blob: 7e7fc756d104ddbeb85db8161f63d85f1e7f6be5 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Dan Gohman844731a2008-05-13 00:00:25 +0000106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000108char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000117
Chris Lattner53e677a2004-04-02 20:23:17 +0000118SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000119
Chris Lattner53e677a2004-04-02 20:23:17 +0000120void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000121 print(dbgs());
122 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000123}
124
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
Dan Gohman70a1fe72009-05-18 15:22:39 +0000131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
Dan Gohman4d289bf2009-06-24 00:30:26 +0000137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
Owen Anderson753ad612009-06-22 21:57:23 +0000143SCEVCouldNotCompute::SCEVCouldNotCompute() :
Evan Cheng1d451df2010-06-09 18:59:43 +0000144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000145
Chris Lattner53e677a2004-04-02 20:23:17 +0000146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000148 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000149}
150
151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000158 return false;
159}
160
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000164}
165
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
Dan Gohman0bba49c2009-07-07 17:06:11 +0000174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Evan Cheng1d451df2010-06-09 18:59:43 +0000180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000181 UniqueSCEVs.InsertNode(S, IP);
182 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Dan Gohman0bba49c2009-07-07 17:06:11 +0000185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000186 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000187}
188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000193}
194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000196
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000197void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198 WriteAsOperand(OS, V, false);
199}
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Evan Cheng1d451df2010-06-09 18:59:43 +0000201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000202 unsigned SCEVTy, const SCEV *op, const Type *ty)
Evan Cheng1d451df2010-06-09 18:59:43 +0000203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000204
Dan Gohman84923602009-04-21 01:25:57 +0000205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206 return Op->dominates(BB, DT);
207}
208
Dan Gohman6e70e312009-09-27 15:26:03 +0000209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->properlyDominates(BB, DT);
211}
212
Evan Cheng1d451df2010-06-09 18:59:43 +0000213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000214 const SCEV *op, const Type *ty)
Evan Cheng1d451df2010-06-09 18:59:43 +0000215 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219}
Chris Lattner53e677a2004-04-02 20:23:17 +0000220
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
224
Evan Cheng1d451df2010-06-09 18:59:43 +0000225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000226 const SCEV *op, const Type *ty)
Evan Cheng1d451df2010-06-09 18:59:43 +0000227 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231}
232
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Evan Cheng1d451df2010-06-09 18:59:43 +0000237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000238 const SCEV *op, const Type *ty)
Evan Cheng1d451df2010-06-09 18:59:43 +0000239 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000242 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000243}
244
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000250 const char *OpStr = getOperationStr();
Dan Gohmana5145c82010-04-16 15:03:25 +0000251 OS << "(";
252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253 OS << **I;
254 if (next(I) != E)
255 OS << OpStr;
256 }
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000257 OS << ")";
258}
259
Dan Gohmanecb403a2009-05-07 14:00:19 +0000260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000261 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
262 if (!getOperand(i)->dominates(BB, DT))
263 return false;
264 }
265 return true;
266}
267
Dan Gohman6e70e312009-09-27 15:26:03 +0000268bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
269 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
270 if (!getOperand(i)->properlyDominates(BB, DT))
271 return false;
272 }
273 return true;
274}
275
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000276bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
277 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
278}
279
Dan Gohman6e70e312009-09-27 15:26:03 +0000280bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
281 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
282}
283
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000284void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000285 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000286}
287
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000288const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000289 // In most cases the types of LHS and RHS will be the same, but in some
290 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
291 // depend on the type for correctness, but handling types carefully can
292 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
293 // a pointer type than the RHS, so use the RHS' type here.
294 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000295}
296
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000297bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000298 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000299 if (!QueryLoop)
300 return false;
301
302 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000303 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000304 return false;
305
306 // This recurrence is variant w.r.t. QueryLoop if any of its operands
307 // are variant.
308 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
309 if (!getOperand(i)->isLoopInvariant(QueryLoop))
310 return false;
311
312 // Otherwise it's loop-invariant.
313 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000314}
315
Dan Gohman39125d82010-02-13 00:19:39 +0000316bool
317SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
318 return DT->dominates(L->getHeader(), BB) &&
319 SCEVNAryExpr::dominates(BB, DT);
320}
321
322bool
323SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
324 // This uses a "dominates" query instead of "properly dominates" query because
325 // the instruction which produces the addrec's value is a PHI, and a PHI
326 // effectively properly dominates its entire containing block.
327 return DT->dominates(L->getHeader(), BB) &&
328 SCEVNAryExpr::properlyDominates(BB, DT);
329}
330
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000331void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000332 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000333 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000334 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000335 OS << "}<";
336 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
337 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000338}
Chris Lattner53e677a2004-04-02 20:23:17 +0000339
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000340bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
341 // All non-instruction values are loop invariant. All instructions are loop
342 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000343 // Instructions are never considered invariant in the function body
344 // (null loop) because they are defined within the "loop".
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman92329c72009-12-18 01:24:09 +0000346 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000347 return true;
348}
Chris Lattner53e677a2004-04-02 20:23:17 +0000349
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000350bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
351 if (Instruction *I = dyn_cast<Instruction>(getValue()))
352 return DT->dominates(I->getParent(), BB);
353 return true;
354}
355
Dan Gohman6e70e312009-09-27 15:26:03 +0000356bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
357 if (Instruction *I = dyn_cast<Instruction>(getValue()))
358 return DT->properlyDominates(I->getParent(), BB);
359 return true;
360}
361
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000362const Type *SCEVUnknown::getType() const {
363 return V->getType();
364}
Chris Lattner53e677a2004-04-02 20:23:17 +0000365
Dan Gohman0f5efe52010-01-28 02:15:55 +0000366bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
367 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
368 if (VCE->getOpcode() == Instruction::PtrToInt)
369 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000370 if (CE->getOpcode() == Instruction::GetElementPtr &&
371 CE->getOperand(0)->isNullValue() &&
372 CE->getNumOperands() == 2)
373 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
374 if (CI->isOne()) {
375 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
376 ->getElementType();
377 return true;
378 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000379
380 return false;
381}
382
383bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
384 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
385 if (VCE->getOpcode() == Instruction::PtrToInt)
386 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000387 if (CE->getOpcode() == Instruction::GetElementPtr &&
388 CE->getOperand(0)->isNullValue()) {
389 const Type *Ty =
390 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
391 if (const StructType *STy = dyn_cast<StructType>(Ty))
392 if (!STy->isPacked() &&
393 CE->getNumOperands() == 3 &&
394 CE->getOperand(1)->isNullValue()) {
395 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
396 if (CI->isOne() &&
397 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000398 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000399 AllocTy = STy->getElementType(1);
400 return true;
401 }
402 }
403 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000404
405 return false;
406}
407
Dan Gohman4f8eea82010-02-01 18:27:38 +0000408bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
409 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
410 if (VCE->getOpcode() == Instruction::PtrToInt)
411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
412 if (CE->getOpcode() == Instruction::GetElementPtr &&
413 CE->getNumOperands() == 3 &&
414 CE->getOperand(0)->isNullValue() &&
415 CE->getOperand(1)->isNullValue()) {
416 const Type *Ty =
417 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
418 // Ignore vector types here so that ScalarEvolutionExpander doesn't
419 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000420 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000421 CTy = Ty;
422 FieldNo = CE->getOperand(2);
423 return true;
424 }
425 }
426
427 return false;
428}
429
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000430void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000431 const Type *AllocTy;
432 if (isSizeOf(AllocTy)) {
433 OS << "sizeof(" << *AllocTy << ")";
434 return;
435 }
436 if (isAlignOf(AllocTy)) {
437 OS << "alignof(" << *AllocTy << ")";
438 return;
439 }
440
Dan Gohman4f8eea82010-02-01 18:27:38 +0000441 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000442 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000443 if (isOffsetOf(CTy, FieldNo)) {
444 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000445 WriteAsOperand(OS, FieldNo, false);
446 OS << ")";
447 return;
448 }
449
450 // Otherwise just print it normally.
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000451 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000452}
453
Chris Lattner8d741b82004-06-20 06:23:15 +0000454//===----------------------------------------------------------------------===//
455// SCEV Utilities
456//===----------------------------------------------------------------------===//
457
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000458static bool CompareTypes(const Type *A, const Type *B) {
459 if (A->getTypeID() != B->getTypeID())
460 return A->getTypeID() < B->getTypeID();
461 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
462 const IntegerType *BI = cast<IntegerType>(B);
463 return AI->getBitWidth() < BI->getBitWidth();
464 }
465 if (const PointerType *AI = dyn_cast<PointerType>(A)) {
466 const PointerType *BI = cast<PointerType>(B);
467 return CompareTypes(AI->getElementType(), BI->getElementType());
468 }
469 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
470 const ArrayType *BI = cast<ArrayType>(B);
471 if (AI->getNumElements() != BI->getNumElements())
472 return AI->getNumElements() < BI->getNumElements();
473 return CompareTypes(AI->getElementType(), BI->getElementType());
474 }
475 if (const VectorType *AI = dyn_cast<VectorType>(A)) {
476 const VectorType *BI = cast<VectorType>(B);
477 if (AI->getNumElements() != BI->getNumElements())
478 return AI->getNumElements() < BI->getNumElements();
479 return CompareTypes(AI->getElementType(), BI->getElementType());
480 }
481 if (const StructType *AI = dyn_cast<StructType>(A)) {
482 const StructType *BI = cast<StructType>(B);
483 if (AI->getNumElements() != BI->getNumElements())
484 return AI->getNumElements() < BI->getNumElements();
485 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
486 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
487 CompareTypes(BI->getElementType(i), AI->getElementType(i)))
488 return CompareTypes(AI->getElementType(i), BI->getElementType(i));
489 }
490 return false;
491}
492
Chris Lattner8d741b82004-06-20 06:23:15 +0000493namespace {
494 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
495 /// than the complexity of the RHS. This comparator is used to canonicalize
496 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000497 class SCEVComplexityCompare {
Dan Gohman72861302009-05-07 14:39:04 +0000498 LoopInfo *LI;
499 public:
500 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
501
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000502 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000503 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
504 if (LHS == RHS)
505 return false;
506
Dan Gohman72861302009-05-07 14:39:04 +0000507 // Primarily, sort the SCEVs by their getSCEVType().
Evan Cheng1d451df2010-06-09 18:59:43 +0000508 if (LHS->getSCEVType() != RHS->getSCEVType())
509 return LHS->getSCEVType() < RHS->getSCEVType();
Dan Gohman72861302009-05-07 14:39:04 +0000510
Evan Cheng1d451df2010-06-09 18:59:43 +0000511 // Aside from the getSCEVType() ordering, the particular ordering
512 // isn't very important except that it's beneficial to be consistent,
513 // so that (a + b) and (b + a) don't end up as different expressions.
514
515 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
516 // not as complete as it could be.
517 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
518 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
519
520 // Order pointer values after integer values. This helps SCEVExpander
521 // form GEPs.
522 if (LU->getType()->isPointerTy() && !RU->getType()->isPointerTy())
523 return false;
524 if (RU->getType()->isPointerTy() && !LU->getType()->isPointerTy())
525 return true;
526
527 // Compare getValueID values.
528 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
529 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
530
531 // Sort arguments by their position.
532 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
533 const Argument *RA = cast<Argument>(RU->getValue());
534 return LA->getArgNo() < RA->getArgNo();
535 }
536
537 // For instructions, compare their loop depth, and their opcode.
538 // This is pretty loose.
539 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
540 Instruction *RV = cast<Instruction>(RU->getValue());
541
542 // Compare loop depths.
543 if (LI->getLoopDepth(LV->getParent()) !=
544 LI->getLoopDepth(RV->getParent()))
545 return LI->getLoopDepth(LV->getParent()) <
546 LI->getLoopDepth(RV->getParent());
547
548 // Compare opcodes.
549 if (LV->getOpcode() != RV->getOpcode())
550 return LV->getOpcode() < RV->getOpcode();
551
552 // Compare the number of operands.
553 if (LV->getNumOperands() != RV->getNumOperands())
554 return LV->getNumOperands() < RV->getNumOperands();
555 }
556
557 return false;
558 }
559
560 // Compare constant values.
561 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
562 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
563 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
564 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
565 return LC->getValue()->getValue().ult(RC->getValue()->getValue());
566 }
567
568 // Compare addrec loop depths.
569 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
570 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
571 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
572 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
573 }
574
575 // Lexicographically compare n-ary expressions.
576 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
578 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
579 if (i >= RC->getNumOperands())
580 return false;
581 if (operator()(LC->getOperand(i), RC->getOperand(i)))
582 return true;
583 if (operator()(RC->getOperand(i), LC->getOperand(i)))
584 return false;
585 }
586 return LC->getNumOperands() < RC->getNumOperands();
587 }
588
589 // Lexicographically compare udiv expressions.
590 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
591 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
592 if (operator()(LC->getLHS(), RC->getLHS()))
593 return true;
594 if (operator()(RC->getLHS(), LC->getLHS()))
595 return false;
596 if (operator()(LC->getRHS(), RC->getRHS()))
597 return true;
598 if (operator()(RC->getRHS(), LC->getRHS()))
599 return false;
600 return false;
601 }
602
603 // Compare cast expressions by operand.
604 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
605 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
606 return operator()(LC->getOperand(), RC->getOperand());
607 }
608
609 llvm_unreachable("Unknown SCEV kind!");
610 return false;
Chris Lattner8d741b82004-06-20 06:23:15 +0000611 }
612 };
613}
614
615/// GroupByComplexity - Given a list of SCEV objects, order them by their
616/// complexity, and group objects of the same complexity together by value.
617/// When this routine is finished, we know that any duplicates in the vector are
618/// consecutive and that complexity is monotonically increasing.
619///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000620/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000621/// results from this routine. In other words, we don't want the results of
622/// this to depend on where the addresses of various SCEV objects happened to
623/// land in memory.
624///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000625static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000626 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000627 if (Ops.size() < 2) return; // Noop
628 if (Ops.size() == 2) {
629 // This is the common case, which also happens to be trivially simple.
630 // Special case it.
Evan Cheng1d451df2010-06-09 18:59:43 +0000631 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000632 std::swap(Ops[0], Ops[1]);
633 return;
634 }
635
Evan Cheng1d451df2010-06-09 18:59:43 +0000636 // Do the rough sort by complexity.
637 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
638
639 // Now that we are sorted by complexity, group elements of the same
640 // complexity. Note that this is, at worst, N^2, but the vector is likely to
641 // be extremely short in practice. Note that we take this approach because we
642 // do not want to depend on the addresses of the objects we are grouping.
643 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
644 const SCEV *S = Ops[i];
645 unsigned Complexity = S->getSCEVType();
646
647 // If there are any objects of the same complexity and same value as this
648 // one, group them.
649 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
650 if (Ops[j] == S) { // Found a duplicate.
651 // Move it to immediately after i'th element.
652 std::swap(Ops[i+1], Ops[j]);
653 ++i; // no need to rescan it.
654 if (i == e-2) return; // Done!
655 }
656 }
657 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000658}
659
Chris Lattner53e677a2004-04-02 20:23:17 +0000660
Chris Lattner53e677a2004-04-02 20:23:17 +0000661
662//===----------------------------------------------------------------------===//
663// Simple SCEV method implementations
664//===----------------------------------------------------------------------===//
665
Eli Friedmanb42a6262008-08-04 23:49:06 +0000666/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000667/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000668static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000669 ScalarEvolution &SE,
670 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000671 // Handle the simplest case efficiently.
672 if (K == 1)
673 return SE.getTruncateOrZeroExtend(It, ResultTy);
674
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000675 // We are using the following formula for BC(It, K):
676 //
677 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
678 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000679 // Suppose, W is the bitwidth of the return value. We must be prepared for
680 // overflow. Hence, we must assure that the result of our computation is
681 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
682 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000683 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000684 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000685 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000686 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
687 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000688 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000689 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000690 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000691 // This formula is trivially equivalent to the previous formula. However,
692 // this formula can be implemented much more efficiently. The trick is that
693 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
694 // arithmetic. To do exact division in modular arithmetic, all we have
695 // to do is multiply by the inverse. Therefore, this step can be done at
696 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000697 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000698 // The next issue is how to safely do the division by 2^T. The way this
699 // is done is by doing the multiplication step at a width of at least W + T
700 // bits. This way, the bottom W+T bits of the product are accurate. Then,
701 // when we perform the division by 2^T (which is equivalent to a right shift
702 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
703 // truncated out after the division by 2^T.
704 //
705 // In comparison to just directly using the first formula, this technique
706 // is much more efficient; using the first formula requires W * K bits,
707 // but this formula less than W + K bits. Also, the first formula requires
708 // a division step, whereas this formula only requires multiplies and shifts.
709 //
710 // It doesn't matter whether the subtraction step is done in the calculation
711 // width or the input iteration count's width; if the subtraction overflows,
712 // the result must be zero anyway. We prefer here to do it in the width of
713 // the induction variable because it helps a lot for certain cases; CodeGen
714 // isn't smart enough to ignore the overflow, which leads to much less
715 // efficient code if the width of the subtraction is wider than the native
716 // register width.
717 //
718 // (It's possible to not widen at all by pulling out factors of 2 before
719 // the multiplication; for example, K=2 can be calculated as
720 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
721 // extra arithmetic, so it's not an obvious win, and it gets
722 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000723
Eli Friedmanb42a6262008-08-04 23:49:06 +0000724 // Protection from insane SCEVs; this bound is conservative,
725 // but it probably doesn't matter.
726 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000727 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000728
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000729 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000730
Eli Friedmanb42a6262008-08-04 23:49:06 +0000731 // Calculate K! / 2^T and T; we divide out the factors of two before
732 // multiplying for calculating K! / 2^T to avoid overflow.
733 // Other overflow doesn't matter because we only care about the bottom
734 // W bits of the result.
735 APInt OddFactorial(W, 1);
736 unsigned T = 1;
737 for (unsigned i = 3; i <= K; ++i) {
738 APInt Mult(W, i);
739 unsigned TwoFactors = Mult.countTrailingZeros();
740 T += TwoFactors;
741 Mult = Mult.lshr(TwoFactors);
742 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000743 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000744
Eli Friedmanb42a6262008-08-04 23:49:06 +0000745 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000746 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000748 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000749 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
750
751 // Calculate the multiplicative inverse of K! / 2^T;
752 // this multiplication factor will perform the exact division by
753 // K! / 2^T.
754 APInt Mod = APInt::getSignedMinValue(W+1);
755 APInt MultiplyFactor = OddFactorial.zext(W+1);
756 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
757 MultiplyFactor = MultiplyFactor.trunc(W);
758
759 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000760 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
761 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000762 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000763 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000764 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000765 Dividend = SE.getMulExpr(Dividend,
766 SE.getTruncateOrZeroExtend(S, CalculationTy));
767 }
768
769 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000770 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000771
772 // Truncate the result, and divide by K! / 2^T.
773
774 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
775 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000776}
777
Chris Lattner53e677a2004-04-02 20:23:17 +0000778/// evaluateAtIteration - Return the value of this chain of recurrences at
779/// the specified iteration number. We can evaluate this recurrence by
780/// multiplying each element in the chain by the binomial coefficient
781/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
782///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000783/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000784///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000785/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000786///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000787const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000788 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000789 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000790 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000791 // The computation is correct in the face of overflow provided that the
792 // multiplication is performed _after_ the evaluation of the binomial
793 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000794 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000795 if (isa<SCEVCouldNotCompute>(Coeff))
796 return Coeff;
797
798 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000799 }
800 return Result;
801}
802
Chris Lattner53e677a2004-04-02 20:23:17 +0000803//===----------------------------------------------------------------------===//
804// SCEV Expression folder implementations
805//===----------------------------------------------------------------------===//
806
Dan Gohman0bba49c2009-07-07 17:06:11 +0000807const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000808 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000809 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000810 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000811 assert(isSCEVable(Ty) &&
812 "This is not a conversion to a SCEVable type!");
813 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000814
Dan Gohmanc050fd92009-07-13 20:50:19 +0000815 FoldingSetNodeID ID;
816 ID.AddInteger(scTruncate);
817 ID.AddPointer(Op);
818 ID.AddPointer(Ty);
819 void *IP = 0;
820 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
821
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000822 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000823 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000824 return getConstant(
825 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000826
Dan Gohman20900ca2009-04-22 16:20:48 +0000827 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000828 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000829 return getTruncateExpr(ST->getOperand(), Ty);
830
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000831 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000832 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000833 return getTruncateOrSignExtend(SS->getOperand(), Ty);
834
835 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000836 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000837 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
838
Dan Gohman6864db62009-06-18 16:24:47 +0000839 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000840 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000841 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000842 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000843 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
844 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000845 }
846
Dan Gohmanc050fd92009-07-13 20:50:19 +0000847 // The cast wasn't folded; create an explicit cast node.
848 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000849 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000850 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
851 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000852 UniqueSCEVs.InsertNode(S, IP);
853 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000854}
855
Dan Gohman0bba49c2009-07-07 17:06:11 +0000856const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000857 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000858 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000859 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000860 assert(isSCEVable(Ty) &&
861 "This is not a conversion to a SCEVable type!");
862 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000863
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000864 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000865 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000866 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000867 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
868 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000869 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +0000870 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000871
Dan Gohman20900ca2009-04-22 16:20:48 +0000872 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000873 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000874 return getZeroExtendExpr(SZ->getOperand(), Ty);
875
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000876 // Before doing any expensive analysis, check to see if we've already
877 // computed a SCEV for this Op and Ty.
878 FoldingSetNodeID ID;
879 ID.AddInteger(scZeroExtend);
880 ID.AddPointer(Op);
881 ID.AddPointer(Ty);
882 void *IP = 0;
883 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
884
Dan Gohman01ecca22009-04-27 20:16:15 +0000885 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000886 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000887 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000888 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000889 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000890 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000891 const SCEV *Start = AR->getStart();
892 const SCEV *Step = AR->getStepRecurrence(*this);
893 unsigned BitWidth = getTypeSizeInBits(AR->getType());
894 const Loop *L = AR->getLoop();
895
Dan Gohmaneb490a72009-07-25 01:22:26 +0000896 // If we have special knowledge that this addrec won't overflow,
897 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000898 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000899 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
900 getZeroExtendExpr(Step, Ty),
901 L);
902
Dan Gohman01ecca22009-04-27 20:16:15 +0000903 // Check whether the backedge-taken count is SCEVCouldNotCompute.
904 // Note that this serves two purposes: It filters out loops that are
905 // simply not analyzable, and it covers the case where this code is
906 // being called from within backedge-taken count analysis, such that
907 // attempting to ask for the backedge-taken count would likely result
908 // in infinite recursion. In the later case, the analysis code will
909 // cope with a conservative value, and it will take care to purge
910 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000911 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000912 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000913 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000914 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000915
916 // Check whether the backedge-taken count can be losslessly casted to
917 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000918 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000919 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000920 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000921 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
922 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000923 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000924 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000925 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000926 const SCEV *Add = getAddExpr(Start, ZMul);
927 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000928 getAddExpr(getZeroExtendExpr(Start, WideTy),
929 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
930 getZeroExtendExpr(Step, WideTy)));
931 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000932 // Return the expression with the addrec on the outside.
933 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
934 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000935 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000936
937 // Similar to above, only this time treat the step value as signed.
938 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000939 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000940 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000941 OperandExtendedAdd =
942 getAddExpr(getZeroExtendExpr(Start, WideTy),
943 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
944 getSignExtendExpr(Step, WideTy)));
945 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000946 // Return the expression with the addrec on the outside.
947 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
948 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000949 L);
950 }
951
952 // If the backedge is guarded by a comparison with the pre-inc value
953 // the addrec is safe. Also, if the entry is guarded by a comparison
954 // with the start value and the backedge is guarded by a comparison
955 // with the post-inc value, the addrec is safe.
956 if (isKnownPositive(Step)) {
957 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
958 getUnsignedRange(Step).getUnsignedMax());
959 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000960 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000961 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
962 AR->getPostIncExpr(*this), N)))
963 // Return the expression with the addrec on the outside.
964 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
965 getZeroExtendExpr(Step, Ty),
966 L);
967 } else if (isKnownNegative(Step)) {
968 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
969 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +0000970 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
971 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000972 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
973 AR->getPostIncExpr(*this), N)))
974 // Return the expression with the addrec on the outside.
975 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
976 getSignExtendExpr(Step, Ty),
977 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000978 }
979 }
980 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000981
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000982 // The cast wasn't folded; create an explicit cast node.
983 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000984 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000985 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
986 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000987 UniqueSCEVs.InsertNode(S, IP);
988 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000989}
990
Dan Gohman0bba49c2009-07-07 17:06:11 +0000991const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000992 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000993 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000994 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000995 assert(isSCEVable(Ty) &&
996 "This is not a conversion to a SCEVable type!");
997 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000998
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000999 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00001000 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001001 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00001002 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
1003 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +00001004 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +00001005 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001006
Dan Gohman20900ca2009-04-22 16:20:48 +00001007 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001008 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001009 return getSignExtendExpr(SS->getOperand(), Ty);
1010
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001011 // Before doing any expensive analysis, check to see if we've already
1012 // computed a SCEV for this Op and Ty.
1013 FoldingSetNodeID ID;
1014 ID.AddInteger(scSignExtend);
1015 ID.AddPointer(Op);
1016 ID.AddPointer(Ty);
1017 void *IP = 0;
1018 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1019
Dan Gohman01ecca22009-04-27 20:16:15 +00001020 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001021 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001022 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001023 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001024 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001025 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001026 const SCEV *Start = AR->getStart();
1027 const SCEV *Step = AR->getStepRecurrence(*this);
1028 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1029 const Loop *L = AR->getLoop();
1030
Dan Gohmaneb490a72009-07-25 01:22:26 +00001031 // If we have special knowledge that this addrec won't overflow,
1032 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001033 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001034 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1035 getSignExtendExpr(Step, Ty),
1036 L);
1037
Dan Gohman01ecca22009-04-27 20:16:15 +00001038 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1039 // Note that this serves two purposes: It filters out loops that are
1040 // simply not analyzable, and it covers the case where this code is
1041 // being called from within backedge-taken count analysis, such that
1042 // attempting to ask for the backedge-taken count would likely result
1043 // in infinite recursion. In the later case, the analysis code will
1044 // cope with a conservative value, and it will take care to purge
1045 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001046 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001047 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001048 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001049 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001050
1051 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001052 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001053 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001054 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001055 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001056 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1057 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001058 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001059 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001060 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001061 const SCEV *Add = getAddExpr(Start, SMul);
1062 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001063 getAddExpr(getSignExtendExpr(Start, WideTy),
1064 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1065 getSignExtendExpr(Step, WideTy)));
1066 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001067 // Return the expression with the addrec on the outside.
1068 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1069 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001070 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001071
1072 // Similar to above, only this time treat the step value as unsigned.
1073 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001074 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001075 Add = getAddExpr(Start, UMul);
1076 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001077 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001078 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1079 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001080 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001081 // Return the expression with the addrec on the outside.
1082 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1083 getZeroExtendExpr(Step, Ty),
1084 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001085 }
1086
1087 // If the backedge is guarded by a comparison with the pre-inc value
1088 // the addrec is safe. Also, if the entry is guarded by a comparison
1089 // with the start value and the backedge is guarded by a comparison
1090 // with the post-inc value, the addrec is safe.
1091 if (isKnownPositive(Step)) {
1092 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1093 getSignedRange(Step).getSignedMax());
1094 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001095 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001096 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1097 AR->getPostIncExpr(*this), N)))
1098 // Return the expression with the addrec on the outside.
1099 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1100 getSignExtendExpr(Step, Ty),
1101 L);
1102 } else if (isKnownNegative(Step)) {
1103 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1104 getSignedRange(Step).getSignedMin());
1105 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001106 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001107 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1108 AR->getPostIncExpr(*this), N)))
1109 // Return the expression with the addrec on the outside.
1110 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1111 getSignExtendExpr(Step, Ty),
1112 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001113 }
1114 }
1115 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001116
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001117 // The cast wasn't folded; create an explicit cast node.
1118 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001119 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001120 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1121 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001122 UniqueSCEVs.InsertNode(S, IP);
1123 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001124}
1125
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001126/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1127/// unspecified bits out to the given type.
1128///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001129const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001130 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001131 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1132 "This is not an extending conversion!");
1133 assert(isSCEVable(Ty) &&
1134 "This is not a conversion to a SCEVable type!");
1135 Ty = getEffectiveSCEVType(Ty);
1136
1137 // Sign-extend negative constants.
1138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1139 if (SC->getValue()->getValue().isNegative())
1140 return getSignExtendExpr(Op, Ty);
1141
1142 // Peel off a truncate cast.
1143 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001144 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001145 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1146 return getAnyExtendExpr(NewOp, Ty);
1147 return getTruncateOrNoop(NewOp, Ty);
1148 }
1149
1150 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001151 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001152 if (!isa<SCEVZeroExtendExpr>(ZExt))
1153 return ZExt;
1154
1155 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001156 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001157 if (!isa<SCEVSignExtendExpr>(SExt))
1158 return SExt;
1159
Dan Gohmana10756e2010-01-21 02:09:26 +00001160 // Force the cast to be folded into the operands of an addrec.
1161 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1162 SmallVector<const SCEV *, 4> Ops;
1163 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1164 I != E; ++I)
1165 Ops.push_back(getAnyExtendExpr(*I, Ty));
1166 return getAddRecExpr(Ops, AR->getLoop());
1167 }
1168
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001169 // If the expression is obviously signed, use the sext cast value.
1170 if (isa<SCEVSMaxExpr>(Op))
1171 return SExt;
1172
1173 // Absent any other information, use the zext cast value.
1174 return ZExt;
1175}
1176
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001177/// CollectAddOperandsWithScales - Process the given Ops list, which is
1178/// a list of operands to be added under the given scale, update the given
1179/// map. This is a helper function for getAddRecExpr. As an example of
1180/// what it does, given a sequence of operands that would form an add
1181/// expression like this:
1182///
1183/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1184///
1185/// where A and B are constants, update the map with these values:
1186///
1187/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1188///
1189/// and add 13 + A*B*29 to AccumulatedConstant.
1190/// This will allow getAddRecExpr to produce this:
1191///
1192/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1193///
1194/// This form often exposes folding opportunities that are hidden in
1195/// the original operand list.
1196///
1197/// Return true iff it appears that any interesting folding opportunities
1198/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1199/// the common case where no interesting opportunities are present, and
1200/// is also used as a check to avoid infinite recursion.
1201///
1202static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001203CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1204 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001205 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001206 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001207 const APInt &Scale,
1208 ScalarEvolution &SE) {
1209 bool Interesting = false;
1210
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001211 // Iterate over the add operands. They are sorted, with constants first.
1212 unsigned i = 0;
1213 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1214 ++i;
1215 // Pull a buried constant out to the outside.
1216 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1217 Interesting = true;
1218 AccumulatedConstant += Scale * C->getValue()->getValue();
1219 }
1220
1221 // Next comes everything else. We're especially interested in multiplies
1222 // here, but they're in the middle, so just visit the rest with one loop.
1223 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001224 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1225 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1226 APInt NewScale =
1227 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1228 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1229 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001230 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001231 Interesting |=
1232 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001233 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001234 NewScale, SE);
1235 } else {
1236 // A multiplication of a constant with some other value. Update
1237 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001238 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1239 const SCEV *Key = SE.getMulExpr(MulOps);
1240 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001241 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001242 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001243 NewOps.push_back(Pair.first->first);
1244 } else {
1245 Pair.first->second += NewScale;
1246 // The map already had an entry for this value, which may indicate
1247 // a folding opportunity.
1248 Interesting = true;
1249 }
1250 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001251 } else {
1252 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001253 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001254 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001255 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001256 NewOps.push_back(Pair.first->first);
1257 } else {
1258 Pair.first->second += Scale;
1259 // The map already had an entry for this value, which may indicate
1260 // a folding opportunity.
1261 Interesting = true;
1262 }
1263 }
1264 }
1265
1266 return Interesting;
1267}
1268
1269namespace {
1270 struct APIntCompare {
1271 bool operator()(const APInt &LHS, const APInt &RHS) const {
1272 return LHS.ult(RHS);
1273 }
1274 };
1275}
1276
Dan Gohman6c0866c2009-05-24 23:45:28 +00001277/// getAddExpr - Get a canonical add expression, or something simpler if
1278/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001279const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1280 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001281 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001282 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001283#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001284 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001285 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001286 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001287 "SCEVAddExpr operand types don't match!");
1288#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001289
Dan Gohmana10756e2010-01-21 02:09:26 +00001290 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1291 if (!HasNUW && HasNSW) {
1292 bool All = true;
1293 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1294 if (!isKnownNonNegative(Ops[i])) {
1295 All = false;
1296 break;
1297 }
1298 if (All) HasNUW = true;
1299 }
1300
Chris Lattner53e677a2004-04-02 20:23:17 +00001301 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001302 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001303
1304 // If there are any constants, fold them together.
1305 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001306 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001307 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001308 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001309 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001310 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001311 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1312 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001313 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001314 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001315 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001316 }
1317
1318 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001319 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001320 Ops.erase(Ops.begin());
1321 --Idx;
1322 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001323
Dan Gohmanbca091d2010-04-12 23:08:18 +00001324 if (Ops.size() == 1) return Ops[0];
1325 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001326
Chris Lattner53e677a2004-04-02 20:23:17 +00001327 // Okay, check to see if the same value occurs in the operand list twice. If
1328 // so, merge them together into an multiply expression. Since we sorted the
1329 // list, these values are required to be adjacent.
1330 const Type *Ty = Ops[0]->getType();
1331 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1332 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1333 // Found a match, merge the two values into a multiply, and add any
1334 // remaining values to the result.
Dan Gohmandeff6212010-05-03 22:09:21 +00001335 const SCEV *Two = getConstant(Ty, 2);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001336 const SCEV *Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +00001337 if (Ops.size() == 2)
1338 return Mul;
1339 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1340 Ops.push_back(Mul);
Dan Gohman3645b012009-10-09 00:10:36 +00001341 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001342 }
1343
Dan Gohman728c7f32009-05-08 21:03:19 +00001344 // Check for truncates. If all the operands are truncated from the same
1345 // type, see if factoring out the truncate would permit the result to be
1346 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1347 // if the contents of the resulting outer trunc fold to something simple.
1348 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1349 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1350 const Type *DstType = Trunc->getType();
1351 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001352 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001353 bool Ok = true;
1354 // Check all the operands to see if they can be represented in the
1355 // source type of the truncate.
1356 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1357 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1358 if (T->getOperand()->getType() != SrcType) {
1359 Ok = false;
1360 break;
1361 }
1362 LargeOps.push_back(T->getOperand());
1363 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001364 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001365 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001366 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001367 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1368 if (const SCEVTruncateExpr *T =
1369 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1370 if (T->getOperand()->getType() != SrcType) {
1371 Ok = false;
1372 break;
1373 }
1374 LargeMulOps.push_back(T->getOperand());
1375 } else if (const SCEVConstant *C =
1376 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001377 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001378 } else {
1379 Ok = false;
1380 break;
1381 }
1382 }
1383 if (Ok)
1384 LargeOps.push_back(getMulExpr(LargeMulOps));
1385 } else {
1386 Ok = false;
1387 break;
1388 }
1389 }
1390 if (Ok) {
1391 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001392 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001393 // If it folds to something simple, use it. Otherwise, don't.
1394 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1395 return getTruncateExpr(Fold, DstType);
1396 }
1397 }
1398
1399 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001400 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1401 ++Idx;
1402
1403 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001404 if (Idx < Ops.size()) {
1405 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001406 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001407 // If we have an add, expand the add operands onto the end of the operands
1408 // list.
1409 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1410 Ops.erase(Ops.begin()+Idx);
1411 DeletedAdd = true;
1412 }
1413
1414 // If we deleted at least one add, we added operands to the end of the list,
1415 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001416 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001417 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001418 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001419 }
1420
1421 // Skip over the add expression until we get to a multiply.
1422 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1423 ++Idx;
1424
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001425 // Check to see if there are any folding opportunities present with
1426 // operands multiplied by constant values.
1427 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1428 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001429 DenseMap<const SCEV *, APInt> M;
1430 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001431 APInt AccumulatedConstant(BitWidth, 0);
1432 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001433 Ops.data(), Ops.size(),
1434 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001435 // Some interesting folding opportunity is present, so its worthwhile to
1436 // re-generate the operands list. Group the operands by constant scale,
1437 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001438 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1439 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001440 E = NewOps.end(); I != E; ++I)
1441 MulOpLists[M.find(*I)->second].push_back(*I);
1442 // Re-generate the operands list.
1443 Ops.clear();
1444 if (AccumulatedConstant != 0)
1445 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001446 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1447 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001448 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001449 Ops.push_back(getMulExpr(getConstant(I->first),
1450 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001451 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001452 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001453 if (Ops.size() == 1)
1454 return Ops[0];
1455 return getAddExpr(Ops);
1456 }
1457 }
1458
Chris Lattner53e677a2004-04-02 20:23:17 +00001459 // If we are adding something to a multiply expression, make sure the
1460 // something is not already an operand of the multiply. If so, merge it into
1461 // the multiply.
1462 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001463 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001464 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001465 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Chris Lattner53e677a2004-04-02 20:23:17 +00001466 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohmana82752c2009-06-14 22:47:23 +00001467 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001468 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001469 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001470 if (Mul->getNumOperands() != 2) {
1471 // If the multiply has more than two operands, we must get the
1472 // Y*Z term.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001473 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001474 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001475 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001476 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001477 const SCEV *One = getConstant(Ty, 1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001478 const SCEV *AddOne = getAddExpr(InnerMul, One);
1479 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001480 if (Ops.size() == 2) return OuterMul;
1481 if (AddOp < Idx) {
1482 Ops.erase(Ops.begin()+AddOp);
1483 Ops.erase(Ops.begin()+Idx-1);
1484 } else {
1485 Ops.erase(Ops.begin()+Idx);
1486 Ops.erase(Ops.begin()+AddOp-1);
1487 }
1488 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001489 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001490 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001491
Chris Lattner53e677a2004-04-02 20:23:17 +00001492 // Check this multiply against other multiplies being added together.
1493 for (unsigned OtherMulIdx = Idx+1;
1494 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1495 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001496 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001497 // If MulOp occurs in OtherMul, we can fold the two multiplies
1498 // together.
1499 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1500 OMulOp != e; ++OMulOp)
1501 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1502 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001503 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001504 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001505 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1506 Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001507 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001508 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001509 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001510 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001511 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001512 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1513 OtherMul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001514 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001515 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001516 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001517 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1518 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001519 if (Ops.size() == 2) return OuterMul;
1520 Ops.erase(Ops.begin()+Idx);
1521 Ops.erase(Ops.begin()+OtherMulIdx-1);
1522 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001523 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001524 }
1525 }
1526 }
1527 }
1528
1529 // If there are any add recurrences in the operands list, see if any other
1530 // added values are loop invariant. If so, we can fold them into the
1531 // recurrence.
1532 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1533 ++Idx;
1534
1535 // Scan over all recurrences, trying to fold loop invariants into them.
1536 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1537 // Scan all of the other operands to this add and add them to the vector if
1538 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001539 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001540 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001541 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001542 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanbca091d2010-04-12 23:08:18 +00001543 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001544 LIOps.push_back(Ops[i]);
1545 Ops.erase(Ops.begin()+i);
1546 --i; --e;
1547 }
1548
1549 // If we found some loop invariants, fold them into the recurrence.
1550 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001551 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001552 LIOps.push_back(AddRec->getStart());
1553
Dan Gohman0bba49c2009-07-07 17:06:11 +00001554 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001555 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001556 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001557
Dan Gohman355b4f32009-12-19 01:46:34 +00001558 // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition
Dan Gohman59de33e2009-12-18 18:45:31 +00001559 // is not associative so this isn't necessarily safe.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001560 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop);
Dan Gohman59de33e2009-12-18 18:45:31 +00001561
Chris Lattner53e677a2004-04-02 20:23:17 +00001562 // If all of the other operands were loop invariant, we are done.
1563 if (Ops.size() == 1) return NewRec;
1564
1565 // Otherwise, add the folded AddRec by the non-liv parts.
1566 for (unsigned i = 0;; ++i)
1567 if (Ops[i] == AddRec) {
1568 Ops[i] = NewRec;
1569 break;
1570 }
Dan Gohman246b2562007-10-22 18:31:58 +00001571 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001572 }
1573
1574 // Okay, if there weren't any loop invariants to be folded, check to see if
1575 // there are multiple AddRec's with the same loop induction variable being
1576 // added together. If so, we can fold them.
1577 for (unsigned OtherIdx = Idx+1;
1578 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1579 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001580 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001581 if (AddRecLoop == OtherAddRec->getLoop()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001582 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman64a845e2009-06-24 04:48:43 +00001583 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1584 AddRec->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001585 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1586 if (i >= NewOps.size()) {
1587 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1588 OtherAddRec->op_end());
1589 break;
1590 }
Dan Gohman246b2562007-10-22 18:31:58 +00001591 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +00001592 }
Dan Gohmanbca091d2010-04-12 23:08:18 +00001593 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop);
Chris Lattner53e677a2004-04-02 20:23:17 +00001594
1595 if (Ops.size() == 2) return NewAddRec;
1596
1597 Ops.erase(Ops.begin()+Idx);
1598 Ops.erase(Ops.begin()+OtherIdx-1);
1599 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001600 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001601 }
1602 }
1603
1604 // Otherwise couldn't fold anything into this recurrence. Move onto the
1605 // next one.
1606 }
1607
1608 // Okay, it looks like we really DO need an add expr. Check to see if we
1609 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001610 FoldingSetNodeID ID;
1611 ID.AddInteger(scAddExpr);
1612 ID.AddInteger(Ops.size());
1613 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1614 ID.AddPointer(Ops[i]);
1615 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001616 SCEVAddExpr *S =
1617 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1618 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001619 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1620 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001621 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1622 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001623 UniqueSCEVs.InsertNode(S, IP);
1624 }
Dan Gohman3645b012009-10-09 00:10:36 +00001625 if (HasNUW) S->setHasNoUnsignedWrap(true);
1626 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001627 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001628}
1629
Dan Gohman6c0866c2009-05-24 23:45:28 +00001630/// getMulExpr - Get a canonical multiply expression, or something simpler if
1631/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001632const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1633 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001634 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001635 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001636#ifndef NDEBUG
1637 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1638 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1639 getEffectiveSCEVType(Ops[0]->getType()) &&
1640 "SCEVMulExpr operand types don't match!");
1641#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001642
Dan Gohmana10756e2010-01-21 02:09:26 +00001643 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1644 if (!HasNUW && HasNSW) {
1645 bool All = true;
1646 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1647 if (!isKnownNonNegative(Ops[i])) {
1648 All = false;
1649 break;
1650 }
1651 if (All) HasNUW = true;
1652 }
1653
Chris Lattner53e677a2004-04-02 20:23:17 +00001654 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001655 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001656
1657 // If there are any constants, fold them together.
1658 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001659 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001660
1661 // C1*(C2+V) -> C1*C2 + C1*V
1662 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001663 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001664 if (Add->getNumOperands() == 2 &&
1665 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001666 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1667 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001668
Chris Lattner53e677a2004-04-02 20:23:17 +00001669 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001670 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001671 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001672 ConstantInt *Fold = ConstantInt::get(getContext(),
1673 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001674 RHSC->getValue()->getValue());
1675 Ops[0] = getConstant(Fold);
1676 Ops.erase(Ops.begin()+1); // Erase the folded element
1677 if (Ops.size() == 1) return Ops[0];
1678 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001679 }
1680
1681 // If we are left with a constant one being multiplied, strip it off.
1682 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1683 Ops.erase(Ops.begin());
1684 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001685 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001686 // If we have a multiply of zero, it will always be zero.
1687 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001688 } else if (Ops[0]->isAllOnesValue()) {
1689 // If we have a mul by -1 of an add, try distributing the -1 among the
1690 // add operands.
1691 if (Ops.size() == 2)
1692 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1693 SmallVector<const SCEV *, 4> NewOps;
1694 bool AnyFolded = false;
1695 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1696 I != E; ++I) {
1697 const SCEV *Mul = getMulExpr(Ops[0], *I);
1698 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1699 NewOps.push_back(Mul);
1700 }
1701 if (AnyFolded)
1702 return getAddExpr(NewOps);
1703 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001704 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001705
1706 if (Ops.size() == 1)
1707 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001708 }
1709
1710 // Skip over the add expression until we get to a multiply.
1711 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1712 ++Idx;
1713
Chris Lattner53e677a2004-04-02 20:23:17 +00001714 // If there are mul operands inline them all into this expression.
1715 if (Idx < Ops.size()) {
1716 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001717 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001718 // If we have an mul, expand the mul operands onto the end of the operands
1719 // list.
1720 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1721 Ops.erase(Ops.begin()+Idx);
1722 DeletedMul = true;
1723 }
1724
1725 // If we deleted at least one mul, we added operands to the end of the list,
1726 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001727 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001728 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001729 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001730 }
1731
1732 // If there are any add recurrences in the operands list, see if any other
1733 // added values are loop invariant. If so, we can fold them into the
1734 // recurrence.
1735 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1736 ++Idx;
1737
1738 // Scan over all recurrences, trying to fold loop invariants into them.
1739 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1740 // Scan all of the other operands to this mul and add them to the vector if
1741 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001742 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001743 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001744 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1745 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1746 LIOps.push_back(Ops[i]);
1747 Ops.erase(Ops.begin()+i);
1748 --i; --e;
1749 }
1750
1751 // If we found some loop invariants, fold them into the recurrence.
1752 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001753 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001754 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001755 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001756 const SCEV *Scale = getMulExpr(LIOps);
1757 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1758 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001759
Dan Gohman355b4f32009-12-19 01:46:34 +00001760 // It's tempting to propagate the NSW flag here, but nsw multiplication
Dan Gohman59de33e2009-12-18 18:45:31 +00001761 // is not associative so this isn't necessarily safe.
Dan Gohmana10756e2010-01-21 02:09:26 +00001762 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1763 HasNUW && AddRec->hasNoUnsignedWrap(),
1764 /*HasNSW=*/false);
Chris Lattner53e677a2004-04-02 20:23:17 +00001765
1766 // If all of the other operands were loop invariant, we are done.
1767 if (Ops.size() == 1) return NewRec;
1768
1769 // Otherwise, multiply the folded AddRec by the non-liv parts.
1770 for (unsigned i = 0;; ++i)
1771 if (Ops[i] == AddRec) {
1772 Ops[i] = NewRec;
1773 break;
1774 }
Dan Gohman246b2562007-10-22 18:31:58 +00001775 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001776 }
1777
1778 // Okay, if there weren't any loop invariants to be folded, check to see if
1779 // there are multiple AddRec's with the same loop induction variable being
1780 // multiplied together. If so, we can fold them.
1781 for (unsigned OtherIdx = Idx+1;
1782 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1783 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001784 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001785 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1786 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001787 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman0bba49c2009-07-07 17:06:11 +00001788 const SCEV *NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001789 G->getStart());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001790 const SCEV *B = F->getStepRecurrence(*this);
1791 const SCEV *D = G->getStepRecurrence(*this);
1792 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman246b2562007-10-22 18:31:58 +00001793 getMulExpr(G, B),
1794 getMulExpr(B, D));
Dan Gohman0bba49c2009-07-07 17:06:11 +00001795 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman246b2562007-10-22 18:31:58 +00001796 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001797 if (Ops.size() == 2) return NewAddRec;
1798
1799 Ops.erase(Ops.begin()+Idx);
1800 Ops.erase(Ops.begin()+OtherIdx-1);
1801 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001802 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001803 }
1804 }
1805
1806 // Otherwise couldn't fold anything into this recurrence. Move onto the
1807 // next one.
1808 }
1809
1810 // Okay, it looks like we really DO need an mul expr. Check to see if we
1811 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001812 FoldingSetNodeID ID;
1813 ID.AddInteger(scMulExpr);
1814 ID.AddInteger(Ops.size());
1815 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1816 ID.AddPointer(Ops[i]);
1817 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001818 SCEVMulExpr *S =
1819 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1820 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001821 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1822 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001823 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1824 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001825 UniqueSCEVs.InsertNode(S, IP);
1826 }
Dan Gohman3645b012009-10-09 00:10:36 +00001827 if (HasNUW) S->setHasNoUnsignedWrap(true);
1828 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001829 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001830}
1831
Andreas Bolka8a11c982009-08-07 22:55:26 +00001832/// getUDivExpr - Get a canonical unsigned division expression, or something
1833/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001834const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1835 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001836 assert(getEffectiveSCEVType(LHS->getType()) ==
1837 getEffectiveSCEVType(RHS->getType()) &&
1838 "SCEVUDivExpr operand types don't match!");
1839
Dan Gohman622ed672009-05-04 22:02:23 +00001840 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001841 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001842 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001843 // If the denominator is zero, the result of the udiv is undefined. Don't
1844 // try to analyze it, because the resolution chosen here may differ from
1845 // the resolution chosen in other parts of the compiler.
1846 if (!RHSC->getValue()->isZero()) {
1847 // Determine if the division can be folded into the operands of
1848 // its operands.
1849 // TODO: Generalize this to non-constants by using known-bits information.
1850 const Type *Ty = LHS->getType();
1851 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1852 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1853 // For non-power-of-two values, effectively round the value up to the
1854 // nearest power of two.
1855 if (!RHSC->getValue()->getValue().isPowerOf2())
1856 ++MaxShiftAmt;
1857 const IntegerType *ExtTy =
1858 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1859 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1860 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1861 if (const SCEVConstant *Step =
1862 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1863 if (!Step->getValue()->getValue()
1864 .urem(RHSC->getValue()->getValue()) &&
1865 getZeroExtendExpr(AR, ExtTy) ==
1866 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1867 getZeroExtendExpr(Step, ExtTy),
1868 AR->getLoop())) {
1869 SmallVector<const SCEV *, 4> Operands;
1870 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1871 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1872 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001873 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001874 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1875 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1876 SmallVector<const SCEV *, 4> Operands;
1877 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1878 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1879 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1880 // Find an operand that's safely divisible.
1881 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1882 const SCEV *Op = M->getOperand(i);
1883 const SCEV *Div = getUDivExpr(Op, RHSC);
1884 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1885 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1886 M->op_end());
1887 Operands[i] = Div;
1888 return getMulExpr(Operands);
1889 }
1890 }
Dan Gohman185cf032009-05-08 20:18:49 +00001891 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001892 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1893 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1894 SmallVector<const SCEV *, 4> Operands;
1895 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1896 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1897 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1898 Operands.clear();
1899 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1900 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1901 if (isa<SCEVUDivExpr>(Op) ||
1902 getMulExpr(Op, RHS) != A->getOperand(i))
1903 break;
1904 Operands.push_back(Op);
1905 }
1906 if (Operands.size() == A->getNumOperands())
1907 return getAddExpr(Operands);
1908 }
1909 }
Dan Gohman185cf032009-05-08 20:18:49 +00001910
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001911 // Fold if both operands are constant.
1912 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1913 Constant *LHSCV = LHSC->getValue();
1914 Constant *RHSCV = RHSC->getValue();
1915 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1916 RHSCV)));
1917 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001918 }
1919 }
1920
Dan Gohman1c343752009-06-27 21:21:31 +00001921 FoldingSetNodeID ID;
1922 ID.AddInteger(scUDivExpr);
1923 ID.AddPointer(LHS);
1924 ID.AddPointer(RHS);
1925 void *IP = 0;
1926 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001927 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1928 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001929 UniqueSCEVs.InsertNode(S, IP);
1930 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001931}
1932
1933
Dan Gohman6c0866c2009-05-24 23:45:28 +00001934/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1935/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001936const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001937 const SCEV *Step, const Loop *L,
1938 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001939 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001940 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001941 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001942 if (StepChrec->getLoop() == L) {
1943 Operands.insert(Operands.end(), StepChrec->op_begin(),
1944 StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001945 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001946 }
1947
1948 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001949 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001950}
1951
Dan Gohman6c0866c2009-05-24 23:45:28 +00001952/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1953/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001954const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001955ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00001956 const Loop *L,
1957 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001958 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001959#ifndef NDEBUG
1960 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1961 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1962 getEffectiveSCEVType(Operands[0]->getType()) &&
1963 "SCEVAddRecExpr operand types don't match!");
1964#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001965
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001966 if (Operands.back()->isZero()) {
1967 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00001968 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001969 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001970
Dan Gohmanbc028532010-02-19 18:49:22 +00001971 // It's tempting to want to call getMaxBackedgeTakenCount count here and
1972 // use that information to infer NUW and NSW flags. However, computing a
1973 // BE count requires calling getAddRecExpr, so we may not yet have a
1974 // meaningful BE count at this point (and if we don't, we'd be stuck
1975 // with a SCEVCouldNotCompute as the cached BE count).
1976
Dan Gohmana10756e2010-01-21 02:09:26 +00001977 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1978 if (!HasNUW && HasNSW) {
1979 bool All = true;
1980 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1981 if (!isKnownNonNegative(Operands[i])) {
1982 All = false;
1983 break;
1984 }
1985 if (All) HasNUW = true;
1986 }
1987
Dan Gohmand9cc7492008-08-08 18:33:12 +00001988 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00001989 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00001990 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohmana10756e2010-01-21 02:09:26 +00001991 if (L->contains(NestedLoop->getHeader()) ?
1992 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
1993 (!NestedLoop->contains(L->getHeader()) &&
1994 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001995 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00001996 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00001997 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00001998 // AddRecs require their operands be loop-invariant with respect to their
1999 // loops. Don't perform this transformation if it would break this
2000 // requirement.
2001 bool AllInvariant = true;
2002 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2003 if (!Operands[i]->isLoopInvariant(L)) {
2004 AllInvariant = false;
2005 break;
2006 }
2007 if (AllInvariant) {
2008 NestedOperands[0] = getAddRecExpr(Operands, L);
2009 AllInvariant = true;
2010 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2011 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2012 AllInvariant = false;
2013 break;
2014 }
2015 if (AllInvariant)
2016 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002017 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002018 }
2019 // Reset Operands to its original state.
2020 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002021 }
2022 }
2023
Dan Gohman67847532010-01-19 22:27:22 +00002024 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2025 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002026 FoldingSetNodeID ID;
2027 ID.AddInteger(scAddRecExpr);
2028 ID.AddInteger(Operands.size());
2029 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2030 ID.AddPointer(Operands[i]);
2031 ID.AddPointer(L);
2032 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002033 SCEVAddRecExpr *S =
2034 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2035 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002036 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2037 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002038 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2039 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002040 UniqueSCEVs.InsertNode(S, IP);
2041 }
Dan Gohman3645b012009-10-09 00:10:36 +00002042 if (HasNUW) S->setHasNoUnsignedWrap(true);
2043 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002044 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002045}
2046
Dan Gohman9311ef62009-06-24 14:49:00 +00002047const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2048 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002049 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002050 Ops.push_back(LHS);
2051 Ops.push_back(RHS);
2052 return getSMaxExpr(Ops);
2053}
2054
Dan Gohman0bba49c2009-07-07 17:06:11 +00002055const SCEV *
2056ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002057 assert(!Ops.empty() && "Cannot get empty smax!");
2058 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002059#ifndef NDEBUG
2060 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2061 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2062 getEffectiveSCEVType(Ops[0]->getType()) &&
2063 "SCEVSMaxExpr operand types don't match!");
2064#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002065
2066 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002067 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002068
2069 // If there are any constants, fold them together.
2070 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002071 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002072 ++Idx;
2073 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002074 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002075 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002076 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002077 APIntOps::smax(LHSC->getValue()->getValue(),
2078 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002079 Ops[0] = getConstant(Fold);
2080 Ops.erase(Ops.begin()+1); // Erase the folded element
2081 if (Ops.size() == 1) return Ops[0];
2082 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002083 }
2084
Dan Gohmane5aceed2009-06-24 14:46:22 +00002085 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002086 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2087 Ops.erase(Ops.begin());
2088 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002089 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2090 // If we have an smax with a constant maximum-int, it will always be
2091 // maximum-int.
2092 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002093 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002094
Dan Gohman3ab13122010-04-13 16:49:23 +00002095 if (Ops.size() == 1) return Ops[0];
2096 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002097
2098 // Find the first SMax
2099 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2100 ++Idx;
2101
2102 // Check to see if one of the operands is an SMax. If so, expand its operands
2103 // onto our operand list, and recurse to simplify.
2104 if (Idx < Ops.size()) {
2105 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002106 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002107 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
2108 Ops.erase(Ops.begin()+Idx);
2109 DeletedSMax = true;
2110 }
2111
2112 if (DeletedSMax)
2113 return getSMaxExpr(Ops);
2114 }
2115
2116 // Okay, check to see if the same value occurs in the operand list twice. If
2117 // so, delete one. Since we sorted the list, these values are required to
2118 // be adjacent.
2119 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002120 // X smax Y smax Y --> X smax Y
2121 // X smax Y --> X, if X is always greater than Y
2122 if (Ops[i] == Ops[i+1] ||
2123 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2124 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2125 --i; --e;
2126 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002127 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2128 --i; --e;
2129 }
2130
2131 if (Ops.size() == 1) return Ops[0];
2132
2133 assert(!Ops.empty() && "Reduced smax down to nothing!");
2134
Nick Lewycky3e630762008-02-20 06:48:22 +00002135 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002136 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002137 FoldingSetNodeID ID;
2138 ID.AddInteger(scSMaxExpr);
2139 ID.AddInteger(Ops.size());
2140 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2141 ID.AddPointer(Ops[i]);
2142 void *IP = 0;
2143 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002144 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2145 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002146 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2147 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002148 UniqueSCEVs.InsertNode(S, IP);
2149 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002150}
2151
Dan Gohman9311ef62009-06-24 14:49:00 +00002152const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2153 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002154 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002155 Ops.push_back(LHS);
2156 Ops.push_back(RHS);
2157 return getUMaxExpr(Ops);
2158}
2159
Dan Gohman0bba49c2009-07-07 17:06:11 +00002160const SCEV *
2161ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002162 assert(!Ops.empty() && "Cannot get empty umax!");
2163 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002164#ifndef NDEBUG
2165 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2166 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2167 getEffectiveSCEVType(Ops[0]->getType()) &&
2168 "SCEVUMaxExpr operand types don't match!");
2169#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002170
2171 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002172 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002173
2174 // If there are any constants, fold them together.
2175 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002176 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002177 ++Idx;
2178 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002179 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002180 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002181 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002182 APIntOps::umax(LHSC->getValue()->getValue(),
2183 RHSC->getValue()->getValue()));
2184 Ops[0] = getConstant(Fold);
2185 Ops.erase(Ops.begin()+1); // Erase the folded element
2186 if (Ops.size() == 1) return Ops[0];
2187 LHSC = cast<SCEVConstant>(Ops[0]);
2188 }
2189
Dan Gohmane5aceed2009-06-24 14:46:22 +00002190 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002191 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2192 Ops.erase(Ops.begin());
2193 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002194 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2195 // If we have an umax with a constant maximum-int, it will always be
2196 // maximum-int.
2197 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002198 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002199
Dan Gohman3ab13122010-04-13 16:49:23 +00002200 if (Ops.size() == 1) return Ops[0];
2201 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002202
2203 // Find the first UMax
2204 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2205 ++Idx;
2206
2207 // Check to see if one of the operands is a UMax. If so, expand its operands
2208 // onto our operand list, and recurse to simplify.
2209 if (Idx < Ops.size()) {
2210 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002211 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002212 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2213 Ops.erase(Ops.begin()+Idx);
2214 DeletedUMax = true;
2215 }
2216
2217 if (DeletedUMax)
2218 return getUMaxExpr(Ops);
2219 }
2220
2221 // Okay, check to see if the same value occurs in the operand list twice. If
2222 // so, delete one. Since we sorted the list, these values are required to
2223 // be adjacent.
2224 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002225 // X umax Y umax Y --> X umax Y
2226 // X umax Y --> X, if X is always greater than Y
2227 if (Ops[i] == Ops[i+1] ||
2228 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2229 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2230 --i; --e;
2231 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002232 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2233 --i; --e;
2234 }
2235
2236 if (Ops.size() == 1) return Ops[0];
2237
2238 assert(!Ops.empty() && "Reduced umax down to nothing!");
2239
2240 // Okay, it looks like we really DO need a umax expr. Check to see if we
2241 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002242 FoldingSetNodeID ID;
2243 ID.AddInteger(scUMaxExpr);
2244 ID.AddInteger(Ops.size());
2245 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2246 ID.AddPointer(Ops[i]);
2247 void *IP = 0;
2248 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002249 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2250 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002251 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2252 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002253 UniqueSCEVs.InsertNode(S, IP);
2254 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002255}
2256
Dan Gohman9311ef62009-06-24 14:49:00 +00002257const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2258 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002259 // ~smax(~x, ~y) == smin(x, y).
2260 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2261}
2262
Dan Gohman9311ef62009-06-24 14:49:00 +00002263const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2264 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002265 // ~umax(~x, ~y) == umin(x, y)
2266 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2267}
2268
Dan Gohman4f8eea82010-02-01 18:27:38 +00002269const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002270 // If we have TargetData, we can bypass creating a target-independent
2271 // constant expression and then folding it back into a ConstantInt.
2272 // This is just a compile-time optimization.
2273 if (TD)
2274 return getConstant(TD->getIntPtrType(getContext()),
2275 TD->getTypeAllocSize(AllocTy));
2276
Dan Gohman4f8eea82010-02-01 18:27:38 +00002277 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2278 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002279 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2280 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002281 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2282 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2283}
2284
2285const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2286 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2287 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002288 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2289 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002290 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2291 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2292}
2293
2294const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2295 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002296 // If we have TargetData, we can bypass creating a target-independent
2297 // constant expression and then folding it back into a ConstantInt.
2298 // This is just a compile-time optimization.
2299 if (TD)
2300 return getConstant(TD->getIntPtrType(getContext()),
2301 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2302
Dan Gohman0f5efe52010-01-28 02:15:55 +00002303 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2304 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002305 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2306 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002307 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002308 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002309}
2310
Dan Gohman4f8eea82010-02-01 18:27:38 +00002311const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2312 Constant *FieldNo) {
2313 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002314 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002315 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2316 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002317 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002318 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002319}
2320
Dan Gohman0bba49c2009-07-07 17:06:11 +00002321const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002322 // Don't attempt to do anything other than create a SCEVUnknown object
2323 // here. createSCEV only calls getUnknown after checking for all other
2324 // interesting possibilities, and any other code that calls getUnknown
2325 // is doing so in order to hide a value from SCEV canonicalization.
2326
Dan Gohman1c343752009-06-27 21:21:31 +00002327 FoldingSetNodeID ID;
2328 ID.AddInteger(scUnknown);
2329 ID.AddPointer(V);
2330 void *IP = 0;
2331 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Evan Cheng1d451df2010-06-09 18:59:43 +00002332 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +00002333 UniqueSCEVs.InsertNode(S, IP);
2334 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002335}
2336
Chris Lattner53e677a2004-04-02 20:23:17 +00002337//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002338// Basic SCEV Analysis and PHI Idiom Recognition Code
2339//
2340
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002341/// isSCEVable - Test if values of the given type are analyzable within
2342/// the SCEV framework. This primarily includes integer types, and it
2343/// can optionally include pointer types if the ScalarEvolution class
2344/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002345bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002346 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002347 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002348}
2349
2350/// getTypeSizeInBits - Return the size in bits of the specified type,
2351/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002352uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002353 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2354
2355 // If we have a TargetData, use it!
2356 if (TD)
2357 return TD->getTypeSizeInBits(Ty);
2358
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002359 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002360 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002361 return Ty->getPrimitiveSizeInBits();
2362
2363 // The only other support type is pointer. Without TargetData, conservatively
2364 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002365 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002366 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002367}
2368
2369/// getEffectiveSCEVType - Return a type with the same bitwidth as
2370/// the given type and which represents how SCEV will treat the given
2371/// type, for which isSCEVable must return true. For pointer types,
2372/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002373const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002374 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2375
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002376 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002377 return Ty;
2378
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002379 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002380 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002381 if (TD) return TD->getIntPtrType(getContext());
2382
2383 // Without TargetData, conservatively assume pointers are 64-bit.
2384 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002385}
Chris Lattner53e677a2004-04-02 20:23:17 +00002386
Dan Gohman0bba49c2009-07-07 17:06:11 +00002387const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002388 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002389}
2390
Chris Lattner53e677a2004-04-02 20:23:17 +00002391/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2392/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002393const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002394 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002395
Dan Gohman0bba49c2009-07-07 17:06:11 +00002396 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002397 if (I != Scalars.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002398 const SCEV *S = createSCEV(V);
Dan Gohman35738ac2009-05-04 22:30:44 +00002399 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002400 return S;
2401}
2402
Dan Gohman2d1be872009-04-16 03:18:22 +00002403/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2404///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002405const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002406 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002407 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002408 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002409
2410 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002411 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002412 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002413 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002414}
2415
2416/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002417const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002418 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002419 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002420 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002421
2422 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002423 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002424 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002425 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002426 return getMinusSCEV(AllOnes, V);
2427}
2428
2429/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2430///
Dan Gohman9311ef62009-06-24 14:49:00 +00002431const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2432 const SCEV *RHS) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002433 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002434 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002435}
2436
2437/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2438/// input value to the specified type. If the type must be extended, it is zero
2439/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002440const SCEV *
2441ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002442 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002443 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002444 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2445 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002446 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002447 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002448 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002449 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002450 return getTruncateExpr(V, Ty);
2451 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002452}
2453
2454/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2455/// input value to the specified type. If the type must be extended, it is sign
2456/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002457const SCEV *
2458ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002459 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002460 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002461 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2462 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002463 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002464 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002465 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002466 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002467 return getTruncateExpr(V, Ty);
2468 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002469}
2470
Dan Gohman467c4302009-05-13 03:46:30 +00002471/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2472/// input value to the specified type. If the type must be extended, it is zero
2473/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002474const SCEV *
2475ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002476 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002477 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2478 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002479 "Cannot noop or zero extend with non-integer arguments!");
2480 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2481 "getNoopOrZeroExtend cannot truncate!");
2482 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2483 return V; // No conversion
2484 return getZeroExtendExpr(V, Ty);
2485}
2486
2487/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2488/// input value to the specified type. If the type must be extended, it is sign
2489/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002490const SCEV *
2491ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002492 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002493 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2494 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002495 "Cannot noop or sign extend with non-integer arguments!");
2496 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2497 "getNoopOrSignExtend cannot truncate!");
2498 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2499 return V; // No conversion
2500 return getSignExtendExpr(V, Ty);
2501}
2502
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002503/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2504/// the input value to the specified type. If the type must be extended,
2505/// it is extended with unspecified bits. The conversion must not be
2506/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002507const SCEV *
2508ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002509 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002510 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2511 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002512 "Cannot noop or any extend with non-integer arguments!");
2513 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2514 "getNoopOrAnyExtend cannot truncate!");
2515 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2516 return V; // No conversion
2517 return getAnyExtendExpr(V, Ty);
2518}
2519
Dan Gohman467c4302009-05-13 03:46:30 +00002520/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2521/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002522const SCEV *
2523ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002524 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002525 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2526 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002527 "Cannot truncate or noop with non-integer arguments!");
2528 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2529 "getTruncateOrNoop cannot extend!");
2530 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2531 return V; // No conversion
2532 return getTruncateExpr(V, Ty);
2533}
2534
Dan Gohmana334aa72009-06-22 00:31:57 +00002535/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2536/// the types using zero-extension, and then perform a umax operation
2537/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002538const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2539 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002540 const SCEV *PromotedLHS = LHS;
2541 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002542
2543 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2544 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2545 else
2546 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2547
2548 return getUMaxExpr(PromotedLHS, PromotedRHS);
2549}
2550
Dan Gohmanc9759e82009-06-22 15:03:27 +00002551/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2552/// the types using zero-extension, and then perform a umin operation
2553/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002554const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2555 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002556 const SCEV *PromotedLHS = LHS;
2557 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002558
2559 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2560 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2561 else
2562 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2563
2564 return getUMinExpr(PromotedLHS, PromotedRHS);
2565}
2566
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002567/// PushDefUseChildren - Push users of the given Instruction
2568/// onto the given Worklist.
2569static void
2570PushDefUseChildren(Instruction *I,
2571 SmallVectorImpl<Instruction *> &Worklist) {
2572 // Push the def-use children onto the Worklist stack.
2573 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2574 UI != UE; ++UI)
2575 Worklist.push_back(cast<Instruction>(UI));
2576}
2577
2578/// ForgetSymbolicValue - This looks up computed SCEV values for all
2579/// instructions that depend on the given instruction and removes them from
2580/// the Scalars map if they reference SymName. This is used during PHI
2581/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002582void
Dan Gohman85669632010-02-25 06:57:05 +00002583ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002584 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002585 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002586
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002587 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002588 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002589 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002590 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002591 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002592
Dan Gohman5d984912009-12-18 01:14:11 +00002593 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002594 Scalars.find(static_cast<Value *>(I));
2595 if (It != Scalars.end()) {
2596 // Short-circuit the def-use traversal if the symbolic name
2597 // ceases to appear in expressions.
Dan Gohman50922bb2010-02-15 10:28:37 +00002598 if (It->second != SymName && !It->second->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002599 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002600
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002601 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002602 // structure, it's a PHI that's in the progress of being computed
2603 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2604 // additional loop trip count information isn't going to change anything.
2605 // In the second case, createNodeForPHI will perform the necessary
2606 // updates on its own when it gets to that point. In the third, we do
2607 // want to forget the SCEVUnknown.
2608 if (!isa<PHINode>(I) ||
2609 !isa<SCEVUnknown>(It->second) ||
2610 (I != PN && It->second == SymName)) {
Dan Gohman42214892009-08-31 21:15:23 +00002611 ValuesAtScopes.erase(It->second);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002612 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002613 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002614 }
2615
2616 PushDefUseChildren(I, Worklist);
2617 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002618}
Chris Lattner53e677a2004-04-02 20:23:17 +00002619
2620/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2621/// a loop header, making it a potential recurrence, or it doesn't.
2622///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002623const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002624 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2625 if (L->getHeader() == PN->getParent()) {
2626 // The loop may have multiple entrances or multiple exits; we can analyze
2627 // this phi as an addrec if it has a unique entry value and a unique
2628 // backedge value.
2629 Value *BEValueV = 0, *StartValueV = 0;
2630 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2631 Value *V = PN->getIncomingValue(i);
2632 if (L->contains(PN->getIncomingBlock(i))) {
2633 if (!BEValueV) {
2634 BEValueV = V;
2635 } else if (BEValueV != V) {
2636 BEValueV = 0;
2637 break;
2638 }
2639 } else if (!StartValueV) {
2640 StartValueV = V;
2641 } else if (StartValueV != V) {
2642 StartValueV = 0;
2643 break;
2644 }
2645 }
2646 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002647 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002648 const SCEV *SymbolicName = getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002649 assert(Scalars.find(PN) == Scalars.end() &&
2650 "PHI node already processed?");
Dan Gohman35738ac2009-05-04 22:30:44 +00002651 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002652
2653 // Using this symbolic name for the PHI, analyze the value coming around
2654 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002655 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002656
2657 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2658 // has a special value for the first iteration of the loop.
2659
2660 // If the value coming around the backedge is an add with the symbolic
2661 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002662 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002663 // If there is a single occurrence of the symbolic value, replace it
2664 // with a recurrence.
2665 unsigned FoundIndex = Add->getNumOperands();
2666 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2667 if (Add->getOperand(i) == SymbolicName)
2668 if (FoundIndex == e) {
2669 FoundIndex = i;
2670 break;
2671 }
2672
2673 if (FoundIndex != Add->getNumOperands()) {
2674 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002675 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002676 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2677 if (i != FoundIndex)
2678 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002679 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002680
2681 // This is not a valid addrec if the step amount is varying each
2682 // loop iteration, but is not itself an addrec in this loop.
2683 if (Accum->isLoopInvariant(L) ||
2684 (isa<SCEVAddRecExpr>(Accum) &&
2685 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002686 bool HasNUW = false;
2687 bool HasNSW = false;
2688
2689 // If the increment doesn't overflow, then neither the addrec nor
2690 // the post-increment will overflow.
2691 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2692 if (OBO->hasNoUnsignedWrap())
2693 HasNUW = true;
2694 if (OBO->hasNoSignedWrap())
2695 HasNSW = true;
2696 }
2697
Dan Gohman27dead42010-04-12 07:49:36 +00002698 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002699 const SCEV *PHISCEV =
2700 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002701
Dan Gohmana10756e2010-01-21 02:09:26 +00002702 // Since the no-wrap flags are on the increment, they apply to the
2703 // post-incremented value as well.
2704 if (Accum->isLoopInvariant(L))
2705 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2706 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002707
2708 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002709 // to be symbolic. We now need to go back and purge all of the
2710 // entries for the scalars that use the symbolic expression.
2711 ForgetSymbolicName(PN, SymbolicName);
2712 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002713 return PHISCEV;
2714 }
2715 }
Dan Gohman622ed672009-05-04 22:02:23 +00002716 } else if (const SCEVAddRecExpr *AddRec =
2717 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002718 // Otherwise, this could be a loop like this:
2719 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2720 // In this case, j = {1,+,1} and BEValue is j.
2721 // Because the other in-value of i (0) fits the evolution of BEValue
2722 // i really is an addrec evolution.
2723 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002724 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002725
2726 // If StartVal = j.start - j.stride, we can use StartVal as the
2727 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002728 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002729 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002730 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002731 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002732
2733 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002734 // to be symbolic. We now need to go back and purge all of the
2735 // entries for the scalars that use the symbolic expression.
2736 ForgetSymbolicName(PN, SymbolicName);
2737 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002738 return PHISCEV;
2739 }
2740 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002741 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002742 }
Dan Gohman27dead42010-04-12 07:49:36 +00002743 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002744
Dan Gohman85669632010-02-25 06:57:05 +00002745 // If the PHI has a single incoming value, follow that value, unless the
2746 // PHI's incoming blocks are in a different loop, in which case doing so
2747 // risks breaking LCSSA form. Instcombine would normally zap these, but
2748 // it doesn't have DominatorTree information, so it may miss cases.
2749 if (Value *V = PN->hasConstantValue(DT)) {
2750 bool AllSameLoop = true;
2751 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2752 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2753 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2754 AllSameLoop = false;
2755 break;
2756 }
2757 if (AllSameLoop)
2758 return getSCEV(V);
2759 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002760
Chris Lattner53e677a2004-04-02 20:23:17 +00002761 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002762 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002763}
2764
Dan Gohman26466c02009-05-08 20:26:55 +00002765/// createNodeForGEP - Expand GEP instructions into add and multiply
2766/// operations. This allows them to be analyzed by regular SCEV code.
2767///
Dan Gohmand281ed22009-12-18 02:09:29 +00002768const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002769
Dan Gohmand281ed22009-12-18 02:09:29 +00002770 bool InBounds = GEP->isInBounds();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002771 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002772 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002773 // Don't attempt to analyze GEPs over unsized objects.
2774 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2775 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002776 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002777 gep_type_iterator GTI = gep_type_begin(GEP);
2778 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2779 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002780 I != E; ++I) {
2781 Value *Index = *I;
2782 // Compute the (potentially symbolic) offset in bytes for this index.
2783 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2784 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002785 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002786 TotalOffset = getAddExpr(TotalOffset,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002787 getOffsetOfExpr(STy, FieldNo),
Dan Gohmand281ed22009-12-18 02:09:29 +00002788 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002789 } else {
2790 // For an array, add the element offset, explicitly scaled.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002791 const SCEV *LocalOffset = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002792 // Getelementptr indices are signed.
Dan Gohman8db08df2010-02-02 01:38:49 +00002793 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
Dan Gohmand281ed22009-12-18 02:09:29 +00002794 // Lower "inbounds" GEPs to NSW arithmetic.
Dan Gohman4f8eea82010-02-01 18:27:38 +00002795 LocalOffset = getMulExpr(LocalOffset, getSizeOfExpr(*GTI),
Dan Gohmand281ed22009-12-18 02:09:29 +00002796 /*HasNUW=*/false, /*HasNSW=*/InBounds);
2797 TotalOffset = getAddExpr(TotalOffset, LocalOffset,
2798 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002799 }
2800 }
Dan Gohmand281ed22009-12-18 02:09:29 +00002801 return getAddExpr(getSCEV(Base), TotalOffset,
2802 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002803}
2804
Nick Lewycky83bb0052007-11-22 07:59:40 +00002805/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2806/// guaranteed to end in (at every loop iteration). It is, at the same time,
2807/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2808/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002809uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002810ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002811 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002812 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002813
Dan Gohman622ed672009-05-04 22:02:23 +00002814 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002815 return std::min(GetMinTrailingZeros(T->getOperand()),
2816 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002817
Dan Gohman622ed672009-05-04 22:02:23 +00002818 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002819 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2820 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2821 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002822 }
2823
Dan Gohman622ed672009-05-04 22:02:23 +00002824 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002825 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2826 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2827 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002828 }
2829
Dan Gohman622ed672009-05-04 22:02:23 +00002830 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002831 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002832 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002833 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002834 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002835 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002836 }
2837
Dan Gohman622ed672009-05-04 22:02:23 +00002838 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002839 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002840 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2841 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002842 for (unsigned i = 1, e = M->getNumOperands();
2843 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002844 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002845 BitWidth);
2846 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002847 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002848
Dan Gohman622ed672009-05-04 22:02:23 +00002849 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002850 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002851 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002852 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002853 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002854 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002855 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002856
Dan Gohman622ed672009-05-04 22:02:23 +00002857 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002858 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002859 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002860 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002861 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002862 return MinOpRes;
2863 }
2864
Dan Gohman622ed672009-05-04 22:02:23 +00002865 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002866 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002867 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002868 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002869 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002870 return MinOpRes;
2871 }
2872
Dan Gohman2c364ad2009-06-19 23:29:04 +00002873 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2874 // For a SCEVUnknown, ask ValueTracking.
2875 unsigned BitWidth = getTypeSizeInBits(U->getType());
2876 APInt Mask = APInt::getAllOnesValue(BitWidth);
2877 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2878 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2879 return Zeros.countTrailingOnes();
2880 }
2881
2882 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002883 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002884}
Chris Lattner53e677a2004-04-02 20:23:17 +00002885
Dan Gohman85b05a22009-07-13 21:35:55 +00002886/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2887///
2888ConstantRange
2889ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002890
2891 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00002892 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00002893
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002894 unsigned BitWidth = getTypeSizeInBits(S->getType());
2895 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2896
2897 // If the value has known zeros, the maximum unsigned value will have those
2898 // known zeros as well.
2899 uint32_t TZ = GetMinTrailingZeros(S);
2900 if (TZ != 0)
2901 ConservativeResult =
2902 ConstantRange(APInt::getMinValue(BitWidth),
2903 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2904
Dan Gohman85b05a22009-07-13 21:35:55 +00002905 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2906 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2907 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2908 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002909 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002910 }
2911
2912 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2913 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2914 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2915 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002916 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002917 }
2918
2919 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2920 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2921 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2922 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002923 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002924 }
2925
2926 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2927 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2928 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2929 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002930 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002931 }
2932
2933 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2934 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2935 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002936 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00002937 }
2938
2939 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2940 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002941 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002942 }
2943
2944 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2945 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002946 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002947 }
2948
2949 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2950 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002951 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002952 }
2953
Dan Gohman85b05a22009-07-13 21:35:55 +00002954 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002955 // If there's no unsigned wrap, the value will never be less than its
2956 // initial value.
2957 if (AddRec->hasNoUnsignedWrap())
2958 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00002959 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00002960 ConservativeResult =
Dan Gohmanb64cf892010-04-11 22:13:11 +00002961 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0));
Dan Gohman85b05a22009-07-13 21:35:55 +00002962
2963 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002964 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002965 const Type *Ty = AddRec->getType();
2966 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002967 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
2968 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002969 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2970
2971 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00002972 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00002973
2974 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00002975 ConstantRange StepRange = getSignedRange(Step);
2976 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
2977 ConstantRange EndRange =
2978 StartRange.add(MaxBECountRange.multiply(StepRange));
2979
2980 // Check for overflow. This must be done with ConstantRange arithmetic
2981 // because we could be called from within the ScalarEvolution overflow
2982 // checking code.
2983 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
2984 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
2985 ConstantRange ExtMaxBECountRange =
2986 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
2987 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
2988 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
2989 ExtEndRange)
2990 return ConservativeResult;
2991
Dan Gohman85b05a22009-07-13 21:35:55 +00002992 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2993 EndRange.getUnsignedMin());
2994 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2995 EndRange.getUnsignedMax());
2996 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00002997 return ConservativeResult;
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002998 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman85b05a22009-07-13 21:35:55 +00002999 }
3000 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003001
3002 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003003 }
3004
3005 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3006 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003007 APInt Mask = APInt::getAllOnesValue(BitWidth);
3008 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3009 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003010 if (Ones == ~Zeros + 1)
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003011 return ConservativeResult;
3012 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003013 }
3014
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003015 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003016}
3017
Dan Gohman85b05a22009-07-13 21:35:55 +00003018/// getSignedRange - Determine the signed range for a particular SCEV.
3019///
3020ConstantRange
3021ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003022
Dan Gohman85b05a22009-07-13 21:35:55 +00003023 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3024 return ConstantRange(C->getValue()->getValue());
3025
Dan Gohman52fddd32010-01-26 04:40:18 +00003026 unsigned BitWidth = getTypeSizeInBits(S->getType());
3027 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3028
3029 // If the value has known zeros, the maximum signed value will have those
3030 // known zeros as well.
3031 uint32_t TZ = GetMinTrailingZeros(S);
3032 if (TZ != 0)
3033 ConservativeResult =
3034 ConstantRange(APInt::getSignedMinValue(BitWidth),
3035 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3036
Dan Gohman85b05a22009-07-13 21:35:55 +00003037 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3038 ConstantRange X = getSignedRange(Add->getOperand(0));
3039 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3040 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003041 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003042 }
3043
Dan Gohman85b05a22009-07-13 21:35:55 +00003044 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3045 ConstantRange X = getSignedRange(Mul->getOperand(0));
3046 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3047 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003048 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003049 }
3050
Dan Gohman85b05a22009-07-13 21:35:55 +00003051 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3052 ConstantRange X = getSignedRange(SMax->getOperand(0));
3053 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3054 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003055 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003056 }
Dan Gohman62849c02009-06-24 01:05:09 +00003057
Dan Gohman85b05a22009-07-13 21:35:55 +00003058 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3059 ConstantRange X = getSignedRange(UMax->getOperand(0));
3060 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3061 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003062 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003063 }
Dan Gohman62849c02009-06-24 01:05:09 +00003064
Dan Gohman85b05a22009-07-13 21:35:55 +00003065 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3066 ConstantRange X = getSignedRange(UDiv->getLHS());
3067 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman52fddd32010-01-26 04:40:18 +00003068 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003069 }
Dan Gohman62849c02009-06-24 01:05:09 +00003070
Dan Gohman85b05a22009-07-13 21:35:55 +00003071 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3072 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003073 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003074 }
3075
3076 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3077 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003078 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003079 }
3080
3081 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3082 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003083 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003084 }
3085
Dan Gohman85b05a22009-07-13 21:35:55 +00003086 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003087 // If there's no signed wrap, and all the operands have the same sign or
3088 // zero, the value won't ever change sign.
3089 if (AddRec->hasNoSignedWrap()) {
3090 bool AllNonNeg = true;
3091 bool AllNonPos = true;
3092 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3093 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3094 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3095 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003096 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003097 ConservativeResult = ConservativeResult.intersectWith(
3098 ConstantRange(APInt(BitWidth, 0),
3099 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003100 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003101 ConservativeResult = ConservativeResult.intersectWith(
3102 ConstantRange(APInt::getSignedMinValue(BitWidth),
3103 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003104 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003105
3106 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003107 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003108 const Type *Ty = AddRec->getType();
3109 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003110 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3111 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003112 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3113
3114 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003115 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003116
3117 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003118 ConstantRange StepRange = getSignedRange(Step);
3119 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3120 ConstantRange EndRange =
3121 StartRange.add(MaxBECountRange.multiply(StepRange));
3122
3123 // Check for overflow. This must be done with ConstantRange arithmetic
3124 // because we could be called from within the ScalarEvolution overflow
3125 // checking code.
3126 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3127 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3128 ConstantRange ExtMaxBECountRange =
3129 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3130 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3131 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3132 ExtEndRange)
3133 return ConservativeResult;
3134
Dan Gohman85b05a22009-07-13 21:35:55 +00003135 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3136 EndRange.getSignedMin());
3137 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3138 EndRange.getSignedMax());
3139 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003140 return ConservativeResult;
Dan Gohman52fddd32010-01-26 04:40:18 +00003141 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman62849c02009-06-24 01:05:09 +00003142 }
Dan Gohman62849c02009-06-24 01:05:09 +00003143 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003144
3145 return ConservativeResult;
Dan Gohman62849c02009-06-24 01:05:09 +00003146 }
3147
Dan Gohman2c364ad2009-06-19 23:29:04 +00003148 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3149 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003150 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman52fddd32010-01-26 04:40:18 +00003151 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003152 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3153 if (NS == 1)
Dan Gohman52fddd32010-01-26 04:40:18 +00003154 return ConservativeResult;
3155 return ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003156 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman52fddd32010-01-26 04:40:18 +00003157 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003158 }
3159
Dan Gohman52fddd32010-01-26 04:40:18 +00003160 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003161}
3162
Chris Lattner53e677a2004-04-02 20:23:17 +00003163/// createSCEV - We know that there is no SCEV for the specified value.
3164/// Analyze the expression.
3165///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003166const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003167 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003168 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003169
Dan Gohman6c459a22008-06-22 19:56:46 +00003170 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003171 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003172 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003173
3174 // Don't attempt to analyze instructions in blocks that aren't
3175 // reachable. Such instructions don't matter, and they aren't required
3176 // to obey basic rules for definitions dominating uses which this
3177 // analysis depends on.
3178 if (!DT->isReachableFromEntry(I->getParent()))
3179 return getUnknown(V);
3180 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003181 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003182 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3183 return getConstant(CI);
3184 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003185 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003186 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3187 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003188 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003189 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003190
Dan Gohmanca178902009-07-17 20:47:02 +00003191 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003192 switch (Opcode) {
Dan Gohman7a721952009-10-09 16:35:06 +00003193 case Instruction::Add:
3194 // Don't transfer the NSW and NUW bits from the Add instruction to the
3195 // Add expression, because the Instruction may be guarded by control
3196 // flow and the no-overflow bits may not be valid for the expression in
3197 // any context.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003198 return getAddExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00003199 getSCEV(U->getOperand(1)));
3200 case Instruction::Mul:
3201 // Don't transfer the NSW and NUW bits from the Mul instruction to the
3202 // Mul expression, as with Add.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003203 return getMulExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00003204 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003205 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003206 return getUDivExpr(getSCEV(U->getOperand(0)),
3207 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003208 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003209 return getMinusSCEV(getSCEV(U->getOperand(0)),
3210 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003211 case Instruction::And:
3212 // For an expression like x&255 that merely masks off the high bits,
3213 // use zext(trunc(x)) as the SCEV expression.
3214 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003215 if (CI->isNullValue())
3216 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003217 if (CI->isAllOnesValue())
3218 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003219 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003220
3221 // Instcombine's ShrinkDemandedConstant may strip bits out of
3222 // constants, obscuring what would otherwise be a low-bits mask.
3223 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3224 // knew about to reconstruct a low-bits mask value.
3225 unsigned LZ = A.countLeadingZeros();
3226 unsigned BitWidth = A.getBitWidth();
3227 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3228 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3229 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3230
3231 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3232
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003233 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003234 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003235 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003236 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003237 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003238 }
3239 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003240
Dan Gohman6c459a22008-06-22 19:56:46 +00003241 case Instruction::Or:
3242 // If the RHS of the Or is a constant, we may have something like:
3243 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3244 // optimizations will transparently handle this case.
3245 //
3246 // In order for this transformation to be safe, the LHS must be of the
3247 // form X*(2^n) and the Or constant must be less than 2^n.
3248 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003249 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003250 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003251 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003252 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3253 // Build a plain add SCEV.
3254 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3255 // If the LHS of the add was an addrec and it has no-wrap flags,
3256 // transfer the no-wrap flags, since an or won't introduce a wrap.
3257 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3258 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3259 if (OldAR->hasNoUnsignedWrap())
3260 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3261 if (OldAR->hasNoSignedWrap())
3262 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3263 }
3264 return S;
3265 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003266 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003267 break;
3268 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003269 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003270 // If the RHS of the xor is a signbit, then this is just an add.
3271 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003272 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003273 return getAddExpr(getSCEV(U->getOperand(0)),
3274 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003275
3276 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003277 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003278 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003279
3280 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3281 // This is a variant of the check for xor with -1, and it handles
3282 // the case where instcombine has trimmed non-demanded bits out
3283 // of an xor with -1.
3284 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3285 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3286 if (BO->getOpcode() == Instruction::And &&
3287 LCI->getValue() == CI->getValue())
3288 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003289 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003290 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003291 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003292 const Type *Z0Ty = Z0->getType();
3293 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3294
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003295 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003296 // mask off the high bits. Complement the operand and
3297 // re-apply the zext.
3298 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3299 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3300
3301 // If C is a single bit, it may be in the sign-bit position
3302 // before the zero-extend. In this case, represent the xor
3303 // using an add, which is equivalent, and re-apply the zext.
3304 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3305 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3306 Trunc.isSignBit())
3307 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3308 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003309 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003310 }
3311 break;
3312
3313 case Instruction::Shl:
3314 // Turn shift left of a constant amount into a multiply.
3315 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003316 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003317
3318 // If the shift count is not less than the bitwidth, the result of
3319 // the shift is undefined. Don't try to analyze it, because the
3320 // resolution chosen here may differ from the resolution chosen in
3321 // other parts of the compiler.
3322 if (SA->getValue().uge(BitWidth))
3323 break;
3324
Owen Andersoneed707b2009-07-24 23:12:02 +00003325 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003326 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003327 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003328 }
3329 break;
3330
Nick Lewycky01eaf802008-07-07 06:15:49 +00003331 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003332 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003333 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003334 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003335
3336 // If the shift count is not less than the bitwidth, the result of
3337 // the shift is undefined. Don't try to analyze it, because the
3338 // resolution chosen here may differ from the resolution chosen in
3339 // other parts of the compiler.
3340 if (SA->getValue().uge(BitWidth))
3341 break;
3342
Owen Andersoneed707b2009-07-24 23:12:02 +00003343 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003344 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003345 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003346 }
3347 break;
3348
Dan Gohman4ee29af2009-04-21 02:26:00 +00003349 case Instruction::AShr:
3350 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3351 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003352 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003353 if (L->getOpcode() == Instruction::Shl &&
3354 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003355 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3356
3357 // If the shift count is not less than the bitwidth, the result of
3358 // the shift is undefined. Don't try to analyze it, because the
3359 // resolution chosen here may differ from the resolution chosen in
3360 // other parts of the compiler.
3361 if (CI->getValue().uge(BitWidth))
3362 break;
3363
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003364 uint64_t Amt = BitWidth - CI->getZExtValue();
3365 if (Amt == BitWidth)
3366 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003367 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003368 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003369 IntegerType::get(getContext(),
3370 Amt)),
3371 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003372 }
3373 break;
3374
Dan Gohman6c459a22008-06-22 19:56:46 +00003375 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003376 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003377
3378 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003379 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003380
3381 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003382 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003383
3384 case Instruction::BitCast:
3385 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003386 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003387 return getSCEV(U->getOperand(0));
3388 break;
3389
Dan Gohman4f8eea82010-02-01 18:27:38 +00003390 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3391 // lead to pointer expressions which cannot safely be expanded to GEPs,
3392 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3393 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003394
Dan Gohman26466c02009-05-08 20:26:55 +00003395 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003396 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003397
Dan Gohman6c459a22008-06-22 19:56:46 +00003398 case Instruction::PHI:
3399 return createNodeForPHI(cast<PHINode>(U));
3400
3401 case Instruction::Select:
3402 // This could be a smax or umax that was lowered earlier.
3403 // Try to recover it.
3404 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3405 Value *LHS = ICI->getOperand(0);
3406 Value *RHS = ICI->getOperand(1);
3407 switch (ICI->getPredicate()) {
3408 case ICmpInst::ICMP_SLT:
3409 case ICmpInst::ICMP_SLE:
3410 std::swap(LHS, RHS);
3411 // fall through
3412 case ICmpInst::ICMP_SGT:
3413 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003414 // a >s b ? a+x : b+x -> smax(a, b)+x
3415 // a >s b ? b+x : a+x -> smin(a, b)+x
3416 if (LHS->getType() == U->getType()) {
3417 const SCEV *LS = getSCEV(LHS);
3418 const SCEV *RS = getSCEV(RHS);
3419 const SCEV *LA = getSCEV(U->getOperand(1));
3420 const SCEV *RA = getSCEV(U->getOperand(2));
3421 const SCEV *LDiff = getMinusSCEV(LA, LS);
3422 const SCEV *RDiff = getMinusSCEV(RA, RS);
3423 if (LDiff == RDiff)
3424 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3425 LDiff = getMinusSCEV(LA, RS);
3426 RDiff = getMinusSCEV(RA, LS);
3427 if (LDiff == RDiff)
3428 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3429 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003430 break;
3431 case ICmpInst::ICMP_ULT:
3432 case ICmpInst::ICMP_ULE:
3433 std::swap(LHS, RHS);
3434 // fall through
3435 case ICmpInst::ICMP_UGT:
3436 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003437 // a >u b ? a+x : b+x -> umax(a, b)+x
3438 // a >u b ? b+x : a+x -> umin(a, b)+x
3439 if (LHS->getType() == U->getType()) {
3440 const SCEV *LS = getSCEV(LHS);
3441 const SCEV *RS = getSCEV(RHS);
3442 const SCEV *LA = getSCEV(U->getOperand(1));
3443 const SCEV *RA = getSCEV(U->getOperand(2));
3444 const SCEV *LDiff = getMinusSCEV(LA, LS);
3445 const SCEV *RDiff = getMinusSCEV(RA, RS);
3446 if (LDiff == RDiff)
3447 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3448 LDiff = getMinusSCEV(LA, RS);
3449 RDiff = getMinusSCEV(RA, LS);
3450 if (LDiff == RDiff)
3451 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3452 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003453 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003454 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003455 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3456 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003457 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003458 cast<ConstantInt>(RHS)->isZero()) {
3459 const SCEV *One = getConstant(LHS->getType(), 1);
3460 const SCEV *LS = getSCEV(LHS);
3461 const SCEV *LA = getSCEV(U->getOperand(1));
3462 const SCEV *RA = getSCEV(U->getOperand(2));
3463 const SCEV *LDiff = getMinusSCEV(LA, LS);
3464 const SCEV *RDiff = getMinusSCEV(RA, One);
3465 if (LDiff == RDiff)
3466 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3467 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003468 break;
3469 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003470 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3471 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003472 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003473 cast<ConstantInt>(RHS)->isZero()) {
3474 const SCEV *One = getConstant(LHS->getType(), 1);
3475 const SCEV *LS = getSCEV(LHS);
3476 const SCEV *LA = getSCEV(U->getOperand(1));
3477 const SCEV *RA = getSCEV(U->getOperand(2));
3478 const SCEV *LDiff = getMinusSCEV(LA, One);
3479 const SCEV *RDiff = getMinusSCEV(RA, LS);
3480 if (LDiff == RDiff)
3481 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3482 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003483 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003484 default:
3485 break;
3486 }
3487 }
3488
3489 default: // We cannot analyze this expression.
3490 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003491 }
3492
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003493 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003494}
3495
3496
3497
3498//===----------------------------------------------------------------------===//
3499// Iteration Count Computation Code
3500//
3501
Dan Gohman46bdfb02009-02-24 18:55:53 +00003502/// getBackedgeTakenCount - If the specified loop has a predictable
3503/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3504/// object. The backedge-taken count is the number of times the loop header
3505/// will be branched to from within the loop. This is one less than the
3506/// trip count of the loop, since it doesn't count the first iteration,
3507/// when the header is branched to from outside the loop.
3508///
3509/// Note that it is not valid to call this method on a loop without a
3510/// loop-invariant backedge-taken count (see
3511/// hasLoopInvariantBackedgeTakenCount).
3512///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003513const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003514 return getBackedgeTakenInfo(L).Exact;
3515}
3516
3517/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3518/// return the least SCEV value that is known never to be less than the
3519/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003520const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003521 return getBackedgeTakenInfo(L).Max;
3522}
3523
Dan Gohman59ae6b92009-07-08 19:23:34 +00003524/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3525/// onto the given Worklist.
3526static void
3527PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3528 BasicBlock *Header = L->getHeader();
3529
3530 // Push all Loop-header PHIs onto the Worklist stack.
3531 for (BasicBlock::iterator I = Header->begin();
3532 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3533 Worklist.push_back(PN);
3534}
3535
Dan Gohmana1af7572009-04-30 20:47:05 +00003536const ScalarEvolution::BackedgeTakenInfo &
3537ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003538 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003539 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003540 // update the value. The temporary CouldNotCompute value tells SCEV
3541 // code elsewhere that it shouldn't attempt to request a new
3542 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003543 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003544 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3545 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003546 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3547 if (BECount.Exact != getCouldNotCompute()) {
3548 assert(BECount.Exact->isLoopInvariant(L) &&
3549 BECount.Max->isLoopInvariant(L) &&
3550 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003551 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003552
Dan Gohman01ecca22009-04-27 20:16:15 +00003553 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003554 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003555 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003556 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003557 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003558 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003559 if (isa<PHINode>(L->getHeader()->begin()))
3560 // Only count loops that have phi nodes as not being computable.
3561 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003562 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003563
3564 // Now that we know more about the trip count for this loop, forget any
3565 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003566 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003567 // information. This is similar to the code in forgetLoop, except that
3568 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003569 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003570 SmallVector<Instruction *, 16> Worklist;
3571 PushLoopPHIs(L, Worklist);
3572
3573 SmallPtrSet<Instruction *, 8> Visited;
3574 while (!Worklist.empty()) {
3575 Instruction *I = Worklist.pop_back_val();
3576 if (!Visited.insert(I)) continue;
3577
Dan Gohman5d984912009-12-18 01:14:11 +00003578 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003579 Scalars.find(static_cast<Value *>(I));
3580 if (It != Scalars.end()) {
3581 // SCEVUnknown for a PHI either means that it has an unrecognized
3582 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003583 // by createNodeForPHI. In the former case, additional loop trip
3584 // count information isn't going to change anything. In the later
3585 // case, createNodeForPHI will perform the necessary updates on its
3586 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003587 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3588 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003589 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003590 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003591 if (PHINode *PN = dyn_cast<PHINode>(I))
3592 ConstantEvolutionLoopExitValue.erase(PN);
3593 }
3594
3595 PushDefUseChildren(I, Worklist);
3596 }
3597 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003598 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003599 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003600}
3601
Dan Gohman4c7279a2009-10-31 15:04:55 +00003602/// forgetLoop - This method should be called by the client when it has
3603/// changed a loop in a way that may effect ScalarEvolution's ability to
3604/// compute a trip count, or if the loop is deleted.
3605void ScalarEvolution::forgetLoop(const Loop *L) {
3606 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003607 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003608
Dan Gohman4c7279a2009-10-31 15:04:55 +00003609 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003610 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003611 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003612
Dan Gohman59ae6b92009-07-08 19:23:34 +00003613 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003614 while (!Worklist.empty()) {
3615 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003616 if (!Visited.insert(I)) continue;
3617
Dan Gohman5d984912009-12-18 01:14:11 +00003618 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003619 Scalars.find(static_cast<Value *>(I));
3620 if (It != Scalars.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003621 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003622 Scalars.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003623 if (PHINode *PN = dyn_cast<PHINode>(I))
3624 ConstantEvolutionLoopExitValue.erase(PN);
3625 }
3626
3627 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003628 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003629}
3630
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003631/// forgetValue - This method should be called by the client when it has
3632/// changed a value in a way that may effect its value, or which may
3633/// disconnect it from a def-use chain linking it to a loop.
3634void ScalarEvolution::forgetValue(Value *V) {
3635 Instruction *I = dyn_cast<Instruction>(V);
3636 if (!I) return;
3637
3638 // Drop information about expressions based on loop-header PHIs.
3639 SmallVector<Instruction *, 16> Worklist;
3640 Worklist.push_back(I);
3641
3642 SmallPtrSet<Instruction *, 8> Visited;
3643 while (!Worklist.empty()) {
3644 I = Worklist.pop_back_val();
3645 if (!Visited.insert(I)) continue;
3646
3647 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3648 Scalars.find(static_cast<Value *>(I));
3649 if (It != Scalars.end()) {
3650 ValuesAtScopes.erase(It->second);
3651 Scalars.erase(It);
3652 if (PHINode *PN = dyn_cast<PHINode>(I))
3653 ConstantEvolutionLoopExitValue.erase(PN);
3654 }
3655
3656 PushDefUseChildren(I, Worklist);
3657 }
3658}
3659
Dan Gohman46bdfb02009-02-24 18:55:53 +00003660/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3661/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003662ScalarEvolution::BackedgeTakenInfo
3663ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003664 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003665 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003666
Dan Gohmana334aa72009-06-22 00:31:57 +00003667 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003668 const SCEV *BECount = getCouldNotCompute();
3669 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003670 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003671 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3672 BackedgeTakenInfo NewBTI =
3673 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003674
Dan Gohman1c343752009-06-27 21:21:31 +00003675 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003676 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003677 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003678 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003679 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003680 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003681 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003682 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003683 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003684 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003685 }
Dan Gohman1c343752009-06-27 21:21:31 +00003686 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003687 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003688 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003689 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003690 }
3691
3692 return BackedgeTakenInfo(BECount, MaxBECount);
3693}
3694
3695/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3696/// of the specified loop will execute if it exits via the specified block.
3697ScalarEvolution::BackedgeTakenInfo
3698ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3699 BasicBlock *ExitingBlock) {
3700
3701 // Okay, we've chosen an exiting block. See what condition causes us to
3702 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003703 //
3704 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003705 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003706 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003707 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003708
Chris Lattner8b0e3602007-01-07 02:24:26 +00003709 // At this point, we know we have a conditional branch that determines whether
3710 // the loop is exited. However, we don't know if the branch is executed each
3711 // time through the loop. If not, then the execution count of the branch will
3712 // not be equal to the trip count of the loop.
3713 //
3714 // Currently we check for this by checking to see if the Exit branch goes to
3715 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003716 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003717 // loop header. This is common for un-rotated loops.
3718 //
3719 // If both of those tests fail, walk up the unique predecessor chain to the
3720 // header, stopping if there is an edge that doesn't exit the loop. If the
3721 // header is reached, the execution count of the branch will be equal to the
3722 // trip count of the loop.
3723 //
3724 // More extensive analysis could be done to handle more cases here.
3725 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003726 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003727 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003728 ExitBr->getParent() != L->getHeader()) {
3729 // The simple checks failed, try climbing the unique predecessor chain
3730 // up to the header.
3731 bool Ok = false;
3732 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3733 BasicBlock *Pred = BB->getUniquePredecessor();
3734 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003735 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003736 TerminatorInst *PredTerm = Pred->getTerminator();
3737 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3738 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3739 if (PredSucc == BB)
3740 continue;
3741 // If the predecessor has a successor that isn't BB and isn't
3742 // outside the loop, assume the worst.
3743 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003744 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003745 }
3746 if (Pred == L->getHeader()) {
3747 Ok = true;
3748 break;
3749 }
3750 BB = Pred;
3751 }
3752 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003753 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003754 }
3755
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003756 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003757 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3758 ExitBr->getSuccessor(0),
3759 ExitBr->getSuccessor(1));
3760}
3761
3762/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3763/// backedge of the specified loop will execute if its exit condition
3764/// were a conditional branch of ExitCond, TBB, and FBB.
3765ScalarEvolution::BackedgeTakenInfo
3766ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3767 Value *ExitCond,
3768 BasicBlock *TBB,
3769 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003770 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003771 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3772 if (BO->getOpcode() == Instruction::And) {
3773 // Recurse on the operands of the and.
3774 BackedgeTakenInfo BTI0 =
3775 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3776 BackedgeTakenInfo BTI1 =
3777 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003778 const SCEV *BECount = getCouldNotCompute();
3779 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003780 if (L->contains(TBB)) {
3781 // Both conditions must be true for the loop to continue executing.
3782 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003783 if (BTI0.Exact == getCouldNotCompute() ||
3784 BTI1.Exact == getCouldNotCompute())
3785 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003786 else
3787 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003788 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003789 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003790 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003791 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003792 else
3793 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003794 } else {
3795 // Both conditions must be true for the loop to exit.
3796 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003797 if (BTI0.Exact != getCouldNotCompute() &&
3798 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003799 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003800 if (BTI0.Max != getCouldNotCompute() &&
3801 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003802 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3803 }
3804
3805 return BackedgeTakenInfo(BECount, MaxBECount);
3806 }
3807 if (BO->getOpcode() == Instruction::Or) {
3808 // Recurse on the operands of the or.
3809 BackedgeTakenInfo BTI0 =
3810 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3811 BackedgeTakenInfo BTI1 =
3812 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003813 const SCEV *BECount = getCouldNotCompute();
3814 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003815 if (L->contains(FBB)) {
3816 // Both conditions must be false for the loop to continue executing.
3817 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003818 if (BTI0.Exact == getCouldNotCompute() ||
3819 BTI1.Exact == getCouldNotCompute())
3820 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003821 else
3822 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003823 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003824 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003825 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003826 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003827 else
3828 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003829 } else {
3830 // Both conditions must be false for the loop to exit.
3831 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003832 if (BTI0.Exact != getCouldNotCompute() &&
3833 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003834 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003835 if (BTI0.Max != getCouldNotCompute() &&
3836 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003837 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3838 }
3839
3840 return BackedgeTakenInfo(BECount, MaxBECount);
3841 }
3842 }
3843
3844 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003845 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003846 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3847 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003848
Dan Gohman00cb5b72010-02-19 18:12:07 +00003849 // Check for a constant condition. These are normally stripped out by
3850 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3851 // preserve the CFG and is temporarily leaving constant conditions
3852 // in place.
3853 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3854 if (L->contains(FBB) == !CI->getZExtValue())
3855 // The backedge is always taken.
3856 return getCouldNotCompute();
3857 else
3858 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00003859 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00003860 }
3861
Eli Friedman361e54d2009-05-09 12:32:42 +00003862 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003863 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3864}
3865
3866/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3867/// backedge of the specified loop will execute if its exit condition
3868/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3869ScalarEvolution::BackedgeTakenInfo
3870ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3871 ICmpInst *ExitCond,
3872 BasicBlock *TBB,
3873 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003874
Reid Spencere4d87aa2006-12-23 06:05:41 +00003875 // If the condition was exit on true, convert the condition to exit on false
3876 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00003877 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00003878 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003879 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00003880 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003881
3882 // Handle common loops like: for (X = "string"; *X; ++X)
3883 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3884 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003885 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003886 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003887 if (ItCnt.hasAnyInfo())
3888 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00003889 }
3890
Dan Gohman0bba49c2009-07-07 17:06:11 +00003891 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3892 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00003893
3894 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00003895 LHS = getSCEVAtScope(LHS, L);
3896 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003897
Dan Gohman64a845e2009-06-24 04:48:43 +00003898 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00003899 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00003900 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3901 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00003902 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003903 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00003904 }
3905
Dan Gohman03557dc2010-05-03 16:35:17 +00003906 // Simplify the operands before analyzing them.
3907 (void)SimplifyICmpOperands(Cond, LHS, RHS);
3908
Chris Lattner53e677a2004-04-02 20:23:17 +00003909 // If we have a comparison of a chrec against a constant, try to use value
3910 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00003911 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3912 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00003913 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00003914 // Form the constant range.
3915 ConstantRange CompRange(
3916 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003917
Dan Gohman0bba49c2009-07-07 17:06:11 +00003918 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00003919 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00003920 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003921
Chris Lattner53e677a2004-04-02 20:23:17 +00003922 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003923 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00003924 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003925 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3926 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003927 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003928 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00003929 case ICmpInst::ICMP_EQ: { // while (X == Y)
3930 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003931 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3932 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003933 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003934 }
3935 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003936 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3937 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003938 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003939 }
3940 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003941 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3942 getNotSCEV(RHS), L, true);
3943 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003944 break;
3945 }
3946 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003947 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3948 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003949 break;
3950 }
3951 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003952 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3953 getNotSCEV(RHS), L, false);
3954 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003955 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003956 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003957 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003958#if 0
David Greene25e0e872009-12-23 22:18:14 +00003959 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00003960 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00003961 dbgs() << "[unsigned] ";
3962 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00003963 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00003964 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003965#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00003966 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003967 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00003968 return
Dan Gohmana334aa72009-06-22 00:31:57 +00003969 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00003970}
3971
Chris Lattner673e02b2004-10-12 01:49:27 +00003972static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00003973EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3974 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003975 const SCEV *InVal = SE.getConstant(C);
3976 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00003977 assert(isa<SCEVConstant>(Val) &&
3978 "Evaluation of SCEV at constant didn't fold correctly?");
3979 return cast<SCEVConstant>(Val)->getValue();
3980}
3981
3982/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3983/// and a GEP expression (missing the pointer index) indexing into it, return
3984/// the addressed element of the initializer or null if the index expression is
3985/// invalid.
3986static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00003987GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00003988 const std::vector<ConstantInt*> &Indices) {
3989 Constant *Init = GV->getInitializer();
3990 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00003991 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00003992 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3993 assert(Idx < CS->getNumOperands() && "Bad struct index!");
3994 Init = cast<Constant>(CS->getOperand(Idx));
3995 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3996 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
3997 Init = cast<Constant>(CA->getOperand(Idx));
3998 } else if (isa<ConstantAggregateZero>(Init)) {
3999 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4000 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004001 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004002 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4003 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004004 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004005 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004006 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004007 }
4008 return 0;
4009 } else {
4010 return 0; // Unknown initializer type
4011 }
4012 }
4013 return Init;
4014}
4015
Dan Gohman46bdfb02009-02-24 18:55:53 +00004016/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4017/// 'icmp op load X, cst', try to see if we can compute the backedge
4018/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004019ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004020ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4021 LoadInst *LI,
4022 Constant *RHS,
4023 const Loop *L,
4024 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004025 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004026
4027 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004028 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004029 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004030 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004031
4032 // Make sure that it is really a constant global we are gepping, with an
4033 // initializer, and make sure the first IDX is really 0.
4034 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004035 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004036 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4037 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004038 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004039
4040 // Okay, we allow one non-constant index into the GEP instruction.
4041 Value *VarIdx = 0;
4042 std::vector<ConstantInt*> Indexes;
4043 unsigned VarIdxNum = 0;
4044 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4045 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4046 Indexes.push_back(CI);
4047 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004048 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004049 VarIdx = GEP->getOperand(i);
4050 VarIdxNum = i-2;
4051 Indexes.push_back(0);
4052 }
4053
4054 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4055 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004056 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004057 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004058
4059 // We can only recognize very limited forms of loop index expressions, in
4060 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004061 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00004062 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4063 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4064 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004065 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004066
4067 unsigned MaxSteps = MaxBruteForceIterations;
4068 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004069 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004070 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004071 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004072
4073 // Form the GEP offset.
4074 Indexes[VarIdxNum] = Val;
4075
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004076 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004077 if (Result == 0) break; // Cannot compute!
4078
4079 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004080 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004081 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004082 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004083#if 0
David Greene25e0e872009-12-23 22:18:14 +00004084 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004085 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4086 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004087#endif
4088 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004089 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004090 }
4091 }
Dan Gohman1c343752009-06-27 21:21:31 +00004092 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004093}
4094
4095
Chris Lattner3221ad02004-04-17 22:58:41 +00004096/// CanConstantFold - Return true if we can constant fold an instruction of the
4097/// specified type, assuming that all operands were constants.
4098static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004099 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004100 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4101 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004102
Chris Lattner3221ad02004-04-17 22:58:41 +00004103 if (const CallInst *CI = dyn_cast<CallInst>(I))
4104 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004105 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004106 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004107}
4108
Chris Lattner3221ad02004-04-17 22:58:41 +00004109/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4110/// in the loop that V is derived from. We allow arbitrary operations along the
4111/// way, but the operands of an operation must either be constants or a value
4112/// derived from a constant PHI. If this expression does not fit with these
4113/// constraints, return null.
4114static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4115 // If this is not an instruction, or if this is an instruction outside of the
4116 // loop, it can't be derived from a loop PHI.
4117 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004118 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004119
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004120 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004121 if (L->getHeader() == I->getParent())
4122 return PN;
4123 else
4124 // We don't currently keep track of the control flow needed to evaluate
4125 // PHIs, so we cannot handle PHIs inside of loops.
4126 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004127 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004128
4129 // If we won't be able to constant fold this expression even if the operands
4130 // are constants, return early.
4131 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004132
Chris Lattner3221ad02004-04-17 22:58:41 +00004133 // Otherwise, we can evaluate this instruction if all of its operands are
4134 // constant or derived from a PHI node themselves.
4135 PHINode *PHI = 0;
4136 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4137 if (!(isa<Constant>(I->getOperand(Op)) ||
4138 isa<GlobalValue>(I->getOperand(Op)))) {
4139 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4140 if (P == 0) return 0; // Not evolving from PHI
4141 if (PHI == 0)
4142 PHI = P;
4143 else if (PHI != P)
4144 return 0; // Evolving from multiple different PHIs.
4145 }
4146
4147 // This is a expression evolving from a constant PHI!
4148 return PHI;
4149}
4150
4151/// EvaluateExpression - Given an expression that passes the
4152/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4153/// in the loop has the value PHIVal. If we can't fold this expression for some
4154/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004155static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4156 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004157 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004158 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman2d1be872009-04-16 03:18:22 +00004159 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Chris Lattner3221ad02004-04-17 22:58:41 +00004160 Instruction *I = cast<Instruction>(V);
4161
4162 std::vector<Constant*> Operands;
4163 Operands.resize(I->getNumOperands());
4164
4165 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004166 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004167 if (Operands[i] == 0) return 0;
4168 }
4169
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004170 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004171 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004172 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004173 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004174 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004175}
4176
4177/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4178/// in the header of its containing loop, we know the loop executes a
4179/// constant number of times, and the PHI node is just a recurrence
4180/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004181Constant *
4182ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004183 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004184 const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004185 std::map<PHINode*, Constant*>::iterator I =
4186 ConstantEvolutionLoopExitValue.find(PN);
4187 if (I != ConstantEvolutionLoopExitValue.end())
4188 return I->second;
4189
Dan Gohmane0567812010-04-08 23:03:40 +00004190 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004191 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4192
4193 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4194
4195 // Since the loop is canonicalized, the PHI node must have two entries. One
4196 // entry must be a constant (coming in from outside of the loop), and the
4197 // second must be derived from the same PHI.
4198 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4199 Constant *StartCST =
4200 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4201 if (StartCST == 0)
4202 return RetVal = 0; // Must be a constant.
4203
4204 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4205 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
4206 if (PN2 != PN)
4207 return RetVal = 0; // Not derived from same PHI.
4208
4209 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004210 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004211 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004212
Dan Gohman46bdfb02009-02-24 18:55:53 +00004213 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004214 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004215 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4216 if (IterationNum == NumIterations)
4217 return RetVal = PHIVal; // Got exit value!
4218
4219 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004220 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004221 if (NextPHI == PHIVal)
4222 return RetVal = NextPHI; // Stopped evolving!
4223 if (NextPHI == 0)
4224 return 0; // Couldn't evaluate!
4225 PHIVal = NextPHI;
4226 }
4227}
4228
Dan Gohman07ad19b2009-07-27 16:09:48 +00004229/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004230/// constant number of times (the condition evolves only from constants),
4231/// try to evaluate a few iterations of the loop until we get the exit
4232/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004233/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004234const SCEV *
4235ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4236 Value *Cond,
4237 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004238 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004239 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004240
4241 // Since the loop is canonicalized, the PHI node must have two entries. One
4242 // entry must be a constant (coming in from outside of the loop), and the
4243 // second must be derived from the same PHI.
4244 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4245 Constant *StartCST =
4246 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004247 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004248
4249 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4250 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004251 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004252
4253 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4254 // the loop symbolically to determine when the condition gets a value of
4255 // "ExitWhen".
4256 unsigned IterationNum = 0;
4257 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4258 for (Constant *PHIVal = StartCST;
4259 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004260 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004261 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004262
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004263 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004264 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004265
Reid Spencere8019bb2007-03-01 07:25:48 +00004266 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004267 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004268 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004269 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004270
Chris Lattner3221ad02004-04-17 22:58:41 +00004271 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004272 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004273 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004274 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004275 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004276 }
4277
4278 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004279 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004280}
4281
Dan Gohmane7125f42009-09-03 15:00:26 +00004282/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004283/// at the specified scope in the program. The L value specifies a loop
4284/// nest to evaluate the expression at, where null is the top-level or a
4285/// specified loop is immediately inside of the loop.
4286///
4287/// This method can be used to compute the exit value for a variable defined
4288/// in a loop by querying what the value will hold in the parent loop.
4289///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004290/// In the case that a relevant loop exit value cannot be computed, the
4291/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004292const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004293 // Check to see if we've folded this expression at this loop before.
4294 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4295 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4296 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4297 if (!Pair.second)
4298 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004299
Dan Gohman42214892009-08-31 21:15:23 +00004300 // Otherwise compute it.
4301 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004302 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004303 return C;
4304}
4305
4306const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004307 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004308
Nick Lewycky3e630762008-02-20 06:48:22 +00004309 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004310 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004311 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004312 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004313 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004314 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4315 if (PHINode *PN = dyn_cast<PHINode>(I))
4316 if (PN->getParent() == LI->getHeader()) {
4317 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004318 // to see if the loop that contains it has a known backedge-taken
4319 // count. If so, we may be able to force computation of the exit
4320 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004321 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004322 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004323 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004324 // Okay, we know how many times the containing loop executes. If
4325 // this is a constant evolving PHI node, get the final value at
4326 // the specified iteration number.
4327 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004328 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004329 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004330 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004331 }
4332 }
4333
Reid Spencer09906f32006-12-04 21:33:23 +00004334 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004335 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004336 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004337 // result. This is particularly useful for computing loop exit values.
4338 if (CanConstantFold(I)) {
4339 std::vector<Constant*> Operands;
4340 Operands.reserve(I->getNumOperands());
4341 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4342 Value *Op = I->getOperand(i);
4343 if (Constant *C = dyn_cast<Constant>(Op)) {
4344 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004345 } else {
Chris Lattner42b5e082007-11-23 08:46:22 +00004346 // If any of the operands is non-constant and if they are
Dan Gohman2d1be872009-04-16 03:18:22 +00004347 // non-integer and non-pointer, don't even try to analyze them
4348 // with scev techniques.
Dan Gohman4acd12a2009-04-30 16:40:30 +00004349 if (!isSCEVable(Op->getType()))
Chris Lattner42b5e082007-11-23 08:46:22 +00004350 return V;
Dan Gohman2d1be872009-04-16 03:18:22 +00004351
Dan Gohman5d984912009-12-18 01:14:11 +00004352 const SCEV *OpV = getSCEVAtScope(Op, L);
Dan Gohman622ed672009-05-04 22:02:23 +00004353 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004354 Constant *C = SC->getValue();
4355 if (C->getType() != Op->getType())
4356 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4357 Op->getType(),
4358 false),
4359 C, Op->getType());
4360 Operands.push_back(C);
Dan Gohman622ed672009-05-04 22:02:23 +00004361 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004362 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4363 if (C->getType() != Op->getType())
4364 C =
4365 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4366 Op->getType(),
4367 false),
4368 C, Op->getType());
4369 Operands.push_back(C);
4370 } else
Chris Lattner3221ad02004-04-17 22:58:41 +00004371 return V;
4372 } else {
4373 return V;
4374 }
4375 }
4376 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004377
Dan Gohmane177c9a2010-02-24 19:31:47 +00004378 Constant *C = 0;
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004379 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4380 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004381 Operands[0], Operands[1], TD);
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004382 else
4383 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004384 &Operands[0], Operands.size(), TD);
Dan Gohmane177c9a2010-02-24 19:31:47 +00004385 if (C)
4386 return getSCEV(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004387 }
4388 }
4389
4390 // This is some other type of SCEVUnknown, just return it.
4391 return V;
4392 }
4393
Dan Gohman622ed672009-05-04 22:02:23 +00004394 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004395 // Avoid performing the look-up in the common case where the specified
4396 // expression has no loop-variant portions.
4397 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004398 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004399 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004400 // Okay, at least one of these operands is loop variant but might be
4401 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004402 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4403 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004404 NewOps.push_back(OpAtScope);
4405
4406 for (++i; i != e; ++i) {
4407 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004408 NewOps.push_back(OpAtScope);
4409 }
4410 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004411 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004412 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004413 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004414 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004415 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004416 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004417 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004418 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004419 }
4420 }
4421 // If we got here, all operands are loop invariant.
4422 return Comm;
4423 }
4424
Dan Gohman622ed672009-05-04 22:02:23 +00004425 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004426 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4427 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004428 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4429 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004430 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004431 }
4432
4433 // If this is a loop recurrence for a loop that does not contain L, then we
4434 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004435 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman92329c72009-12-18 01:24:09 +00004436 if (!L || !AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004437 // To evaluate this recurrence, we need to know how many times the AddRec
4438 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004439 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004440 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004441
Eli Friedmanb42a6262008-08-04 23:49:06 +00004442 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004443 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004444 }
Dan Gohmand594e6f2009-05-24 23:25:42 +00004445 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004446 }
4447
Dan Gohman622ed672009-05-04 22:02:23 +00004448 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004449 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004450 if (Op == Cast->getOperand())
4451 return Cast; // must be loop invariant
4452 return getZeroExtendExpr(Op, Cast->getType());
4453 }
4454
Dan Gohman622ed672009-05-04 22:02:23 +00004455 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004456 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004457 if (Op == Cast->getOperand())
4458 return Cast; // must be loop invariant
4459 return getSignExtendExpr(Op, Cast->getType());
4460 }
4461
Dan Gohman622ed672009-05-04 22:02:23 +00004462 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004463 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004464 if (Op == Cast->getOperand())
4465 return Cast; // must be loop invariant
4466 return getTruncateExpr(Op, Cast->getType());
4467 }
4468
Torok Edwinc23197a2009-07-14 16:55:14 +00004469 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004470 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004471}
4472
Dan Gohman66a7e852009-05-08 20:38:54 +00004473/// getSCEVAtScope - This is a convenience function which does
4474/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004475const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004476 return getSCEVAtScope(getSCEV(V), L);
4477}
4478
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004479/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4480/// following equation:
4481///
4482/// A * X = B (mod N)
4483///
4484/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4485/// A and B isn't important.
4486///
4487/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004488static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004489 ScalarEvolution &SE) {
4490 uint32_t BW = A.getBitWidth();
4491 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4492 assert(A != 0 && "A must be non-zero.");
4493
4494 // 1. D = gcd(A, N)
4495 //
4496 // The gcd of A and N may have only one prime factor: 2. The number of
4497 // trailing zeros in A is its multiplicity
4498 uint32_t Mult2 = A.countTrailingZeros();
4499 // D = 2^Mult2
4500
4501 // 2. Check if B is divisible by D.
4502 //
4503 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4504 // is not less than multiplicity of this prime factor for D.
4505 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004506 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004507
4508 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4509 // modulo (N / D).
4510 //
4511 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4512 // bit width during computations.
4513 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4514 APInt Mod(BW + 1, 0);
4515 Mod.set(BW - Mult2); // Mod = N / D
4516 APInt I = AD.multiplicativeInverse(Mod);
4517
4518 // 4. Compute the minimum unsigned root of the equation:
4519 // I * (B / D) mod (N / D)
4520 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4521
4522 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4523 // bits.
4524 return SE.getConstant(Result.trunc(BW));
4525}
Chris Lattner53e677a2004-04-02 20:23:17 +00004526
4527/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4528/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4529/// might be the same) or two SCEVCouldNotCompute objects.
4530///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004531static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004532SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004533 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004534 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4535 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4536 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004537
Chris Lattner53e677a2004-04-02 20:23:17 +00004538 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004539 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004540 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004541 return std::make_pair(CNC, CNC);
4542 }
4543
Reid Spencere8019bb2007-03-01 07:25:48 +00004544 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004545 const APInt &L = LC->getValue()->getValue();
4546 const APInt &M = MC->getValue()->getValue();
4547 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004548 APInt Two(BitWidth, 2);
4549 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004550
Dan Gohman64a845e2009-06-24 04:48:43 +00004551 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004552 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004553 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004554 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4555 // The B coefficient is M-N/2
4556 APInt B(M);
4557 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004558
Reid Spencere8019bb2007-03-01 07:25:48 +00004559 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004560 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004561
Reid Spencere8019bb2007-03-01 07:25:48 +00004562 // Compute the B^2-4ac term.
4563 APInt SqrtTerm(B);
4564 SqrtTerm *= B;
4565 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004566
Reid Spencere8019bb2007-03-01 07:25:48 +00004567 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4568 // integer value or else APInt::sqrt() will assert.
4569 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004570
Dan Gohman64a845e2009-06-24 04:48:43 +00004571 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004572 // The divisions must be performed as signed divisions.
4573 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004574 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004575 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004576 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004577 return std::make_pair(CNC, CNC);
4578 }
4579
Owen Andersone922c022009-07-22 00:24:57 +00004580 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004581
4582 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004583 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004584 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004585 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004586
Dan Gohman64a845e2009-06-24 04:48:43 +00004587 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004588 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004589 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004590}
4591
4592/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004593/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004594ScalarEvolution::BackedgeTakenInfo
4595ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004596 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004597 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004598 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004599 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004600 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004601 }
4602
Dan Gohman35738ac2009-05-04 22:30:44 +00004603 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004604 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004605 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004606
4607 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004608 // If this is an affine expression, the execution count of this branch is
4609 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004610 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004611 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004612 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004613 // equivalent to:
4614 //
4615 // Step*N = -Start (mod 2^BW)
4616 //
4617 // where BW is the common bit width of Start and Step.
4618
Chris Lattner53e677a2004-04-02 20:23:17 +00004619 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004620 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4621 L->getParentLoop());
4622 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4623 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004624
Dan Gohman622ed672009-05-04 22:02:23 +00004625 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004626 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004627
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004628 // First, handle unitary steps.
4629 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004630 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004631 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4632 return Start; // N = Start (as unsigned)
4633
4634 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004635 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004636 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004637 -StartC->getValue()->getValue(),
4638 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004639 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004640 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004641 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4642 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004643 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004644 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004645 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4646 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004647 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004648#if 0
David Greene25e0e872009-12-23 22:18:14 +00004649 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004650 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004651#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004652 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004653 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004654 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004655 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004656 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004657 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004658
Chris Lattner53e677a2004-04-02 20:23:17 +00004659 // We can only use this value if the chrec ends up with an exact zero
4660 // value at this index. When solving for "X*X != 5", for example, we
4661 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004662 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004663 if (Val->isZero())
4664 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004665 }
4666 }
4667 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004668
Dan Gohman1c343752009-06-27 21:21:31 +00004669 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004670}
4671
4672/// HowFarToNonZero - Return the number of times a backedge checking the
4673/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004674/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004675ScalarEvolution::BackedgeTakenInfo
4676ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004677 // Loops that look like: while (X == 0) are very strange indeed. We don't
4678 // handle them yet except for the trivial case. This could be expanded in the
4679 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004680
Chris Lattner53e677a2004-04-02 20:23:17 +00004681 // If the value is a constant, check to see if it is known to be non-zero
4682 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004683 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004684 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004685 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004686 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004687 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004688
Chris Lattner53e677a2004-04-02 20:23:17 +00004689 // We could implement others, but I really doubt anyone writes loops like
4690 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004691 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004692}
4693
Dan Gohman859b4822009-05-18 15:36:09 +00004694/// getLoopPredecessor - If the given loop's header has exactly one unique
4695/// predecessor outside the loop, return it. Otherwise return null.
Dan Gohman2c93e392010-04-14 16:08:56 +00004696/// This is less strict that the loop "preheader" concept, which requires
4697/// the predecessor to have only one single successor.
Dan Gohman859b4822009-05-18 15:36:09 +00004698///
4699BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4700 BasicBlock *Header = L->getHeader();
4701 BasicBlock *Pred = 0;
4702 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4703 PI != E; ++PI)
4704 if (!L->contains(*PI)) {
4705 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4706 Pred = *PI;
4707 }
4708 return Pred;
4709}
4710
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004711/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4712/// (which may not be an immediate predecessor) which has exactly one
4713/// successor from which BB is reachable, or null if no such block is
4714/// found.
4715///
Dan Gohman005752b2010-04-15 16:19:08 +00004716std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004717ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004718 // If the block has a unique predecessor, then there is no path from the
4719 // predecessor to the block that does not go through the direct edge
4720 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004721 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004722 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004723
4724 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004725 // If the header has a unique predecessor outside the loop, it must be
4726 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004727 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman005752b2010-04-15 16:19:08 +00004728 return std::make_pair(getLoopPredecessor(L), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004729
Dan Gohman005752b2010-04-15 16:19:08 +00004730 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004731}
4732
Dan Gohman763bad12009-06-20 00:35:32 +00004733/// HasSameValue - SCEV structural equivalence is usually sufficient for
4734/// testing whether two expressions are equal, however for the purposes of
4735/// looking for a condition guarding a loop, it can be useful to be a little
4736/// more general, since a front-end may have replicated the controlling
4737/// expression.
4738///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004739static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004740 // Quick check to see if they are the same SCEV.
4741 if (A == B) return true;
4742
4743 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4744 // two different instructions with the same value. Check for this case.
4745 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4746 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4747 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4748 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004749 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004750 return true;
4751
4752 // Otherwise assume they may have a different value.
4753 return false;
4754}
4755
Dan Gohmane9796502010-04-24 01:28:42 +00004756/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4757/// predicate Pred. Return true iff any changes were made.
4758///
4759bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4760 const SCEV *&LHS, const SCEV *&RHS) {
4761 bool Changed = false;
4762
4763 // Canonicalize a constant to the right side.
4764 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4765 // Check for both operands constant.
4766 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4767 if (ConstantExpr::getICmp(Pred,
4768 LHSC->getValue(),
4769 RHSC->getValue())->isNullValue())
4770 goto trivially_false;
4771 else
4772 goto trivially_true;
4773 }
4774 // Otherwise swap the operands to put the constant on the right.
4775 std::swap(LHS, RHS);
4776 Pred = ICmpInst::getSwappedPredicate(Pred);
4777 Changed = true;
4778 }
4779
4780 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004781 // addrec's loop, put the addrec on the left. Also make a dominance check,
4782 // as both operands could be addrecs loop-invariant in each other's loop.
4783 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4784 const Loop *L = AR->getLoop();
4785 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
Dan Gohmane9796502010-04-24 01:28:42 +00004786 std::swap(LHS, RHS);
4787 Pred = ICmpInst::getSwappedPredicate(Pred);
4788 Changed = true;
4789 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004790 }
Dan Gohmane9796502010-04-24 01:28:42 +00004791
4792 // If there's a constant operand, canonicalize comparisons with boundary
4793 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4794 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4795 const APInt &RA = RC->getValue()->getValue();
4796 switch (Pred) {
4797 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4798 case ICmpInst::ICMP_EQ:
4799 case ICmpInst::ICMP_NE:
4800 break;
4801 case ICmpInst::ICMP_UGE:
4802 if ((RA - 1).isMinValue()) {
4803 Pred = ICmpInst::ICMP_NE;
4804 RHS = getConstant(RA - 1);
4805 Changed = true;
4806 break;
4807 }
4808 if (RA.isMaxValue()) {
4809 Pred = ICmpInst::ICMP_EQ;
4810 Changed = true;
4811 break;
4812 }
4813 if (RA.isMinValue()) goto trivially_true;
4814
4815 Pred = ICmpInst::ICMP_UGT;
4816 RHS = getConstant(RA - 1);
4817 Changed = true;
4818 break;
4819 case ICmpInst::ICMP_ULE:
4820 if ((RA + 1).isMaxValue()) {
4821 Pred = ICmpInst::ICMP_NE;
4822 RHS = getConstant(RA + 1);
4823 Changed = true;
4824 break;
4825 }
4826 if (RA.isMinValue()) {
4827 Pred = ICmpInst::ICMP_EQ;
4828 Changed = true;
4829 break;
4830 }
4831 if (RA.isMaxValue()) goto trivially_true;
4832
4833 Pred = ICmpInst::ICMP_ULT;
4834 RHS = getConstant(RA + 1);
4835 Changed = true;
4836 break;
4837 case ICmpInst::ICMP_SGE:
4838 if ((RA - 1).isMinSignedValue()) {
4839 Pred = ICmpInst::ICMP_NE;
4840 RHS = getConstant(RA - 1);
4841 Changed = true;
4842 break;
4843 }
4844 if (RA.isMaxSignedValue()) {
4845 Pred = ICmpInst::ICMP_EQ;
4846 Changed = true;
4847 break;
4848 }
4849 if (RA.isMinSignedValue()) goto trivially_true;
4850
4851 Pred = ICmpInst::ICMP_SGT;
4852 RHS = getConstant(RA - 1);
4853 Changed = true;
4854 break;
4855 case ICmpInst::ICMP_SLE:
4856 if ((RA + 1).isMaxSignedValue()) {
4857 Pred = ICmpInst::ICMP_NE;
4858 RHS = getConstant(RA + 1);
4859 Changed = true;
4860 break;
4861 }
4862 if (RA.isMinSignedValue()) {
4863 Pred = ICmpInst::ICMP_EQ;
4864 Changed = true;
4865 break;
4866 }
4867 if (RA.isMaxSignedValue()) goto trivially_true;
4868
4869 Pred = ICmpInst::ICMP_SLT;
4870 RHS = getConstant(RA + 1);
4871 Changed = true;
4872 break;
4873 case ICmpInst::ICMP_UGT:
4874 if (RA.isMinValue()) {
4875 Pred = ICmpInst::ICMP_NE;
4876 Changed = true;
4877 break;
4878 }
4879 if ((RA + 1).isMaxValue()) {
4880 Pred = ICmpInst::ICMP_EQ;
4881 RHS = getConstant(RA + 1);
4882 Changed = true;
4883 break;
4884 }
4885 if (RA.isMaxValue()) goto trivially_false;
4886 break;
4887 case ICmpInst::ICMP_ULT:
4888 if (RA.isMaxValue()) {
4889 Pred = ICmpInst::ICMP_NE;
4890 Changed = true;
4891 break;
4892 }
4893 if ((RA - 1).isMinValue()) {
4894 Pred = ICmpInst::ICMP_EQ;
4895 RHS = getConstant(RA - 1);
4896 Changed = true;
4897 break;
4898 }
4899 if (RA.isMinValue()) goto trivially_false;
4900 break;
4901 case ICmpInst::ICMP_SGT:
4902 if (RA.isMinSignedValue()) {
4903 Pred = ICmpInst::ICMP_NE;
4904 Changed = true;
4905 break;
4906 }
4907 if ((RA + 1).isMaxSignedValue()) {
4908 Pred = ICmpInst::ICMP_EQ;
4909 RHS = getConstant(RA + 1);
4910 Changed = true;
4911 break;
4912 }
4913 if (RA.isMaxSignedValue()) goto trivially_false;
4914 break;
4915 case ICmpInst::ICMP_SLT:
4916 if (RA.isMaxSignedValue()) {
4917 Pred = ICmpInst::ICMP_NE;
4918 Changed = true;
4919 break;
4920 }
4921 if ((RA - 1).isMinSignedValue()) {
4922 Pred = ICmpInst::ICMP_EQ;
4923 RHS = getConstant(RA - 1);
4924 Changed = true;
4925 break;
4926 }
4927 if (RA.isMinSignedValue()) goto trivially_false;
4928 break;
4929 }
4930 }
4931
4932 // Check for obvious equality.
4933 if (HasSameValue(LHS, RHS)) {
4934 if (ICmpInst::isTrueWhenEqual(Pred))
4935 goto trivially_true;
4936 if (ICmpInst::isFalseWhenEqual(Pred))
4937 goto trivially_false;
4938 }
4939
Dan Gohman03557dc2010-05-03 16:35:17 +00004940 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
4941 // adding or subtracting 1 from one of the operands.
4942 switch (Pred) {
4943 case ICmpInst::ICMP_SLE:
4944 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
4945 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
4946 /*HasNUW=*/false, /*HasNSW=*/true);
4947 Pred = ICmpInst::ICMP_SLT;
4948 Changed = true;
4949 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004950 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004951 /*HasNUW=*/false, /*HasNSW=*/true);
4952 Pred = ICmpInst::ICMP_SLT;
4953 Changed = true;
4954 }
4955 break;
4956 case ICmpInst::ICMP_SGE:
4957 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004958 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004959 /*HasNUW=*/false, /*HasNSW=*/true);
4960 Pred = ICmpInst::ICMP_SGT;
4961 Changed = true;
4962 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
4963 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
4964 /*HasNUW=*/false, /*HasNSW=*/true);
4965 Pred = ICmpInst::ICMP_SGT;
4966 Changed = true;
4967 }
4968 break;
4969 case ICmpInst::ICMP_ULE:
4970 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004971 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004972 /*HasNUW=*/true, /*HasNSW=*/false);
4973 Pred = ICmpInst::ICMP_ULT;
4974 Changed = true;
4975 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004976 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004977 /*HasNUW=*/true, /*HasNSW=*/false);
4978 Pred = ICmpInst::ICMP_ULT;
4979 Changed = true;
4980 }
4981 break;
4982 case ICmpInst::ICMP_UGE:
4983 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004984 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004985 /*HasNUW=*/true, /*HasNSW=*/false);
4986 Pred = ICmpInst::ICMP_UGT;
4987 Changed = true;
4988 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004989 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004990 /*HasNUW=*/true, /*HasNSW=*/false);
4991 Pred = ICmpInst::ICMP_UGT;
4992 Changed = true;
4993 }
4994 break;
4995 default:
4996 break;
4997 }
4998
Dan Gohmane9796502010-04-24 01:28:42 +00004999 // TODO: More simplifications are possible here.
5000
5001 return Changed;
5002
5003trivially_true:
5004 // Return 0 == 0.
5005 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5006 Pred = ICmpInst::ICMP_EQ;
5007 return true;
5008
5009trivially_false:
5010 // Return 0 != 0.
5011 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5012 Pred = ICmpInst::ICMP_NE;
5013 return true;
5014}
5015
Dan Gohman85b05a22009-07-13 21:35:55 +00005016bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5017 return getSignedRange(S).getSignedMax().isNegative();
5018}
5019
5020bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5021 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5022}
5023
5024bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5025 return !getSignedRange(S).getSignedMin().isNegative();
5026}
5027
5028bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5029 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5030}
5031
5032bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5033 return isKnownNegative(S) || isKnownPositive(S);
5034}
5035
5036bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5037 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005038 // Canonicalize the inputs first.
5039 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5040
Dan Gohman53c66ea2010-04-11 22:16:48 +00005041 // If LHS or RHS is an addrec, check to see if the condition is true in
5042 // every iteration of the loop.
5043 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5044 if (isLoopEntryGuardedByCond(
5045 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5046 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005047 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005048 return true;
5049 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5050 if (isLoopEntryGuardedByCond(
5051 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5052 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005053 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005054 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005055
Dan Gohman53c66ea2010-04-11 22:16:48 +00005056 // Otherwise see what can be done with known constant ranges.
5057 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5058}
5059
5060bool
5061ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5062 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005063 if (HasSameValue(LHS, RHS))
5064 return ICmpInst::isTrueWhenEqual(Pred);
5065
Dan Gohman53c66ea2010-04-11 22:16:48 +00005066 // This code is split out from isKnownPredicate because it is called from
5067 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005068 switch (Pred) {
5069 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005070 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005071 break;
5072 case ICmpInst::ICMP_SGT:
5073 Pred = ICmpInst::ICMP_SLT;
5074 std::swap(LHS, RHS);
5075 case ICmpInst::ICMP_SLT: {
5076 ConstantRange LHSRange = getSignedRange(LHS);
5077 ConstantRange RHSRange = getSignedRange(RHS);
5078 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5079 return true;
5080 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5081 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005082 break;
5083 }
5084 case ICmpInst::ICMP_SGE:
5085 Pred = ICmpInst::ICMP_SLE;
5086 std::swap(LHS, RHS);
5087 case ICmpInst::ICMP_SLE: {
5088 ConstantRange LHSRange = getSignedRange(LHS);
5089 ConstantRange RHSRange = getSignedRange(RHS);
5090 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5091 return true;
5092 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5093 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005094 break;
5095 }
5096 case ICmpInst::ICMP_UGT:
5097 Pred = ICmpInst::ICMP_ULT;
5098 std::swap(LHS, RHS);
5099 case ICmpInst::ICMP_ULT: {
5100 ConstantRange LHSRange = getUnsignedRange(LHS);
5101 ConstantRange RHSRange = getUnsignedRange(RHS);
5102 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5103 return true;
5104 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5105 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005106 break;
5107 }
5108 case ICmpInst::ICMP_UGE:
5109 Pred = ICmpInst::ICMP_ULE;
5110 std::swap(LHS, RHS);
5111 case ICmpInst::ICMP_ULE: {
5112 ConstantRange LHSRange = getUnsignedRange(LHS);
5113 ConstantRange RHSRange = getUnsignedRange(RHS);
5114 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5115 return true;
5116 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5117 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005118 break;
5119 }
5120 case ICmpInst::ICMP_NE: {
5121 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5122 return true;
5123 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5124 return true;
5125
5126 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5127 if (isKnownNonZero(Diff))
5128 return true;
5129 break;
5130 }
5131 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005132 // The check at the top of the function catches the case where
5133 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005134 break;
5135 }
5136 return false;
5137}
5138
5139/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5140/// protected by a conditional between LHS and RHS. This is used to
5141/// to eliminate casts.
5142bool
5143ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5144 ICmpInst::Predicate Pred,
5145 const SCEV *LHS, const SCEV *RHS) {
5146 // Interpret a null as meaning no loop, where there is obviously no guard
5147 // (interprocedural conditions notwithstanding).
5148 if (!L) return true;
5149
5150 BasicBlock *Latch = L->getLoopLatch();
5151 if (!Latch)
5152 return false;
5153
5154 BranchInst *LoopContinuePredicate =
5155 dyn_cast<BranchInst>(Latch->getTerminator());
5156 if (!LoopContinuePredicate ||
5157 LoopContinuePredicate->isUnconditional())
5158 return false;
5159
Dan Gohman0f4b2852009-07-21 23:03:19 +00005160 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
5161 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005162}
5163
Dan Gohman3948d0b2010-04-11 19:27:13 +00005164/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005165/// by a conditional between LHS and RHS. This is used to help avoid max
5166/// expressions in loop trip counts, and to eliminate casts.
5167bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005168ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5169 ICmpInst::Predicate Pred,
5170 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005171 // Interpret a null as meaning no loop, where there is obviously no guard
5172 // (interprocedural conditions notwithstanding).
5173 if (!L) return false;
5174
Dan Gohman859b4822009-05-18 15:36:09 +00005175 // Starting at the loop predecessor, climb up the predecessor chain, as long
5176 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005177 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005178 for (std::pair<BasicBlock *, BasicBlock *>
5179 Pair(getLoopPredecessor(L), L->getHeader());
5180 Pair.first;
5181 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005182
5183 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005184 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005185 if (!LoopEntryPredicate ||
5186 LoopEntryPredicate->isUnconditional())
5187 continue;
5188
Dan Gohman0f4b2852009-07-21 23:03:19 +00005189 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
Dan Gohman005752b2010-04-15 16:19:08 +00005190 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005191 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005192 }
5193
Dan Gohman38372182008-08-12 20:17:31 +00005194 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005195}
5196
Dan Gohman0f4b2852009-07-21 23:03:19 +00005197/// isImpliedCond - Test whether the condition described by Pred, LHS,
5198/// and RHS is true whenever the given Cond value evaluates to true.
5199bool ScalarEvolution::isImpliedCond(Value *CondValue,
5200 ICmpInst::Predicate Pred,
5201 const SCEV *LHS, const SCEV *RHS,
5202 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005203 // Recursively handle And and Or conditions.
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005204 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
5205 if (BO->getOpcode() == Instruction::And) {
5206 if (!Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00005207 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5208 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005209 } else if (BO->getOpcode() == Instruction::Or) {
5210 if (Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00005211 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5212 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005213 }
5214 }
5215
5216 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
5217 if (!ICI) return false;
5218
Dan Gohman85b05a22009-07-13 21:35:55 +00005219 // Bail if the ICmp's operands' types are wider than the needed type
5220 // before attempting to call getSCEV on them. This avoids infinite
5221 // recursion, since the analysis of widening casts can require loop
5222 // exit condition information for overflow checking, which would
5223 // lead back here.
5224 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005225 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005226 return false;
5227
Dan Gohman0f4b2852009-07-21 23:03:19 +00005228 // Now that we found a conditional branch that dominates the loop, check to
5229 // see if it is the comparison we are looking for.
5230 ICmpInst::Predicate FoundPred;
5231 if (Inverse)
5232 FoundPred = ICI->getInversePredicate();
5233 else
5234 FoundPred = ICI->getPredicate();
5235
5236 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5237 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005238
5239 // Balance the types. The case where FoundLHS' type is wider than
5240 // LHS' type is checked for above.
5241 if (getTypeSizeInBits(LHS->getType()) >
5242 getTypeSizeInBits(FoundLHS->getType())) {
5243 if (CmpInst::isSigned(Pred)) {
5244 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5245 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5246 } else {
5247 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5248 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5249 }
5250 }
5251
Dan Gohman0f4b2852009-07-21 23:03:19 +00005252 // Canonicalize the query to match the way instcombine will have
5253 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005254 if (SimplifyICmpOperands(Pred, LHS, RHS))
5255 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005256 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005257 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5258 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005259 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005260
5261 // Check to see if we can make the LHS or RHS match.
5262 if (LHS == FoundRHS || RHS == FoundLHS) {
5263 if (isa<SCEVConstant>(RHS)) {
5264 std::swap(FoundLHS, FoundRHS);
5265 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5266 } else {
5267 std::swap(LHS, RHS);
5268 Pred = ICmpInst::getSwappedPredicate(Pred);
5269 }
5270 }
5271
5272 // Check whether the found predicate is the same as the desired predicate.
5273 if (FoundPred == Pred)
5274 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5275
5276 // Check whether swapping the found predicate makes it the same as the
5277 // desired predicate.
5278 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5279 if (isa<SCEVConstant>(RHS))
5280 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5281 else
5282 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5283 RHS, LHS, FoundLHS, FoundRHS);
5284 }
5285
5286 // Check whether the actual condition is beyond sufficient.
5287 if (FoundPred == ICmpInst::ICMP_EQ)
5288 if (ICmpInst::isTrueWhenEqual(Pred))
5289 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5290 return true;
5291 if (Pred == ICmpInst::ICMP_NE)
5292 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5293 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5294 return true;
5295
5296 // Otherwise assume the worst.
5297 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005298}
5299
Dan Gohman0f4b2852009-07-21 23:03:19 +00005300/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005301/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005302/// and FoundRHS is true.
5303bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5304 const SCEV *LHS, const SCEV *RHS,
5305 const SCEV *FoundLHS,
5306 const SCEV *FoundRHS) {
5307 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5308 FoundLHS, FoundRHS) ||
5309 // ~x < ~y --> x > y
5310 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5311 getNotSCEV(FoundRHS),
5312 getNotSCEV(FoundLHS));
5313}
5314
5315/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005316/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005317/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005318bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005319ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5320 const SCEV *LHS, const SCEV *RHS,
5321 const SCEV *FoundLHS,
5322 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005323 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005324 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5325 case ICmpInst::ICMP_EQ:
5326 case ICmpInst::ICMP_NE:
5327 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5328 return true;
5329 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005330 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005331 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005332 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5333 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005334 return true;
5335 break;
5336 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005337 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005338 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5339 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005340 return true;
5341 break;
5342 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005343 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005344 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5345 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005346 return true;
5347 break;
5348 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005349 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005350 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5351 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005352 return true;
5353 break;
5354 }
5355
5356 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005357}
5358
Dan Gohman51f53b72009-06-21 23:46:38 +00005359/// getBECount - Subtract the end and start values and divide by the step,
5360/// rounding up, to get the number of times the backedge is executed. Return
5361/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005362const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005363 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005364 const SCEV *Step,
5365 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005366 assert(!isKnownNegative(Step) &&
5367 "This code doesn't handle negative strides yet!");
5368
Dan Gohman51f53b72009-06-21 23:46:38 +00005369 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005370 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005371 const SCEV *Diff = getMinusSCEV(End, Start);
5372 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005373
5374 // Add an adjustment to the difference between End and Start so that
5375 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005376 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005377
Dan Gohman1f96e672009-09-17 18:05:20 +00005378 if (!NoWrap) {
5379 // Check Add for unsigned overflow.
5380 // TODO: More sophisticated things could be done here.
5381 const Type *WideTy = IntegerType::get(getContext(),
5382 getTypeSizeInBits(Ty) + 1);
5383 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5384 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5385 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5386 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5387 return getCouldNotCompute();
5388 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005389
5390 return getUDivExpr(Add, Step);
5391}
5392
Chris Lattnerdb25de42005-08-15 23:33:51 +00005393/// HowManyLessThans - Return the number of times a backedge containing the
5394/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005395/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005396ScalarEvolution::BackedgeTakenInfo
5397ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5398 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005399 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005400 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005401
Dan Gohman35738ac2009-05-04 22:30:44 +00005402 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005403 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005404 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005405
Dan Gohman1f96e672009-09-17 18:05:20 +00005406 // Check to see if we have a flag which makes analysis easy.
5407 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5408 AddRec->hasNoUnsignedWrap();
5409
Chris Lattnerdb25de42005-08-15 23:33:51 +00005410 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005411 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005412 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005413
Dan Gohman52fddd32010-01-26 04:40:18 +00005414 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005415 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005416 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005417 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005418 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005419 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005420 // value and past the maximum value for its type in a single step.
5421 // Note that it's not sufficient to check NoWrap here, because even
5422 // though the value after a wrap is undefined, it's not undefined
5423 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005424 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005425 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005426 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005427 if (isSigned) {
5428 APInt Max = APInt::getSignedMaxValue(BitWidth);
5429 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5430 .slt(getSignedRange(RHS).getSignedMax()))
5431 return getCouldNotCompute();
5432 } else {
5433 APInt Max = APInt::getMaxValue(BitWidth);
5434 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5435 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5436 return getCouldNotCompute();
5437 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005438 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005439 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005440 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005441
Dan Gohmana1af7572009-04-30 20:47:05 +00005442 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5443 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5444 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005445 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005446
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005447 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005448 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005449
Dan Gohmana1af7572009-04-30 20:47:05 +00005450 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005451 const SCEV *MinStart = getConstant(isSigned ?
5452 getSignedRange(Start).getSignedMin() :
5453 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005454
Dan Gohmana1af7572009-04-30 20:47:05 +00005455 // If we know that the condition is true in order to enter the loop,
5456 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005457 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5458 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005459 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005460 if (!isLoopEntryGuardedByCond(L,
5461 isSigned ? ICmpInst::ICMP_SLT :
5462 ICmpInst::ICMP_ULT,
5463 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005464 End = isSigned ? getSMaxExpr(RHS, Start)
5465 : getUMaxExpr(RHS, Start);
5466
5467 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005468 const SCEV *MaxEnd = getConstant(isSigned ?
5469 getSignedRange(End).getSignedMax() :
5470 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005471
Dan Gohman52fddd32010-01-26 04:40:18 +00005472 // If MaxEnd is within a step of the maximum integer value in its type,
5473 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005474 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005475 // compute the correct value.
5476 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005477 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005478 MaxEnd = isSigned ?
5479 getSMinExpr(MaxEnd,
5480 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5481 StepMinusOne)) :
5482 getUMinExpr(MaxEnd,
5483 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5484 StepMinusOne));
5485
Dan Gohmana1af7572009-04-30 20:47:05 +00005486 // Finally, we subtract these two values and divide, rounding up, to get
5487 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005488 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005489
5490 // The maximum backedge count is similar, except using the minimum start
5491 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005492 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005493
5494 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005495 }
5496
Dan Gohman1c343752009-06-27 21:21:31 +00005497 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005498}
5499
Chris Lattner53e677a2004-04-02 20:23:17 +00005500/// getNumIterationsInRange - Return the number of iterations of this loop that
5501/// produce values in the specified constant range. Another way of looking at
5502/// this is that it returns the first iteration number where the value is not in
5503/// the condition, thus computing the exit count. If the iteration count can't
5504/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005505const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005506 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005507 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005508 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005509
5510 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005511 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005512 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005513 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005514 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005515 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005516 if (const SCEVAddRecExpr *ShiftedAddRec =
5517 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005518 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005519 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005520 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005521 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005522 }
5523
5524 // The only time we can solve this is when we have all constant indices.
5525 // Otherwise, we cannot determine the overflow conditions.
5526 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5527 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005528 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005529
5530
5531 // Okay at this point we know that all elements of the chrec are constants and
5532 // that the start element is zero.
5533
5534 // First check to see if the range contains zero. If not, the first
5535 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005536 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005537 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005538 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005539
Chris Lattner53e677a2004-04-02 20:23:17 +00005540 if (isAffine()) {
5541 // If this is an affine expression then we have this situation:
5542 // Solve {0,+,A} in Range === Ax in Range
5543
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005544 // We know that zero is in the range. If A is positive then we know that
5545 // the upper value of the range must be the first possible exit value.
5546 // If A is negative then the lower of the range is the last possible loop
5547 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005548 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005549 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5550 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005551
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005552 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005553 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005554 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005555
5556 // Evaluate at the exit value. If we really did fall out of the valid
5557 // range, then we computed our trip count, otherwise wrap around or other
5558 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005559 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005560 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005561 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005562
5563 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005564 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005565 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005566 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005567 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005568 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005569 } else if (isQuadratic()) {
5570 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5571 // quadratic equation to solve it. To do this, we must frame our problem in
5572 // terms of figuring out when zero is crossed, instead of when
5573 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005574 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005575 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005576 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005577
5578 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005579 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005580 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005581 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5582 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005583 if (R1) {
5584 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005585 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005586 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005587 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005588 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005589 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005590
Chris Lattner53e677a2004-04-02 20:23:17 +00005591 // Make sure the root is not off by one. The returned iteration should
5592 // not be in the range, but the previous one should be. When solving
5593 // for "X*X < 5", for example, we should not return a root of 2.
5594 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005595 R1->getValue(),
5596 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005597 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005598 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005599 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005600 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005601
Dan Gohman246b2562007-10-22 18:31:58 +00005602 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005603 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005604 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005605 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005606 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005607
Chris Lattner53e677a2004-04-02 20:23:17 +00005608 // If R1 was not in the range, then it is a good return value. Make
5609 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005610 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005611 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005612 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005613 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005614 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005615 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005616 }
5617 }
5618 }
5619
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005620 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005621}
5622
5623
5624
5625//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005626// SCEVCallbackVH Class Implementation
5627//===----------------------------------------------------------------------===//
5628
Dan Gohman1959b752009-05-19 19:22:47 +00005629void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005630 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005631 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5632 SE->ConstantEvolutionLoopExitValue.erase(PN);
5633 SE->Scalars.erase(getValPtr());
5634 // this now dangles!
5635}
5636
Dan Gohman1959b752009-05-19 19:22:47 +00005637void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005638 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005639
5640 // Forget all the expressions associated with users of the old value,
5641 // so that future queries will recompute the expressions using the new
5642 // value.
5643 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005644 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005645 Value *Old = getValPtr();
5646 bool DeleteOld = false;
5647 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5648 UI != UE; ++UI)
5649 Worklist.push_back(*UI);
5650 while (!Worklist.empty()) {
5651 User *U = Worklist.pop_back_val();
5652 // Deleting the Old value will cause this to dangle. Postpone
5653 // that until everything else is done.
5654 if (U == Old) {
5655 DeleteOld = true;
5656 continue;
5657 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005658 if (!Visited.insert(U))
5659 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005660 if (PHINode *PN = dyn_cast<PHINode>(U))
5661 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman69fcae92009-07-14 14:34:04 +00005662 SE->Scalars.erase(U);
5663 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5664 UI != UE; ++UI)
5665 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005666 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005667 // Delete the Old value if it (indirectly) references itself.
Dan Gohman35738ac2009-05-04 22:30:44 +00005668 if (DeleteOld) {
5669 if (PHINode *PN = dyn_cast<PHINode>(Old))
5670 SE->ConstantEvolutionLoopExitValue.erase(PN);
5671 SE->Scalars.erase(Old);
5672 // this now dangles!
5673 }
5674 // this may dangle!
5675}
5676
Dan Gohman1959b752009-05-19 19:22:47 +00005677ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005678 : CallbackVH(V), SE(se) {}
5679
5680//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005681// ScalarEvolution Class Implementation
5682//===----------------------------------------------------------------------===//
5683
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005684ScalarEvolution::ScalarEvolution()
Evan Cheng1d451df2010-06-09 18:59:43 +00005685 : FunctionPass(&ID) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005686}
5687
Chris Lattner53e677a2004-04-02 20:23:17 +00005688bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005689 this->F = &F;
5690 LI = &getAnalysis<LoopInfo>();
5691 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005692 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005693 return false;
5694}
5695
5696void ScalarEvolution::releaseMemory() {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005697 Scalars.clear();
5698 BackedgeTakenCounts.clear();
5699 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005700 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005701 UniqueSCEVs.clear();
5702 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005703}
5704
5705void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5706 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005707 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005708 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005709}
5710
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005711bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005712 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005713}
5714
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005715static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005716 const Loop *L) {
5717 // Print all inner loops first
5718 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5719 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005720
Dan Gohman30733292010-01-09 18:17:45 +00005721 OS << "Loop ";
5722 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5723 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005724
Dan Gohman5d984912009-12-18 01:14:11 +00005725 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005726 L->getExitBlocks(ExitBlocks);
5727 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005728 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005729
Dan Gohman46bdfb02009-02-24 18:55:53 +00005730 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5731 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005732 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005733 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005734 }
5735
Dan Gohman30733292010-01-09 18:17:45 +00005736 OS << "\n"
5737 "Loop ";
5738 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5739 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005740
5741 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5742 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5743 } else {
5744 OS << "Unpredictable max backedge-taken count. ";
5745 }
5746
5747 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005748}
5749
Dan Gohman5d984912009-12-18 01:14:11 +00005750void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005751 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005752 // out SCEV values of all instructions that are interesting. Doing
5753 // this potentially causes it to create new SCEV objects though,
5754 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005755 // observable from outside the class though, so casting away the
5756 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005757 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005758
Dan Gohman30733292010-01-09 18:17:45 +00005759 OS << "Classifying expressions for: ";
5760 WriteAsOperand(OS, F, /*PrintType=*/false);
5761 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005762 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005763 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005764 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005765 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005766 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005767 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005768
Dan Gohman0c689c52009-06-19 17:49:54 +00005769 const Loop *L = LI->getLoopFor((*I).getParent());
5770
Dan Gohman0bba49c2009-07-07 17:06:11 +00005771 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005772 if (AtUse != SV) {
5773 OS << " --> ";
5774 AtUse->print(OS);
5775 }
5776
5777 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005778 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005779 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005780 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005781 OS << "<<Unknown>>";
5782 } else {
5783 OS << *ExitValue;
5784 }
5785 }
5786
Chris Lattner53e677a2004-04-02 20:23:17 +00005787 OS << "\n";
5788 }
5789
Dan Gohman30733292010-01-09 18:17:45 +00005790 OS << "Determining loop execution counts for: ";
5791 WriteAsOperand(OS, F, /*PrintType=*/false);
5792 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005793 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5794 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005795}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005796