blob: a8275e660b53cf260e15f791805316fd04862d6b [file] [log] [blame]
Misha Brukman91b5ca82004-07-26 18:45:48 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000011// pseudo registers into register stack instructions. This pass uses live
Chris Lattner847df252004-01-30 22:25:18 +000012// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000015// The x87 hardware tracks liveness of the stack registers, so it is necessary
16// to implement exact liveness tracking between basic blocks. The CFG edges are
17// partitioned into bundles where the same FP registers must be live in
18// identical stack positions. Instructions are inserted at the end of each basic
19// block to rearrange the live registers to match the outgoing bundle.
Chris Lattner847df252004-01-30 22:25:18 +000020//
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000021// This approach avoids splitting critical edges at the potential cost of more
22// live register shuffling instructions when critical edges are present.
Chris Lattnera960d952003-01-13 01:01:59 +000023//
24//===----------------------------------------------------------------------===//
25
Chris Lattner95b2c7d2006-12-19 22:59:26 +000026#define DEBUG_TYPE "x86-codegen"
Chris Lattnera960d952003-01-13 01:01:59 +000027#include "X86.h"
28#include "X86InstrInfo.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000029#include "llvm/ADT/DepthFirstIterator.h"
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000030#include "llvm/ADT/DenseMap.h"
Owen Andersoneaa009d2008-08-14 21:01:00 +000031#include "llvm/ADT/SmallPtrSet.h"
Evan Chengddd2a452006-11-15 20:56:39 +000032#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000033#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000035#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/Passes.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000039#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetMachine.h"
Chris Lattnera960d952003-01-13 01:01:59 +000044#include <algorithm>
Chris Lattnerf2e49d42003-12-20 09:58:55 +000045using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000046
Chris Lattner95b2c7d2006-12-19 22:59:26 +000047STATISTIC(NumFXCH, "Number of fxch instructions inserted");
48STATISTIC(NumFP , "Number of floating point instructions");
Chris Lattnera960d952003-01-13 01:01:59 +000049
Chris Lattner95b2c7d2006-12-19 22:59:26 +000050namespace {
Nick Lewycky6726b6d2009-10-25 06:33:48 +000051 struct FPS : public MachineFunctionPass {
Devang Patel19974732007-05-03 01:11:54 +000052 static char ID;
Dan Gohmanae73dc12008-09-04 17:05:41 +000053 FPS() : MachineFunctionPass(&ID) {}
Devang Patel794fd752007-05-01 21:15:47 +000054
Evan Chengbbeeb2a2008-09-22 20:58:04 +000055 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Dan Gohmandf090552009-08-01 00:26:16 +000056 AU.setPreservesCFG();
Evan Cheng8b56a902008-09-22 22:21:38 +000057 AU.addPreservedID(MachineLoopInfoID);
58 AU.addPreservedID(MachineDominatorsID);
Evan Chengbbeeb2a2008-09-22 20:58:04 +000059 MachineFunctionPass::getAnalysisUsage(AU);
60 }
61
Chris Lattnera960d952003-01-13 01:01:59 +000062 virtual bool runOnMachineFunction(MachineFunction &MF);
63
64 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
65
Chris Lattnera960d952003-01-13 01:01:59 +000066 private:
Evan Cheng32644ac2006-12-01 10:11:51 +000067 const TargetInstrInfo *TII; // Machine instruction info.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000068
69 // Two CFG edges are related if they leave the same block, or enter the same
70 // block. The transitive closure of an edge under this relation is a
71 // LiveBundle. It represents a set of CFG edges where the live FP stack
72 // registers must be allocated identically in the x87 stack.
73 //
74 // A LiveBundle is usually all the edges leaving a block, or all the edges
75 // entering a block, but it can contain more edges if critical edges are
76 // present.
77 //
78 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
79 // but the exact mapping of FP registers to stack slots is fixed later.
80 struct LiveBundle {
81 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
82 unsigned Mask;
83
84 // Number of pre-assigned live registers in FixStack. This is 0 when the
85 // stack order has not yet been fixed.
86 unsigned FixCount;
87
88 // Assigned stack order for live-in registers.
89 // FixStack[i] == getStackEntry(i) for all i < FixCount.
90 unsigned char FixStack[8];
91
92 LiveBundle(unsigned m = 0) : Mask(m), FixCount(0) {}
93
94 // Have the live registers been assigned a stack order yet?
95 bool isFixed() const { return !Mask || FixCount; }
96 };
97
98 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
99 // with no live FP registers.
100 SmallVector<LiveBundle, 8> LiveBundles;
101
102 // Map each MBB in the current function to an (ingoing, outgoing) index into
103 // LiveBundles. Blocks with no FP registers live in or out map to (0, 0)
104 // and are not actually stored in the map.
105 DenseMap<MachineBasicBlock*, std::pair<unsigned, unsigned> > BlockBundle;
106
107 // Return a bitmask of FP registers in block's live-in list.
108 unsigned calcLiveInMask(MachineBasicBlock *MBB) {
109 unsigned Mask = 0;
110 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
111 E = MBB->livein_end(); I != E; ++I) {
112 unsigned Reg = *I - X86::FP0;
113 if (Reg < 8)
114 Mask |= 1 << Reg;
115 }
116 return Mask;
117 }
118
119 // Partition all the CFG edges into LiveBundles.
120 void bundleCFG(MachineFunction &MF);
121
Evan Cheng32644ac2006-12-01 10:11:51 +0000122 MachineBasicBlock *MBB; // Current basic block
123 unsigned Stack[8]; // FP<n> Registers in each stack slot...
124 unsigned RegMap[8]; // Track which stack slot contains each register
125 unsigned StackTop; // The current top of the FP stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000126
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000127 // Set up our stack model to match the incoming registers to MBB.
128 void setupBlockStack();
129
130 // Shuffle live registers to match the expectations of successor blocks.
131 void finishBlockStack();
132
Chris Lattnera960d952003-01-13 01:01:59 +0000133 void dumpStack() const {
David Greenef5c95a62010-01-05 01:29:34 +0000134 dbgs() << "Stack contents:";
Chris Lattnera960d952003-01-13 01:01:59 +0000135 for (unsigned i = 0; i != StackTop; ++i) {
David Greenef5c95a62010-01-05 01:29:34 +0000136 dbgs() << " FP" << Stack[i];
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000137 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
Chris Lattnera960d952003-01-13 01:01:59 +0000138 }
David Greenef5c95a62010-01-05 01:29:34 +0000139 dbgs() << "\n";
Chris Lattnera960d952003-01-13 01:01:59 +0000140 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000141
Chris Lattner447ff682008-03-11 03:23:40 +0000142 /// isStackEmpty - Return true if the FP stack is empty.
143 bool isStackEmpty() const {
144 return StackTop == 0;
145 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000146
Chris Lattnera960d952003-01-13 01:01:59 +0000147 // getSlot - Return the stack slot number a particular register number is
Chris Lattner447ff682008-03-11 03:23:40 +0000148 // in.
Chris Lattnera960d952003-01-13 01:01:59 +0000149 unsigned getSlot(unsigned RegNo) const {
150 assert(RegNo < 8 && "Regno out of range!");
151 return RegMap[RegNo];
152 }
153
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000154 // isLive - Is RegNo currently live in the stack?
155 bool isLive(unsigned RegNo) const {
156 unsigned Slot = getSlot(RegNo);
157 return Slot < StackTop && Stack[Slot] == RegNo;
158 }
159
Chris Lattner447ff682008-03-11 03:23:40 +0000160 // getStackEntry - Return the X86::FP<n> register in register ST(i).
Chris Lattnera960d952003-01-13 01:01:59 +0000161 unsigned getStackEntry(unsigned STi) const {
162 assert(STi < StackTop && "Access past stack top!");
163 return Stack[StackTop-1-STi];
164 }
165
166 // getSTReg - Return the X86::ST(i) register which contains the specified
Chris Lattner447ff682008-03-11 03:23:40 +0000167 // FP<RegNo> register.
Chris Lattnera960d952003-01-13 01:01:59 +0000168 unsigned getSTReg(unsigned RegNo) const {
Brian Gaeked0fde302003-11-11 22:41:34 +0000169 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
Chris Lattnera960d952003-01-13 01:01:59 +0000170 }
171
Chris Lattner447ff682008-03-11 03:23:40 +0000172 // pushReg - Push the specified FP<n> register onto the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000173 void pushReg(unsigned Reg) {
174 assert(Reg < 8 && "Register number out of range!");
175 assert(StackTop < 8 && "Stack overflow!");
176 Stack[StackTop] = Reg;
177 RegMap[Reg] = StackTop++;
178 }
179
180 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
Chris Lattner447ff682008-03-11 03:23:40 +0000181 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000182 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattner447ff682008-03-11 03:23:40 +0000183 if (isAtTop(RegNo)) return;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000184
Chris Lattner447ff682008-03-11 03:23:40 +0000185 unsigned STReg = getSTReg(RegNo);
186 unsigned RegOnTop = getStackEntry(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000187
Chris Lattner447ff682008-03-11 03:23:40 +0000188 // Swap the slots the regs are in.
189 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
Chris Lattnera960d952003-01-13 01:01:59 +0000190
Chris Lattner447ff682008-03-11 03:23:40 +0000191 // Swap stack slot contents.
192 assert(RegMap[RegOnTop] < StackTop);
193 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
Chris Lattnera960d952003-01-13 01:01:59 +0000194
Chris Lattner447ff682008-03-11 03:23:40 +0000195 // Emit an fxch to update the runtime processors version of the state.
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000196 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
Dan Gohmanfe601042010-06-22 15:08:57 +0000197 ++NumFXCH;
Chris Lattnera960d952003-01-13 01:01:59 +0000198 }
199
Chris Lattner0526f012004-04-01 04:06:09 +0000200 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000201 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000202 unsigned STReg = getSTReg(RegNo);
203 pushReg(AsReg); // New register on top of stack
204
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000205 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
Chris Lattnera960d952003-01-13 01:01:59 +0000206 }
207
208 // popStackAfter - Pop the current value off of the top of the FP stack
209 // after the specified instruction.
210 void popStackAfter(MachineBasicBlock::iterator &I);
211
Chris Lattner0526f012004-04-01 04:06:09 +0000212 // freeStackSlotAfter - Free the specified register from the register stack,
213 // so that it is no longer in a register. If the register is currently at
214 // the top of the stack, we just pop the current instruction, otherwise we
215 // store the current top-of-stack into the specified slot, then pop the top
216 // of stack.
217 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
218
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000219 // freeStackSlotBefore - Just the pop, no folding. Return the inserted
220 // instruction.
221 MachineBasicBlock::iterator
222 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
223
224 // Adjust the live registers to be the set in Mask.
225 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
226
227 // Shuffle the top FixCount stack entries susch that FP reg FixStack[0] is
228 //st(0), FP reg FixStack[1] is st(1) etc.
229 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
230 MachineBasicBlock::iterator I);
231
Chris Lattnera960d952003-01-13 01:01:59 +0000232 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
233
234 void handleZeroArgFP(MachineBasicBlock::iterator &I);
235 void handleOneArgFP(MachineBasicBlock::iterator &I);
Chris Lattner4a06f352004-02-02 19:23:15 +0000236 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000237 void handleTwoArgFP(MachineBasicBlock::iterator &I);
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000238 void handleCompareFP(MachineBasicBlock::iterator &I);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000239 void handleCondMovFP(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000240 void handleSpecialFP(MachineBasicBlock::iterator &I);
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000241
242 bool translateCopy(MachineInstr*);
Chris Lattnera960d952003-01-13 01:01:59 +0000243 };
Devang Patel19974732007-05-03 01:11:54 +0000244 char FPS::ID = 0;
Chris Lattnera960d952003-01-13 01:01:59 +0000245}
246
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000247FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnera960d952003-01-13 01:01:59 +0000248
Chris Lattner3cc83842008-01-14 06:41:29 +0000249/// getFPReg - Return the X86::FPx register number for the specified operand.
250/// For example, this returns 3 for X86::FP3.
251static unsigned getFPReg(const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000252 assert(MO.isReg() && "Expected an FP register!");
Chris Lattner3cc83842008-01-14 06:41:29 +0000253 unsigned Reg = MO.getReg();
254 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
255 return Reg - X86::FP0;
256}
257
Chris Lattnera960d952003-01-13 01:01:59 +0000258/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
259/// register references into FP stack references.
260///
261bool FPS::runOnMachineFunction(MachineFunction &MF) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000262 // We only need to run this pass if there are any FP registers used in this
263 // function. If it is all integer, there is nothing for us to do!
Chris Lattner42e25b32005-01-23 23:13:59 +0000264 bool FPIsUsed = false;
265
266 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
267 for (unsigned i = 0; i <= 6; ++i)
Chris Lattner84bc5422007-12-31 04:13:23 +0000268 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000269 FPIsUsed = true;
270 break;
271 }
272
273 // Early exit.
274 if (!FPIsUsed) return false;
275
Evan Cheng32644ac2006-12-01 10:11:51 +0000276 TII = MF.getTarget().getInstrInfo();
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000277
278 // Prepare cross-MBB liveness.
279 bundleCFG(MF);
280
Chris Lattnera960d952003-01-13 01:01:59 +0000281 StackTop = 0;
282
Chris Lattner847df252004-01-30 22:25:18 +0000283 // Process the function in depth first order so that we process at least one
284 // of the predecessors for every reachable block in the function.
Owen Andersoneaa009d2008-08-14 21:01:00 +0000285 SmallPtrSet<MachineBasicBlock*, 8> Processed;
Chris Lattner22686842004-05-01 21:27:53 +0000286 MachineBasicBlock *Entry = MF.begin();
Chris Lattner847df252004-01-30 22:25:18 +0000287
288 bool Changed = false;
Owen Andersoneaa009d2008-08-14 21:01:00 +0000289 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
Chris Lattner847df252004-01-30 22:25:18 +0000290 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
291 I != E; ++I)
Chris Lattner22686842004-05-01 21:27:53 +0000292 Changed |= processBasicBlock(MF, **I);
Chris Lattner847df252004-01-30 22:25:18 +0000293
Chris Lattnerba3598c2009-09-08 04:55:44 +0000294 // Process any unreachable blocks in arbitrary order now.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000295 if (MF.size() != Processed.size())
296 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
297 if (Processed.insert(BB))
298 Changed |= processBasicBlock(MF, *BB);
Chris Lattnerba3598c2009-09-08 04:55:44 +0000299
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000300 BlockBundle.clear();
301 LiveBundles.clear();
302
Chris Lattnera960d952003-01-13 01:01:59 +0000303 return Changed;
304}
305
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000306/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
307/// live-out sets for the FP registers. Consistent means that the set of
308/// registers live-out from a block is identical to the live-in set of all
309/// successors. This is not enforced by the normal live-in lists since
310/// registers may be implicitly defined, or not used by all successors.
311void FPS::bundleCFG(MachineFunction &MF) {
312 assert(LiveBundles.empty() && "Stale data in LiveBundles");
313 assert(BlockBundle.empty() && "Stale data in BlockBundle");
314 SmallPtrSet<MachineBasicBlock*, 8> PropDown, PropUp;
315
316 // LiveBundle[0] is the empty live-in set.
317 LiveBundles.resize(1);
318
319 // First gather the actual live-in masks for all MBBs.
320 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
321 MachineBasicBlock *MBB = I;
322 const unsigned Mask = calcLiveInMask(MBB);
323 if (!Mask)
324 continue;
325 // Ingoing bundle index.
326 unsigned &Idx = BlockBundle[MBB].first;
327 // Already assigned an ingoing bundle?
328 if (Idx)
329 continue;
330 // Allocate a new LiveBundle struct for this block's live-ins.
331 const unsigned BundleIdx = Idx = LiveBundles.size();
332 DEBUG(dbgs() << "Creating LB#" << BundleIdx << ": in:BB#"
333 << MBB->getNumber());
334 LiveBundles.push_back(Mask);
335 LiveBundle &Bundle = LiveBundles.back();
336
337 // Make sure all predecessors have the same live-out set.
338 PropUp.insert(MBB);
339
340 // Keep pushing liveness up and down the CFG until convergence.
341 // Only critical edges cause iteration here, but when they do, multiple
342 // blocks can be assigned to the same LiveBundle index.
343 do {
344 // Assign BundleIdx as liveout from predecessors in PropUp.
345 for (SmallPtrSet<MachineBasicBlock*, 16>::iterator I = PropUp.begin(),
346 E = PropUp.end(); I != E; ++I) {
347 MachineBasicBlock *MBB = *I;
348 for (MachineBasicBlock::const_pred_iterator LinkI = MBB->pred_begin(),
349 LinkE = MBB->pred_end(); LinkI != LinkE; ++LinkI) {
350 MachineBasicBlock *PredMBB = *LinkI;
351 // PredMBB's liveout bundle should be set to LIIdx.
352 unsigned &Idx = BlockBundle[PredMBB].second;
353 if (Idx) {
354 assert(Idx == BundleIdx && "Inconsistent CFG");
355 continue;
356 }
357 Idx = BundleIdx;
358 DEBUG(dbgs() << " out:BB#" << PredMBB->getNumber());
359 // Propagate to siblings.
360 if (PredMBB->succ_size() > 1)
361 PropDown.insert(PredMBB);
362 }
363 }
364 PropUp.clear();
365
366 // Assign BundleIdx as livein to successors in PropDown.
367 for (SmallPtrSet<MachineBasicBlock*, 16>::iterator I = PropDown.begin(),
368 E = PropDown.end(); I != E; ++I) {
369 MachineBasicBlock *MBB = *I;
370 for (MachineBasicBlock::const_succ_iterator LinkI = MBB->succ_begin(),
371 LinkE = MBB->succ_end(); LinkI != LinkE; ++LinkI) {
372 MachineBasicBlock *SuccMBB = *LinkI;
373 // LinkMBB's livein bundle should be set to BundleIdx.
374 unsigned &Idx = BlockBundle[SuccMBB].first;
375 if (Idx) {
376 assert(Idx == BundleIdx && "Inconsistent CFG");
377 continue;
378 }
379 Idx = BundleIdx;
380 DEBUG(dbgs() << " in:BB#" << SuccMBB->getNumber());
381 // Propagate to siblings.
382 if (SuccMBB->pred_size() > 1)
383 PropUp.insert(SuccMBB);
384 // Also accumulate the bundle liveness mask from the liveins here.
385 Bundle.Mask |= calcLiveInMask(SuccMBB);
386 }
387 }
388 PropDown.clear();
389 } while (!PropUp.empty());
390 DEBUG({
391 dbgs() << " live:";
392 for (unsigned i = 0; i < 8; ++i)
393 if (Bundle.Mask & (1<<i))
394 dbgs() << " %FP" << i;
395 dbgs() << '\n';
396 });
397 }
398}
399
Chris Lattnera960d952003-01-13 01:01:59 +0000400/// processBasicBlock - Loop over all of the instructions in the basic block,
401/// transforming FP instructions into their stack form.
402///
403bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
Chris Lattnera960d952003-01-13 01:01:59 +0000404 bool Changed = false;
405 MBB = &BB;
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000406
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000407 setupBlockStack();
408
Chris Lattnera960d952003-01-13 01:01:59 +0000409 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000410 MachineInstr *MI = I;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000411 uint64_t Flags = MI->getDesc().TSFlags;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000412
Chris Lattnere12ecf22008-03-11 19:50:13 +0000413 unsigned FPInstClass = Flags & X86II::FPTypeMask;
Chris Lattner518bb532010-02-09 19:54:29 +0000414 if (MI->isInlineAsm())
Chris Lattnere12ecf22008-03-11 19:50:13 +0000415 FPInstClass = X86II::SpecialFP;
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000416
417 if (MI->isCopy() && translateCopy(MI))
418 FPInstClass = X86II::SpecialFP;
419
Chris Lattnere12ecf22008-03-11 19:50:13 +0000420 if (FPInstClass == X86II::NotFP)
Chris Lattner847df252004-01-30 22:25:18 +0000421 continue; // Efficiently ignore non-fp insts!
Chris Lattnera960d952003-01-13 01:01:59 +0000422
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000423 MachineInstr *PrevMI = 0;
Alkis Evlogimenosf81af212004-02-14 01:18:34 +0000424 if (I != BB.begin())
Chris Lattner6fa2f9c2008-03-09 07:05:32 +0000425 PrevMI = prior(I);
Chris Lattnera960d952003-01-13 01:01:59 +0000426
427 ++NumFP; // Keep track of # of pseudo instrs
David Greenef5c95a62010-01-05 01:29:34 +0000428 DEBUG(dbgs() << "\nFPInst:\t" << *MI);
Chris Lattnera960d952003-01-13 01:01:59 +0000429
430 // Get dead variables list now because the MI pointer may be deleted as part
431 // of processing!
Evan Chengddd2a452006-11-15 20:56:39 +0000432 SmallVector<unsigned, 8> DeadRegs;
433 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
434 const MachineOperand &MO = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +0000435 if (MO.isReg() && MO.isDead())
Evan Chengddd2a452006-11-15 20:56:39 +0000436 DeadRegs.push_back(MO.getReg());
437 }
Chris Lattnera960d952003-01-13 01:01:59 +0000438
Chris Lattnere12ecf22008-03-11 19:50:13 +0000439 switch (FPInstClass) {
Chris Lattner4a06f352004-02-02 19:23:15 +0000440 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000441 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
Chris Lattner4a06f352004-02-02 19:23:15 +0000442 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
Evan Cheng5cd3e9f2006-11-11 10:21:44 +0000443 case X86II::TwoArgFP: handleTwoArgFP(I); break;
Chris Lattnerab8decc2004-06-11 04:41:24 +0000444 case X86II::CompareFP: handleCompareFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000445 case X86II::CondMovFP: handleCondMovFP(I); break;
Chris Lattner4a06f352004-02-02 19:23:15 +0000446 case X86II::SpecialFP: handleSpecialFP(I); break;
Torok Edwinc23197a2009-07-14 16:55:14 +0000447 default: llvm_unreachable("Unknown FP Type!");
Chris Lattnera960d952003-01-13 01:01:59 +0000448 }
449
450 // Check to see if any of the values defined by this instruction are dead
451 // after definition. If so, pop them.
Evan Chengddd2a452006-11-15 20:56:39 +0000452 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
453 unsigned Reg = DeadRegs[i];
Chris Lattnera960d952003-01-13 01:01:59 +0000454 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
David Greenef5c95a62010-01-05 01:29:34 +0000455 DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000456 freeStackSlotAfter(I, Reg-X86::FP0);
Chris Lattnera960d952003-01-13 01:01:59 +0000457 }
458 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000459
Chris Lattnera960d952003-01-13 01:01:59 +0000460 // Print out all of the instructions expanded to if -debug
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000461 DEBUG(
462 MachineBasicBlock::iterator PrevI(PrevMI);
463 if (I == PrevI) {
David Greenef5c95a62010-01-05 01:29:34 +0000464 dbgs() << "Just deleted pseudo instruction\n";
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000465 } else {
466 MachineBasicBlock::iterator Start = I;
467 // Rewind to first instruction newly inserted.
468 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
David Greenef5c95a62010-01-05 01:29:34 +0000469 dbgs() << "Inserted instructions:\n\t";
470 Start->print(dbgs(), &MF.getTarget());
Chris Lattner7896c9f2009-12-03 00:50:42 +0000471 while (++Start != llvm::next(I)) {}
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000472 }
473 dumpStack();
474 );
Chris Lattnera960d952003-01-13 01:01:59 +0000475
476 Changed = true;
477 }
478
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000479 finishBlockStack();
480
Chris Lattnera960d952003-01-13 01:01:59 +0000481 return Changed;
482}
483
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000484/// setupBlockStack - Use the BlockBundle map to set up our model of the stack
485/// to match predecessors' live out stack.
486void FPS::setupBlockStack() {
487 DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
488 << " derived from " << MBB->getName() << ".\n");
489 StackTop = 0;
490 const LiveBundle &Bundle = LiveBundles[BlockBundle.lookup(MBB).first];
491
492 if (!Bundle.Mask) {
493 DEBUG(dbgs() << "Block has no FP live-ins.\n");
494 return;
495 }
496
497 // Depth-first iteration should ensure that we always have an assigned stack.
498 assert(Bundle.isFixed() && "Reached block before any predecessors");
499
500 // Push the fixed live-in registers.
501 for (unsigned i = Bundle.FixCount; i > 0; --i) {
502 MBB->addLiveIn(X86::ST0+i-1);
503 DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
504 << unsigned(Bundle.FixStack[i-1]) << '\n');
505 pushReg(Bundle.FixStack[i-1]);
506 }
507
508 // Kill off unwanted live-ins. This can happen with a critical edge.
509 // FIXME: We could keep these live registers around as zombies. They may need
510 // to be revived at the end of a short block. It might save a few instrs.
511 adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
512 DEBUG(MBB->dump());
513}
514
515/// finishBlockStack - Revive live-outs that are implicitly defined out of
516/// MBB. Shuffle live registers to match the expected fixed stack of any
517/// predecessors, and ensure that all predecessors are expecting the same
518/// stack.
519void FPS::finishBlockStack() {
520 // The RET handling below takes care of return blocks for us.
521 if (MBB->succ_empty())
522 return;
523
524 DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
525 << " derived from " << MBB->getName() << ".\n");
526
527 unsigned BundleIdx = BlockBundle.lookup(MBB).second;
528 LiveBundle &Bundle = LiveBundles[BundleIdx];
529
530 // We may need to kill and define some registers to match successors.
531 // FIXME: This can probably be combined with the shuffle below.
532 MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
533 adjustLiveRegs(Bundle.Mask, Term);
534
535 if (!Bundle.Mask) {
536 DEBUG(dbgs() << "No live-outs.\n");
537 return;
538 }
539
540 // Has the stack order been fixed yet?
541 DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
542 if (Bundle.isFixed()) {
543 DEBUG(dbgs() << "Shuffling stack to match.\n");
544 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
545 } else {
546 // Not fixed yet, we get to choose.
547 DEBUG(dbgs() << "Fixing stack order now.\n");
548 Bundle.FixCount = StackTop;
549 for (unsigned i = 0; i < StackTop; ++i)
550 Bundle.FixStack[i] = getStackEntry(i);
551 }
552}
553
554
Chris Lattnera960d952003-01-13 01:01:59 +0000555//===----------------------------------------------------------------------===//
556// Efficient Lookup Table Support
557//===----------------------------------------------------------------------===//
558
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000559namespace {
560 struct TableEntry {
561 unsigned from;
562 unsigned to;
563 bool operator<(const TableEntry &TE) const { return from < TE.from; }
Jeff Cohen9471c8a2006-01-26 20:41:32 +0000564 friend bool operator<(const TableEntry &TE, unsigned V) {
565 return TE.from < V;
566 }
567 friend bool operator<(unsigned V, const TableEntry &TE) {
568 return V < TE.from;
569 }
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000570 };
571}
Chris Lattnera960d952003-01-13 01:01:59 +0000572
Evan Chenga022bdf2008-07-21 20:02:45 +0000573#ifndef NDEBUG
Chris Lattnera960d952003-01-13 01:01:59 +0000574static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
575 for (unsigned i = 0; i != NumEntries-1; ++i)
576 if (!(Table[i] < Table[i+1])) return false;
577 return true;
578}
Evan Chenga022bdf2008-07-21 20:02:45 +0000579#endif
Chris Lattnera960d952003-01-13 01:01:59 +0000580
581static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
582 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
583 if (I != Table+N && I->from == Opcode)
584 return I->to;
585 return -1;
586}
587
Chris Lattnera960d952003-01-13 01:01:59 +0000588#ifdef NDEBUG
589#define ASSERT_SORTED(TABLE)
590#else
591#define ASSERT_SORTED(TABLE) \
592 { static bool TABLE##Checked = false; \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000593 if (!TABLE##Checked) { \
Owen Anderson718cb662007-09-07 04:06:50 +0000594 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Chris Lattnera960d952003-01-13 01:01:59 +0000595 "All lookup tables must be sorted for efficient access!"); \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000596 TABLE##Checked = true; \
597 } \
Chris Lattnera960d952003-01-13 01:01:59 +0000598 }
599#endif
600
Chris Lattner58fe4592005-12-21 07:47:04 +0000601//===----------------------------------------------------------------------===//
602// Register File -> Register Stack Mapping Methods
603//===----------------------------------------------------------------------===//
604
605// OpcodeTable - Sorted map of register instructions to their stack version.
606// The first element is an register file pseudo instruction, the second is the
607// concrete X86 instruction which uses the register stack.
608//
609static const TableEntry OpcodeTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000610 { X86::ABS_Fp32 , X86::ABS_F },
611 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000612 { X86::ABS_Fp80 , X86::ABS_F },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000613 { X86::ADD_Fp32m , X86::ADD_F32m },
614 { X86::ADD_Fp64m , X86::ADD_F64m },
615 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000616 { X86::ADD_Fp80m32 , X86::ADD_F32m },
617 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000618 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
619 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000620 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000621 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
622 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000623 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000624 { X86::CHS_Fp32 , X86::CHS_F },
625 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000626 { X86::CHS_Fp80 , X86::CHS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000627 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
628 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000629 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000630 { X86::CMOVB_Fp32 , X86::CMOVB_F },
631 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000632 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000633 { X86::CMOVE_Fp32 , X86::CMOVE_F },
634 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000635 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000636 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
637 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000638 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000639 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
640 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000641 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000642 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
643 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000644 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000645 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
646 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000647 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000648 { X86::CMOVP_Fp32 , X86::CMOVP_F },
649 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000650 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000651 { X86::COS_Fp32 , X86::COS_F },
652 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000653 { X86::COS_Fp80 , X86::COS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000654 { X86::DIVR_Fp32m , X86::DIVR_F32m },
655 { X86::DIVR_Fp64m , X86::DIVR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000656 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000657 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
658 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000659 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
660 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000661 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000662 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
663 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000664 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000665 { X86::DIV_Fp32m , X86::DIV_F32m },
666 { X86::DIV_Fp64m , X86::DIV_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000667 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000668 { X86::DIV_Fp80m32 , X86::DIV_F32m },
669 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000670 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
671 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000672 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000673 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
674 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000675 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000676 { X86::ILD_Fp16m32 , X86::ILD_F16m },
677 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000678 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000679 { X86::ILD_Fp32m32 , X86::ILD_F32m },
680 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000681 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000682 { X86::ILD_Fp64m32 , X86::ILD_F64m },
683 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000684 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000685 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
686 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesena996d522007-08-07 01:17:37 +0000687 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000688 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
689 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesena996d522007-08-07 01:17:37 +0000690 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000691 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
692 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesena996d522007-08-07 01:17:37 +0000693 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000694 { X86::IST_Fp16m32 , X86::IST_F16m },
695 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000696 { X86::IST_Fp16m80 , X86::IST_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000697 { X86::IST_Fp32m32 , X86::IST_F32m },
698 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000699 { X86::IST_Fp32m80 , X86::IST_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000700 { X86::IST_Fp64m32 , X86::IST_FP64m },
701 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000702 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000703 { X86::LD_Fp032 , X86::LD_F0 },
704 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000705 { X86::LD_Fp080 , X86::LD_F0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000706 { X86::LD_Fp132 , X86::LD_F1 },
707 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000708 { X86::LD_Fp180 , X86::LD_F1 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000709 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000710 { X86::LD_Fp32m64 , X86::LD_F32m },
711 { X86::LD_Fp32m80 , X86::LD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000712 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000713 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000714 { X86::LD_Fp80m , X86::LD_F80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000715 { X86::MUL_Fp32m , X86::MUL_F32m },
716 { X86::MUL_Fp64m , X86::MUL_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000717 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000718 { X86::MUL_Fp80m32 , X86::MUL_F32m },
719 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000720 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
721 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000722 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000723 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
724 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000725 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000726 { X86::SIN_Fp32 , X86::SIN_F },
727 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000728 { X86::SIN_Fp80 , X86::SIN_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000729 { X86::SQRT_Fp32 , X86::SQRT_F },
730 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000731 { X86::SQRT_Fp80 , X86::SQRT_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000732 { X86::ST_Fp32m , X86::ST_F32m },
733 { X86::ST_Fp64m , X86::ST_F64m },
734 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000735 { X86::ST_Fp80m32 , X86::ST_F32m },
736 { X86::ST_Fp80m64 , X86::ST_F64m },
737 { X86::ST_FpP80m , X86::ST_FP80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000738 { X86::SUBR_Fp32m , X86::SUBR_F32m },
739 { X86::SUBR_Fp64m , X86::SUBR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000740 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000741 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
742 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000743 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
744 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000745 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000746 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
747 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000748 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000749 { X86::SUB_Fp32m , X86::SUB_F32m },
750 { X86::SUB_Fp64m , X86::SUB_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000751 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000752 { X86::SUB_Fp80m32 , X86::SUB_F32m },
753 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000754 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
755 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000756 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000757 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
758 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000759 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000760 { X86::TST_Fp32 , X86::TST_F },
761 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000762 { X86::TST_Fp80 , X86::TST_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000763 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
764 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000765 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000766 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
767 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000768 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Chris Lattner58fe4592005-12-21 07:47:04 +0000769};
770
771static unsigned getConcreteOpcode(unsigned Opcode) {
772 ASSERT_SORTED(OpcodeTable);
Owen Anderson718cb662007-09-07 04:06:50 +0000773 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Chris Lattner58fe4592005-12-21 07:47:04 +0000774 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
775 return Opc;
776}
Chris Lattnera960d952003-01-13 01:01:59 +0000777
778//===----------------------------------------------------------------------===//
779// Helper Methods
780//===----------------------------------------------------------------------===//
781
782// PopTable - Sorted map of instructions to their popping version. The first
783// element is an instruction, the second is the version which pops.
784//
785static const TableEntry PopTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000786 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000787
Dale Johannesene377d4d2007-07-04 21:07:47 +0000788 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
789 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000790
Dale Johannesene377d4d2007-07-04 21:07:47 +0000791 { X86::IST_F16m , X86::IST_FP16m },
792 { X86::IST_F32m , X86::IST_FP32m },
Chris Lattnera960d952003-01-13 01:01:59 +0000793
Dale Johannesene377d4d2007-07-04 21:07:47 +0000794 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000795
Dale Johannesene377d4d2007-07-04 21:07:47 +0000796 { X86::ST_F32m , X86::ST_FP32m },
797 { X86::ST_F64m , X86::ST_FP64m },
798 { X86::ST_Frr , X86::ST_FPrr },
Chris Lattner113455b2003-08-03 21:56:36 +0000799
Dale Johannesene377d4d2007-07-04 21:07:47 +0000800 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
801 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000802
Dale Johannesene377d4d2007-07-04 21:07:47 +0000803 { X86::UCOM_FIr , X86::UCOM_FIPr },
Chris Lattnerc040bca2004-04-12 01:39:15 +0000804
Dale Johannesene377d4d2007-07-04 21:07:47 +0000805 { X86::UCOM_FPr , X86::UCOM_FPPr },
806 { X86::UCOM_Fr , X86::UCOM_FPr },
Chris Lattnera960d952003-01-13 01:01:59 +0000807};
808
809/// popStackAfter - Pop the current value off of the top of the FP stack after
810/// the specified instruction. This attempts to be sneaky and combine the pop
811/// into the instruction itself if possible. The iterator is left pointing to
812/// the last instruction, be it a new pop instruction inserted, or the old
813/// instruction if it was modified in place.
814///
815void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000816 MachineInstr* MI = I;
817 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000818 ASSERT_SORTED(PopTable);
819 assert(StackTop > 0 && "Cannot pop empty stack!");
820 RegMap[Stack[--StackTop]] = ~0; // Update state
821
822 // Check to see if there is a popping version of this instruction...
Owen Anderson718cb662007-09-07 04:06:50 +0000823 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +0000824 if (Opcode != -1) {
Chris Lattner5080f4d2008-01-11 18:10:50 +0000825 I->setDesc(TII->get(Opcode));
Dale Johannesene377d4d2007-07-04 21:07:47 +0000826 if (Opcode == X86::UCOM_FPPr)
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000827 I->RemoveOperand(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000828 } else { // Insert an explicit pop
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000829 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
Chris Lattnera960d952003-01-13 01:01:59 +0000830 }
831}
832
Chris Lattner0526f012004-04-01 04:06:09 +0000833/// freeStackSlotAfter - Free the specified register from the register stack, so
834/// that it is no longer in a register. If the register is currently at the top
835/// of the stack, we just pop the current instruction, otherwise we store the
836/// current top-of-stack into the specified slot, then pop the top of stack.
837void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
838 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
839 popStackAfter(I);
840 return;
841 }
842
843 // Otherwise, store the top of stack into the dead slot, killing the operand
844 // without having to add in an explicit xchg then pop.
845 //
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000846 I = freeStackSlotBefore(++I, FPRegNo);
847}
848
849/// freeStackSlotBefore - Free the specified register without trying any
850/// folding.
851MachineBasicBlock::iterator
852FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
Chris Lattner0526f012004-04-01 04:06:09 +0000853 unsigned STReg = getSTReg(FPRegNo);
854 unsigned OldSlot = getSlot(FPRegNo);
855 unsigned TopReg = Stack[StackTop-1];
856 Stack[OldSlot] = TopReg;
857 RegMap[TopReg] = OldSlot;
858 RegMap[FPRegNo] = ~0;
859 Stack[--StackTop] = ~0;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000860 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
861}
862
863/// adjustLiveRegs - Kill and revive registers such that exactly the FP
864/// registers with a bit in Mask are live.
865void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
866 unsigned Defs = Mask;
867 unsigned Kills = 0;
868 for (unsigned i = 0; i < StackTop; ++i) {
869 unsigned RegNo = Stack[i];
870 if (!(Defs & (1 << RegNo)))
871 // This register is live, but we don't want it.
872 Kills |= (1 << RegNo);
873 else
874 // We don't need to imp-def this live register.
875 Defs &= ~(1 << RegNo);
876 }
877 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
878
879 // Produce implicit-defs for free by using killed registers.
880 while (Kills && Defs) {
881 unsigned KReg = CountTrailingZeros_32(Kills);
882 unsigned DReg = CountTrailingZeros_32(Defs);
883 DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
884 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
885 std::swap(RegMap[KReg], RegMap[DReg]);
886 Kills &= ~(1 << KReg);
887 Defs &= ~(1 << DReg);
888 }
889
890 // Kill registers by popping.
891 if (Kills && I != MBB->begin()) {
892 MachineBasicBlock::iterator I2 = llvm::prior(I);
893 for (;;) {
894 unsigned KReg = getStackEntry(0);
895 if (!(Kills & (1 << KReg)))
896 break;
897 DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
898 popStackAfter(I2);
899 Kills &= ~(1 << KReg);
900 }
901 }
902
903 // Manually kill the rest.
904 while (Kills) {
905 unsigned KReg = CountTrailingZeros_32(Kills);
906 DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
907 freeStackSlotBefore(I, KReg);
908 Kills &= ~(1 << KReg);
909 }
910
911 // Load zeros for all the imp-defs.
912 while(Defs) {
913 unsigned DReg = CountTrailingZeros_32(Defs);
914 DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
915 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
916 pushReg(DReg);
917 Defs &= ~(1 << DReg);
918 }
919
920 // Now we should have the correct registers live.
921 DEBUG(dumpStack());
922 assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
923}
924
925/// shuffleStackTop - emit fxch instructions before I to shuffle the top
926/// FixCount entries into the order given by FixStack.
927/// FIXME: Is there a better algorithm than insertion sort?
928void FPS::shuffleStackTop(const unsigned char *FixStack,
929 unsigned FixCount,
930 MachineBasicBlock::iterator I) {
931 // Move items into place, starting from the desired stack bottom.
932 while (FixCount--) {
933 // Old register at position FixCount.
934 unsigned OldReg = getStackEntry(FixCount);
935 // Desired register at position FixCount.
936 unsigned Reg = FixStack[FixCount];
937 if (Reg == OldReg)
938 continue;
939 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
940 moveToTop(Reg, I);
941 moveToTop(OldReg, I);
942 }
943 DEBUG(dumpStack());
Chris Lattner0526f012004-04-01 04:06:09 +0000944}
945
946
Chris Lattnera960d952003-01-13 01:01:59 +0000947//===----------------------------------------------------------------------===//
948// Instruction transformation implementation
949//===----------------------------------------------------------------------===//
950
951/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
Chris Lattner4a06f352004-02-02 19:23:15 +0000952///
Chris Lattnera960d952003-01-13 01:01:59 +0000953void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000954 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000955 unsigned DestReg = getFPReg(MI->getOperand(0));
Chris Lattnera960d952003-01-13 01:01:59 +0000956
Chris Lattner58fe4592005-12-21 07:47:04 +0000957 // Change from the pseudo instruction to the concrete instruction.
958 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +0000959 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +0000960
961 // Result gets pushed on the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000962 pushReg(DestReg);
963}
964
Chris Lattner4a06f352004-02-02 19:23:15 +0000965/// handleOneArgFP - fst <mem>, ST(0)
966///
Chris Lattnera960d952003-01-13 01:01:59 +0000967void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000968 MachineInstr *MI = I;
Chris Lattner749c6f62008-01-07 07:27:27 +0000969 unsigned NumOps = MI->getDesc().getNumOperands();
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000970 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
Chris Lattnerb97046a2004-02-03 07:27:34 +0000971 "Can only handle fst* & ftst instructions!");
Chris Lattnera960d952003-01-13 01:01:59 +0000972
Chris Lattner4a06f352004-02-02 19:23:15 +0000973 // Is this the last use of the source register?
Evan Cheng171d09e2006-11-10 01:28:43 +0000974 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000975 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattnera960d952003-01-13 01:01:59 +0000976
Evan Cheng2b152712006-02-18 02:36:28 +0000977 // FISTP64m is strange because there isn't a non-popping versions.
Chris Lattnera960d952003-01-13 01:01:59 +0000978 // If we have one _and_ we don't want to pop the operand, duplicate the value
979 // on the stack instead of moving it. This ensure that popping the value is
980 // always ok.
Dale Johannesenca8035e2007-09-17 20:15:38 +0000981 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Chris Lattnera960d952003-01-13 01:01:59 +0000982 //
Evan Cheng2b152712006-02-18 02:36:28 +0000983 if (!KillsSrc &&
Dale Johannesene377d4d2007-07-04 21:07:47 +0000984 (MI->getOpcode() == X86::IST_Fp64m32 ||
985 MI->getOpcode() == X86::ISTT_Fp16m32 ||
986 MI->getOpcode() == X86::ISTT_Fp32m32 ||
987 MI->getOpcode() == X86::ISTT_Fp64m32 ||
988 MI->getOpcode() == X86::IST_Fp64m64 ||
989 MI->getOpcode() == X86::ISTT_Fp16m64 ||
990 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesen59a58732007-08-05 18:49:15 +0000991 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen41de4362007-09-20 01:27:54 +0000992 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesena996d522007-08-07 01:17:37 +0000993 MI->getOpcode() == X86::ISTT_Fp16m80 ||
994 MI->getOpcode() == X86::ISTT_Fp32m80 ||
995 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesen59a58732007-08-05 18:49:15 +0000996 MI->getOpcode() == X86::ST_FpP80m)) {
Chris Lattnera960d952003-01-13 01:01:59 +0000997 duplicateToTop(Reg, 7 /*temp register*/, I);
998 } else {
999 moveToTop(Reg, I); // Move to the top of the stack...
1000 }
Chris Lattner58fe4592005-12-21 07:47:04 +00001001
1002 // Convert from the pseudo instruction to the concrete instruction.
Evan Cheng171d09e2006-11-10 01:28:43 +00001003 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +00001004 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001005
Dale Johannesene377d4d2007-07-04 21:07:47 +00001006 if (MI->getOpcode() == X86::IST_FP64m ||
1007 MI->getOpcode() == X86::ISTT_FP16m ||
1008 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesen88835732007-08-06 19:50:32 +00001009 MI->getOpcode() == X86::ISTT_FP64m ||
1010 MI->getOpcode() == X86::ST_FP80m) {
Chris Lattnera960d952003-01-13 01:01:59 +00001011 assert(StackTop > 0 && "Stack empty??");
1012 --StackTop;
1013 } else if (KillsSrc) { // Last use of operand?
1014 popStackAfter(I);
1015 }
1016}
1017
Chris Lattner4a06f352004-02-02 19:23:15 +00001018
Chris Lattner4cf15e72004-04-11 20:21:06 +00001019/// handleOneArgFPRW: Handle instructions that read from the top of stack and
1020/// replace the value with a newly computed value. These instructions may have
1021/// non-fp operands after their FP operands.
1022///
1023/// Examples:
1024/// R1 = fchs R2
1025/// R1 = fadd R2, [mem]
Chris Lattner4a06f352004-02-02 19:23:15 +00001026///
1027void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001028 MachineInstr *MI = I;
Evan Chenga022bdf2008-07-21 20:02:45 +00001029#ifndef NDEBUG
Chris Lattner749c6f62008-01-07 07:27:27 +00001030 unsigned NumOps = MI->getDesc().getNumOperands();
Evan Cheng171d09e2006-11-10 01:28:43 +00001031 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
Evan Chenga022bdf2008-07-21 20:02:45 +00001032#endif
Chris Lattner4a06f352004-02-02 19:23:15 +00001033
1034 // Is this the last use of the source register?
1035 unsigned Reg = getFPReg(MI->getOperand(1));
Evan Cheng6130f662008-03-05 00:59:57 +00001036 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattner4a06f352004-02-02 19:23:15 +00001037
1038 if (KillsSrc) {
1039 // If this is the last use of the source register, just make sure it's on
1040 // the top of the stack.
1041 moveToTop(Reg, I);
1042 assert(StackTop > 0 && "Stack cannot be empty!");
1043 --StackTop;
1044 pushReg(getFPReg(MI->getOperand(0)));
1045 } else {
1046 // If this is not the last use of the source register, _copy_ it to the top
1047 // of the stack.
1048 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1049 }
1050
Chris Lattner58fe4592005-12-21 07:47:04 +00001051 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner4a06f352004-02-02 19:23:15 +00001052 MI->RemoveOperand(1); // Drop the source operand.
1053 MI->RemoveOperand(0); // Drop the destination operand.
Chris Lattner5080f4d2008-01-11 18:10:50 +00001054 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner4a06f352004-02-02 19:23:15 +00001055}
1056
1057
Chris Lattnera960d952003-01-13 01:01:59 +00001058//===----------------------------------------------------------------------===//
1059// Define tables of various ways to map pseudo instructions
1060//
1061
1062// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1063static const TableEntry ForwardST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001064 { X86::ADD_Fp32 , X86::ADD_FST0r },
1065 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001066 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001067 { X86::DIV_Fp32 , X86::DIV_FST0r },
1068 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001069 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001070 { X86::MUL_Fp32 , X86::MUL_FST0r },
1071 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001072 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001073 { X86::SUB_Fp32 , X86::SUB_FST0r },
1074 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001075 { X86::SUB_Fp80 , X86::SUB_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +00001076};
1077
1078// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1079static const TableEntry ReverseST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001080 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1081 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001082 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001083 { X86::DIV_Fp32 , X86::DIVR_FST0r },
1084 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001085 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001086 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1087 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001088 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001089 { X86::SUB_Fp32 , X86::SUBR_FST0r },
1090 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001091 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +00001092};
1093
1094// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1095static const TableEntry ForwardSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001096 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1097 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001098 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001099 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
1100 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001101 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001102 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1103 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001104 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001105 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
1106 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001107 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +00001108};
1109
1110// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1111static const TableEntry ReverseSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001112 { X86::ADD_Fp32 , X86::ADD_FrST0 },
1113 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001114 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001115 { X86::DIV_Fp32 , X86::DIV_FrST0 },
1116 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001117 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001118 { X86::MUL_Fp32 , X86::MUL_FrST0 },
1119 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001120 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001121 { X86::SUB_Fp32 , X86::SUB_FrST0 },
1122 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001123 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +00001124};
1125
1126
1127/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1128/// instructions which need to be simplified and possibly transformed.
1129///
1130/// Result: ST(0) = fsub ST(0), ST(i)
1131/// ST(i) = fsub ST(0), ST(i)
1132/// ST(0) = fsubr ST(0), ST(i)
1133/// ST(i) = fsubr ST(0), ST(i)
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001134///
Chris Lattnera960d952003-01-13 01:01:59 +00001135void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1136 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1137 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001138 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +00001139
Chris Lattner749c6f62008-01-07 07:27:27 +00001140 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001141 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
Chris Lattnera960d952003-01-13 01:01:59 +00001142 unsigned Dest = getFPReg(MI->getOperand(0));
1143 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1144 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +00001145 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1146 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001147 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +00001148
Chris Lattnera960d952003-01-13 01:01:59 +00001149 unsigned TOS = getStackEntry(0);
1150
1151 // One of our operands must be on the top of the stack. If neither is yet, we
1152 // need to move one.
1153 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1154 // We can choose to move either operand to the top of the stack. If one of
1155 // the operands is killed by this instruction, we want that one so that we
1156 // can update right on top of the old version.
1157 if (KillsOp0) {
1158 moveToTop(Op0, I); // Move dead operand to TOS.
1159 TOS = Op0;
1160 } else if (KillsOp1) {
1161 moveToTop(Op1, I);
1162 TOS = Op1;
1163 } else {
1164 // All of the operands are live after this instruction executes, so we
1165 // cannot update on top of any operand. Because of this, we must
1166 // duplicate one of the stack elements to the top. It doesn't matter
1167 // which one we pick.
1168 //
1169 duplicateToTop(Op0, Dest, I);
1170 Op0 = TOS = Dest;
1171 KillsOp0 = true;
1172 }
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001173 } else if (!KillsOp0 && !KillsOp1) {
Chris Lattnera960d952003-01-13 01:01:59 +00001174 // If we DO have one of our operands at the top of the stack, but we don't
1175 // have a dead operand, we must duplicate one of the operands to a new slot
1176 // on the stack.
1177 duplicateToTop(Op0, Dest, I);
1178 Op0 = TOS = Dest;
1179 KillsOp0 = true;
1180 }
1181
1182 // Now we know that one of our operands is on the top of the stack, and at
1183 // least one of our operands is killed by this instruction.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001184 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1185 "Stack conditions not set up right!");
Chris Lattnera960d952003-01-13 01:01:59 +00001186
1187 // We decide which form to use based on what is on the top of the stack, and
1188 // which operand is killed by this instruction.
1189 const TableEntry *InstTable;
1190 bool isForward = TOS == Op0;
1191 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1192 if (updateST0) {
1193 if (isForward)
1194 InstTable = ForwardST0Table;
1195 else
1196 InstTable = ReverseST0Table;
1197 } else {
1198 if (isForward)
1199 InstTable = ForwardSTiTable;
1200 else
1201 InstTable = ReverseSTiTable;
1202 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001203
Owen Anderson718cb662007-09-07 04:06:50 +00001204 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1205 MI->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +00001206 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1207
1208 // NotTOS - The register which is not on the top of stack...
1209 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1210
1211 // Replace the old instruction with a new instruction
Chris Lattnerc1bab322004-03-31 22:02:36 +00001212 MBB->remove(I++);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001213 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
Chris Lattnera960d952003-01-13 01:01:59 +00001214
1215 // If both operands are killed, pop one off of the stack in addition to
1216 // overwriting the other one.
1217 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1218 assert(!updateST0 && "Should have updated other operand!");
1219 popStackAfter(I); // Pop the top of stack
1220 }
1221
Chris Lattnera960d952003-01-13 01:01:59 +00001222 // Update stack information so that we know the destination register is now on
1223 // the stack.
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001224 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1225 assert(UpdatedSlot < StackTop && Dest < 7);
1226 Stack[UpdatedSlot] = Dest;
1227 RegMap[Dest] = UpdatedSlot;
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001228 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001229}
1230
Chris Lattner0ca2c8e2004-06-11 04:49:02 +00001231/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001232/// register arguments and no explicit destinations.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001233///
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001234void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1235 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1236 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1237 MachineInstr *MI = I;
1238
Chris Lattner749c6f62008-01-07 07:27:27 +00001239 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattner0ca2c8e2004-06-11 04:49:02 +00001240 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001241 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1242 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +00001243 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1244 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001245
1246 // Make sure the first operand is on the top of stack, the other one can be
1247 // anywhere.
1248 moveToTop(Op0, I);
1249
Chris Lattner58fe4592005-12-21 07:47:04 +00001250 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner57790422004-06-11 05:22:44 +00001251 MI->getOperand(0).setReg(getSTReg(Op1));
1252 MI->RemoveOperand(1);
Chris Lattner5080f4d2008-01-11 18:10:50 +00001253 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner57790422004-06-11 05:22:44 +00001254
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001255 // If any of the operands are killed by this instruction, free them.
1256 if (KillsOp0) freeStackSlotAfter(I, Op0);
1257 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
Chris Lattnera960d952003-01-13 01:01:59 +00001258}
1259
Chris Lattnerc1bab322004-03-31 22:02:36 +00001260/// handleCondMovFP - Handle two address conditional move instructions. These
1261/// instructions move a st(i) register to st(0) iff a condition is true. These
1262/// instructions require that the first operand is at the top of the stack, but
1263/// otherwise don't modify the stack at all.
1264void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1265 MachineInstr *MI = I;
1266
1267 unsigned Op0 = getFPReg(MI->getOperand(0));
Chris Lattner6cdb1ea2006-09-05 20:27:32 +00001268 unsigned Op1 = getFPReg(MI->getOperand(2));
Evan Cheng6130f662008-03-05 00:59:57 +00001269 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerc1bab322004-03-31 22:02:36 +00001270
1271 // The first operand *must* be on the top of the stack.
1272 moveToTop(Op0, I);
1273
1274 // Change the second operand to the stack register that the operand is in.
Chris Lattner58fe4592005-12-21 07:47:04 +00001275 // Change from the pseudo instruction to the concrete instruction.
Chris Lattnerc1bab322004-03-31 22:02:36 +00001276 MI->RemoveOperand(0);
Chris Lattner6cdb1ea2006-09-05 20:27:32 +00001277 MI->RemoveOperand(1);
Chris Lattnerc1bab322004-03-31 22:02:36 +00001278 MI->getOperand(0).setReg(getSTReg(Op1));
Chris Lattner5080f4d2008-01-11 18:10:50 +00001279 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +00001280
Chris Lattnerc1bab322004-03-31 22:02:36 +00001281 // If we kill the second operand, make sure to pop it from the stack.
Evan Chengddd2a452006-11-15 20:56:39 +00001282 if (Op0 != Op1 && KillsOp1) {
Chris Lattner76eb08b2005-08-23 22:49:55 +00001283 // Get this value off of the register stack.
1284 freeStackSlotAfter(I, Op1);
1285 }
Chris Lattnerc1bab322004-03-31 22:02:36 +00001286}
1287
Chris Lattnera960d952003-01-13 01:01:59 +00001288
1289/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001290/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnera960d952003-01-13 01:01:59 +00001291/// instructions.
1292///
1293void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001294 MachineInstr *MI = I;
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001295 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +00001296 switch (MI->getOpcode()) {
Torok Edwinc23197a2009-07-14 16:55:14 +00001297 default: llvm_unreachable("Unknown SpecialFP instruction!");
Chris Lattner6fa2f9c2008-03-09 07:05:32 +00001298 case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
1299 case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
1300 case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
Chris Lattnera960d952003-01-13 01:01:59 +00001301 assert(StackTop == 0 && "Stack should be empty after a call!");
1302 pushReg(getFPReg(MI->getOperand(0)));
1303 break;
Chris Lattner24e0a542008-03-21 06:38:26 +00001304 case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
1305 case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
1306 case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
1307 // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
1308 // The pattern we expect is:
1309 // CALL
1310 // FP1 = FpGET_ST0
1311 // FP4 = FpGET_ST1
1312 //
1313 // At this point, we've pushed FP1 on the top of stack, so it should be
1314 // present if it isn't dead. If it was dead, we already emitted a pop to
1315 // remove it from the stack and StackTop = 0.
1316
1317 // Push FP4 as top of stack next.
1318 pushReg(getFPReg(MI->getOperand(0)));
1319
1320 // If StackTop was 0 before we pushed our operand, then ST(0) must have been
1321 // dead. In this case, the ST(1) value is the only thing that is live, so
1322 // it should be on the TOS (after the pop that was emitted) and is. Just
1323 // continue in this case.
1324 if (StackTop == 1)
1325 break;
1326
1327 // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
1328 // elements so that our accounting is correct.
1329 unsigned RegOnTop = getStackEntry(0);
1330 unsigned RegNo = getStackEntry(1);
1331
1332 // Swap the slots the regs are in.
1333 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
1334
1335 // Swap stack slot contents.
1336 assert(RegMap[RegOnTop] < StackTop);
1337 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
1338 break;
1339 }
Chris Lattnerafb23f42008-03-09 07:08:44 +00001340 case X86::FpSET_ST0_32:
1341 case X86::FpSET_ST0_64:
Rafael Espindolaf55715c2009-06-30 12:18:16 +00001342 case X86::FpSET_ST0_80: {
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001343 // FpSET_ST0_80 is generated by copyRegToReg for setting up inline asm
1344 // arguments that use an st constraint. We expect a sequence of
1345 // instructions: Fp_SET_ST0 Fp_SET_ST1? INLINEASM
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001346 unsigned Op0 = getFPReg(MI->getOperand(0));
1347
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001348 if (!MI->killsRegister(X86::FP0 + Op0)) {
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001349 // Duplicate Op0 into a temporary on the stack top.
1350 // This actually assumes that FP7 is dead.
1351 duplicateToTop(Op0, 7, I);
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001352 } else {
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001353 // Op0 is killed, so just swap it into position.
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001354 moveToTop(Op0, I);
Rafael Espindola1c3329f2009-06-21 12:02:51 +00001355 }
Evan Chenga0eedac2009-02-09 23:32:07 +00001356 --StackTop; // "Forget" we have something on the top of stack!
1357 break;
Rafael Espindolaf55715c2009-06-30 12:18:16 +00001358 }
Evan Chenga0eedac2009-02-09 23:32:07 +00001359 case X86::FpSET_ST1_32:
1360 case X86::FpSET_ST1_64:
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001361 case X86::FpSET_ST1_80: {
1362 // Set up st(1) for inline asm. We are assuming that st(0) has already been
1363 // set up by FpSET_ST0, and our StackTop is off by one because of it.
1364 unsigned Op0 = getFPReg(MI->getOperand(0));
1365 // Restore the actual StackTop from before Fp_SET_ST0.
1366 // Note we can't handle Fp_SET_ST1 without a preceeding Fp_SET_ST0, and we
1367 // are not enforcing the constraint.
1368 ++StackTop;
1369 unsigned RegOnTop = getStackEntry(0); // This reg must remain in st(0).
1370 if (!MI->killsRegister(X86::FP0 + Op0)) {
1371 // Assume FP6 is not live, use it as a scratch register.
1372 duplicateToTop(Op0, 6, I);
1373 moveToTop(RegOnTop, I);
1374 } else if (getSTReg(Op0) != X86::ST1) {
1375 // We have the wrong value at st(1). Shuffle! Untested!
1376 moveToTop(getStackEntry(1), I);
1377 moveToTop(Op0, I);
1378 moveToTop(RegOnTop, I);
Evan Chenga0eedac2009-02-09 23:32:07 +00001379 }
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001380 assert(StackTop >= 2 && "Too few live registers");
1381 StackTop -= 2; // "Forget" both st(0) and st(1).
Chris Lattnera960d952003-01-13 01:01:59 +00001382 break;
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001383 }
Dale Johannesene377d4d2007-07-04 21:07:47 +00001384 case X86::MOV_Fp3232:
1385 case X86::MOV_Fp3264:
1386 case X86::MOV_Fp6432:
Dale Johannesen59a58732007-08-05 18:49:15 +00001387 case X86::MOV_Fp6464:
1388 case X86::MOV_Fp3280:
1389 case X86::MOV_Fp6480:
1390 case X86::MOV_Fp8032:
1391 case X86::MOV_Fp8064:
1392 case X86::MOV_Fp8080: {
Evan Chengfb112882009-03-23 08:01:15 +00001393 const MachineOperand &MO1 = MI->getOperand(1);
1394 unsigned SrcReg = getFPReg(MO1);
Chris Lattnera960d952003-01-13 01:01:59 +00001395
Evan Chengfb112882009-03-23 08:01:15 +00001396 const MachineOperand &MO0 = MI->getOperand(0);
Evan Chengfb112882009-03-23 08:01:15 +00001397 unsigned DestReg = getFPReg(MO0);
Evan Cheng6130f662008-03-05 00:59:57 +00001398 if (MI->killsRegister(X86::FP0+SrcReg)) {
Chris Lattnera960d952003-01-13 01:01:59 +00001399 // If the input operand is killed, we can just change the owner of the
1400 // incoming stack slot into the result.
1401 unsigned Slot = getSlot(SrcReg);
1402 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1403 Stack[Slot] = DestReg;
1404 RegMap[DestReg] = Slot;
1405
1406 } else {
1407 // For FMOV we just duplicate the specified value to a new stack slot.
1408 // This could be made better, but would require substantial changes.
1409 duplicateToTop(SrcReg, DestReg, I);
1410 }
Nick Lewycky3c786972008-03-11 05:56:09 +00001411 }
Chris Lattnera960d952003-01-13 01:01:59 +00001412 break;
Chris Lattner518bb532010-02-09 19:54:29 +00001413 case TargetOpcode::INLINEASM: {
Chris Lattnere12ecf22008-03-11 19:50:13 +00001414 // The inline asm MachineInstr currently only *uses* FP registers for the
1415 // 'f' constraint. These should be turned into the current ST(x) register
1416 // in the machine instr. Also, any kills should be explicitly popped after
1417 // the inline asm.
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001418 unsigned Kills = 0;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001419 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1420 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001421 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattnere12ecf22008-03-11 19:50:13 +00001422 continue;
1423 assert(Op.isUse() && "Only handle inline asm uses right now");
1424
1425 unsigned FPReg = getFPReg(Op);
1426 Op.setReg(getSTReg(FPReg));
1427
1428 // If we kill this operand, make sure to pop it from the stack after the
1429 // asm. We just remember it for now, and pop them all off at the end in
1430 // a batch.
1431 if (Op.isKill())
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001432 Kills |= 1U << FPReg;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001433 }
1434
1435 // If this asm kills any FP registers (is the last use of them) we must
1436 // explicitly emit pop instructions for them. Do this now after the asm has
1437 // executed so that the ST(x) numbers are not off (which would happen if we
1438 // did this inline with operand rewriting).
1439 //
1440 // Note: this might be a non-optimal pop sequence. We might be able to do
1441 // better by trying to pop in stack order or something.
1442 MachineBasicBlock::iterator InsertPt = MI;
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001443 while (Kills) {
1444 unsigned FPReg = CountTrailingZeros_32(Kills);
1445 freeStackSlotAfter(InsertPt, FPReg);
1446 Kills &= ~(1U << FPReg);
1447 }
Chris Lattnere12ecf22008-03-11 19:50:13 +00001448 // Don't delete the inline asm!
1449 return;
1450 }
1451
Chris Lattner447ff682008-03-11 03:23:40 +00001452 case X86::RET:
1453 case X86::RETI:
1454 // If RET has an FP register use operand, pass the first one in ST(0) and
1455 // the second one in ST(1).
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001456
Chris Lattner447ff682008-03-11 03:23:40 +00001457 // Find the register operands.
1458 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001459 unsigned LiveMask = 0;
1460
Chris Lattner447ff682008-03-11 03:23:40 +00001461 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1462 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001463 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattner447ff682008-03-11 03:23:40 +00001464 continue;
Chris Lattner35831d02008-03-21 20:41:27 +00001465 // FP Register uses must be kills unless there are two uses of the same
1466 // register, in which case only one will be a kill.
1467 assert(Op.isUse() &&
1468 (Op.isKill() || // Marked kill.
1469 getFPReg(Op) == FirstFPRegOp || // Second instance.
1470 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1471 "Ret only defs operands, and values aren't live beyond it");
Chris Lattner447ff682008-03-11 03:23:40 +00001472
1473 if (FirstFPRegOp == ~0U)
1474 FirstFPRegOp = getFPReg(Op);
1475 else {
1476 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1477 SecondFPRegOp = getFPReg(Op);
1478 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001479 LiveMask |= (1 << getFPReg(Op));
Chris Lattner447ff682008-03-11 03:23:40 +00001480
1481 // Remove the operand so that later passes don't see it.
1482 MI->RemoveOperand(i);
1483 --i, --e;
1484 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001485
1486 // We may have been carrying spurious live-ins, so make sure only the returned
1487 // registers are left live.
1488 adjustLiveRegs(LiveMask, MI);
1489 if (!LiveMask) return; // Quick check to see if any are possible.
1490
Chris Lattner447ff682008-03-11 03:23:40 +00001491 // There are only four possibilities here:
1492 // 1) we are returning a single FP value. In this case, it has to be in
1493 // ST(0) already, so just declare success by removing the value from the
1494 // FP Stack.
1495 if (SecondFPRegOp == ~0U) {
1496 // Assert that the top of stack contains the right FP register.
1497 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1498 "Top of stack not the right register for RET!");
1499
1500 // Ok, everything is good, mark the value as not being on the stack
1501 // anymore so that our assertion about the stack being empty at end of
1502 // block doesn't fire.
1503 StackTop = 0;
1504 return;
1505 }
1506
Chris Lattner447ff682008-03-11 03:23:40 +00001507 // Otherwise, we are returning two values:
1508 // 2) If returning the same value for both, we only have one thing in the FP
1509 // stack. Consider: RET FP1, FP1
1510 if (StackTop == 1) {
1511 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1512 "Stack misconfiguration for RET!");
1513
1514 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1515 // register to hold it.
1516 unsigned NewReg = (FirstFPRegOp+1)%7;
1517 duplicateToTop(FirstFPRegOp, NewReg, MI);
1518 FirstFPRegOp = NewReg;
1519 }
1520
1521 /// Okay we know we have two different FPx operands now:
1522 assert(StackTop == 2 && "Must have two values live!");
1523
1524 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1525 /// in ST(1). In this case, emit an fxch.
1526 if (getStackEntry(0) == SecondFPRegOp) {
1527 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1528 moveToTop(FirstFPRegOp, MI);
1529 }
1530
1531 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1532 /// ST(1). Just remove both from our understanding of the stack and return.
1533 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
Chris Lattner03535262008-03-21 05:57:20 +00001534 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
Chris Lattner447ff682008-03-11 03:23:40 +00001535 StackTop = 0;
1536 return;
Chris Lattnera960d952003-01-13 01:01:59 +00001537 }
Chris Lattnera960d952003-01-13 01:01:59 +00001538
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001539 I = MBB->erase(I); // Remove the pseudo instruction
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001540
1541 // We want to leave I pointing to the previous instruction, but what if we
1542 // just erased the first instruction?
1543 if (I == MBB->begin()) {
1544 DEBUG(dbgs() << "Inserting dummy KILL\n");
1545 I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
1546 } else
1547 --I;
Chris Lattnera960d952003-01-13 01:01:59 +00001548}
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +00001549
1550// Translate a COPY instruction to a pseudo-op that handleSpecialFP understands.
1551bool FPS::translateCopy(MachineInstr *MI) {
1552 unsigned DstReg = MI->getOperand(0).getReg();
1553 unsigned SrcReg = MI->getOperand(1).getReg();
1554
1555 if (DstReg == X86::ST0) {
1556 MI->setDesc(TII->get(X86::FpSET_ST0_80));
1557 MI->RemoveOperand(0);
1558 return true;
1559 }
1560 if (DstReg == X86::ST1) {
1561 MI->setDesc(TII->get(X86::FpSET_ST1_80));
1562 MI->RemoveOperand(0);
1563 return true;
1564 }
1565 if (SrcReg == X86::ST0) {
1566 MI->setDesc(TII->get(X86::FpGET_ST0_80));
1567 return true;
1568 }
1569 if (SrcReg == X86::ST1) {
1570 MI->setDesc(TII->get(X86::FpGET_ST1_80));
1571 return true;
1572 }
1573 if (X86::RFP80RegClass.contains(DstReg, SrcReg)) {
1574 MI->setDesc(TII->get(X86::MOV_Fp8080));
1575 return true;
1576 }
1577 return false;
1578}