blob: b150db30c20adafc9418cae245f15b9c9214a3be [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. These classes are reference counted, managed by the SCEVHandle
18// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng98c073b2009-02-17 00:13:06 +000069#include "llvm/Analysis/Dominators.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000070#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Assembly/Writer.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000072#include "llvm/Target/TargetData.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000073#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000076#include "llvm/Support/GetElementPtrTypeIterator.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000077#include "llvm/Support/InstIterator.h"
78#include "llvm/Support/ManagedStatic.h"
79#include "llvm/Support/MathExtras.h"
Dan Gohman13058cc2009-04-21 00:47:46 +000080#include "llvm/Support/raw_ostream.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000081#include "llvm/ADT/Statistic.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000082#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083#include <ostream>
84#include <algorithm>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000085using namespace llvm;
86
Dan Gohmanf17a25c2007-07-18 16:29:46 +000087STATISTIC(NumArrayLenItCounts,
88 "Number of trip counts computed with array length");
89STATISTIC(NumTripCountsComputed,
90 "Number of loops with predictable loop counts");
91STATISTIC(NumTripCountsNotComputed,
92 "Number of loops without predictable loop counts");
93STATISTIC(NumBruteForceTripCountsComputed,
94 "Number of loops with trip counts computed by force");
95
Dan Gohman089efff2008-05-13 00:00:25 +000096static cl::opt<unsigned>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000097MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
98 cl::desc("Maximum number of iterations SCEV will "
99 "symbolically execute a constant derived loop"),
100 cl::init(100));
101
Dan Gohman089efff2008-05-13 00:00:25 +0000102static RegisterPass<ScalarEvolution>
103R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000104char ScalarEvolution::ID = 0;
105
106//===----------------------------------------------------------------------===//
107// SCEV class definitions
108//===----------------------------------------------------------------------===//
109
110//===----------------------------------------------------------------------===//
111// Implementation of the SCEV class.
112//
113SCEV::~SCEV() {}
114void SCEV::dump() const {
Dan Gohman13058cc2009-04-21 00:47:46 +0000115 print(errs());
116 errs() << '\n';
117}
118
119void SCEV::print(std::ostream &o) const {
120 raw_os_ostream OS(o);
121 print(OS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000122}
123
Dan Gohman7b560c42008-06-18 16:23:07 +0000124bool SCEV::isZero() const {
125 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
126 return SC->getValue()->isZero();
127 return false;
128}
129
Dan Gohmanf8bc8e82009-05-18 15:22:39 +0000130bool SCEV::isOne() const {
131 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
132 return SC->getValue()->isOne();
133 return false;
134}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000135
136SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
Dan Gohmanffd36ba2009-04-21 23:15:49 +0000137SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000138
139bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
140 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
141 return false;
142}
143
144const Type *SCEVCouldNotCompute::getType() const {
145 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
146 return 0;
147}
148
149bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
150 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
151 return false;
152}
153
154SCEVHandle SCEVCouldNotCompute::
155replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000156 const SCEVHandle &Conc,
157 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000158 return this;
159}
160
Dan Gohman13058cc2009-04-21 00:47:46 +0000161void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000162 OS << "***COULDNOTCOMPUTE***";
163}
164
165bool SCEVCouldNotCompute::classof(const SCEV *S) {
166 return S->getSCEVType() == scCouldNotCompute;
167}
168
169
170// SCEVConstants - Only allow the creation of one SCEVConstant for any
171// particular value. Don't use a SCEVHandle here, or else the object will
172// never be deleted!
173static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
174
175
176SCEVConstant::~SCEVConstant() {
177 SCEVConstants->erase(V);
178}
179
Dan Gohman89f85052007-10-22 18:31:58 +0000180SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000181 SCEVConstant *&R = (*SCEVConstants)[V];
182 if (R == 0) R = new SCEVConstant(V);
183 return R;
184}
185
Dan Gohman89f85052007-10-22 18:31:58 +0000186SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
187 return getConstant(ConstantInt::get(Val));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000188}
189
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000190const Type *SCEVConstant::getType() const { return V->getType(); }
191
Dan Gohman13058cc2009-04-21 00:47:46 +0000192void SCEVConstant::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000193 WriteAsOperand(OS, V, false);
194}
195
Dan Gohman2a381532009-04-21 01:25:57 +0000196SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
197 const SCEVHandle &op, const Type *ty)
198 : SCEV(SCEVTy), Op(op), Ty(ty) {}
199
200SCEVCastExpr::~SCEVCastExpr() {}
201
202bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
203 return Op->dominates(BB, DT);
204}
205
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000206// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
207// particular input. Don't use a SCEVHandle here, or else the object will
208// never be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000209static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000210 SCEVTruncateExpr*> > SCEVTruncates;
211
212SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman2a381532009-04-21 01:25:57 +0000213 : SCEVCastExpr(scTruncate, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000214 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
215 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000216 "Cannot truncate non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000217}
218
219SCEVTruncateExpr::~SCEVTruncateExpr() {
220 SCEVTruncates->erase(std::make_pair(Op, Ty));
221}
222
Dan Gohman13058cc2009-04-21 00:47:46 +0000223void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000224 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000225}
226
227// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
228// particular input. Don't use a SCEVHandle here, or else the object will never
229// be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000230static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000231 SCEVZeroExtendExpr*> > SCEVZeroExtends;
232
233SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman2a381532009-04-21 01:25:57 +0000234 : SCEVCastExpr(scZeroExtend, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000235 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
236 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000237 "Cannot zero extend non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000238}
239
240SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
241 SCEVZeroExtends->erase(std::make_pair(Op, Ty));
242}
243
Dan Gohman13058cc2009-04-21 00:47:46 +0000244void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000245 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000246}
247
248// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
249// particular input. Don't use a SCEVHandle here, or else the object will never
250// be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000251static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000252 SCEVSignExtendExpr*> > SCEVSignExtends;
253
254SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman2a381532009-04-21 01:25:57 +0000255 : SCEVCastExpr(scSignExtend, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000256 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
257 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000258 "Cannot sign extend non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000259}
260
261SCEVSignExtendExpr::~SCEVSignExtendExpr() {
262 SCEVSignExtends->erase(std::make_pair(Op, Ty));
263}
264
Dan Gohman13058cc2009-04-21 00:47:46 +0000265void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000266 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000267}
268
269// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
270// particular input. Don't use a SCEVHandle here, or else the object will never
271// be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000272static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000273 SCEVCommutativeExpr*> > SCEVCommExprs;
274
275SCEVCommutativeExpr::~SCEVCommutativeExpr() {
Dan Gohmanbff6b582009-05-04 22:30:44 +0000276 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
277 SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000278}
279
Dan Gohman13058cc2009-04-21 00:47:46 +0000280void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000281 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
282 const char *OpStr = getOperationStr();
283 OS << "(" << *Operands[0];
284 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
285 OS << OpStr << *Operands[i];
286 OS << ")";
287}
288
289SCEVHandle SCEVCommutativeExpr::
290replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000291 const SCEVHandle &Conc,
292 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000293 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000294 SCEVHandle H =
295 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000296 if (H != getOperand(i)) {
297 std::vector<SCEVHandle> NewOps;
298 NewOps.reserve(getNumOperands());
299 for (unsigned j = 0; j != i; ++j)
300 NewOps.push_back(getOperand(j));
301 NewOps.push_back(H);
302 for (++i; i != e; ++i)
303 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000304 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000305
306 if (isa<SCEVAddExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000307 return SE.getAddExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000308 else if (isa<SCEVMulExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000309 return SE.getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +0000310 else if (isa<SCEVSMaxExpr>(this))
311 return SE.getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +0000312 else if (isa<SCEVUMaxExpr>(this))
313 return SE.getUMaxExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000314 else
315 assert(0 && "Unknown commutative expr!");
316 }
317 }
318 return this;
319}
320
Dan Gohman72a8a022009-05-07 14:00:19 +0000321bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng98c073b2009-02-17 00:13:06 +0000322 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
323 if (!getOperand(i)->dominates(BB, DT))
324 return false;
325 }
326 return true;
327}
328
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000329
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000330// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000331// input. Don't use a SCEVHandle here, or else the object will never be
332// deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000333static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>,
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000334 SCEVUDivExpr*> > SCEVUDivs;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000335
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000336SCEVUDivExpr::~SCEVUDivExpr() {
337 SCEVUDivs->erase(std::make_pair(LHS, RHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000338}
339
Evan Cheng98c073b2009-02-17 00:13:06 +0000340bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
341 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
342}
343
Dan Gohman13058cc2009-04-21 00:47:46 +0000344void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000345 OS << "(" << *LHS << " /u " << *RHS << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000346}
347
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000348const Type *SCEVUDivExpr::getType() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349 return LHS->getType();
350}
351
352// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
353// particular input. Don't use a SCEVHandle here, or else the object will never
354// be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000355static ManagedStatic<std::map<std::pair<const Loop *,
356 std::vector<const SCEV*> >,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000357 SCEVAddRecExpr*> > SCEVAddRecExprs;
358
359SCEVAddRecExpr::~SCEVAddRecExpr() {
Dan Gohmanbff6b582009-05-04 22:30:44 +0000360 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
361 SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000362}
363
364SCEVHandle SCEVAddRecExpr::
365replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000366 const SCEVHandle &Conc,
367 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000368 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000369 SCEVHandle H =
370 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000371 if (H != getOperand(i)) {
372 std::vector<SCEVHandle> NewOps;
373 NewOps.reserve(getNumOperands());
374 for (unsigned j = 0; j != i; ++j)
375 NewOps.push_back(getOperand(j));
376 NewOps.push_back(H);
377 for (++i; i != e; ++i)
378 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000379 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000380
Dan Gohman89f85052007-10-22 18:31:58 +0000381 return SE.getAddRecExpr(NewOps, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000382 }
383 }
384 return this;
385}
386
387
388bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
389 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
390 // contain L and if the start is invariant.
Dan Gohmanae1eaae2009-05-20 01:01:24 +0000391 // Add recurrences are never invariant in the function-body (null loop).
392 return QueryLoop &&
393 !QueryLoop->contains(L->getHeader()) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000394 getOperand(0)->isLoopInvariant(QueryLoop);
395}
396
397
Dan Gohman13058cc2009-04-21 00:47:46 +0000398void SCEVAddRecExpr::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000399 OS << "{" << *Operands[0];
400 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
401 OS << ",+," << *Operands[i];
402 OS << "}<" << L->getHeader()->getName() + ">";
403}
404
405// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
406// value. Don't use a SCEVHandle here, or else the object will never be
407// deleted!
408static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
409
410SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
411
412bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
413 // All non-instruction values are loop invariant. All instructions are loop
414 // invariant if they are not contained in the specified loop.
Dan Gohmanae1eaae2009-05-20 01:01:24 +0000415 // Instructions are never considered invariant in the function body
416 // (null loop) because they are defined within the "loop".
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000417 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohmanae1eaae2009-05-20 01:01:24 +0000418 return L && !L->contains(I->getParent());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000419 return true;
420}
421
Evan Cheng98c073b2009-02-17 00:13:06 +0000422bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
423 if (Instruction *I = dyn_cast<Instruction>(getValue()))
424 return DT->dominates(I->getParent(), BB);
425 return true;
426}
427
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000428const Type *SCEVUnknown::getType() const {
429 return V->getType();
430}
431
Dan Gohman13058cc2009-04-21 00:47:46 +0000432void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000433 WriteAsOperand(OS, V, false);
434}
435
436//===----------------------------------------------------------------------===//
437// SCEV Utilities
438//===----------------------------------------------------------------------===//
439
440namespace {
441 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
442 /// than the complexity of the RHS. This comparator is used to canonicalize
443 /// expressions.
Dan Gohman5d486452009-05-07 14:39:04 +0000444 class VISIBILITY_HIDDEN SCEVComplexityCompare {
445 LoopInfo *LI;
446 public:
447 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
448
Dan Gohmanc0c69cf2008-04-14 18:23:56 +0000449 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman5d486452009-05-07 14:39:04 +0000450 // Primarily, sort the SCEVs by their getSCEVType().
451 if (LHS->getSCEVType() != RHS->getSCEVType())
452 return LHS->getSCEVType() < RHS->getSCEVType();
453
454 // Aside from the getSCEVType() ordering, the particular ordering
455 // isn't very important except that it's beneficial to be consistent,
456 // so that (a + b) and (b + a) don't end up as different expressions.
457
458 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
459 // not as complete as it could be.
460 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
461 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
462
Dan Gohmand0c01232009-05-19 02:15:55 +0000463 // Order pointer values after integer values. This helps SCEVExpander
464 // form GEPs.
465 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
466 return false;
467 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
468 return true;
469
Dan Gohman5d486452009-05-07 14:39:04 +0000470 // Compare getValueID values.
471 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
472 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
473
474 // Sort arguments by their position.
475 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
476 const Argument *RA = cast<Argument>(RU->getValue());
477 return LA->getArgNo() < RA->getArgNo();
478 }
479
480 // For instructions, compare their loop depth, and their opcode.
481 // This is pretty loose.
482 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
483 Instruction *RV = cast<Instruction>(RU->getValue());
484
485 // Compare loop depths.
486 if (LI->getLoopDepth(LV->getParent()) !=
487 LI->getLoopDepth(RV->getParent()))
488 return LI->getLoopDepth(LV->getParent()) <
489 LI->getLoopDepth(RV->getParent());
490
491 // Compare opcodes.
492 if (LV->getOpcode() != RV->getOpcode())
493 return LV->getOpcode() < RV->getOpcode();
494
495 // Compare the number of operands.
496 if (LV->getNumOperands() != RV->getNumOperands())
497 return LV->getNumOperands() < RV->getNumOperands();
498 }
499
500 return false;
501 }
502
503 // Constant sorting doesn't matter since they'll be folded.
504 if (isa<SCEVConstant>(LHS))
505 return false;
506
507 // Lexicographically compare n-ary expressions.
508 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
509 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
510 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
511 if (i >= RC->getNumOperands())
512 return false;
513 if (operator()(LC->getOperand(i), RC->getOperand(i)))
514 return true;
515 if (operator()(RC->getOperand(i), LC->getOperand(i)))
516 return false;
517 }
518 return LC->getNumOperands() < RC->getNumOperands();
519 }
520
Dan Gohman6e10db12009-05-07 19:23:21 +0000521 // Lexicographically compare udiv expressions.
522 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
523 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
524 if (operator()(LC->getLHS(), RC->getLHS()))
525 return true;
526 if (operator()(RC->getLHS(), LC->getLHS()))
527 return false;
528 if (operator()(LC->getRHS(), RC->getRHS()))
529 return true;
530 if (operator()(RC->getRHS(), LC->getRHS()))
531 return false;
532 return false;
533 }
534
Dan Gohman5d486452009-05-07 14:39:04 +0000535 // Compare cast expressions by operand.
536 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
537 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
538 return operator()(LC->getOperand(), RC->getOperand());
539 }
540
541 assert(0 && "Unknown SCEV kind!");
542 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000543 }
544 };
545}
546
547/// GroupByComplexity - Given a list of SCEV objects, order them by their
548/// complexity, and group objects of the same complexity together by value.
549/// When this routine is finished, we know that any duplicates in the vector are
550/// consecutive and that complexity is monotonically increasing.
551///
552/// Note that we go take special precautions to ensure that we get determinstic
553/// results from this routine. In other words, we don't want the results of
554/// this to depend on where the addresses of various SCEV objects happened to
555/// land in memory.
556///
Dan Gohman5d486452009-05-07 14:39:04 +0000557static void GroupByComplexity(std::vector<SCEVHandle> &Ops,
558 LoopInfo *LI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000559 if (Ops.size() < 2) return; // Noop
560 if (Ops.size() == 2) {
561 // This is the common case, which also happens to be trivially simple.
562 // Special case it.
Dan Gohman5d486452009-05-07 14:39:04 +0000563 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000564 std::swap(Ops[0], Ops[1]);
565 return;
566 }
567
568 // Do the rough sort by complexity.
Dan Gohman5d486452009-05-07 14:39:04 +0000569 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000570
571 // Now that we are sorted by complexity, group elements of the same
572 // complexity. Note that this is, at worst, N^2, but the vector is likely to
573 // be extremely short in practice. Note that we take this approach because we
574 // do not want to depend on the addresses of the objects we are grouping.
575 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Dan Gohmanbff6b582009-05-04 22:30:44 +0000576 const SCEV *S = Ops[i];
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000577 unsigned Complexity = S->getSCEVType();
578
579 // If there are any objects of the same complexity and same value as this
580 // one, group them.
581 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
582 if (Ops[j] == S) { // Found a duplicate.
583 // Move it to immediately after i'th element.
584 std::swap(Ops[i+1], Ops[j]);
585 ++i; // no need to rescan it.
586 if (i == e-2) return; // Done!
587 }
588 }
589 }
590}
591
592
593
594//===----------------------------------------------------------------------===//
595// Simple SCEV method implementations
596//===----------------------------------------------------------------------===//
597
Eli Friedman7489ec92008-08-04 23:49:06 +0000598/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohmanc8a29272009-05-24 23:45:28 +0000599/// Assume, K > 0.
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000600static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
Eli Friedman7489ec92008-08-04 23:49:06 +0000601 ScalarEvolution &SE,
Dan Gohman01c2ee72009-04-16 03:18:22 +0000602 const Type* ResultTy) {
Eli Friedman7489ec92008-08-04 23:49:06 +0000603 // Handle the simplest case efficiently.
604 if (K == 1)
605 return SE.getTruncateOrZeroExtend(It, ResultTy);
606
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000607 // We are using the following formula for BC(It, K):
608 //
609 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
610 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000611 // Suppose, W is the bitwidth of the return value. We must be prepared for
612 // overflow. Hence, we must assure that the result of our computation is
613 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
614 // safe in modular arithmetic.
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000615 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000616 // However, this code doesn't use exactly that formula; the formula it uses
617 // is something like the following, where T is the number of factors of 2 in
618 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
619 // exponentiation:
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000620 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000621 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000622 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000623 // This formula is trivially equivalent to the previous formula. However,
624 // this formula can be implemented much more efficiently. The trick is that
625 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
626 // arithmetic. To do exact division in modular arithmetic, all we have
627 // to do is multiply by the inverse. Therefore, this step can be done at
628 // width W.
629 //
630 // The next issue is how to safely do the division by 2^T. The way this
631 // is done is by doing the multiplication step at a width of at least W + T
632 // bits. This way, the bottom W+T bits of the product are accurate. Then,
633 // when we perform the division by 2^T (which is equivalent to a right shift
634 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
635 // truncated out after the division by 2^T.
636 //
637 // In comparison to just directly using the first formula, this technique
638 // is much more efficient; using the first formula requires W * K bits,
639 // but this formula less than W + K bits. Also, the first formula requires
640 // a division step, whereas this formula only requires multiplies and shifts.
641 //
642 // It doesn't matter whether the subtraction step is done in the calculation
643 // width or the input iteration count's width; if the subtraction overflows,
644 // the result must be zero anyway. We prefer here to do it in the width of
645 // the induction variable because it helps a lot for certain cases; CodeGen
646 // isn't smart enough to ignore the overflow, which leads to much less
647 // efficient code if the width of the subtraction is wider than the native
648 // register width.
649 //
650 // (It's possible to not widen at all by pulling out factors of 2 before
651 // the multiplication; for example, K=2 can be calculated as
652 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
653 // extra arithmetic, so it's not an obvious win, and it gets
654 // much more complicated for K > 3.)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000655
Eli Friedman7489ec92008-08-04 23:49:06 +0000656 // Protection from insane SCEVs; this bound is conservative,
657 // but it probably doesn't matter.
658 if (K > 1000)
Dan Gohman0ad08b02009-04-18 17:58:19 +0000659 return SE.getCouldNotCompute();
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000660
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000661 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000662
Eli Friedman7489ec92008-08-04 23:49:06 +0000663 // Calculate K! / 2^T and T; we divide out the factors of two before
664 // multiplying for calculating K! / 2^T to avoid overflow.
665 // Other overflow doesn't matter because we only care about the bottom
666 // W bits of the result.
667 APInt OddFactorial(W, 1);
668 unsigned T = 1;
669 for (unsigned i = 3; i <= K; ++i) {
670 APInt Mult(W, i);
671 unsigned TwoFactors = Mult.countTrailingZeros();
672 T += TwoFactors;
673 Mult = Mult.lshr(TwoFactors);
674 OddFactorial *= Mult;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000675 }
Nick Lewyckydbaa60a2008-06-13 04:38:55 +0000676
Eli Friedman7489ec92008-08-04 23:49:06 +0000677 // We need at least W + T bits for the multiplication step
nicholas9e3e5fd2009-01-25 08:16:27 +0000678 unsigned CalculationBits = W + T;
Eli Friedman7489ec92008-08-04 23:49:06 +0000679
680 // Calcuate 2^T, at width T+W.
681 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
682
683 // Calculate the multiplicative inverse of K! / 2^T;
684 // this multiplication factor will perform the exact division by
685 // K! / 2^T.
686 APInt Mod = APInt::getSignedMinValue(W+1);
687 APInt MultiplyFactor = OddFactorial.zext(W+1);
688 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
689 MultiplyFactor = MultiplyFactor.trunc(W);
690
691 // Calculate the product, at width T+W
692 const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
693 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
694 for (unsigned i = 1; i != K; ++i) {
695 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
696 Dividend = SE.getMulExpr(Dividend,
697 SE.getTruncateOrZeroExtend(S, CalculationTy));
698 }
699
700 // Divide by 2^T
701 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
702
703 // Truncate the result, and divide by K! / 2^T.
704
705 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
706 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707}
708
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000709/// evaluateAtIteration - Return the value of this chain of recurrences at
710/// the specified iteration number. We can evaluate this recurrence by
711/// multiplying each element in the chain by the binomial coefficient
712/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
713///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000714/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000715///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000716/// where BC(It, k) stands for binomial coefficient.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000717///
Dan Gohman89f85052007-10-22 18:31:58 +0000718SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
719 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000720 SCEVHandle Result = getStart();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000721 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000722 // The computation is correct in the face of overflow provided that the
723 // multiplication is performed _after_ the evaluation of the binomial
724 // coefficient.
Dan Gohman01c2ee72009-04-16 03:18:22 +0000725 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckyb6218e02008-10-13 03:58:02 +0000726 if (isa<SCEVCouldNotCompute>(Coeff))
727 return Coeff;
728
729 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000730 }
731 return Result;
732}
733
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000734//===----------------------------------------------------------------------===//
735// SCEV Expression folder implementations
736//===----------------------------------------------------------------------===//
737
Dan Gohman9c8abcc2009-05-01 16:44:56 +0000738SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op,
739 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000740 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000741 "This is not a truncating conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000742 assert(isSCEVable(Ty) &&
743 "This is not a conversion to a SCEVable type!");
744 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000745
Dan Gohmanc76b5452009-05-04 22:02:23 +0000746 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman89f85052007-10-22 18:31:58 +0000747 return getUnknown(
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000748 ConstantExpr::getTrunc(SC->getValue(), Ty));
749
Dan Gohman1a5c4992009-04-22 16:20:48 +0000750 // trunc(trunc(x)) --> trunc(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000751 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000752 return getTruncateExpr(ST->getOperand(), Ty);
753
Nick Lewycky37d04642009-04-23 05:15:08 +0000754 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmanc76b5452009-05-04 22:02:23 +0000755 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky37d04642009-04-23 05:15:08 +0000756 return getTruncateOrSignExtend(SS->getOperand(), Ty);
757
758 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmanc76b5452009-05-04 22:02:23 +0000759 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky37d04642009-04-23 05:15:08 +0000760 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
761
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000762 // If the input value is a chrec scev made out of constants, truncate
763 // all of the constants.
Dan Gohmanc76b5452009-05-04 22:02:23 +0000764 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000765 std::vector<SCEVHandle> Operands;
766 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman45b3b542009-05-08 21:03:19 +0000767 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
768 return getAddRecExpr(Operands, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000769 }
770
771 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
772 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
773 return Result;
774}
775
Dan Gohman36d40922009-04-16 19:25:55 +0000776SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
777 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000778 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman36d40922009-04-16 19:25:55 +0000779 "This is not an extending conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000780 assert(isSCEVable(Ty) &&
781 "This is not a conversion to a SCEVable type!");
782 Ty = getEffectiveSCEVType(Ty);
Dan Gohman36d40922009-04-16 19:25:55 +0000783
Dan Gohmanc76b5452009-05-04 22:02:23 +0000784 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000785 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000786 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
787 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
788 return getUnknown(C);
789 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000790
Dan Gohman1a5c4992009-04-22 16:20:48 +0000791 // zext(zext(x)) --> zext(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000792 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000793 return getZeroExtendExpr(SZ->getOperand(), Ty);
794
Dan Gohmana9dba962009-04-27 20:16:15 +0000795 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000796 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohmana9dba962009-04-27 20:16:15 +0000797 // operands (often constants). This allows analysis of something like
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000798 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmanc76b5452009-05-04 22:02:23 +0000799 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohmana9dba962009-04-27 20:16:15 +0000800 if (AR->isAffine()) {
801 // Check whether the backedge-taken count is SCEVCouldNotCompute.
802 // Note that this serves two purposes: It filters out loops that are
803 // simply not analyzable, and it covers the case where this code is
804 // being called from within backedge-taken count analysis, such that
805 // attempting to ask for the backedge-taken count would likely result
806 // in infinite recursion. In the later case, the analysis code will
807 // cope with a conservative value, and it will take care to purge
808 // that value once it has finished.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000809 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
810 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman4ada77f2009-04-29 01:54:20 +0000811 // Manually compute the final value for AR, checking for
Dan Gohman3ded5b22009-04-29 22:28:28 +0000812 // overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000813 SCEVHandle Start = AR->getStart();
814 SCEVHandle Step = AR->getStepRecurrence(*this);
815
816 // Check whether the backedge-taken count can be losslessly casted to
817 // the addrec's type. The count is always unsigned.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000818 SCEVHandle CastedMaxBECount =
819 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman3bb37f52009-05-18 15:58:39 +0000820 SCEVHandle RecastedMaxBECount =
821 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
822 if (MaxBECount == RecastedMaxBECount) {
Dan Gohmana9dba962009-04-27 20:16:15 +0000823 const Type *WideTy =
824 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000825 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000826 SCEVHandle ZMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000827 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000828 getTruncateOrZeroExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000829 SCEVHandle Add = getAddExpr(Start, ZMul);
Dan Gohman3bb37f52009-05-18 15:58:39 +0000830 SCEVHandle OperandExtendedAdd =
831 getAddExpr(getZeroExtendExpr(Start, WideTy),
832 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
833 getZeroExtendExpr(Step, WideTy)));
834 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman3ded5b22009-04-29 22:28:28 +0000835 // Return the expression with the addrec on the outside.
836 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
837 getZeroExtendExpr(Step, Ty),
838 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000839
840 // Similar to above, only this time treat the step value as signed.
841 // This covers loops that count down.
842 SCEVHandle SMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000843 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000844 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000845 Add = getAddExpr(Start, SMul);
Dan Gohman3bb37f52009-05-18 15:58:39 +0000846 OperandExtendedAdd =
847 getAddExpr(getZeroExtendExpr(Start, WideTy),
848 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
849 getSignExtendExpr(Step, WideTy)));
850 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman3ded5b22009-04-29 22:28:28 +0000851 // Return the expression with the addrec on the outside.
852 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
853 getSignExtendExpr(Step, Ty),
854 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000855 }
856 }
857 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000858
859 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
860 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
861 return Result;
862}
863
Dan Gohmana9dba962009-04-27 20:16:15 +0000864SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
865 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000866 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000867 "This is not an extending conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000868 assert(isSCEVable(Ty) &&
869 "This is not a conversion to a SCEVable type!");
870 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000871
Dan Gohmanc76b5452009-05-04 22:02:23 +0000872 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000873 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000874 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
875 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
876 return getUnknown(C);
877 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000878
Dan Gohman1a5c4992009-04-22 16:20:48 +0000879 // sext(sext(x)) --> sext(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000880 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000881 return getSignExtendExpr(SS->getOperand(), Ty);
882
Dan Gohmana9dba962009-04-27 20:16:15 +0000883 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000884 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohmana9dba962009-04-27 20:16:15 +0000885 // operands (often constants). This allows analysis of something like
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000886 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmanc76b5452009-05-04 22:02:23 +0000887 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohmana9dba962009-04-27 20:16:15 +0000888 if (AR->isAffine()) {
889 // Check whether the backedge-taken count is SCEVCouldNotCompute.
890 // Note that this serves two purposes: It filters out loops that are
891 // simply not analyzable, and it covers the case where this code is
892 // being called from within backedge-taken count analysis, such that
893 // attempting to ask for the backedge-taken count would likely result
894 // in infinite recursion. In the later case, the analysis code will
895 // cope with a conservative value, and it will take care to purge
896 // that value once it has finished.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000897 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
898 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman4ada77f2009-04-29 01:54:20 +0000899 // Manually compute the final value for AR, checking for
Dan Gohman3ded5b22009-04-29 22:28:28 +0000900 // overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000901 SCEVHandle Start = AR->getStart();
902 SCEVHandle Step = AR->getStepRecurrence(*this);
903
904 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman3ded5b22009-04-29 22:28:28 +0000905 // the addrec's type. The count is always unsigned.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000906 SCEVHandle CastedMaxBECount =
907 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman3bb37f52009-05-18 15:58:39 +0000908 SCEVHandle RecastedMaxBECount =
909 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
910 if (MaxBECount == RecastedMaxBECount) {
Dan Gohmana9dba962009-04-27 20:16:15 +0000911 const Type *WideTy =
912 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000913 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000914 SCEVHandle SMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000915 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000916 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000917 SCEVHandle Add = getAddExpr(Start, SMul);
Dan Gohman3bb37f52009-05-18 15:58:39 +0000918 SCEVHandle OperandExtendedAdd =
919 getAddExpr(getSignExtendExpr(Start, WideTy),
920 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
921 getSignExtendExpr(Step, WideTy)));
922 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman3ded5b22009-04-29 22:28:28 +0000923 // Return the expression with the addrec on the outside.
924 return getAddRecExpr(getSignExtendExpr(Start, Ty),
925 getSignExtendExpr(Step, Ty),
926 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000927 }
928 }
929 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000930
931 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
932 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
933 return Result;
934}
935
Dan Gohmanc8a29272009-05-24 23:45:28 +0000936/// getAddExpr - Get a canonical add expression, or something simpler if
937/// possible.
Dan Gohman89f85052007-10-22 18:31:58 +0000938SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000939 assert(!Ops.empty() && "Cannot get empty add!");
940 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +0000941#ifndef NDEBUG
942 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
943 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
944 getEffectiveSCEVType(Ops[0]->getType()) &&
945 "SCEVAddExpr operand types don't match!");
946#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000947
948 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +0000949 GroupByComplexity(Ops, LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000950
951 // If there are any constants, fold them together.
952 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +0000953 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000954 ++Idx;
955 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +0000956 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000957 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +0000958 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
959 RHSC->getValue()->getValue());
960 Ops[0] = getConstant(Fold);
961 Ops.erase(Ops.begin()+1); // Erase the folded element
962 if (Ops.size() == 1) return Ops[0];
963 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000964 }
965
966 // If we are left with a constant zero being added, strip it off.
967 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
968 Ops.erase(Ops.begin());
969 --Idx;
970 }
971 }
972
973 if (Ops.size() == 1) return Ops[0];
974
975 // Okay, check to see if the same value occurs in the operand list twice. If
976 // so, merge them together into an multiply expression. Since we sorted the
977 // list, these values are required to be adjacent.
978 const Type *Ty = Ops[0]->getType();
979 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
980 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
981 // Found a match, merge the two values into a multiply, and add any
982 // remaining values to the result.
Dan Gohman89f85052007-10-22 18:31:58 +0000983 SCEVHandle Two = getIntegerSCEV(2, Ty);
984 SCEVHandle Mul = getMulExpr(Ops[i], Two);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000985 if (Ops.size() == 2)
986 return Mul;
987 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
988 Ops.push_back(Mul);
Dan Gohman89f85052007-10-22 18:31:58 +0000989 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000990 }
991
Dan Gohman45b3b542009-05-08 21:03:19 +0000992 // Check for truncates. If all the operands are truncated from the same
993 // type, see if factoring out the truncate would permit the result to be
994 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
995 // if the contents of the resulting outer trunc fold to something simple.
996 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
997 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
998 const Type *DstType = Trunc->getType();
999 const Type *SrcType = Trunc->getOperand()->getType();
1000 std::vector<SCEVHandle> LargeOps;
1001 bool Ok = true;
1002 // Check all the operands to see if they can be represented in the
1003 // source type of the truncate.
1004 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1005 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1006 if (T->getOperand()->getType() != SrcType) {
1007 Ok = false;
1008 break;
1009 }
1010 LargeOps.push_back(T->getOperand());
1011 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1012 // This could be either sign or zero extension, but sign extension
1013 // is much more likely to be foldable here.
1014 LargeOps.push_back(getSignExtendExpr(C, SrcType));
1015 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1016 std::vector<SCEVHandle> LargeMulOps;
1017 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1018 if (const SCEVTruncateExpr *T =
1019 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1020 if (T->getOperand()->getType() != SrcType) {
1021 Ok = false;
1022 break;
1023 }
1024 LargeMulOps.push_back(T->getOperand());
1025 } else if (const SCEVConstant *C =
1026 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1027 // This could be either sign or zero extension, but sign extension
1028 // is much more likely to be foldable here.
1029 LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1030 } else {
1031 Ok = false;
1032 break;
1033 }
1034 }
1035 if (Ok)
1036 LargeOps.push_back(getMulExpr(LargeMulOps));
1037 } else {
1038 Ok = false;
1039 break;
1040 }
1041 }
1042 if (Ok) {
1043 // Evaluate the expression in the larger type.
1044 SCEVHandle Fold = getAddExpr(LargeOps);
1045 // If it folds to something simple, use it. Otherwise, don't.
1046 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1047 return getTruncateExpr(Fold, DstType);
1048 }
1049 }
1050
1051 // Skip past any other cast SCEVs.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001052 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1053 ++Idx;
1054
1055 // If there are add operands they would be next.
1056 if (Idx < Ops.size()) {
1057 bool DeletedAdd = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001058 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001059 // If we have an add, expand the add operands onto the end of the operands
1060 // list.
1061 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1062 Ops.erase(Ops.begin()+Idx);
1063 DeletedAdd = true;
1064 }
1065
1066 // If we deleted at least one add, we added operands to the end of the list,
1067 // and they are not necessarily sorted. Recurse to resort and resimplify
1068 // any operands we just aquired.
1069 if (DeletedAdd)
Dan Gohman89f85052007-10-22 18:31:58 +00001070 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001071 }
1072
1073 // Skip over the add expression until we get to a multiply.
1074 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1075 ++Idx;
1076
1077 // If we are adding something to a multiply expression, make sure the
1078 // something is not already an operand of the multiply. If so, merge it into
1079 // the multiply.
1080 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001081 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001082 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001083 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001084 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1085 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
1086 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
1087 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
1088 if (Mul->getNumOperands() != 2) {
1089 // If the multiply has more than two operands, we must get the
1090 // Y*Z term.
1091 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1092 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001093 InnerMul = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001094 }
Dan Gohman89f85052007-10-22 18:31:58 +00001095 SCEVHandle One = getIntegerSCEV(1, Ty);
1096 SCEVHandle AddOne = getAddExpr(InnerMul, One);
1097 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001098 if (Ops.size() == 2) return OuterMul;
1099 if (AddOp < Idx) {
1100 Ops.erase(Ops.begin()+AddOp);
1101 Ops.erase(Ops.begin()+Idx-1);
1102 } else {
1103 Ops.erase(Ops.begin()+Idx);
1104 Ops.erase(Ops.begin()+AddOp-1);
1105 }
1106 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +00001107 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001108 }
1109
1110 // Check this multiply against other multiplies being added together.
1111 for (unsigned OtherMulIdx = Idx+1;
1112 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1113 ++OtherMulIdx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001114 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001115 // If MulOp occurs in OtherMul, we can fold the two multiplies
1116 // together.
1117 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1118 OMulOp != e; ++OMulOp)
1119 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1120 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1121 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
1122 if (Mul->getNumOperands() != 2) {
1123 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1124 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001125 InnerMul1 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001126 }
1127 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1128 if (OtherMul->getNumOperands() != 2) {
1129 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
1130 OtherMul->op_end());
1131 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001132 InnerMul2 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001133 }
Dan Gohman89f85052007-10-22 18:31:58 +00001134 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1135 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001136 if (Ops.size() == 2) return OuterMul;
1137 Ops.erase(Ops.begin()+Idx);
1138 Ops.erase(Ops.begin()+OtherMulIdx-1);
1139 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +00001140 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001141 }
1142 }
1143 }
1144 }
1145
1146 // If there are any add recurrences in the operands list, see if any other
1147 // added values are loop invariant. If so, we can fold them into the
1148 // recurrence.
1149 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1150 ++Idx;
1151
1152 // Scan over all recurrences, trying to fold loop invariants into them.
1153 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1154 // Scan all of the other operands to this add and add them to the vector if
1155 // they are loop invariant w.r.t. the recurrence.
1156 std::vector<SCEVHandle> LIOps;
Dan Gohmanbff6b582009-05-04 22:30:44 +00001157 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001158 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1159 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1160 LIOps.push_back(Ops[i]);
1161 Ops.erase(Ops.begin()+i);
1162 --i; --e;
1163 }
1164
1165 // If we found some loop invariants, fold them into the recurrence.
1166 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001167 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001168 LIOps.push_back(AddRec->getStart());
1169
1170 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001171 AddRecOps[0] = getAddExpr(LIOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001172
Dan Gohman89f85052007-10-22 18:31:58 +00001173 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001174 // If all of the other operands were loop invariant, we are done.
1175 if (Ops.size() == 1) return NewRec;
1176
1177 // Otherwise, add the folded AddRec by the non-liv parts.
1178 for (unsigned i = 0;; ++i)
1179 if (Ops[i] == AddRec) {
1180 Ops[i] = NewRec;
1181 break;
1182 }
Dan Gohman89f85052007-10-22 18:31:58 +00001183 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001184 }
1185
1186 // Okay, if there weren't any loop invariants to be folded, check to see if
1187 // there are multiple AddRec's with the same loop induction variable being
1188 // added together. If so, we can fold them.
1189 for (unsigned OtherIdx = Idx+1;
1190 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1191 if (OtherIdx != Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001192 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001193 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1194 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
1195 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
1196 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1197 if (i >= NewOps.size()) {
1198 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1199 OtherAddRec->op_end());
1200 break;
1201 }
Dan Gohman89f85052007-10-22 18:31:58 +00001202 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001203 }
Dan Gohman89f85052007-10-22 18:31:58 +00001204 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001205
1206 if (Ops.size() == 2) return NewAddRec;
1207
1208 Ops.erase(Ops.begin()+Idx);
1209 Ops.erase(Ops.begin()+OtherIdx-1);
1210 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001211 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001212 }
1213 }
1214
1215 // Otherwise couldn't fold anything into this recurrence. Move onto the
1216 // next one.
1217 }
1218
1219 // Okay, it looks like we really DO need an add expr. Check to see if we
1220 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001221 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001222 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
1223 SCEVOps)];
1224 if (Result == 0) Result = new SCEVAddExpr(Ops);
1225 return Result;
1226}
1227
1228
Dan Gohmanc8a29272009-05-24 23:45:28 +00001229/// getMulExpr - Get a canonical multiply expression, or something simpler if
1230/// possible.
Dan Gohman89f85052007-10-22 18:31:58 +00001231SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001232 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana77b3d42009-05-18 15:44:58 +00001233#ifndef NDEBUG
1234 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1235 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1236 getEffectiveSCEVType(Ops[0]->getType()) &&
1237 "SCEVMulExpr operand types don't match!");
1238#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001239
1240 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001241 GroupByComplexity(Ops, LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001242
1243 // If there are any constants, fold them together.
1244 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001245 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001246
1247 // C1*(C2+V) -> C1*C2 + C1*V
1248 if (Ops.size() == 2)
Dan Gohmanc76b5452009-05-04 22:02:23 +00001249 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001250 if (Add->getNumOperands() == 2 &&
1251 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman89f85052007-10-22 18:31:58 +00001252 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1253 getMulExpr(LHSC, Add->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001254
1255
1256 ++Idx;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001257 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001258 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001259 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1260 RHSC->getValue()->getValue());
1261 Ops[0] = getConstant(Fold);
1262 Ops.erase(Ops.begin()+1); // Erase the folded element
1263 if (Ops.size() == 1) return Ops[0];
1264 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001265 }
1266
1267 // If we are left with a constant one being multiplied, strip it off.
1268 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1269 Ops.erase(Ops.begin());
1270 --Idx;
1271 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1272 // If we have a multiply of zero, it will always be zero.
1273 return Ops[0];
1274 }
1275 }
1276
1277 // Skip over the add expression until we get to a multiply.
1278 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1279 ++Idx;
1280
1281 if (Ops.size() == 1)
1282 return Ops[0];
1283
1284 // If there are mul operands inline them all into this expression.
1285 if (Idx < Ops.size()) {
1286 bool DeletedMul = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001287 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001288 // If we have an mul, expand the mul operands onto the end of the operands
1289 // list.
1290 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1291 Ops.erase(Ops.begin()+Idx);
1292 DeletedMul = true;
1293 }
1294
1295 // If we deleted at least one mul, we added operands to the end of the list,
1296 // and they are not necessarily sorted. Recurse to resort and resimplify
1297 // any operands we just aquired.
1298 if (DeletedMul)
Dan Gohman89f85052007-10-22 18:31:58 +00001299 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001300 }
1301
1302 // If there are any add recurrences in the operands list, see if any other
1303 // added values are loop invariant. If so, we can fold them into the
1304 // recurrence.
1305 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1306 ++Idx;
1307
1308 // Scan over all recurrences, trying to fold loop invariants into them.
1309 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1310 // Scan all of the other operands to this mul and add them to the vector if
1311 // they are loop invariant w.r.t. the recurrence.
1312 std::vector<SCEVHandle> LIOps;
Dan Gohmanbff6b582009-05-04 22:30:44 +00001313 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001314 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1315 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1316 LIOps.push_back(Ops[i]);
1317 Ops.erase(Ops.begin()+i);
1318 --i; --e;
1319 }
1320
1321 // If we found some loop invariants, fold them into the recurrence.
1322 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001323 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001324 std::vector<SCEVHandle> NewOps;
1325 NewOps.reserve(AddRec->getNumOperands());
1326 if (LIOps.size() == 1) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001327 const SCEV *Scale = LIOps[0];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001328 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman89f85052007-10-22 18:31:58 +00001329 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001330 } else {
1331 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1332 std::vector<SCEVHandle> MulOps(LIOps);
1333 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman89f85052007-10-22 18:31:58 +00001334 NewOps.push_back(getMulExpr(MulOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001335 }
1336 }
1337
Dan Gohman89f85052007-10-22 18:31:58 +00001338 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001339
1340 // If all of the other operands were loop invariant, we are done.
1341 if (Ops.size() == 1) return NewRec;
1342
1343 // Otherwise, multiply the folded AddRec by the non-liv parts.
1344 for (unsigned i = 0;; ++i)
1345 if (Ops[i] == AddRec) {
1346 Ops[i] = NewRec;
1347 break;
1348 }
Dan Gohman89f85052007-10-22 18:31:58 +00001349 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001350 }
1351
1352 // Okay, if there weren't any loop invariants to be folded, check to see if
1353 // there are multiple AddRec's with the same loop induction variable being
1354 // multiplied together. If so, we can fold them.
1355 for (unsigned OtherIdx = Idx+1;
1356 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1357 if (OtherIdx != Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001358 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001359 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1360 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohmanbff6b582009-05-04 22:30:44 +00001361 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman89f85052007-10-22 18:31:58 +00001362 SCEVHandle NewStart = getMulExpr(F->getStart(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001363 G->getStart());
Dan Gohman89f85052007-10-22 18:31:58 +00001364 SCEVHandle B = F->getStepRecurrence(*this);
1365 SCEVHandle D = G->getStepRecurrence(*this);
1366 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1367 getMulExpr(G, B),
1368 getMulExpr(B, D));
1369 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1370 F->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001371 if (Ops.size() == 2) return NewAddRec;
1372
1373 Ops.erase(Ops.begin()+Idx);
1374 Ops.erase(Ops.begin()+OtherIdx-1);
1375 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001376 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001377 }
1378 }
1379
1380 // Otherwise couldn't fold anything into this recurrence. Move onto the
1381 // next one.
1382 }
1383
1384 // Okay, it looks like we really DO need an mul expr. Check to see if we
1385 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001386 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001387 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1388 SCEVOps)];
1389 if (Result == 0)
1390 Result = new SCEVMulExpr(Ops);
1391 return Result;
1392}
1393
Dan Gohmanc8a29272009-05-24 23:45:28 +00001394/// getUDivExpr - Get a canonical multiply expression, or something simpler if
1395/// possible.
Dan Gohman77841cd2009-05-04 22:23:18 +00001396SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS,
1397 const SCEVHandle &RHS) {
Dan Gohmana77b3d42009-05-18 15:44:58 +00001398 assert(getEffectiveSCEVType(LHS->getType()) ==
1399 getEffectiveSCEVType(RHS->getType()) &&
1400 "SCEVUDivExpr operand types don't match!");
1401
Dan Gohmanc76b5452009-05-04 22:02:23 +00001402 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001403 if (RHSC->getValue()->equalsInt(1))
Nick Lewycky35b56022009-01-13 09:18:58 +00001404 return LHS; // X udiv 1 --> x
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001405 if (RHSC->isZero())
1406 return getIntegerSCEV(0, LHS->getType()); // value is undefined
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001407
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001408 // Determine if the division can be folded into the operands of
1409 // its operands.
1410 // TODO: Generalize this to non-constants by using known-bits information.
1411 const Type *Ty = LHS->getType();
1412 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1413 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1414 // For non-power-of-two values, effectively round the value up to the
1415 // nearest power of two.
1416 if (!RHSC->getValue()->getValue().isPowerOf2())
1417 ++MaxShiftAmt;
1418 const IntegerType *ExtTy =
1419 IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1420 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1421 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1422 if (const SCEVConstant *Step =
1423 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1424 if (!Step->getValue()->getValue()
1425 .urem(RHSC->getValue()->getValue()) &&
Dan Gohman14374d32009-05-08 23:11:16 +00001426 getZeroExtendExpr(AR, ExtTy) ==
1427 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1428 getZeroExtendExpr(Step, ExtTy),
1429 AR->getLoop())) {
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001430 std::vector<SCEVHandle> Operands;
1431 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1432 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1433 return getAddRecExpr(Operands, AR->getLoop());
1434 }
1435 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
Dan Gohman14374d32009-05-08 23:11:16 +00001436 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1437 std::vector<SCEVHandle> Operands;
1438 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1439 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1440 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001441 // Find an operand that's safely divisible.
1442 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1443 SCEVHandle Op = M->getOperand(i);
1444 SCEVHandle Div = getUDivExpr(Op, RHSC);
1445 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
Dan Gohman14374d32009-05-08 23:11:16 +00001446 Operands = M->getOperands();
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001447 Operands[i] = Div;
1448 return getMulExpr(Operands);
1449 }
1450 }
Dan Gohman14374d32009-05-08 23:11:16 +00001451 }
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001452 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Dan Gohman14374d32009-05-08 23:11:16 +00001453 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1454 std::vector<SCEVHandle> Operands;
1455 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1456 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1457 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1458 Operands.clear();
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001459 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1460 SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS);
1461 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1462 break;
1463 Operands.push_back(Op);
1464 }
1465 if (Operands.size() == A->getNumOperands())
1466 return getAddExpr(Operands);
1467 }
Dan Gohman14374d32009-05-08 23:11:16 +00001468 }
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001469
1470 // Fold if both operands are constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +00001471 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001472 Constant *LHSCV = LHSC->getValue();
1473 Constant *RHSCV = RHSC->getValue();
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +00001474 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001475 }
1476 }
1477
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +00001478 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1479 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001480 return Result;
1481}
1482
1483
Dan Gohmanc8a29272009-05-24 23:45:28 +00001484/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1485/// Simplify the expression as much as possible.
Dan Gohman89f85052007-10-22 18:31:58 +00001486SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001487 const SCEVHandle &Step, const Loop *L) {
1488 std::vector<SCEVHandle> Operands;
1489 Operands.push_back(Start);
Dan Gohmanc76b5452009-05-04 22:02:23 +00001490 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001491 if (StepChrec->getLoop() == L) {
1492 Operands.insert(Operands.end(), StepChrec->op_begin(),
1493 StepChrec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001494 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001495 }
1496
1497 Operands.push_back(Step);
Dan Gohman89f85052007-10-22 18:31:58 +00001498 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001499}
1500
Dan Gohmanc8a29272009-05-24 23:45:28 +00001501/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1502/// Simplify the expression as much as possible.
Dan Gohman89f85052007-10-22 18:31:58 +00001503SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
Nick Lewycky37d04642009-04-23 05:15:08 +00001504 const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001505 if (Operands.size() == 1) return Operands[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001506#ifndef NDEBUG
1507 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1508 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1509 getEffectiveSCEVType(Operands[0]->getType()) &&
1510 "SCEVAddRecExpr operand types don't match!");
1511#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001512
Dan Gohman7b560c42008-06-18 16:23:07 +00001513 if (Operands.back()->isZero()) {
1514 Operands.pop_back();
Dan Gohmanabe991f2008-09-14 17:21:12 +00001515 return getAddRecExpr(Operands, L); // {X,+,0} --> X
Dan Gohman7b560c42008-06-18 16:23:07 +00001516 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001517
Dan Gohman42936882008-08-08 18:33:12 +00001518 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmanc76b5452009-05-04 22:02:23 +00001519 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman42936882008-08-08 18:33:12 +00001520 const Loop* NestedLoop = NestedAR->getLoop();
1521 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1522 std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1523 NestedAR->op_end());
1524 SCEVHandle NestedARHandle(NestedAR);
1525 Operands[0] = NestedAR->getStart();
1526 NestedOperands[0] = getAddRecExpr(Operands, L);
1527 return getAddRecExpr(NestedOperands, NestedLoop);
1528 }
1529 }
1530
Dan Gohmanbff6b582009-05-04 22:30:44 +00001531 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
1532 SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001533 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1534 return Result;
1535}
1536
Nick Lewycky711640a2007-11-25 22:41:31 +00001537SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1538 const SCEVHandle &RHS) {
1539 std::vector<SCEVHandle> Ops;
1540 Ops.push_back(LHS);
1541 Ops.push_back(RHS);
1542 return getSMaxExpr(Ops);
1543}
1544
1545SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1546 assert(!Ops.empty() && "Cannot get empty smax!");
1547 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001548#ifndef NDEBUG
1549 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1550 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1551 getEffectiveSCEVType(Ops[0]->getType()) &&
1552 "SCEVSMaxExpr operand types don't match!");
1553#endif
Nick Lewycky711640a2007-11-25 22:41:31 +00001554
1555 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001556 GroupByComplexity(Ops, LI);
Nick Lewycky711640a2007-11-25 22:41:31 +00001557
1558 // If there are any constants, fold them together.
1559 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001560 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001561 ++Idx;
1562 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001563 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001564 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001565 ConstantInt *Fold = ConstantInt::get(
Nick Lewycky711640a2007-11-25 22:41:31 +00001566 APIntOps::smax(LHSC->getValue()->getValue(),
1567 RHSC->getValue()->getValue()));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001568 Ops[0] = getConstant(Fold);
1569 Ops.erase(Ops.begin()+1); // Erase the folded element
1570 if (Ops.size() == 1) return Ops[0];
1571 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewycky711640a2007-11-25 22:41:31 +00001572 }
1573
1574 // If we are left with a constant -inf, strip it off.
1575 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1576 Ops.erase(Ops.begin());
1577 --Idx;
1578 }
1579 }
1580
1581 if (Ops.size() == 1) return Ops[0];
1582
1583 // Find the first SMax
1584 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1585 ++Idx;
1586
1587 // Check to see if one of the operands is an SMax. If so, expand its operands
1588 // onto our operand list, and recurse to simplify.
1589 if (Idx < Ops.size()) {
1590 bool DeletedSMax = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001591 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001592 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1593 Ops.erase(Ops.begin()+Idx);
1594 DeletedSMax = true;
1595 }
1596
1597 if (DeletedSMax)
1598 return getSMaxExpr(Ops);
1599 }
1600
1601 // Okay, check to see if the same value occurs in the operand list twice. If
1602 // so, delete one. Since we sorted the list, these values are required to
1603 // be adjacent.
1604 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1605 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1606 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1607 --i; --e;
1608 }
1609
1610 if (Ops.size() == 1) return Ops[0];
1611
1612 assert(!Ops.empty() && "Reduced smax down to nothing!");
1613
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001614 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewycky711640a2007-11-25 22:41:31 +00001615 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001616 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Nick Lewycky711640a2007-11-25 22:41:31 +00001617 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1618 SCEVOps)];
1619 if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1620 return Result;
1621}
1622
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001623SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1624 const SCEVHandle &RHS) {
1625 std::vector<SCEVHandle> Ops;
1626 Ops.push_back(LHS);
1627 Ops.push_back(RHS);
1628 return getUMaxExpr(Ops);
1629}
1630
1631SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1632 assert(!Ops.empty() && "Cannot get empty umax!");
1633 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001634#ifndef NDEBUG
1635 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1636 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1637 getEffectiveSCEVType(Ops[0]->getType()) &&
1638 "SCEVUMaxExpr operand types don't match!");
1639#endif
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001640
1641 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001642 GroupByComplexity(Ops, LI);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001643
1644 // If there are any constants, fold them together.
1645 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001646 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001647 ++Idx;
1648 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001649 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001650 // We found two constants, fold them together!
1651 ConstantInt *Fold = ConstantInt::get(
1652 APIntOps::umax(LHSC->getValue()->getValue(),
1653 RHSC->getValue()->getValue()));
1654 Ops[0] = getConstant(Fold);
1655 Ops.erase(Ops.begin()+1); // Erase the folded element
1656 if (Ops.size() == 1) return Ops[0];
1657 LHSC = cast<SCEVConstant>(Ops[0]);
1658 }
1659
1660 // If we are left with a constant zero, strip it off.
1661 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1662 Ops.erase(Ops.begin());
1663 --Idx;
1664 }
1665 }
1666
1667 if (Ops.size() == 1) return Ops[0];
1668
1669 // Find the first UMax
1670 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1671 ++Idx;
1672
1673 // Check to see if one of the operands is a UMax. If so, expand its operands
1674 // onto our operand list, and recurse to simplify.
1675 if (Idx < Ops.size()) {
1676 bool DeletedUMax = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001677 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001678 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1679 Ops.erase(Ops.begin()+Idx);
1680 DeletedUMax = true;
1681 }
1682
1683 if (DeletedUMax)
1684 return getUMaxExpr(Ops);
1685 }
1686
1687 // Okay, check to see if the same value occurs in the operand list twice. If
1688 // so, delete one. Since we sorted the list, these values are required to
1689 // be adjacent.
1690 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1691 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
1692 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1693 --i; --e;
1694 }
1695
1696 if (Ops.size() == 1) return Ops[0];
1697
1698 assert(!Ops.empty() && "Reduced umax down to nothing!");
1699
1700 // Okay, it looks like we really DO need a umax expr. Check to see if we
1701 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001702 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001703 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1704 SCEVOps)];
1705 if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1706 return Result;
1707}
1708
Dan Gohman89f85052007-10-22 18:31:58 +00001709SCEVHandle ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001710 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
Dan Gohman89f85052007-10-22 18:31:58 +00001711 return getConstant(CI);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001712 if (isa<ConstantPointerNull>(V))
1713 return getIntegerSCEV(0, V->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001714 SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1715 if (Result == 0) Result = new SCEVUnknown(V);
1716 return Result;
1717}
1718
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001719//===----------------------------------------------------------------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001720// Basic SCEV Analysis and PHI Idiom Recognition Code
1721//
1722
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001723/// isSCEVable - Test if values of the given type are analyzable within
1724/// the SCEV framework. This primarily includes integer types, and it
1725/// can optionally include pointer types if the ScalarEvolution class
1726/// has access to target-specific information.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001727bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001728 // Integers are always SCEVable.
1729 if (Ty->isInteger())
1730 return true;
1731
1732 // Pointers are SCEVable if TargetData information is available
1733 // to provide pointer size information.
1734 if (isa<PointerType>(Ty))
1735 return TD != NULL;
1736
1737 // Otherwise it's not SCEVable.
1738 return false;
1739}
1740
1741/// getTypeSizeInBits - Return the size in bits of the specified type,
1742/// for which isSCEVable must return true.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001743uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001744 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1745
1746 // If we have a TargetData, use it!
1747 if (TD)
1748 return TD->getTypeSizeInBits(Ty);
1749
1750 // Otherwise, we support only integer types.
1751 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1752 return Ty->getPrimitiveSizeInBits();
1753}
1754
1755/// getEffectiveSCEVType - Return a type with the same bitwidth as
1756/// the given type and which represents how SCEV will treat the given
1757/// type, for which isSCEVable must return true. For pointer types,
1758/// this is the pointer-sized integer type.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001759const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001760 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1761
1762 if (Ty->isInteger())
1763 return Ty;
1764
1765 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1766 return TD->getIntPtrType();
Dan Gohman01c2ee72009-04-16 03:18:22 +00001767}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001768
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001769SCEVHandle ScalarEvolution::getCouldNotCompute() {
Dan Gohman0ad08b02009-04-18 17:58:19 +00001770 return UnknownValue;
1771}
1772
Dan Gohmand83d4af2009-05-04 22:20:30 +00001773/// hasSCEV - Return true if the SCEV for this value has already been
Edwin Török0e828d62009-05-01 08:33:47 +00001774/// computed.
1775bool ScalarEvolution::hasSCEV(Value *V) const {
1776 return Scalars.count(V);
1777}
1778
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001779/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1780/// expression and create a new one.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001781SCEVHandle ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001782 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001783
Dan Gohmanbff6b582009-05-04 22:30:44 +00001784 std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001785 if (I != Scalars.end()) return I->second;
1786 SCEVHandle S = createSCEV(V);
Dan Gohmanbff6b582009-05-04 22:30:44 +00001787 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001788 return S;
1789}
1790
Dan Gohman01c2ee72009-04-16 03:18:22 +00001791/// getIntegerSCEV - Given an integer or FP type, create a constant for the
1792/// specified signed integer value and return a SCEV for the constant.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001793SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1794 Ty = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001795 Constant *C;
1796 if (Val == 0)
1797 C = Constant::getNullValue(Ty);
1798 else if (Ty->isFloatingPoint())
1799 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1800 APFloat::IEEEdouble, Val));
1801 else
1802 C = ConstantInt::get(Ty, Val);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001803 return getUnknown(C);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001804}
1805
1806/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1807///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001808SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00001809 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001810 return getUnknown(ConstantExpr::getNeg(VC->getValue()));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001811
1812 const Type *Ty = V->getType();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001813 Ty = getEffectiveSCEVType(Ty);
1814 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001815}
1816
1817/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001818SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00001819 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001820 return getUnknown(ConstantExpr::getNot(VC->getValue()));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001821
1822 const Type *Ty = V->getType();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001823 Ty = getEffectiveSCEVType(Ty);
1824 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001825 return getMinusSCEV(AllOnes, V);
1826}
1827
1828/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1829///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001830SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
Nick Lewycky37d04642009-04-23 05:15:08 +00001831 const SCEVHandle &RHS) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001832 // X - Y --> X + -Y
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001833 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001834}
1835
1836/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1837/// input value to the specified type. If the type must be extended, it is zero
1838/// extended.
1839SCEVHandle
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001840ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
Nick Lewycky37d04642009-04-23 05:15:08 +00001841 const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001842 const Type *SrcTy = V->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001843 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1844 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman01c2ee72009-04-16 03:18:22 +00001845 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001846 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman01c2ee72009-04-16 03:18:22 +00001847 return V; // No conversion
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001848 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001849 return getTruncateExpr(V, Ty);
1850 return getZeroExtendExpr(V, Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001851}
1852
1853/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1854/// input value to the specified type. If the type must be extended, it is sign
1855/// extended.
1856SCEVHandle
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001857ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
Nick Lewycky37d04642009-04-23 05:15:08 +00001858 const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001859 const Type *SrcTy = V->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001860 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1861 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman01c2ee72009-04-16 03:18:22 +00001862 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001863 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman01c2ee72009-04-16 03:18:22 +00001864 return V; // No conversion
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001865 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001866 return getTruncateExpr(V, Ty);
1867 return getSignExtendExpr(V, Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001868}
1869
Dan Gohmanac959332009-05-13 03:46:30 +00001870/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
1871/// input value to the specified type. If the type must be extended, it is zero
1872/// extended. The conversion must not be narrowing.
1873SCEVHandle
1874ScalarEvolution::getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
1875 const Type *SrcTy = V->getType();
1876 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1877 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1878 "Cannot noop or zero extend with non-integer arguments!");
1879 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
1880 "getNoopOrZeroExtend cannot truncate!");
1881 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1882 return V; // No conversion
1883 return getZeroExtendExpr(V, Ty);
1884}
1885
1886/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
1887/// input value to the specified type. If the type must be extended, it is sign
1888/// extended. The conversion must not be narrowing.
1889SCEVHandle
1890ScalarEvolution::getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty) {
1891 const Type *SrcTy = V->getType();
1892 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1893 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1894 "Cannot noop or sign extend with non-integer arguments!");
1895 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
1896 "getNoopOrSignExtend cannot truncate!");
1897 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1898 return V; // No conversion
1899 return getSignExtendExpr(V, Ty);
1900}
1901
1902/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
1903/// input value to the specified type. The conversion must not be widening.
1904SCEVHandle
1905ScalarEvolution::getTruncateOrNoop(const SCEVHandle &V, const Type *Ty) {
1906 const Type *SrcTy = V->getType();
1907 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1908 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1909 "Cannot truncate or noop with non-integer arguments!");
1910 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
1911 "getTruncateOrNoop cannot extend!");
1912 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1913 return V; // No conversion
1914 return getTruncateExpr(V, Ty);
1915}
1916
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001917/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1918/// the specified instruction and replaces any references to the symbolic value
1919/// SymName with the specified value. This is used during PHI resolution.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001920void ScalarEvolution::
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001921ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1922 const SCEVHandle &NewVal) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001923 std::map<SCEVCallbackVH, SCEVHandle>::iterator SI =
1924 Scalars.find(SCEVCallbackVH(I, this));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001925 if (SI == Scalars.end()) return;
1926
1927 SCEVHandle NV =
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001928 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001929 if (NV == SI->second) return; // No change.
1930
1931 SI->second = NV; // Update the scalars map!
1932
1933 // Any instruction values that use this instruction might also need to be
1934 // updated!
1935 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1936 UI != E; ++UI)
1937 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1938}
1939
1940/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1941/// a loop header, making it a potential recurrence, or it doesn't.
1942///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001943SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001944 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001945 if (const Loop *L = LI->getLoopFor(PN->getParent()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001946 if (L->getHeader() == PN->getParent()) {
1947 // If it lives in the loop header, it has two incoming values, one
1948 // from outside the loop, and one from inside.
1949 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1950 unsigned BackEdge = IncomingEdge^1;
1951
1952 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001953 SCEVHandle SymbolicName = getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001954 assert(Scalars.find(PN) == Scalars.end() &&
1955 "PHI node already processed?");
Dan Gohmanbff6b582009-05-04 22:30:44 +00001956 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001957
1958 // Using this symbolic name for the PHI, analyze the value coming around
1959 // the back-edge.
1960 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1961
1962 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1963 // has a special value for the first iteration of the loop.
1964
1965 // If the value coming around the backedge is an add with the symbolic
1966 // value we just inserted, then we found a simple induction variable!
Dan Gohmanc76b5452009-05-04 22:02:23 +00001967 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001968 // If there is a single occurrence of the symbolic value, replace it
1969 // with a recurrence.
1970 unsigned FoundIndex = Add->getNumOperands();
1971 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1972 if (Add->getOperand(i) == SymbolicName)
1973 if (FoundIndex == e) {
1974 FoundIndex = i;
1975 break;
1976 }
1977
1978 if (FoundIndex != Add->getNumOperands()) {
1979 // Create an add with everything but the specified operand.
1980 std::vector<SCEVHandle> Ops;
1981 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1982 if (i != FoundIndex)
1983 Ops.push_back(Add->getOperand(i));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001984 SCEVHandle Accum = getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001985
1986 // This is not a valid addrec if the step amount is varying each
1987 // loop iteration, but is not itself an addrec in this loop.
1988 if (Accum->isLoopInvariant(L) ||
1989 (isa<SCEVAddRecExpr>(Accum) &&
1990 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1991 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001992 SCEVHandle PHISCEV = getAddRecExpr(StartVal, Accum, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001993
1994 // Okay, for the entire analysis of this edge we assumed the PHI
1995 // to be symbolic. We now need to go back and update all of the
1996 // entries for the scalars that use the PHI (except for the PHI
1997 // itself) to use the new analyzed value instead of the "symbolic"
1998 // value.
1999 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2000 return PHISCEV;
2001 }
2002 }
Dan Gohmanc76b5452009-05-04 22:02:23 +00002003 } else if (const SCEVAddRecExpr *AddRec =
2004 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002005 // Otherwise, this could be a loop like this:
2006 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2007 // In this case, j = {1,+,1} and BEValue is j.
2008 // Because the other in-value of i (0) fits the evolution of BEValue
2009 // i really is an addrec evolution.
2010 if (AddRec->getLoop() == L && AddRec->isAffine()) {
2011 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2012
2013 // If StartVal = j.start - j.stride, we can use StartVal as the
2014 // initial step of the addrec evolution.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002015 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman89f85052007-10-22 18:31:58 +00002016 AddRec->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002017 SCEVHandle PHISCEV =
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002018 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002019
2020 // Okay, for the entire analysis of this edge we assumed the PHI
2021 // to be symbolic. We now need to go back and update all of the
2022 // entries for the scalars that use the PHI (except for the PHI
2023 // itself) to use the new analyzed value instead of the "symbolic"
2024 // value.
2025 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2026 return PHISCEV;
2027 }
2028 }
2029 }
2030
2031 return SymbolicName;
2032 }
2033
2034 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002035 return getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002036}
2037
Dan Gohman509cf4d2009-05-08 20:26:55 +00002038/// createNodeForGEP - Expand GEP instructions into add and multiply
2039/// operations. This allows them to be analyzed by regular SCEV code.
2040///
Dan Gohmanca5a39e2009-05-08 20:58:38 +00002041SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) {
Dan Gohman509cf4d2009-05-08 20:26:55 +00002042
2043 const Type *IntPtrTy = TD->getIntPtrType();
Dan Gohmanc7034fa2009-05-08 20:36:47 +00002044 Value *Base = GEP->getOperand(0);
Dan Gohmand586a4f2009-05-09 00:14:52 +00002045 // Don't attempt to analyze GEPs over unsized objects.
2046 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2047 return getUnknown(GEP);
Dan Gohman509cf4d2009-05-08 20:26:55 +00002048 SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
Dan Gohmanc7034fa2009-05-08 20:36:47 +00002049 gep_type_iterator GTI = gep_type_begin(GEP);
2050 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2051 E = GEP->op_end();
Dan Gohman509cf4d2009-05-08 20:26:55 +00002052 I != E; ++I) {
2053 Value *Index = *I;
2054 // Compute the (potentially symbolic) offset in bytes for this index.
2055 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2056 // For a struct, add the member offset.
2057 const StructLayout &SL = *TD->getStructLayout(STy);
2058 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2059 uint64_t Offset = SL.getElementOffset(FieldNo);
2060 TotalOffset = getAddExpr(TotalOffset,
2061 getIntegerSCEV(Offset, IntPtrTy));
2062 } else {
2063 // For an array, add the element offset, explicitly scaled.
2064 SCEVHandle LocalOffset = getSCEV(Index);
2065 if (!isa<PointerType>(LocalOffset->getType()))
2066 // Getelementptr indicies are signed.
2067 LocalOffset = getTruncateOrSignExtend(LocalOffset,
2068 IntPtrTy);
2069 LocalOffset =
2070 getMulExpr(LocalOffset,
Duncan Sandsec4f97d2009-05-09 07:06:46 +00002071 getIntegerSCEV(TD->getTypeAllocSize(*GTI),
Dan Gohman509cf4d2009-05-08 20:26:55 +00002072 IntPtrTy));
2073 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2074 }
2075 }
2076 return getAddExpr(getSCEV(Base), TotalOffset);
2077}
2078
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002079/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2080/// guaranteed to end in (at every loop iteration). It is, at the same time,
2081/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2082/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002083static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00002084 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner6ecce2a2007-11-23 22:36:49 +00002085 return C->getValue()->getValue().countTrailingZeros();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002086
Dan Gohmanc76b5452009-05-04 22:02:23 +00002087 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002088 return std::min(GetMinTrailingZeros(T->getOperand(), SE),
2089 (uint32_t)SE.getTypeSizeInBits(T->getType()));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002090
Dan Gohmanc76b5452009-05-04 22:02:23 +00002091 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002092 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
2093 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
Dan Gohmanbfd51da2009-05-12 01:23:18 +00002094 SE.getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002095 }
2096
Dan Gohmanc76b5452009-05-04 22:02:23 +00002097 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002098 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
2099 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
Dan Gohmanbfd51da2009-05-12 01:23:18 +00002100 SE.getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002101 }
2102
Dan Gohmanc76b5452009-05-04 22:02:23 +00002103 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002104 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002105 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002106 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002107 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002108 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002109 }
2110
Dan Gohmanc76b5452009-05-04 22:02:23 +00002111 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002112 // The result is the sum of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002113 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2114 uint32_t BitWidth = SE.getTypeSizeInBits(M->getType());
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002115 for (unsigned i = 1, e = M->getNumOperands();
2116 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002117 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE),
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002118 BitWidth);
2119 return SumOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002120 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002121
Dan Gohmanc76b5452009-05-04 22:02:23 +00002122 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002123 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002124 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002125 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002126 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002127 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002128 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002129
Dan Gohmanc76b5452009-05-04 22:02:23 +00002130 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewycky711640a2007-11-25 22:41:31 +00002131 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002132 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
Nick Lewycky711640a2007-11-25 22:41:31 +00002133 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002134 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
Nick Lewycky711640a2007-11-25 22:41:31 +00002135 return MinOpRes;
2136 }
2137
Dan Gohmanc76b5452009-05-04 22:02:23 +00002138 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002139 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002140 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002141 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002142 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002143 return MinOpRes;
2144 }
2145
Nick Lewycky35b56022009-01-13 09:18:58 +00002146 // SCEVUDivExpr, SCEVUnknown
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002147 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002148}
2149
2150/// createSCEV - We know that there is no SCEV for the specified value.
2151/// Analyze the expression.
2152///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002153SCEVHandle ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002154 if (!isSCEVable(V->getType()))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002155 return getUnknown(V);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002156
Dan Gohman3996f472008-06-22 19:56:46 +00002157 unsigned Opcode = Instruction::UserOp1;
2158 if (Instruction *I = dyn_cast<Instruction>(V))
2159 Opcode = I->getOpcode();
2160 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2161 Opcode = CE->getOpcode();
2162 else
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002163 return getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002164
Dan Gohman3996f472008-06-22 19:56:46 +00002165 User *U = cast<User>(V);
2166 switch (Opcode) {
2167 case Instruction::Add:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002168 return getAddExpr(getSCEV(U->getOperand(0)),
2169 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002170 case Instruction::Mul:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002171 return getMulExpr(getSCEV(U->getOperand(0)),
2172 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002173 case Instruction::UDiv:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002174 return getUDivExpr(getSCEV(U->getOperand(0)),
2175 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002176 case Instruction::Sub:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002177 return getMinusSCEV(getSCEV(U->getOperand(0)),
2178 getSCEV(U->getOperand(1)));
Dan Gohman53bf64a2009-04-21 02:26:00 +00002179 case Instruction::And:
2180 // For an expression like x&255 that merely masks off the high bits,
2181 // use zext(trunc(x)) as the SCEV expression.
2182 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman91ae1e72009-04-25 17:05:40 +00002183 if (CI->isNullValue())
2184 return getSCEV(U->getOperand(1));
Dan Gohmanc7ebba12009-04-27 01:41:10 +00002185 if (CI->isAllOnesValue())
2186 return getSCEV(U->getOperand(0));
Dan Gohman53bf64a2009-04-21 02:26:00 +00002187 const APInt &A = CI->getValue();
2188 unsigned Ones = A.countTrailingOnes();
2189 if (APIntOps::isMask(Ones, A))
2190 return
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002191 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2192 IntegerType::get(Ones)),
2193 U->getType());
Dan Gohman53bf64a2009-04-21 02:26:00 +00002194 }
2195 break;
Dan Gohman3996f472008-06-22 19:56:46 +00002196 case Instruction::Or:
2197 // If the RHS of the Or is a constant, we may have something like:
2198 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
2199 // optimizations will transparently handle this case.
2200 //
2201 // In order for this transformation to be safe, the LHS must be of the
2202 // form X*(2^n) and the Or constant must be less than 2^n.
2203 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2204 SCEVHandle LHS = getSCEV(U->getOperand(0));
2205 const APInt &CIVal = CI->getValue();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002206 if (GetMinTrailingZeros(LHS, *this) >=
Dan Gohman3996f472008-06-22 19:56:46 +00002207 (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002208 return getAddExpr(LHS, getSCEV(U->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002209 }
Dan Gohman3996f472008-06-22 19:56:46 +00002210 break;
2211 case Instruction::Xor:
Dan Gohman3996f472008-06-22 19:56:46 +00002212 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky7fd27892008-07-07 06:15:49 +00002213 // If the RHS of the xor is a signbit, then this is just an add.
2214 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman3996f472008-06-22 19:56:46 +00002215 if (CI->getValue().isSignBit())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002216 return getAddExpr(getSCEV(U->getOperand(0)),
2217 getSCEV(U->getOperand(1)));
Nick Lewycky7fd27892008-07-07 06:15:49 +00002218
2219 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmanc897f752009-05-18 16:17:44 +00002220 if (CI->isAllOnesValue())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002221 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohmanfc78cff2009-05-18 16:29:04 +00002222
2223 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2224 // This is a variant of the check for xor with -1, and it handles
2225 // the case where instcombine has trimmed non-demanded bits out
2226 // of an xor with -1.
2227 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
2228 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
2229 if (BO->getOpcode() == Instruction::And &&
2230 LCI->getValue() == CI->getValue())
2231 if (const SCEVZeroExtendExpr *Z =
2232 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0))))
2233 return getZeroExtendExpr(getNotSCEV(Z->getOperand()),
2234 U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002235 }
2236 break;
2237
2238 case Instruction::Shl:
2239 // Turn shift left of a constant amount into a multiply.
2240 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2241 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2242 Constant *X = ConstantInt::get(
2243 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002244 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman3996f472008-06-22 19:56:46 +00002245 }
2246 break;
2247
Nick Lewycky7fd27892008-07-07 06:15:49 +00002248 case Instruction::LShr:
Nick Lewycky35b56022009-01-13 09:18:58 +00002249 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky7fd27892008-07-07 06:15:49 +00002250 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2251 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2252 Constant *X = ConstantInt::get(
2253 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002254 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky7fd27892008-07-07 06:15:49 +00002255 }
2256 break;
2257
Dan Gohman53bf64a2009-04-21 02:26:00 +00002258 case Instruction::AShr:
2259 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2260 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2261 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2262 if (L->getOpcode() == Instruction::Shl &&
2263 L->getOperand(1) == U->getOperand(1)) {
Dan Gohman91ae1e72009-04-25 17:05:40 +00002264 unsigned BitWidth = getTypeSizeInBits(U->getType());
2265 uint64_t Amt = BitWidth - CI->getZExtValue();
2266 if (Amt == BitWidth)
2267 return getSCEV(L->getOperand(0)); // shift by zero --> noop
2268 if (Amt > BitWidth)
2269 return getIntegerSCEV(0, U->getType()); // value is undefined
Dan Gohman53bf64a2009-04-21 02:26:00 +00002270 return
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002271 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohman91ae1e72009-04-25 17:05:40 +00002272 IntegerType::get(Amt)),
Dan Gohman53bf64a2009-04-21 02:26:00 +00002273 U->getType());
2274 }
2275 break;
2276
Dan Gohman3996f472008-06-22 19:56:46 +00002277 case Instruction::Trunc:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002278 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002279
2280 case Instruction::ZExt:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002281 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002282
2283 case Instruction::SExt:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002284 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002285
2286 case Instruction::BitCast:
2287 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002288 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman3996f472008-06-22 19:56:46 +00002289 return getSCEV(U->getOperand(0));
2290 break;
2291
Dan Gohman01c2ee72009-04-16 03:18:22 +00002292 case Instruction::IntToPtr:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002293 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman01c2ee72009-04-16 03:18:22 +00002294 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002295 TD->getIntPtrType());
Dan Gohman01c2ee72009-04-16 03:18:22 +00002296
2297 case Instruction::PtrToInt:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002298 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman01c2ee72009-04-16 03:18:22 +00002299 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2300 U->getType());
2301
Dan Gohman509cf4d2009-05-08 20:26:55 +00002302 case Instruction::GetElementPtr:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002303 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohmanca5a39e2009-05-08 20:58:38 +00002304 return createNodeForGEP(U);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002305
Dan Gohman3996f472008-06-22 19:56:46 +00002306 case Instruction::PHI:
2307 return createNodeForPHI(cast<PHINode>(U));
2308
2309 case Instruction::Select:
2310 // This could be a smax or umax that was lowered earlier.
2311 // Try to recover it.
2312 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2313 Value *LHS = ICI->getOperand(0);
2314 Value *RHS = ICI->getOperand(1);
2315 switch (ICI->getPredicate()) {
2316 case ICmpInst::ICMP_SLT:
2317 case ICmpInst::ICMP_SLE:
2318 std::swap(LHS, RHS);
2319 // fall through
2320 case ICmpInst::ICMP_SGT:
2321 case ICmpInst::ICMP_SGE:
2322 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002323 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002324 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Eli Friedman8e2fd032008-07-30 04:36:32 +00002325 // ~smax(~x, ~y) == smin(x, y).
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002326 return getNotSCEV(getSMaxExpr(
2327 getNotSCEV(getSCEV(LHS)),
2328 getNotSCEV(getSCEV(RHS))));
Dan Gohman3996f472008-06-22 19:56:46 +00002329 break;
2330 case ICmpInst::ICMP_ULT:
2331 case ICmpInst::ICMP_ULE:
2332 std::swap(LHS, RHS);
2333 // fall through
2334 case ICmpInst::ICMP_UGT:
2335 case ICmpInst::ICMP_UGE:
2336 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002337 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002338 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2339 // ~umax(~x, ~y) == umin(x, y)
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002340 return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)),
2341 getNotSCEV(getSCEV(RHS))));
Dan Gohman3996f472008-06-22 19:56:46 +00002342 break;
2343 default:
2344 break;
2345 }
2346 }
2347
2348 default: // We cannot analyze this expression.
2349 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002350 }
2351
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002352 return getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002353}
2354
2355
2356
2357//===----------------------------------------------------------------------===//
2358// Iteration Count Computation Code
2359//
2360
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002361/// getBackedgeTakenCount - If the specified loop has a predictable
2362/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2363/// object. The backedge-taken count is the number of times the loop header
2364/// will be branched to from within the loop. This is one less than the
2365/// trip count of the loop, since it doesn't count the first iteration,
2366/// when the header is branched to from outside the loop.
2367///
2368/// Note that it is not valid to call this method on a loop without a
2369/// loop-invariant backedge-taken count (see
2370/// hasLoopInvariantBackedgeTakenCount).
2371///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002372SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002373 return getBackedgeTakenInfo(L).Exact;
2374}
2375
2376/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2377/// return the least SCEV value that is known never to be less than the
2378/// actual backedge taken count.
2379SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2380 return getBackedgeTakenInfo(L).Max;
2381}
2382
2383const ScalarEvolution::BackedgeTakenInfo &
2384ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohmana9dba962009-04-27 20:16:15 +00002385 // Initially insert a CouldNotCompute for this loop. If the insertion
2386 // succeeds, procede to actually compute a backedge-taken count and
2387 // update the value. The temporary CouldNotCompute value tells SCEV
2388 // code elsewhere that it shouldn't attempt to request a new
2389 // backedge-taken count, which could result in infinite recursion.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002390 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohmana9dba962009-04-27 20:16:15 +00002391 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2392 if (Pair.second) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002393 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2394 if (ItCount.Exact != UnknownValue) {
2395 assert(ItCount.Exact->isLoopInvariant(L) &&
2396 ItCount.Max->isLoopInvariant(L) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002397 "Computed trip count isn't loop invariant for loop!");
2398 ++NumTripCountsComputed;
Dan Gohmana9dba962009-04-27 20:16:15 +00002399
Dan Gohmana9dba962009-04-27 20:16:15 +00002400 // Update the value in the map.
2401 Pair.first->second = ItCount;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002402 } else if (isa<PHINode>(L->getHeader()->begin())) {
2403 // Only count loops that have phi nodes as not being computable.
2404 ++NumTripCountsNotComputed;
2405 }
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002406
2407 // Now that we know more about the trip count for this loop, forget any
2408 // existing SCEV values for PHI nodes in this loop since they are only
2409 // conservative estimates made without the benefit
2410 // of trip count information.
2411 if (ItCount.hasAnyInfo())
Dan Gohman94623022009-05-02 17:43:35 +00002412 forgetLoopPHIs(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002413 }
Dan Gohmana9dba962009-04-27 20:16:15 +00002414 return Pair.first->second;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002415}
2416
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002417/// forgetLoopBackedgeTakenCount - This method should be called by the
Dan Gohmanf3a060a2009-02-17 20:49:49 +00002418/// client when it has changed a loop in a way that may effect
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002419/// ScalarEvolution's ability to compute a trip count, or if the loop
2420/// is deleted.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002421void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002422 BackedgeTakenCounts.erase(L);
Dan Gohman94623022009-05-02 17:43:35 +00002423 forgetLoopPHIs(L);
2424}
2425
2426/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2427/// PHI nodes in the given loop. This is used when the trip count of
2428/// the loop may have changed.
2429void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00002430 BasicBlock *Header = L->getHeader();
2431
Dan Gohman9fd4a002009-05-12 01:27:58 +00002432 // Push all Loop-header PHIs onto the Worklist stack, except those
2433 // that are presently represented via a SCEVUnknown. SCEVUnknown for
2434 // a PHI either means that it has an unrecognized structure, or it's
2435 // a PHI that's in the progress of being computed by createNodeForPHI.
2436 // In the former case, additional loop trip count information isn't
2437 // going to change anything. In the later case, createNodeForPHI will
2438 // perform the necessary updates on its own when it gets to that point.
Dan Gohmanbff6b582009-05-04 22:30:44 +00002439 SmallVector<Instruction *, 16> Worklist;
2440 for (BasicBlock::iterator I = Header->begin();
Dan Gohman9fd4a002009-05-12 01:27:58 +00002441 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2442 std::map<SCEVCallbackVH, SCEVHandle>::iterator It = Scalars.find((Value*)I);
2443 if (It != Scalars.end() && !isa<SCEVUnknown>(It->second))
2444 Worklist.push_back(PN);
2445 }
Dan Gohmanbff6b582009-05-04 22:30:44 +00002446
2447 while (!Worklist.empty()) {
2448 Instruction *I = Worklist.pop_back_val();
2449 if (Scalars.erase(I))
2450 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2451 UI != UE; ++UI)
2452 Worklist.push_back(cast<Instruction>(UI));
2453 }
Dan Gohmanf3a060a2009-02-17 20:49:49 +00002454}
2455
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002456/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2457/// of the specified loop will execute.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002458ScalarEvolution::BackedgeTakenInfo
2459ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002460 // If the loop has a non-one exit block count, we can't analyze it.
Devang Patel02451fa2007-08-21 00:31:24 +00002461 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002462 L->getExitBlocks(ExitBlocks);
2463 if (ExitBlocks.size() != 1) return UnknownValue;
2464
2465 // Okay, there is one exit block. Try to find the condition that causes the
2466 // loop to be exited.
2467 BasicBlock *ExitBlock = ExitBlocks[0];
2468
2469 BasicBlock *ExitingBlock = 0;
2470 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
2471 PI != E; ++PI)
2472 if (L->contains(*PI)) {
2473 if (ExitingBlock == 0)
2474 ExitingBlock = *PI;
2475 else
2476 return UnknownValue; // More than one block exiting!
2477 }
2478 assert(ExitingBlock && "No exits from loop, something is broken!");
2479
2480 // Okay, we've computed the exiting block. See what condition causes us to
2481 // exit.
2482 //
2483 // FIXME: we should be able to handle switch instructions (with a single exit)
2484 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2485 if (ExitBr == 0) return UnknownValue;
2486 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2487
2488 // At this point, we know we have a conditional branch that determines whether
2489 // the loop is exited. However, we don't know if the branch is executed each
2490 // time through the loop. If not, then the execution count of the branch will
2491 // not be equal to the trip count of the loop.
2492 //
2493 // Currently we check for this by checking to see if the Exit branch goes to
2494 // the loop header. If so, we know it will always execute the same number of
2495 // times as the loop. We also handle the case where the exit block *is* the
2496 // loop header. This is common for un-rotated loops. More extensive analysis
2497 // could be done to handle more cases here.
2498 if (ExitBr->getSuccessor(0) != L->getHeader() &&
2499 ExitBr->getSuccessor(1) != L->getHeader() &&
2500 ExitBr->getParent() != L->getHeader())
2501 return UnknownValue;
2502
2503 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2504
Eli Friedman459d7292009-05-09 12:32:42 +00002505 // If it's not an integer or pointer comparison then compute it the hard way.
2506 if (ExitCond == 0)
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002507 return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002508 ExitBr->getSuccessor(0) == ExitBlock);
2509
2510 // If the condition was exit on true, convert the condition to exit on false
2511 ICmpInst::Predicate Cond;
2512 if (ExitBr->getSuccessor(1) == ExitBlock)
2513 Cond = ExitCond->getPredicate();
2514 else
2515 Cond = ExitCond->getInversePredicate();
2516
2517 // Handle common loops like: for (X = "string"; *X; ++X)
2518 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2519 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2520 SCEVHandle ItCnt =
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002521 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002522 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2523 }
2524
2525 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2526 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2527
2528 // Try to evaluate any dependencies out of the loop.
Dan Gohmanaff14d62009-05-24 23:25:42 +00002529 LHS = getSCEVAtScope(LHS, L);
2530 RHS = getSCEVAtScope(RHS, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002531
2532 // At this point, we would like to compute how many iterations of the
2533 // loop the predicate will return true for these inputs.
Dan Gohman2d96e352008-09-16 18:52:57 +00002534 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2535 // If there is a loop-invariant, force it into the RHS.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002536 std::swap(LHS, RHS);
2537 Cond = ICmpInst::getSwappedPredicate(Cond);
2538 }
2539
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002540 // If we have a comparison of a chrec against a constant, try to use value
2541 // ranges to answer this query.
Dan Gohmanc76b5452009-05-04 22:02:23 +00002542 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2543 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002544 if (AddRec->getLoop() == L) {
Eli Friedman459d7292009-05-09 12:32:42 +00002545 // Form the constant range.
2546 ConstantRange CompRange(
2547 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002548
Eli Friedman459d7292009-05-09 12:32:42 +00002549 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
2550 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002551 }
2552
2553 switch (Cond) {
2554 case ICmpInst::ICMP_NE: { // while (X != Y)
2555 // Convert to: while (X-Y != 0)
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002556 SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002557 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2558 break;
2559 }
2560 case ICmpInst::ICMP_EQ: {
2561 // Convert to: while (X-Y == 0) // while (X == Y)
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002562 SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002563 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2564 break;
2565 }
2566 case ICmpInst::ICMP_SLT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002567 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
2568 if (BTI.hasAnyInfo()) return BTI;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002569 break;
2570 }
2571 case ICmpInst::ICMP_SGT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002572 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2573 getNotSCEV(RHS), L, true);
2574 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002575 break;
2576 }
2577 case ICmpInst::ICMP_ULT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002578 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
2579 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002580 break;
2581 }
2582 case ICmpInst::ICMP_UGT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002583 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2584 getNotSCEV(RHS), L, false);
2585 if (BTI.hasAnyInfo()) return BTI;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002586 break;
2587 }
2588 default:
2589#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00002590 errs() << "ComputeBackedgeTakenCount ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002591 if (ExitCond->getOperand(0)->getType()->isUnsigned())
Dan Gohman13058cc2009-04-21 00:47:46 +00002592 errs() << "[unsigned] ";
2593 errs() << *LHS << " "
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002594 << Instruction::getOpcodeName(Instruction::ICmp)
2595 << " " << *RHS << "\n";
2596#endif
2597 break;
2598 }
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002599 return
2600 ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2601 ExitBr->getSuccessor(0) == ExitBlock);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002602}
2603
2604static ConstantInt *
Dan Gohman89f85052007-10-22 18:31:58 +00002605EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2606 ScalarEvolution &SE) {
2607 SCEVHandle InVal = SE.getConstant(C);
2608 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002609 assert(isa<SCEVConstant>(Val) &&
2610 "Evaluation of SCEV at constant didn't fold correctly?");
2611 return cast<SCEVConstant>(Val)->getValue();
2612}
2613
2614/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2615/// and a GEP expression (missing the pointer index) indexing into it, return
2616/// the addressed element of the initializer or null if the index expression is
2617/// invalid.
2618static Constant *
2619GetAddressedElementFromGlobal(GlobalVariable *GV,
2620 const std::vector<ConstantInt*> &Indices) {
2621 Constant *Init = GV->getInitializer();
2622 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2623 uint64_t Idx = Indices[i]->getZExtValue();
2624 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2625 assert(Idx < CS->getNumOperands() && "Bad struct index!");
2626 Init = cast<Constant>(CS->getOperand(Idx));
2627 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2628 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
2629 Init = cast<Constant>(CA->getOperand(Idx));
2630 } else if (isa<ConstantAggregateZero>(Init)) {
2631 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2632 assert(Idx < STy->getNumElements() && "Bad struct index!");
2633 Init = Constant::getNullValue(STy->getElementType(Idx));
2634 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2635 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
2636 Init = Constant::getNullValue(ATy->getElementType());
2637 } else {
2638 assert(0 && "Unknown constant aggregate type!");
2639 }
2640 return 0;
2641 } else {
2642 return 0; // Unknown initializer type
2643 }
2644 }
2645 return Init;
2646}
2647
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002648/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2649/// 'icmp op load X, cst', try to see if we can compute the backedge
2650/// execution count.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002651SCEVHandle ScalarEvolution::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002652ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2653 const Loop *L,
2654 ICmpInst::Predicate predicate) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002655 if (LI->isVolatile()) return UnknownValue;
2656
2657 // Check to see if the loaded pointer is a getelementptr of a global.
2658 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2659 if (!GEP) return UnknownValue;
2660
2661 // Make sure that it is really a constant global we are gepping, with an
2662 // initializer, and make sure the first IDX is really 0.
2663 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2664 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2665 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2666 !cast<Constant>(GEP->getOperand(1))->isNullValue())
2667 return UnknownValue;
2668
2669 // Okay, we allow one non-constant index into the GEP instruction.
2670 Value *VarIdx = 0;
2671 std::vector<ConstantInt*> Indexes;
2672 unsigned VarIdxNum = 0;
2673 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2674 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2675 Indexes.push_back(CI);
2676 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2677 if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
2678 VarIdx = GEP->getOperand(i);
2679 VarIdxNum = i-2;
2680 Indexes.push_back(0);
2681 }
2682
2683 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2684 // Check to see if X is a loop variant variable value now.
2685 SCEVHandle Idx = getSCEV(VarIdx);
Dan Gohmanaff14d62009-05-24 23:25:42 +00002686 Idx = getSCEVAtScope(Idx, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002687
2688 // We can only recognize very limited forms of loop index expressions, in
2689 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohmanbff6b582009-05-04 22:30:44 +00002690 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002691 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2692 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2693 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2694 return UnknownValue;
2695
2696 unsigned MaxSteps = MaxBruteForceIterations;
2697 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2698 ConstantInt *ItCst =
2699 ConstantInt::get(IdxExpr->getType(), IterationNum);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002700 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002701
2702 // Form the GEP offset.
2703 Indexes[VarIdxNum] = Val;
2704
2705 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2706 if (Result == 0) break; // Cannot compute!
2707
2708 // Evaluate the condition for this iteration.
2709 Result = ConstantExpr::getICmp(predicate, Result, RHS);
2710 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
2711 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2712#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00002713 errs() << "\n***\n*** Computed loop count " << *ItCst
2714 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2715 << "***\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002716#endif
2717 ++NumArrayLenItCounts;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002718 return getConstant(ItCst); // Found terminating iteration!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002719 }
2720 }
2721 return UnknownValue;
2722}
2723
2724
2725/// CanConstantFold - Return true if we can constant fold an instruction of the
2726/// specified type, assuming that all operands were constants.
2727static bool CanConstantFold(const Instruction *I) {
2728 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2729 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2730 return true;
2731
2732 if (const CallInst *CI = dyn_cast<CallInst>(I))
2733 if (const Function *F = CI->getCalledFunction())
Dan Gohmane6e001f2008-01-31 01:05:10 +00002734 return canConstantFoldCallTo(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002735 return false;
2736}
2737
2738/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2739/// in the loop that V is derived from. We allow arbitrary operations along the
2740/// way, but the operands of an operation must either be constants or a value
2741/// derived from a constant PHI. If this expression does not fit with these
2742/// constraints, return null.
2743static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2744 // If this is not an instruction, or if this is an instruction outside of the
2745 // loop, it can't be derived from a loop PHI.
2746 Instruction *I = dyn_cast<Instruction>(V);
2747 if (I == 0 || !L->contains(I->getParent())) return 0;
2748
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00002749 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002750 if (L->getHeader() == I->getParent())
2751 return PN;
2752 else
2753 // We don't currently keep track of the control flow needed to evaluate
2754 // PHIs, so we cannot handle PHIs inside of loops.
2755 return 0;
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00002756 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002757
2758 // If we won't be able to constant fold this expression even if the operands
2759 // are constants, return early.
2760 if (!CanConstantFold(I)) return 0;
2761
2762 // Otherwise, we can evaluate this instruction if all of its operands are
2763 // constant or derived from a PHI node themselves.
2764 PHINode *PHI = 0;
2765 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2766 if (!(isa<Constant>(I->getOperand(Op)) ||
2767 isa<GlobalValue>(I->getOperand(Op)))) {
2768 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2769 if (P == 0) return 0; // Not evolving from PHI
2770 if (PHI == 0)
2771 PHI = P;
2772 else if (PHI != P)
2773 return 0; // Evolving from multiple different PHIs.
2774 }
2775
2776 // This is a expression evolving from a constant PHI!
2777 return PHI;
2778}
2779
2780/// EvaluateExpression - Given an expression that passes the
2781/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2782/// in the loop has the value PHIVal. If we can't fold this expression for some
2783/// reason, return null.
2784static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2785 if (isa<PHINode>(V)) return PHIVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002786 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman01c2ee72009-04-16 03:18:22 +00002787 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002788 Instruction *I = cast<Instruction>(V);
2789
2790 std::vector<Constant*> Operands;
2791 Operands.resize(I->getNumOperands());
2792
2793 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2794 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2795 if (Operands[i] == 0) return 0;
2796 }
2797
Chris Lattnerd6e56912007-12-10 22:53:04 +00002798 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2799 return ConstantFoldCompareInstOperands(CI->getPredicate(),
2800 &Operands[0], Operands.size());
2801 else
2802 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2803 &Operands[0], Operands.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002804}
2805
2806/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2807/// in the header of its containing loop, we know the loop executes a
2808/// constant number of times, and the PHI node is just a recurrence
2809/// involving constants, fold it.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002810Constant *ScalarEvolution::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002811getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002812 std::map<PHINode*, Constant*>::iterator I =
2813 ConstantEvolutionLoopExitValue.find(PN);
2814 if (I != ConstantEvolutionLoopExitValue.end())
2815 return I->second;
2816
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002817 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002818 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
2819
2820 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2821
2822 // Since the loop is canonicalized, the PHI node must have two entries. One
2823 // entry must be a constant (coming in from outside of the loop), and the
2824 // second must be derived from the same PHI.
2825 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2826 Constant *StartCST =
2827 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2828 if (StartCST == 0)
2829 return RetVal = 0; // Must be a constant.
2830
2831 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2832 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2833 if (PN2 != PN)
2834 return RetVal = 0; // Not derived from same PHI.
2835
2836 // Execute the loop symbolically to determine the exit value.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002837 if (BEs.getActiveBits() >= 32)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002838 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2839
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002840 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002841 unsigned IterationNum = 0;
2842 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2843 if (IterationNum == NumIterations)
2844 return RetVal = PHIVal; // Got exit value!
2845
2846 // Compute the value of the PHI node for the next iteration.
2847 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2848 if (NextPHI == PHIVal)
2849 return RetVal = NextPHI; // Stopped evolving!
2850 if (NextPHI == 0)
2851 return 0; // Couldn't evaluate!
2852 PHIVal = NextPHI;
2853 }
2854}
2855
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002856/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002857/// constant number of times (the condition evolves only from constants),
2858/// try to evaluate a few iterations of the loop until we get the exit
2859/// condition gets a value of ExitWhen (true or false). If we cannot
2860/// evaluate the trip count of the loop, return UnknownValue.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002861SCEVHandle ScalarEvolution::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002862ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002863 PHINode *PN = getConstantEvolvingPHI(Cond, L);
2864 if (PN == 0) return UnknownValue;
2865
2866 // Since the loop is canonicalized, the PHI node must have two entries. One
2867 // entry must be a constant (coming in from outside of the loop), and the
2868 // second must be derived from the same PHI.
2869 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2870 Constant *StartCST =
2871 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2872 if (StartCST == 0) return UnknownValue; // Must be a constant.
2873
2874 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2875 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2876 if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
2877
2878 // Okay, we find a PHI node that defines the trip count of this loop. Execute
2879 // the loop symbolically to determine when the condition gets a value of
2880 // "ExitWhen".
2881 unsigned IterationNum = 0;
2882 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
2883 for (Constant *PHIVal = StartCST;
2884 IterationNum != MaxIterations; ++IterationNum) {
2885 ConstantInt *CondVal =
2886 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2887
2888 // Couldn't symbolically evaluate.
2889 if (!CondVal) return UnknownValue;
2890
2891 if (CondVal->getValue() == uint64_t(ExitWhen)) {
2892 ConstantEvolutionLoopExitValue[PN] = PHIVal;
2893 ++NumBruteForceTripCountsComputed;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002894 return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002895 }
2896
2897 // Compute the value of the PHI node for the next iteration.
2898 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2899 if (NextPHI == 0 || NextPHI == PHIVal)
2900 return UnknownValue; // Couldn't evaluate or not making progress...
2901 PHIVal = NextPHI;
2902 }
2903
2904 // Too many iterations were needed to evaluate.
2905 return UnknownValue;
2906}
2907
Dan Gohmandd40e9a2009-05-08 20:38:54 +00002908/// getSCEVAtScope - Return a SCEV expression handle for the specified value
2909/// at the specified scope in the program. The L value specifies a loop
2910/// nest to evaluate the expression at, where null is the top-level or a
2911/// specified loop is immediately inside of the loop.
2912///
2913/// This method can be used to compute the exit value for a variable defined
2914/// in a loop by querying what the value will hold in the parent loop.
2915///
Dan Gohmanaff14d62009-05-24 23:25:42 +00002916/// In the case that a relevant loop exit value cannot be computed, the
2917/// original value V is returned.
Dan Gohmanbff6b582009-05-04 22:30:44 +00002918SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002919 // FIXME: this should be turned into a virtual method on SCEV!
2920
2921 if (isa<SCEVConstant>(V)) return V;
2922
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002923 // If this instruction is evolved from a constant-evolving PHI, compute the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002924 // exit value from the loop without using SCEVs.
Dan Gohmanc76b5452009-05-04 22:02:23 +00002925 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002926 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002927 const Loop *LI = (*this->LI)[I->getParent()];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002928 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
2929 if (PHINode *PN = dyn_cast<PHINode>(I))
2930 if (PN->getParent() == LI->getHeader()) {
2931 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002932 // to see if the loop that contains it has a known backedge-taken
2933 // count. If so, we may be able to force computation of the exit
2934 // value.
2935 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmanc76b5452009-05-04 22:02:23 +00002936 if (const SCEVConstant *BTCC =
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002937 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002938 // Okay, we know how many times the containing loop executes. If
2939 // this is a constant evolving PHI node, get the final value at
2940 // the specified iteration number.
2941 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002942 BTCC->getValue()->getValue(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002943 LI);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002944 if (RV) return getUnknown(RV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002945 }
2946 }
2947
2948 // Okay, this is an expression that we cannot symbolically evaluate
2949 // into a SCEV. Check to see if it's possible to symbolically evaluate
2950 // the arguments into constants, and if so, try to constant propagate the
2951 // result. This is particularly useful for computing loop exit values.
2952 if (CanConstantFold(I)) {
Dan Gohmanda0071e2009-05-08 20:47:27 +00002953 // Check to see if we've folded this instruction at this loop before.
2954 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
2955 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
2956 Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
2957 if (!Pair.second)
2958 return Pair.first->second ? &*getUnknown(Pair.first->second) : V;
2959
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002960 std::vector<Constant*> Operands;
2961 Operands.reserve(I->getNumOperands());
2962 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2963 Value *Op = I->getOperand(i);
2964 if (Constant *C = dyn_cast<Constant>(Op)) {
2965 Operands.push_back(C);
2966 } else {
Chris Lattner3fff4642007-11-23 08:46:22 +00002967 // If any of the operands is non-constant and if they are
Dan Gohman01c2ee72009-04-16 03:18:22 +00002968 // non-integer and non-pointer, don't even try to analyze them
2969 // with scev techniques.
Dan Gohman5e4eb762009-04-30 16:40:30 +00002970 if (!isSCEVable(Op->getType()))
Chris Lattner3fff4642007-11-23 08:46:22 +00002971 return V;
Dan Gohman01c2ee72009-04-16 03:18:22 +00002972
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002973 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
Dan Gohmanc76b5452009-05-04 22:02:23 +00002974 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman5e4eb762009-04-30 16:40:30 +00002975 Constant *C = SC->getValue();
2976 if (C->getType() != Op->getType())
2977 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2978 Op->getType(),
2979 false),
2980 C, Op->getType());
2981 Operands.push_back(C);
Dan Gohmanc76b5452009-05-04 22:02:23 +00002982 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman5e4eb762009-04-30 16:40:30 +00002983 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
2984 if (C->getType() != Op->getType())
2985 C =
2986 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2987 Op->getType(),
2988 false),
2989 C, Op->getType());
2990 Operands.push_back(C);
2991 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002992 return V;
2993 } else {
2994 return V;
2995 }
2996 }
2997 }
Chris Lattnerd6e56912007-12-10 22:53:04 +00002998
2999 Constant *C;
3000 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3001 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
3002 &Operands[0], Operands.size());
3003 else
3004 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3005 &Operands[0], Operands.size());
Dan Gohmanda0071e2009-05-08 20:47:27 +00003006 Pair.first->second = C;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003007 return getUnknown(C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003008 }
3009 }
3010
3011 // This is some other type of SCEVUnknown, just return it.
3012 return V;
3013 }
3014
Dan Gohmanc76b5452009-05-04 22:02:23 +00003015 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003016 // Avoid performing the look-up in the common case where the specified
3017 // expression has no loop-variant portions.
3018 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
3019 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3020 if (OpAtScope != Comm->getOperand(i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003021 // Okay, at least one of these operands is loop variant but might be
3022 // foldable. Build a new instance of the folded commutative expression.
3023 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
3024 NewOps.push_back(OpAtScope);
3025
3026 for (++i; i != e; ++i) {
3027 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003028 NewOps.push_back(OpAtScope);
3029 }
3030 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003031 return getAddExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00003032 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003033 return getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00003034 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003035 return getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00003036 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003037 return getUMaxExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00003038 assert(0 && "Unknown commutative SCEV type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003039 }
3040 }
3041 // If we got here, all operands are loop invariant.
3042 return Comm;
3043 }
3044
Dan Gohmanc76b5452009-05-04 22:02:23 +00003045 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Nick Lewycky35b56022009-01-13 09:18:58 +00003046 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
Nick Lewycky35b56022009-01-13 09:18:58 +00003047 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky35b56022009-01-13 09:18:58 +00003048 if (LHS == Div->getLHS() && RHS == Div->getRHS())
3049 return Div; // must be loop invariant
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003050 return getUDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003051 }
3052
3053 // If this is a loop recurrence for a loop that does not contain L, then we
3054 // are dealing with the final value computed by the loop.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003055 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003056 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3057 // To evaluate this recurrence, we need to know how many times the AddRec
3058 // loop iterates. Compute this now.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003059 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanaff14d62009-05-24 23:25:42 +00003060 if (BackedgeTakenCount == UnknownValue) return AddRec;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003061
Eli Friedman7489ec92008-08-04 23:49:06 +00003062 // Then, evaluate the AddRec.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003063 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003064 }
Dan Gohmanaff14d62009-05-24 23:25:42 +00003065 return AddRec;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003066 }
3067
Dan Gohmanc76b5452009-05-04 22:02:23 +00003068 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman78d63c82009-04-29 22:29:01 +00003069 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman78d63c82009-04-29 22:29:01 +00003070 if (Op == Cast->getOperand())
3071 return Cast; // must be loop invariant
3072 return getZeroExtendExpr(Op, Cast->getType());
3073 }
3074
Dan Gohmanc76b5452009-05-04 22:02:23 +00003075 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman78d63c82009-04-29 22:29:01 +00003076 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman78d63c82009-04-29 22:29:01 +00003077 if (Op == Cast->getOperand())
3078 return Cast; // must be loop invariant
3079 return getSignExtendExpr(Op, Cast->getType());
3080 }
3081
Dan Gohmanc76b5452009-05-04 22:02:23 +00003082 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman78d63c82009-04-29 22:29:01 +00003083 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman78d63c82009-04-29 22:29:01 +00003084 if (Op == Cast->getOperand())
3085 return Cast; // must be loop invariant
3086 return getTruncateExpr(Op, Cast->getType());
3087 }
3088
3089 assert(0 && "Unknown SCEV type!");
Daniel Dunbara95d96c2009-05-18 16:43:04 +00003090 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003091}
3092
Dan Gohmandd40e9a2009-05-08 20:38:54 +00003093/// getSCEVAtScope - This is a convenience function which does
3094/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003095SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
3096 return getSCEVAtScope(getSCEV(V), L);
3097}
3098
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003099/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3100/// following equation:
3101///
3102/// A * X = B (mod N)
3103///
3104/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3105/// A and B isn't important.
3106///
3107/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3108static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
3109 ScalarEvolution &SE) {
3110 uint32_t BW = A.getBitWidth();
3111 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3112 assert(A != 0 && "A must be non-zero.");
3113
3114 // 1. D = gcd(A, N)
3115 //
3116 // The gcd of A and N may have only one prime factor: 2. The number of
3117 // trailing zeros in A is its multiplicity
3118 uint32_t Mult2 = A.countTrailingZeros();
3119 // D = 2^Mult2
3120
3121 // 2. Check if B is divisible by D.
3122 //
3123 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3124 // is not less than multiplicity of this prime factor for D.
3125 if (B.countTrailingZeros() < Mult2)
Dan Gohman0ad08b02009-04-18 17:58:19 +00003126 return SE.getCouldNotCompute();
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003127
3128 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3129 // modulo (N / D).
3130 //
3131 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
3132 // bit width during computations.
3133 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
3134 APInt Mod(BW + 1, 0);
3135 Mod.set(BW - Mult2); // Mod = N / D
3136 APInt I = AD.multiplicativeInverse(Mod);
3137
3138 // 4. Compute the minimum unsigned root of the equation:
3139 // I * (B / D) mod (N / D)
3140 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
3141
3142 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
3143 // bits.
3144 return SE.getConstant(Result.trunc(BW));
3145}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003146
3147/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
3148/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
3149/// might be the same) or two SCEVCouldNotCompute objects.
3150///
3151static std::pair<SCEVHandle,SCEVHandle>
Dan Gohman89f85052007-10-22 18:31:58 +00003152SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003153 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohmanbff6b582009-05-04 22:30:44 +00003154 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
3155 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
3156 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003157
3158 // We currently can only solve this if the coefficients are constants.
3159 if (!LC || !MC || !NC) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00003160 const SCEV *CNC = SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003161 return std::make_pair(CNC, CNC);
3162 }
3163
3164 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
3165 const APInt &L = LC->getValue()->getValue();
3166 const APInt &M = MC->getValue()->getValue();
3167 const APInt &N = NC->getValue()->getValue();
3168 APInt Two(BitWidth, 2);
3169 APInt Four(BitWidth, 4);
3170
3171 {
3172 using namespace APIntOps;
3173 const APInt& C = L;
3174 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
3175 // The B coefficient is M-N/2
3176 APInt B(M);
3177 B -= sdiv(N,Two);
3178
3179 // The A coefficient is N/2
3180 APInt A(N.sdiv(Two));
3181
3182 // Compute the B^2-4ac term.
3183 APInt SqrtTerm(B);
3184 SqrtTerm *= B;
3185 SqrtTerm -= Four * (A * C);
3186
3187 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
3188 // integer value or else APInt::sqrt() will assert.
3189 APInt SqrtVal(SqrtTerm.sqrt());
3190
3191 // Compute the two solutions for the quadratic formula.
3192 // The divisions must be performed as signed divisions.
3193 APInt NegB(-B);
3194 APInt TwoA( A << 1 );
Nick Lewycky35776692008-11-03 02:43:49 +00003195 if (TwoA.isMinValue()) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00003196 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky35776692008-11-03 02:43:49 +00003197 return std::make_pair(CNC, CNC);
3198 }
3199
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003200 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
3201 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
3202
Dan Gohman89f85052007-10-22 18:31:58 +00003203 return std::make_pair(SE.getConstant(Solution1),
3204 SE.getConstant(Solution2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003205 } // end APIntOps namespace
3206}
3207
3208/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohmanc8a29272009-05-24 23:45:28 +00003209/// value to zero will execute. If not computable, return UnknownValue.
Dan Gohmanbff6b582009-05-04 22:30:44 +00003210SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003211 // If the value is a constant
Dan Gohmanc76b5452009-05-04 22:02:23 +00003212 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003213 // If the value is already zero, the branch will execute zero times.
3214 if (C->getValue()->isZero()) return C;
3215 return UnknownValue; // Otherwise it will loop infinitely.
3216 }
3217
Dan Gohmanbff6b582009-05-04 22:30:44 +00003218 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003219 if (!AddRec || AddRec->getLoop() != L)
3220 return UnknownValue;
3221
3222 if (AddRec->isAffine()) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003223 // If this is an affine expression, the execution count of this branch is
3224 // the minimum unsigned root of the following equation:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003225 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003226 // Start + Step*N = 0 (mod 2^BW)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003227 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003228 // equivalent to:
3229 //
3230 // Step*N = -Start (mod 2^BW)
3231 //
3232 // where BW is the common bit width of Start and Step.
3233
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003234 // Get the initial value for the loop.
3235 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003236 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003237
Dan Gohmanc76b5452009-05-04 22:02:23 +00003238 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003239 // For now we handle only constant steps.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003240
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003241 // First, handle unitary steps.
3242 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003243 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003244 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
3245 return Start; // N = Start (as unsigned)
3246
3247 // Then, try to solve the above equation provided that Start is constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003248 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003249 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003250 -StartC->getValue()->getValue(),
3251 *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003252 }
3253 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
3254 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
3255 // the quadratic equation to solve it.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003256 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
3257 *this);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003258 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3259 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003260 if (R1) {
3261#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00003262 errs() << "HFTZ: " << *V << " - sol#1: " << *R1
3263 << " sol#2: " << *R2 << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003264#endif
3265 // Pick the smallest positive root value.
3266 if (ConstantInt *CB =
3267 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3268 R1->getValue(), R2->getValue()))) {
3269 if (CB->getZExtValue() == false)
3270 std::swap(R1, R2); // R1 is the minimum root now.
3271
3272 // We can only use this value if the chrec ends up with an exact zero
3273 // value at this index. When solving for "X*X != 5", for example, we
3274 // should not accept a root of 2.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003275 SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohman7b560c42008-06-18 16:23:07 +00003276 if (Val->isZero())
3277 return R1; // We found a quadratic root!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003278 }
3279 }
3280 }
3281
3282 return UnknownValue;
3283}
3284
3285/// HowFarToNonZero - Return the number of times a backedge checking the
3286/// specified value for nonzero will execute. If not computable, return
3287/// UnknownValue
Dan Gohmanbff6b582009-05-04 22:30:44 +00003288SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003289 // Loops that look like: while (X == 0) are very strange indeed. We don't
3290 // handle them yet except for the trivial case. This could be expanded in the
3291 // future as needed.
3292
3293 // If the value is a constant, check to see if it is known to be non-zero
3294 // already. If so, the backedge will execute zero times.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003295 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewyckyf6805182008-02-21 09:14:53 +00003296 if (!C->getValue()->isNullValue())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003297 return getIntegerSCEV(0, C->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003298 return UnknownValue; // Otherwise it will loop infinitely.
3299 }
3300
3301 // We could implement others, but I really doubt anyone writes loops like
3302 // this, and if they did, they would already be constant folded.
3303 return UnknownValue;
3304}
3305
Dan Gohmanab157b22009-05-18 15:36:09 +00003306/// getLoopPredecessor - If the given loop's header has exactly one unique
3307/// predecessor outside the loop, return it. Otherwise return null.
3308///
3309BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
3310 BasicBlock *Header = L->getHeader();
3311 BasicBlock *Pred = 0;
3312 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
3313 PI != E; ++PI)
3314 if (!L->contains(*PI)) {
3315 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
3316 Pred = *PI;
3317 }
3318 return Pred;
3319}
3320
Dan Gohman1cddf972008-09-15 22:18:04 +00003321/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3322/// (which may not be an immediate predecessor) which has exactly one
3323/// successor from which BB is reachable, or null if no such block is
3324/// found.
3325///
3326BasicBlock *
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003327ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman1116ea72009-04-30 20:48:53 +00003328 // If the block has a unique predecessor, then there is no path from the
3329 // predecessor to the block that does not go through the direct edge
3330 // from the predecessor to the block.
Dan Gohman1cddf972008-09-15 22:18:04 +00003331 if (BasicBlock *Pred = BB->getSinglePredecessor())
3332 return Pred;
3333
3334 // A loop's header is defined to be a block that dominates the loop.
Dan Gohmanab157b22009-05-18 15:36:09 +00003335 // If the header has a unique predecessor outside the loop, it must be
3336 // a block that has exactly one successor that can reach the loop.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003337 if (Loop *L = LI->getLoopFor(BB))
Dan Gohmanab157b22009-05-18 15:36:09 +00003338 return getLoopPredecessor(L);
Dan Gohman1cddf972008-09-15 22:18:04 +00003339
3340 return 0;
3341}
3342
Dan Gohmancacd2012009-02-12 22:19:27 +00003343/// isLoopGuardedByCond - Test whether entry to the loop is protected by
Dan Gohman1116ea72009-04-30 20:48:53 +00003344/// a conditional between LHS and RHS. This is used to help avoid max
3345/// expressions in loop trip counts.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003346bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
Dan Gohman1116ea72009-04-30 20:48:53 +00003347 ICmpInst::Predicate Pred,
Dan Gohmanbff6b582009-05-04 22:30:44 +00003348 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8b938182009-05-18 16:03:58 +00003349 // Interpret a null as meaning no loop, where there is obviously no guard
3350 // (interprocedural conditions notwithstanding).
3351 if (!L) return false;
3352
Dan Gohmanab157b22009-05-18 15:36:09 +00003353 BasicBlock *Predecessor = getLoopPredecessor(L);
3354 BasicBlock *PredecessorDest = L->getHeader();
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003355
Dan Gohmanab157b22009-05-18 15:36:09 +00003356 // Starting at the loop predecessor, climb up the predecessor chain, as long
3357 // as there are predecessors that can be found that have unique successors
Dan Gohman1cddf972008-09-15 22:18:04 +00003358 // leading to the original header.
Dan Gohmanab157b22009-05-18 15:36:09 +00003359 for (; Predecessor;
3360 PredecessorDest = Predecessor,
3361 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
Dan Gohmanab678fb2008-08-12 20:17:31 +00003362
3363 BranchInst *LoopEntryPredicate =
Dan Gohmanab157b22009-05-18 15:36:09 +00003364 dyn_cast<BranchInst>(Predecessor->getTerminator());
Dan Gohmanab678fb2008-08-12 20:17:31 +00003365 if (!LoopEntryPredicate ||
3366 LoopEntryPredicate->isUnconditional())
3367 continue;
3368
3369 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3370 if (!ICI) continue;
3371
3372 // Now that we found a conditional branch that dominates the loop, check to
3373 // see if it is the comparison we are looking for.
3374 Value *PreCondLHS = ICI->getOperand(0);
3375 Value *PreCondRHS = ICI->getOperand(1);
3376 ICmpInst::Predicate Cond;
Dan Gohmanab157b22009-05-18 15:36:09 +00003377 if (LoopEntryPredicate->getSuccessor(0) == PredecessorDest)
Dan Gohmanab678fb2008-08-12 20:17:31 +00003378 Cond = ICI->getPredicate();
3379 else
3380 Cond = ICI->getInversePredicate();
3381
Dan Gohmancacd2012009-02-12 22:19:27 +00003382 if (Cond == Pred)
3383 ; // An exact match.
3384 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3385 ; // The actual condition is beyond sufficient.
3386 else
3387 // Check a few special cases.
3388 switch (Cond) {
3389 case ICmpInst::ICMP_UGT:
3390 if (Pred == ICmpInst::ICMP_ULT) {
3391 std::swap(PreCondLHS, PreCondRHS);
3392 Cond = ICmpInst::ICMP_ULT;
3393 break;
3394 }
3395 continue;
3396 case ICmpInst::ICMP_SGT:
3397 if (Pred == ICmpInst::ICMP_SLT) {
3398 std::swap(PreCondLHS, PreCondRHS);
3399 Cond = ICmpInst::ICMP_SLT;
3400 break;
3401 }
3402 continue;
3403 case ICmpInst::ICMP_NE:
3404 // Expressions like (x >u 0) are often canonicalized to (x != 0),
3405 // so check for this case by checking if the NE is comparing against
3406 // a minimum or maximum constant.
3407 if (!ICmpInst::isTrueWhenEqual(Pred))
3408 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3409 const APInt &A = CI->getValue();
3410 switch (Pred) {
3411 case ICmpInst::ICMP_SLT:
3412 if (A.isMaxSignedValue()) break;
3413 continue;
3414 case ICmpInst::ICMP_SGT:
3415 if (A.isMinSignedValue()) break;
3416 continue;
3417 case ICmpInst::ICMP_ULT:
3418 if (A.isMaxValue()) break;
3419 continue;
3420 case ICmpInst::ICMP_UGT:
3421 if (A.isMinValue()) break;
3422 continue;
3423 default:
3424 continue;
3425 }
3426 Cond = ICmpInst::ICMP_NE;
3427 // NE is symmetric but the original comparison may not be. Swap
3428 // the operands if necessary so that they match below.
3429 if (isa<SCEVConstant>(LHS))
3430 std::swap(PreCondLHS, PreCondRHS);
3431 break;
3432 }
3433 continue;
3434 default:
3435 // We weren't able to reconcile the condition.
3436 continue;
3437 }
Dan Gohmanab678fb2008-08-12 20:17:31 +00003438
3439 if (!PreCondLHS->getType()->isInteger()) continue;
3440
3441 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3442 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3443 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003444 (LHS == getNotSCEV(PreCondRHSSCEV) &&
3445 RHS == getNotSCEV(PreCondLHSSCEV)))
Dan Gohmanab678fb2008-08-12 20:17:31 +00003446 return true;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003447 }
3448
Dan Gohmanab678fb2008-08-12 20:17:31 +00003449 return false;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003450}
3451
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003452/// HowManyLessThans - Return the number of times a backedge containing the
3453/// specified less-than comparison will execute. If not computable, return
3454/// UnknownValue.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003455ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
Dan Gohmanbff6b582009-05-04 22:30:44 +00003456HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
3457 const Loop *L, bool isSigned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003458 // Only handle: "ADDREC < LoopInvariant".
3459 if (!RHS->isLoopInvariant(L)) return UnknownValue;
3460
Dan Gohmanbff6b582009-05-04 22:30:44 +00003461 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003462 if (!AddRec || AddRec->getLoop() != L)
3463 return UnknownValue;
3464
3465 if (AddRec->isAffine()) {
Nick Lewycky35b56022009-01-13 09:18:58 +00003466 // FORNOW: We only support unit strides.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003467 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
3468 SCEVHandle Step = AddRec->getStepRecurrence(*this);
3469 SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType());
3470
3471 // TODO: handle non-constant strides.
3472 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
3473 if (!CStep || CStep->isZero())
3474 return UnknownValue;
Dan Gohmanf8bc8e82009-05-18 15:22:39 +00003475 if (CStep->isOne()) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003476 // With unit stride, the iteration never steps past the limit value.
3477 } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
3478 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
3479 // Test whether a positive iteration iteration can step past the limit
3480 // value and past the maximum value for its type in a single step.
3481 if (isSigned) {
3482 APInt Max = APInt::getSignedMaxValue(BitWidth);
3483 if ((Max - CStep->getValue()->getValue())
3484 .slt(CLimit->getValue()->getValue()))
3485 return UnknownValue;
3486 } else {
3487 APInt Max = APInt::getMaxValue(BitWidth);
3488 if ((Max - CStep->getValue()->getValue())
3489 .ult(CLimit->getValue()->getValue()))
3490 return UnknownValue;
3491 }
3492 } else
3493 // TODO: handle non-constant limit values below.
3494 return UnknownValue;
3495 } else
3496 // TODO: handle negative strides below.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003497 return UnknownValue;
3498
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003499 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
3500 // m. So, we count the number of iterations in which {n,+,s} < m is true.
3501 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicz1377a542008-02-13 12:21:32 +00003502 // treat m-n as signed nor unsigned due to overflow possibility.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003503
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00003504 // First, we get the value of the LHS in the first iteration: n
3505 SCEVHandle Start = AddRec->getOperand(0);
3506
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003507 // Determine the minimum constant start value.
3508 SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start :
3509 getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
3510 APInt::getMinValue(BitWidth));
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00003511
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003512 // If we know that the condition is true in order to enter the loop,
3513 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohmanc8a29272009-05-24 23:45:28 +00003514 // only know that it will execute (max(m,n)-n)/s times. In both cases,
3515 // the division must round up.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003516 SCEVHandle End = RHS;
3517 if (!isLoopGuardedByCond(L,
3518 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
3519 getMinusSCEV(Start, Step), RHS))
3520 End = isSigned ? getSMaxExpr(RHS, Start)
3521 : getUMaxExpr(RHS, Start);
3522
3523 // Determine the maximum constant end value.
3524 SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End :
3525 getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) :
3526 APInt::getMaxValue(BitWidth));
3527
3528 // Finally, we subtract these two values and divide, rounding up, to get
3529 // the number of times the backedge is executed.
3530 SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start),
3531 getAddExpr(Step, NegOne)),
3532 Step);
3533
3534 // The maximum backedge count is similar, except using the minimum start
3535 // value and the maximum end value.
3536 SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd,
3537 MinStart),
3538 getAddExpr(Step, NegOne)),
3539 Step);
3540
3541 return BackedgeTakenInfo(BECount, MaxBECount);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003542 }
3543
3544 return UnknownValue;
3545}
3546
3547/// getNumIterationsInRange - Return the number of iterations of this loop that
3548/// produce values in the specified constant range. Another way of looking at
3549/// this is that it returns the first iteration number where the value is not in
3550/// the condition, thus computing the exit count. If the iteration count can't
3551/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman89f85052007-10-22 18:31:58 +00003552SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3553 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003554 if (Range.isFullSet()) // Infinite loop.
Dan Gohman0ad08b02009-04-18 17:58:19 +00003555 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003556
3557 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003558 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003559 if (!SC->getValue()->isZero()) {
3560 std::vector<SCEVHandle> Operands(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00003561 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3562 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohmanc76b5452009-05-04 22:02:23 +00003563 if (const SCEVAddRecExpr *ShiftedAddRec =
3564 dyn_cast<SCEVAddRecExpr>(Shifted))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003565 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman89f85052007-10-22 18:31:58 +00003566 Range.subtract(SC->getValue()->getValue()), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003567 // This is strange and shouldn't happen.
Dan Gohman0ad08b02009-04-18 17:58:19 +00003568 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003569 }
3570
3571 // The only time we can solve this is when we have all constant indices.
3572 // Otherwise, we cannot determine the overflow conditions.
3573 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3574 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman0ad08b02009-04-18 17:58:19 +00003575 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003576
3577
3578 // Okay at this point we know that all elements of the chrec are constants and
3579 // that the start element is zero.
3580
3581 // First check to see if the range contains zero. If not, the first
3582 // iteration exits.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00003583 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman01c2ee72009-04-16 03:18:22 +00003584 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman89f85052007-10-22 18:31:58 +00003585 return SE.getConstant(ConstantInt::get(getType(),0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003586
3587 if (isAffine()) {
3588 // If this is an affine expression then we have this situation:
3589 // Solve {0,+,A} in Range === Ax in Range
3590
3591 // We know that zero is in the range. If A is positive then we know that
3592 // the upper value of the range must be the first possible exit value.
3593 // If A is negative then the lower of the range is the last possible loop
3594 // value. Also note that we already checked for a full range.
Dan Gohman01c2ee72009-04-16 03:18:22 +00003595 APInt One(BitWidth,1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003596 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3597 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
3598
3599 // The exit value should be (End+A)/A.
Nick Lewyckya0facae2007-09-27 14:12:54 +00003600 APInt ExitVal = (End + A).udiv(A);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003601 ConstantInt *ExitValue = ConstantInt::get(ExitVal);
3602
3603 // Evaluate at the exit value. If we really did fall out of the valid
3604 // range, then we computed our trip count, otherwise wrap around or other
3605 // things must have happened.
Dan Gohman89f85052007-10-22 18:31:58 +00003606 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003607 if (Range.contains(Val->getValue()))
Dan Gohman0ad08b02009-04-18 17:58:19 +00003608 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003609
3610 // Ensure that the previous value is in the range. This is a sanity check.
3611 assert(Range.contains(
3612 EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00003613 ConstantInt::get(ExitVal - One), SE)->getValue()) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003614 "Linear scev computation is off in a bad way!");
Dan Gohman89f85052007-10-22 18:31:58 +00003615 return SE.getConstant(ExitValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003616 } else if (isQuadratic()) {
3617 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3618 // quadratic equation to solve it. To do this, we must frame our problem in
3619 // terms of figuring out when zero is crossed, instead of when
3620 // Range.getUpper() is crossed.
3621 std::vector<SCEVHandle> NewOps(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00003622 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3623 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003624
3625 // Next, solve the constructed addrec
3626 std::pair<SCEVHandle,SCEVHandle> Roots =
Dan Gohman89f85052007-10-22 18:31:58 +00003627 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003628 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3629 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003630 if (R1) {
3631 // Pick the smallest positive root value.
3632 if (ConstantInt *CB =
3633 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3634 R1->getValue(), R2->getValue()))) {
3635 if (CB->getZExtValue() == false)
3636 std::swap(R1, R2); // R1 is the minimum root now.
3637
3638 // Make sure the root is not off by one. The returned iteration should
3639 // not be in the range, but the previous one should be. When solving
3640 // for "X*X < 5", for example, we should not return a root of 2.
3641 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00003642 R1->getValue(),
3643 SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003644 if (Range.contains(R1Val->getValue())) {
3645 // The next iteration must be out of the range...
3646 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
3647
Dan Gohman89f85052007-10-22 18:31:58 +00003648 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003649 if (!Range.contains(R1Val->getValue()))
Dan Gohman89f85052007-10-22 18:31:58 +00003650 return SE.getConstant(NextVal);
Dan Gohman0ad08b02009-04-18 17:58:19 +00003651 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003652 }
3653
3654 // If R1 was not in the range, then it is a good return value. Make
3655 // sure that R1-1 WAS in the range though, just in case.
3656 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
Dan Gohman89f85052007-10-22 18:31:58 +00003657 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003658 if (Range.contains(R1Val->getValue()))
3659 return R1;
Dan Gohman0ad08b02009-04-18 17:58:19 +00003660 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003661 }
3662 }
3663 }
3664
Dan Gohman0ad08b02009-04-18 17:58:19 +00003665 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003666}
3667
3668
3669
3670//===----------------------------------------------------------------------===//
Dan Gohmanbff6b582009-05-04 22:30:44 +00003671// SCEVCallbackVH Class Implementation
3672//===----------------------------------------------------------------------===//
3673
Dan Gohman999d14e2009-05-19 19:22:47 +00003674void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanbff6b582009-05-04 22:30:44 +00003675 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3676 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
3677 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00003678 if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
3679 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003680 SE->Scalars.erase(getValPtr());
3681 // this now dangles!
3682}
3683
Dan Gohman999d14e2009-05-19 19:22:47 +00003684void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00003685 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3686
3687 // Forget all the expressions associated with users of the old value,
3688 // so that future queries will recompute the expressions using the new
3689 // value.
3690 SmallVector<User *, 16> Worklist;
3691 Value *Old = getValPtr();
3692 bool DeleteOld = false;
3693 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
3694 UI != UE; ++UI)
3695 Worklist.push_back(*UI);
3696 while (!Worklist.empty()) {
3697 User *U = Worklist.pop_back_val();
3698 // Deleting the Old value will cause this to dangle. Postpone
3699 // that until everything else is done.
3700 if (U == Old) {
3701 DeleteOld = true;
3702 continue;
3703 }
3704 if (PHINode *PN = dyn_cast<PHINode>(U))
3705 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00003706 if (Instruction *I = dyn_cast<Instruction>(U))
3707 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003708 if (SE->Scalars.erase(U))
3709 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
3710 UI != UE; ++UI)
3711 Worklist.push_back(*UI);
3712 }
3713 if (DeleteOld) {
3714 if (PHINode *PN = dyn_cast<PHINode>(Old))
3715 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00003716 if (Instruction *I = dyn_cast<Instruction>(Old))
3717 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003718 SE->Scalars.erase(Old);
3719 // this now dangles!
3720 }
3721 // this may dangle!
3722}
3723
Dan Gohman999d14e2009-05-19 19:22:47 +00003724ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohmanbff6b582009-05-04 22:30:44 +00003725 : CallbackVH(V), SE(se) {}
3726
3727//===----------------------------------------------------------------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003728// ScalarEvolution Class Implementation
3729//===----------------------------------------------------------------------===//
3730
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003731ScalarEvolution::ScalarEvolution()
3732 : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) {
3733}
3734
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003735bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003736 this->F = &F;
3737 LI = &getAnalysis<LoopInfo>();
3738 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003739 return false;
3740}
3741
3742void ScalarEvolution::releaseMemory() {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003743 Scalars.clear();
3744 BackedgeTakenCounts.clear();
3745 ConstantEvolutionLoopExitValue.clear();
Dan Gohmanda0071e2009-05-08 20:47:27 +00003746 ValuesAtScopes.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003747}
3748
3749void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3750 AU.setPreservesAll();
3751 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman01c2ee72009-04-16 03:18:22 +00003752}
3753
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003754bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003755 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003756}
3757
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003758static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003759 const Loop *L) {
3760 // Print all inner loops first
3761 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3762 PrintLoopInfo(OS, SE, *I);
3763
Nick Lewyckye5da1912008-01-02 02:49:20 +00003764 OS << "Loop " << L->getHeader()->getName() << ": ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003765
Devang Patel02451fa2007-08-21 00:31:24 +00003766 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003767 L->getExitBlocks(ExitBlocks);
3768 if (ExitBlocks.size() != 1)
Nick Lewyckye5da1912008-01-02 02:49:20 +00003769 OS << "<multiple exits> ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003770
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003771 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3772 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003773 } else {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003774 OS << "Unpredictable backedge-taken count. ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003775 }
3776
Nick Lewyckye5da1912008-01-02 02:49:20 +00003777 OS << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003778}
3779
Dan Gohman13058cc2009-04-21 00:47:46 +00003780void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003781 // ScalarEvolution's implementaiton of the print method is to print
3782 // out SCEV values of all instructions that are interesting. Doing
3783 // this potentially causes it to create new SCEV objects though,
3784 // which technically conflicts with the const qualifier. This isn't
3785 // observable from outside the class though (the hasSCEV function
3786 // notwithstanding), so casting away the const isn't dangerous.
3787 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003788
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003789 OS << "Classifying expressions for: " << F->getName() << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003790 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohman43d37e92009-04-30 01:30:18 +00003791 if (isSCEVable(I->getType())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003792 OS << *I;
Dan Gohmanabe991f2008-09-14 17:21:12 +00003793 OS << " --> ";
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003794 SCEVHandle SV = SE.getSCEV(&*I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003795 SV->print(OS);
3796 OS << "\t\t";
3797
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003798 if (const Loop *L = LI->getLoopFor((*I).getParent())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003799 OS << "Exits: ";
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003800 SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
Dan Gohmanaff14d62009-05-24 23:25:42 +00003801 if (!ExitValue->isLoopInvariant(L)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003802 OS << "<<Unknown>>";
3803 } else {
3804 OS << *ExitValue;
3805 }
3806 }
3807
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003808 OS << "\n";
3809 }
3810
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003811 OS << "Determining loop execution counts for: " << F->getName() << "\n";
3812 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
3813 PrintLoopInfo(OS, &SE, *I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003814}
Dan Gohman13058cc2009-04-21 00:47:46 +00003815
3816void ScalarEvolution::print(std::ostream &o, const Module *M) const {
3817 raw_os_ostream OS(o);
3818 print(OS, M);
3819}