getType();
1149 NeedsExplicitCast = true;
1150 break;
1151 default: break;
1152 }
1153 if (NeedsExplicitCast) {
1154 Out << "((";
1155 if (Ty->isInteger() && Ty != Type::Int1Ty)
1156 printSimpleType(Out, Ty, TypeIsSigned);
1157 else
1158 printType(Out, Ty); // not integer, sign doesn't matter
1159 Out << ")(";
1160 }
1161 return NeedsExplicitCast;
1162}
1163
1164// Print a constant assuming that it is the operand for a given Opcode. The
1165// opcodes that care about sign need to cast their operands to the expected
1166// type before the operation proceeds. This function does the casting.
1167void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1168
1169 // Extract the operand's type, we'll need it.
1170 const Type* OpTy = CPV->getType();
1171
1172 // Indicate whether to do the cast or not.
1173 bool shouldCast = false;
1174 bool typeIsSigned = false;
1175
1176 // Based on the Opcode for which this Constant is being written, determine
1177 // the new type to which the operand should be casted by setting the value
1178 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1179 // casted below.
1180 switch (Opcode) {
1181 default:
1182 // for most instructions, it doesn't matter
1183 break;
Dan Gohmane1790de2008-07-18 18:43:12 +00001184 case Instruction::Add:
1185 case Instruction::Sub:
1186 case Instruction::Mul:
1187 // We need to cast integer arithmetic so that it is always performed
1188 // as unsigned, to avoid undefined behavior on overflow.
1189 if (!OpTy->isIntOrIntVector()) break;
1190 // FALL THROUGH
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001191 case Instruction::LShr:
1192 case Instruction::UDiv:
1193 case Instruction::URem:
1194 shouldCast = true;
1195 break;
1196 case Instruction::AShr:
1197 case Instruction::SDiv:
1198 case Instruction::SRem:
1199 shouldCast = true;
1200 typeIsSigned = true;
1201 break;
1202 }
1203
1204 // Write out the casted constant if we should, otherwise just write the
1205 // operand.
1206 if (shouldCast) {
1207 Out << "((";
1208 printSimpleType(Out, OpTy, typeIsSigned);
1209 Out << ")";
1210 printConstant(CPV);
1211 Out << ")";
1212 } else
1213 printConstant(CPV);
1214}
1215
1216std::string CWriter::GetValueName(const Value *Operand) {
1217 std::string Name;
1218
1219 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1220 std::string VarName;
1221
1222 Name = Operand->getName();
1223 VarName.reserve(Name.capacity());
1224
1225 for (std::string::iterator I = Name.begin(), E = Name.end();
1226 I != E; ++I) {
1227 char ch = *I;
1228
1229 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
Lauro Ramos Venancio66842ee2008-02-28 20:26:04 +00001230 (ch >= '0' && ch <= '9') || ch == '_')) {
1231 char buffer[5];
1232 sprintf(buffer, "_%x_", ch);
1233 VarName += buffer;
1234 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001235 VarName += ch;
1236 }
1237
1238 Name = "llvm_cbe_" + VarName;
1239 } else {
1240 Name = Mang->getValueName(Operand);
1241 }
1242
1243 return Name;
1244}
1245
Chris Lattnerd70f5a82008-05-31 09:23:55 +00001246/// writeInstComputationInline - Emit the computation for the specified
1247/// instruction inline, with no destination provided.
1248void CWriter::writeInstComputationInline(Instruction &I) {
1249 // If this is a non-trivial bool computation, make sure to truncate down to
1250 // a 1 bit value. This is important because we want "add i1 x, y" to return
1251 // "0" when x and y are true, not "2" for example.
1252 bool NeedBoolTrunc = false;
1253 if (I.getType() == Type::Int1Ty && !isa<ICmpInst>(I) && !isa<FCmpInst>(I))
1254 NeedBoolTrunc = true;
1255
1256 if (NeedBoolTrunc)
1257 Out << "((";
1258
1259 visit(I);
1260
1261 if (NeedBoolTrunc)
1262 Out << ")&1)";
1263}
1264
1265
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001266void CWriter::writeOperandInternal(Value *Operand) {
1267 if (Instruction *I = dyn_cast<Instruction>(Operand))
Chris Lattnerd70f5a82008-05-31 09:23:55 +00001268 // Should we inline this instruction to build a tree?
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001269 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001270 Out << '(';
Chris Lattnerd70f5a82008-05-31 09:23:55 +00001271 writeInstComputationInline(*I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001272 Out << ')';
1273 return;
1274 }
1275
1276 Constant* CPV = dyn_cast<Constant>(Operand);
1277
1278 if (CPV && !isa<GlobalValue>(CPV))
1279 printConstant(CPV);
1280 else
1281 Out << GetValueName(Operand);
1282}
1283
1284void CWriter::writeOperandRaw(Value *Operand) {
1285 Constant* CPV = dyn_cast<Constant>(Operand);
1286 if (CPV && !isa<GlobalValue>(CPV)) {
1287 printConstant(CPV);
1288 } else {
1289 Out << GetValueName(Operand);
1290 }
1291}
1292
1293void CWriter::writeOperand(Value *Operand) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00001294 bool isAddressImplicit = isAddressExposed(Operand);
1295 if (isAddressImplicit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001296 Out << "(&"; // Global variables are referenced as their addresses by llvm
1297
1298 writeOperandInternal(Operand);
1299
Chris Lattner8bbc8592008-03-02 08:07:24 +00001300 if (isAddressImplicit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001301 Out << ')';
1302}
1303
1304// Some instructions need to have their result value casted back to the
1305// original types because their operands were casted to the expected type.
1306// This function takes care of detecting that case and printing the cast
1307// for the Instruction.
1308bool CWriter::writeInstructionCast(const Instruction &I) {
1309 const Type *Ty = I.getOperand(0)->getType();
1310 switch (I.getOpcode()) {
Dan Gohmane1790de2008-07-18 18:43:12 +00001311 case Instruction::Add:
1312 case Instruction::Sub:
1313 case Instruction::Mul:
1314 // We need to cast integer arithmetic so that it is always performed
1315 // as unsigned, to avoid undefined behavior on overflow.
1316 if (!Ty->isIntOrIntVector()) break;
1317 // FALL THROUGH
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001318 case Instruction::LShr:
1319 case Instruction::URem:
1320 case Instruction::UDiv:
1321 Out << "((";
1322 printSimpleType(Out, Ty, false);
1323 Out << ")(";
1324 return true;
1325 case Instruction::AShr:
1326 case Instruction::SRem:
1327 case Instruction::SDiv:
1328 Out << "((";
1329 printSimpleType(Out, Ty, true);
1330 Out << ")(";
1331 return true;
1332 default: break;
1333 }
1334 return false;
1335}
1336
1337// Write the operand with a cast to another type based on the Opcode being used.
1338// This will be used in cases where an instruction has specific type
1339// requirements (usually signedness) for its operands.
1340void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1341
1342 // Extract the operand's type, we'll need it.
1343 const Type* OpTy = Operand->getType();
1344
1345 // Indicate whether to do the cast or not.
1346 bool shouldCast = false;
1347
1348 // Indicate whether the cast should be to a signed type or not.
1349 bool castIsSigned = false;
1350
1351 // Based on the Opcode for which this Operand is being written, determine
1352 // the new type to which the operand should be casted by setting the value
1353 // of OpTy. If we change OpTy, also set shouldCast to true.
1354 switch (Opcode) {
1355 default:
1356 // for most instructions, it doesn't matter
1357 break;
Dan Gohmane1790de2008-07-18 18:43:12 +00001358 case Instruction::Add:
1359 case Instruction::Sub:
1360 case Instruction::Mul:
1361 // We need to cast integer arithmetic so that it is always performed
1362 // as unsigned, to avoid undefined behavior on overflow.
1363 if (!OpTy->isIntOrIntVector()) break;
1364 // FALL THROUGH
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001365 case Instruction::LShr:
1366 case Instruction::UDiv:
1367 case Instruction::URem: // Cast to unsigned first
1368 shouldCast = true;
1369 castIsSigned = false;
1370 break;
Chris Lattner7ce1ee42007-09-22 20:16:48 +00001371 case Instruction::GetElementPtr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001372 case Instruction::AShr:
1373 case Instruction::SDiv:
1374 case Instruction::SRem: // Cast to signed first
1375 shouldCast = true;
1376 castIsSigned = true;
1377 break;
1378 }
1379
1380 // Write out the casted operand if we should, otherwise just write the
1381 // operand.
1382 if (shouldCast) {
1383 Out << "((";
1384 printSimpleType(Out, OpTy, castIsSigned);
1385 Out << ")";
1386 writeOperand(Operand);
1387 Out << ")";
1388 } else
1389 writeOperand(Operand);
1390}
1391
1392// Write the operand with a cast to another type based on the icmp predicate
1393// being used.
Chris Lattner389c9142007-09-15 06:51:03 +00001394void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1395 // This has to do a cast to ensure the operand has the right signedness.
1396 // Also, if the operand is a pointer, we make sure to cast to an integer when
1397 // doing the comparison both for signedness and so that the C compiler doesn't
1398 // optimize things like "p < NULL" to false (p may contain an integer value
1399 // f.e.).
1400 bool shouldCast = Cmp.isRelational();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001401
1402 // Write out the casted operand if we should, otherwise just write the
1403 // operand.
Chris Lattner389c9142007-09-15 06:51:03 +00001404 if (!shouldCast) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001405 writeOperand(Operand);
Chris Lattner389c9142007-09-15 06:51:03 +00001406 return;
1407 }
1408
1409 // Should this be a signed comparison? If so, convert to signed.
1410 bool castIsSigned = Cmp.isSignedPredicate();
1411
1412 // If the operand was a pointer, convert to a large integer type.
1413 const Type* OpTy = Operand->getType();
1414 if (isa<PointerType>(OpTy))
1415 OpTy = TD->getIntPtrType();
1416
1417 Out << "((";
1418 printSimpleType(Out, OpTy, castIsSigned);
1419 Out << ")";
1420 writeOperand(Operand);
1421 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001422}
1423
1424// generateCompilerSpecificCode - This is where we add conditional compilation
1425// directives to cater to specific compilers as need be.
1426//
Dan Gohman3f795232008-04-02 23:52:49 +00001427static void generateCompilerSpecificCode(std::ostream& Out,
1428 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001429 // Alloca is hard to get, and we don't want to include stdlib.h here.
1430 Out << "/* get a declaration for alloca */\n"
1431 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1432 << "#define alloca(x) __builtin_alloca((x))\n"
1433 << "#define _alloca(x) __builtin_alloca((x))\n"
1434 << "#elif defined(__APPLE__)\n"
1435 << "extern void *__builtin_alloca(unsigned long);\n"
1436 << "#define alloca(x) __builtin_alloca(x)\n"
1437 << "#define longjmp _longjmp\n"
1438 << "#define setjmp _setjmp\n"
1439 << "#elif defined(__sun__)\n"
1440 << "#if defined(__sparcv9)\n"
1441 << "extern void *__builtin_alloca(unsigned long);\n"
1442 << "#else\n"
1443 << "extern void *__builtin_alloca(unsigned int);\n"
1444 << "#endif\n"
1445 << "#define alloca(x) __builtin_alloca(x)\n"
Matthijs Kooijman331217d2008-06-26 10:36:58 +00001446 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001447 << "#define alloca(x) __builtin_alloca(x)\n"
1448 << "#elif defined(_MSC_VER)\n"
1449 << "#define inline _inline\n"
1450 << "#define alloca(x) _alloca(x)\n"
1451 << "#else\n"
1452 << "#include <alloca.h>\n"
1453 << "#endif\n\n";
1454
1455 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1456 // If we aren't being compiled with GCC, just drop these attributes.
1457 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1458 << "#define __attribute__(X)\n"
1459 << "#endif\n\n";
1460
1461 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1462 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1463 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1464 << "#elif defined(__GNUC__)\n"
1465 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1466 << "#else\n"
1467 << "#define __EXTERNAL_WEAK__\n"
1468 << "#endif\n\n";
1469
1470 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1471 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1472 << "#define __ATTRIBUTE_WEAK__\n"
1473 << "#elif defined(__GNUC__)\n"
1474 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1475 << "#else\n"
1476 << "#define __ATTRIBUTE_WEAK__\n"
1477 << "#endif\n\n";
1478
1479 // Add hidden visibility support. FIXME: APPLE_CC?
1480 Out << "#if defined(__GNUC__)\n"
1481 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1482 << "#endif\n\n";
1483
1484 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1485 // From the GCC documentation:
1486 //
1487 // double __builtin_nan (const char *str)
1488 //
1489 // This is an implementation of the ISO C99 function nan.
1490 //
1491 // Since ISO C99 defines this function in terms of strtod, which we do
1492 // not implement, a description of the parsing is in order. The string is
1493 // parsed as by strtol; that is, the base is recognized by leading 0 or
1494 // 0x prefixes. The number parsed is placed in the significand such that
1495 // the least significant bit of the number is at the least significant
1496 // bit of the significand. The number is truncated to fit the significand
1497 // field provided. The significand is forced to be a quiet NaN.
1498 //
1499 // This function, if given a string literal, is evaluated early enough
1500 // that it is considered a compile-time constant.
1501 //
1502 // float __builtin_nanf (const char *str)
1503 //
1504 // Similar to __builtin_nan, except the return type is float.
1505 //
1506 // double __builtin_inf (void)
1507 //
1508 // Similar to __builtin_huge_val, except a warning is generated if the
1509 // target floating-point format does not support infinities. This
1510 // function is suitable for implementing the ISO C99 macro INFINITY.
1511 //
1512 // float __builtin_inff (void)
1513 //
1514 // Similar to __builtin_inf, except the return type is float.
1515 Out << "#ifdef __GNUC__\n"
1516 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1517 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1518 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1519 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1520 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1521 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1522 << "#define LLVM_PREFETCH(addr,rw,locality) "
1523 "__builtin_prefetch(addr,rw,locality)\n"
1524 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1525 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1526 << "#define LLVM_ASM __asm__\n"
1527 << "#else\n"
1528 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1529 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1530 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1531 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1532 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1533 << "#define LLVM_INFF 0.0F /* Float */\n"
1534 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1535 << "#define __ATTRIBUTE_CTOR__\n"
1536 << "#define __ATTRIBUTE_DTOR__\n"
1537 << "#define LLVM_ASM(X)\n"
1538 << "#endif\n\n";
1539
1540 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1541 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1542 << "#define __builtin_stack_restore(X) /* noop */\n"
1543 << "#endif\n\n";
1544
Dan Gohman3f795232008-04-02 23:52:49 +00001545 // Output typedefs for 128-bit integers. If these are needed with a
1546 // 32-bit target or with a C compiler that doesn't support mode(TI),
1547 // more drastic measures will be needed.
Chris Lattnerab6d3382008-06-16 04:25:29 +00001548 Out << "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n"
1549 << "typedef int __attribute__((mode(TI))) llvmInt128;\n"
1550 << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
1551 << "#endif\n\n";
Dan Gohmana2245af2008-04-02 19:40:14 +00001552
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001553 // Output target-specific code that should be inserted into main.
1554 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001555}
1556
1557/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1558/// the StaticTors set.
1559static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1560 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1561 if (!InitList) return;
1562
1563 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1564 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1565 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1566
1567 if (CS->getOperand(1)->isNullValue())
1568 return; // Found a null terminator, exit printing.
1569 Constant *FP = CS->getOperand(1);
1570 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1571 if (CE->isCast())
1572 FP = CE->getOperand(0);
1573 if (Function *F = dyn_cast<Function>(FP))
1574 StaticTors.insert(F);
1575 }
1576}
1577
1578enum SpecialGlobalClass {
1579 NotSpecial = 0,
1580 GlobalCtors, GlobalDtors,
1581 NotPrinted
1582};
1583
1584/// getGlobalVariableClass - If this is a global that is specially recognized
1585/// by LLVM, return a code that indicates how we should handle it.
1586static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1587 // If this is a global ctors/dtors list, handle it now.
1588 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1589 if (GV->getName() == "llvm.global_ctors")
1590 return GlobalCtors;
1591 else if (GV->getName() == "llvm.global_dtors")
1592 return GlobalDtors;
1593 }
1594
1595 // Otherwise, it it is other metadata, don't print it. This catches things
1596 // like debug information.
1597 if (GV->getSection() == "llvm.metadata")
1598 return NotPrinted;
1599
1600 return NotSpecial;
1601}
1602
1603
1604bool CWriter::doInitialization(Module &M) {
1605 // Initialize
1606 TheModule = &M;
1607
1608 TD = new TargetData(&M);
1609 IL = new IntrinsicLowering(*TD);
1610 IL->AddPrototypes(M);
1611
1612 // Ensure that all structure types have names...
1613 Mang = new Mangler(M);
1614 Mang->markCharUnacceptable('.');
1615
1616 // Keep track of which functions are static ctors/dtors so they can have
1617 // an attribute added to their prototypes.
1618 std::set<Function*> StaticCtors, StaticDtors;
1619 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1620 I != E; ++I) {
1621 switch (getGlobalVariableClass(I)) {
1622 default: break;
1623 case GlobalCtors:
1624 FindStaticTors(I, StaticCtors);
1625 break;
1626 case GlobalDtors:
1627 FindStaticTors(I, StaticDtors);
1628 break;
1629 }
1630 }
1631
1632 // get declaration for alloca
1633 Out << "/* Provide Declarations */\n";
1634 Out << "#include <stdarg.h>\n"; // Varargs support
1635 Out << "#include <setjmp.h>\n"; // Unwind support
Dan Gohman3f795232008-04-02 23:52:49 +00001636 generateCompilerSpecificCode(Out, TD);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001637
1638 // Provide a definition for `bool' if not compiling with a C++ compiler.
1639 Out << "\n"
1640 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1641
1642 << "\n\n/* Support for floating point constants */\n"
1643 << "typedef unsigned long long ConstantDoubleTy;\n"
1644 << "typedef unsigned int ConstantFloatTy;\n"
Dale Johannesen137cef62007-09-17 00:38:27 +00001645 << "typedef struct { unsigned long long f1; unsigned short f2; "
1646 "unsigned short pad[3]; } ConstantFP80Ty;\n"
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001647 // This is used for both kinds of 128-bit long double; meaning differs.
Dale Johannesen137cef62007-09-17 00:38:27 +00001648 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1649 " ConstantFP128Ty;\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001650 << "\n\n/* Global Declarations */\n";
1651
1652 // First output all the declarations for the program, because C requires
1653 // Functions & globals to be declared before they are used.
1654 //
1655
1656 // Loop over the symbol table, emitting all named constants...
1657 printModuleTypes(M.getTypeSymbolTable());
1658
1659 // Global variable declarations...
1660 if (!M.global_empty()) {
1661 Out << "\n/* External Global Variable Declarations */\n";
1662 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1663 I != E; ++I) {
1664
Dale Johannesen49c44122008-05-14 20:12:51 +00001665 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() ||
1666 I->hasCommonLinkage())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001667 Out << "extern ";
1668 else if (I->hasDLLImportLinkage())
1669 Out << "__declspec(dllimport) ";
1670 else
1671 continue; // Internal Global
1672
1673 // Thread Local Storage
1674 if (I->isThreadLocal())
1675 Out << "__thread ";
1676
1677 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1678
1679 if (I->hasExternalWeakLinkage())
1680 Out << " __EXTERNAL_WEAK__";
1681 Out << ";\n";
1682 }
1683 }
1684
1685 // Function declarations
1686 Out << "\n/* Function Declarations */\n";
1687 Out << "double fmod(double, double);\n"; // Support for FP rem
1688 Out << "float fmodf(float, float);\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001689 Out << "long double fmodl(long double, long double);\n";
Evan Chengd2d22fe2008-06-07 07:50:29 +00001690
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001691 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1692 // Don't print declarations for intrinsic functions.
Duncan Sands79d28872007-12-03 20:06:50 +00001693 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001694 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1695 if (I->hasExternalWeakLinkage())
1696 Out << "extern ";
1697 printFunctionSignature(I, true);
Evan Chengd2d22fe2008-06-07 07:50:29 +00001698 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001699 Out << " __ATTRIBUTE_WEAK__";
1700 if (I->hasExternalWeakLinkage())
1701 Out << " __EXTERNAL_WEAK__";
1702 if (StaticCtors.count(I))
1703 Out << " __ATTRIBUTE_CTOR__";
1704 if (StaticDtors.count(I))
1705 Out << " __ATTRIBUTE_DTOR__";
1706 if (I->hasHiddenVisibility())
1707 Out << " __HIDDEN__";
Evan Chengd2d22fe2008-06-07 07:50:29 +00001708
1709 if (I->hasName() && I->getName()[0] == 1)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001710 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
Evan Chengd2d22fe2008-06-07 07:50:29 +00001711
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001712 Out << ";\n";
1713 }
1714 }
1715
1716 // Output the global variable declarations
1717 if (!M.global_empty()) {
1718 Out << "\n\n/* Global Variable Declarations */\n";
1719 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1720 I != E; ++I)
1721 if (!I->isDeclaration()) {
1722 // Ignore special globals, such as debug info.
1723 if (getGlobalVariableClass(I))
1724 continue;
1725
1726 if (I->hasInternalLinkage())
1727 Out << "static ";
1728 else
1729 Out << "extern ";
1730
1731 // Thread Local Storage
1732 if (I->isThreadLocal())
1733 Out << "__thread ";
1734
1735 printType(Out, I->getType()->getElementType(), false,
1736 GetValueName(I));
1737
1738 if (I->hasLinkOnceLinkage())
1739 Out << " __attribute__((common))";
Dale Johannesen49c44122008-05-14 20:12:51 +00001740 else if (I->hasCommonLinkage()) // FIXME is this right?
1741 Out << " __ATTRIBUTE_WEAK__";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001742 else if (I->hasWeakLinkage())
1743 Out << " __ATTRIBUTE_WEAK__";
1744 else if (I->hasExternalWeakLinkage())
1745 Out << " __EXTERNAL_WEAK__";
1746 if (I->hasHiddenVisibility())
1747 Out << " __HIDDEN__";
1748 Out << ";\n";
1749 }
1750 }
1751
1752 // Output the global variable definitions and contents...
1753 if (!M.global_empty()) {
1754 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
Evan Chengd2d22fe2008-06-07 07:50:29 +00001755 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001756 I != E; ++I)
1757 if (!I->isDeclaration()) {
1758 // Ignore special globals, such as debug info.
1759 if (getGlobalVariableClass(I))
1760 continue;
1761
1762 if (I->hasInternalLinkage())
1763 Out << "static ";
1764 else if (I->hasDLLImportLinkage())
1765 Out << "__declspec(dllimport) ";
1766 else if (I->hasDLLExportLinkage())
1767 Out << "__declspec(dllexport) ";
1768
1769 // Thread Local Storage
1770 if (I->isThreadLocal())
1771 Out << "__thread ";
1772
1773 printType(Out, I->getType()->getElementType(), false,
1774 GetValueName(I));
1775 if (I->hasLinkOnceLinkage())
1776 Out << " __attribute__((common))";
1777 else if (I->hasWeakLinkage())
1778 Out << " __ATTRIBUTE_WEAK__";
Dale Johannesen49c44122008-05-14 20:12:51 +00001779 else if (I->hasCommonLinkage())
1780 Out << " __ATTRIBUTE_WEAK__";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001781
1782 if (I->hasHiddenVisibility())
1783 Out << " __HIDDEN__";
1784
1785 // If the initializer is not null, emit the initializer. If it is null,
1786 // we try to avoid emitting large amounts of zeros. The problem with
1787 // this, however, occurs when the variable has weak linkage. In this
1788 // case, the assembler will complain about the variable being both weak
1789 // and common, so we disable this optimization.
Dale Johannesen49c44122008-05-14 20:12:51 +00001790 // FIXME common linkage should avoid this problem.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001791 if (!I->getInitializer()->isNullValue()) {
1792 Out << " = " ;
1793 writeOperand(I->getInitializer());
1794 } else if (I->hasWeakLinkage()) {
1795 // We have to specify an initializer, but it doesn't have to be
1796 // complete. If the value is an aggregate, print out { 0 }, and let
1797 // the compiler figure out the rest of the zeros.
1798 Out << " = " ;
1799 if (isa<StructType>(I->getInitializer()->getType()) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001800 isa<VectorType>(I->getInitializer()->getType())) {
1801 Out << "{ 0 }";
Dan Gohman5d995b02008-06-02 21:30:49 +00001802 } else if (isa<ArrayType>(I->getInitializer()->getType())) {
1803 // As with structs and vectors, but with an extra set of braces
1804 // because arrays are wrapped in structs.
1805 Out << "{ { 0 } }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001806 } else {
1807 // Just print it out normally.
1808 writeOperand(I->getInitializer());
1809 }
1810 }
1811 Out << ";\n";
1812 }
1813 }
1814
1815 if (!M.empty())
1816 Out << "\n\n/* Function Bodies */\n";
1817
1818 // Emit some helper functions for dealing with FCMP instruction's
1819 // predicates
1820 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
1821 Out << "return X == X && Y == Y; }\n";
1822 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
1823 Out << "return X != X || Y != Y; }\n";
1824 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
1825 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
1826 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
1827 Out << "return X != Y; }\n";
1828 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
1829 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
1830 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
1831 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
1832 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
1833 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
1834 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
1835 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
1836 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
1837 Out << "return X == Y ; }\n";
1838 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
1839 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
1840 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
1841 Out << "return X < Y ; }\n";
1842 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
1843 Out << "return X > Y ; }\n";
1844 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
1845 Out << "return X <= Y ; }\n";
1846 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
1847 Out << "return X >= Y ; }\n";
1848 return false;
1849}
1850
1851
1852/// Output all floating point constants that cannot be printed accurately...
1853void CWriter::printFloatingPointConstants(Function &F) {
1854 // Scan the module for floating point constants. If any FP constant is used
1855 // in the function, we want to redirect it here so that we do not depend on
1856 // the precision of the printed form, unless the printed form preserves
1857 // precision.
1858 //
1859 static unsigned FPCounter = 0;
1860 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
1861 I != E; ++I)
1862 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
1863 if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
1864 !FPConstantMap.count(FPC)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001865 FPConstantMap[FPC] = FPCounter; // Number the FP constants
1866
1867 if (FPC->getType() == Type::DoubleTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001868 double Val = FPC->getValueAPF().convertToDouble();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001869 uint64_t i = FPC->getValueAPF().convertToAPInt().getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001870 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001871 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001872 << "ULL; /* " << Val << " */\n";
1873 } else if (FPC->getType() == Type::FloatTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001874 float Val = FPC->getValueAPF().convertToFloat();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001875 uint32_t i = (uint32_t)FPC->getValueAPF().convertToAPInt().
1876 getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001877 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001878 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001879 << "U; /* " << Val << " */\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001880 } else if (FPC->getType() == Type::X86_FP80Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +00001881 // api needed to prevent premature destruction
1882 APInt api = FPC->getValueAPF().convertToAPInt();
1883 const uint64_t *p = api.getRawData();
Dale Johannesen137cef62007-09-17 00:38:27 +00001884 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
1885 << " = { 0x" << std::hex
1886 << ((uint16_t)p[1] | (p[0] & 0xffffffffffffLL)<<16)
Duncan Sands48d91af2008-05-24 01:00:52 +00001887 << "ULL, 0x" << (uint16_t)(p[0] >> 48) << ",{0,0,0}"
Dale Johannesen137cef62007-09-17 00:38:27 +00001888 << "}; /* Long double constant */\n" << std::dec;
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001889 } else if (FPC->getType() == Type::PPC_FP128Ty) {
1890 APInt api = FPC->getValueAPF().convertToAPInt();
1891 const uint64_t *p = api.getRawData();
1892 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
1893 << " = { 0x" << std::hex
1894 << p[0] << ", 0x" << p[1]
1895 << "}; /* Long double constant */\n" << std::dec;
1896
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001897 } else
1898 assert(0 && "Unknown float type!");
1899 }
1900
1901 Out << '\n';
1902}
1903
1904
1905/// printSymbolTable - Run through symbol table looking for type names. If a
1906/// type name is found, emit its declaration...
1907///
1908void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
1909 Out << "/* Helper union for bitcasts */\n";
1910 Out << "typedef union {\n";
1911 Out << " unsigned int Int32;\n";
1912 Out << " unsigned long long Int64;\n";
1913 Out << " float Float;\n";
1914 Out << " double Double;\n";
1915 Out << "} llvmBitCastUnion;\n";
1916
1917 // We are only interested in the type plane of the symbol table.
1918 TypeSymbolTable::const_iterator I = TST.begin();
1919 TypeSymbolTable::const_iterator End = TST.end();
1920
1921 // If there are no type names, exit early.
1922 if (I == End) return;
1923
1924 // Print out forward declarations for structure types before anything else!
1925 Out << "/* Structure forward decls */\n";
1926 for (; I != End; ++I) {
1927 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
1928 Out << Name << ";\n";
1929 TypeNames.insert(std::make_pair(I->second, Name));
1930 }
1931
1932 Out << '\n';
1933
1934 // Now we can print out typedefs. Above, we guaranteed that this can only be
1935 // for struct or opaque types.
1936 Out << "/* Typedefs */\n";
1937 for (I = TST.begin(); I != End; ++I) {
1938 std::string Name = "l_" + Mang->makeNameProper(I->first);
1939 Out << "typedef ";
1940 printType(Out, I->second, false, Name);
1941 Out << ";\n";
1942 }
1943
1944 Out << '\n';
1945
1946 // Keep track of which structures have been printed so far...
Dan Gohman5d995b02008-06-02 21:30:49 +00001947 std::set<const Type *> StructPrinted;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001948
1949 // Loop over all structures then push them into the stack so they are
1950 // printed in the correct order.
1951 //
1952 Out << "/* Structure contents */\n";
1953 for (I = TST.begin(); I != End; ++I)
Dan Gohman5d995b02008-06-02 21:30:49 +00001954 if (isa<StructType>(I->second) || isa<ArrayType>(I->second))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001955 // Only print out used types!
Dan Gohman5d995b02008-06-02 21:30:49 +00001956 printContainedStructs(I->second, StructPrinted);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001957}
1958
1959// Push the struct onto the stack and recursively push all structs
1960// this one depends on.
1961//
1962// TODO: Make this work properly with vector types
1963//
1964void CWriter::printContainedStructs(const Type *Ty,
Dan Gohman5d995b02008-06-02 21:30:49 +00001965 std::set<const Type*> &StructPrinted) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001966 // Don't walk through pointers.
1967 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
1968
1969 // Print all contained types first.
1970 for (Type::subtype_iterator I = Ty->subtype_begin(),
1971 E = Ty->subtype_end(); I != E; ++I)
1972 printContainedStructs(*I, StructPrinted);
1973
Dan Gohman5d995b02008-06-02 21:30:49 +00001974 if (isa<StructType>(Ty) || isa<ArrayType>(Ty)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001975 // Check to see if we have already printed this struct.
Dan Gohman5d995b02008-06-02 21:30:49 +00001976 if (StructPrinted.insert(Ty).second) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001977 // Print structure type out.
Dan Gohman5d995b02008-06-02 21:30:49 +00001978 std::string Name = TypeNames[Ty];
1979 printType(Out, Ty, false, Name, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001980 Out << ";\n\n";
1981 }
1982 }
1983}
1984
1985void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
1986 /// isStructReturn - Should this function actually return a struct by-value?
Devang Patel949a4b72008-03-03 21:46:28 +00001987 bool isStructReturn = F->hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001988
1989 if (F->hasInternalLinkage()) Out << "static ";
1990 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
1991 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
1992 switch (F->getCallingConv()) {
1993 case CallingConv::X86_StdCall:
1994 Out << "__stdcall ";
1995 break;
1996 case CallingConv::X86_FastCall:
1997 Out << "__fastcall ";
1998 break;
1999 }
2000
2001 // Loop over the arguments, printing them...
2002 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
Chris Lattner1c8733e2008-03-12 17:45:29 +00002003 const PAListPtr &PAL = F->getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002004
2005 std::stringstream FunctionInnards;
2006
2007 // Print out the name...
2008 FunctionInnards << GetValueName(F) << '(';
2009
2010 bool PrintedArg = false;
2011 if (!F->isDeclaration()) {
2012 if (!F->arg_empty()) {
2013 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
Evan Cheng2054cb02008-01-11 03:07:46 +00002014 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002015
2016 // If this is a struct-return function, don't print the hidden
2017 // struct-return argument.
2018 if (isStructReturn) {
2019 assert(I != E && "Invalid struct return function!");
2020 ++I;
Evan Cheng2054cb02008-01-11 03:07:46 +00002021 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002022 }
2023
2024 std::string ArgName;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002025 for (; I != E; ++I) {
2026 if (PrintedArg) FunctionInnards << ", ";
2027 if (I->hasName() || !Prototype)
2028 ArgName = GetValueName(I);
2029 else
2030 ArgName = "";
Evan Cheng2054cb02008-01-11 03:07:46 +00002031 const Type *ArgTy = I->getType();
Chris Lattner1c8733e2008-03-12 17:45:29 +00002032 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Cheng17254e62008-01-11 09:12:49 +00002033 ArgTy = cast<PointerType>(ArgTy)->getElementType();
Chris Lattner8bbc8592008-03-02 08:07:24 +00002034 ByValParams.insert(I);
Evan Cheng17254e62008-01-11 09:12:49 +00002035 }
Evan Cheng2054cb02008-01-11 03:07:46 +00002036 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00002037 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002038 ArgName);
2039 PrintedArg = true;
2040 ++Idx;
2041 }
2042 }
2043 } else {
2044 // Loop over the arguments, printing them.
2045 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
Evan Chengf8956382008-01-11 23:10:11 +00002046 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002047
2048 // If this is a struct-return function, don't print the hidden
2049 // struct-return argument.
2050 if (isStructReturn) {
2051 assert(I != E && "Invalid struct return function!");
2052 ++I;
Evan Chengf8956382008-01-11 23:10:11 +00002053 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002054 }
2055
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002056 for (; I != E; ++I) {
2057 if (PrintedArg) FunctionInnards << ", ";
Evan Chengf8956382008-01-11 23:10:11 +00002058 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +00002059 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Chengf8956382008-01-11 23:10:11 +00002060 assert(isa<PointerType>(ArgTy));
2061 ArgTy = cast<PointerType>(ArgTy)->getElementType();
2062 }
2063 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00002064 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002065 PrintedArg = true;
2066 ++Idx;
2067 }
2068 }
2069
2070 // Finish printing arguments... if this is a vararg function, print the ...,
2071 // unless there are no known types, in which case, we just emit ().
2072 //
2073 if (FT->isVarArg() && PrintedArg) {
2074 if (PrintedArg) FunctionInnards << ", ";
2075 FunctionInnards << "..."; // Output varargs portion of signature!
2076 } else if (!FT->isVarArg() && !PrintedArg) {
2077 FunctionInnards << "void"; // ret() -> ret(void) in C.
2078 }
2079 FunctionInnards << ')';
2080
2081 // Get the return tpe for the function.
2082 const Type *RetTy;
2083 if (!isStructReturn)
2084 RetTy = F->getReturnType();
2085 else {
2086 // If this is a struct-return function, print the struct-return type.
2087 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
2088 }
2089
2090 // Print out the return type and the signature built above.
2091 printType(Out, RetTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00002092 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002093 FunctionInnards.str());
2094}
2095
2096static inline bool isFPIntBitCast(const Instruction &I) {
2097 if (!isa<BitCastInst>(I))
2098 return false;
2099 const Type *SrcTy = I.getOperand(0)->getType();
2100 const Type *DstTy = I.getType();
2101 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
2102 (DstTy->isFloatingPoint() && SrcTy->isInteger());
2103}
2104
2105void CWriter::printFunction(Function &F) {
2106 /// isStructReturn - Should this function actually return a struct by-value?
Devang Patel949a4b72008-03-03 21:46:28 +00002107 bool isStructReturn = F.hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002108
2109 printFunctionSignature(&F, false);
2110 Out << " {\n";
2111
2112 // If this is a struct return function, handle the result with magic.
2113 if (isStructReturn) {
2114 const Type *StructTy =
2115 cast<PointerType>(F.arg_begin()->getType())->getElementType();
2116 Out << " ";
2117 printType(Out, StructTy, false, "StructReturn");
2118 Out << "; /* Struct return temporary */\n";
2119
2120 Out << " ";
2121 printType(Out, F.arg_begin()->getType(), false,
2122 GetValueName(F.arg_begin()));
2123 Out << " = &StructReturn;\n";
2124 }
2125
2126 bool PrintedVar = false;
2127
2128 // print local variable information for the function
2129 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2130 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
2131 Out << " ";
2132 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
2133 Out << "; /* Address-exposed local */\n";
2134 PrintedVar = true;
2135 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
2136 Out << " ";
2137 printType(Out, I->getType(), false, GetValueName(&*I));
2138 Out << ";\n";
2139
2140 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
2141 Out << " ";
2142 printType(Out, I->getType(), false,
2143 GetValueName(&*I)+"__PHI_TEMPORARY");
2144 Out << ";\n";
2145 }
2146 PrintedVar = true;
2147 }
2148 // We need a temporary for the BitCast to use so it can pluck a value out
2149 // of a union to do the BitCast. This is separate from the need for a
2150 // variable to hold the result of the BitCast.
2151 if (isFPIntBitCast(*I)) {
2152 Out << " llvmBitCastUnion " << GetValueName(&*I)
2153 << "__BITCAST_TEMPORARY;\n";
2154 PrintedVar = true;
2155 }
2156 }
2157
2158 if (PrintedVar)
2159 Out << '\n';
2160
2161 if (F.hasExternalLinkage() && F.getName() == "main")
2162 Out << " CODE_FOR_MAIN();\n";
2163
2164 // print the basic blocks
2165 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2166 if (Loop *L = LI->getLoopFor(BB)) {
2167 if (L->getHeader() == BB && L->getParentLoop() == 0)
2168 printLoop(L);
2169 } else {
2170 printBasicBlock(BB);
2171 }
2172 }
2173
2174 Out << "}\n\n";
2175}
2176
2177void CWriter::printLoop(Loop *L) {
2178 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2179 << "' to make GCC happy */\n";
2180 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2181 BasicBlock *BB = L->getBlocks()[i];
2182 Loop *BBLoop = LI->getLoopFor(BB);
2183 if (BBLoop == L)
2184 printBasicBlock(BB);
2185 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2186 printLoop(BBLoop);
2187 }
2188 Out << " } while (1); /* end of syntactic loop '"
2189 << L->getHeader()->getName() << "' */\n";
2190}
2191
2192void CWriter::printBasicBlock(BasicBlock *BB) {
2193
2194 // Don't print the label for the basic block if there are no uses, or if
2195 // the only terminator use is the predecessor basic block's terminator.
2196 // We have to scan the use list because PHI nodes use basic blocks too but
2197 // do not require a label to be generated.
2198 //
2199 bool NeedsLabel = false;
2200 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2201 if (isGotoCodeNecessary(*PI, BB)) {
2202 NeedsLabel = true;
2203 break;
2204 }
2205
2206 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2207
2208 // Output all of the instructions in the basic block...
2209 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2210 ++II) {
2211 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2212 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2213 outputLValue(II);
2214 else
2215 Out << " ";
Chris Lattnerd70f5a82008-05-31 09:23:55 +00002216 writeInstComputationInline(*II);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002217 Out << ";\n";
2218 }
2219 }
2220
Chris Lattnerd70f5a82008-05-31 09:23:55 +00002221 // Don't emit prefix or suffix for the terminator.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002222 visit(*BB->getTerminator());
2223}
2224
2225
2226// Specific Instruction type classes... note that all of the casts are
2227// necessary because we use the instruction classes as opaque types...
2228//
2229void CWriter::visitReturnInst(ReturnInst &I) {
2230 // If this is a struct return function, return the temporary struct.
Devang Patel949a4b72008-03-03 21:46:28 +00002231 bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002232
2233 if (isStructReturn) {
2234 Out << " return StructReturn;\n";
2235 return;
2236 }
2237
2238 // Don't output a void return if this is the last basic block in the function
2239 if (I.getNumOperands() == 0 &&
2240 &*--I.getParent()->getParent()->end() == I.getParent() &&
2241 !I.getParent()->size() == 1) {
2242 return;
2243 }
2244
Dan Gohman93d04582008-04-23 21:49:29 +00002245 if (I.getNumOperands() > 1) {
2246 Out << " {\n";
2247 Out << " ";
2248 printType(Out, I.getParent()->getParent()->getReturnType());
2249 Out << " llvm_cbe_mrv_temp = {\n";
2250 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
2251 Out << " ";
2252 writeOperand(I.getOperand(i));
2253 if (i != e - 1)
2254 Out << ",";
2255 Out << "\n";
2256 }
2257 Out << " };\n";
2258 Out << " return llvm_cbe_mrv_temp;\n";
2259 Out << " }\n";
2260 return;
2261 }
2262
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002263 Out << " return";
2264 if (I.getNumOperands()) {
2265 Out << ' ';
2266 writeOperand(I.getOperand(0));
2267 }
2268 Out << ";\n";
2269}
2270
2271void CWriter::visitSwitchInst(SwitchInst &SI) {
2272
2273 Out << " switch (";
2274 writeOperand(SI.getOperand(0));
2275 Out << ") {\n default:\n";
2276 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2277 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2278 Out << ";\n";
2279 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2280 Out << " case ";
2281 writeOperand(SI.getOperand(i));
2282 Out << ":\n";
2283 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2284 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2285 printBranchToBlock(SI.getParent(), Succ, 2);
2286 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2287 Out << " break;\n";
2288 }
2289 Out << " }\n";
2290}
2291
2292void CWriter::visitUnreachableInst(UnreachableInst &I) {
2293 Out << " /*UNREACHABLE*/;\n";
2294}
2295
2296bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2297 /// FIXME: This should be reenabled, but loop reordering safe!!
2298 return true;
2299
2300 if (next(Function::iterator(From)) != Function::iterator(To))
2301 return true; // Not the direct successor, we need a goto.
2302
2303 //isa<SwitchInst>(From->getTerminator())
2304
2305 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2306 return true;
2307 return false;
2308}
2309
2310void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2311 BasicBlock *Successor,
2312 unsigned Indent) {
2313 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2314 PHINode *PN = cast<PHINode>(I);
2315 // Now we have to do the printing.
2316 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2317 if (!isa<UndefValue>(IV)) {
2318 Out << std::string(Indent, ' ');
2319 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2320 writeOperand(IV);
2321 Out << "; /* for PHI node */\n";
2322 }
2323 }
2324}
2325
2326void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2327 unsigned Indent) {
2328 if (isGotoCodeNecessary(CurBB, Succ)) {
2329 Out << std::string(Indent, ' ') << " goto ";
2330 writeOperand(Succ);
2331 Out << ";\n";
2332 }
2333}
2334
2335// Branch instruction printing - Avoid printing out a branch to a basic block
2336// that immediately succeeds the current one.
2337//
2338void CWriter::visitBranchInst(BranchInst &I) {
2339
2340 if (I.isConditional()) {
2341 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2342 Out << " if (";
2343 writeOperand(I.getCondition());
2344 Out << ") {\n";
2345
2346 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2347 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2348
2349 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2350 Out << " } else {\n";
2351 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2352 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2353 }
2354 } else {
2355 // First goto not necessary, assume second one is...
2356 Out << " if (!";
2357 writeOperand(I.getCondition());
2358 Out << ") {\n";
2359
2360 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2361 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2362 }
2363
2364 Out << " }\n";
2365 } else {
2366 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2367 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2368 }
2369 Out << "\n";
2370}
2371
2372// PHI nodes get copied into temporary values at the end of predecessor basic
2373// blocks. We now need to copy these temporary values into the REAL value for
2374// the PHI.
2375void CWriter::visitPHINode(PHINode &I) {
2376 writeOperand(&I);
2377 Out << "__PHI_TEMPORARY";
2378}
2379
2380
2381void CWriter::visitBinaryOperator(Instruction &I) {
2382 // binary instructions, shift instructions, setCond instructions.
2383 assert(!isa<PointerType>(I.getType()));
2384
2385 // We must cast the results of binary operations which might be promoted.
2386 bool needsCast = false;
2387 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2388 || (I.getType() == Type::FloatTy)) {
2389 needsCast = true;
2390 Out << "((";
2391 printType(Out, I.getType(), false);
2392 Out << ")(";
2393 }
2394
2395 // If this is a negation operation, print it out as such. For FP, we don't
2396 // want to print "-0.0 - X".
2397 if (BinaryOperator::isNeg(&I)) {
2398 Out << "-(";
2399 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2400 Out << ")";
2401 } else if (I.getOpcode() == Instruction::FRem) {
2402 // Output a call to fmod/fmodf instead of emitting a%b
2403 if (I.getType() == Type::FloatTy)
2404 Out << "fmodf(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002405 else if (I.getType() == Type::DoubleTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002406 Out << "fmod(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002407 else // all 3 flavors of long double
2408 Out << "fmodl(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002409 writeOperand(I.getOperand(0));
2410 Out << ", ";
2411 writeOperand(I.getOperand(1));
2412 Out << ")";
2413 } else {
2414
2415 // Write out the cast of the instruction's value back to the proper type
2416 // if necessary.
2417 bool NeedsClosingParens = writeInstructionCast(I);
2418
2419 // Certain instructions require the operand to be forced to a specific type
2420 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2421 // below for operand 1
2422 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2423
2424 switch (I.getOpcode()) {
2425 case Instruction::Add: Out << " + "; break;
2426 case Instruction::Sub: Out << " - "; break;
2427 case Instruction::Mul: Out << " * "; break;
2428 case Instruction::URem:
2429 case Instruction::SRem:
2430 case Instruction::FRem: Out << " % "; break;
2431 case Instruction::UDiv:
2432 case Instruction::SDiv:
2433 case Instruction::FDiv: Out << " / "; break;
2434 case Instruction::And: Out << " & "; break;
2435 case Instruction::Or: Out << " | "; break;
2436 case Instruction::Xor: Out << " ^ "; break;
2437 case Instruction::Shl : Out << " << "; break;
2438 case Instruction::LShr:
2439 case Instruction::AShr: Out << " >> "; break;
2440 default: cerr << "Invalid operator type!" << I; abort();
2441 }
2442
2443 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2444 if (NeedsClosingParens)
2445 Out << "))";
2446 }
2447
2448 if (needsCast) {
2449 Out << "))";
2450 }
2451}
2452
2453void CWriter::visitICmpInst(ICmpInst &I) {
2454 // We must cast the results of icmp which might be promoted.
2455 bool needsCast = false;
2456
2457 // Write out the cast of the instruction's value back to the proper type
2458 // if necessary.
2459 bool NeedsClosingParens = writeInstructionCast(I);
2460
2461 // Certain icmp predicate require the operand to be forced to a specific type
2462 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2463 // below for operand 1
Chris Lattner389c9142007-09-15 06:51:03 +00002464 writeOperandWithCast(I.getOperand(0), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002465
2466 switch (I.getPredicate()) {
2467 case ICmpInst::ICMP_EQ: Out << " == "; break;
2468 case ICmpInst::ICMP_NE: Out << " != "; break;
2469 case ICmpInst::ICMP_ULE:
2470 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2471 case ICmpInst::ICMP_UGE:
2472 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2473 case ICmpInst::ICMP_ULT:
2474 case ICmpInst::ICMP_SLT: Out << " < "; break;
2475 case ICmpInst::ICMP_UGT:
2476 case ICmpInst::ICMP_SGT: Out << " > "; break;
2477 default: cerr << "Invalid icmp predicate!" << I; abort();
2478 }
2479
Chris Lattner389c9142007-09-15 06:51:03 +00002480 writeOperandWithCast(I.getOperand(1), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002481 if (NeedsClosingParens)
2482 Out << "))";
2483
2484 if (needsCast) {
2485 Out << "))";
2486 }
2487}
2488
2489void CWriter::visitFCmpInst(FCmpInst &I) {
2490 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2491 Out << "0";
2492 return;
2493 }
2494 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2495 Out << "1";
2496 return;
2497 }
2498
2499 const char* op = 0;
2500 switch (I.getPredicate()) {
2501 default: assert(0 && "Illegal FCmp predicate");
2502 case FCmpInst::FCMP_ORD: op = "ord"; break;
2503 case FCmpInst::FCMP_UNO: op = "uno"; break;
2504 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2505 case FCmpInst::FCMP_UNE: op = "une"; break;
2506 case FCmpInst::FCMP_ULT: op = "ult"; break;
2507 case FCmpInst::FCMP_ULE: op = "ule"; break;
2508 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2509 case FCmpInst::FCMP_UGE: op = "uge"; break;
2510 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2511 case FCmpInst::FCMP_ONE: op = "one"; break;
2512 case FCmpInst::FCMP_OLT: op = "olt"; break;
2513 case FCmpInst::FCMP_OLE: op = "ole"; break;
2514 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2515 case FCmpInst::FCMP_OGE: op = "oge"; break;
2516 }
2517
2518 Out << "llvm_fcmp_" << op << "(";
2519 // Write the first operand
2520 writeOperand(I.getOperand(0));
2521 Out << ", ";
2522 // Write the second operand
2523 writeOperand(I.getOperand(1));
2524 Out << ")";
2525}
2526
2527static const char * getFloatBitCastField(const Type *Ty) {
2528 switch (Ty->getTypeID()) {
2529 default: assert(0 && "Invalid Type");
2530 case Type::FloatTyID: return "Float";
2531 case Type::DoubleTyID: return "Double";
2532 case Type::IntegerTyID: {
2533 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2534 if (NumBits <= 32)
2535 return "Int32";
2536 else
2537 return "Int64";
2538 }
2539 }
2540}
2541
2542void CWriter::visitCastInst(CastInst &I) {
2543 const Type *DstTy = I.getType();
2544 const Type *SrcTy = I.getOperand(0)->getType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002545 if (isFPIntBitCast(I)) {
Chris Lattnerd70f5a82008-05-31 09:23:55 +00002546 Out << '(';
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002547 // These int<->float and long<->double casts need to be handled specially
2548 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2549 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2550 writeOperand(I.getOperand(0));
2551 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2552 << getFloatBitCastField(I.getType());
Chris Lattnerd70f5a82008-05-31 09:23:55 +00002553 Out << ')';
2554 return;
2555 }
2556
2557 Out << '(';
2558 printCast(I.getOpcode(), SrcTy, DstTy);
2559
2560 // Make a sext from i1 work by subtracting the i1 from 0 (an int).
2561 if (SrcTy == Type::Int1Ty && I.getOpcode() == Instruction::SExt)
2562 Out << "0-";
2563
2564 writeOperand(I.getOperand(0));
2565
2566 if (DstTy == Type::Int1Ty &&
2567 (I.getOpcode() == Instruction::Trunc ||
2568 I.getOpcode() == Instruction::FPToUI ||
2569 I.getOpcode() == Instruction::FPToSI ||
2570 I.getOpcode() == Instruction::PtrToInt)) {
2571 // Make sure we really get a trunc to bool by anding the operand with 1
2572 Out << "&1u";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002573 }
2574 Out << ')';
2575}
2576
2577void CWriter::visitSelectInst(SelectInst &I) {
2578 Out << "((";
2579 writeOperand(I.getCondition());
2580 Out << ") ? (";
2581 writeOperand(I.getTrueValue());
2582 Out << ") : (";
2583 writeOperand(I.getFalseValue());
2584 Out << "))";
2585}
2586
2587
2588void CWriter::lowerIntrinsics(Function &F) {
2589 // This is used to keep track of intrinsics that get generated to a lowered
2590 // function. We must generate the prototypes before the function body which
2591 // will only be expanded on first use (by the loop below).
2592 std::vector<Function*> prototypesToGen;
2593
2594 // Examine all the instructions in this function to find the intrinsics that
2595 // need to be lowered.
2596 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2597 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2598 if (CallInst *CI = dyn_cast<CallInst>(I++))
2599 if (Function *F = CI->getCalledFunction())
2600 switch (F->getIntrinsicID()) {
2601 case Intrinsic::not_intrinsic:
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002602 case Intrinsic::memory_barrier:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002603 case Intrinsic::vastart:
2604 case Intrinsic::vacopy:
2605 case Intrinsic::vaend:
2606 case Intrinsic::returnaddress:
2607 case Intrinsic::frameaddress:
2608 case Intrinsic::setjmp:
2609 case Intrinsic::longjmp:
2610 case Intrinsic::prefetch:
2611 case Intrinsic::dbg_stoppoint:
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002612 case Intrinsic::powi:
Chris Lattner6a947cb2008-03-02 08:47:13 +00002613 case Intrinsic::x86_sse_cmp_ss:
2614 case Intrinsic::x86_sse_cmp_ps:
2615 case Intrinsic::x86_sse2_cmp_sd:
2616 case Intrinsic::x86_sse2_cmp_pd:
Chris Lattner709df322008-03-02 08:54:27 +00002617 case Intrinsic::ppc_altivec_lvsl:
Chris Lattner6a947cb2008-03-02 08:47:13 +00002618 // We directly implement these intrinsics
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002619 break;
2620 default:
2621 // If this is an intrinsic that directly corresponds to a GCC
2622 // builtin, we handle it.
2623 const char *BuiltinName = "";
2624#define GET_GCC_BUILTIN_NAME
2625#include "llvm/Intrinsics.gen"
2626#undef GET_GCC_BUILTIN_NAME
2627 // If we handle it, don't lower it.
2628 if (BuiltinName[0]) break;
2629
2630 // All other intrinsic calls we must lower.
2631 Instruction *Before = 0;
2632 if (CI != &BB->front())
2633 Before = prior(BasicBlock::iterator(CI));
2634
2635 IL->LowerIntrinsicCall(CI);
2636 if (Before) { // Move iterator to instruction after call
2637 I = Before; ++I;
2638 } else {
2639 I = BB->begin();
2640 }
2641 // If the intrinsic got lowered to another call, and that call has
2642 // a definition then we need to make sure its prototype is emitted
2643 // before any calls to it.
2644 if (CallInst *Call = dyn_cast<CallInst>(I))
2645 if (Function *NewF = Call->getCalledFunction())
2646 if (!NewF->isDeclaration())
2647 prototypesToGen.push_back(NewF);
2648
2649 break;
2650 }
2651
2652 // We may have collected some prototypes to emit in the loop above.
2653 // Emit them now, before the function that uses them is emitted. But,
2654 // be careful not to emit them twice.
2655 std::vector<Function*>::iterator I = prototypesToGen.begin();
2656 std::vector<Function*>::iterator E = prototypesToGen.end();
2657 for ( ; I != E; ++I) {
2658 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2659 Out << '\n';
2660 printFunctionSignature(*I, true);
2661 Out << ";\n";
2662 }
2663 }
2664}
2665
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002666void CWriter::visitCallInst(CallInst &I) {
Chris Lattner8a3b6e42008-05-22 06:19:37 +00002667 if (isa<InlineAsm>(I.getOperand(0)))
2668 return visitInlineAsm(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002669
2670 bool WroteCallee = false;
2671
2672 // Handle intrinsic function calls first...
2673 if (Function *F = I.getCalledFunction())
Chris Lattnera74b9182008-03-02 08:29:41 +00002674 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2675 if (visitBuiltinCall(I, ID, WroteCallee))
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002676 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002677
2678 Value *Callee = I.getCalledValue();
2679
2680 const PointerType *PTy = cast<PointerType>(Callee->getType());
2681 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2682
2683 // If this is a call to a struct-return function, assign to the first
2684 // parameter instead of passing it to the call.
Chris Lattner1c8733e2008-03-12 17:45:29 +00002685 const PAListPtr &PAL = I.getParamAttrs();
Evan Chengb8a072c2008-01-12 18:53:07 +00002686 bool hasByVal = I.hasByValArgument();
Devang Patel949a4b72008-03-03 21:46:28 +00002687 bool isStructRet = I.hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002688 if (isStructRet) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00002689 writeOperandDeref(I.getOperand(1));
Evan Chengf8956382008-01-11 23:10:11 +00002690 Out << " = ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002691 }
2692
2693 if (I.isTailCall()) Out << " /*tail*/ ";
2694
2695 if (!WroteCallee) {
2696 // If this is an indirect call to a struct return function, we need to cast
Evan Chengb8a072c2008-01-12 18:53:07 +00002697 // the pointer. Ditto for indirect calls with byval arguments.
2698 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002699
2700 // GCC is a real PITA. It does not permit codegening casts of functions to
2701 // function pointers if they are in a call (it generates a trap instruction
2702 // instead!). We work around this by inserting a cast to void* in between
2703 // the function and the function pointer cast. Unfortunately, we can't just
2704 // form the constant expression here, because the folder will immediately
2705 // nuke it.
2706 //
2707 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2708 // that void* and function pointers have the same size. :( To deal with this
2709 // in the common case, we handle casts where the number of arguments passed
2710 // match exactly.
2711 //
2712 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2713 if (CE->isCast())
2714 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2715 NeedsCast = true;
2716 Callee = RF;
2717 }
2718
2719 if (NeedsCast) {
2720 // Ok, just cast the pointer type.
2721 Out << "((";
Evan Chengb8a072c2008-01-12 18:53:07 +00002722 if (isStructRet)
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002723 printStructReturnPointerFunctionType(Out, PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002724 cast<PointerType>(I.getCalledValue()->getType()));
Evan Chengb8a072c2008-01-12 18:53:07 +00002725 else if (hasByVal)
2726 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
2727 else
2728 printType(Out, I.getCalledValue()->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002729 Out << ")(void*)";
2730 }
2731 writeOperand(Callee);
2732 if (NeedsCast) Out << ')';
2733 }
2734
2735 Out << '(';
2736
2737 unsigned NumDeclaredParams = FTy->getNumParams();
2738
2739 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2740 unsigned ArgNo = 0;
2741 if (isStructRet) { // Skip struct return argument.
2742 ++AI;
2743 ++ArgNo;
2744 }
2745
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002746 bool PrintedArg = false;
Evan Chengf8956382008-01-11 23:10:11 +00002747 for (; AI != AE; ++AI, ++ArgNo) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002748 if (PrintedArg) Out << ", ";
2749 if (ArgNo < NumDeclaredParams &&
2750 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2751 Out << '(';
2752 printType(Out, FTy->getParamType(ArgNo),
Chris Lattner1c8733e2008-03-12 17:45:29 +00002753 /*isSigned=*/PAL.paramHasAttr(ArgNo+1, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002754 Out << ')';
2755 }
Evan Chengf8956382008-01-11 23:10:11 +00002756 // Check if the argument is expected to be passed by value.
Chris Lattner8bbc8592008-03-02 08:07:24 +00002757 if (I.paramHasAttr(ArgNo+1, ParamAttr::ByVal))
2758 writeOperandDeref(*AI);
2759 else
2760 writeOperand(*AI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002761 PrintedArg = true;
2762 }
2763 Out << ')';
2764}
2765
Chris Lattnera74b9182008-03-02 08:29:41 +00002766/// visitBuiltinCall - Handle the call to the specified builtin. Returns true
2767/// if the entire call is handled, return false it it wasn't handled, and
2768/// optionally set 'WroteCallee' if the callee has already been printed out.
2769bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
2770 bool &WroteCallee) {
2771 switch (ID) {
2772 default: {
2773 // If this is an intrinsic that directly corresponds to a GCC
2774 // builtin, we emit it here.
2775 const char *BuiltinName = "";
2776 Function *F = I.getCalledFunction();
2777#define GET_GCC_BUILTIN_NAME
2778#include "llvm/Intrinsics.gen"
2779#undef GET_GCC_BUILTIN_NAME
2780 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2781
2782 Out << BuiltinName;
2783 WroteCallee = true;
2784 return false;
2785 }
2786 case Intrinsic::memory_barrier:
Andrew Lenharth5c976182008-03-05 23:41:37 +00002787 Out << "__sync_synchronize()";
Chris Lattnera74b9182008-03-02 08:29:41 +00002788 return true;
2789 case Intrinsic::vastart:
2790 Out << "0; ";
2791
2792 Out << "va_start(*(va_list*)";
2793 writeOperand(I.getOperand(1));
2794 Out << ", ";
2795 // Output the last argument to the enclosing function.
2796 if (I.getParent()->getParent()->arg_empty()) {
2797 cerr << "The C backend does not currently support zero "
2798 << "argument varargs functions, such as '"
2799 << I.getParent()->getParent()->getName() << "'!\n";
2800 abort();
2801 }
2802 writeOperand(--I.getParent()->getParent()->arg_end());
2803 Out << ')';
2804 return true;
2805 case Intrinsic::vaend:
2806 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
2807 Out << "0; va_end(*(va_list*)";
2808 writeOperand(I.getOperand(1));
2809 Out << ')';
2810 } else {
2811 Out << "va_end(*(va_list*)0)";
2812 }
2813 return true;
2814 case Intrinsic::vacopy:
2815 Out << "0; ";
2816 Out << "va_copy(*(va_list*)";
2817 writeOperand(I.getOperand(1));
2818 Out << ", *(va_list*)";
2819 writeOperand(I.getOperand(2));
2820 Out << ')';
2821 return true;
2822 case Intrinsic::returnaddress:
2823 Out << "__builtin_return_address(";
2824 writeOperand(I.getOperand(1));
2825 Out << ')';
2826 return true;
2827 case Intrinsic::frameaddress:
2828 Out << "__builtin_frame_address(";
2829 writeOperand(I.getOperand(1));
2830 Out << ')';
2831 return true;
2832 case Intrinsic::powi:
2833 Out << "__builtin_powi(";
2834 writeOperand(I.getOperand(1));
2835 Out << ", ";
2836 writeOperand(I.getOperand(2));
2837 Out << ')';
2838 return true;
2839 case Intrinsic::setjmp:
2840 Out << "setjmp(*(jmp_buf*)";
2841 writeOperand(I.getOperand(1));
2842 Out << ')';
2843 return true;
2844 case Intrinsic::longjmp:
2845 Out << "longjmp(*(jmp_buf*)";
2846 writeOperand(I.getOperand(1));
2847 Out << ", ";
2848 writeOperand(I.getOperand(2));
2849 Out << ')';
2850 return true;
2851 case Intrinsic::prefetch:
2852 Out << "LLVM_PREFETCH((const void *)";
2853 writeOperand(I.getOperand(1));
2854 Out << ", ";
2855 writeOperand(I.getOperand(2));
2856 Out << ", ";
2857 writeOperand(I.getOperand(3));
2858 Out << ")";
2859 return true;
2860 case Intrinsic::stacksave:
2861 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
2862 // to work around GCC bugs (see PR1809).
2863 Out << "0; *((void**)&" << GetValueName(&I)
2864 << ") = __builtin_stack_save()";
2865 return true;
2866 case Intrinsic::dbg_stoppoint: {
2867 // If we use writeOperand directly we get a "u" suffix which is rejected
2868 // by gcc.
2869 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2870 Out << "\n#line "
2871 << SPI.getLine()
2872 << " \"" << SPI.getDirectory()
2873 << SPI.getFileName() << "\"\n";
2874 return true;
2875 }
Chris Lattner6a947cb2008-03-02 08:47:13 +00002876 case Intrinsic::x86_sse_cmp_ss:
2877 case Intrinsic::x86_sse_cmp_ps:
2878 case Intrinsic::x86_sse2_cmp_sd:
2879 case Intrinsic::x86_sse2_cmp_pd:
2880 Out << '(';
2881 printType(Out, I.getType());
2882 Out << ')';
2883 // Multiple GCC builtins multiplex onto this intrinsic.
2884 switch (cast<ConstantInt>(I.getOperand(3))->getZExtValue()) {
2885 default: assert(0 && "Invalid llvm.x86.sse.cmp!");
2886 case 0: Out << "__builtin_ia32_cmpeq"; break;
2887 case 1: Out << "__builtin_ia32_cmplt"; break;
2888 case 2: Out << "__builtin_ia32_cmple"; break;
2889 case 3: Out << "__builtin_ia32_cmpunord"; break;
2890 case 4: Out << "__builtin_ia32_cmpneq"; break;
2891 case 5: Out << "__builtin_ia32_cmpnlt"; break;
2892 case 6: Out << "__builtin_ia32_cmpnle"; break;
2893 case 7: Out << "__builtin_ia32_cmpord"; break;
2894 }
2895 if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
2896 Out << 'p';
2897 else
2898 Out << 's';
2899 if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
2900 Out << 's';
2901 else
2902 Out << 'd';
2903
2904 Out << "(";
2905 writeOperand(I.getOperand(1));
2906 Out << ", ";
2907 writeOperand(I.getOperand(2));
2908 Out << ")";
2909 return true;
Chris Lattner709df322008-03-02 08:54:27 +00002910 case Intrinsic::ppc_altivec_lvsl:
2911 Out << '(';
2912 printType(Out, I.getType());
2913 Out << ')';
2914 Out << "__builtin_altivec_lvsl(0, (void*)";
2915 writeOperand(I.getOperand(1));
2916 Out << ")";
2917 return true;
Chris Lattnera74b9182008-03-02 08:29:41 +00002918 }
2919}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002920
2921//This converts the llvm constraint string to something gcc is expecting.
2922//TODO: work out platform independent constraints and factor those out
2923// of the per target tables
2924// handle multiple constraint codes
2925std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
2926
2927 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
2928
Dan Gohman12300e12008-03-25 21:45:14 +00002929 const char *const *table = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002930
2931 //Grab the translation table from TargetAsmInfo if it exists
2932 if (!TAsm) {
2933 std::string E;
Gordon Henriksen99e34ab2007-10-17 21:28:48 +00002934 const TargetMachineRegistry::entry* Match =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002935 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
2936 if (Match) {
2937 //Per platform Target Machines don't exist, so create it
2938 // this must be done only once
2939 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
2940 TAsm = TM->getTargetAsmInfo();
2941 }
2942 }
2943 if (TAsm)
2944 table = TAsm->getAsmCBE();
2945
2946 //Search the translation table if it exists
2947 for (int i = 0; table && table[i]; i += 2)
2948 if (c.Codes[0] == table[i])
2949 return table[i+1];
2950
2951 //default is identity
2952 return c.Codes[0];
2953}
2954
2955//TODO: import logic from AsmPrinter.cpp
2956static std::string gccifyAsm(std::string asmstr) {
2957 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
2958 if (asmstr[i] == '\n')
2959 asmstr.replace(i, 1, "\\n");
2960 else if (asmstr[i] == '\t')
2961 asmstr.replace(i, 1, "\\t");
2962 else if (asmstr[i] == '$') {
2963 if (asmstr[i + 1] == '{') {
2964 std::string::size_type a = asmstr.find_first_of(':', i + 1);
2965 std::string::size_type b = asmstr.find_first_of('}', i + 1);
2966 std::string n = "%" +
2967 asmstr.substr(a + 1, b - a - 1) +
2968 asmstr.substr(i + 2, a - i - 2);
2969 asmstr.replace(i, b - i + 1, n);
2970 i += n.size() - 1;
2971 } else
2972 asmstr.replace(i, 1, "%");
2973 }
2974 else if (asmstr[i] == '%')//grr
2975 { asmstr.replace(i, 1, "%%"); ++i;}
2976
2977 return asmstr;
2978}
2979
2980//TODO: assumptions about what consume arguments from the call are likely wrong
2981// handle communitivity
2982void CWriter::visitInlineAsm(CallInst &CI) {
2983 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
2984 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
Chris Lattner8a3b6e42008-05-22 06:19:37 +00002985
2986 std::vector<std::pair<Value*, int> > ResultVals;
2987 if (CI.getType() == Type::VoidTy)
2988 ;
2989 else if (const StructType *ST = dyn_cast<StructType>(CI.getType())) {
2990 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
2991 ResultVals.push_back(std::make_pair(&CI, (int)i));
2992 } else {
2993 ResultVals.push_back(std::make_pair(&CI, -1));
2994 }
2995
Chris Lattnera605a9c2008-06-04 18:03:28 +00002996 // Fix up the asm string for gcc and emit it.
2997 Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n";
2998 Out << " :";
2999
3000 unsigned ValueCount = 0;
3001 bool IsFirst = true;
3002
3003 // Convert over all the output constraints.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003004 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
Chris Lattnera605a9c2008-06-04 18:03:28 +00003005 E = Constraints.end(); I != E; ++I) {
3006
3007 if (I->Type != InlineAsm::isOutput) {
3008 ++ValueCount;
3009 continue; // Ignore non-output constraints.
3010 }
3011
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003012 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
Chris Lattner8a3b6e42008-05-22 06:19:37 +00003013 std::string C = InterpretASMConstraint(*I);
3014 if (C.empty()) continue;
3015
Chris Lattnera605a9c2008-06-04 18:03:28 +00003016 if (!IsFirst) {
Chris Lattner8a3b6e42008-05-22 06:19:37 +00003017 Out << ", ";
Chris Lattnera605a9c2008-06-04 18:03:28 +00003018 IsFirst = false;
3019 }
3020
3021 // Unpack the dest.
3022 Value *DestVal;
3023 int DestValNo = -1;
3024
3025 if (ValueCount < ResultVals.size()) {
3026 DestVal = ResultVals[ValueCount].first;
3027 DestValNo = ResultVals[ValueCount].second;
3028 } else
3029 DestVal = CI.getOperand(ValueCount-ResultVals.size()+1);
3030
3031 if (I->isEarlyClobber)
3032 C = "&"+C;
3033
3034 Out << "\"=" << C << "\"(" << GetValueName(DestVal);
3035 if (DestValNo != -1)
3036 Out << ".field" << DestValNo; // Multiple retvals.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003037 Out << ")";
Chris Lattnera605a9c2008-06-04 18:03:28 +00003038 ++ValueCount;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003039 }
Chris Lattnera605a9c2008-06-04 18:03:28 +00003040
3041
3042 // Convert over all the input constraints.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003043 Out << "\n :";
Chris Lattnera605a9c2008-06-04 18:03:28 +00003044 IsFirst = true;
3045 ValueCount = 0;
3046 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
3047 E = Constraints.end(); I != E; ++I) {
3048 if (I->Type != InlineAsm::isInput) {
3049 ++ValueCount;
3050 continue; // Ignore non-input constraints.
3051 }
3052
3053 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
3054 std::string C = InterpretASMConstraint(*I);
3055 if (C.empty()) continue;
3056
3057 if (!IsFirst) {
Chris Lattner5fee1202008-05-22 06:29:38 +00003058 Out << ", ";
Chris Lattnera605a9c2008-06-04 18:03:28 +00003059 IsFirst = false;
3060 }
3061
3062 assert(ValueCount >= ResultVals.size() && "Input can't refer to result");
3063 Value *SrcVal = CI.getOperand(ValueCount-ResultVals.size()+1);
3064
3065 Out << "\"" << C << "\"(";
3066 if (!I->isIndirect)
3067 writeOperand(SrcVal);
3068 else
3069 writeOperandDeref(SrcVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003070 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003071 }
Chris Lattnera605a9c2008-06-04 18:03:28 +00003072
3073 // Convert over the clobber constraints.
3074 IsFirst = true;
3075 ValueCount = 0;
3076 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
3077 E = Constraints.end(); I != E; ++I) {
3078 if (I->Type != InlineAsm::isClobber)
3079 continue; // Ignore non-input constraints.
3080
3081 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
3082 std::string C = InterpretASMConstraint(*I);
3083 if (C.empty()) continue;
3084
3085 if (!IsFirst) {
3086 Out << ", ";
3087 IsFirst = false;
3088 }
3089
3090 Out << '\"' << C << '"';
3091 }
3092
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003093 Out << ")";
3094}
3095
3096void CWriter::visitMallocInst(MallocInst &I) {
3097 assert(0 && "lowerallocations pass didn't work!");
3098}
3099
3100void CWriter::visitAllocaInst(AllocaInst &I) {
3101 Out << '(';
3102 printType(Out, I.getType());
3103 Out << ") alloca(sizeof(";
3104 printType(Out, I.getType()->getElementType());
3105 Out << ')';
3106 if (I.isArrayAllocation()) {
3107 Out << " * " ;
3108 writeOperand(I.getOperand(0));
3109 }
3110 Out << ')';
3111}
3112
3113void CWriter::visitFreeInst(FreeInst &I) {
3114 assert(0 && "lowerallocations pass didn't work!");
3115}
3116
Chris Lattner8bbc8592008-03-02 08:07:24 +00003117void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
3118 gep_type_iterator E) {
3119
3120 // If there are no indices, just print out the pointer.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003121 if (I == E) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00003122 writeOperand(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003123 return;
3124 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00003125
3126 // Find out if the last index is into a vector. If so, we have to print this
3127 // specially. Since vectors can't have elements of indexable type, only the
3128 // last index could possibly be of a vector element.
3129 const VectorType *LastIndexIsVector = 0;
3130 {
3131 for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
3132 LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003133 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00003134
3135 Out << "(";
3136
3137 // If the last index is into a vector, we can't print it as &a[i][j] because
3138 // we can't index into a vector with j in GCC. Instead, emit this as
3139 // (((float*)&a[i])+j)
3140 if (LastIndexIsVector) {
3141 Out << "((";
3142 printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
3143 Out << ")(";
3144 }
3145
3146 Out << '&';
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003147
Chris Lattner8bbc8592008-03-02 08:07:24 +00003148 // If the first index is 0 (very typical) we can do a number of
3149 // simplifications to clean up the code.
3150 Value *FirstOp = I.getOperand();
3151 if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
3152 // First index isn't simple, print it the hard way.
3153 writeOperand(Ptr);
3154 } else {
3155 ++I; // Skip the zero index.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003156
Chris Lattner8bbc8592008-03-02 08:07:24 +00003157 // Okay, emit the first operand. If Ptr is something that is already address
3158 // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
3159 if (isAddressExposed(Ptr)) {
3160 writeOperandInternal(Ptr);
3161 } else if (I != E && isa<StructType>(*I)) {
3162 // If we didn't already emit the first operand, see if we can print it as
3163 // P->f instead of "P[0].f"
3164 writeOperand(Ptr);
3165 Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
3166 ++I; // eat the struct index as well.
3167 } else {
3168 // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
3169 Out << "(*";
3170 writeOperand(Ptr);
3171 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003172 }
3173 }
3174
Chris Lattner8bbc8592008-03-02 08:07:24 +00003175 for (; I != E; ++I) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003176 if (isa<StructType>(*I)) {
3177 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
Dan Gohman5d995b02008-06-02 21:30:49 +00003178 } else if (isa<ArrayType>(*I)) {
3179 Out << ".array[";
3180 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3181 Out << ']';
Chris Lattner8bbc8592008-03-02 08:07:24 +00003182 } else if (!isa<VectorType>(*I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003183 Out << '[';
Chris Lattner7ce1ee42007-09-22 20:16:48 +00003184 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003185 Out << ']';
Chris Lattner8bbc8592008-03-02 08:07:24 +00003186 } else {
3187 // If the last index is into a vector, then print it out as "+j)". This
3188 // works with the 'LastIndexIsVector' code above.
3189 if (isa<Constant>(I.getOperand()) &&
3190 cast<Constant>(I.getOperand())->isNullValue()) {
3191 Out << "))"; // avoid "+0".
3192 } else {
3193 Out << ")+(";
3194 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3195 Out << "))";
3196 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003197 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00003198 }
3199 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003200}
3201
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003202void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
3203 bool IsVolatile, unsigned Alignment) {
3204
3205 bool IsUnaligned = Alignment &&
3206 Alignment < TD->getABITypeAlignment(OperandType);
3207
3208 if (!IsUnaligned)
3209 Out << '*';
3210 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003211 Out << "((";
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003212 if (IsUnaligned)
3213 Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
3214 printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
3215 if (IsUnaligned) {
3216 Out << "; } ";
3217 if (IsVolatile) Out << "volatile ";
3218 Out << "*";
3219 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003220 Out << ")";
3221 }
3222
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003223 writeOperand(Operand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003224
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003225 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003226 Out << ')';
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003227 if (IsUnaligned)
3228 Out << "->data";
3229 }
3230}
3231
3232void CWriter::visitLoadInst(LoadInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003233 writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
3234 I.getAlignment());
3235
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003236}
3237
3238void CWriter::visitStoreInst(StoreInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003239 writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
3240 I.isVolatile(), I.getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003241 Out << " = ";
3242 Value *Operand = I.getOperand(0);
3243 Constant *BitMask = 0;
3244 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
3245 if (!ITy->isPowerOf2ByteWidth())
3246 // We have a bit width that doesn't match an even power-of-2 byte
3247 // size. Consequently we must & the value with the type's bit mask
3248 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
3249 if (BitMask)
3250 Out << "((";
3251 writeOperand(Operand);
3252 if (BitMask) {
3253 Out << ") & ";
3254 printConstant(BitMask);
3255 Out << ")";
3256 }
3257}
3258
3259void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00003260 printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
3261 gep_type_end(I));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003262}
3263
3264void CWriter::visitVAArgInst(VAArgInst &I) {
3265 Out << "va_arg(*(va_list*)";
3266 writeOperand(I.getOperand(0));
3267 Out << ", ";
3268 printType(Out, I.getType());
3269 Out << ");\n ";
3270}
3271
Chris Lattnerf41a7942008-03-02 03:52:39 +00003272void CWriter::visitInsertElementInst(InsertElementInst &I) {
3273 const Type *EltTy = I.getType()->getElementType();
3274 writeOperand(I.getOperand(0));
3275 Out << ";\n ";
3276 Out << "((";
3277 printType(Out, PointerType::getUnqual(EltTy));
3278 Out << ")(&" << GetValueName(&I) << "))[";
Chris Lattnerf41a7942008-03-02 03:52:39 +00003279 writeOperand(I.getOperand(2));
Chris Lattner09418362008-03-02 08:10:16 +00003280 Out << "] = (";
3281 writeOperand(I.getOperand(1));
Chris Lattnerf41a7942008-03-02 03:52:39 +00003282 Out << ")";
3283}
3284
Chris Lattnera5f0bc02008-03-02 03:57:08 +00003285void CWriter::visitExtractElementInst(ExtractElementInst &I) {
3286 // We know that our operand is not inlined.
3287 Out << "((";
3288 const Type *EltTy =
3289 cast<VectorType>(I.getOperand(0)->getType())->getElementType();
3290 printType(Out, PointerType::getUnqual(EltTy));
3291 Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
3292 writeOperand(I.getOperand(1));
3293 Out << "]";
3294}
3295
Chris Lattnerf858a042008-03-02 05:41:07 +00003296void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
3297 Out << "(";
3298 printType(Out, SVI.getType());
3299 Out << "){ ";
3300 const VectorType *VT = SVI.getType();
3301 unsigned NumElts = VT->getNumElements();
3302 const Type *EltTy = VT->getElementType();
3303
3304 for (unsigned i = 0; i != NumElts; ++i) {
3305 if (i) Out << ", ";
3306 int SrcVal = SVI.getMaskValue(i);
3307 if ((unsigned)SrcVal >= NumElts*2) {
3308 Out << " 0/*undef*/ ";
3309 } else {
3310 Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
3311 if (isa<Instruction>(Op)) {
3312 // Do an extractelement of this value from the appropriate input.
3313 Out << "((";
3314 printType(Out, PointerType::getUnqual(EltTy));
3315 Out << ")(&" << GetValueName(Op)
Duncan Sandsf6890712008-05-27 11:50:51 +00003316 << "))[" << (SrcVal & (NumElts-1)) << "]";
Chris Lattnerf858a042008-03-02 05:41:07 +00003317 } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
3318 Out << "0";
3319 } else {
Duncan Sandsf6890712008-05-27 11:50:51 +00003320 printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal &
3321 (NumElts-1)));
Chris Lattnerf858a042008-03-02 05:41:07 +00003322 }
3323 }
3324 }
3325 Out << "}";
3326}
Chris Lattnera5f0bc02008-03-02 03:57:08 +00003327
Dan Gohman93d04582008-04-23 21:49:29 +00003328void CWriter::visitGetResultInst(GetResultInst &GRI) {
3329 Out << "(";
3330 if (isa<UndefValue>(GRI.getOperand(0))) {
3331 Out << "(";
3332 printType(Out, GRI.getType());
3333 Out << ") 0/*UNDEF*/";
3334 } else {
3335 Out << GetValueName(GRI.getOperand(0)) << ".field" << GRI.getIndex();
3336 }
3337 Out << ")";
3338}
Chris Lattnerf41a7942008-03-02 03:52:39 +00003339
Dan Gohman5d995b02008-06-02 21:30:49 +00003340void CWriter::visitInsertValueInst(InsertValueInst &IVI) {
3341 // Start by copying the entire aggregate value into the result variable.
3342 writeOperand(IVI.getOperand(0));
3343 Out << ";\n ";
3344
3345 // Then do the insert to update the field.
3346 Out << GetValueName(&IVI);
3347 for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end();
3348 i != e; ++i) {
3349 const Type *IndexedTy =
3350 ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(), b, i+1);
3351 if (isa<ArrayType>(IndexedTy))
3352 Out << ".array[" << *i << "]";
3353 else
3354 Out << ".field" << *i;
3355 }
3356 Out << " = ";
3357 writeOperand(IVI.getOperand(1));
3358}
3359
3360void CWriter::visitExtractValueInst(ExtractValueInst &EVI) {
3361 Out << "(";
3362 if (isa<UndefValue>(EVI.getOperand(0))) {
3363 Out << "(";
3364 printType(Out, EVI.getType());
3365 Out << ") 0/*UNDEF*/";
3366 } else {
3367 Out << GetValueName(EVI.getOperand(0));
3368 for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end();
3369 i != e; ++i) {
3370 const Type *IndexedTy =
3371 ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(), b, i+1);
3372 if (isa<ArrayType>(IndexedTy))
3373 Out << ".array[" << *i << "]";
3374 else
3375 Out << ".field" << *i;
3376 }
3377 }
3378 Out << ")";
3379}
3380
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003381//===----------------------------------------------------------------------===//
3382// External Interface declaration
3383//===----------------------------------------------------------------------===//
3384
3385bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
3386 std::ostream &o,
3387 CodeGenFileType FileType,
3388 bool Fast) {
3389 if (FileType != TargetMachine::AssemblyFile) return true;
3390
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003391 PM.add(createGCLoweringPass());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003392 PM.add(createLowerAllocationsPass(true));
3393 PM.add(createLowerInvokePass());
3394 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
3395 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3396 PM.add(new CWriter(o));
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003397 PM.add(createCollectorMetadataDeleter());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003398 return false;
3399}