blob: 2c7b9d82deae1ffd5e113c01ed6b5cc008aa634d [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Chris Lattner45762472010-02-03 21:24:49 +000017#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000018#include "llvm/MC/MCExpr.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000019#include "llvm/MC/MCInst.h"
20#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000021using namespace llvm;
22
Chris Lattner5dccfad2010-02-10 06:52:12 +000023// FIXME: This should move to a header.
24namespace llvm {
25namespace X86 {
26enum Fixups {
Chris Lattner11eafa82010-02-11 21:17:54 +000027 reloc_pcrel_4byte = FirstTargetFixupKind, // 32-bit pcrel, e.g. a branch.
Chris Lattner835acab2010-02-12 23:00:36 +000028 reloc_pcrel_1byte, // 8-bit pcrel, e.g. branch_1
29 reloc_riprel_4byte // 32-bit rip-relative
Chris Lattner5dccfad2010-02-10 06:52:12 +000030};
31}
32}
33
Chris Lattner45762472010-02-03 21:24:49 +000034namespace {
35class X86MCCodeEmitter : public MCCodeEmitter {
36 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
37 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000038 const TargetMachine &TM;
39 const TargetInstrInfo &TII;
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000040 MCContext &Ctx;
Chris Lattner1ac23b12010-02-05 02:18:40 +000041 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000042public:
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000043 X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
44 : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000045 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000046 }
47
48 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000049
50 unsigned getNumFixupKinds() const {
Chris Lattner835acab2010-02-12 23:00:36 +000051 return 3;
Daniel Dunbar73c55742010-02-09 22:59:55 +000052 }
53
Chris Lattner8d31de62010-02-11 21:27:18 +000054 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
55 const static MCFixupKindInfo Infos[] = {
Chris Lattner11eafa82010-02-11 21:17:54 +000056 { "reloc_pcrel_4byte", 0, 4 * 8 },
Chris Lattner835acab2010-02-12 23:00:36 +000057 { "reloc_pcrel_1byte", 0, 1 * 8 },
58 { "reloc_riprel_4byte", 0, 4 * 8 }
Daniel Dunbar73c55742010-02-09 22:59:55 +000059 };
Chris Lattner8d31de62010-02-11 21:27:18 +000060
61 if (Kind < FirstTargetFixupKind)
62 return MCCodeEmitter::getFixupKindInfo(Kind);
Daniel Dunbar73c55742010-02-09 22:59:55 +000063
Chris Lattner8d31de62010-02-11 21:27:18 +000064 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
Daniel Dunbar73c55742010-02-09 22:59:55 +000065 "Invalid kind!");
66 return Infos[Kind - FirstTargetFixupKind];
67 }
Chris Lattner45762472010-02-03 21:24:49 +000068
Chris Lattner28249d92010-02-05 01:53:19 +000069 static unsigned GetX86RegNum(const MCOperand &MO) {
70 return X86RegisterInfo::getX86RegNum(MO.getReg());
71 }
72
Chris Lattner37ce80e2010-02-10 06:41:02 +000073 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000074 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000075 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000076 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000077
Chris Lattner37ce80e2010-02-10 06:41:02 +000078 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
79 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000080 // Output the constant in little endian byte order.
81 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000082 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000083 Val >>= 8;
84 }
85 }
Chris Lattner0e73c392010-02-05 06:16:07 +000086
Chris Lattnercf653392010-02-12 22:36:47 +000087 void EmitImmediate(const MCOperand &Disp,
88 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +000089 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +000090 SmallVectorImpl<MCFixup> &Fixups,
91 int ImmOffset = 0) const;
Chris Lattner28249d92010-02-05 01:53:19 +000092
93 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
94 unsigned RM) {
95 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
96 return RM | (RegOpcode << 3) | (Mod << 6);
97 }
98
99 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000100 unsigned &CurByte, raw_ostream &OS) const {
101 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000102 }
103
Chris Lattner0e73c392010-02-05 06:16:07 +0000104 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000105 unsigned &CurByte, raw_ostream &OS) const {
106 // SIB byte is in the same format as the ModRMByte.
107 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000108 }
109
110
Chris Lattner1ac23b12010-02-05 02:18:40 +0000111 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Chris Lattner1b670602010-02-11 06:49:52 +0000112 unsigned RegOpcodeField,
Chris Lattner835acab2010-02-12 23:00:36 +0000113 unsigned TSFlags, unsigned &CurByte, raw_ostream &OS,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000114 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000115
Daniel Dunbar73c55742010-02-09 22:59:55 +0000116 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
117 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000118
Chris Lattner45762472010-02-03 21:24:49 +0000119};
120
121} // end anonymous namespace
122
123
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000124MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000125 TargetMachine &TM,
126 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000127 return new X86MCCodeEmitter(TM, Ctx, false);
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000128}
129
130MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000131 TargetMachine &TM,
132 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000133 return new X86MCCodeEmitter(TM, Ctx, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000134}
135
136
Chris Lattner1ac23b12010-02-05 02:18:40 +0000137/// isDisp8 - Return true if this signed displacement fits in a 8-bit
138/// sign-extended field.
139static bool isDisp8(int Value) {
140 return Value == (signed char)Value;
141}
142
Chris Lattnercf653392010-02-12 22:36:47 +0000143/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
144/// in an instruction with the specified TSFlags.
145static MCFixupKind getImmFixupKind(unsigned TSFlags) {
146 unsigned Size = X86II::getSizeOfImm(TSFlags);
147 bool isPCRel = X86II::isImmPCRel(TSFlags);
148
Chris Lattnercf653392010-02-12 22:36:47 +0000149 switch (Size) {
150 default: assert(0 && "Unknown immediate size");
151 case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
152 case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
153 case 2: assert(!isPCRel); return FK_Data_2;
154 case 8: assert(!isPCRel); return FK_Data_8;
155 }
156}
157
158
Chris Lattner0e73c392010-02-05 06:16:07 +0000159void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000160EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000161 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000162 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000163 // If this is a simple integer displacement that doesn't require a relocation,
164 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000165 if (DispOp.isImm()) {
Chris Lattner835acab2010-02-12 23:00:36 +0000166 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000167 return;
168 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000169
Chris Lattner835acab2010-02-12 23:00:36 +0000170 // If we have an immoffset, add it to the expression.
171 const MCExpr *Expr = DispOp.getExpr();
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000172 if (ImmOffset)
173 Expr = MCBinaryExpr::CreateAdd(Expr,MCConstantExpr::Create(ImmOffset, Ctx),
174 Ctx);
Chris Lattner835acab2010-02-12 23:00:36 +0000175
Chris Lattner5dccfad2010-02-10 06:52:12 +0000176 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattner835acab2010-02-12 23:00:36 +0000177 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000178 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000179}
180
181
Chris Lattner1ac23b12010-02-05 02:18:40 +0000182void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
183 unsigned RegOpcodeField,
Chris Lattner835acab2010-02-12 23:00:36 +0000184 unsigned TSFlags, unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000185 raw_ostream &OS,
186 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000187 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000188 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000189 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000190 const MCOperand &IndexReg = MI.getOperand(Op+2);
191 unsigned BaseReg = Base.getReg();
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000192
193 // Handle %rip relative addressing.
194 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
195 assert(IndexReg.getReg() == 0 && Is64BitMode &&
196 "Invalid rip-relative address");
197 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattner835acab2010-02-12 23:00:36 +0000198
199 // rip-relative addressing is actually relative to the *next* instruction.
200 // Since an immediate can follow the mod/rm byte for an instruction, this
201 // means that we need to bias the immediate field of the instruction with
202 // the size of the immediate field. If we have this case, add it into the
203 // expression to emit.
204 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
205 EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_riprel_4byte),
206 CurByte, OS, Fixups, -ImmSize);
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000207 return;
208 }
209
210 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
Chris Lattnerecfb3c32010-02-11 08:45:56 +0000211
Chris Lattnera8168ec2010-02-09 21:57:34 +0000212 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000213 // If no BaseReg, issue a RIP relative instruction only if the MCE can
214 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
215 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000216
Chris Lattnera8168ec2010-02-09 21:57:34 +0000217 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000218 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000219 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
220 // encode to an R/M value of 4, which indicates that a SIB byte is
221 // present.
222 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000223 // If there is no base register and we're in 64-bit mode, we need a SIB
224 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
225 (!Is64BitMode || BaseReg != 0)) {
226
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000227 if (BaseReg == 0) { // [disp32] in X86-32 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000228 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000229 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000230 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000231 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000232
Chris Lattnera8168ec2010-02-09 21:57:34 +0000233 // If the base is not EBP/ESP and there is no displacement, use simple
234 // indirect register encoding, this handles addresses like [EAX]. The
235 // encoding for [EBP] with no displacement means [disp32] so we handle it
236 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000237 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000238 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000239 return;
240 }
241
242 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000243 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000244 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000245 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000246 return;
247 }
248
249 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000250 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000251 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000252 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000253 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000254
255 // We need a SIB byte, so start by outputting the ModR/M byte first
256 assert(IndexReg.getReg() != X86::ESP &&
257 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
258
259 bool ForceDisp32 = false;
260 bool ForceDisp8 = false;
261 if (BaseReg == 0) {
262 // If there is no base register, we emit the special case SIB byte with
263 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000264 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000265 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000266 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000267 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000268 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000269 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000270 } else if (Disp.getImm() == 0 && BaseReg != X86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000271 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000272 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000273 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000274 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000275 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000276 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
277 } else {
278 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000279 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000280 }
281
282 // Calculate what the SS field value should be...
283 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
284 unsigned SS = SSTable[Scale.getImm()];
285
286 if (BaseReg == 0) {
287 // Handle the SIB byte for the case where there is no base, see Intel
288 // Manual 2A, table 2-7. The displacement has already been output.
289 unsigned IndexRegNo;
290 if (IndexReg.getReg())
291 IndexRegNo = GetX86RegNum(IndexReg);
292 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
293 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000294 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000295 } else {
296 unsigned IndexRegNo;
297 if (IndexReg.getReg())
298 IndexRegNo = GetX86RegNum(IndexReg);
299 else
300 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000301 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000302 }
303
304 // Do we need to output a displacement?
305 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000306 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000307 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattnercf653392010-02-12 22:36:47 +0000308 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000309}
310
Chris Lattner39a612e2010-02-05 22:10:22 +0000311/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
312/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
313/// size, and 3) use of X86-64 extended registers.
314static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
315 const TargetInstrDesc &Desc) {
Chris Lattner7e851802010-02-11 22:39:10 +0000316 // Pseudo instructions shouldn't get here.
317 assert((TSFlags & X86II::FormMask) != X86II::Pseudo &&
318 "Can't encode pseudo instrs");
Chris Lattner39a612e2010-02-05 22:10:22 +0000319
Chris Lattner7e851802010-02-11 22:39:10 +0000320 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000321 if (TSFlags & X86II::REX_W)
322 REX |= 1 << 3;
323
324 if (MI.getNumOperands() == 0) return REX;
325
326 unsigned NumOps = MI.getNumOperands();
327 // FIXME: MCInst should explicitize the two-addrness.
328 bool isTwoAddr = NumOps > 1 &&
329 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
330
331 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
332 unsigned i = isTwoAddr ? 1 : 0;
333 for (; i != NumOps; ++i) {
334 const MCOperand &MO = MI.getOperand(i);
335 if (!MO.isReg()) continue;
336 unsigned Reg = MO.getReg();
337 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000338 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
339 // that returns non-zero.
Chris Lattner39a612e2010-02-05 22:10:22 +0000340 REX |= 0x40;
341 break;
342 }
343
344 switch (TSFlags & X86II::FormMask) {
345 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
346 case X86II::MRMSrcReg:
347 if (MI.getOperand(0).isReg() &&
348 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
349 REX |= 1 << 2;
350 i = isTwoAddr ? 2 : 1;
351 for (; i != NumOps; ++i) {
352 const MCOperand &MO = MI.getOperand(i);
353 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
354 REX |= 1 << 0;
355 }
356 break;
357 case X86II::MRMSrcMem: {
358 if (MI.getOperand(0).isReg() &&
359 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
360 REX |= 1 << 2;
361 unsigned Bit = 0;
362 i = isTwoAddr ? 2 : 1;
363 for (; i != NumOps; ++i) {
364 const MCOperand &MO = MI.getOperand(i);
365 if (MO.isReg()) {
366 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
367 REX |= 1 << Bit;
368 Bit++;
369 }
370 }
371 break;
372 }
373 case X86II::MRM0m: case X86II::MRM1m:
374 case X86II::MRM2m: case X86II::MRM3m:
375 case X86II::MRM4m: case X86II::MRM5m:
376 case X86II::MRM6m: case X86II::MRM7m:
377 case X86II::MRMDestMem: {
378 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
379 i = isTwoAddr ? 1 : 0;
380 if (NumOps > e && MI.getOperand(e).isReg() &&
381 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
382 REX |= 1 << 2;
383 unsigned Bit = 0;
384 for (; i != e; ++i) {
385 const MCOperand &MO = MI.getOperand(i);
386 if (MO.isReg()) {
387 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
388 REX |= 1 << Bit;
389 Bit++;
390 }
391 }
392 break;
393 }
394 default:
395 if (MI.getOperand(0).isReg() &&
396 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
397 REX |= 1 << 0;
398 i = isTwoAddr ? 2 : 1;
399 for (unsigned e = NumOps; i != e; ++i) {
400 const MCOperand &MO = MI.getOperand(i);
401 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
402 REX |= 1 << 2;
403 }
404 break;
405 }
406 return REX;
407}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000408
409void X86MCCodeEmitter::
Daniel Dunbar73c55742010-02-09 22:59:55 +0000410EncodeInstruction(const MCInst &MI, raw_ostream &OS,
411 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000412 unsigned Opcode = MI.getOpcode();
413 const TargetInstrDesc &Desc = TII.get(Opcode);
Chris Lattner1e80f402010-02-03 21:57:59 +0000414 unsigned TSFlags = Desc.TSFlags;
415
Chris Lattner37ce80e2010-02-10 06:41:02 +0000416 // Keep track of the current byte being emitted.
417 unsigned CurByte = 0;
418
Chris Lattner1e80f402010-02-03 21:57:59 +0000419 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
420 // in order to provide diffability.
421
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000422 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000423 if (TSFlags & X86II::LOCK)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000424 EmitByte(0xF0, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000425
426 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000427 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000428 default: assert(0 && "Invalid segment!");
429 case 0: break; // No segment override!
430 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000431 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000432 break;
433 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000434 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000435 break;
436 }
437
Chris Lattner1e80f402010-02-03 21:57:59 +0000438 // Emit the repeat opcode prefix as needed.
439 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000440 EmitByte(0xF3, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000441
Chris Lattner1e80f402010-02-03 21:57:59 +0000442 // Emit the operand size opcode prefix as needed.
443 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000444 EmitByte(0x66, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000445
446 // Emit the address size opcode prefix as needed.
447 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000448 EmitByte(0x67, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000449
450 bool Need0FPrefix = false;
451 switch (TSFlags & X86II::Op0Mask) {
452 default: assert(0 && "Invalid prefix!");
453 case 0: break; // No prefix!
454 case X86II::REP: break; // already handled.
455 case X86II::TB: // Two-byte opcode prefix
456 case X86II::T8: // 0F 38
457 case X86II::TA: // 0F 3A
458 Need0FPrefix = true;
459 break;
460 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000461 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000462 Need0FPrefix = true;
463 break;
464 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000465 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000466 Need0FPrefix = true;
467 break;
468 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000469 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000470 Need0FPrefix = true;
471 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000472 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
473 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
474 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
475 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
476 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
477 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
478 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
479 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000480 }
481
482 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000483 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000484 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000485 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000486 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000487 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000488
489 // 0x0F escape code must be emitted just before the opcode.
490 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000491 EmitByte(0x0F, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000492
493 // FIXME: Pull this up into previous switch if REX can be moved earlier.
494 switch (TSFlags & X86II::Op0Mask) {
495 case X86II::TF: // F2 0F 38
496 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000497 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000498 break;
499 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000500 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000501 break;
502 }
503
504 // If this is a two-address instruction, skip one of the register operands.
505 unsigned NumOps = Desc.getNumOperands();
506 unsigned CurOp = 0;
507 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
508 ++CurOp;
509 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
510 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
511 --NumOps;
512
Chris Lattner74a21512010-02-05 19:24:13 +0000513 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Chris Lattner1e80f402010-02-03 21:57:59 +0000514 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000515 case X86II::MRMInitReg:
516 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000517 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000518 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
519 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000520 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000521 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000522
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000523 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000524 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000525 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000526
527 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000528 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000529 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000530 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000531 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000532 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000533
534 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000535 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000536 EmitMemModRMByte(MI, CurOp,
537 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
Chris Lattner835acab2010-02-12 23:00:36 +0000538 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000539 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000540 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000541
542 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000543 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000544 EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000545 CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000546 CurOp += 2;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000547 break;
548
549 case X86II::MRMSrcMem: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000550 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000551
552 // FIXME: Maybe lea should have its own form? This is a horrible hack.
553 int AddrOperands;
554 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
555 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
556 AddrOperands = X86AddrNumOperands - 1; // No segment register
557 else
558 AddrOperands = X86AddrNumOperands;
559
Chris Lattnerdaa45552010-02-05 19:04:37 +0000560 EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner835acab2010-02-12 23:00:36 +0000561 TSFlags, CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000562 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000563 break;
564 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000565
566 case X86II::MRM0r: case X86II::MRM1r:
567 case X86II::MRM2r: case X86II::MRM3r:
568 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000569 case X86II::MRM6r: case X86II::MRM7r:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000570 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnereaca5fa2010-02-12 23:54:57 +0000571 EmitRegModRMByte(MI.getOperand(CurOp++),
572 (TSFlags & X86II::FormMask)-X86II::MRM0r,
573 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000574 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000575 case X86II::MRM0m: case X86II::MRM1m:
576 case X86II::MRM2m: case X86II::MRM3m:
577 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000578 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000579 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000580 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner835acab2010-02-12 23:00:36 +0000581 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000582 CurOp += X86AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000583 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000584 case X86II::MRM_C1:
585 EmitByte(BaseOpcode, CurByte, OS);
586 EmitByte(0xC1, CurByte, OS);
587 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000588 case X86II::MRM_C2:
589 EmitByte(BaseOpcode, CurByte, OS);
590 EmitByte(0xC2, CurByte, OS);
591 break;
592 case X86II::MRM_C3:
593 EmitByte(BaseOpcode, CurByte, OS);
594 EmitByte(0xC3, CurByte, OS);
595 break;
596 case X86II::MRM_C4:
597 EmitByte(BaseOpcode, CurByte, OS);
598 EmitByte(0xC4, CurByte, OS);
599 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000600 case X86II::MRM_C8:
601 EmitByte(BaseOpcode, CurByte, OS);
602 EmitByte(0xC8, CurByte, OS);
603 break;
604 case X86II::MRM_C9:
605 EmitByte(BaseOpcode, CurByte, OS);
606 EmitByte(0xC9, CurByte, OS);
607 break;
608 case X86II::MRM_E8:
609 EmitByte(BaseOpcode, CurByte, OS);
610 EmitByte(0xE8, CurByte, OS);
611 break;
612 case X86II::MRM_F0:
613 EmitByte(BaseOpcode, CurByte, OS);
614 EmitByte(0xF0, CurByte, OS);
615 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000616 case X86II::MRM_F8:
617 EmitByte(BaseOpcode, CurByte, OS);
618 EmitByte(0xF8, CurByte, OS);
619 break;
Chris Lattnerb7790332010-02-13 03:42:24 +0000620 case X86II::MRM_F9:
621 EmitByte(BaseOpcode, CurByte, OS);
622 EmitByte(0xF9, CurByte, OS);
623 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000624 }
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000625
626 // If there is a remaining operand, it must be a trailing immediate. Emit it
627 // according to the right size for the instruction.
Chris Lattnerbd13fb62010-02-11 19:25:55 +0000628 // FIXME: This should pass in whether the value is pc relative or not. This
629 // information should be aquired from TSFlags as well.
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000630 if (CurOp != NumOps)
Chris Lattnercf653392010-02-12 22:36:47 +0000631 EmitImmediate(MI.getOperand(CurOp++),
632 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000633 CurByte, OS, Fixups);
Chris Lattner28249d92010-02-05 01:53:19 +0000634
635#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000636 // FIXME: Verify.
637 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000638 errs() << "Cannot encode all operands of: ";
639 MI.dump();
640 errs() << '\n';
641 abort();
642 }
643#endif
Chris Lattner45762472010-02-03 21:24:49 +0000644}