blob: c4079e37a11bbd1857a8548bfcd83fa985789105 [file] [log] [blame]
Chris Lattner4fd56002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4fd56002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattner90461932010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattner4fd56002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattner4fd56002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattner08b43922005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattner4fd56002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +000025#include "llvm/Transforms/Utils/Local.h"
Chris Lattner0975ed52005-05-07 04:24:13 +000026#include "llvm/Constants.h"
Chris Lattnerae74f552006-04-28 04:14:49 +000027#include "llvm/DerivedTypes.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000028#include "llvm/Function.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000029#include "llvm/Instructions.h"
Dale Johannesen03afd022009-03-06 01:41:59 +000030#include "llvm/IntrinsicInst.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000031#include "llvm/Pass.h"
Chris Lattnerc9fd0972005-05-08 20:09:57 +000032#include "llvm/Assembly/Writer.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000033#include "llvm/Support/CFG.h"
Chandler Carruth464bda32012-04-26 05:30:30 +000034#include "llvm/Support/IRBuilder.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000035#include "llvm/Support/Debug.h"
Chris Lattnerd3c7b732009-03-31 22:13:29 +000036#include "llvm/Support/ValueHandle.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000037#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000038#include "llvm/ADT/PostOrderIterator.h"
Chandler Carruth464bda32012-04-26 05:30:30 +000039#include "llvm/ADT/STLExtras.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000040#include "llvm/ADT/Statistic.h"
Chris Lattnerec531232009-12-31 07:33:14 +000041#include "llvm/ADT/DenseMap.h"
Chris Lattnerc0649ac2005-05-07 21:59:39 +000042#include <algorithm>
Chris Lattnerd7456022004-01-09 06:02:20 +000043using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000044
Chris Lattner0e5f4992006-12-19 21:40:18 +000045STATISTIC(NumLinear , "Number of insts linearized");
46STATISTIC(NumChanged, "Number of insts reassociated");
47STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnera92f6962002-10-01 22:38:41 +000049
Chris Lattner0e5f4992006-12-19 21:40:18 +000050namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000051 struct ValueEntry {
Chris Lattnerc0649ac2005-05-07 21:59:39 +000052 unsigned Rank;
53 Value *Op;
54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55 };
56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
58 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000059}
Chris Lattnerc0649ac2005-05-07 21:59:39 +000060
Devang Patel50cacb22008-11-21 21:00:20 +000061#ifndef NDEBUG
Chris Lattnere5022fe2006-03-04 09:31:13 +000062/// PrintOps - Print out the expression identified in the Ops list.
63///
Chris Lattner9f7b7082009-12-31 18:40:32 +000064static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere5022fe2006-03-04 09:31:13 +000065 Module *M = I->getParent()->getParent()->getParent();
David Greenea1fa76c2010-01-05 01:27:24 +000066 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner1befe642009-12-31 07:17:37 +000067 << *Ops[0].Op->getType() << '\t';
Chris Lattner7de3b5d2008-08-19 04:45:19 +000068 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greenea1fa76c2010-01-05 01:27:24 +000069 dbgs() << "[ ";
70 WriteAsOperand(dbgs(), Ops[i].Op, false, M);
71 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner7de3b5d2008-08-19 04:45:19 +000072 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000073}
Devang Patel59500c82008-11-21 20:00:59 +000074#endif
Chris Lattnere5022fe2006-03-04 09:31:13 +000075
Dan Gohman844731a2008-05-13 00:00:25 +000076namespace {
Chandler Carruth464bda32012-04-26 05:30:30 +000077 /// \brief Utility class representing a base and exponent pair which form one
78 /// factor of some product.
79 struct Factor {
80 Value *Base;
81 unsigned Power;
82
83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85 /// \brief Sort factors by their Base.
86 struct BaseSorter {
87 bool operator()(const Factor &LHS, const Factor &RHS) {
88 return LHS.Base < RHS.Base;
89 }
90 };
91
92 /// \brief Compare factors for equal bases.
93 struct BaseEqual {
94 bool operator()(const Factor &LHS, const Factor &RHS) {
95 return LHS.Base == RHS.Base;
96 }
97 };
98
99 /// \brief Sort factors in descending order by their power.
100 struct PowerDescendingSorter {
101 bool operator()(const Factor &LHS, const Factor &RHS) {
102 return LHS.Power > RHS.Power;
103 }
104 };
105
106 /// \brief Compare factors for equal powers.
107 struct PowerEqual {
108 bool operator()(const Factor &LHS, const Factor &RHS) {
109 return LHS.Power == RHS.Power;
110 }
111 };
112 };
113}
114
115namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +0000116 class Reassociate : public FunctionPass {
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000117 DenseMap<BasicBlock*, unsigned> RankMap;
Craig Topperf1d0f772012-03-26 06:58:25 +0000118 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
Dan Gohmandac5dba2011-04-12 00:11:56 +0000119 SmallVector<WeakVH, 8> RedoInsts;
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +0000120 SmallVector<WeakVH, 8> DeadInsts;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000121 bool MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +0000122 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +0000123 static char ID; // Pass identification, replacement for typeid
Owen Anderson081c34b2010-10-19 17:21:58 +0000124 Reassociate() : FunctionPass(ID) {
125 initializeReassociatePass(*PassRegistry::getPassRegistry());
126 }
Devang Patel794fd752007-05-01 21:15:47 +0000127
Chris Lattner7e708292002-06-25 16:13:24 +0000128 bool runOnFunction(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000129
130 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnercb2610e2002-10-21 20:00:28 +0000131 AU.setPreservesCFG();
Chris Lattner4fd56002002-05-08 22:19:27 +0000132 }
133 private:
Chris Lattner7e708292002-06-25 16:13:24 +0000134 void BuildRankMap(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000135 unsigned getRank(Value *V);
Chris Lattner69e98e22009-12-31 19:24:52 +0000136 Value *ReassociateExpression(BinaryOperator *I);
Chris Lattner9f7b7082009-12-31 18:40:32 +0000137 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
Chris Lattnere9efecb2006-03-14 16:04:29 +0000138 unsigned Idx = 0);
Chris Lattner9f7b7082009-12-31 18:40:32 +0000139 Value *OptimizeExpression(BinaryOperator *I,
140 SmallVectorImpl<ValueEntry> &Ops);
141 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
Chandler Carruth464bda32012-04-26 05:30:30 +0000142 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
143 SmallVectorImpl<Factor> &Factors);
144 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
145 SmallVectorImpl<Factor> &Factors);
146 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner9f7b7082009-12-31 18:40:32 +0000147 void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000148 void LinearizeExpr(BinaryOperator *I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000149 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Dan Gohmandac5dba2011-04-12 00:11:56 +0000150 void ReassociateInst(BasicBlock::iterator &BBI);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000151
152 void RemoveDeadBinaryOp(Value *V);
Chris Lattner4fd56002002-05-08 22:19:27 +0000153 };
154}
155
Dan Gohman844731a2008-05-13 00:00:25 +0000156char Reassociate::ID = 0;
Owen Andersond13db2c2010-07-21 22:09:45 +0000157INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersonce665bd2010-10-07 22:25:06 +0000158 "Reassociate expressions", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000159
Brian Gaeked0fde302003-11-11 22:41:34 +0000160// Public interface to the Reassociate pass
Chris Lattnerd7456022004-01-09 06:02:20 +0000161FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattner4fd56002002-05-08 22:19:27 +0000162
Chris Lattnere5022fe2006-03-04 09:31:13 +0000163void Reassociate::RemoveDeadBinaryOp(Value *V) {
Reid Spencere4d87aa2006-12-23 06:05:41 +0000164 Instruction *Op = dyn_cast<Instruction>(V);
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +0000165 if (!Op || !isa<BinaryOperator>(Op))
Reid Spencere4d87aa2006-12-23 06:05:41 +0000166 return;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000167
Reid Spencere4d87aa2006-12-23 06:05:41 +0000168 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
Chris Lattner69e98e22009-12-31 19:24:52 +0000169
170 ValueRankMap.erase(Op);
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +0000171 DeadInsts.push_back(Op);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000172 RemoveDeadBinaryOp(LHS);
173 RemoveDeadBinaryOp(RHS);
174}
175
Chris Lattner9c723192005-05-08 20:57:04 +0000176
177static bool isUnmovableInstruction(Instruction *I) {
178 if (I->getOpcode() == Instruction::PHI ||
179 I->getOpcode() == Instruction::Alloca ||
180 I->getOpcode() == Instruction::Load ||
Chris Lattner9c723192005-05-08 20:57:04 +0000181 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen03afd022009-03-06 01:41:59 +0000182 (I->getOpcode() == Instruction::Call &&
183 !isa<DbgInfoIntrinsic>(I)) ||
Reid Spencer1628cec2006-10-26 06:15:43 +0000184 I->getOpcode() == Instruction::UDiv ||
185 I->getOpcode() == Instruction::SDiv ||
186 I->getOpcode() == Instruction::FDiv ||
Reid Spencer0a783f72006-11-02 01:53:59 +0000187 I->getOpcode() == Instruction::URem ||
188 I->getOpcode() == Instruction::SRem ||
189 I->getOpcode() == Instruction::FRem)
Chris Lattner9c723192005-05-08 20:57:04 +0000190 return true;
191 return false;
192}
193
Chris Lattner7e708292002-06-25 16:13:24 +0000194void Reassociate::BuildRankMap(Function &F) {
Chris Lattner6007cb62003-08-12 20:14:27 +0000195 unsigned i = 2;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000196
197 // Assign distinct ranks to function arguments
Chris Lattnere4d5c442005-03-15 04:54:21 +0000198 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000199 ValueRankMap[&*I] = ++i;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000200
Chris Lattner7e708292002-06-25 16:13:24 +0000201 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000202 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9c723192005-05-08 20:57:04 +0000203 E = RPOT.end(); I != E; ++I) {
204 BasicBlock *BB = *I;
205 unsigned BBRank = RankMap[BB] = ++i << 16;
206
207 // Walk the basic block, adding precomputed ranks for any instructions that
208 // we cannot move. This ensures that the ranks for these instructions are
209 // all different in the block.
210 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
211 if (isUnmovableInstruction(I))
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000212 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9c723192005-05-08 20:57:04 +0000213 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000214}
215
216unsigned Reassociate::getRank(Value *V) {
Chris Lattner08b43922005-05-07 04:08:02 +0000217 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000218 if (I == 0) {
219 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
220 return 0; // Otherwise it's a global or constant, rank 0.
221 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000222
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000223 if (unsigned Rank = ValueRankMap[I])
224 return Rank; // Rank already known?
Jeff Cohen00b168892005-07-27 06:12:32 +0000225
Chris Lattner08b43922005-05-07 04:08:02 +0000226 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
227 // we can reassociate expressions for code motion! Since we do not recurse
228 // for PHI nodes, we cannot have infinite recursion here, because there
229 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattner08b43922005-05-07 04:08:02 +0000230 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
231 for (unsigned i = 0, e = I->getNumOperands();
232 i != e && Rank != MaxRank; ++i)
233 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen00b168892005-07-27 06:12:32 +0000234
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000235 // If this is a not or neg instruction, do not count it for rank. This
236 // assures us that X and ~X will have the same rank.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000237 if (!I->getType()->isIntegerTy() ||
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000238 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000239 ++Rank;
240
David Greenea1fa76c2010-01-05 01:27:24 +0000241 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
Chris Lattnerbdff5482009-08-23 04:37:46 +0000242 // << Rank << "\n");
Jeff Cohen00b168892005-07-27 06:12:32 +0000243
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000244 return ValueRankMap[I] = Rank;
Chris Lattner4fd56002002-05-08 22:19:27 +0000245}
246
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000247/// isReassociableOp - Return true if V is an instruction of the specified
248/// opcode and if it only has one use.
249static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000250 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000251 cast<Instruction>(V)->getOpcode() == Opcode)
252 return cast<BinaryOperator>(V);
253 return 0;
254}
Chris Lattner4fd56002002-05-08 22:19:27 +0000255
Chris Lattnerf33151a2005-05-08 21:28:52 +0000256/// LowerNegateToMultiply - Replace 0-X with X*-1.
257///
Dale Johannesenf4978e22009-03-19 17:22:53 +0000258static Instruction *LowerNegateToMultiply(Instruction *Neg,
Craig Topperf1d0f772012-03-26 06:58:25 +0000259 DenseMap<AssertingVH<Value>, unsigned> &ValueRankMap) {
Owen Andersona7235ea2009-07-31 20:28:14 +0000260 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000261
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000262 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000263 ValueRankMap.erase(Neg);
Chris Lattner6934a042007-02-11 01:23:03 +0000264 Res->takeName(Neg);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000265 Neg->replaceAllUsesWith(Res);
Devang Patel5367b232011-04-28 22:48:14 +0000266 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000267 Neg->eraseFromParent();
268 return Res;
269}
270
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000271// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
272// Note that if D is also part of the expression tree that we recurse to
273// linearize it as well. Besides that case, this does not recurse into A,B, or
274// C.
275void Reassociate::LinearizeExpr(BinaryOperator *I) {
276 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
277 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
Jeff Cohen00b168892005-07-27 06:12:32 +0000278 assert(isReassociableOp(LHS, I->getOpcode()) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000279 isReassociableOp(RHS, I->getOpcode()) &&
280 "Not an expression that needs linearization?");
Misha Brukmanfd939082005-04-21 23:48:37 +0000281
David Greenea1fa76c2010-01-05 01:27:24 +0000282 DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
Chris Lattner4fd56002002-05-08 22:19:27 +0000283
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000284 // Move the RHS instruction to live immediately before I, avoiding breaking
285 // dominator properties.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000286 RHS->moveBefore(I);
Chris Lattnere4b73042002-10-31 17:12:59 +0000287
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000288 // Move operands around to do the linearization.
289 I->setOperand(1, RHS->getOperand(0));
290 RHS->setOperand(0, LHS);
291 I->setOperand(0, RHS);
Jeff Cohen00b168892005-07-27 06:12:32 +0000292
Dan Gohman46985a12011-02-02 02:02:34 +0000293 // Conservatively clear all the optional flags, which may not hold
294 // after the reassociation.
295 I->clearSubclassOptionalData();
296 LHS->clearSubclassOptionalData();
297 RHS->clearSubclassOptionalData();
298
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000299 ++NumLinear;
300 MadeChange = true;
David Greenea1fa76c2010-01-05 01:27:24 +0000301 DEBUG(dbgs() << "Linearized: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000302
303 // If D is part of this expression tree, tail recurse.
304 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
305 LinearizeExpr(I);
306}
307
308
309/// LinearizeExprTree - Given an associative binary expression tree, traverse
310/// all of the uses putting it into canonical form. This forces a left-linear
Dan Gohmanf451cb82010-02-10 16:03:48 +0000311/// form of the expression (((a+b)+c)+d), and collects information about the
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000312/// rank of the non-tree operands.
313///
Chris Lattnere9efecb2006-03-14 16:04:29 +0000314/// NOTE: These intentionally destroys the expression tree operands (turning
315/// them into undef values) to reduce #uses of the values. This means that the
316/// caller MUST use something like RewriteExprTree to put the values back in.
317///
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000318void Reassociate::LinearizeExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000319 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000320 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
321 unsigned Opcode = I->getOpcode();
322
323 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
324 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
325 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
326
Chris Lattnerf33151a2005-05-08 21:28:52 +0000327 // If this is a multiply expression tree and it contains internal negations,
328 // transform them into multiplies by -1 so they can be reassociated.
329 if (I->getOpcode() == Instruction::Mul) {
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000330 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000331 LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000332 LHSBO = isReassociableOp(LHS, Opcode);
333 }
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000334 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000335 RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000336 RHSBO = isReassociableOp(RHS, Opcode);
337 }
338 }
339
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000340 if (!LHSBO) {
341 if (!RHSBO) {
342 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
343 // such, just remember these operands and their rank.
344 Ops.push_back(ValueEntry(getRank(LHS), LHS));
345 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000346
347 // Clear the leaves out.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000348 I->setOperand(0, UndefValue::get(I->getType()));
349 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000350 return;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000351 }
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000352
353 // Turn X+(Y+Z) -> (Y+Z)+X
354 std::swap(LHSBO, RHSBO);
355 std::swap(LHS, RHS);
356 bool Success = !I->swapOperands();
357 assert(Success && "swapOperands failed");
Duncan Sands1f6a3292011-08-12 14:54:45 +0000358 (void)Success;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000359 MadeChange = true;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000360 } else if (RHSBO) {
Dan Gohmanf451cb82010-02-10 16:03:48 +0000361 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the RHS is not
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000362 // part of the expression tree.
363 LinearizeExpr(I);
364 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
365 RHS = I->getOperand(1);
366 RHSBO = 0;
Chris Lattner4fd56002002-05-08 22:19:27 +0000367 }
Misha Brukmanfd939082005-04-21 23:48:37 +0000368
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000369 // Okay, now we know that the LHS is a nested expression and that the RHS is
370 // not. Perform reassociation.
371 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
Chris Lattner4fd56002002-05-08 22:19:27 +0000372
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000373 // Move LHS right before I to make sure that the tree expression dominates all
374 // values.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000375 LHSBO->moveBefore(I);
Chris Lattnere9608e32003-08-12 21:45:24 +0000376
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000377 // Linearize the expression tree on the LHS.
378 LinearizeExprTree(LHSBO, Ops);
Chris Lattnere4b73042002-10-31 17:12:59 +0000379
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000380 // Remember the RHS operand and its rank.
381 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000382
383 // Clear the RHS leaf out.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000384 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattner4fd56002002-05-08 22:19:27 +0000385}
386
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000387// RewriteExprTree - Now that the operands for this expression tree are
388// linearized and optimized, emit them in-order. This function is written to be
389// tail recursive.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000390void Reassociate::RewriteExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000391 SmallVectorImpl<ValueEntry> &Ops,
Chris Lattnere9efecb2006-03-14 16:04:29 +0000392 unsigned i) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000393 if (i+2 == Ops.size()) {
394 if (I->getOperand(0) != Ops[i].Op ||
395 I->getOperand(1) != Ops[i+1].Op) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000396 Value *OldLHS = I->getOperand(0);
David Greenea1fa76c2010-01-05 01:27:24 +0000397 DEBUG(dbgs() << "RA: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000398 I->setOperand(0, Ops[i].Op);
399 I->setOperand(1, Ops[i+1].Op);
Dan Gohman46985a12011-02-02 02:02:34 +0000400
Chris Lattnerde1d8a52011-02-17 01:29:24 +0000401 // Clear all the optional flags, which may not hold after the
402 // reassociation if the expression involved more than just this operation.
403 if (Ops.size() != 2)
404 I->clearSubclassOptionalData();
Dan Gohman46985a12011-02-02 02:02:34 +0000405
David Greenea1fa76c2010-01-05 01:27:24 +0000406 DEBUG(dbgs() << "TO: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000407 MadeChange = true;
408 ++NumChanged;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000409
410 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
411 // delete the extra, now dead, nodes.
412 RemoveDeadBinaryOp(OldLHS);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000413 }
414 return;
415 }
416 assert(i+2 < Ops.size() && "Ops index out of range!");
417
418 if (I->getOperand(1) != Ops[i].Op) {
David Greenea1fa76c2010-01-05 01:27:24 +0000419 DEBUG(dbgs() << "RA: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000420 I->setOperand(1, Ops[i].Op);
Dan Gohman46985a12011-02-02 02:02:34 +0000421
422 // Conservatively clear all the optional flags, which may not hold
423 // after the reassociation.
424 I->clearSubclassOptionalData();
425
David Greenea1fa76c2010-01-05 01:27:24 +0000426 DEBUG(dbgs() << "TO: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000427 MadeChange = true;
428 ++NumChanged;
429 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000430
431 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
432 assert(LHS->getOpcode() == I->getOpcode() &&
433 "Improper expression tree!");
434
435 // Compactify the tree instructions together with each other to guarantee
436 // that the expression tree is dominated by all of Ops.
437 LHS->moveBefore(I);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000438 RewriteExprTree(LHS, Ops, i+1);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000439}
440
441
Chris Lattner4fd56002002-05-08 22:19:27 +0000442
Chris Lattnera36e6c82002-05-16 04:37:07 +0000443// NegateValue - Insert instructions before the instruction pointed to by BI,
444// that computes the negative version of the value specified. The negative
445// version of the value is returned, and BI is left pointing at the instruction
446// that should be processed next by the reassociation pass.
447//
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000448static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattner35239932009-12-31 20:34:32 +0000449 if (Constant *C = dyn_cast<Constant>(V))
450 return ConstantExpr::getNeg(C);
451
Chris Lattnera36e6c82002-05-16 04:37:07 +0000452 // We are trying to expose opportunity for reassociation. One of the things
453 // that we want to do to achieve this is to push a negation as deep into an
454 // expression chain as possible, to expose the add instructions. In practice,
455 // this means that we turn this:
456 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
457 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
458 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattner90461932010-01-01 00:04:26 +0000459 // we introduce tons of unnecessary negation instructions.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000460 //
461 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000462 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
Chris Lattner2cd85da2005-09-02 06:38:04 +0000463 // Push the negates through the add.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000464 I->setOperand(0, NegateValue(I->getOperand(0), BI));
465 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattnera36e6c82002-05-16 04:37:07 +0000466
Chris Lattner2cd85da2005-09-02 06:38:04 +0000467 // We must move the add instruction here, because the neg instructions do
468 // not dominate the old add instruction in general. By moving it, we are
469 // assured that the neg instructions we just inserted dominate the
470 // instruction we are about to insert after them.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000471 //
Chris Lattner2cd85da2005-09-02 06:38:04 +0000472 I->moveBefore(BI);
473 I->setName(I->getName()+".neg");
474 return I;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000475 }
Chris Lattner35239932009-12-31 20:34:32 +0000476
477 // Okay, we need to materialize a negated version of V with an instruction.
478 // Scan the use lists of V to see if we have one already.
479 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
Gabor Greif110b75a2010-07-12 12:03:02 +0000480 User *U = *UI;
481 if (!BinaryOperator::isNeg(U)) continue;
Chris Lattner35239932009-12-31 20:34:32 +0000482
483 // We found one! Now we have to make sure that the definition dominates
484 // this use. We do this by moving it to the entry block (if it is a
485 // non-instruction value) or right after the definition. These negates will
486 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif110b75a2010-07-12 12:03:02 +0000487 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattner1c91fae2010-01-02 21:46:33 +0000488
489 // Verify that the negate is in this function, V might be a constant expr.
490 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
491 continue;
Chris Lattner35239932009-12-31 20:34:32 +0000492
493 BasicBlock::iterator InsertPt;
494 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
495 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
496 InsertPt = II->getNormalDest()->begin();
497 } else {
498 InsertPt = InstInput;
499 ++InsertPt;
500 }
501 while (isa<PHINode>(InsertPt)) ++InsertPt;
502 } else {
503 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
504 }
505 TheNeg->moveBefore(InsertPt);
506 return TheNeg;
507 }
Chris Lattnera36e6c82002-05-16 04:37:07 +0000508
509 // Insert a 'neg' instruction that subtracts the value from zero to get the
510 // negation.
Dan Gohman4ae51262009-08-12 16:23:25 +0000511 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Chris Lattner08b43922005-05-07 04:08:02 +0000512}
513
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000514/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
515/// X-Y into (X + -Y).
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000516static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000517 // If this is a negation, we can't split it up!
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000518 if (BinaryOperator::isNeg(Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000519 return false;
520
521 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner0b0803a2008-02-17 20:51:26 +0000522 // subtract or if this is only used by one.
523 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
524 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000525 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000526 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner5329bb22008-02-17 20:54:40 +0000527 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000528 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000529 if (Sub->hasOneUse() &&
530 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
531 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000532 return true;
533
534 return false;
535}
536
Chris Lattner08b43922005-05-07 04:08:02 +0000537/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
538/// only used by an add, transform this into (X+(0-Y)) to promote better
539/// reassociation.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000540static Instruction *BreakUpSubtract(Instruction *Sub,
Craig Topperf1d0f772012-03-26 06:58:25 +0000541 DenseMap<AssertingVH<Value>, unsigned> &ValueRankMap) {
Chris Lattner90461932010-01-01 00:04:26 +0000542 // Convert a subtract into an add and a neg instruction. This allows sub
543 // instructions to be commuted with other add instructions.
Chris Lattner08b43922005-05-07 04:08:02 +0000544 //
Chris Lattner90461932010-01-01 00:04:26 +0000545 // Calculate the negative value of Operand 1 of the sub instruction,
546 // and set it as the RHS of the add instruction we just made.
Chris Lattner08b43922005-05-07 04:08:02 +0000547 //
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000548 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000549 Instruction *New =
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000550 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Chris Lattner6934a042007-02-11 01:23:03 +0000551 New->takeName(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000552
553 // Everyone now refers to the add instruction.
Dale Johannesenf4978e22009-03-19 17:22:53 +0000554 ValueRankMap.erase(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000555 Sub->replaceAllUsesWith(New);
Devang Patel5367b232011-04-28 22:48:14 +0000556 New->setDebugLoc(Sub->getDebugLoc());
Chris Lattner08b43922005-05-07 04:08:02 +0000557 Sub->eraseFromParent();
Jeff Cohen00b168892005-07-27 06:12:32 +0000558
David Greenea1fa76c2010-01-05 01:27:24 +0000559 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattner08b43922005-05-07 04:08:02 +0000560 return New;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000561}
562
Chris Lattner0975ed52005-05-07 04:24:13 +0000563/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
564/// by one, change this into a multiply by a constant to assist with further
565/// reassociation.
Craig Topperf1d0f772012-03-26 06:58:25 +0000566static Instruction *ConvertShiftToMul(Instruction *Shl,
567 DenseMap<AssertingVH<Value>, unsigned> &ValueRankMap) {
Chris Lattner22a66c42006-03-14 06:55:18 +0000568 // If an operand of this shift is a reassociable multiply, or if the shift
569 // is used by a reassociable multiply or add, turn into a multiply.
570 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
571 (Shl->hasOneUse() &&
572 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
573 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000574 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000575 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Chris Lattner22a66c42006-03-14 06:55:18 +0000576
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000577 Instruction *Mul =
578 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000579 ValueRankMap.erase(Shl);
Chris Lattner6934a042007-02-11 01:23:03 +0000580 Mul->takeName(Shl);
Chris Lattner22a66c42006-03-14 06:55:18 +0000581 Shl->replaceAllUsesWith(Mul);
Devang Patel5367b232011-04-28 22:48:14 +0000582 Mul->setDebugLoc(Shl->getDebugLoc());
Chris Lattner22a66c42006-03-14 06:55:18 +0000583 Shl->eraseFromParent();
584 return Mul;
585 }
586 return 0;
Chris Lattner0975ed52005-05-07 04:24:13 +0000587}
588
Chris Lattner109d34d2005-05-08 18:59:37 +0000589// Scan backwards and forwards among values with the same rank as element i to
Chris Lattner9506c932010-01-01 01:13:15 +0000590// see if X exists. If X does not exist, return i. This is useful when
591// scanning for 'x' when we see '-x' because they both get the same rank.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000592static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner109d34d2005-05-08 18:59:37 +0000593 Value *X) {
594 unsigned XRank = Ops[i].Rank;
595 unsigned e = Ops.size();
596 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
597 if (Ops[j].Op == X)
598 return j;
Chris Lattner9506c932010-01-01 01:13:15 +0000599 // Scan backwards.
Chris Lattner109d34d2005-05-08 18:59:37 +0000600 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
601 if (Ops[j].Op == X)
602 return j;
603 return i;
604}
605
Chris Lattnere5022fe2006-03-04 09:31:13 +0000606/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
607/// and returning the result. Insert the tree before I.
Chris Lattner8d93b252009-12-31 07:48:51 +0000608static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
Chris Lattnere5022fe2006-03-04 09:31:13 +0000609 if (Ops.size() == 1) return Ops.back();
610
611 Value *V1 = Ops.back();
612 Ops.pop_back();
613 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000614 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000615}
616
617/// RemoveFactorFromExpression - If V is an expression tree that is a
618/// multiplication sequence, and if this sequence contains a multiply by Factor,
619/// remove Factor from the tree and return the new tree.
620Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
621 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
622 if (!BO) return 0;
623
Chris Lattner9f7b7082009-12-31 18:40:32 +0000624 SmallVector<ValueEntry, 8> Factors;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000625 LinearizeExprTree(BO, Factors);
626
627 bool FoundFactor = false;
Chris Lattner9506c932010-01-01 01:13:15 +0000628 bool NeedsNegate = false;
629 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000630 if (Factors[i].Op == Factor) {
631 FoundFactor = true;
632 Factors.erase(Factors.begin()+i);
633 break;
634 }
Chris Lattner9506c932010-01-01 01:13:15 +0000635
636 // If this is a negative version of this factor, remove it.
637 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
638 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
639 if (FC1->getValue() == -FC2->getValue()) {
640 FoundFactor = NeedsNegate = true;
641 Factors.erase(Factors.begin()+i);
642 break;
643 }
644 }
645
Chris Lattnere9efecb2006-03-14 16:04:29 +0000646 if (!FoundFactor) {
647 // Make sure to restore the operands to the expression tree.
648 RewriteExprTree(BO, Factors);
649 return 0;
650 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000651
Chris Lattner9506c932010-01-01 01:13:15 +0000652 BasicBlock::iterator InsertPt = BO; ++InsertPt;
653
Chris Lattner1e7558b2009-12-31 19:34:45 +0000654 // If this was just a single multiply, remove the multiply and return the only
655 // remaining operand.
656 if (Factors.size() == 1) {
657 ValueRankMap.erase(BO);
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +0000658 DeadInsts.push_back(BO);
Chris Lattner9506c932010-01-01 01:13:15 +0000659 V = Factors[0].Op;
660 } else {
661 RewriteExprTree(BO, Factors);
662 V = BO;
Chris Lattner1e7558b2009-12-31 19:34:45 +0000663 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000664
Chris Lattner9506c932010-01-01 01:13:15 +0000665 if (NeedsNegate)
666 V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
667
668 return V;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000669}
670
Chris Lattnere9efecb2006-03-14 16:04:29 +0000671/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
672/// add its operands as factors, otherwise add V to the list of factors.
Chris Lattner893075f2010-03-05 07:18:54 +0000673///
674/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000675static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattner893075f2010-03-05 07:18:54 +0000676 SmallVectorImpl<Value*> &Factors,
677 const SmallVectorImpl<ValueEntry> &Ops,
678 bool IsRoot) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000679 BinaryOperator *BO;
Chris Lattner893075f2010-03-05 07:18:54 +0000680 if (!(V->hasOneUse() || V->use_empty()) || // More than one use.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000681 !(BO = dyn_cast<BinaryOperator>(V)) ||
682 BO->getOpcode() != Instruction::Mul) {
683 Factors.push_back(V);
684 return;
685 }
686
Chris Lattner893075f2010-03-05 07:18:54 +0000687 // If this value has a single use because it is another input to the add
688 // tree we're reassociating and we dropped its use, it actually has two
689 // uses and we can't factor it.
690 if (!IsRoot) {
691 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
692 if (Ops[i].Op == V) {
693 Factors.push_back(V);
694 return;
695 }
696 }
697
698
Chris Lattnere9efecb2006-03-14 16:04:29 +0000699 // Otherwise, add the LHS and RHS to the list of factors.
Chris Lattner893075f2010-03-05 07:18:54 +0000700 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops, false);
701 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops, false);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000702}
703
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000704/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
705/// instruction. This optimizes based on identities. If it can be reduced to
706/// a single Value, it is returned, otherwise the Ops list is mutated as
707/// necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000708static Value *OptimizeAndOrXor(unsigned Opcode,
709 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000710 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
711 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
712 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
713 // First, check for X and ~X in the operand list.
714 assert(i < Ops.size());
715 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
716 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
717 unsigned FoundX = FindInOperandList(Ops, i, X);
718 if (FoundX != i) {
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000719 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000720 return Constant::getNullValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000721
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000722 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000723 return Constant::getAllOnesValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000724 }
725 }
726
727 // Next, check for duplicate pairs of values, which we assume are next to
728 // each other, due to our sorting criteria.
729 assert(i < Ops.size());
730 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
731 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000732 // Drop duplicate values for And and Or.
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000733 Ops.erase(Ops.begin()+i);
734 --i; --e;
735 ++NumAnnihil;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000736 continue;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000737 }
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000738
739 // Drop pairs of values for Xor.
740 assert(Opcode == Instruction::Xor);
741 if (e == 2)
742 return Constant::getNullValue(Ops[0].Op->getType());
743
Chris Lattner90461932010-01-01 00:04:26 +0000744 // Y ^ X^X -> Y
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000745 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
746 i -= 1; e -= 2;
747 ++NumAnnihil;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000748 }
749 }
750 return 0;
751}
Chris Lattnere9efecb2006-03-14 16:04:29 +0000752
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000753/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
754/// optimizes based on identities. If it can be reduced to a single Value, it
755/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000756Value *Reassociate::OptimizeAdd(Instruction *I,
757 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000758 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner69e98e22009-12-31 19:24:52 +0000759 // can simplify the expression. X+-X == 0. While we're at it, scan for any
760 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Chris Lattner9506c932010-01-01 01:13:15 +0000761 //
762 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
763 //
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000764 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000765 Value *TheOp = Ops[i].Op;
766 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000767 // instances of the operand together. Due to our sorting criteria, we know
768 // that these need to be next to each other in the vector.
769 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
770 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner69e98e22009-12-31 19:24:52 +0000771 unsigned NumFound = 0;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000772 do {
773 Ops.erase(Ops.begin()+i);
Chris Lattner69e98e22009-12-31 19:24:52 +0000774 ++NumFound;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000775 } while (i != Ops.size() && Ops[i].Op == TheOp);
776
Chris Lattnerf8a447d2009-12-31 19:25:19 +0000777 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner69e98e22009-12-31 19:24:52 +0000778 ++NumFactor;
Chris Lattner69e98e22009-12-31 19:24:52 +0000779
780 // Insert a new multiply.
781 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
782 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
783
784 // Now that we have inserted a multiply, optimize it. This allows us to
785 // handle cases that require multiple factoring steps, such as this:
786 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Dan Gohmandac5dba2011-04-12 00:11:56 +0000787 RedoInsts.push_back(Mul);
Chris Lattner69e98e22009-12-31 19:24:52 +0000788
789 // If every add operand was a duplicate, return the multiply.
790 if (Ops.empty())
791 return Mul;
792
793 // Otherwise, we had some input that didn't have the dupe, such as
794 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
795 // things being added by this operation.
796 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000797
798 --i;
799 e = Ops.size();
800 continue;
Chris Lattner69e98e22009-12-31 19:24:52 +0000801 }
802
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000803 // Check for X and -X in the operand list.
Chris Lattner69e98e22009-12-31 19:24:52 +0000804 if (!BinaryOperator::isNeg(TheOp))
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000805 continue;
806
Chris Lattner69e98e22009-12-31 19:24:52 +0000807 Value *X = BinaryOperator::getNegArgument(TheOp);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000808 unsigned FoundX = FindInOperandList(Ops, i, X);
809 if (FoundX == i)
810 continue;
811
812 // Remove X and -X from the operand list.
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000813 if (Ops.size() == 2)
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000814 return Constant::getNullValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000815
816 Ops.erase(Ops.begin()+i);
817 if (i < FoundX)
818 --FoundX;
819 else
820 --i; // Need to back up an extra one.
821 Ops.erase(Ops.begin()+FoundX);
822 ++NumAnnihil;
823 --i; // Revisit element.
824 e -= 2; // Removed two elements.
825 }
Chris Lattner94285e62009-12-31 18:17:13 +0000826
827 // Scan the operand list, checking to see if there are any common factors
828 // between operands. Consider something like A*A+A*B*C+D. We would like to
829 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
830 // To efficiently find this, we count the number of times a factor occurs
831 // for any ADD operands that are MULs.
832 DenseMap<Value*, unsigned> FactorOccurrences;
833
834 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
835 // where they are actually the same multiply.
Chris Lattner94285e62009-12-31 18:17:13 +0000836 unsigned MaxOcc = 0;
837 Value *MaxOccVal = 0;
838 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
839 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
840 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
841 continue;
842
Chris Lattner94285e62009-12-31 18:17:13 +0000843 // Compute all of the factors of this added value.
844 SmallVector<Value*, 8> Factors;
Chris Lattner893075f2010-03-05 07:18:54 +0000845 FindSingleUseMultiplyFactors(BOp, Factors, Ops, true);
Chris Lattner94285e62009-12-31 18:17:13 +0000846 assert(Factors.size() > 1 && "Bad linearize!");
847
848 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner9506c932010-01-01 01:13:15 +0000849 SmallPtrSet<Value*, 8> Duplicates;
850 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
851 Value *Factor = Factors[i];
852 if (!Duplicates.insert(Factor)) continue;
853
854 unsigned Occ = ++FactorOccurrences[Factor];
855 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
856
857 // If Factor is a negative constant, add the negated value as a factor
858 // because we can percolate the negate out. Watch for minint, which
859 // cannot be positivified.
860 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
Chris Lattnerc73b24d2011-07-15 06:08:15 +0000861 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner9506c932010-01-01 01:13:15 +0000862 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
863 assert(!Duplicates.count(Factor) &&
864 "Shouldn't have two constant factors, missed a canonicalize");
865
866 unsigned Occ = ++FactorOccurrences[Factor];
867 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
868 }
Chris Lattner94285e62009-12-31 18:17:13 +0000869 }
870 }
871
872 // If any factor occurred more than one time, we can pull it out.
873 if (MaxOcc > 1) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000874 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner94285e62009-12-31 18:17:13 +0000875 ++NumFactor;
876
877 // Create a new instruction that uses the MaxOccVal twice. If we don't do
878 // this, we could otherwise run into situations where removing a factor
879 // from an expression will drop a use of maxocc, and this can cause
880 // RemoveFactorFromExpression on successive values to behave differently.
881 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
882 SmallVector<Value*, 4> NewMulOps;
Duncan Sands37f87c72011-01-26 10:08:38 +0000883 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerc2d1b692010-01-09 06:01:36 +0000884 // Only try to remove factors from expressions we're allowed to.
885 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
886 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
887 continue;
888
Chris Lattner94285e62009-12-31 18:17:13 +0000889 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands37f87c72011-01-26 10:08:38 +0000890 // The factorized operand may occur several times. Convert them all in
891 // one fell swoop.
892 for (unsigned j = Ops.size(); j != i;) {
893 --j;
894 if (Ops[j].Op == Ops[i].Op) {
895 NewMulOps.push_back(V);
896 Ops.erase(Ops.begin()+j);
897 }
898 }
899 --i;
Chris Lattner94285e62009-12-31 18:17:13 +0000900 }
901 }
902
903 // No need for extra uses anymore.
904 delete DummyInst;
Duncan Sands54a57042010-01-08 17:51:48 +0000905
Chris Lattner94285e62009-12-31 18:17:13 +0000906 unsigned NumAddedValues = NewMulOps.size();
907 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands54a57042010-01-08 17:51:48 +0000908
Chris Lattner69e98e22009-12-31 19:24:52 +0000909 // Now that we have inserted the add tree, optimize it. This allows us to
910 // handle cases that require multiple factoring steps, such as this:
Chris Lattner94285e62009-12-31 18:17:13 +0000911 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000912 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands54a57042010-01-08 17:51:48 +0000913 (void)NumAddedValues;
Chris Lattner69e98e22009-12-31 19:24:52 +0000914 V = ReassociateExpression(cast<BinaryOperator>(V));
915
916 // Create the multiply.
917 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
918
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000919 // Rerun associate on the multiply in case the inner expression turned into
920 // a multiply. We want to make sure that we keep things in canonical form.
921 V2 = ReassociateExpression(cast<BinaryOperator>(V2));
Chris Lattner94285e62009-12-31 18:17:13 +0000922
923 // If every add operand included the factor (e.g. "A*B + A*C"), then the
924 // entire result expression is just the multiply "A*(B+C)".
925 if (Ops.empty())
926 return V2;
927
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000928 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner94285e62009-12-31 18:17:13 +0000929 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000930 // things being added by this operation.
Chris Lattner94285e62009-12-31 18:17:13 +0000931 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
932 }
933
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000934 return 0;
935}
Chris Lattnere5022fe2006-03-04 09:31:13 +0000936
Chandler Carruth464bda32012-04-26 05:30:30 +0000937namespace {
938 /// \brief Predicate tests whether a ValueEntry's op is in a map.
939 struct IsValueInMap {
940 const DenseMap<Value *, unsigned> &Map;
941
942 IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
943
944 bool operator()(const ValueEntry &Entry) {
945 return Map.find(Entry.Op) != Map.end();
946 }
947 };
948}
949
950/// \brief Build up a vector of value/power pairs factoring a product.
951///
952/// Given a series of multiplication operands, build a vector of factors and
953/// the powers each is raised to when forming the final product. Sort them in
954/// the order of descending power.
955///
956/// (x*x) -> [(x, 2)]
957/// ((x*x)*x) -> [(x, 3)]
958/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
959///
960/// \returns Whether any factors have a power greater than one.
961bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
962 SmallVectorImpl<Factor> &Factors) {
963 unsigned FactorPowerSum = 0;
964 DenseMap<Value *, unsigned> FactorCounts;
965 for (unsigned LastIdx = 0, Idx = 0, Size = Ops.size(); Idx < Size; ++Idx) {
966 // Note that 'use_empty' uses means the only use is in the linearized tree
967 // represented by Ops -- we remove the values from the actual operations to
968 // reduce their use count.
969 if (!Ops[Idx].Op->use_empty()) {
970 if (LastIdx == Idx)
971 ++LastIdx;
972 continue;
973 }
974 if (LastIdx == Idx || Ops[LastIdx].Op != Ops[Idx].Op) {
975 LastIdx = Idx;
976 continue;
977 }
978 // Track for simplification all factors which occur 2 or more times.
979 DenseMap<Value *, unsigned>::iterator CountIt;
980 bool Inserted;
981 llvm::tie(CountIt, Inserted)
982 = FactorCounts.insert(std::make_pair(Ops[Idx].Op, 2));
983 if (Inserted) {
984 FactorPowerSum += 2;
985 Factors.push_back(Factor(Ops[Idx].Op, 2));
986 } else {
987 ++CountIt->second;
988 ++FactorPowerSum;
989 }
990 }
991 // We can only simplify factors if the sum of the powers of our simplifiable
992 // factors is 4 or higher. When that is the case, we will *always* have
993 // a simplification. This is an important invariant to prevent cyclicly
994 // trying to simplify already minimal formations.
995 if (FactorPowerSum < 4)
996 return false;
997
998 // Remove all the operands which are in the map.
999 Ops.erase(std::remove_if(Ops.begin(), Ops.end(), IsValueInMap(FactorCounts)),
1000 Ops.end());
1001
1002 // Record the adjusted power for the simplification factors. We add back into
1003 // the Ops list any values with an odd power, and make the power even. This
1004 // allows the outer-most multiplication tree to remain in tact during
1005 // simplification.
1006 unsigned OldOpsSize = Ops.size();
1007 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1008 Factors[Idx].Power = FactorCounts[Factors[Idx].Base];
1009 if (Factors[Idx].Power & 1) {
1010 Ops.push_back(ValueEntry(getRank(Factors[Idx].Base), Factors[Idx].Base));
1011 --Factors[Idx].Power;
1012 --FactorPowerSum;
1013 }
1014 }
1015 // None of the adjustments above should have reduced the sum of factor powers
1016 // below our mininum of '4'.
1017 assert(FactorPowerSum >= 4);
1018
1019 // Patch up the sort of the ops vector by sorting the factors we added back
1020 // onto the back, and merging the two sequences.
1021 if (OldOpsSize != Ops.size()) {
1022 SmallVectorImpl<ValueEntry>::iterator MiddleIt = Ops.begin() + OldOpsSize;
1023 std::sort(MiddleIt, Ops.end());
1024 std::inplace_merge(Ops.begin(), MiddleIt, Ops.end());
1025 }
1026
1027 std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1028 return true;
1029}
1030
1031/// \brief Build a tree of multiplies, computing the product of Ops.
1032static Value *buildMultiplyTree(IRBuilder<> &Builder,
1033 SmallVectorImpl<Value*> &Ops) {
1034 if (Ops.size() == 1)
1035 return Ops.back();
1036
1037 Value *LHS = Ops.pop_back_val();
1038 do {
1039 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1040 } while (!Ops.empty());
1041
1042 return LHS;
1043}
1044
1045/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1046///
1047/// Given a vector of values raised to various powers, where no two values are
1048/// equal and the powers are sorted in decreasing order, compute the minimal
1049/// DAG of multiplies to compute the final product, and return that product
1050/// value.
1051Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1052 SmallVectorImpl<Factor> &Factors) {
1053 assert(Factors[0].Power);
1054 SmallVector<Value *, 4> OuterProduct;
1055 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1056 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1057 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1058 LastIdx = Idx;
1059 continue;
1060 }
1061
1062 // We want to multiply across all the factors with the same power so that
1063 // we can raise them to that power as a single entity. Build a mini tree
1064 // for that.
1065 SmallVector<Value *, 4> InnerProduct;
1066 InnerProduct.push_back(Factors[LastIdx].Base);
1067 do {
1068 InnerProduct.push_back(Factors[Idx].Base);
1069 ++Idx;
1070 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1071
1072 // Reset the base value of the first factor to the new expression tree.
1073 // We'll remove all the factors with the same power in a second pass.
1074 Factors[LastIdx].Base
1075 = ReassociateExpression(
1076 cast<BinaryOperator>(buildMultiplyTree(Builder, InnerProduct)));
1077
1078 LastIdx = Idx;
1079 }
1080 // Unique factors with equal powers -- we've folded them into the first one's
1081 // base.
1082 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1083 Factor::PowerEqual()),
1084 Factors.end());
1085
1086 // Iteratively collect the base of each factor with an add power into the
1087 // outer product, and halve each power in preparation for squaring the
1088 // expression.
1089 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1090 if (Factors[Idx].Power & 1)
1091 OuterProduct.push_back(Factors[Idx].Base);
1092 Factors[Idx].Power >>= 1;
1093 }
1094 if (Factors[0].Power) {
1095 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1096 OuterProduct.push_back(SquareRoot);
1097 OuterProduct.push_back(SquareRoot);
1098 }
1099 if (OuterProduct.size() == 1)
1100 return OuterProduct.front();
1101
1102 return ReassociateExpression(
1103 cast<BinaryOperator>(buildMultiplyTree(Builder, OuterProduct)));
1104}
1105
1106Value *Reassociate::OptimizeMul(BinaryOperator *I,
1107 SmallVectorImpl<ValueEntry> &Ops) {
1108 // We can only optimize the multiplies when there is a chain of more than
1109 // three, such that a balanced tree might require fewer total multiplies.
1110 if (Ops.size() < 4)
1111 return 0;
1112
1113 // Try to turn linear trees of multiplies without other uses of the
1114 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1115 // re-use.
1116 SmallVector<Factor, 4> Factors;
1117 if (!collectMultiplyFactors(Ops, Factors))
1118 return 0; // All distinct factors, so nothing left for us to do.
1119
1120 IRBuilder<> Builder(I);
1121 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1122 if (Ops.empty())
1123 return V;
1124
1125 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1126 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1127 return 0;
1128}
1129
Chris Lattnere5022fe2006-03-04 09:31:13 +00001130Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +00001131 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner46900102005-05-08 00:19:31 +00001132 // Now that we have the linearized expression tree, try to optimize it.
1133 // Start by folding any constants that we found.
Chris Lattner109d34d2005-05-08 18:59:37 +00001134 bool IterateOptimization = false;
Chris Lattnere5022fe2006-03-04 09:31:13 +00001135 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +00001136
Chris Lattnere5022fe2006-03-04 09:31:13 +00001137 unsigned Opcode = I->getOpcode();
1138
Chris Lattner46900102005-05-08 00:19:31 +00001139 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
1140 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
1141 Ops.pop_back();
Owen Andersonbaf3c402009-07-29 18:55:55 +00001142 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattnere5022fe2006-03-04 09:31:13 +00001143 return OptimizeExpression(I, Ops);
Chris Lattner46900102005-05-08 00:19:31 +00001144 }
1145
1146 // Check for destructive annihilation due to a constant being used.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00001147 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
Chris Lattner46900102005-05-08 00:19:31 +00001148 switch (Opcode) {
1149 default: break;
1150 case Instruction::And:
Chris Lattner90461932010-01-01 00:04:26 +00001151 if (CstVal->isZero()) // X & 0 -> 0
Chris Lattnere5022fe2006-03-04 09:31:13 +00001152 return CstVal;
Chris Lattner90461932010-01-01 00:04:26 +00001153 if (CstVal->isAllOnesValue()) // X & -1 -> X
Chris Lattner8d93b252009-12-31 07:48:51 +00001154 Ops.pop_back();
Chris Lattner46900102005-05-08 00:19:31 +00001155 break;
1156 case Instruction::Mul:
Chris Lattner90461932010-01-01 00:04:26 +00001157 if (CstVal->isZero()) { // X * 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +00001158 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +00001159 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +00001160 }
Chris Lattner8d93b252009-12-31 07:48:51 +00001161
1162 if (cast<ConstantInt>(CstVal)->isOne())
Chris Lattner90461932010-01-01 00:04:26 +00001163 Ops.pop_back(); // X * 1 -> X
Chris Lattner46900102005-05-08 00:19:31 +00001164 break;
1165 case Instruction::Or:
Chris Lattner90461932010-01-01 00:04:26 +00001166 if (CstVal->isAllOnesValue()) // X | -1 -> -1
Chris Lattnere5022fe2006-03-04 09:31:13 +00001167 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +00001168 // FALLTHROUGH!
1169 case Instruction::Add:
1170 case Instruction::Xor:
Chris Lattner90461932010-01-01 00:04:26 +00001171 if (CstVal->isZero()) // X [|^+] 0 -> X
Chris Lattner46900102005-05-08 00:19:31 +00001172 Ops.pop_back();
1173 break;
1174 }
Chris Lattnere5022fe2006-03-04 09:31:13 +00001175 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +00001176
Chris Lattnerec531232009-12-31 07:33:14 +00001177 // Handle destructive annihilation due to identities between elements in the
Chris Lattner46900102005-05-08 00:19:31 +00001178 // argument list here.
Chandler Carruth464bda32012-04-26 05:30:30 +00001179 unsigned NumOps = Ops.size();
Chris Lattner109d34d2005-05-08 18:59:37 +00001180 switch (Opcode) {
1181 default: break;
1182 case Instruction::And:
1183 case Instruction::Or:
Chandler Carruth464bda32012-04-26 05:30:30 +00001184 case Instruction::Xor:
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001185 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1186 return Result;
Chris Lattner109d34d2005-05-08 18:59:37 +00001187 break;
1188
Chandler Carruth464bda32012-04-26 05:30:30 +00001189 case Instruction::Add:
Chris Lattner94285e62009-12-31 18:17:13 +00001190 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001191 return Result;
Chris Lattner109d34d2005-05-08 18:59:37 +00001192 break;
Chandler Carruth464bda32012-04-26 05:30:30 +00001193
1194 case Instruction::Mul:
1195 if (Value *Result = OptimizeMul(I, Ops))
1196 return Result;
1197 break;
Chris Lattner109d34d2005-05-08 18:59:37 +00001198 }
1199
Chandler Carruth464bda32012-04-26 05:30:30 +00001200 if (IterateOptimization || Ops.size() != NumOps)
Chris Lattnere5022fe2006-03-04 09:31:13 +00001201 return OptimizeExpression(I, Ops);
1202 return 0;
Chris Lattner46900102005-05-08 00:19:31 +00001203}
1204
Chris Lattnera36e6c82002-05-16 04:37:07 +00001205
Dan Gohmandac5dba2011-04-12 00:11:56 +00001206/// ReassociateInst - Inspect and reassociate the instruction at the
1207/// given position, post-incrementing the position.
1208void Reassociate::ReassociateInst(BasicBlock::iterator &BBI) {
1209 Instruction *BI = BBI++;
1210 if (BI->getOpcode() == Instruction::Shl &&
1211 isa<ConstantInt>(BI->getOperand(1)))
1212 if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
1213 MadeChange = true;
1214 BI = NI;
Chris Lattnerf33151a2005-05-08 21:28:52 +00001215 }
Chris Lattnere4b73042002-10-31 17:12:59 +00001216
Dan Gohmandac5dba2011-04-12 00:11:56 +00001217 // Reject cases where it is pointless to do this.
1218 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPointTy() ||
1219 BI->getType()->isVectorTy())
1220 return; // Floating point ops are not associative.
Jeff Cohen00b168892005-07-27 06:12:32 +00001221
Dan Gohmandac5dba2011-04-12 00:11:56 +00001222 // Do not reassociate boolean (i1) expressions. We want to preserve the
1223 // original order of evaluation for short-circuited comparisons that
1224 // SimplifyCFG has folded to AND/OR expressions. If the expression
1225 // is not further optimized, it is likely to be transformed back to a
1226 // short-circuited form for code gen, and the source order may have been
1227 // optimized for the most likely conditions.
1228 if (BI->getType()->isIntegerTy(1))
1229 return;
Chris Lattnera36e6c82002-05-16 04:37:07 +00001230
Dan Gohmandac5dba2011-04-12 00:11:56 +00001231 // If this is a subtract instruction which is not already in negate form,
1232 // see if we can convert it to X+-Y.
1233 if (BI->getOpcode() == Instruction::Sub) {
1234 if (ShouldBreakUpSubtract(BI)) {
1235 BI = BreakUpSubtract(BI, ValueRankMap);
1236 // Reset the BBI iterator in case BreakUpSubtract changed the
1237 // instruction it points to.
1238 BBI = BI;
1239 ++BBI;
1240 MadeChange = true;
1241 } else if (BinaryOperator::isNeg(BI)) {
1242 // Otherwise, this is a negation. See if the operand is a multiply tree
1243 // and if this is not an inner node of a multiply tree.
1244 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
1245 (!BI->hasOneUse() ||
1246 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
1247 BI = LowerNegateToMultiply(BI, ValueRankMap);
1248 MadeChange = true;
1249 }
1250 }
Chris Lattner895b3922006-03-14 07:11:11 +00001251 }
Dan Gohmandac5dba2011-04-12 00:11:56 +00001252
1253 // If this instruction is a commutative binary operator, process it.
1254 if (!BI->isAssociative()) return;
1255 BinaryOperator *I = cast<BinaryOperator>(BI);
1256
1257 // If this is an interior node of a reassociable tree, ignore it until we
1258 // get to the root of the tree, to avoid N^2 analysis.
1259 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
1260 return;
1261
1262 // If this is an add tree that is used by a sub instruction, ignore it
1263 // until we process the subtract.
1264 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
1265 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
1266 return;
1267
1268 ReassociateExpression(I);
Chris Lattner895b3922006-03-14 07:11:11 +00001269}
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001270
Chris Lattner69e98e22009-12-31 19:24:52 +00001271Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
Chris Lattner895b3922006-03-14 07:11:11 +00001272
Chris Lattner69e98e22009-12-31 19:24:52 +00001273 // First, walk the expression tree, linearizing the tree, collecting the
1274 // operand information.
Chris Lattner9f7b7082009-12-31 18:40:32 +00001275 SmallVector<ValueEntry, 8> Ops;
Chris Lattner895b3922006-03-14 07:11:11 +00001276 LinearizeExprTree(I, Ops);
1277
David Greenea1fa76c2010-01-05 01:27:24 +00001278 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001279
1280 // Now that we have linearized the tree to a list and have gathered all of
1281 // the operands and their ranks, sort the operands by their rank. Use a
1282 // stable_sort so that values with equal ranks will have their relative
1283 // positions maintained (and so the compiler is deterministic). Note that
1284 // this sorts so that the highest ranking values end up at the beginning of
1285 // the vector.
1286 std::stable_sort(Ops.begin(), Ops.end());
1287
1288 // OptimizeExpression - Now that we have the expression tree in a convenient
1289 // sorted form, optimize it globally if possible.
1290 if (Value *V = OptimizeExpression(I, Ops)) {
1291 // This expression tree simplified to something that isn't a tree,
1292 // eliminate it.
David Greenea1fa76c2010-01-05 01:27:24 +00001293 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001294 I->replaceAllUsesWith(V);
Devang Patel5367b232011-04-28 22:48:14 +00001295 if (Instruction *VI = dyn_cast<Instruction>(V))
1296 VI->setDebugLoc(I->getDebugLoc());
Chris Lattner895b3922006-03-14 07:11:11 +00001297 RemoveDeadBinaryOp(I);
Chris Lattner9fdaefa2009-12-31 17:51:05 +00001298 ++NumAnnihil;
Chris Lattner69e98e22009-12-31 19:24:52 +00001299 return V;
Chris Lattner895b3922006-03-14 07:11:11 +00001300 }
1301
1302 // We want to sink immediates as deeply as possible except in the case where
1303 // this is a multiply tree used only by an add, and the immediate is a -1.
1304 // In this case we reassociate to put the negation on the outside so that we
1305 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1306 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1307 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1308 isa<ConstantInt>(Ops.back().Op) &&
1309 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
Chris Lattner9f7b7082009-12-31 18:40:32 +00001310 ValueEntry Tmp = Ops.pop_back_val();
1311 Ops.insert(Ops.begin(), Tmp);
Chris Lattner895b3922006-03-14 07:11:11 +00001312 }
1313
David Greenea1fa76c2010-01-05 01:27:24 +00001314 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001315
1316 if (Ops.size() == 1) {
1317 // This expression tree simplified to something that isn't a tree,
1318 // eliminate it.
1319 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel5367b232011-04-28 22:48:14 +00001320 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1321 OI->setDebugLoc(I->getDebugLoc());
Chris Lattner895b3922006-03-14 07:11:11 +00001322 RemoveDeadBinaryOp(I);
Chris Lattner69e98e22009-12-31 19:24:52 +00001323 return Ops[0].Op;
Chris Lattner4fd56002002-05-08 22:19:27 +00001324 }
Chris Lattner69e98e22009-12-31 19:24:52 +00001325
1326 // Now that we ordered and optimized the expressions, splat them back into
1327 // the expression tree, removing any unneeded nodes.
1328 RewriteExprTree(I, Ops);
1329 return I;
Chris Lattner4fd56002002-05-08 22:19:27 +00001330}
1331
1332
Chris Lattner7e708292002-06-25 16:13:24 +00001333bool Reassociate::runOnFunction(Function &F) {
Chris Lattner4fd56002002-05-08 22:19:27 +00001334 // Recalculate the rank map for F
1335 BuildRankMap(F);
1336
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001337 MadeChange = false;
Chris Lattner7e708292002-06-25 16:13:24 +00001338 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Dan Gohmandac5dba2011-04-12 00:11:56 +00001339 for (BasicBlock::iterator BBI = FI->begin(); BBI != FI->end(); )
1340 ReassociateInst(BBI);
1341
1342 // Now that we're done, revisit any instructions which are likely to
1343 // have secondary reassociation opportunities.
1344 while (!RedoInsts.empty())
1345 if (Value *V = RedoInsts.pop_back_val()) {
1346 BasicBlock::iterator BBI = cast<Instruction>(V);
1347 ReassociateInst(BBI);
1348 }
Chris Lattner4fd56002002-05-08 22:19:27 +00001349
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +00001350 // Now that we're done, delete any instructions which are no longer used.
1351 while (!DeadInsts.empty())
Dan Gohmanc9f2f612011-03-10 20:57:44 +00001352 if (Value *V = DeadInsts.pop_back_val())
Owen Anderson9b7fdc72011-08-02 02:23:42 +00001353 RecursivelyDeleteTriviallyDeadInstructions(V);
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +00001354
Chris Lattnerf55e7f52010-01-01 00:01:34 +00001355 // We are done with the rank map.
Chris Lattner4fd56002002-05-08 22:19:27 +00001356 RankMap.clear();
Chris Lattnerfb5be092003-08-13 16:16:26 +00001357 ValueRankMap.clear();
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001358 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +00001359}
Brian Gaeked0fde302003-11-11 22:41:34 +00001360