blob: 31f82ad196461fea3c67f0a299ea86d1872f8a04 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman089efff2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000013//
14// This pass combines things like:
15// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
17// into:
18// %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
25// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
27// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
29// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
32// ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/IntrinsicInst.h"
39#include "llvm/Pass.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/GlobalVariable.h"
42#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnera432bc72008-06-02 01:18:21 +000043#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000044#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Support/CallSite.h"
Nick Lewycky0185bbf2008-02-03 16:33:09 +000048#include "llvm/Support/ConstantRange.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049#include "llvm/Support/Debug.h"
50#include "llvm/Support/GetElementPtrTypeIterator.h"
51#include "llvm/Support/InstVisitor.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/PatternMatch.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/ADT/DenseMap.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/SmallPtrSet.h"
58#include "llvm/ADT/Statistic.h"
59#include "llvm/ADT/STLExtras.h"
60#include <algorithm>
Edwin Töröka0e6fce2008-04-20 08:33:11 +000061#include <climits>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062#include <sstream>
63using namespace llvm;
64using namespace llvm::PatternMatch;
65
66STATISTIC(NumCombined , "Number of insts combined");
67STATISTIC(NumConstProp, "Number of constant folds");
68STATISTIC(NumDeadInst , "Number of dead inst eliminated");
69STATISTIC(NumDeadStore, "Number of dead stores eliminated");
70STATISTIC(NumSunkInst , "Number of instructions sunk");
71
72namespace {
73 class VISIBILITY_HIDDEN InstCombiner
74 : public FunctionPass,
75 public InstVisitor<InstCombiner, Instruction*> {
76 // Worklist of all of the instructions that need to be simplified.
Chris Lattnera06291a2008-08-15 04:03:01 +000077 SmallVector<Instruction*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 DenseMap<Instruction*, unsigned> WorklistMap;
79 TargetData *TD;
80 bool MustPreserveLCSSA;
81 public:
82 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000083 InstCombiner() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084
85 /// AddToWorkList - Add the specified instruction to the worklist if it
86 /// isn't already in it.
87 void AddToWorkList(Instruction *I) {
Dan Gohman55d19662008-07-07 17:46:23 +000088 if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000089 Worklist.push_back(I);
90 }
91
92 // RemoveFromWorkList - remove I from the worklist if it exists.
93 void RemoveFromWorkList(Instruction *I) {
94 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
95 if (It == WorklistMap.end()) return; // Not in worklist.
96
97 // Don't bother moving everything down, just null out the slot.
98 Worklist[It->second] = 0;
99
100 WorklistMap.erase(It);
101 }
102
103 Instruction *RemoveOneFromWorkList() {
104 Instruction *I = Worklist.back();
105 Worklist.pop_back();
106 WorklistMap.erase(I);
107 return I;
108 }
109
110
111 /// AddUsersToWorkList - When an instruction is simplified, add all users of
112 /// the instruction to the work lists because they might get more simplified
113 /// now.
114 ///
115 void AddUsersToWorkList(Value &I) {
116 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
117 UI != UE; ++UI)
118 AddToWorkList(cast<Instruction>(*UI));
119 }
120
121 /// AddUsesToWorkList - When an instruction is simplified, add operands to
122 /// the work lists because they might get more simplified now.
123 ///
124 void AddUsesToWorkList(Instruction &I) {
Gabor Greif17396002008-06-12 21:37:33 +0000125 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
126 if (Instruction *Op = dyn_cast<Instruction>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 AddToWorkList(Op);
128 }
129
130 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
131 /// dead. Add all of its operands to the worklist, turning them into
132 /// undef's to reduce the number of uses of those instructions.
133 ///
134 /// Return the specified operand before it is turned into an undef.
135 ///
136 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
137 Value *R = I.getOperand(op);
138
Gabor Greif17396002008-06-12 21:37:33 +0000139 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
140 if (Instruction *Op = dyn_cast<Instruction>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 AddToWorkList(Op);
142 // Set the operand to undef to drop the use.
Gabor Greif17396002008-06-12 21:37:33 +0000143 *i = UndefValue::get(Op->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000144 }
145
146 return R;
147 }
148
149 public:
150 virtual bool runOnFunction(Function &F);
151
152 bool DoOneIteration(Function &F, unsigned ItNum);
153
154 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
155 AU.addRequired<TargetData>();
156 AU.addPreservedID(LCSSAID);
157 AU.setPreservesCFG();
158 }
159
160 TargetData &getTargetData() const { return *TD; }
161
162 // Visitation implementation - Implement instruction combining for different
163 // instruction types. The semantics are as follows:
164 // Return Value:
165 // null - No change was made
166 // I - Change was made, I is still valid, I may be dead though
167 // otherwise - Change was made, replace I with returned instruction
168 //
169 Instruction *visitAdd(BinaryOperator &I);
170 Instruction *visitSub(BinaryOperator &I);
171 Instruction *visitMul(BinaryOperator &I);
172 Instruction *visitURem(BinaryOperator &I);
173 Instruction *visitSRem(BinaryOperator &I);
174 Instruction *visitFRem(BinaryOperator &I);
Chris Lattner76972db2008-07-14 00:15:52 +0000175 bool SimplifyDivRemOfSelect(BinaryOperator &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000176 Instruction *commonRemTransforms(BinaryOperator &I);
177 Instruction *commonIRemTransforms(BinaryOperator &I);
178 Instruction *commonDivTransforms(BinaryOperator &I);
179 Instruction *commonIDivTransforms(BinaryOperator &I);
180 Instruction *visitUDiv(BinaryOperator &I);
181 Instruction *visitSDiv(BinaryOperator &I);
182 Instruction *visitFDiv(BinaryOperator &I);
Chris Lattner0631ea72008-11-16 05:06:21 +0000183 Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000184 Instruction *visitAnd(BinaryOperator &I);
Chris Lattner0c678e52008-11-16 05:20:07 +0000185 Instruction *FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
Bill Wendling9912f712008-12-01 08:32:40 +0000186 Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
Bill Wendlingdae376a2008-12-01 08:23:25 +0000187 Value *A, Value *B, Value *C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000188 Instruction *visitOr (BinaryOperator &I);
189 Instruction *visitXor(BinaryOperator &I);
190 Instruction *visitShl(BinaryOperator &I);
191 Instruction *visitAShr(BinaryOperator &I);
192 Instruction *visitLShr(BinaryOperator &I);
193 Instruction *commonShiftTransforms(BinaryOperator &I);
Chris Lattnere6b62d92008-05-19 20:18:56 +0000194 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
195 Constant *RHSC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000196 Instruction *visitFCmpInst(FCmpInst &I);
197 Instruction *visitICmpInst(ICmpInst &I);
198 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
199 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
200 Instruction *LHS,
201 ConstantInt *RHS);
202 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
203 ConstantInt *DivRHS);
204
205 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
206 ICmpInst::Predicate Cond, Instruction &I);
207 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
208 BinaryOperator &I);
209 Instruction *commonCastTransforms(CastInst &CI);
210 Instruction *commonIntCastTransforms(CastInst &CI);
211 Instruction *commonPointerCastTransforms(CastInst &CI);
212 Instruction *visitTrunc(TruncInst &CI);
213 Instruction *visitZExt(ZExtInst &CI);
214 Instruction *visitSExt(SExtInst &CI);
Chris Lattnerdf7e8402008-01-27 05:29:54 +0000215 Instruction *visitFPTrunc(FPTruncInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000216 Instruction *visitFPExt(CastInst &CI);
Chris Lattnerdeef1a72008-05-19 20:25:04 +0000217 Instruction *visitFPToUI(FPToUIInst &FI);
218 Instruction *visitFPToSI(FPToSIInst &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000219 Instruction *visitUIToFP(CastInst &CI);
220 Instruction *visitSIToFP(CastInst &CI);
221 Instruction *visitPtrToInt(CastInst &CI);
Chris Lattner7c1626482008-01-08 07:23:51 +0000222 Instruction *visitIntToPtr(IntToPtrInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000223 Instruction *visitBitCast(BitCastInst &CI);
224 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
225 Instruction *FI);
Dan Gohman58c09632008-09-16 18:46:06 +0000226 Instruction *visitSelectInst(SelectInst &SI);
227 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000228 Instruction *visitCallInst(CallInst &CI);
229 Instruction *visitInvokeInst(InvokeInst &II);
230 Instruction *visitPHINode(PHINode &PN);
231 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
232 Instruction *visitAllocationInst(AllocationInst &AI);
233 Instruction *visitFreeInst(FreeInst &FI);
234 Instruction *visitLoadInst(LoadInst &LI);
235 Instruction *visitStoreInst(StoreInst &SI);
236 Instruction *visitBranchInst(BranchInst &BI);
237 Instruction *visitSwitchInst(SwitchInst &SI);
238 Instruction *visitInsertElementInst(InsertElementInst &IE);
239 Instruction *visitExtractElementInst(ExtractElementInst &EI);
240 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000241 Instruction *visitExtractValueInst(ExtractValueInst &EV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000242
243 // visitInstruction - Specify what to return for unhandled instructions...
244 Instruction *visitInstruction(Instruction &I) { return 0; }
245
246 private:
247 Instruction *visitCallSite(CallSite CS);
248 bool transformConstExprCastCall(CallSite CS);
Duncan Sands74833f22007-09-17 10:26:40 +0000249 Instruction *transformCallThroughTrampoline(CallSite CS);
Evan Chenge3779cf2008-03-24 00:21:34 +0000250 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
251 bool DoXform = true);
Chris Lattner3554f972008-05-20 05:46:13 +0000252 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000253
254 public:
255 // InsertNewInstBefore - insert an instruction New before instruction Old
256 // in the program. Add the new instruction to the worklist.
257 //
258 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
259 assert(New && New->getParent() == 0 &&
260 "New instruction already inserted into a basic block!");
261 BasicBlock *BB = Old.getParent();
262 BB->getInstList().insert(&Old, New); // Insert inst
263 AddToWorkList(New);
264 return New;
265 }
266
267 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
268 /// This also adds the cast to the worklist. Finally, this returns the
269 /// cast.
270 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
271 Instruction &Pos) {
272 if (V->getType() == Ty) return V;
273
274 if (Constant *CV = dyn_cast<Constant>(V))
275 return ConstantExpr::getCast(opc, CV, Ty);
276
Gabor Greifa645dd32008-05-16 19:29:10 +0000277 Instruction *C = CastInst::Create(opc, V, Ty, V->getName(), &Pos);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000278 AddToWorkList(C);
279 return C;
280 }
Chris Lattner13c2d6e2008-01-13 22:23:22 +0000281
282 Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
283 return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
284 }
285
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000286
287 // ReplaceInstUsesWith - This method is to be used when an instruction is
288 // found to be dead, replacable with another preexisting expression. Here
289 // we add all uses of I to the worklist, replace all uses of I with the new
290 // value, then return I, so that the inst combiner will know that I was
291 // modified.
292 //
293 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
294 AddUsersToWorkList(I); // Add all modified instrs to worklist
295 if (&I != V) {
296 I.replaceAllUsesWith(V);
297 return &I;
298 } else {
299 // If we are replacing the instruction with itself, this must be in a
300 // segment of unreachable code, so just clobber the instruction.
301 I.replaceAllUsesWith(UndefValue::get(I.getType()));
302 return &I;
303 }
304 }
305
306 // UpdateValueUsesWith - This method is to be used when an value is
307 // found to be replacable with another preexisting expression or was
308 // updated. Here we add all uses of I to the worklist, replace all uses of
309 // I with the new value (unless the instruction was just updated), then
310 // return true, so that the inst combiner will know that I was modified.
311 //
312 bool UpdateValueUsesWith(Value *Old, Value *New) {
313 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
314 if (Old != New)
315 Old->replaceAllUsesWith(New);
316 if (Instruction *I = dyn_cast<Instruction>(Old))
317 AddToWorkList(I);
318 if (Instruction *I = dyn_cast<Instruction>(New))
319 AddToWorkList(I);
320 return true;
321 }
322
323 // EraseInstFromFunction - When dealing with an instruction that has side
324 // effects or produces a void value, we can't rely on DCE to delete the
325 // instruction. Instead, visit methods should return the value returned by
326 // this function.
327 Instruction *EraseInstFromFunction(Instruction &I) {
328 assert(I.use_empty() && "Cannot erase instruction that is used!");
329 AddUsesToWorkList(I);
330 RemoveFromWorkList(&I);
331 I.eraseFromParent();
332 return 0; // Don't do anything with FI
333 }
Chris Lattnera432bc72008-06-02 01:18:21 +0000334
335 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
336 APInt &KnownOne, unsigned Depth = 0) const {
337 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
338 }
339
340 bool MaskedValueIsZero(Value *V, const APInt &Mask,
341 unsigned Depth = 0) const {
342 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
343 }
344 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
345 return llvm::ComputeNumSignBits(Op, TD, Depth);
346 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000347
348 private:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349
350 /// SimplifyCommutative - This performs a few simplifications for
351 /// commutative operators.
352 bool SimplifyCommutative(BinaryOperator &I);
353
354 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
355 /// most-complex to least-complex order.
356 bool SimplifyCompare(CmpInst &I);
357
358 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
359 /// on the demanded bits.
360 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
361 APInt& KnownZero, APInt& KnownOne,
362 unsigned Depth = 0);
363
364 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
365 uint64_t &UndefElts, unsigned Depth = 0);
366
367 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
368 // PHI node as operand #0, see if we can fold the instruction into the PHI
369 // (which is only possible if all operands to the PHI are constants).
370 Instruction *FoldOpIntoPhi(Instruction &I);
371
372 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
373 // operator and they all are only used by the PHI, PHI together their
374 // inputs, and do the operation once, to the result of the PHI.
375 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
376 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
Chris Lattner9e1916e2008-12-01 02:34:36 +0000377 Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
378
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000379
380 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
381 ConstantInt *AndRHS, BinaryOperator &TheAnd);
382
383 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
384 bool isSub, Instruction &I);
385 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
386 bool isSigned, bool Inside, Instruction &IB);
387 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
388 Instruction *MatchBSwap(BinaryOperator &I);
389 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000390 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
Chris Lattner5af8a912008-04-30 06:39:11 +0000391 Instruction *SimplifyMemSet(MemSetInst *MI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000392
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000393
394 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000395
Dan Gohman2d648bb2008-04-10 18:43:06 +0000396 bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
397 unsigned CastOpc,
Evan Cheng9ca34ab2009-01-15 17:01:23 +0000398 int &NumCastsRemoved, bool &SeenTrunc);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000399 unsigned GetOrEnforceKnownAlignment(Value *V,
400 unsigned PrefAlign = 0);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000401
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000402 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000403}
404
Dan Gohman089efff2008-05-13 00:00:25 +0000405char InstCombiner::ID = 0;
406static RegisterPass<InstCombiner>
407X("instcombine", "Combine redundant instructions");
408
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000409// getComplexity: Assign a complexity or rank value to LLVM Values...
410// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
411static unsigned getComplexity(Value *V) {
412 if (isa<Instruction>(V)) {
413 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
414 return 3;
415 return 4;
416 }
417 if (isa<Argument>(V)) return 3;
418 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
419}
420
421// isOnlyUse - Return true if this instruction will be deleted if we stop using
422// it.
423static bool isOnlyUse(Value *V) {
424 return V->hasOneUse() || isa<Constant>(V);
425}
426
427// getPromotedType - Return the specified type promoted as it would be to pass
428// though a va_arg area...
429static const Type *getPromotedType(const Type *Ty) {
430 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
431 if (ITy->getBitWidth() < 32)
432 return Type::Int32Ty;
433 }
434 return Ty;
435}
436
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000437/// getBitCastOperand - If the specified operand is a CastInst, a constant
438/// expression bitcast, or a GetElementPtrInst with all zero indices, return the
439/// operand value, otherwise return null.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000440static Value *getBitCastOperand(Value *V) {
441 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000442 // BitCastInst?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000443 return I->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000444 else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
445 // GetElementPtrInst?
446 if (GEP->hasAllZeroIndices())
447 return GEP->getOperand(0);
448 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000449 if (CE->getOpcode() == Instruction::BitCast)
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000450 // BitCast ConstantExp?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000451 return CE->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000452 else if (CE->getOpcode() == Instruction::GetElementPtr) {
453 // GetElementPtr ConstantExp?
454 for (User::op_iterator I = CE->op_begin() + 1, E = CE->op_end();
455 I != E; ++I) {
456 ConstantInt *CI = dyn_cast<ConstantInt>(I);
457 if (!CI || !CI->isZero())
458 // Any non-zero indices? Not cast-like.
459 return 0;
460 }
461 // All-zero indices? This is just like casting.
462 return CE->getOperand(0);
463 }
464 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000465 return 0;
466}
467
468/// This function is a wrapper around CastInst::isEliminableCastPair. It
469/// simply extracts arguments and returns what that function returns.
470static Instruction::CastOps
471isEliminableCastPair(
472 const CastInst *CI, ///< The first cast instruction
473 unsigned opcode, ///< The opcode of the second cast instruction
474 const Type *DstTy, ///< The target type for the second cast instruction
475 TargetData *TD ///< The target data for pointer size
476) {
477
478 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
479 const Type *MidTy = CI->getType(); // B from above
480
481 // Get the opcodes of the two Cast instructions
482 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
483 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
484
485 return Instruction::CastOps(
486 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
487 DstTy, TD->getIntPtrType()));
488}
489
490/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
491/// in any code being generated. It does not require codegen if V is simple
492/// enough or if the cast can be folded into other casts.
493static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
494 const Type *Ty, TargetData *TD) {
495 if (V->getType() == Ty || isa<Constant>(V)) return false;
496
497 // If this is another cast that can be eliminated, it isn't codegen either.
498 if (const CastInst *CI = dyn_cast<CastInst>(V))
499 if (isEliminableCastPair(CI, opcode, Ty, TD))
500 return false;
501 return true;
502}
503
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000504// SimplifyCommutative - This performs a few simplifications for commutative
505// operators:
506//
507// 1. Order operands such that they are listed from right (least complex) to
508// left (most complex). This puts constants before unary operators before
509// binary operators.
510//
511// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
512// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
513//
514bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
515 bool Changed = false;
516 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
517 Changed = !I.swapOperands();
518
519 if (!I.isAssociative()) return Changed;
520 Instruction::BinaryOps Opcode = I.getOpcode();
521 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
522 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
523 if (isa<Constant>(I.getOperand(1))) {
524 Constant *Folded = ConstantExpr::get(I.getOpcode(),
525 cast<Constant>(I.getOperand(1)),
526 cast<Constant>(Op->getOperand(1)));
527 I.setOperand(0, Op->getOperand(0));
528 I.setOperand(1, Folded);
529 return true;
530 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
531 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
532 isOnlyUse(Op) && isOnlyUse(Op1)) {
533 Constant *C1 = cast<Constant>(Op->getOperand(1));
534 Constant *C2 = cast<Constant>(Op1->getOperand(1));
535
536 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
537 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +0000538 Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000539 Op1->getOperand(0),
540 Op1->getName(), &I);
541 AddToWorkList(New);
542 I.setOperand(0, New);
543 I.setOperand(1, Folded);
544 return true;
545 }
546 }
547 return Changed;
548}
549
550/// SimplifyCompare - For a CmpInst this function just orders the operands
551/// so that theyare listed from right (least complex) to left (most complex).
552/// This puts constants before unary operators before binary operators.
553bool InstCombiner::SimplifyCompare(CmpInst &I) {
554 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
555 return false;
556 I.swapOperands();
557 // Compare instructions are not associative so there's nothing else we can do.
558 return true;
559}
560
561// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
562// if the LHS is a constant zero (which is the 'negate' form).
563//
564static inline Value *dyn_castNegVal(Value *V) {
565 if (BinaryOperator::isNeg(V))
566 return BinaryOperator::getNegArgument(V);
567
568 // Constants can be considered to be negated values if they can be folded.
569 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
570 return ConstantExpr::getNeg(C);
Nick Lewycky58867bc2008-05-23 04:54:45 +0000571
572 if (ConstantVector *C = dyn_cast<ConstantVector>(V))
573 if (C->getType()->getElementType()->isInteger())
574 return ConstantExpr::getNeg(C);
575
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000576 return 0;
577}
578
579static inline Value *dyn_castNotVal(Value *V) {
580 if (BinaryOperator::isNot(V))
581 return BinaryOperator::getNotArgument(V);
582
583 // Constants can be considered to be not'ed values...
584 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
585 return ConstantInt::get(~C->getValue());
586 return 0;
587}
588
589// dyn_castFoldableMul - If this value is a multiply that can be folded into
590// other computations (because it has a constant operand), return the
591// non-constant operand of the multiply, and set CST to point to the multiplier.
592// Otherwise, return null.
593//
594static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
595 if (V->hasOneUse() && V->getType()->isInteger())
596 if (Instruction *I = dyn_cast<Instruction>(V)) {
597 if (I->getOpcode() == Instruction::Mul)
598 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
599 return I->getOperand(0);
600 if (I->getOpcode() == Instruction::Shl)
601 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
602 // The multiplier is really 1 << CST.
603 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
604 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
605 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
606 return I->getOperand(0);
607 }
608 }
609 return 0;
610}
611
612/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
613/// expression, return it.
614static User *dyn_castGetElementPtr(Value *V) {
615 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
616 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
617 if (CE->getOpcode() == Instruction::GetElementPtr)
618 return cast<User>(V);
619 return false;
620}
621
Dan Gohman2d648bb2008-04-10 18:43:06 +0000622/// getOpcode - If this is an Instruction or a ConstantExpr, return the
623/// opcode value. Otherwise return UserOp1.
Dan Gohman8c397862008-05-29 19:53:46 +0000624static unsigned getOpcode(const Value *V) {
625 if (const Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000626 return I->getOpcode();
Dan Gohman8c397862008-05-29 19:53:46 +0000627 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000628 return CE->getOpcode();
629 // Use UserOp1 to mean there's no opcode.
630 return Instruction::UserOp1;
631}
632
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000633/// AddOne - Add one to a ConstantInt
634static ConstantInt *AddOne(ConstantInt *C) {
635 APInt Val(C->getValue());
636 return ConstantInt::get(++Val);
637}
638/// SubOne - Subtract one from a ConstantInt
639static ConstantInt *SubOne(ConstantInt *C) {
640 APInt Val(C->getValue());
641 return ConstantInt::get(--Val);
642}
643/// Add - Add two ConstantInts together
644static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
645 return ConstantInt::get(C1->getValue() + C2->getValue());
646}
647/// And - Bitwise AND two ConstantInts together
648static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
649 return ConstantInt::get(C1->getValue() & C2->getValue());
650}
651/// Subtract - Subtract one ConstantInt from another
652static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
653 return ConstantInt::get(C1->getValue() - C2->getValue());
654}
655/// Multiply - Multiply two ConstantInts together
656static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
657 return ConstantInt::get(C1->getValue() * C2->getValue());
658}
Nick Lewycky9d798f92008-02-18 22:48:05 +0000659/// MultiplyOverflows - True if the multiply can not be expressed in an int
660/// this size.
661static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
662 uint32_t W = C1->getBitWidth();
663 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
664 if (sign) {
665 LHSExt.sext(W * 2);
666 RHSExt.sext(W * 2);
667 } else {
668 LHSExt.zext(W * 2);
669 RHSExt.zext(W * 2);
670 }
671
672 APInt MulExt = LHSExt * RHSExt;
673
674 if (sign) {
675 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
676 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
677 return MulExt.slt(Min) || MulExt.sgt(Max);
678 } else
679 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
680}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000681
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000682
683/// ShrinkDemandedConstant - Check to see if the specified operand of the
684/// specified instruction is a constant integer. If so, check to see if there
685/// are any bits set in the constant that are not demanded. If so, shrink the
686/// constant and return true.
687static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
688 APInt Demanded) {
689 assert(I && "No instruction?");
690 assert(OpNo < I->getNumOperands() && "Operand index too large");
691
692 // If the operand is not a constant integer, nothing to do.
693 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
694 if (!OpC) return false;
695
696 // If there are no bits set that aren't demanded, nothing to do.
697 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
698 if ((~Demanded & OpC->getValue()) == 0)
699 return false;
700
701 // This instruction is producing bits that are not demanded. Shrink the RHS.
702 Demanded &= OpC->getValue();
703 I->setOperand(OpNo, ConstantInt::get(Demanded));
704 return true;
705}
706
707// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
708// set of known zero and one bits, compute the maximum and minimum values that
709// could have the specified known zero and known one bits, returning them in
710// min/max.
711static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
712 const APInt& KnownZero,
713 const APInt& KnownOne,
714 APInt& Min, APInt& Max) {
715 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
716 assert(KnownZero.getBitWidth() == BitWidth &&
717 KnownOne.getBitWidth() == BitWidth &&
718 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
719 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
720 APInt UnknownBits = ~(KnownZero|KnownOne);
721
722 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
723 // bit if it is unknown.
724 Min = KnownOne;
725 Max = KnownOne|UnknownBits;
726
727 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
728 Min.set(BitWidth-1);
729 Max.clear(BitWidth-1);
730 }
731}
732
733// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
734// a set of known zero and one bits, compute the maximum and minimum values that
735// could have the specified known zero and known one bits, returning them in
736// min/max.
737static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnerb933ea62007-08-05 08:47:58 +0000738 const APInt &KnownZero,
739 const APInt &KnownOne,
740 APInt &Min, APInt &Max) {
741 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000742 assert(KnownZero.getBitWidth() == BitWidth &&
743 KnownOne.getBitWidth() == BitWidth &&
744 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
745 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
746 APInt UnknownBits = ~(KnownZero|KnownOne);
747
748 // The minimum value is when the unknown bits are all zeros.
749 Min = KnownOne;
750 // The maximum value is when the unknown bits are all ones.
751 Max = KnownOne|UnknownBits;
752}
753
754/// SimplifyDemandedBits - This function attempts to replace V with a simpler
755/// value based on the demanded bits. When this function is called, it is known
756/// that only the bits set in DemandedMask of the result of V are ever used
757/// downstream. Consequently, depending on the mask and V, it may be possible
758/// to replace V with a constant or one of its operands. In such cases, this
759/// function does the replacement and returns true. In all other cases, it
760/// returns false after analyzing the expression and setting KnownOne and known
761/// to be one in the expression. KnownZero contains all the bits that are known
762/// to be zero in the expression. These are provided to potentially allow the
763/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
764/// the expression. KnownOne and KnownZero always follow the invariant that
765/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
766/// the bits in KnownOne and KnownZero may only be accurate for those bits set
767/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
768/// and KnownOne must all be the same.
769bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
770 APInt& KnownZero, APInt& KnownOne,
771 unsigned Depth) {
772 assert(V != 0 && "Null pointer of Value???");
773 assert(Depth <= 6 && "Limit Search Depth");
774 uint32_t BitWidth = DemandedMask.getBitWidth();
775 const IntegerType *VTy = cast<IntegerType>(V->getType());
776 assert(VTy->getBitWidth() == BitWidth &&
777 KnownZero.getBitWidth() == BitWidth &&
778 KnownOne.getBitWidth() == BitWidth &&
779 "Value *V, DemandedMask, KnownZero and KnownOne \
780 must have same BitWidth");
781 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
782 // We know all of the bits for a constant!
783 KnownOne = CI->getValue() & DemandedMask;
784 KnownZero = ~KnownOne & DemandedMask;
785 return false;
786 }
787
788 KnownZero.clear();
789 KnownOne.clear();
790 if (!V->hasOneUse()) { // Other users may use these bits.
791 if (Depth != 0) { // Not at the root.
792 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
793 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
794 return false;
795 }
796 // If this is the root being simplified, allow it to have multiple uses,
797 // just set the DemandedMask to all bits.
798 DemandedMask = APInt::getAllOnesValue(BitWidth);
799 } else if (DemandedMask == 0) { // Not demanding any bits from V.
800 if (V != UndefValue::get(VTy))
801 return UpdateValueUsesWith(V, UndefValue::get(VTy));
802 return false;
803 } else if (Depth == 6) { // Limit search depth.
804 return false;
805 }
806
807 Instruction *I = dyn_cast<Instruction>(V);
808 if (!I) return false; // Only analyze instructions.
809
810 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
811 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
812 switch (I->getOpcode()) {
Dan Gohmanbec16052008-04-28 17:02:21 +0000813 default:
814 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
815 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000816 case Instruction::And:
817 // If either the LHS or the RHS are Zero, the result is zero.
818 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
819 RHSKnownZero, RHSKnownOne, Depth+1))
820 return true;
821 assert((RHSKnownZero & RHSKnownOne) == 0 &&
822 "Bits known to be one AND zero?");
823
824 // If something is known zero on the RHS, the bits aren't demanded on the
825 // LHS.
826 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
827 LHSKnownZero, LHSKnownOne, Depth+1))
828 return true;
829 assert((LHSKnownZero & LHSKnownOne) == 0 &&
830 "Bits known to be one AND zero?");
831
832 // If all of the demanded bits are known 1 on one side, return the other.
833 // These bits cannot contribute to the result of the 'and'.
834 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
835 (DemandedMask & ~LHSKnownZero))
836 return UpdateValueUsesWith(I, I->getOperand(0));
837 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
838 (DemandedMask & ~RHSKnownZero))
839 return UpdateValueUsesWith(I, I->getOperand(1));
840
841 // If all of the demanded bits in the inputs are known zeros, return zero.
842 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
843 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
844
845 // If the RHS is a constant, see if we can simplify it.
846 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
847 return UpdateValueUsesWith(I, I);
848
849 // Output known-1 bits are only known if set in both the LHS & RHS.
850 RHSKnownOne &= LHSKnownOne;
851 // Output known-0 are known to be clear if zero in either the LHS | RHS.
852 RHSKnownZero |= LHSKnownZero;
853 break;
854 case Instruction::Or:
855 // If either the LHS or the RHS are One, the result is One.
856 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
857 RHSKnownZero, RHSKnownOne, Depth+1))
858 return true;
859 assert((RHSKnownZero & RHSKnownOne) == 0 &&
860 "Bits known to be one AND zero?");
861 // If something is known one on the RHS, the bits aren't demanded on the
862 // LHS.
863 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
864 LHSKnownZero, LHSKnownOne, Depth+1))
865 return true;
866 assert((LHSKnownZero & LHSKnownOne) == 0 &&
867 "Bits known to be one AND zero?");
868
869 // If all of the demanded bits are known zero on one side, return the other.
870 // These bits cannot contribute to the result of the 'or'.
871 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
872 (DemandedMask & ~LHSKnownOne))
873 return UpdateValueUsesWith(I, I->getOperand(0));
874 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
875 (DemandedMask & ~RHSKnownOne))
876 return UpdateValueUsesWith(I, I->getOperand(1));
877
878 // If all of the potentially set bits on one side are known to be set on
879 // the other side, just use the 'other' side.
880 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
881 (DemandedMask & (~RHSKnownZero)))
882 return UpdateValueUsesWith(I, I->getOperand(0));
883 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
884 (DemandedMask & (~LHSKnownZero)))
885 return UpdateValueUsesWith(I, I->getOperand(1));
886
887 // If the RHS is a constant, see if we can simplify it.
888 if (ShrinkDemandedConstant(I, 1, DemandedMask))
889 return UpdateValueUsesWith(I, I);
890
891 // Output known-0 bits are only known if clear in both the LHS & RHS.
892 RHSKnownZero &= LHSKnownZero;
893 // Output known-1 are known to be set if set in either the LHS | RHS.
894 RHSKnownOne |= LHSKnownOne;
895 break;
896 case Instruction::Xor: {
897 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
898 RHSKnownZero, RHSKnownOne, Depth+1))
899 return true;
900 assert((RHSKnownZero & RHSKnownOne) == 0 &&
901 "Bits known to be one AND zero?");
902 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
903 LHSKnownZero, LHSKnownOne, Depth+1))
904 return true;
905 assert((LHSKnownZero & LHSKnownOne) == 0 &&
906 "Bits known to be one AND zero?");
907
908 // If all of the demanded bits are known zero on one side, return the other.
909 // These bits cannot contribute to the result of the 'xor'.
910 if ((DemandedMask & RHSKnownZero) == DemandedMask)
911 return UpdateValueUsesWith(I, I->getOperand(0));
912 if ((DemandedMask & LHSKnownZero) == DemandedMask)
913 return UpdateValueUsesWith(I, I->getOperand(1));
914
915 // Output known-0 bits are known if clear or set in both the LHS & RHS.
916 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
917 (RHSKnownOne & LHSKnownOne);
918 // Output known-1 are known to be set if set in only one of the LHS, RHS.
919 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
920 (RHSKnownOne & LHSKnownZero);
921
922 // If all of the demanded bits are known to be zero on one side or the
923 // other, turn this into an *inclusive* or.
924 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
925 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
926 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +0000927 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000928 I->getName());
929 InsertNewInstBefore(Or, *I);
930 return UpdateValueUsesWith(I, Or);
931 }
932
933 // If all of the demanded bits on one side are known, and all of the set
934 // bits on that side are also known to be set on the other side, turn this
935 // into an AND, as we know the bits will be cleared.
936 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
937 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
938 // all known
939 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
940 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
941 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +0000942 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000943 InsertNewInstBefore(And, *I);
944 return UpdateValueUsesWith(I, And);
945 }
946 }
947
948 // If the RHS is a constant, see if we can simplify it.
949 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
950 if (ShrinkDemandedConstant(I, 1, DemandedMask))
951 return UpdateValueUsesWith(I, I);
952
953 RHSKnownZero = KnownZeroOut;
954 RHSKnownOne = KnownOneOut;
955 break;
956 }
957 case Instruction::Select:
958 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
959 RHSKnownZero, RHSKnownOne, Depth+1))
960 return true;
961 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
962 LHSKnownZero, LHSKnownOne, Depth+1))
963 return true;
964 assert((RHSKnownZero & RHSKnownOne) == 0 &&
965 "Bits known to be one AND zero?");
966 assert((LHSKnownZero & LHSKnownOne) == 0 &&
967 "Bits known to be one AND zero?");
968
969 // If the operands are constants, see if we can simplify them.
970 if (ShrinkDemandedConstant(I, 1, DemandedMask))
971 return UpdateValueUsesWith(I, I);
972 if (ShrinkDemandedConstant(I, 2, DemandedMask))
973 return UpdateValueUsesWith(I, I);
974
975 // Only known if known in both the LHS and RHS.
976 RHSKnownOne &= LHSKnownOne;
977 RHSKnownZero &= LHSKnownZero;
978 break;
979 case Instruction::Trunc: {
980 uint32_t truncBf =
981 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
982 DemandedMask.zext(truncBf);
983 RHSKnownZero.zext(truncBf);
984 RHSKnownOne.zext(truncBf);
985 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
986 RHSKnownZero, RHSKnownOne, Depth+1))
987 return true;
988 DemandedMask.trunc(BitWidth);
989 RHSKnownZero.trunc(BitWidth);
990 RHSKnownOne.trunc(BitWidth);
991 assert((RHSKnownZero & RHSKnownOne) == 0 &&
992 "Bits known to be one AND zero?");
993 break;
994 }
995 case Instruction::BitCast:
996 if (!I->getOperand(0)->getType()->isInteger())
997 return false;
998
999 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1000 RHSKnownZero, RHSKnownOne, Depth+1))
1001 return true;
1002 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1003 "Bits known to be one AND zero?");
1004 break;
1005 case Instruction::ZExt: {
1006 // Compute the bits in the result that are not present in the input.
1007 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1008 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1009
1010 DemandedMask.trunc(SrcBitWidth);
1011 RHSKnownZero.trunc(SrcBitWidth);
1012 RHSKnownOne.trunc(SrcBitWidth);
1013 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1014 RHSKnownZero, RHSKnownOne, Depth+1))
1015 return true;
1016 DemandedMask.zext(BitWidth);
1017 RHSKnownZero.zext(BitWidth);
1018 RHSKnownOne.zext(BitWidth);
1019 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1020 "Bits known to be one AND zero?");
1021 // The top bits are known to be zero.
1022 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1023 break;
1024 }
1025 case Instruction::SExt: {
1026 // Compute the bits in the result that are not present in the input.
1027 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1028 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1029
1030 APInt InputDemandedBits = DemandedMask &
1031 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
1032
1033 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
1034 // If any of the sign extended bits are demanded, we know that the sign
1035 // bit is demanded.
1036 if ((NewBits & DemandedMask) != 0)
1037 InputDemandedBits.set(SrcBitWidth-1);
1038
1039 InputDemandedBits.trunc(SrcBitWidth);
1040 RHSKnownZero.trunc(SrcBitWidth);
1041 RHSKnownOne.trunc(SrcBitWidth);
1042 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1043 RHSKnownZero, RHSKnownOne, Depth+1))
1044 return true;
1045 InputDemandedBits.zext(BitWidth);
1046 RHSKnownZero.zext(BitWidth);
1047 RHSKnownOne.zext(BitWidth);
1048 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1049 "Bits known to be one AND zero?");
1050
1051 // If the sign bit of the input is known set or clear, then we know the
1052 // top bits of the result.
1053
1054 // If the input sign bit is known zero, or if the NewBits are not demanded
1055 // convert this into a zero extension.
1056 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
1057 {
1058 // Convert to ZExt cast
1059 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1060 return UpdateValueUsesWith(I, NewCast);
1061 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
1062 RHSKnownOne |= NewBits;
1063 }
1064 break;
1065 }
1066 case Instruction::Add: {
1067 // Figure out what the input bits are. If the top bits of the and result
1068 // are not demanded, then the add doesn't demand them from its input
1069 // either.
1070 uint32_t NLZ = DemandedMask.countLeadingZeros();
1071
1072 // If there is a constant on the RHS, there are a variety of xformations
1073 // we can do.
1074 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1075 // If null, this should be simplified elsewhere. Some of the xforms here
1076 // won't work if the RHS is zero.
1077 if (RHS->isZero())
1078 break;
1079
1080 // If the top bit of the output is demanded, demand everything from the
1081 // input. Otherwise, we demand all the input bits except NLZ top bits.
1082 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
1083
1084 // Find information about known zero/one bits in the input.
1085 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1086 LHSKnownZero, LHSKnownOne, Depth+1))
1087 return true;
1088
1089 // If the RHS of the add has bits set that can't affect the input, reduce
1090 // the constant.
1091 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1092 return UpdateValueUsesWith(I, I);
1093
1094 // Avoid excess work.
1095 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1096 break;
1097
1098 // Turn it into OR if input bits are zero.
1099 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1100 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00001101 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001102 I->getName());
1103 InsertNewInstBefore(Or, *I);
1104 return UpdateValueUsesWith(I, Or);
1105 }
1106
1107 // We can say something about the output known-zero and known-one bits,
1108 // depending on potential carries from the input constant and the
1109 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1110 // bits set and the RHS constant is 0x01001, then we know we have a known
1111 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1112
1113 // To compute this, we first compute the potential carry bits. These are
1114 // the bits which may be modified. I'm not aware of a better way to do
1115 // this scan.
1116 const APInt& RHSVal = RHS->getValue();
1117 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
1118
1119 // Now that we know which bits have carries, compute the known-1/0 sets.
1120
1121 // Bits are known one if they are known zero in one operand and one in the
1122 // other, and there is no input carry.
1123 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1124 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1125
1126 // Bits are known zero if they are known zero in both operands and there
1127 // is no input carry.
1128 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1129 } else {
1130 // If the high-bits of this ADD are not demanded, then it does not demand
1131 // the high bits of its LHS or RHS.
1132 if (DemandedMask[BitWidth-1] == 0) {
1133 // Right fill the mask of bits for this ADD to demand the most
1134 // significant bit and all those below it.
1135 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1136 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1137 LHSKnownZero, LHSKnownOne, Depth+1))
1138 return true;
1139 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1140 LHSKnownZero, LHSKnownOne, Depth+1))
1141 return true;
1142 }
1143 }
1144 break;
1145 }
1146 case Instruction::Sub:
1147 // If the high-bits of this SUB are not demanded, then it does not demand
1148 // the high bits of its LHS or RHS.
1149 if (DemandedMask[BitWidth-1] == 0) {
1150 // Right fill the mask of bits for this SUB to demand the most
1151 // significant bit and all those below it.
1152 uint32_t NLZ = DemandedMask.countLeadingZeros();
1153 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1154 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1155 LHSKnownZero, LHSKnownOne, Depth+1))
1156 return true;
1157 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1158 LHSKnownZero, LHSKnownOne, Depth+1))
1159 return true;
1160 }
Dan Gohmanbec16052008-04-28 17:02:21 +00001161 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
1162 // the known zeros and ones.
1163 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001164 break;
1165 case Instruction::Shl:
1166 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1167 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1168 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1169 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1170 RHSKnownZero, RHSKnownOne, Depth+1))
1171 return true;
1172 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1173 "Bits known to be one AND zero?");
1174 RHSKnownZero <<= ShiftAmt;
1175 RHSKnownOne <<= ShiftAmt;
1176 // low bits known zero.
1177 if (ShiftAmt)
1178 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
1179 }
1180 break;
1181 case Instruction::LShr:
1182 // For a logical shift right
1183 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1184 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1185
1186 // Unsigned shift right.
1187 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1188 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1189 RHSKnownZero, RHSKnownOne, Depth+1))
1190 return true;
1191 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1192 "Bits known to be one AND zero?");
1193 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1194 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1195 if (ShiftAmt) {
1196 // Compute the new bits that are at the top now.
1197 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1198 RHSKnownZero |= HighBits; // high bits known zero.
1199 }
1200 }
1201 break;
1202 case Instruction::AShr:
1203 // If this is an arithmetic shift right and only the low-bit is set, we can
1204 // always convert this into a logical shr, even if the shift amount is
1205 // variable. The low bit of the shift cannot be an input sign bit unless
1206 // the shift amount is >= the size of the datatype, which is undefined.
1207 if (DemandedMask == 1) {
1208 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001209 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001210 I->getOperand(0), I->getOperand(1), I->getName());
1211 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1212 return UpdateValueUsesWith(I, NewVal);
1213 }
1214
1215 // If the sign bit is the only bit demanded by this ashr, then there is no
1216 // need to do it, the shift doesn't change the high bit.
1217 if (DemandedMask.isSignBit())
1218 return UpdateValueUsesWith(I, I->getOperand(0));
1219
1220 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1221 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
1222
1223 // Signed shift right.
1224 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1225 // If any of the "high bits" are demanded, we should set the sign bit as
1226 // demanded.
1227 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1228 DemandedMaskIn.set(BitWidth-1);
1229 if (SimplifyDemandedBits(I->getOperand(0),
1230 DemandedMaskIn,
1231 RHSKnownZero, RHSKnownOne, Depth+1))
1232 return true;
1233 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1234 "Bits known to be one AND zero?");
1235 // Compute the new bits that are at the top now.
1236 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1237 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1238 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1239
1240 // Handle the sign bits.
1241 APInt SignBit(APInt::getSignBit(BitWidth));
1242 // Adjust to where it is now in the mask.
1243 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1244
1245 // If the input sign bit is known to be zero, or if none of the top bits
1246 // are demanded, turn this into an unsigned shift right.
Zhou Sheng533604e2008-06-06 08:32:05 +00001247 if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001248 (HighBits & ~DemandedMask) == HighBits) {
1249 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001250 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001251 I->getOperand(0), SA, I->getName());
1252 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1253 return UpdateValueUsesWith(I, NewVal);
1254 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1255 RHSKnownOne |= HighBits;
1256 }
1257 }
1258 break;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001259 case Instruction::SRem:
1260 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001261 APInt RA = Rem->getValue().abs();
1262 if (RA.isPowerOf2()) {
Nick Lewycky245de422008-07-12 05:04:38 +00001263 if (DemandedMask.ule(RA)) // srem won't affect demanded bits
1264 return UpdateValueUsesWith(I, I->getOperand(0));
1265
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001266 APInt LowBits = RA - 1;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001267 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1268 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1269 LHSKnownZero, LHSKnownOne, Depth+1))
1270 return true;
1271
1272 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
1273 LHSKnownZero |= ~LowBits;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001274
1275 KnownZero |= LHSKnownZero & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001276
1277 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1278 }
1279 }
1280 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001281 case Instruction::URem: {
Dan Gohmanbec16052008-04-28 17:02:21 +00001282 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
1283 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Dan Gohman23ea06d2008-05-01 19:13:24 +00001284 if (SimplifyDemandedBits(I->getOperand(0), AllOnes,
1285 KnownZero2, KnownOne2, Depth+1))
1286 return true;
1287
Dan Gohmanbec16052008-04-28 17:02:21 +00001288 uint32_t Leaders = KnownZero2.countLeadingOnes();
Dan Gohman23ea06d2008-05-01 19:13:24 +00001289 if (SimplifyDemandedBits(I->getOperand(1), AllOnes,
Dan Gohmanbec16052008-04-28 17:02:21 +00001290 KnownZero2, KnownOne2, Depth+1))
1291 return true;
1292
1293 Leaders = std::max(Leaders,
1294 KnownZero2.countLeadingOnes());
1295 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001296 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001297 }
Chris Lattner989ba312008-06-18 04:33:20 +00001298 case Instruction::Call:
1299 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1300 switch (II->getIntrinsicID()) {
1301 default: break;
1302 case Intrinsic::bswap: {
1303 // If the only bits demanded come from one byte of the bswap result,
1304 // just shift the input byte into position to eliminate the bswap.
1305 unsigned NLZ = DemandedMask.countLeadingZeros();
1306 unsigned NTZ = DemandedMask.countTrailingZeros();
1307
1308 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
1309 // we need all the bits down to bit 8. Likewise, round NLZ. If we
1310 // have 14 leading zeros, round to 8.
1311 NLZ &= ~7;
1312 NTZ &= ~7;
1313 // If we need exactly one byte, we can do this transformation.
1314 if (BitWidth-NLZ-NTZ == 8) {
1315 unsigned ResultBit = NTZ;
1316 unsigned InputBit = BitWidth-NTZ-8;
1317
1318 // Replace this with either a left or right shift to get the byte into
1319 // the right place.
1320 Instruction *NewVal;
1321 if (InputBit > ResultBit)
1322 NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
1323 ConstantInt::get(I->getType(), InputBit-ResultBit));
1324 else
1325 NewVal = BinaryOperator::CreateShl(I->getOperand(1),
1326 ConstantInt::get(I->getType(), ResultBit-InputBit));
1327 NewVal->takeName(I);
1328 InsertNewInstBefore(NewVal, *I);
1329 return UpdateValueUsesWith(I, NewVal);
1330 }
1331
1332 // TODO: Could compute known zero/one bits based on the input.
1333 break;
1334 }
1335 }
1336 }
Chris Lattner4946e222008-06-18 18:11:55 +00001337 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Chris Lattner989ba312008-06-18 04:33:20 +00001338 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001339 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001340
1341 // If the client is only demanding bits that we know, return the known
1342 // constant.
1343 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1344 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1345 return false;
1346}
1347
1348
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001349/// SimplifyDemandedVectorElts - The specified value produces a vector with
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001350/// 64 or fewer elements. DemandedElts contains the set of elements that are
1351/// actually used by the caller. This method analyzes which elements of the
1352/// operand are undef and returns that information in UndefElts.
1353///
1354/// If the information about demanded elements can be used to simplify the
1355/// operation, the operation is simplified, then the resultant value is
1356/// returned. This returns null if no change was made.
1357Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1358 uint64_t &UndefElts,
1359 unsigned Depth) {
1360 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
1361 assert(VWidth <= 64 && "Vector too wide to analyze!");
1362 uint64_t EltMask = ~0ULL >> (64-VWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001363 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001364
1365 if (isa<UndefValue>(V)) {
1366 // If the entire vector is undefined, just return this info.
1367 UndefElts = EltMask;
1368 return 0;
1369 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1370 UndefElts = EltMask;
1371 return UndefValue::get(V->getType());
1372 }
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001373
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001374 UndefElts = 0;
1375 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1376 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1377 Constant *Undef = UndefValue::get(EltTy);
1378
1379 std::vector<Constant*> Elts;
1380 for (unsigned i = 0; i != VWidth; ++i)
1381 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1382 Elts.push_back(Undef);
1383 UndefElts |= (1ULL << i);
1384 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1385 Elts.push_back(Undef);
1386 UndefElts |= (1ULL << i);
1387 } else { // Otherwise, defined.
1388 Elts.push_back(CP->getOperand(i));
1389 }
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001390
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001391 // If we changed the constant, return it.
1392 Constant *NewCP = ConstantVector::get(Elts);
1393 return NewCP != CP ? NewCP : 0;
1394 } else if (isa<ConstantAggregateZero>(V)) {
1395 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1396 // set to undef.
Mon P Wang927daf52008-11-06 22:52:21 +00001397
1398 // Check if this is identity. If so, return 0 since we are not simplifying
1399 // anything.
1400 if (DemandedElts == ((1ULL << VWidth) -1))
1401 return 0;
1402
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001403 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1404 Constant *Zero = Constant::getNullValue(EltTy);
1405 Constant *Undef = UndefValue::get(EltTy);
1406 std::vector<Constant*> Elts;
1407 for (unsigned i = 0; i != VWidth; ++i)
1408 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1409 UndefElts = DemandedElts ^ EltMask;
1410 return ConstantVector::get(Elts);
1411 }
1412
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001413 // Limit search depth.
1414 if (Depth == 10)
1415 return false;
1416
1417 // If multiple users are using the root value, procede with
1418 // simplification conservatively assuming that all elements
1419 // are needed.
1420 if (!V->hasOneUse()) {
1421 // Quit if we find multiple users of a non-root value though.
1422 // They'll be handled when it's their turn to be visited by
1423 // the main instcombine process.
1424 if (Depth != 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001425 // TODO: Just compute the UndefElts information recursively.
1426 return false;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001427
1428 // Conservatively assume that all elements are needed.
1429 DemandedElts = EltMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001430 }
1431
1432 Instruction *I = dyn_cast<Instruction>(V);
1433 if (!I) return false; // Only analyze instructions.
1434
1435 bool MadeChange = false;
1436 uint64_t UndefElts2;
1437 Value *TmpV;
1438 switch (I->getOpcode()) {
1439 default: break;
1440
1441 case Instruction::InsertElement: {
1442 // If this is a variable index, we don't know which element it overwrites.
1443 // demand exactly the same input as we produce.
1444 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1445 if (Idx == 0) {
1446 // Note that we can't propagate undef elt info, because we don't know
1447 // which elt is getting updated.
1448 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1449 UndefElts2, Depth+1);
1450 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1451 break;
1452 }
1453
1454 // If this is inserting an element that isn't demanded, remove this
1455 // insertelement.
1456 unsigned IdxNo = Idx->getZExtValue();
1457 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1458 return AddSoonDeadInstToWorklist(*I, 0);
1459
1460 // Otherwise, the element inserted overwrites whatever was there, so the
1461 // input demanded set is simpler than the output set.
1462 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1463 DemandedElts & ~(1ULL << IdxNo),
1464 UndefElts, Depth+1);
1465 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1466
1467 // The inserted element is defined.
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001468 UndefElts &= ~(1ULL << IdxNo);
1469 break;
1470 }
1471 case Instruction::ShuffleVector: {
1472 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001473 uint64_t LHSVWidth =
1474 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001475 uint64_t LeftDemanded = 0, RightDemanded = 0;
1476 for (unsigned i = 0; i < VWidth; i++) {
1477 if (DemandedElts & (1ULL << i)) {
1478 unsigned MaskVal = Shuffle->getMaskValue(i);
1479 if (MaskVal != -1u) {
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001480 assert(MaskVal < LHSVWidth * 2 &&
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001481 "shufflevector mask index out of range!");
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001482 if (MaskVal < LHSVWidth)
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001483 LeftDemanded |= 1ULL << MaskVal;
1484 else
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001485 RightDemanded |= 1ULL << (MaskVal - LHSVWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001486 }
1487 }
1488 }
1489
1490 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1491 UndefElts2, Depth+1);
1492 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1493
1494 uint64_t UndefElts3;
1495 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1496 UndefElts3, Depth+1);
1497 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1498
1499 bool NewUndefElts = false;
1500 for (unsigned i = 0; i < VWidth; i++) {
1501 unsigned MaskVal = Shuffle->getMaskValue(i);
Dan Gohman24f6ee22008-09-10 01:09:32 +00001502 if (MaskVal == -1u) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001503 uint64_t NewBit = 1ULL << i;
1504 UndefElts |= NewBit;
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001505 } else if (MaskVal < LHSVWidth) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001506 uint64_t NewBit = ((UndefElts2 >> MaskVal) & 1) << i;
1507 NewUndefElts |= NewBit;
1508 UndefElts |= NewBit;
1509 } else {
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001510 uint64_t NewBit = ((UndefElts3 >> (MaskVal - LHSVWidth)) & 1) << i;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001511 NewUndefElts |= NewBit;
1512 UndefElts |= NewBit;
1513 }
1514 }
1515
1516 if (NewUndefElts) {
1517 // Add additional discovered undefs.
1518 std::vector<Constant*> Elts;
1519 for (unsigned i = 0; i < VWidth; ++i) {
1520 if (UndefElts & (1ULL << i))
1521 Elts.push_back(UndefValue::get(Type::Int32Ty));
1522 else
1523 Elts.push_back(ConstantInt::get(Type::Int32Ty,
1524 Shuffle->getMaskValue(i)));
1525 }
1526 I->setOperand(2, ConstantVector::get(Elts));
1527 MadeChange = true;
1528 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001529 break;
1530 }
1531 case Instruction::BitCast: {
1532 // Vector->vector casts only.
1533 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1534 if (!VTy) break;
1535 unsigned InVWidth = VTy->getNumElements();
1536 uint64_t InputDemandedElts = 0;
1537 unsigned Ratio;
1538
1539 if (VWidth == InVWidth) {
1540 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1541 // elements as are demanded of us.
1542 Ratio = 1;
1543 InputDemandedElts = DemandedElts;
1544 } else if (VWidth > InVWidth) {
1545 // Untested so far.
1546 break;
1547
1548 // If there are more elements in the result than there are in the source,
1549 // then an input element is live if any of the corresponding output
1550 // elements are live.
1551 Ratio = VWidth/InVWidth;
1552 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1553 if (DemandedElts & (1ULL << OutIdx))
1554 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1555 }
1556 } else {
1557 // Untested so far.
1558 break;
1559
1560 // If there are more elements in the source than there are in the result,
1561 // then an input element is live if the corresponding output element is
1562 // live.
1563 Ratio = InVWidth/VWidth;
1564 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1565 if (DemandedElts & (1ULL << InIdx/Ratio))
1566 InputDemandedElts |= 1ULL << InIdx;
1567 }
1568
1569 // div/rem demand all inputs, because they don't want divide by zero.
1570 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1571 UndefElts2, Depth+1);
1572 if (TmpV) {
1573 I->setOperand(0, TmpV);
1574 MadeChange = true;
1575 }
1576
1577 UndefElts = UndefElts2;
1578 if (VWidth > InVWidth) {
1579 assert(0 && "Unimp");
1580 // If there are more elements in the result than there are in the source,
1581 // then an output element is undef if the corresponding input element is
1582 // undef.
1583 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1584 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1585 UndefElts |= 1ULL << OutIdx;
1586 } else if (VWidth < InVWidth) {
1587 assert(0 && "Unimp");
1588 // If there are more elements in the source than there are in the result,
1589 // then a result element is undef if all of the corresponding input
1590 // elements are undef.
1591 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1592 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1593 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1594 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1595 }
1596 break;
1597 }
1598 case Instruction::And:
1599 case Instruction::Or:
1600 case Instruction::Xor:
1601 case Instruction::Add:
1602 case Instruction::Sub:
1603 case Instruction::Mul:
1604 // div/rem demand all inputs, because they don't want divide by zero.
1605 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1606 UndefElts, Depth+1);
1607 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1608 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1609 UndefElts2, Depth+1);
1610 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1611
1612 // Output elements are undefined if both are undefined. Consider things
1613 // like undef&0. The result is known zero, not undef.
1614 UndefElts &= UndefElts2;
1615 break;
1616
1617 case Instruction::Call: {
1618 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1619 if (!II) break;
1620 switch (II->getIntrinsicID()) {
1621 default: break;
1622
1623 // Binary vector operations that work column-wise. A dest element is a
1624 // function of the corresponding input elements from the two inputs.
1625 case Intrinsic::x86_sse_sub_ss:
1626 case Intrinsic::x86_sse_mul_ss:
1627 case Intrinsic::x86_sse_min_ss:
1628 case Intrinsic::x86_sse_max_ss:
1629 case Intrinsic::x86_sse2_sub_sd:
1630 case Intrinsic::x86_sse2_mul_sd:
1631 case Intrinsic::x86_sse2_min_sd:
1632 case Intrinsic::x86_sse2_max_sd:
1633 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1634 UndefElts, Depth+1);
1635 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1636 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1637 UndefElts2, Depth+1);
1638 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1639
1640 // If only the low elt is demanded and this is a scalarizable intrinsic,
1641 // scalarize it now.
1642 if (DemandedElts == 1) {
1643 switch (II->getIntrinsicID()) {
1644 default: break;
1645 case Intrinsic::x86_sse_sub_ss:
1646 case Intrinsic::x86_sse_mul_ss:
1647 case Intrinsic::x86_sse2_sub_sd:
1648 case Intrinsic::x86_sse2_mul_sd:
1649 // TODO: Lower MIN/MAX/ABS/etc
1650 Value *LHS = II->getOperand(1);
1651 Value *RHS = II->getOperand(2);
1652 // Extract the element as scalars.
1653 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
1654 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
1655
1656 switch (II->getIntrinsicID()) {
1657 default: assert(0 && "Case stmts out of sync!");
1658 case Intrinsic::x86_sse_sub_ss:
1659 case Intrinsic::x86_sse2_sub_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001660 TmpV = InsertNewInstBefore(BinaryOperator::CreateSub(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001661 II->getName()), *II);
1662 break;
1663 case Intrinsic::x86_sse_mul_ss:
1664 case Intrinsic::x86_sse2_mul_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001665 TmpV = InsertNewInstBefore(BinaryOperator::CreateMul(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001666 II->getName()), *II);
1667 break;
1668 }
1669
1670 Instruction *New =
Gabor Greifd6da1d02008-04-06 20:25:17 +00001671 InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U,
1672 II->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001673 InsertNewInstBefore(New, *II);
1674 AddSoonDeadInstToWorklist(*II, 0);
1675 return New;
1676 }
1677 }
1678
1679 // Output elements are undefined if both are undefined. Consider things
1680 // like undef&0. The result is known zero, not undef.
1681 UndefElts &= UndefElts2;
1682 break;
1683 }
1684 break;
1685 }
1686 }
1687 return MadeChange ? I : 0;
1688}
1689
Dan Gohman5d56fd42008-05-19 22:14:15 +00001690
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001691/// AssociativeOpt - Perform an optimization on an associative operator. This
1692/// function is designed to check a chain of associative operators for a
1693/// potential to apply a certain optimization. Since the optimization may be
1694/// applicable if the expression was reassociated, this checks the chain, then
1695/// reassociates the expression as necessary to expose the optimization
1696/// opportunity. This makes use of a special Functor, which must define
1697/// 'shouldApply' and 'apply' methods.
1698///
1699template<typename Functor>
Dan Gohmand8bcf5b2008-05-20 01:14:05 +00001700static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001701 unsigned Opcode = Root.getOpcode();
1702 Value *LHS = Root.getOperand(0);
1703
1704 // Quick check, see if the immediate LHS matches...
1705 if (F.shouldApply(LHS))
1706 return F.apply(Root);
1707
1708 // Otherwise, if the LHS is not of the same opcode as the root, return.
1709 Instruction *LHSI = dyn_cast<Instruction>(LHS);
1710 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
1711 // Should we apply this transform to the RHS?
1712 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1713
1714 // If not to the RHS, check to see if we should apply to the LHS...
1715 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1716 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1717 ShouldApply = true;
1718 }
1719
1720 // If the functor wants to apply the optimization to the RHS of LHSI,
1721 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1722 if (ShouldApply) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001723 // Now all of the instructions are in the current basic block, go ahead
1724 // and perform the reassociation.
1725 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1726
1727 // First move the selected RHS to the LHS of the root...
1728 Root.setOperand(0, LHSI->getOperand(1));
1729
1730 // Make what used to be the LHS of the root be the user of the root...
1731 Value *ExtraOperand = TmpLHSI->getOperand(1);
1732 if (&Root == TmpLHSI) {
1733 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1734 return 0;
1735 }
1736 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
1737 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001738 BasicBlock::iterator ARI = &Root; ++ARI;
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001739 TmpLHSI->moveBefore(ARI); // Move TmpLHSI to after Root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001740 ARI = Root;
1741
1742 // Now propagate the ExtraOperand down the chain of instructions until we
1743 // get to LHSI.
1744 while (TmpLHSI != LHSI) {
1745 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
1746 // Move the instruction to immediately before the chain we are
1747 // constructing to avoid breaking dominance properties.
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001748 NextLHSI->moveBefore(ARI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001749 ARI = NextLHSI;
1750
1751 Value *NextOp = NextLHSI->getOperand(1);
1752 NextLHSI->setOperand(1, ExtraOperand);
1753 TmpLHSI = NextLHSI;
1754 ExtraOperand = NextOp;
1755 }
1756
1757 // Now that the instructions are reassociated, have the functor perform
1758 // the transformation...
1759 return F.apply(Root);
1760 }
1761
1762 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1763 }
1764 return 0;
1765}
1766
Dan Gohman089efff2008-05-13 00:00:25 +00001767namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001768
Nick Lewycky27f6c132008-05-23 04:34:58 +00001769// AddRHS - Implements: X + X --> X << 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001770struct AddRHS {
1771 Value *RHS;
1772 AddRHS(Value *rhs) : RHS(rhs) {}
1773 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1774 Instruction *apply(BinaryOperator &Add) const {
Nick Lewycky27f6c132008-05-23 04:34:58 +00001775 return BinaryOperator::CreateShl(Add.getOperand(0),
1776 ConstantInt::get(Add.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001777 }
1778};
1779
1780// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1781// iff C1&C2 == 0
1782struct AddMaskingAnd {
1783 Constant *C2;
1784 AddMaskingAnd(Constant *c) : C2(c) {}
1785 bool shouldApply(Value *LHS) const {
1786 ConstantInt *C1;
1787 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
1788 ConstantExpr::getAnd(C1, C2)->isNullValue();
1789 }
1790 Instruction *apply(BinaryOperator &Add) const {
Gabor Greifa645dd32008-05-16 19:29:10 +00001791 return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001792 }
1793};
1794
Dan Gohman089efff2008-05-13 00:00:25 +00001795}
1796
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001797static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
1798 InstCombiner *IC) {
1799 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
Eli Friedman722b4792008-11-30 21:09:11 +00001800 return IC->InsertCastBefore(CI->getOpcode(), SO, I.getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001801 }
1802
1803 // Figure out if the constant is the left or the right argument.
1804 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1805 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1806
1807 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1808 if (ConstIsRHS)
1809 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1810 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1811 }
1812
1813 Value *Op0 = SO, *Op1 = ConstOperand;
1814 if (!ConstIsRHS)
1815 std::swap(Op0, Op1);
1816 Instruction *New;
1817 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001818 New = BinaryOperator::Create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001819 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001820 New = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001821 SO->getName()+".cmp");
1822 else {
1823 assert(0 && "Unknown binary instruction type!");
1824 abort();
1825 }
1826 return IC->InsertNewInstBefore(New, I);
1827}
1828
1829// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1830// constant as the other operand, try to fold the binary operator into the
1831// select arguments. This also works for Cast instructions, which obviously do
1832// not have a second operand.
1833static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1834 InstCombiner *IC) {
1835 // Don't modify shared select instructions
1836 if (!SI->hasOneUse()) return 0;
1837 Value *TV = SI->getOperand(1);
1838 Value *FV = SI->getOperand(2);
1839
1840 if (isa<Constant>(TV) || isa<Constant>(FV)) {
1841 // Bool selects with constant operands can be folded to logical ops.
1842 if (SI->getType() == Type::Int1Ty) return 0;
1843
1844 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1845 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1846
Gabor Greifd6da1d02008-04-06 20:25:17 +00001847 return SelectInst::Create(SI->getCondition(), SelectTrueVal,
1848 SelectFalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001849 }
1850 return 0;
1851}
1852
1853
1854/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1855/// node as operand #0, see if we can fold the instruction into the PHI (which
1856/// is only possible if all operands to the PHI are constants).
1857Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1858 PHINode *PN = cast<PHINode>(I.getOperand(0));
1859 unsigned NumPHIValues = PN->getNumIncomingValues();
1860 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
1861
1862 // Check to see if all of the operands of the PHI are constants. If there is
1863 // one non-constant value, remember the BB it is. If there is more than one
1864 // or if *it* is a PHI, bail out.
1865 BasicBlock *NonConstBB = 0;
1866 for (unsigned i = 0; i != NumPHIValues; ++i)
1867 if (!isa<Constant>(PN->getIncomingValue(i))) {
1868 if (NonConstBB) return 0; // More than one non-const value.
1869 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
1870 NonConstBB = PN->getIncomingBlock(i);
1871
1872 // If the incoming non-constant value is in I's block, we have an infinite
1873 // loop.
1874 if (NonConstBB == I.getParent())
1875 return 0;
1876 }
1877
1878 // If there is exactly one non-constant value, we can insert a copy of the
1879 // operation in that block. However, if this is a critical edge, we would be
1880 // inserting the computation one some other paths (e.g. inside a loop). Only
1881 // do this if the pred block is unconditionally branching into the phi block.
1882 if (NonConstBB) {
1883 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1884 if (!BI || !BI->isUnconditional()) return 0;
1885 }
1886
1887 // Okay, we can do the transformation: create the new PHI node.
Gabor Greifd6da1d02008-04-06 20:25:17 +00001888 PHINode *NewPN = PHINode::Create(I.getType(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001889 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
1890 InsertNewInstBefore(NewPN, *PN);
1891 NewPN->takeName(PN);
1892
1893 // Next, add all of the operands to the PHI.
1894 if (I.getNumOperands() == 2) {
1895 Constant *C = cast<Constant>(I.getOperand(1));
1896 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00001897 Value *InV = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001898 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1899 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1900 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1901 else
1902 InV = ConstantExpr::get(I.getOpcode(), InC, C);
1903 } else {
1904 assert(PN->getIncomingBlock(i) == NonConstBB);
1905 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001906 InV = BinaryOperator::Create(BO->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001907 PN->getIncomingValue(i), C, "phitmp",
1908 NonConstBB->getTerminator());
1909 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001910 InV = CmpInst::Create(CI->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001911 CI->getPredicate(),
1912 PN->getIncomingValue(i), C, "phitmp",
1913 NonConstBB->getTerminator());
1914 else
1915 assert(0 && "Unknown binop!");
1916
1917 AddToWorkList(cast<Instruction>(InV));
1918 }
1919 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1920 }
1921 } else {
1922 CastInst *CI = cast<CastInst>(&I);
1923 const Type *RetTy = CI->getType();
1924 for (unsigned i = 0; i != NumPHIValues; ++i) {
1925 Value *InV;
1926 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1927 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1928 } else {
1929 assert(PN->getIncomingBlock(i) == NonConstBB);
Gabor Greifa645dd32008-05-16 19:29:10 +00001930 InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001931 I.getType(), "phitmp",
1932 NonConstBB->getTerminator());
1933 AddToWorkList(cast<Instruction>(InV));
1934 }
1935 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1936 }
1937 }
1938 return ReplaceInstUsesWith(I, NewPN);
1939}
1940
Chris Lattner55476162008-01-29 06:52:45 +00001941
Chris Lattner3554f972008-05-20 05:46:13 +00001942/// WillNotOverflowSignedAdd - Return true if we can prove that:
1943/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
1944/// This basically requires proving that the add in the original type would not
1945/// overflow to change the sign bit or have a carry out.
1946bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
1947 // There are different heuristics we can use for this. Here are some simple
1948 // ones.
1949
1950 // Add has the property that adding any two 2's complement numbers can only
1951 // have one carry bit which can change a sign. As such, if LHS and RHS each
1952 // have at least two sign bits, we know that the addition of the two values will
1953 // sign extend fine.
1954 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
1955 return true;
1956
1957
1958 // If one of the operands only has one non-zero bit, and if the other operand
1959 // has a known-zero bit in a more significant place than it (not including the
1960 // sign bit) the ripple may go up to and fill the zero, but won't change the
1961 // sign. For example, (X & ~4) + 1.
1962
1963 // TODO: Implement.
1964
1965 return false;
1966}
1967
Chris Lattner55476162008-01-29 06:52:45 +00001968
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001969Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1970 bool Changed = SimplifyCommutative(I);
1971 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1972
1973 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1974 // X + undef -> undef
1975 if (isa<UndefValue>(RHS))
1976 return ReplaceInstUsesWith(I, RHS);
1977
1978 // X + 0 --> X
1979 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
1980 if (RHSC->isNullValue())
1981 return ReplaceInstUsesWith(I, LHS);
1982 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00001983 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
1984 (I.getType())->getValueAPF()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001985 return ReplaceInstUsesWith(I, LHS);
1986 }
1987
1988 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
1989 // X + (signbit) --> X ^ signbit
1990 const APInt& Val = CI->getValue();
1991 uint32_t BitWidth = Val.getBitWidth();
1992 if (Val == APInt::getSignBit(BitWidth))
Gabor Greifa645dd32008-05-16 19:29:10 +00001993 return BinaryOperator::CreateXor(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001994
1995 // See if SimplifyDemandedBits can simplify this. This handles stuff like
1996 // (X & 254)+1 -> (X&254)|1
1997 if (!isa<VectorType>(I.getType())) {
1998 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1999 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2000 KnownZero, KnownOne))
2001 return &I;
2002 }
Dan Gohman35b76162008-10-30 20:40:10 +00002003
2004 // zext(i1) - 1 -> select i1, 0, -1
2005 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
2006 if (CI->isAllOnesValue() &&
2007 ZI->getOperand(0)->getType() == Type::Int1Ty)
2008 return SelectInst::Create(ZI->getOperand(0),
2009 Constant::getNullValue(I.getType()),
2010 ConstantInt::getAllOnesValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002011 }
2012
2013 if (isa<PHINode>(LHS))
2014 if (Instruction *NV = FoldOpIntoPhi(I))
2015 return NV;
2016
2017 ConstantInt *XorRHS = 0;
2018 Value *XorLHS = 0;
2019 if (isa<ConstantInt>(RHSC) &&
2020 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
2021 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
2022 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
2023
2024 uint32_t Size = TySizeBits / 2;
2025 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
2026 APInt CFF80Val(-C0080Val);
2027 do {
2028 if (TySizeBits > Size) {
2029 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2030 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
2031 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
2032 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
2033 // This is a sign extend if the top bits are known zero.
2034 if (!MaskedValueIsZero(XorLHS,
2035 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
2036 Size = 0; // Not a sign ext, but can't be any others either.
2037 break;
2038 }
2039 }
2040 Size >>= 1;
2041 C0080Val = APIntOps::lshr(C0080Val, Size);
2042 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2043 } while (Size >= 1);
2044
2045 // FIXME: This shouldn't be necessary. When the backends can handle types
Chris Lattnerdeef1a72008-05-19 20:25:04 +00002046 // with funny bit widths then this switch statement should be removed. It
2047 // is just here to get the size of the "middle" type back up to something
2048 // that the back ends can handle.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002049 const Type *MiddleType = 0;
2050 switch (Size) {
2051 default: break;
2052 case 32: MiddleType = Type::Int32Ty; break;
2053 case 16: MiddleType = Type::Int16Ty; break;
2054 case 8: MiddleType = Type::Int8Ty; break;
2055 }
2056 if (MiddleType) {
2057 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
2058 InsertNewInstBefore(NewTrunc, I);
2059 return new SExtInst(NewTrunc, I.getType(), I.getName());
2060 }
2061 }
2062 }
2063
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002064 if (I.getType() == Type::Int1Ty)
2065 return BinaryOperator::CreateXor(LHS, RHS);
2066
Nick Lewycky4d474cd2008-05-23 04:39:38 +00002067 // X + X --> X << 1
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002068 if (I.getType()->isInteger()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002069 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
2070
2071 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2072 if (RHSI->getOpcode() == Instruction::Sub)
2073 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2074 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2075 }
2076 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2077 if (LHSI->getOpcode() == Instruction::Sub)
2078 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2079 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2080 }
2081 }
2082
2083 // -A + B --> B - A
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002084 // -A + -B --> -(A + B)
2085 if (Value *LHSV = dyn_castNegVal(LHS)) {
Chris Lattner322a9192008-02-18 17:50:16 +00002086 if (LHS->getType()->isIntOrIntVector()) {
2087 if (Value *RHSV = dyn_castNegVal(RHS)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002088 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSV, RHSV, "sum");
Chris Lattner322a9192008-02-18 17:50:16 +00002089 InsertNewInstBefore(NewAdd, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002090 return BinaryOperator::CreateNeg(NewAdd);
Chris Lattner322a9192008-02-18 17:50:16 +00002091 }
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002092 }
2093
Gabor Greifa645dd32008-05-16 19:29:10 +00002094 return BinaryOperator::CreateSub(RHS, LHSV);
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002095 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002096
2097 // A + -B --> A - B
2098 if (!isa<Constant>(RHS))
2099 if (Value *V = dyn_castNegVal(RHS))
Gabor Greifa645dd32008-05-16 19:29:10 +00002100 return BinaryOperator::CreateSub(LHS, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002101
2102
2103 ConstantInt *C2;
2104 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2105 if (X == RHS) // X*C + X --> X * (C+1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002106 return BinaryOperator::CreateMul(RHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002107
2108 // X*C1 + X*C2 --> X * (C1+C2)
2109 ConstantInt *C1;
2110 if (X == dyn_castFoldableMul(RHS, C1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002111 return BinaryOperator::CreateMul(X, Add(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002112 }
2113
2114 // X + X*C --> X * (C+1)
2115 if (dyn_castFoldableMul(RHS, C2) == LHS)
Gabor Greifa645dd32008-05-16 19:29:10 +00002116 return BinaryOperator::CreateMul(LHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002117
2118 // X + ~X --> -1 since ~X = -X-1
2119 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2120 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2121
2122
2123 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2124 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
2125 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2126 return R;
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002127
2128 // A+B --> A|B iff A and B have no bits set in common.
2129 if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
2130 APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
2131 APInt LHSKnownOne(IT->getBitWidth(), 0);
2132 APInt LHSKnownZero(IT->getBitWidth(), 0);
2133 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
2134 if (LHSKnownZero != 0) {
2135 APInt RHSKnownOne(IT->getBitWidth(), 0);
2136 APInt RHSKnownZero(IT->getBitWidth(), 0);
2137 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
2138
2139 // No bits in common -> bitwise or.
Chris Lattner130443c2008-05-19 20:03:53 +00002140 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002141 return BinaryOperator::CreateOr(LHS, RHS);
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002142 }
2143 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002144
Nick Lewycky83598a72008-02-03 07:42:09 +00002145 // W*X + Y*Z --> W * (X+Z) iff W == Y
Nick Lewycky5d03b512008-02-03 08:19:11 +00002146 if (I.getType()->isIntOrIntVector()) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002147 Value *W, *X, *Y, *Z;
2148 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
2149 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
2150 if (W != Y) {
2151 if (W == Z) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002152 std::swap(Y, Z);
Nick Lewycky83598a72008-02-03 07:42:09 +00002153 } else if (Y == X) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002154 std::swap(W, X);
2155 } else if (X == Z) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002156 std::swap(Y, Z);
2157 std::swap(W, X);
2158 }
2159 }
2160
2161 if (W == Y) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002162 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, Z,
Nick Lewycky83598a72008-02-03 07:42:09 +00002163 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002164 return BinaryOperator::CreateMul(W, NewAdd);
Nick Lewycky83598a72008-02-03 07:42:09 +00002165 }
2166 }
2167 }
2168
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002169 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
2170 Value *X = 0;
2171 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002172 return BinaryOperator::CreateSub(SubOne(CRHS), X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002173
2174 // (X & FF00) + xx00 -> (X+xx00) & FF00
2175 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2176 Constant *Anded = And(CRHS, C2);
2177 if (Anded == CRHS) {
2178 // See if all bits from the first bit set in the Add RHS up are included
2179 // in the mask. First, get the rightmost bit.
2180 const APInt& AddRHSV = CRHS->getValue();
2181
2182 // Form a mask of all bits from the lowest bit added through the top.
2183 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
2184
2185 // See if the and mask includes all of these bits.
2186 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
2187
2188 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2189 // Okay, the xform is safe. Insert the new add pronto.
Gabor Greifa645dd32008-05-16 19:29:10 +00002190 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, CRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002191 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002192 return BinaryOperator::CreateAnd(NewAdd, C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002193 }
2194 }
2195 }
2196
2197 // Try to fold constant add into select arguments.
2198 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
2199 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2200 return R;
2201 }
2202
2203 // add (cast *A to intptrtype) B ->
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002204 // cast (GEP (cast *A to sbyte*) B) --> intptrtype
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002205 {
2206 CastInst *CI = dyn_cast<CastInst>(LHS);
2207 Value *Other = RHS;
2208 if (!CI) {
2209 CI = dyn_cast<CastInst>(RHS);
2210 Other = LHS;
2211 }
2212 if (CI && CI->getType()->isSized() &&
2213 (CI->getType()->getPrimitiveSizeInBits() ==
2214 TD->getIntPtrType()->getPrimitiveSizeInBits())
2215 && isa<PointerType>(CI->getOperand(0)->getType())) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00002216 unsigned AS =
2217 cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00002218 Value *I2 = InsertBitCastBefore(CI->getOperand(0),
2219 PointerType::get(Type::Int8Ty, AS), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00002220 I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002221 return new PtrToIntInst(I2, CI->getType());
2222 }
2223 }
Christopher Lamb244ec282007-12-18 09:34:41 +00002224
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002225 // add (select X 0 (sub n A)) A --> select X A n
Christopher Lamb244ec282007-12-18 09:34:41 +00002226 {
2227 SelectInst *SI = dyn_cast<SelectInst>(LHS);
Chris Lattner641ea462008-11-16 04:46:19 +00002228 Value *A = RHS;
Christopher Lamb244ec282007-12-18 09:34:41 +00002229 if (!SI) {
2230 SI = dyn_cast<SelectInst>(RHS);
Chris Lattner641ea462008-11-16 04:46:19 +00002231 A = LHS;
Christopher Lamb244ec282007-12-18 09:34:41 +00002232 }
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002233 if (SI && SI->hasOneUse()) {
Christopher Lamb244ec282007-12-18 09:34:41 +00002234 Value *TV = SI->getTrueValue();
2235 Value *FV = SI->getFalseValue();
Chris Lattner641ea462008-11-16 04:46:19 +00002236 Value *N;
Christopher Lamb244ec282007-12-18 09:34:41 +00002237
2238 // Can we fold the add into the argument of the select?
2239 // We check both true and false select arguments for a matching subtract.
Chris Lattner641ea462008-11-16 04:46:19 +00002240 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
2241 // Fold the add into the true select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002242 return SelectInst::Create(SI->getCondition(), N, A);
Chris Lattner641ea462008-11-16 04:46:19 +00002243 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
2244 // Fold the add into the false select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002245 return SelectInst::Create(SI->getCondition(), A, N);
Christopher Lamb244ec282007-12-18 09:34:41 +00002246 }
2247 }
Chris Lattner55476162008-01-29 06:52:45 +00002248
2249 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2250 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
2251 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
2252 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002253
Chris Lattner3554f972008-05-20 05:46:13 +00002254 // Check for (add (sext x), y), see if we can merge this into an
2255 // integer add followed by a sext.
2256 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
2257 // (add (sext x), cst) --> (sext (add x, cst'))
2258 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2259 Constant *CI =
2260 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
2261 if (LHSConv->hasOneUse() &&
2262 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
2263 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2264 // Insert the new, smaller add.
2265 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2266 CI, "addconv");
2267 InsertNewInstBefore(NewAdd, I);
2268 return new SExtInst(NewAdd, I.getType());
2269 }
2270 }
2271
2272 // (add (sext x), (sext y)) --> (sext (add int x, y))
2273 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
2274 // Only do this if x/y have the same type, if at last one of them has a
2275 // single use (so we don't increase the number of sexts), and if the
2276 // integer add will not overflow.
2277 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2278 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2279 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2280 RHSConv->getOperand(0))) {
2281 // Insert the new integer add.
2282 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2283 RHSConv->getOperand(0),
2284 "addconv");
2285 InsertNewInstBefore(NewAdd, I);
2286 return new SExtInst(NewAdd, I.getType());
2287 }
2288 }
2289 }
2290
2291 // Check for (add double (sitofp x), y), see if we can merge this into an
2292 // integer add followed by a promotion.
2293 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
2294 // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
2295 // ... if the constant fits in the integer value. This is useful for things
2296 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
2297 // requires a constant pool load, and generally allows the add to be better
2298 // instcombined.
2299 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
2300 Constant *CI =
2301 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
2302 if (LHSConv->hasOneUse() &&
2303 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
2304 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2305 // Insert the new integer add.
2306 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2307 CI, "addconv");
2308 InsertNewInstBefore(NewAdd, I);
2309 return new SIToFPInst(NewAdd, I.getType());
2310 }
2311 }
2312
2313 // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
2314 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
2315 // Only do this if x/y have the same type, if at last one of them has a
2316 // single use (so we don't increase the number of int->fp conversions),
2317 // and if the integer add will not overflow.
2318 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2319 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2320 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2321 RHSConv->getOperand(0))) {
2322 // Insert the new integer add.
2323 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2324 RHSConv->getOperand(0),
2325 "addconv");
2326 InsertNewInstBefore(NewAdd, I);
2327 return new SIToFPInst(NewAdd, I.getType());
2328 }
2329 }
2330 }
2331
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002332 return Changed ? &I : 0;
2333}
2334
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002335Instruction *InstCombiner::visitSub(BinaryOperator &I) {
2336 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2337
Chris Lattner27fbef42008-07-17 06:07:20 +00002338 if (Op0 == Op1 && // sub X, X -> 0
2339 !I.getType()->isFPOrFPVector())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002340 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2341
2342 // If this is a 'B = x-(-A)', change to B = x+A...
2343 if (Value *V = dyn_castNegVal(Op1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002344 return BinaryOperator::CreateAdd(Op0, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002345
2346 if (isa<UndefValue>(Op0))
2347 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2348 if (isa<UndefValue>(Op1))
2349 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2350
2351 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2352 // Replace (-1 - A) with (~A)...
2353 if (C->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002354 return BinaryOperator::CreateNot(Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002355
2356 // C - ~X == X + (1+C)
2357 Value *X = 0;
2358 if (match(Op1, m_Not(m_Value(X))))
Gabor Greifa645dd32008-05-16 19:29:10 +00002359 return BinaryOperator::CreateAdd(X, AddOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002360
2361 // -(X >>u 31) -> (X >>s 31)
2362 // -(X >>s 31) -> (X >>u 31)
2363 if (C->isZero()) {
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002364 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002365 if (SI->getOpcode() == Instruction::LShr) {
2366 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2367 // Check to see if we are shifting out everything but the sign bit.
2368 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2369 SI->getType()->getPrimitiveSizeInBits()-1) {
2370 // Ok, the transformation is safe. Insert AShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002371 return BinaryOperator::Create(Instruction::AShr,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002372 SI->getOperand(0), CU, SI->getName());
2373 }
2374 }
2375 }
2376 else if (SI->getOpcode() == Instruction::AShr) {
2377 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2378 // Check to see if we are shifting out everything but the sign bit.
2379 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2380 SI->getType()->getPrimitiveSizeInBits()-1) {
2381 // Ok, the transformation is safe. Insert LShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002382 return BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002383 SI->getOperand(0), CU, SI->getName());
2384 }
2385 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002386 }
2387 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002388 }
2389
2390 // Try to fold constant sub into select arguments.
2391 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2392 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2393 return R;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002394 }
2395
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002396 if (I.getType() == Type::Int1Ty)
2397 return BinaryOperator::CreateXor(Op0, Op1);
2398
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002399 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2400 if (Op1I->getOpcode() == Instruction::Add &&
2401 !Op0->getType()->isFPOrFPVector()) {
2402 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002403 return BinaryOperator::CreateNeg(Op1I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002404 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002405 return BinaryOperator::CreateNeg(Op1I->getOperand(0), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002406 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2407 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2408 // C1-(X+C2) --> (C1-C2)-X
Gabor Greifa645dd32008-05-16 19:29:10 +00002409 return BinaryOperator::CreateSub(Subtract(CI1, CI2),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002410 Op1I->getOperand(0));
2411 }
2412 }
2413
2414 if (Op1I->hasOneUse()) {
2415 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2416 // is not used by anyone else...
2417 //
2418 if (Op1I->getOpcode() == Instruction::Sub &&
2419 !Op1I->getType()->isFPOrFPVector()) {
2420 // Swap the two operands of the subexpr...
2421 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2422 Op1I->setOperand(0, IIOp1);
2423 Op1I->setOperand(1, IIOp0);
2424
2425 // Create the new top level add instruction...
Gabor Greifa645dd32008-05-16 19:29:10 +00002426 return BinaryOperator::CreateAdd(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002427 }
2428
2429 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2430 //
2431 if (Op1I->getOpcode() == Instruction::And &&
2432 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2433 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2434
2435 Value *NewNot =
Gabor Greifa645dd32008-05-16 19:29:10 +00002436 InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp, "B.not"), I);
2437 return BinaryOperator::CreateAnd(Op0, NewNot);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002438 }
2439
2440 // 0 - (X sdiv C) -> (X sdiv -C)
2441 if (Op1I->getOpcode() == Instruction::SDiv)
2442 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
2443 if (CSI->isZero())
2444 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002445 return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002446 ConstantExpr::getNeg(DivRHS));
2447
2448 // X - X*C --> X * (1-C)
2449 ConstantInt *C2 = 0;
2450 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
2451 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002452 return BinaryOperator::CreateMul(Op0, CP1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002453 }
2454 }
2455 }
2456
2457 if (!Op0->getType()->isFPOrFPVector())
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002458 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002459 if (Op0I->getOpcode() == Instruction::Add) {
2460 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2461 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2462 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2463 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
2464 } else if (Op0I->getOpcode() == Instruction::Sub) {
2465 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002466 return BinaryOperator::CreateNeg(Op0I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002467 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002468 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002469
2470 ConstantInt *C1;
2471 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2472 if (X == Op1) // X*C - X --> X * (C-1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002473 return BinaryOperator::CreateMul(Op1, SubOne(C1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002474
2475 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2476 if (X == dyn_castFoldableMul(Op1, C2))
Gabor Greifa645dd32008-05-16 19:29:10 +00002477 return BinaryOperator::CreateMul(X, Subtract(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002478 }
2479 return 0;
2480}
2481
2482/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2483/// comparison only checks the sign bit. If it only checks the sign bit, set
2484/// TrueIfSigned if the result of the comparison is true when the input value is
2485/// signed.
2486static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2487 bool &TrueIfSigned) {
2488 switch (pred) {
2489 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2490 TrueIfSigned = true;
2491 return RHS->isZero();
2492 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2493 TrueIfSigned = true;
2494 return RHS->isAllOnesValue();
2495 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2496 TrueIfSigned = false;
2497 return RHS->isAllOnesValue();
2498 case ICmpInst::ICMP_UGT:
2499 // True if LHS u> RHS and RHS == high-bit-mask - 1
2500 TrueIfSigned = true;
2501 return RHS->getValue() ==
2502 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2503 case ICmpInst::ICMP_UGE:
2504 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2505 TrueIfSigned = true;
Chris Lattner60813c22008-06-02 01:29:46 +00002506 return RHS->getValue().isSignBit();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002507 default:
2508 return false;
2509 }
2510}
2511
2512Instruction *InstCombiner::visitMul(BinaryOperator &I) {
2513 bool Changed = SimplifyCommutative(I);
2514 Value *Op0 = I.getOperand(0);
2515
2516 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2517 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2518
2519 // Simplify mul instructions with a constant RHS...
2520 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2521 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2522
2523 // ((X << C1)*C2) == (X * (C2 << C1))
2524 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
2525 if (SI->getOpcode() == Instruction::Shl)
2526 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002527 return BinaryOperator::CreateMul(SI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002528 ConstantExpr::getShl(CI, ShOp));
2529
2530 if (CI->isZero())
2531 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2532 if (CI->equalsInt(1)) // X * 1 == X
2533 return ReplaceInstUsesWith(I, Op0);
2534 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002535 return BinaryOperator::CreateNeg(Op0, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002536
2537 const APInt& Val = cast<ConstantInt>(CI)->getValue();
2538 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
Gabor Greifa645dd32008-05-16 19:29:10 +00002539 return BinaryOperator::CreateShl(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002540 ConstantInt::get(Op0->getType(), Val.logBase2()));
2541 }
2542 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
2543 if (Op1F->isNullValue())
2544 return ReplaceInstUsesWith(I, Op1);
2545
2546 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2547 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
Chris Lattner6297fc72008-08-11 22:06:05 +00002548 if (Op1F->isExactlyValue(1.0))
2549 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
2550 } else if (isa<VectorType>(Op1->getType())) {
2551 if (isa<ConstantAggregateZero>(Op1))
2552 return ReplaceInstUsesWith(I, Op1);
Nick Lewycky94418732008-11-27 20:21:08 +00002553
2554 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
2555 if (Op1V->isAllOnesValue()) // X * -1 == 0 - X
2556 return BinaryOperator::CreateNeg(Op0, I.getName());
2557
2558 // As above, vector X*splat(1.0) -> X in all defined cases.
2559 if (Constant *Splat = Op1V->getSplatValue()) {
2560 if (ConstantFP *F = dyn_cast<ConstantFP>(Splat))
2561 if (F->isExactlyValue(1.0))
2562 return ReplaceInstUsesWith(I, Op0);
2563 if (ConstantInt *CI = dyn_cast<ConstantInt>(Splat))
2564 if (CI->equalsInt(1))
2565 return ReplaceInstUsesWith(I, Op0);
2566 }
2567 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002568 }
2569
2570 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2571 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
Chris Lattner58194082008-05-18 04:11:26 +00002572 isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002573 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
Gabor Greifa645dd32008-05-16 19:29:10 +00002574 Instruction *Add = BinaryOperator::CreateMul(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002575 Op1, "tmp");
2576 InsertNewInstBefore(Add, I);
2577 Value *C1C2 = ConstantExpr::getMul(Op1,
2578 cast<Constant>(Op0I->getOperand(1)));
Gabor Greifa645dd32008-05-16 19:29:10 +00002579 return BinaryOperator::CreateAdd(Add, C1C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002580
2581 }
2582
2583 // Try to fold constant mul into select arguments.
2584 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2585 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2586 return R;
2587
2588 if (isa<PHINode>(Op0))
2589 if (Instruction *NV = FoldOpIntoPhi(I))
2590 return NV;
2591 }
2592
2593 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2594 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002595 return BinaryOperator::CreateMul(Op0v, Op1v);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002596
Nick Lewycky1c246402008-11-21 07:33:58 +00002597 // (X / Y) * Y = X - (X % Y)
2598 // (X / Y) * -Y = (X % Y) - X
2599 {
2600 Value *Op1 = I.getOperand(1);
2601 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
2602 if (!BO ||
2603 (BO->getOpcode() != Instruction::UDiv &&
2604 BO->getOpcode() != Instruction::SDiv)) {
2605 Op1 = Op0;
2606 BO = dyn_cast<BinaryOperator>(I.getOperand(1));
2607 }
2608 Value *Neg = dyn_castNegVal(Op1);
2609 if (BO && BO->hasOneUse() &&
2610 (BO->getOperand(1) == Op1 || BO->getOperand(1) == Neg) &&
2611 (BO->getOpcode() == Instruction::UDiv ||
2612 BO->getOpcode() == Instruction::SDiv)) {
2613 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
2614
2615 Instruction *Rem;
2616 if (BO->getOpcode() == Instruction::UDiv)
2617 Rem = BinaryOperator::CreateURem(Op0BO, Op1BO);
2618 else
2619 Rem = BinaryOperator::CreateSRem(Op0BO, Op1BO);
2620
2621 InsertNewInstBefore(Rem, I);
2622 Rem->takeName(BO);
2623
2624 if (Op1BO == Op1)
2625 return BinaryOperator::CreateSub(Op0BO, Rem);
2626 else
2627 return BinaryOperator::CreateSub(Rem, Op0BO);
2628 }
2629 }
2630
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002631 if (I.getType() == Type::Int1Ty)
2632 return BinaryOperator::CreateAnd(Op0, I.getOperand(1));
2633
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002634 // If one of the operands of the multiply is a cast from a boolean value, then
2635 // we know the bool is either zero or one, so this is a 'masking' multiply.
2636 // See if we can simplify things based on how the boolean was originally
2637 // formed.
2638 CastInst *BoolCast = 0;
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002639 if (ZExtInst *CI = dyn_cast<ZExtInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002640 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2641 BoolCast = CI;
2642 if (!BoolCast)
2643 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
2644 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2645 BoolCast = CI;
2646 if (BoolCast) {
2647 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
2648 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2649 const Type *SCOpTy = SCIOp0->getType();
2650 bool TIS = false;
2651
2652 // If the icmp is true iff the sign bit of X is set, then convert this
2653 // multiply into a shift/and combination.
2654 if (isa<ConstantInt>(SCIOp1) &&
2655 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2656 TIS) {
2657 // Shift the X value right to turn it into "all signbits".
2658 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
2659 SCOpTy->getPrimitiveSizeInBits()-1);
2660 Value *V =
2661 InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00002662 BinaryOperator::Create(Instruction::AShr, SCIOp0, Amt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002663 BoolCast->getOperand(0)->getName()+
2664 ".mask"), I);
2665
2666 // If the multiply type is not the same as the source type, sign extend
2667 // or truncate to the multiply type.
2668 if (I.getType() != V->getType()) {
2669 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2670 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
2671 Instruction::CastOps opcode =
2672 (SrcBits == DstBits ? Instruction::BitCast :
2673 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2674 V = InsertCastBefore(opcode, V, I.getType(), I);
2675 }
2676
2677 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Gabor Greifa645dd32008-05-16 19:29:10 +00002678 return BinaryOperator::CreateAnd(V, OtherOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002679 }
2680 }
2681 }
2682
2683 return Changed ? &I : 0;
2684}
2685
Chris Lattner76972db2008-07-14 00:15:52 +00002686/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
2687/// instruction.
2688bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
2689 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
2690
2691 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
2692 int NonNullOperand = -1;
2693 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2694 if (ST->isNullValue())
2695 NonNullOperand = 2;
2696 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
2697 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2698 if (ST->isNullValue())
2699 NonNullOperand = 1;
2700
2701 if (NonNullOperand == -1)
2702 return false;
2703
2704 Value *SelectCond = SI->getOperand(0);
2705
2706 // Change the div/rem to use 'Y' instead of the select.
2707 I.setOperand(1, SI->getOperand(NonNullOperand));
2708
2709 // Okay, we know we replace the operand of the div/rem with 'Y' with no
2710 // problem. However, the select, or the condition of the select may have
2711 // multiple uses. Based on our knowledge that the operand must be non-zero,
2712 // propagate the known value for the select into other uses of it, and
2713 // propagate a known value of the condition into its other users.
2714
2715 // If the select and condition only have a single use, don't bother with this,
2716 // early exit.
2717 if (SI->use_empty() && SelectCond->hasOneUse())
2718 return true;
2719
2720 // Scan the current block backward, looking for other uses of SI.
2721 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
2722
2723 while (BBI != BBFront) {
2724 --BBI;
2725 // If we found a call to a function, we can't assume it will return, so
2726 // information from below it cannot be propagated above it.
2727 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
2728 break;
2729
2730 // Replace uses of the select or its condition with the known values.
2731 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
2732 I != E; ++I) {
2733 if (*I == SI) {
2734 *I = SI->getOperand(NonNullOperand);
2735 AddToWorkList(BBI);
2736 } else if (*I == SelectCond) {
2737 *I = NonNullOperand == 1 ? ConstantInt::getTrue() :
2738 ConstantInt::getFalse();
2739 AddToWorkList(BBI);
2740 }
2741 }
2742
2743 // If we past the instruction, quit looking for it.
2744 if (&*BBI == SI)
2745 SI = 0;
2746 if (&*BBI == SelectCond)
2747 SelectCond = 0;
2748
2749 // If we ran out of things to eliminate, break out of the loop.
2750 if (SelectCond == 0 && SI == 0)
2751 break;
2752
2753 }
2754 return true;
2755}
2756
2757
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002758/// This function implements the transforms on div instructions that work
2759/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2760/// used by the visitors to those instructions.
2761/// @brief Transforms common to all three div instructions
2762Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
2763 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2764
Chris Lattner653ef3c2008-02-19 06:12:18 +00002765 // undef / X -> 0 for integer.
2766 // undef / X -> undef for FP (the undef could be a snan).
2767 if (isa<UndefValue>(Op0)) {
2768 if (Op0->getType()->isFPOrFPVector())
2769 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002770 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002771 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002772
2773 // X / undef -> undef
2774 if (isa<UndefValue>(Op1))
2775 return ReplaceInstUsesWith(I, Op1);
2776
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002777 return 0;
2778}
2779
2780/// This function implements the transforms common to both integer division
2781/// instructions (udiv and sdiv). It is called by the visitors to those integer
2782/// division instructions.
2783/// @brief Common integer divide transforms
2784Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
2785 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2786
Chris Lattnercefb36c2008-05-16 02:59:42 +00002787 // (sdiv X, X) --> 1 (udiv X, X) --> 1
Nick Lewycky386c0132008-05-23 03:26:47 +00002788 if (Op0 == Op1) {
2789 if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
2790 ConstantInt *CI = ConstantInt::get(Ty->getElementType(), 1);
2791 std::vector<Constant*> Elts(Ty->getNumElements(), CI);
2792 return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
2793 }
2794
2795 ConstantInt *CI = ConstantInt::get(I.getType(), 1);
2796 return ReplaceInstUsesWith(I, CI);
2797 }
Chris Lattnercefb36c2008-05-16 02:59:42 +00002798
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002799 if (Instruction *Common = commonDivTransforms(I))
2800 return Common;
Chris Lattner76972db2008-07-14 00:15:52 +00002801
2802 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2803 // This does not apply for fdiv.
2804 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2805 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002806
2807 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2808 // div X, 1 == X
2809 if (RHS->equalsInt(1))
2810 return ReplaceInstUsesWith(I, Op0);
2811
2812 // (X / C1) / C2 -> X / (C1*C2)
2813 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2814 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2815 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Nick Lewycky9d798f92008-02-18 22:48:05 +00002816 if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv))
2817 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2818 else
Gabor Greifa645dd32008-05-16 19:29:10 +00002819 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
Nick Lewycky9d798f92008-02-18 22:48:05 +00002820 Multiply(RHS, LHSRHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002821 }
2822
2823 if (!RHS->isZero()) { // avoid X udiv 0
2824 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2825 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2826 return R;
2827 if (isa<PHINode>(Op0))
2828 if (Instruction *NV = FoldOpIntoPhi(I))
2829 return NV;
2830 }
2831 }
2832
2833 // 0 / X == 0, we don't need to preserve faults!
2834 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
2835 if (LHS->equalsInt(0))
2836 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2837
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002838 // It can't be division by zero, hence it must be division by one.
2839 if (I.getType() == Type::Int1Ty)
2840 return ReplaceInstUsesWith(I, Op0);
2841
Nick Lewycky94418732008-11-27 20:21:08 +00002842 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
2843 if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue()))
2844 // div X, 1 == X
2845 if (X->isOne())
2846 return ReplaceInstUsesWith(I, Op0);
2847 }
2848
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002849 return 0;
2850}
2851
2852Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
2853 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2854
2855 // Handle the integer div common cases
2856 if (Instruction *Common = commonIDivTransforms(I))
2857 return Common;
2858
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002859 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky240182a2008-11-27 22:41:10 +00002860 // X udiv C^2 -> X >> C
2861 // Check to see if this is an unsigned division with an exact power of 2,
2862 // if so, convert to a right shift.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002863 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
Gabor Greifa645dd32008-05-16 19:29:10 +00002864 return BinaryOperator::CreateLShr(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002865 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
Nick Lewycky240182a2008-11-27 22:41:10 +00002866
2867 // X udiv C, where C >= signbit
2868 if (C->getValue().isNegative()) {
2869 Value *IC = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_ULT, Op0, C),
2870 I);
2871 return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
2872 ConstantInt::get(I.getType(), 1));
2873 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002874 }
2875
2876 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
2877 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
2878 if (RHSI->getOpcode() == Instruction::Shl &&
2879 isa<ConstantInt>(RHSI->getOperand(0))) {
2880 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
2881 if (C1.isPowerOf2()) {
2882 Value *N = RHSI->getOperand(1);
2883 const Type *NTy = N->getType();
2884 if (uint32_t C2 = C1.logBase2()) {
2885 Constant *C2V = ConstantInt::get(NTy, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002886 N = InsertNewInstBefore(BinaryOperator::CreateAdd(N, C2V, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002887 }
Gabor Greifa645dd32008-05-16 19:29:10 +00002888 return BinaryOperator::CreateLShr(Op0, N);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002889 }
2890 }
2891 }
2892
2893 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
2894 // where C1&C2 are powers of two.
2895 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2896 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2897 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2898 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
2899 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
2900 // Compute the shift amounts
2901 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
2902 // Construct the "on true" case of the select
2903 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002904 Instruction *TSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002905 Op0, TC, SI->getName()+".t");
2906 TSI = InsertNewInstBefore(TSI, I);
2907
2908 // Construct the "on false" case of the select
2909 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002910 Instruction *FSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002911 Op0, FC, SI->getName()+".f");
2912 FSI = InsertNewInstBefore(FSI, I);
2913
2914 // construct the select instruction and return it.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002915 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002916 }
2917 }
2918 return 0;
2919}
2920
2921Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
2922 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2923
2924 // Handle the integer div common cases
2925 if (Instruction *Common = commonIDivTransforms(I))
2926 return Common;
2927
2928 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2929 // sdiv X, -1 == -X
2930 if (RHS->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002931 return BinaryOperator::CreateNeg(Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002932 }
2933
2934 // If the sign bits of both operands are zero (i.e. we can prove they are
2935 // unsigned inputs), turn this into a udiv.
2936 if (I.getType()->isInteger()) {
2937 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
2938 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Dan Gohmandb3dd962007-11-05 23:16:33 +00002939 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00002940 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002941 }
2942 }
2943
2944 return 0;
2945}
2946
2947Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
2948 return commonDivTransforms(I);
2949}
2950
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002951/// This function implements the transforms on rem instructions that work
2952/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
2953/// is used by the visitors to those instructions.
2954/// @brief Transforms common to all three rem instructions
2955Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
2956 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2957
Chris Lattner653ef3c2008-02-19 06:12:18 +00002958 // 0 % X == 0 for integer, we don't need to preserve faults!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002959 if (Constant *LHS = dyn_cast<Constant>(Op0))
2960 if (LHS->isNullValue())
2961 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2962
Chris Lattner653ef3c2008-02-19 06:12:18 +00002963 if (isa<UndefValue>(Op0)) { // undef % X -> 0
2964 if (I.getType()->isFPOrFPVector())
2965 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002966 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002967 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002968 if (isa<UndefValue>(Op1))
2969 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
2970
2971 // Handle cases involving: rem X, (select Cond, Y, Z)
Chris Lattner76972db2008-07-14 00:15:52 +00002972 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2973 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002974
2975 return 0;
2976}
2977
2978/// This function implements the transforms common to both integer remainder
2979/// instructions (urem and srem). It is called by the visitors to those integer
2980/// remainder instructions.
2981/// @brief Common integer remainder transforms
2982Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
2983 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2984
2985 if (Instruction *common = commonRemTransforms(I))
2986 return common;
2987
2988 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2989 // X % 0 == undef, we don't need to preserve faults!
2990 if (RHS->equalsInt(0))
2991 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
2992
2993 if (RHS->equalsInt(1)) // X % 1 == 0
2994 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2995
2996 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
2997 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
2998 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2999 return R;
3000 } else if (isa<PHINode>(Op0I)) {
3001 if (Instruction *NV = FoldOpIntoPhi(I))
3002 return NV;
3003 }
Nick Lewyckyc1372c82008-03-06 06:48:30 +00003004
3005 // See if we can fold away this rem instruction.
3006 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3007 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3008 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3009 KnownZero, KnownOne))
3010 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003011 }
3012 }
3013
3014 return 0;
3015}
3016
3017Instruction *InstCombiner::visitURem(BinaryOperator &I) {
3018 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3019
3020 if (Instruction *common = commonIRemTransforms(I))
3021 return common;
3022
3023 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3024 // X urem C^2 -> X and C
3025 // Check to see if this is an unsigned remainder with an exact power of 2,
3026 // if so, convert to a bitwise and.
3027 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
3028 if (C->getValue().isPowerOf2())
Gabor Greifa645dd32008-05-16 19:29:10 +00003029 return BinaryOperator::CreateAnd(Op0, SubOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003030 }
3031
3032 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
3033 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
3034 if (RHSI->getOpcode() == Instruction::Shl &&
3035 isa<ConstantInt>(RHSI->getOperand(0))) {
3036 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
3037 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00003038 Value *Add = InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI, N1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003039 "tmp"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003040 return BinaryOperator::CreateAnd(Op0, Add);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003041 }
3042 }
3043 }
3044
3045 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3046 // where C1&C2 are powers of two.
3047 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3048 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3049 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3050 // STO == 0 and SFO == 0 handled above.
3051 if ((STO->getValue().isPowerOf2()) &&
3052 (SFO->getValue().isPowerOf2())) {
3053 Value *TrueAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003054 BinaryOperator::CreateAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003055 Value *FalseAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003056 BinaryOperator::CreateAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00003057 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003058 }
3059 }
3060 }
3061
3062 return 0;
3063}
3064
3065Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3066 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3067
Dan Gohmandb3dd962007-11-05 23:16:33 +00003068 // Handle the integer rem common cases
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003069 if (Instruction *common = commonIRemTransforms(I))
3070 return common;
3071
3072 if (Value *RHSNeg = dyn_castNegVal(Op1))
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00003073 if (!isa<Constant>(RHSNeg) ||
3074 (isa<ConstantInt>(RHSNeg) &&
3075 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003076 // X % -Y -> X % Y
3077 AddUsesToWorkList(I);
3078 I.setOperand(1, RHSNeg);
3079 return &I;
3080 }
Nick Lewycky5515c7a2008-09-30 06:08:34 +00003081
Dan Gohmandb3dd962007-11-05 23:16:33 +00003082 // If the sign bits of both operands are zero (i.e. we can prove they are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003083 // unsigned inputs), turn this into a urem.
Dan Gohmandb3dd962007-11-05 23:16:33 +00003084 if (I.getType()->isInteger()) {
3085 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3086 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3087 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00003088 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
Dan Gohmandb3dd962007-11-05 23:16:33 +00003089 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003090 }
3091
Nick Lewyckyda9fa432008-12-18 06:31:11 +00003092 // If it's a constant vector, flip any negative values positive.
Nick Lewyckyfd746832008-12-20 16:48:00 +00003093 if (ConstantVector *RHSV = dyn_cast<ConstantVector>(Op1)) {
3094 unsigned VWidth = RHSV->getNumOperands();
Nick Lewyckyda9fa432008-12-18 06:31:11 +00003095
Nick Lewyckyfd746832008-12-20 16:48:00 +00003096 bool hasNegative = false;
3097 for (unsigned i = 0; !hasNegative && i != VWidth; ++i)
3098 if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i)))
3099 if (RHS->getValue().isNegative())
3100 hasNegative = true;
3101
3102 if (hasNegative) {
3103 std::vector<Constant *> Elts(VWidth);
Nick Lewyckyda9fa432008-12-18 06:31:11 +00003104 for (unsigned i = 0; i != VWidth; ++i) {
3105 if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) {
3106 if (RHS->getValue().isNegative())
3107 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
3108 else
3109 Elts[i] = RHS;
3110 }
3111 }
3112
3113 Constant *NewRHSV = ConstantVector::get(Elts);
3114 if (NewRHSV != RHSV) {
Nick Lewycky338ecd52008-12-18 06:42:28 +00003115 AddUsesToWorkList(I);
Nick Lewyckyda9fa432008-12-18 06:31:11 +00003116 I.setOperand(1, NewRHSV);
3117 return &I;
3118 }
3119 }
3120 }
3121
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003122 return 0;
3123}
3124
3125Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
3126 return commonRemTransforms(I);
3127}
3128
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003129// isOneBitSet - Return true if there is exactly one bit set in the specified
3130// constant.
3131static bool isOneBitSet(const ConstantInt *CI) {
3132 return CI->getValue().isPowerOf2();
3133}
3134
3135// isHighOnes - Return true if the constant is of the form 1+0+.
3136// This is the same as lowones(~X).
3137static bool isHighOnes(const ConstantInt *CI) {
3138 return (~CI->getValue() + 1).isPowerOf2();
3139}
3140
3141/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
3142/// are carefully arranged to allow folding of expressions such as:
3143///
3144/// (A < B) | (A > B) --> (A != B)
3145///
3146/// Note that this is only valid if the first and second predicates have the
3147/// same sign. Is illegal to do: (A u< B) | (A s> B)
3148///
3149/// Three bits are used to represent the condition, as follows:
3150/// 0 A > B
3151/// 1 A == B
3152/// 2 A < B
3153///
3154/// <=> Value Definition
3155/// 000 0 Always false
3156/// 001 1 A > B
3157/// 010 2 A == B
3158/// 011 3 A >= B
3159/// 100 4 A < B
3160/// 101 5 A != B
3161/// 110 6 A <= B
3162/// 111 7 Always true
3163///
3164static unsigned getICmpCode(const ICmpInst *ICI) {
3165 switch (ICI->getPredicate()) {
3166 // False -> 0
3167 case ICmpInst::ICMP_UGT: return 1; // 001
3168 case ICmpInst::ICMP_SGT: return 1; // 001
3169 case ICmpInst::ICMP_EQ: return 2; // 010
3170 case ICmpInst::ICMP_UGE: return 3; // 011
3171 case ICmpInst::ICMP_SGE: return 3; // 011
3172 case ICmpInst::ICMP_ULT: return 4; // 100
3173 case ICmpInst::ICMP_SLT: return 4; // 100
3174 case ICmpInst::ICMP_NE: return 5; // 101
3175 case ICmpInst::ICMP_ULE: return 6; // 110
3176 case ICmpInst::ICMP_SLE: return 6; // 110
3177 // True -> 7
3178 default:
3179 assert(0 && "Invalid ICmp predicate!");
3180 return 0;
3181 }
3182}
3183
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003184/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
3185/// predicate into a three bit mask. It also returns whether it is an ordered
3186/// predicate by reference.
3187static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
3188 isOrdered = false;
3189 switch (CC) {
3190 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
3191 case FCmpInst::FCMP_UNO: return 0; // 000
Evan Chengf1f2cea2008-10-14 18:13:38 +00003192 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
3193 case FCmpInst::FCMP_UGT: return 1; // 001
3194 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
3195 case FCmpInst::FCMP_UEQ: return 2; // 010
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003196 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
3197 case FCmpInst::FCMP_UGE: return 3; // 011
3198 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
3199 case FCmpInst::FCMP_ULT: return 4; // 100
Evan Chengf1f2cea2008-10-14 18:13:38 +00003200 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
3201 case FCmpInst::FCMP_UNE: return 5; // 101
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003202 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
3203 case FCmpInst::FCMP_ULE: return 6; // 110
Evan Cheng72988052008-10-14 18:44:08 +00003204 // True -> 7
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003205 default:
3206 // Not expecting FCMP_FALSE and FCMP_TRUE;
3207 assert(0 && "Unexpected FCmp predicate!");
3208 return 0;
3209 }
3210}
3211
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003212/// getICmpValue - This is the complement of getICmpCode, which turns an
3213/// opcode and two operands into either a constant true or false, or a brand
Dan Gohmanda338742007-09-17 17:31:57 +00003214/// new ICmp instruction. The sign is passed in to determine which kind
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003215/// of predicate to use in the new icmp instruction.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003216static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3217 switch (code) {
3218 default: assert(0 && "Illegal ICmp code!");
3219 case 0: return ConstantInt::getFalse();
3220 case 1:
3221 if (sign)
3222 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3223 else
3224 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3225 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3226 case 3:
3227 if (sign)
3228 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3229 else
3230 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3231 case 4:
3232 if (sign)
3233 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3234 else
3235 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3236 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3237 case 6:
3238 if (sign)
3239 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3240 else
3241 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
3242 case 7: return ConstantInt::getTrue();
3243 }
3244}
3245
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003246/// getFCmpValue - This is the complement of getFCmpCode, which turns an
3247/// opcode and two operands into either a FCmp instruction. isordered is passed
3248/// in to determine which kind of predicate to use in the new fcmp instruction.
3249static Value *getFCmpValue(bool isordered, unsigned code,
3250 Value *LHS, Value *RHS) {
3251 switch (code) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00003252 default: assert(0 && "Illegal FCmp code!");
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003253 case 0:
3254 if (isordered)
3255 return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
3256 else
3257 return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS);
3258 case 1:
3259 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003260 return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS);
3261 else
3262 return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS);
Evan Chengf1f2cea2008-10-14 18:13:38 +00003263 case 2:
3264 if (isordered)
3265 return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS);
3266 else
3267 return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS);
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003268 case 3:
3269 if (isordered)
3270 return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS);
3271 else
3272 return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS);
3273 case 4:
3274 if (isordered)
3275 return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS);
3276 else
3277 return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS);
3278 case 5:
3279 if (isordered)
Evan Chengf1f2cea2008-10-14 18:13:38 +00003280 return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS);
3281 else
3282 return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS);
3283 case 6:
3284 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003285 return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
3286 else
3287 return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
Evan Cheng72988052008-10-14 18:44:08 +00003288 case 7: return ConstantInt::getTrue();
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003289 }
3290}
3291
Chris Lattner2972b822008-11-16 04:55:20 +00003292/// PredicatesFoldable - Return true if both predicates match sign or if at
3293/// least one of them is an equality comparison (which is signless).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003294static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3295 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
Chris Lattner2972b822008-11-16 04:55:20 +00003296 (ICmpInst::isSignedPredicate(p1) && ICmpInst::isEquality(p2)) ||
3297 (ICmpInst::isSignedPredicate(p2) && ICmpInst::isEquality(p1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003298}
3299
3300namespace {
3301// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3302struct FoldICmpLogical {
3303 InstCombiner &IC;
3304 Value *LHS, *RHS;
3305 ICmpInst::Predicate pred;
3306 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3307 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3308 pred(ICI->getPredicate()) {}
3309 bool shouldApply(Value *V) const {
3310 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3311 if (PredicatesFoldable(pred, ICI->getPredicate()))
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003312 return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
3313 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003314 return false;
3315 }
3316 Instruction *apply(Instruction &Log) const {
3317 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3318 if (ICI->getOperand(0) != LHS) {
3319 assert(ICI->getOperand(1) == LHS);
3320 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
3321 }
3322
3323 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
3324 unsigned LHSCode = getICmpCode(ICI);
3325 unsigned RHSCode = getICmpCode(RHSICI);
3326 unsigned Code;
3327 switch (Log.getOpcode()) {
3328 case Instruction::And: Code = LHSCode & RHSCode; break;
3329 case Instruction::Or: Code = LHSCode | RHSCode; break;
3330 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
3331 default: assert(0 && "Illegal logical opcode!"); return 0;
3332 }
3333
3334 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3335 ICmpInst::isSignedPredicate(ICI->getPredicate());
3336
3337 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
3338 if (Instruction *I = dyn_cast<Instruction>(RV))
3339 return I;
3340 // Otherwise, it's a constant boolean value...
3341 return IC.ReplaceInstUsesWith(Log, RV);
3342 }
3343};
3344} // end anonymous namespace
3345
3346// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3347// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3348// guaranteed to be a binary operator.
3349Instruction *InstCombiner::OptAndOp(Instruction *Op,
3350 ConstantInt *OpRHS,
3351 ConstantInt *AndRHS,
3352 BinaryOperator &TheAnd) {
3353 Value *X = Op->getOperand(0);
3354 Constant *Together = 0;
3355 if (!Op->isShift())
3356 Together = And(AndRHS, OpRHS);
3357
3358 switch (Op->getOpcode()) {
3359 case Instruction::Xor:
3360 if (Op->hasOneUse()) {
3361 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
Gabor Greifa645dd32008-05-16 19:29:10 +00003362 Instruction *And = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003363 InsertNewInstBefore(And, TheAnd);
3364 And->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003365 return BinaryOperator::CreateXor(And, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003366 }
3367 break;
3368 case Instruction::Or:
3369 if (Together == AndRHS) // (X | C) & C --> C
3370 return ReplaceInstUsesWith(TheAnd, AndRHS);
3371
3372 if (Op->hasOneUse() && Together != OpRHS) {
3373 // (X | C1) & C2 --> (X | (C1&C2)) & C2
Gabor Greifa645dd32008-05-16 19:29:10 +00003374 Instruction *Or = BinaryOperator::CreateOr(X, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003375 InsertNewInstBefore(Or, TheAnd);
3376 Or->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003377 return BinaryOperator::CreateAnd(Or, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003378 }
3379 break;
3380 case Instruction::Add:
3381 if (Op->hasOneUse()) {
3382 // Adding a one to a single bit bit-field should be turned into an XOR
3383 // of the bit. First thing to check is to see if this AND is with a
3384 // single bit constant.
3385 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
3386
3387 // If there is only one bit set...
3388 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
3389 // Ok, at this point, we know that we are masking the result of the
3390 // ADD down to exactly one bit. If the constant we are adding has
3391 // no bits set below this bit, then we can eliminate the ADD.
3392 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
3393
3394 // Check to see if any bits below the one bit set in AndRHSV are set.
3395 if ((AddRHS & (AndRHSV-1)) == 0) {
3396 // If not, the only thing that can effect the output of the AND is
3397 // the bit specified by AndRHSV. If that bit is set, the effect of
3398 // the XOR is to toggle the bit. If it is clear, then the ADD has
3399 // no effect.
3400 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3401 TheAnd.setOperand(0, X);
3402 return &TheAnd;
3403 } else {
3404 // Pull the XOR out of the AND.
Gabor Greifa645dd32008-05-16 19:29:10 +00003405 Instruction *NewAnd = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003406 InsertNewInstBefore(NewAnd, TheAnd);
3407 NewAnd->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003408 return BinaryOperator::CreateXor(NewAnd, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003409 }
3410 }
3411 }
3412 }
3413 break;
3414
3415 case Instruction::Shl: {
3416 // We know that the AND will not produce any of the bits shifted in, so if
3417 // the anded constant includes them, clear them now!
3418 //
3419 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3420 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3421 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3422 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
3423
3424 if (CI->getValue() == ShlMask) {
3425 // Masking out bits that the shift already masks
3426 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3427 } else if (CI != AndRHS) { // Reducing bits set in and.
3428 TheAnd.setOperand(1, CI);
3429 return &TheAnd;
3430 }
3431 break;
3432 }
3433 case Instruction::LShr:
3434 {
3435 // We know that the AND will not produce any of the bits shifted in, so if
3436 // the anded constant includes them, clear them now! This only applies to
3437 // unsigned shifts, because a signed shr may bring in set bits!
3438 //
3439 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3440 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3441 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3442 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
3443
3444 if (CI->getValue() == ShrMask) {
3445 // Masking out bits that the shift already masks.
3446 return ReplaceInstUsesWith(TheAnd, Op);
3447 } else if (CI != AndRHS) {
3448 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3449 return &TheAnd;
3450 }
3451 break;
3452 }
3453 case Instruction::AShr:
3454 // Signed shr.
3455 // See if this is shifting in some sign extension, then masking it out
3456 // with an and.
3457 if (Op->hasOneUse()) {
3458 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3459 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3460 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3461 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
3462 if (C == AndRHS) { // Masking out bits shifted in.
3463 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3464 // Make the argument unsigned.
3465 Value *ShVal = Op->getOperand(0);
3466 ShVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003467 BinaryOperator::CreateLShr(ShVal, OpRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003468 Op->getName()), TheAnd);
Gabor Greifa645dd32008-05-16 19:29:10 +00003469 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003470 }
3471 }
3472 break;
3473 }
3474 return 0;
3475}
3476
3477
3478/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3479/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3480/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3481/// whether to treat the V, Lo and HI as signed or not. IB is the location to
3482/// insert new instructions.
3483Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
3484 bool isSigned, bool Inside,
3485 Instruction &IB) {
3486 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
3487 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
3488 "Lo is not <= Hi in range emission code!");
3489
3490 if (Inside) {
3491 if (Lo == Hi) // Trivially false.
3492 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
3493
3494 // V >= Min && V < Hi --> V < Hi
3495 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3496 ICmpInst::Predicate pred = (isSigned ?
3497 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3498 return new ICmpInst(pred, V, Hi);
3499 }
3500
3501 // Emit V-Lo <u Hi-Lo
3502 Constant *NegLo = ConstantExpr::getNeg(Lo);
Gabor Greifa645dd32008-05-16 19:29:10 +00003503 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003504 InsertNewInstBefore(Add, IB);
3505 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3506 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
3507 }
3508
3509 if (Lo == Hi) // Trivially true.
3510 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
3511
3512 // V < Min || V >= Hi -> V > Hi-1
3513 Hi = SubOne(cast<ConstantInt>(Hi));
3514 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3515 ICmpInst::Predicate pred = (isSigned ?
3516 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3517 return new ICmpInst(pred, V, Hi);
3518 }
3519
3520 // Emit V-Lo >u Hi-1-Lo
3521 // Note that Hi has already had one subtracted from it, above.
3522 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
Gabor Greifa645dd32008-05-16 19:29:10 +00003523 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003524 InsertNewInstBefore(Add, IB);
3525 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3526 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
3527}
3528
3529// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3530// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3531// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3532// not, since all 1s are not contiguous.
3533static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
3534 const APInt& V = Val->getValue();
3535 uint32_t BitWidth = Val->getType()->getBitWidth();
3536 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
3537
3538 // look for the first zero bit after the run of ones
3539 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
3540 // look for the first non-zero bit
3541 ME = V.getActiveBits();
3542 return true;
3543}
3544
3545/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3546/// where isSub determines whether the operator is a sub. If we can fold one of
3547/// the following xforms:
3548///
3549/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3550/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3551/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3552///
3553/// return (A +/- B).
3554///
3555Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
3556 ConstantInt *Mask, bool isSub,
3557 Instruction &I) {
3558 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3559 if (!LHSI || LHSI->getNumOperands() != 2 ||
3560 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3561
3562 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3563
3564 switch (LHSI->getOpcode()) {
3565 default: return 0;
3566 case Instruction::And:
3567 if (And(N, Mask) == Mask) {
3568 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3569 if ((Mask->getValue().countLeadingZeros() +
3570 Mask->getValue().countPopulation()) ==
3571 Mask->getValue().getBitWidth())
3572 break;
3573
3574 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3575 // part, we don't need any explicit masks to take them out of A. If that
3576 // is all N is, ignore it.
3577 uint32_t MB = 0, ME = 0;
3578 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
3579 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
3580 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
3581 if (MaskedValueIsZero(RHS, Mask))
3582 break;
3583 }
3584 }
3585 return 0;
3586 case Instruction::Or:
3587 case Instruction::Xor:
3588 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3589 if ((Mask->getValue().countLeadingZeros() +
3590 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
3591 && And(N, Mask)->isZero())
3592 break;
3593 return 0;
3594 }
3595
3596 Instruction *New;
3597 if (isSub)
Gabor Greifa645dd32008-05-16 19:29:10 +00003598 New = BinaryOperator::CreateSub(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003599 else
Gabor Greifa645dd32008-05-16 19:29:10 +00003600 New = BinaryOperator::CreateAdd(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003601 return InsertNewInstBefore(New, I);
3602}
3603
Chris Lattner0631ea72008-11-16 05:06:21 +00003604/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
3605Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
3606 ICmpInst *LHS, ICmpInst *RHS) {
Chris Lattnerf3803482008-11-16 05:10:52 +00003607 Value *Val, *Val2;
Chris Lattner0631ea72008-11-16 05:06:21 +00003608 ConstantInt *LHSCst, *RHSCst;
3609 ICmpInst::Predicate LHSCC, RHSCC;
3610
Chris Lattnerf3803482008-11-16 05:10:52 +00003611 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
Chris Lattner0631ea72008-11-16 05:06:21 +00003612 if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
Chris Lattnerf3803482008-11-16 05:10:52 +00003613 !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
Chris Lattner0631ea72008-11-16 05:06:21 +00003614 return 0;
Chris Lattnerf3803482008-11-16 05:10:52 +00003615
3616 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
3617 // where C is a power of 2
3618 if (LHSCst == RHSCst && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT &&
3619 LHSCst->getValue().isPowerOf2()) {
3620 Instruction *NewOr = BinaryOperator::CreateOr(Val, Val2);
3621 InsertNewInstBefore(NewOr, I);
3622 return new ICmpInst(LHSCC, NewOr, LHSCst);
3623 }
3624
3625 // From here on, we only handle:
3626 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
3627 if (Val != Val2) return 0;
3628
Chris Lattner0631ea72008-11-16 05:06:21 +00003629 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
3630 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
3631 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
3632 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
3633 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
3634 return 0;
3635
3636 // We can't fold (ugt x, C) & (sgt x, C2).
3637 if (!PredicatesFoldable(LHSCC, RHSCC))
3638 return 0;
3639
3640 // Ensure that the larger constant is on the RHS.
Chris Lattner665298f2008-11-16 05:14:43 +00003641 bool ShouldSwap;
Chris Lattner0631ea72008-11-16 05:06:21 +00003642 if (ICmpInst::isSignedPredicate(LHSCC) ||
3643 (ICmpInst::isEquality(LHSCC) &&
3644 ICmpInst::isSignedPredicate(RHSCC)))
Chris Lattner665298f2008-11-16 05:14:43 +00003645 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
Chris Lattner0631ea72008-11-16 05:06:21 +00003646 else
Chris Lattner665298f2008-11-16 05:14:43 +00003647 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
3648
3649 if (ShouldSwap) {
Chris Lattner0631ea72008-11-16 05:06:21 +00003650 std::swap(LHS, RHS);
3651 std::swap(LHSCst, RHSCst);
3652 std::swap(LHSCC, RHSCC);
3653 }
3654
3655 // At this point, we know we have have two icmp instructions
3656 // comparing a value against two constants and and'ing the result
3657 // together. Because of the above check, we know that we only have
3658 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3659 // (from the FoldICmpLogical check above), that the two constants
3660 // are not equal and that the larger constant is on the RHS
3661 assert(LHSCst != RHSCst && "Compares not folded above?");
3662
3663 switch (LHSCC) {
3664 default: assert(0 && "Unknown integer condition code!");
3665 case ICmpInst::ICMP_EQ:
3666 switch (RHSCC) {
3667 default: assert(0 && "Unknown integer condition code!");
3668 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3669 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3670 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3671 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3672 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3673 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3674 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3675 return ReplaceInstUsesWith(I, LHS);
3676 }
3677 case ICmpInst::ICMP_NE:
3678 switch (RHSCC) {
3679 default: assert(0 && "Unknown integer condition code!");
3680 case ICmpInst::ICMP_ULT:
3681 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3682 return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst);
3683 break; // (X != 13 & X u< 15) -> no change
3684 case ICmpInst::ICMP_SLT:
3685 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3686 return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst);
3687 break; // (X != 13 & X s< 15) -> no change
3688 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3689 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3690 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3691 return ReplaceInstUsesWith(I, RHS);
3692 case ICmpInst::ICMP_NE:
3693 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3694 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
3695 Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
3696 Val->getName()+".off");
3697 InsertNewInstBefore(Add, I);
3698 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3699 ConstantInt::get(Add->getType(), 1));
3700 }
3701 break; // (X != 13 & X != 15) -> no change
3702 }
3703 break;
3704 case ICmpInst::ICMP_ULT:
3705 switch (RHSCC) {
3706 default: assert(0 && "Unknown integer condition code!");
3707 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3708 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
3709 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3710 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3711 break;
3712 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3713 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
3714 return ReplaceInstUsesWith(I, LHS);
3715 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3716 break;
3717 }
3718 break;
3719 case ICmpInst::ICMP_SLT:
3720 switch (RHSCC) {
3721 default: assert(0 && "Unknown integer condition code!");
3722 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3723 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
3724 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3725 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3726 break;
3727 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3728 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
3729 return ReplaceInstUsesWith(I, LHS);
3730 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3731 break;
3732 }
3733 break;
3734 case ICmpInst::ICMP_UGT:
3735 switch (RHSCC) {
3736 default: assert(0 && "Unknown integer condition code!");
3737 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
3738 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3739 return ReplaceInstUsesWith(I, RHS);
3740 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3741 break;
3742 case ICmpInst::ICMP_NE:
3743 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3744 return new ICmpInst(LHSCC, Val, RHSCst);
3745 break; // (X u> 13 & X != 15) -> no change
Chris Lattner0c678e52008-11-16 05:20:07 +00003746 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
Chris Lattner0631ea72008-11-16 05:06:21 +00003747 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true, I);
3748 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
3749 break;
3750 }
3751 break;
3752 case ICmpInst::ICMP_SGT:
3753 switch (RHSCC) {
3754 default: assert(0 && "Unknown integer condition code!");
3755 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
3756 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
3757 return ReplaceInstUsesWith(I, RHS);
3758 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
3759 break;
3760 case ICmpInst::ICMP_NE:
3761 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
3762 return new ICmpInst(LHSCC, Val, RHSCst);
3763 break; // (X s> 13 & X != 15) -> no change
Chris Lattner0c678e52008-11-16 05:20:07 +00003764 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
Chris Lattner0631ea72008-11-16 05:06:21 +00003765 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true, I);
3766 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
3767 break;
3768 }
3769 break;
3770 }
Chris Lattner0631ea72008-11-16 05:06:21 +00003771
3772 return 0;
3773}
3774
3775
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003776Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
3777 bool Changed = SimplifyCommutative(I);
3778 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3779
3780 if (isa<UndefValue>(Op1)) // X & undef -> 0
3781 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3782
3783 // and X, X = X
3784 if (Op0 == Op1)
3785 return ReplaceInstUsesWith(I, Op1);
3786
3787 // See if we can simplify any instructions used by the instruction whose sole
3788 // purpose is to compute bits we don't care about.
3789 if (!isa<VectorType>(I.getType())) {
3790 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3791 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3792 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3793 KnownZero, KnownOne))
3794 return &I;
3795 } else {
3796 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3797 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
3798 return ReplaceInstUsesWith(I, I.getOperand(0));
3799 } else if (isa<ConstantAggregateZero>(Op1)) {
3800 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
3801 }
3802 }
3803
3804 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
3805 const APInt& AndRHSMask = AndRHS->getValue();
3806 APInt NotAndRHS(~AndRHSMask);
3807
3808 // Optimize a variety of ((val OP C1) & C2) combinations...
3809 if (isa<BinaryOperator>(Op0)) {
3810 Instruction *Op0I = cast<Instruction>(Op0);
3811 Value *Op0LHS = Op0I->getOperand(0);
3812 Value *Op0RHS = Op0I->getOperand(1);
3813 switch (Op0I->getOpcode()) {
3814 case Instruction::Xor:
3815 case Instruction::Or:
3816 // If the mask is only needed on one incoming arm, push it up.
3817 if (Op0I->hasOneUse()) {
3818 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3819 // Not masking anything out for the LHS, move to RHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003820 Instruction *NewRHS = BinaryOperator::CreateAnd(Op0RHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003821 Op0RHS->getName()+".masked");
3822 InsertNewInstBefore(NewRHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003823 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003824 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
3825 }
3826 if (!isa<Constant>(Op0RHS) &&
3827 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3828 // Not masking anything out for the RHS, move to LHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003829 Instruction *NewLHS = BinaryOperator::CreateAnd(Op0LHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003830 Op0LHS->getName()+".masked");
3831 InsertNewInstBefore(NewLHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003832 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003833 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3834 }
3835 }
3836
3837 break;
3838 case Instruction::Add:
3839 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3840 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3841 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3842 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003843 return BinaryOperator::CreateAnd(V, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003844 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003845 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003846 break;
3847
3848 case Instruction::Sub:
3849 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3850 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3851 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3852 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003853 return BinaryOperator::CreateAnd(V, AndRHS);
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003854
Nick Lewyckya349ba42008-07-10 05:51:40 +00003855 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
3856 // has 1's for all bits that the subtraction with A might affect.
3857 if (Op0I->hasOneUse()) {
3858 uint32_t BitWidth = AndRHSMask.getBitWidth();
3859 uint32_t Zeros = AndRHSMask.countLeadingZeros();
3860 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
3861
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003862 ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
Nick Lewyckya349ba42008-07-10 05:51:40 +00003863 if (!(A && A->isZero()) && // avoid infinite recursion.
3864 MaskedValueIsZero(Op0LHS, Mask)) {
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003865 Instruction *NewNeg = BinaryOperator::CreateNeg(Op0RHS);
3866 InsertNewInstBefore(NewNeg, I);
3867 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
3868 }
3869 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003870 break;
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003871
3872 case Instruction::Shl:
3873 case Instruction::LShr:
3874 // (1 << x) & 1 --> zext(x == 0)
3875 // (1 >> x) & 1 --> zext(x == 0)
Nick Lewyckyf1b12222008-07-09 07:35:26 +00003876 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003877 Instruction *NewICmp = new ICmpInst(ICmpInst::ICMP_EQ, Op0RHS,
3878 Constant::getNullValue(I.getType()));
3879 InsertNewInstBefore(NewICmp, I);
3880 return new ZExtInst(NewICmp, I.getType());
3881 }
3882 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003883 }
3884
3885 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
3886 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
3887 return Res;
3888 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3889 // If this is an integer truncation or change from signed-to-unsigned, and
3890 // if the source is an and/or with immediate, transform it. This
3891 // frequently occurs for bitfield accesses.
3892 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
3893 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
3894 CastOp->getNumOperands() == 2)
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003895 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003896 if (CastOp->getOpcode() == Instruction::And) {
3897 // Change: and (cast (and X, C1) to T), C2
3898 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3899 // This will fold the two constants together, which may allow
3900 // other simplifications.
Gabor Greifa645dd32008-05-16 19:29:10 +00003901 Instruction *NewCast = CastInst::CreateTruncOrBitCast(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003902 CastOp->getOperand(0), I.getType(),
3903 CastOp->getName()+".shrunk");
3904 NewCast = InsertNewInstBefore(NewCast, I);
3905 // trunc_or_bitcast(C1)&C2
3906 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3907 C3 = ConstantExpr::getAnd(C3, AndRHS);
Gabor Greifa645dd32008-05-16 19:29:10 +00003908 return BinaryOperator::CreateAnd(NewCast, C3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003909 } else if (CastOp->getOpcode() == Instruction::Or) {
3910 // Change: and (cast (or X, C1) to T), C2
3911 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3912 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3913 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3914 return ReplaceInstUsesWith(I, AndRHS);
3915 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003916 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003917 }
3918 }
3919
3920 // Try to fold constant and into select arguments.
3921 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3922 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3923 return R;
3924 if (isa<PHINode>(Op0))
3925 if (Instruction *NV = FoldOpIntoPhi(I))
3926 return NV;
3927 }
3928
3929 Value *Op0NotVal = dyn_castNotVal(Op0);
3930 Value *Op1NotVal = dyn_castNotVal(Op1);
3931
3932 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3933 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3934
3935 // (~A & ~B) == (~(A | B)) - De Morgan's Law
3936 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003937 Instruction *Or = BinaryOperator::CreateOr(Op0NotVal, Op1NotVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003938 I.getName()+".demorgan");
3939 InsertNewInstBefore(Or, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003940 return BinaryOperator::CreateNot(Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003941 }
3942
3943 {
3944 Value *A = 0, *B = 0, *C = 0, *D = 0;
3945 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
3946 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3947 return ReplaceInstUsesWith(I, Op1);
3948
3949 // (A|B) & ~(A&B) -> A^B
3950 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3951 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003952 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003953 }
3954 }
3955
3956 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
3957 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3958 return ReplaceInstUsesWith(I, Op0);
3959
3960 // ~(A&B) & (A|B) -> A^B
3961 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3962 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003963 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003964 }
3965 }
3966
3967 if (Op0->hasOneUse() &&
3968 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3969 if (A == Op1) { // (A^B)&A -> A&(A^B)
3970 I.swapOperands(); // Simplify below
3971 std::swap(Op0, Op1);
3972 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3973 cast<BinaryOperator>(Op0)->swapOperands();
3974 I.swapOperands(); // Simplify below
3975 std::swap(Op0, Op1);
3976 }
3977 }
Bill Wendlingce5e0af2008-11-30 13:08:13 +00003978
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003979 if (Op1->hasOneUse() &&
3980 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3981 if (B == Op0) { // B&(A^B) -> B&(B^A)
3982 cast<BinaryOperator>(Op1)->swapOperands();
3983 std::swap(A, B);
3984 }
3985 if (A == Op0) { // A&(A^B) -> A & ~B
Gabor Greifa645dd32008-05-16 19:29:10 +00003986 Instruction *NotB = BinaryOperator::CreateNot(B, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003987 InsertNewInstBefore(NotB, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003988 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003989 }
3990 }
Bill Wendlingce5e0af2008-11-30 13:08:13 +00003991
3992 // (A&((~A)|B)) -> A&B
Chris Lattner9db479f2008-12-01 05:16:26 +00003993 if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
3994 match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
3995 return BinaryOperator::CreateAnd(A, Op1);
3996 if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
3997 match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
3998 return BinaryOperator::CreateAnd(A, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003999 }
4000
4001 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
4002 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
4003 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4004 return R;
4005
Chris Lattner0631ea72008-11-16 05:06:21 +00004006 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
4007 if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS))
4008 return Res;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004009 }
4010
4011 // fold (and (cast A), (cast B)) -> (cast (and A, B))
4012 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
4013 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4014 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
4015 const Type *SrcTy = Op0C->getOperand(0)->getType();
4016 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4017 // Only do this if the casts both really cause code to be generated.
4018 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4019 I.getType(), TD) &&
4020 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4021 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004022 Instruction *NewOp = BinaryOperator::CreateAnd(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004023 Op1C->getOperand(0),
4024 I.getName());
4025 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004026 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004027 }
4028 }
4029
4030 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
4031 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4032 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4033 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4034 SI0->getOperand(1) == SI1->getOperand(1) &&
4035 (SI0->hasOneUse() || SI1->hasOneUse())) {
4036 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004037 InsertNewInstBefore(BinaryOperator::CreateAnd(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004038 SI1->getOperand(0),
4039 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004040 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004041 SI1->getOperand(1));
4042 }
4043 }
4044
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004045 // If and'ing two fcmp, try combine them into one.
Chris Lattner91882432007-10-24 05:38:08 +00004046 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4047 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4048 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004049 RHS->getPredicate() == FCmpInst::FCMP_ORD) {
4050 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
Chris Lattner91882432007-10-24 05:38:08 +00004051 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4052 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4053 // If either of the constants are nans, then the whole thing returns
4054 // false.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004055 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004056 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4057 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
4058 RHS->getOperand(0));
4059 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004060 } else {
4061 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4062 FCmpInst::Predicate Op0CC, Op1CC;
4063 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4064 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00004065 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4066 // Swap RHS operands to match LHS.
4067 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4068 std::swap(Op1LHS, Op1RHS);
4069 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004070 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4071 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
4072 if (Op0CC == Op1CC)
4073 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4074 else if (Op0CC == FCmpInst::FCMP_FALSE ||
4075 Op1CC == FCmpInst::FCMP_FALSE)
4076 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4077 else if (Op0CC == FCmpInst::FCMP_TRUE)
4078 return ReplaceInstUsesWith(I, Op1);
4079 else if (Op1CC == FCmpInst::FCMP_TRUE)
4080 return ReplaceInstUsesWith(I, Op0);
4081 bool Op0Ordered;
4082 bool Op1Ordered;
4083 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4084 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4085 if (Op1Pred == 0) {
4086 std::swap(Op0, Op1);
4087 std::swap(Op0Pred, Op1Pred);
4088 std::swap(Op0Ordered, Op1Ordered);
4089 }
4090 if (Op0Pred == 0) {
4091 // uno && ueq -> uno && (uno || eq) -> ueq
4092 // ord && olt -> ord && (ord && lt) -> olt
4093 if (Op0Ordered == Op1Ordered)
4094 return ReplaceInstUsesWith(I, Op1);
4095 // uno && oeq -> uno && (ord && eq) -> false
4096 // uno && ord -> false
4097 if (!Op0Ordered)
4098 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4099 // ord && ueq -> ord && (uno || eq) -> oeq
4100 return cast<Instruction>(getFCmpValue(true, Op1Pred,
4101 Op0LHS, Op0RHS));
4102 }
4103 }
4104 }
4105 }
Chris Lattner91882432007-10-24 05:38:08 +00004106 }
4107 }
Nick Lewyckyffed71b2008-07-09 04:32:37 +00004108
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004109 return Changed ? &I : 0;
4110}
4111
Chris Lattner567f5112008-10-05 02:13:19 +00004112/// CollectBSwapParts - Analyze the specified subexpression and see if it is
4113/// capable of providing pieces of a bswap. The subexpression provides pieces
4114/// of a bswap if it is proven that each of the non-zero bytes in the output of
4115/// the expression came from the corresponding "byte swapped" byte in some other
4116/// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
4117/// we know that the expression deposits the low byte of %X into the high byte
4118/// of the bswap result and that all other bytes are zero. This expression is
4119/// accepted, the high byte of ByteValues is set to X to indicate a correct
4120/// match.
4121///
4122/// This function returns true if the match was unsuccessful and false if so.
4123/// On entry to the function the "OverallLeftShift" is a signed integer value
4124/// indicating the number of bytes that the subexpression is later shifted. For
4125/// example, if the expression is later right shifted by 16 bits, the
4126/// OverallLeftShift value would be -2 on entry. This is used to specify which
4127/// byte of ByteValues is actually being set.
4128///
4129/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
4130/// byte is masked to zero by a user. For example, in (X & 255), X will be
4131/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
4132/// this function to working on up to 32-byte (256 bit) values. ByteMask is
4133/// always in the local (OverallLeftShift) coordinate space.
4134///
4135static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
4136 SmallVector<Value*, 8> &ByteValues) {
4137 if (Instruction *I = dyn_cast<Instruction>(V)) {
4138 // If this is an or instruction, it may be an inner node of the bswap.
4139 if (I->getOpcode() == Instruction::Or) {
4140 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4141 ByteValues) ||
4142 CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
4143 ByteValues);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004144 }
Chris Lattner567f5112008-10-05 02:13:19 +00004145
4146 // If this is a logical shift by a constant multiple of 8, recurse with
4147 // OverallLeftShift and ByteMask adjusted.
4148 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
4149 unsigned ShAmt =
4150 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
4151 // Ensure the shift amount is defined and of a byte value.
4152 if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
4153 return true;
4154
4155 unsigned ByteShift = ShAmt >> 3;
4156 if (I->getOpcode() == Instruction::Shl) {
4157 // X << 2 -> collect(X, +2)
4158 OverallLeftShift += ByteShift;
4159 ByteMask >>= ByteShift;
4160 } else {
4161 // X >>u 2 -> collect(X, -2)
4162 OverallLeftShift -= ByteShift;
4163 ByteMask <<= ByteShift;
Chris Lattner44448592008-10-08 06:42:28 +00004164 ByteMask &= (~0U >> (32-ByteValues.size()));
Chris Lattner567f5112008-10-05 02:13:19 +00004165 }
4166
4167 if (OverallLeftShift >= (int)ByteValues.size()) return true;
4168 if (OverallLeftShift <= -(int)ByteValues.size()) return true;
4169
4170 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4171 ByteValues);
4172 }
4173
4174 // If this is a logical 'and' with a mask that clears bytes, clear the
4175 // corresponding bytes in ByteMask.
4176 if (I->getOpcode() == Instruction::And &&
4177 isa<ConstantInt>(I->getOperand(1))) {
4178 // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
4179 unsigned NumBytes = ByteValues.size();
4180 APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
4181 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
4182
4183 for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
4184 // If this byte is masked out by a later operation, we don't care what
4185 // the and mask is.
4186 if ((ByteMask & (1 << i)) == 0)
4187 continue;
4188
4189 // If the AndMask is all zeros for this byte, clear the bit.
4190 APInt MaskB = AndMask & Byte;
4191 if (MaskB == 0) {
4192 ByteMask &= ~(1U << i);
4193 continue;
4194 }
4195
4196 // If the AndMask is not all ones for this byte, it's not a bytezap.
4197 if (MaskB != Byte)
4198 return true;
4199
4200 // Otherwise, this byte is kept.
4201 }
4202
4203 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4204 ByteValues);
4205 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004206 }
4207
Chris Lattner567f5112008-10-05 02:13:19 +00004208 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
4209 // the input value to the bswap. Some observations: 1) if more than one byte
4210 // is demanded from this input, then it could not be successfully assembled
4211 // into a byteswap. At least one of the two bytes would not be aligned with
4212 // their ultimate destination.
4213 if (!isPowerOf2_32(ByteMask)) return true;
4214 unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004215
Chris Lattner567f5112008-10-05 02:13:19 +00004216 // 2) The input and ultimate destinations must line up: if byte 3 of an i32
4217 // is demanded, it needs to go into byte 0 of the result. This means that the
4218 // byte needs to be shifted until it lands in the right byte bucket. The
4219 // shift amount depends on the position: if the byte is coming from the high
4220 // part of the value (e.g. byte 3) then it must be shifted right. If from the
4221 // low part, it must be shifted left.
4222 unsigned DestByteNo = InputByteNo + OverallLeftShift;
4223 if (InputByteNo < ByteValues.size()/2) {
4224 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4225 return true;
4226 } else {
4227 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4228 return true;
4229 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004230
4231 // If the destination byte value is already defined, the values are or'd
4232 // together, which isn't a bswap (unless it's an or of the same bits).
Chris Lattner567f5112008-10-05 02:13:19 +00004233 if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004234 return true;
Chris Lattner567f5112008-10-05 02:13:19 +00004235 ByteValues[DestByteNo] = V;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004236 return false;
4237}
4238
4239/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4240/// If so, insert the new bswap intrinsic and return it.
4241Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
4242 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
Chris Lattner567f5112008-10-05 02:13:19 +00004243 if (!ITy || ITy->getBitWidth() % 16 ||
4244 // ByteMask only allows up to 32-byte values.
4245 ITy->getBitWidth() > 32*8)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004246 return 0; // Can only bswap pairs of bytes. Can't do vectors.
4247
4248 /// ByteValues - For each byte of the result, we keep track of which value
4249 /// defines each byte.
4250 SmallVector<Value*, 8> ByteValues;
4251 ByteValues.resize(ITy->getBitWidth()/8);
4252
4253 // Try to find all the pieces corresponding to the bswap.
Chris Lattner567f5112008-10-05 02:13:19 +00004254 uint32_t ByteMask = ~0U >> (32-ByteValues.size());
4255 if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004256 return 0;
4257
4258 // Check to see if all of the bytes come from the same value.
4259 Value *V = ByteValues[0];
4260 if (V == 0) return 0; // Didn't find a byte? Must be zero.
4261
4262 // Check to make sure that all of the bytes come from the same value.
4263 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
4264 if (ByteValues[i] != V)
4265 return 0;
Chandler Carrutha228e392007-08-04 01:51:18 +00004266 const Type *Tys[] = { ITy };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004267 Module *M = I.getParent()->getParent()->getParent();
Chandler Carrutha228e392007-08-04 01:51:18 +00004268 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Gabor Greifd6da1d02008-04-06 20:25:17 +00004269 return CallInst::Create(F, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004270}
4271
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004272/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check
4273/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
4274/// we can simplify this expression to "cond ? C : D or B".
4275static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
4276 Value *C, Value *D) {
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004277 // If A is not a select of -1/0, this cannot match.
Chris Lattner641ea462008-11-16 04:46:19 +00004278 Value *Cond = 0;
Chris Lattner73c1ddb2009-01-05 23:53:12 +00004279 if (!match(A, m_SelectCst<-1, 0>(m_Value(Cond))))
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004280 return 0;
4281
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004282 // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
Chris Lattner73c1ddb2009-01-05 23:53:12 +00004283 if (match(D, m_SelectCst<0, -1>(m_Specific(Cond))))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004284 return SelectInst::Create(Cond, C, B);
Chris Lattner73c1ddb2009-01-05 23:53:12 +00004285 if (match(D, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond)))))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004286 return SelectInst::Create(Cond, C, B);
4287 // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
Chris Lattner73c1ddb2009-01-05 23:53:12 +00004288 if (match(B, m_SelectCst<0, -1>(m_Specific(Cond))))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004289 return SelectInst::Create(Cond, C, D);
Chris Lattner73c1ddb2009-01-05 23:53:12 +00004290 if (match(B, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond)))))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004291 return SelectInst::Create(Cond, C, D);
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004292 return 0;
4293}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004294
Chris Lattner0c678e52008-11-16 05:20:07 +00004295/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
4296Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
4297 ICmpInst *LHS, ICmpInst *RHS) {
4298 Value *Val, *Val2;
4299 ConstantInt *LHSCst, *RHSCst;
4300 ICmpInst::Predicate LHSCC, RHSCC;
4301
4302 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
4303 if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
4304 !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
4305 return 0;
4306
4307 // From here on, we only handle:
4308 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
4309 if (Val != Val2) return 0;
4310
4311 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
4312 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
4313 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
4314 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
4315 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
4316 return 0;
4317
4318 // We can't fold (ugt x, C) | (sgt x, C2).
4319 if (!PredicatesFoldable(LHSCC, RHSCC))
4320 return 0;
4321
4322 // Ensure that the larger constant is on the RHS.
4323 bool ShouldSwap;
4324 if (ICmpInst::isSignedPredicate(LHSCC) ||
4325 (ICmpInst::isEquality(LHSCC) &&
4326 ICmpInst::isSignedPredicate(RHSCC)))
4327 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
4328 else
4329 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
4330
4331 if (ShouldSwap) {
4332 std::swap(LHS, RHS);
4333 std::swap(LHSCst, RHSCst);
4334 std::swap(LHSCC, RHSCC);
4335 }
4336
4337 // At this point, we know we have have two icmp instructions
4338 // comparing a value against two constants and or'ing the result
4339 // together. Because of the above check, we know that we only have
4340 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4341 // FoldICmpLogical check above), that the two constants are not
4342 // equal.
4343 assert(LHSCst != RHSCst && "Compares not folded above?");
4344
4345 switch (LHSCC) {
4346 default: assert(0 && "Unknown integer condition code!");
4347 case ICmpInst::ICMP_EQ:
4348 switch (RHSCC) {
4349 default: assert(0 && "Unknown integer condition code!");
4350 case ICmpInst::ICMP_EQ:
4351 if (LHSCst == SubOne(RHSCst)) { // (X == 13 | X == 14) -> X-13 <u 2
4352 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
4353 Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
4354 Val->getName()+".off");
4355 InsertNewInstBefore(Add, I);
4356 AddCST = Subtract(AddOne(RHSCst), LHSCst);
4357 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
4358 }
4359 break; // (X == 13 | X == 15) -> no change
4360 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4361 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4362 break;
4363 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4364 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4365 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4366 return ReplaceInstUsesWith(I, RHS);
4367 }
4368 break;
4369 case ICmpInst::ICMP_NE:
4370 switch (RHSCC) {
4371 default: assert(0 && "Unknown integer condition code!");
4372 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4373 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4374 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4375 return ReplaceInstUsesWith(I, LHS);
4376 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4377 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4378 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4379 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4380 }
4381 break;
4382 case ICmpInst::ICMP_ULT:
4383 switch (RHSCC) {
4384 default: assert(0 && "Unknown integer condition code!");
4385 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4386 break;
4387 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
4388 // If RHSCst is [us]MAXINT, it is always false. Not handling
4389 // this can cause overflow.
4390 if (RHSCst->isMaxValue(false))
4391 return ReplaceInstUsesWith(I, LHS);
4392 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false, I);
4393 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4394 break;
4395 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4396 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4397 return ReplaceInstUsesWith(I, RHS);
4398 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4399 break;
4400 }
4401 break;
4402 case ICmpInst::ICMP_SLT:
4403 switch (RHSCC) {
4404 default: assert(0 && "Unknown integer condition code!");
4405 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4406 break;
4407 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
4408 // If RHSCst is [us]MAXINT, it is always false. Not handling
4409 // this can cause overflow.
4410 if (RHSCst->isMaxValue(true))
4411 return ReplaceInstUsesWith(I, LHS);
4412 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false, I);
4413 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4414 break;
4415 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4416 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4417 return ReplaceInstUsesWith(I, RHS);
4418 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4419 break;
4420 }
4421 break;
4422 case ICmpInst::ICMP_UGT:
4423 switch (RHSCC) {
4424 default: assert(0 && "Unknown integer condition code!");
4425 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4426 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4427 return ReplaceInstUsesWith(I, LHS);
4428 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4429 break;
4430 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4431 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4432 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4433 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4434 break;
4435 }
4436 break;
4437 case ICmpInst::ICMP_SGT:
4438 switch (RHSCC) {
4439 default: assert(0 && "Unknown integer condition code!");
4440 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4441 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4442 return ReplaceInstUsesWith(I, LHS);
4443 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4444 break;
4445 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4446 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4447 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4448 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4449 break;
4450 }
4451 break;
4452 }
4453 return 0;
4454}
4455
Bill Wendlingdae376a2008-12-01 08:23:25 +00004456/// FoldOrWithConstants - This helper function folds:
4457///
Bill Wendling236a1192008-12-02 05:09:00 +00004458/// ((A | B) & C1) | (B & C2)
Bill Wendlingdae376a2008-12-01 08:23:25 +00004459///
4460/// into:
4461///
Bill Wendling236a1192008-12-02 05:09:00 +00004462/// (A & C1) | B
Bill Wendling9912f712008-12-01 08:32:40 +00004463///
Bill Wendling236a1192008-12-02 05:09:00 +00004464/// when the XOR of the two constants is "all ones" (-1).
Bill Wendling9912f712008-12-01 08:32:40 +00004465Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
Bill Wendlingdae376a2008-12-01 08:23:25 +00004466 Value *A, Value *B, Value *C) {
Bill Wendlingfc5b8e62008-12-02 05:06:43 +00004467 ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
4468 if (!CI1) return 0;
Bill Wendlingdae376a2008-12-01 08:23:25 +00004469
Bill Wendling0a0dcaf2008-12-02 06:24:20 +00004470 Value *V1 = 0;
4471 ConstantInt *CI2 = 0;
4472 if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
Bill Wendlingdae376a2008-12-01 08:23:25 +00004473
Bill Wendling86ee3162008-12-02 06:18:11 +00004474 APInt Xor = CI1->getValue() ^ CI2->getValue();
4475 if (!Xor.isAllOnesValue()) return 0;
4476
Bill Wendling0a0dcaf2008-12-02 06:24:20 +00004477 if (V1 == A || V1 == B) {
Bill Wendling86ee3162008-12-02 06:18:11 +00004478 Instruction *NewOp =
Bill Wendling6c8ecbb2008-12-02 06:22:04 +00004479 InsertNewInstBefore(BinaryOperator::CreateAnd((V1 == A) ? B : A, CI1), I);
4480 return BinaryOperator::CreateOr(NewOp, V1);
Bill Wendlingdae376a2008-12-01 08:23:25 +00004481 }
4482
4483 return 0;
4484}
4485
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004486Instruction *InstCombiner::visitOr(BinaryOperator &I) {
4487 bool Changed = SimplifyCommutative(I);
4488 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4489
4490 if (isa<UndefValue>(Op1)) // X | undef -> -1
4491 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4492
4493 // or X, X = X
4494 if (Op0 == Op1)
4495 return ReplaceInstUsesWith(I, Op0);
4496
4497 // See if we can simplify any instructions used by the instruction whose sole
4498 // purpose is to compute bits we don't care about.
4499 if (!isa<VectorType>(I.getType())) {
4500 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4501 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4502 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4503 KnownZero, KnownOne))
4504 return &I;
4505 } else if (isa<ConstantAggregateZero>(Op1)) {
4506 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
4507 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
4508 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
4509 return ReplaceInstUsesWith(I, I.getOperand(1));
4510 }
4511
4512
4513
4514 // or X, -1 == -1
4515 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
4516 ConstantInt *C1 = 0; Value *X = 0;
4517 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4518 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004519 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004520 InsertNewInstBefore(Or, I);
4521 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004522 return BinaryOperator::CreateAnd(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004523 ConstantInt::get(RHS->getValue() | C1->getValue()));
4524 }
4525
4526 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4527 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004528 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004529 InsertNewInstBefore(Or, I);
4530 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004531 return BinaryOperator::CreateXor(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004532 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
4533 }
4534
4535 // Try to fold constant and into select arguments.
4536 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4537 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4538 return R;
4539 if (isa<PHINode>(Op0))
4540 if (Instruction *NV = FoldOpIntoPhi(I))
4541 return NV;
4542 }
4543
4544 Value *A = 0, *B = 0;
4545 ConstantInt *C1 = 0, *C2 = 0;
4546
4547 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4548 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4549 return ReplaceInstUsesWith(I, Op1);
4550 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4551 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4552 return ReplaceInstUsesWith(I, Op0);
4553
4554 // (A | B) | C and A | (B | C) -> bswap if possible.
4555 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
4556 if (match(Op0, m_Or(m_Value(), m_Value())) ||
4557 match(Op1, m_Or(m_Value(), m_Value())) ||
4558 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4559 match(Op1, m_Shift(m_Value(), m_Value())))) {
4560 if (Instruction *BSwap = MatchBSwap(I))
4561 return BSwap;
4562 }
4563
4564 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4565 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4566 MaskedValueIsZero(Op1, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004567 Instruction *NOr = BinaryOperator::CreateOr(A, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004568 InsertNewInstBefore(NOr, I);
4569 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004570 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004571 }
4572
4573 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4574 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4575 MaskedValueIsZero(Op0, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004576 Instruction *NOr = BinaryOperator::CreateOr(A, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004577 InsertNewInstBefore(NOr, I);
4578 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004579 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004580 }
4581
4582 // (A & C)|(B & D)
4583 Value *C = 0, *D = 0;
4584 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4585 match(Op1, m_And(m_Value(B), m_Value(D)))) {
4586 Value *V1 = 0, *V2 = 0, *V3 = 0;
4587 C1 = dyn_cast<ConstantInt>(C);
4588 C2 = dyn_cast<ConstantInt>(D);
4589 if (C1 && C2) { // (A & C1)|(B & C2)
4590 // If we have: ((V + N) & C1) | (V & C2)
4591 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4592 // replace with V+N.
4593 if (C1->getValue() == ~C2->getValue()) {
4594 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
4595 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4596 // Add commutes, try both ways.
4597 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
4598 return ReplaceInstUsesWith(I, A);
4599 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
4600 return ReplaceInstUsesWith(I, A);
4601 }
4602 // Or commutes, try both ways.
4603 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
4604 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4605 // Add commutes, try both ways.
4606 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
4607 return ReplaceInstUsesWith(I, B);
4608 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
4609 return ReplaceInstUsesWith(I, B);
4610 }
4611 }
4612 V1 = 0; V2 = 0; V3 = 0;
4613 }
4614
4615 // Check to see if we have any common things being and'ed. If so, find the
4616 // terms for V1 & (V2|V3).
4617 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
4618 if (A == B) // (A & C)|(A & D) == A & (C|D)
4619 V1 = A, V2 = C, V3 = D;
4620 else if (A == D) // (A & C)|(B & A) == A & (B|C)
4621 V1 = A, V2 = B, V3 = C;
4622 else if (C == B) // (A & C)|(C & D) == C & (A|D)
4623 V1 = C, V2 = A, V3 = D;
4624 else if (C == D) // (A & C)|(B & C) == C & (A|B)
4625 V1 = C, V2 = A, V3 = B;
4626
4627 if (V1) {
4628 Value *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00004629 InsertNewInstBefore(BinaryOperator::CreateOr(V2, V3, "tmp"), I);
4630 return BinaryOperator::CreateAnd(V1, Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004631 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004632 }
Dan Gohman279952c2008-10-28 22:38:57 +00004633
Dan Gohman35b76162008-10-30 20:40:10 +00004634 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004635 if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
4636 return Match;
4637 if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
4638 return Match;
4639 if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
4640 return Match;
4641 if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
4642 return Match;
Bill Wendling22ca8352008-11-30 13:52:49 +00004643
Bill Wendling22ca8352008-11-30 13:52:49 +00004644 // ((A&~B)|(~A&B)) -> A^B
Bill Wendlingc1f31132008-12-01 08:09:47 +00004645 if ((match(C, m_Not(m_Specific(D))) &&
4646 match(B, m_Not(m_Specific(A)))))
4647 return BinaryOperator::CreateXor(A, D);
Bill Wendling22ca8352008-11-30 13:52:49 +00004648 // ((~B&A)|(~A&B)) -> A^B
Bill Wendlingc1f31132008-12-01 08:09:47 +00004649 if ((match(A, m_Not(m_Specific(D))) &&
4650 match(B, m_Not(m_Specific(C)))))
4651 return BinaryOperator::CreateXor(C, D);
Bill Wendling22ca8352008-11-30 13:52:49 +00004652 // ((A&~B)|(B&~A)) -> A^B
Bill Wendlingc1f31132008-12-01 08:09:47 +00004653 if ((match(C, m_Not(m_Specific(B))) &&
4654 match(D, m_Not(m_Specific(A)))))
4655 return BinaryOperator::CreateXor(A, B);
Bill Wendling22ca8352008-11-30 13:52:49 +00004656 // ((~B&A)|(B&~A)) -> A^B
Bill Wendlingc1f31132008-12-01 08:09:47 +00004657 if ((match(A, m_Not(m_Specific(B))) &&
4658 match(D, m_Not(m_Specific(C)))))
4659 return BinaryOperator::CreateXor(C, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004660 }
4661
4662 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
4663 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4664 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4665 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4666 SI0->getOperand(1) == SI1->getOperand(1) &&
4667 (SI0->hasOneUse() || SI1->hasOneUse())) {
4668 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004669 InsertNewInstBefore(BinaryOperator::CreateOr(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004670 SI1->getOperand(0),
4671 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004672 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004673 SI1->getOperand(1));
4674 }
4675 }
4676
Bill Wendlingd8ce2372008-12-01 01:07:11 +00004677 // ((A|B)&1)|(B&-2) -> (A&1) | B
4678 if (match(Op0, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
4679 match(Op0, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
Bill Wendling9912f712008-12-01 08:32:40 +00004680 Instruction *Ret = FoldOrWithConstants(I, Op1, A, B, C);
Bill Wendlingdae376a2008-12-01 08:23:25 +00004681 if (Ret) return Ret;
Bill Wendlingd8ce2372008-12-01 01:07:11 +00004682 }
4683 // (B&-2)|((A|B)&1) -> (A&1) | B
4684 if (match(Op1, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
4685 match(Op1, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
Bill Wendling9912f712008-12-01 08:32:40 +00004686 Instruction *Ret = FoldOrWithConstants(I, Op0, A, B, C);
Bill Wendlingdae376a2008-12-01 08:23:25 +00004687 if (Ret) return Ret;
Bill Wendlingd8ce2372008-12-01 01:07:11 +00004688 }
4689
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004690 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4691 if (A == Op1) // ~A | A == -1
4692 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4693 } else {
4694 A = 0;
4695 }
4696 // Note, A is still live here!
4697 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4698 if (Op0 == B)
4699 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4700
4701 // (~A | ~B) == (~(A & B)) - De Morgan's Law
4702 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004703 Value *And = InsertNewInstBefore(BinaryOperator::CreateAnd(A, B,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004704 I.getName()+".demorgan"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004705 return BinaryOperator::CreateNot(And);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004706 }
4707 }
4708
4709 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4710 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4711 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4712 return R;
4713
Chris Lattner0c678e52008-11-16 05:20:07 +00004714 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
4715 if (Instruction *Res = FoldOrOfICmps(I, LHS, RHS))
4716 return Res;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004717 }
4718
4719 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004720 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004721 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4722 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Evan Chenge3779cf2008-03-24 00:21:34 +00004723 if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
4724 !isa<ICmpInst>(Op1C->getOperand(0))) {
4725 const Type *SrcTy = Op0C->getOperand(0)->getType();
4726 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4727 // Only do this if the casts both really cause code to be
4728 // generated.
4729 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4730 I.getType(), TD) &&
4731 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4732 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004733 Instruction *NewOp = BinaryOperator::CreateOr(Op0C->getOperand(0),
Evan Chenge3779cf2008-03-24 00:21:34 +00004734 Op1C->getOperand(0),
4735 I.getName());
4736 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004737 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Evan Chenge3779cf2008-03-24 00:21:34 +00004738 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004739 }
4740 }
Chris Lattner91882432007-10-24 05:38:08 +00004741 }
4742
4743
4744 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4745 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4746 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4747 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
Chris Lattnerbe9e63e2008-02-29 06:09:11 +00004748 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
Evan Cheng72988052008-10-14 18:44:08 +00004749 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
Chris Lattner91882432007-10-24 05:38:08 +00004750 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4751 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4752 // If either of the constants are nans, then the whole thing returns
4753 // true.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004754 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004755 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4756
4757 // Otherwise, no need to compare the two constants, compare the
4758 // rest.
4759 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4760 RHS->getOperand(0));
4761 }
Evan Cheng72988052008-10-14 18:44:08 +00004762 } else {
4763 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4764 FCmpInst::Predicate Op0CC, Op1CC;
4765 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4766 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
4767 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4768 // Swap RHS operands to match LHS.
4769 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4770 std::swap(Op1LHS, Op1RHS);
4771 }
4772 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4773 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
4774 if (Op0CC == Op1CC)
4775 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4776 else if (Op0CC == FCmpInst::FCMP_TRUE ||
4777 Op1CC == FCmpInst::FCMP_TRUE)
4778 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4779 else if (Op0CC == FCmpInst::FCMP_FALSE)
4780 return ReplaceInstUsesWith(I, Op1);
4781 else if (Op1CC == FCmpInst::FCMP_FALSE)
4782 return ReplaceInstUsesWith(I, Op0);
4783 bool Op0Ordered;
4784 bool Op1Ordered;
4785 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4786 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4787 if (Op0Ordered == Op1Ordered) {
4788 // If both are ordered or unordered, return a new fcmp with
4789 // or'ed predicates.
4790 Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred,
4791 Op0LHS, Op0RHS);
4792 if (Instruction *I = dyn_cast<Instruction>(RV))
4793 return I;
4794 // Otherwise, it's a constant boolean value...
4795 return ReplaceInstUsesWith(I, RV);
4796 }
4797 }
4798 }
4799 }
Chris Lattner91882432007-10-24 05:38:08 +00004800 }
4801 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004802
4803 return Changed ? &I : 0;
4804}
4805
Dan Gohman089efff2008-05-13 00:00:25 +00004806namespace {
4807
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004808// XorSelf - Implements: X ^ X --> 0
4809struct XorSelf {
4810 Value *RHS;
4811 XorSelf(Value *rhs) : RHS(rhs) {}
4812 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4813 Instruction *apply(BinaryOperator &Xor) const {
4814 return &Xor;
4815 }
4816};
4817
Dan Gohman089efff2008-05-13 00:00:25 +00004818}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004819
4820Instruction *InstCombiner::visitXor(BinaryOperator &I) {
4821 bool Changed = SimplifyCommutative(I);
4822 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4823
Evan Chenge5cd8032008-03-25 20:07:13 +00004824 if (isa<UndefValue>(Op1)) {
4825 if (isa<UndefValue>(Op0))
4826 // Handle undef ^ undef -> 0 special case. This is a common
4827 // idiom (misuse).
4828 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004829 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
Evan Chenge5cd8032008-03-25 20:07:13 +00004830 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004831
4832 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4833 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00004834 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004835 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4836 }
4837
4838 // See if we can simplify any instructions used by the instruction whose sole
4839 // purpose is to compute bits we don't care about.
4840 if (!isa<VectorType>(I.getType())) {
4841 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4842 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4843 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4844 KnownZero, KnownOne))
4845 return &I;
4846 } else if (isa<ConstantAggregateZero>(Op1)) {
4847 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
4848 }
4849
4850 // Is this a ~ operation?
4851 if (Value *NotOp = dyn_castNotVal(&I)) {
4852 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4853 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4854 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4855 if (Op0I->getOpcode() == Instruction::And ||
4856 Op0I->getOpcode() == Instruction::Or) {
4857 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4858 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4859 Instruction *NotY =
Gabor Greifa645dd32008-05-16 19:29:10 +00004860 BinaryOperator::CreateNot(Op0I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004861 Op0I->getOperand(1)->getName()+".not");
4862 InsertNewInstBefore(NotY, I);
4863 if (Op0I->getOpcode() == Instruction::And)
Gabor Greifa645dd32008-05-16 19:29:10 +00004864 return BinaryOperator::CreateOr(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004865 else
Gabor Greifa645dd32008-05-16 19:29:10 +00004866 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004867 }
4868 }
4869 }
4870 }
4871
4872
4873 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky1405e922007-08-06 20:04:16 +00004874 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
Bill Wendling61741952009-01-01 01:18:23 +00004875 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
Nick Lewycky1405e922007-08-06 20:04:16 +00004876 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004877 return new ICmpInst(ICI->getInversePredicate(),
4878 ICI->getOperand(0), ICI->getOperand(1));
4879
Nick Lewycky1405e922007-08-06 20:04:16 +00004880 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4881 return new FCmpInst(FCI->getInversePredicate(),
4882 FCI->getOperand(0), FCI->getOperand(1));
4883 }
4884
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004885 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
4886 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
4887 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
4888 if (CI->hasOneUse() && Op0C->hasOneUse()) {
4889 Instruction::CastOps Opcode = Op0C->getOpcode();
4890 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
4891 if (RHS == ConstantExpr::getCast(Opcode, ConstantInt::getTrue(),
4892 Op0C->getDestTy())) {
4893 Instruction *NewCI = InsertNewInstBefore(CmpInst::Create(
4894 CI->getOpcode(), CI->getInversePredicate(),
4895 CI->getOperand(0), CI->getOperand(1)), I);
4896 NewCI->takeName(CI);
4897 return CastInst::Create(Opcode, NewCI, Op0C->getType());
4898 }
4899 }
4900 }
4901 }
4902 }
4903
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004904 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
4905 // ~(c-X) == X-c-1 == X+(-c-1)
4906 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4907 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
4908 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4909 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
4910 ConstantInt::get(I.getType(), 1));
Gabor Greifa645dd32008-05-16 19:29:10 +00004911 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004912 }
4913
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004914 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004915 if (Op0I->getOpcode() == Instruction::Add) {
4916 // ~(X-c) --> (-c-1)-X
4917 if (RHS->isAllOnesValue()) {
4918 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00004919 return BinaryOperator::CreateSub(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004920 ConstantExpr::getSub(NegOp0CI,
4921 ConstantInt::get(I.getType(), 1)),
4922 Op0I->getOperand(0));
4923 } else if (RHS->getValue().isSignBit()) {
4924 // (X + C) ^ signbit -> (X + C + signbit)
4925 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00004926 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004927
4928 }
4929 } else if (Op0I->getOpcode() == Instruction::Or) {
4930 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4931 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
4932 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4933 // Anything in both C1 and C2 is known to be zero, remove it from
4934 // NewRHS.
4935 Constant *CommonBits = And(Op0CI, RHS);
4936 NewRHS = ConstantExpr::getAnd(NewRHS,
4937 ConstantExpr::getNot(CommonBits));
4938 AddToWorkList(Op0I);
4939 I.setOperand(0, Op0I->getOperand(0));
4940 I.setOperand(1, NewRHS);
4941 return &I;
4942 }
4943 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004944 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004945 }
4946
4947 // Try to fold constant and into select arguments.
4948 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4949 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4950 return R;
4951 if (isa<PHINode>(Op0))
4952 if (Instruction *NV = FoldOpIntoPhi(I))
4953 return NV;
4954 }
4955
4956 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
4957 if (X == Op1)
4958 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4959
4960 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
4961 if (X == Op0)
4962 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4963
4964
4965 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4966 if (Op1I) {
4967 Value *A, *B;
4968 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4969 if (A == Op0) { // B^(B|A) == (A|B)^B
4970 Op1I->swapOperands();
4971 I.swapOperands();
4972 std::swap(Op0, Op1);
4973 } else if (B == Op0) { // B^(A|B) == (A|B)^B
4974 I.swapOperands(); // Simplified below.
4975 std::swap(Op0, Op1);
4976 }
Chris Lattner3b874082008-11-16 05:38:51 +00004977 } else if (match(Op1I, m_Xor(m_Specific(Op0), m_Value(B)))) {
4978 return ReplaceInstUsesWith(I, B); // A^(A^B) == B
4979 } else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) {
4980 return ReplaceInstUsesWith(I, A); // A^(B^A) == B
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004981 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
4982 if (A == Op0) { // A^(A&B) -> A^(B&A)
4983 Op1I->swapOperands();
4984 std::swap(A, B);
4985 }
4986 if (B == Op0) { // A^(B&A) -> (B&A)^A
4987 I.swapOperands(); // Simplified below.
4988 std::swap(Op0, Op1);
4989 }
4990 }
4991 }
4992
4993 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4994 if (Op0I) {
4995 Value *A, *B;
4996 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4997 if (A == Op1) // (B|A)^B == (A|B)^B
4998 std::swap(A, B);
4999 if (B == Op1) { // (A|B)^B == A & ~B
5000 Instruction *NotB =
Gabor Greifa645dd32008-05-16 19:29:10 +00005001 InsertNewInstBefore(BinaryOperator::CreateNot(Op1, "tmp"), I);
5002 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005003 }
Chris Lattner3b874082008-11-16 05:38:51 +00005004 } else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) {
5005 return ReplaceInstUsesWith(I, B); // (A^B)^A == B
5006 } else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) {
5007 return ReplaceInstUsesWith(I, A); // (B^A)^A == B
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005008 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
5009 if (A == Op1) // (A&B)^A -> (B&A)^A
5010 std::swap(A, B);
5011 if (B == Op1 && // (B&A)^A == ~B & A
5012 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
5013 Instruction *N =
Gabor Greifa645dd32008-05-16 19:29:10 +00005014 InsertNewInstBefore(BinaryOperator::CreateNot(A, "tmp"), I);
5015 return BinaryOperator::CreateAnd(N, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005016 }
5017 }
5018 }
5019
5020 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
5021 if (Op0I && Op1I && Op0I->isShift() &&
5022 Op0I->getOpcode() == Op1I->getOpcode() &&
5023 Op0I->getOperand(1) == Op1I->getOperand(1) &&
5024 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
5025 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00005026 InsertNewInstBefore(BinaryOperator::CreateXor(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005027 Op1I->getOperand(0),
5028 Op0I->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005029 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005030 Op1I->getOperand(1));
5031 }
5032
5033 if (Op0I && Op1I) {
5034 Value *A, *B, *C, *D;
5035 // (A & B)^(A | B) -> A ^ B
5036 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
5037 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
5038 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00005039 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005040 }
5041 // (A | B)^(A & B) -> A ^ B
5042 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
5043 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
5044 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00005045 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005046 }
5047
5048 // (A & B)^(C & D)
5049 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
5050 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
5051 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
5052 // (X & Y)^(X & Y) -> (Y^Z) & X
5053 Value *X = 0, *Y = 0, *Z = 0;
5054 if (A == C)
5055 X = A, Y = B, Z = D;
5056 else if (A == D)
5057 X = A, Y = B, Z = C;
5058 else if (B == C)
5059 X = B, Y = A, Z = D;
5060 else if (B == D)
5061 X = B, Y = A, Z = C;
5062
5063 if (X) {
5064 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00005065 InsertNewInstBefore(BinaryOperator::CreateXor(Y, Z, Op0->getName()), I);
5066 return BinaryOperator::CreateAnd(NewOp, X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005067 }
5068 }
5069 }
5070
5071 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
5072 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
5073 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
5074 return R;
5075
5076 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Chris Lattner91882432007-10-24 05:38:08 +00005077 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005078 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
5079 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
5080 const Type *SrcTy = Op0C->getOperand(0)->getType();
5081 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
5082 // Only do this if the casts both really cause code to be generated.
5083 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
5084 I.getType(), TD) &&
5085 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
5086 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00005087 Instruction *NewOp = BinaryOperator::CreateXor(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005088 Op1C->getOperand(0),
5089 I.getName());
5090 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005091 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005092 }
5093 }
Chris Lattner91882432007-10-24 05:38:08 +00005094 }
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00005095
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005096 return Changed ? &I : 0;
5097}
5098
5099/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
5100/// overflowed for this type.
5101static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
5102 ConstantInt *In2, bool IsSigned = false) {
5103 Result = cast<ConstantInt>(Add(In1, In2));
5104
5105 if (IsSigned)
5106 if (In2->getValue().isNegative())
5107 return Result->getValue().sgt(In1->getValue());
5108 else
5109 return Result->getValue().slt(In1->getValue());
5110 else
5111 return Result->getValue().ult(In1->getValue());
5112}
5113
Dan Gohmanb80d5612008-09-10 23:30:57 +00005114/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
5115/// overflowed for this type.
5116static bool SubWithOverflow(ConstantInt *&Result, ConstantInt *In1,
5117 ConstantInt *In2, bool IsSigned = false) {
Dan Gohman2c3b4892008-09-11 18:53:02 +00005118 Result = cast<ConstantInt>(Subtract(In1, In2));
Dan Gohmanb80d5612008-09-10 23:30:57 +00005119
5120 if (IsSigned)
5121 if (In2->getValue().isNegative())
5122 return Result->getValue().slt(In1->getValue());
5123 else
5124 return Result->getValue().sgt(In1->getValue());
5125 else
5126 return Result->getValue().ugt(In1->getValue());
5127}
5128
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005129/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
5130/// code necessary to compute the offset from the base pointer (without adding
5131/// in the base pointer). Return the result as a signed integer of intptr size.
5132static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
5133 TargetData &TD = IC.getTargetData();
5134 gep_type_iterator GTI = gep_type_begin(GEP);
5135 const Type *IntPtrTy = TD.getIntPtrType();
5136 Value *Result = Constant::getNullValue(IntPtrTy);
5137
5138 // Build a mask for high order bits.
Chris Lattnereba75862008-04-22 02:53:33 +00005139 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005140 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5141
Gabor Greif17396002008-06-12 21:37:33 +00005142 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
5143 ++i, ++GTI) {
5144 Value *Op = *i;
Duncan Sandsd68f13b2009-01-12 20:38:59 +00005145 uint64_t Size = TD.getTypePaddedSize(GTI.getIndexedType()) & PtrSizeMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005146 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
5147 if (OpC->isZero()) continue;
5148
5149 // Handle a struct index, which adds its field offset to the pointer.
5150 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5151 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
5152
5153 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
5154 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
5155 else
5156 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005157 BinaryOperator::CreateAdd(Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005158 ConstantInt::get(IntPtrTy, Size),
5159 GEP->getName()+".offs"), I);
5160 continue;
5161 }
5162
5163 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5164 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
5165 Scale = ConstantExpr::getMul(OC, Scale);
5166 if (Constant *RC = dyn_cast<Constant>(Result))
5167 Result = ConstantExpr::getAdd(RC, Scale);
5168 else {
5169 // Emit an add instruction.
5170 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005171 BinaryOperator::CreateAdd(Result, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005172 GEP->getName()+".offs"), I);
5173 }
5174 continue;
5175 }
5176 // Convert to correct type.
5177 if (Op->getType() != IntPtrTy) {
5178 if (Constant *OpC = dyn_cast<Constant>(Op))
5179 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
5180 else
5181 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
5182 Op->getName()+".c"), I);
5183 }
5184 if (Size != 1) {
5185 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5186 if (Constant *OpC = dyn_cast<Constant>(Op))
5187 Op = ConstantExpr::getMul(OpC, Scale);
5188 else // We'll let instcombine(mul) convert this to a shl if possible.
Gabor Greifa645dd32008-05-16 19:29:10 +00005189 Op = IC.InsertNewInstBefore(BinaryOperator::CreateMul(Op, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005190 GEP->getName()+".idx"), I);
5191 }
5192
5193 // Emit an add instruction.
5194 if (isa<Constant>(Op) && isa<Constant>(Result))
5195 Result = ConstantExpr::getAdd(cast<Constant>(Op),
5196 cast<Constant>(Result));
5197 else
Gabor Greifa645dd32008-05-16 19:29:10 +00005198 Result = IC.InsertNewInstBefore(BinaryOperator::CreateAdd(Op, Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005199 GEP->getName()+".offs"), I);
5200 }
5201 return Result;
5202}
5203
Chris Lattnereba75862008-04-22 02:53:33 +00005204
5205/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
5206/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
5207/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
5208/// complex, and scales are involved. The above expression would also be legal
5209/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
5210/// later form is less amenable to optimization though, and we are allowed to
5211/// generate the first by knowing that pointer arithmetic doesn't overflow.
5212///
5213/// If we can't emit an optimized form for this expression, this returns null.
5214///
5215static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
5216 InstCombiner &IC) {
Chris Lattnereba75862008-04-22 02:53:33 +00005217 TargetData &TD = IC.getTargetData();
5218 gep_type_iterator GTI = gep_type_begin(GEP);
5219
5220 // Check to see if this gep only has a single variable index. If so, and if
5221 // any constant indices are a multiple of its scale, then we can compute this
5222 // in terms of the scale of the variable index. For example, if the GEP
5223 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
5224 // because the expression will cross zero at the same point.
5225 unsigned i, e = GEP->getNumOperands();
5226 int64_t Offset = 0;
5227 for (i = 1; i != e; ++i, ++GTI) {
5228 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5229 // Compute the aggregate offset of constant indices.
5230 if (CI->isZero()) continue;
5231
5232 // Handle a struct index, which adds its field offset to the pointer.
5233 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5234 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5235 } else {
Duncan Sandsd68f13b2009-01-12 20:38:59 +00005236 uint64_t Size = TD.getTypePaddedSize(GTI.getIndexedType());
Chris Lattnereba75862008-04-22 02:53:33 +00005237 Offset += Size*CI->getSExtValue();
5238 }
5239 } else {
5240 // Found our variable index.
5241 break;
5242 }
5243 }
5244
5245 // If there are no variable indices, we must have a constant offset, just
5246 // evaluate it the general way.
5247 if (i == e) return 0;
5248
5249 Value *VariableIdx = GEP->getOperand(i);
5250 // Determine the scale factor of the variable element. For example, this is
5251 // 4 if the variable index is into an array of i32.
Duncan Sandsd68f13b2009-01-12 20:38:59 +00005252 uint64_t VariableScale = TD.getTypePaddedSize(GTI.getIndexedType());
Chris Lattnereba75862008-04-22 02:53:33 +00005253
5254 // Verify that there are no other variable indices. If so, emit the hard way.
5255 for (++i, ++GTI; i != e; ++i, ++GTI) {
5256 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
5257 if (!CI) return 0;
5258
5259 // Compute the aggregate offset of constant indices.
5260 if (CI->isZero()) continue;
5261
5262 // Handle a struct index, which adds its field offset to the pointer.
5263 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5264 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5265 } else {
Duncan Sandsd68f13b2009-01-12 20:38:59 +00005266 uint64_t Size = TD.getTypePaddedSize(GTI.getIndexedType());
Chris Lattnereba75862008-04-22 02:53:33 +00005267 Offset += Size*CI->getSExtValue();
5268 }
5269 }
5270
5271 // Okay, we know we have a single variable index, which must be a
5272 // pointer/array/vector index. If there is no offset, life is simple, return
5273 // the index.
5274 unsigned IntPtrWidth = TD.getPointerSizeInBits();
5275 if (Offset == 0) {
5276 // Cast to intptrty in case a truncation occurs. If an extension is needed,
5277 // we don't need to bother extending: the extension won't affect where the
5278 // computation crosses zero.
5279 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
5280 VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
5281 VariableIdx->getNameStart(), &I);
5282 return VariableIdx;
5283 }
5284
5285 // Otherwise, there is an index. The computation we will do will be modulo
5286 // the pointer size, so get it.
5287 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5288
5289 Offset &= PtrSizeMask;
5290 VariableScale &= PtrSizeMask;
5291
5292 // To do this transformation, any constant index must be a multiple of the
5293 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
5294 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
5295 // multiple of the variable scale.
5296 int64_t NewOffs = Offset / (int64_t)VariableScale;
5297 if (Offset != NewOffs*(int64_t)VariableScale)
5298 return 0;
5299
5300 // Okay, we can do this evaluation. Start by converting the index to intptr.
5301 const Type *IntPtrTy = TD.getIntPtrType();
5302 if (VariableIdx->getType() != IntPtrTy)
Gabor Greifa645dd32008-05-16 19:29:10 +00005303 VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
Chris Lattnereba75862008-04-22 02:53:33 +00005304 true /*SExt*/,
5305 VariableIdx->getNameStart(), &I);
5306 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Gabor Greifa645dd32008-05-16 19:29:10 +00005307 return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
Chris Lattnereba75862008-04-22 02:53:33 +00005308}
5309
5310
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005311/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
5312/// else. At this point we know that the GEP is on the LHS of the comparison.
5313Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
5314 ICmpInst::Predicate Cond,
5315 Instruction &I) {
5316 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
5317
Chris Lattnereba75862008-04-22 02:53:33 +00005318 // Look through bitcasts.
5319 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
5320 RHS = BCI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005321
5322 Value *PtrBase = GEPLHS->getOperand(0);
5323 if (PtrBase == RHS) {
Chris Lattneraf97d022008-02-05 04:45:32 +00005324 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
Chris Lattnereba75862008-04-22 02:53:33 +00005325 // This transformation (ignoring the base and scales) is valid because we
5326 // know pointers can't overflow. See if we can output an optimized form.
5327 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
5328
5329 // If not, synthesize the offset the hard way.
5330 if (Offset == 0)
5331 Offset = EmitGEPOffset(GEPLHS, I, *this);
Chris Lattneraf97d022008-02-05 04:45:32 +00005332 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
5333 Constant::getNullValue(Offset->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005334 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
5335 // If the base pointers are different, but the indices are the same, just
5336 // compare the base pointer.
5337 if (PtrBase != GEPRHS->getOperand(0)) {
5338 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
5339 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
5340 GEPRHS->getOperand(0)->getType();
5341 if (IndicesTheSame)
5342 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5343 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5344 IndicesTheSame = false;
5345 break;
5346 }
5347
5348 // If all indices are the same, just compare the base pointers.
5349 if (IndicesTheSame)
5350 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
5351 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
5352
5353 // Otherwise, the base pointers are different and the indices are
5354 // different, bail out.
5355 return 0;
5356 }
5357
5358 // If one of the GEPs has all zero indices, recurse.
5359 bool AllZeros = true;
5360 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5361 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
5362 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
5363 AllZeros = false;
5364 break;
5365 }
5366 if (AllZeros)
5367 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
5368 ICmpInst::getSwappedPredicate(Cond), I);
5369
5370 // If the other GEP has all zero indices, recurse.
5371 AllZeros = true;
5372 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5373 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
5374 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
5375 AllZeros = false;
5376 break;
5377 }
5378 if (AllZeros)
5379 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
5380
5381 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
5382 // If the GEPs only differ by one index, compare it.
5383 unsigned NumDifferences = 0; // Keep track of # differences.
5384 unsigned DiffOperand = 0; // The operand that differs.
5385 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5386 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5387 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
5388 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
5389 // Irreconcilable differences.
5390 NumDifferences = 2;
5391 break;
5392 } else {
5393 if (NumDifferences++) break;
5394 DiffOperand = i;
5395 }
5396 }
5397
5398 if (NumDifferences == 0) // SAME GEP?
5399 return ReplaceInstUsesWith(I, // No comparison is needed here.
Nick Lewycky2de09a92007-09-06 02:40:25 +00005400 ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005401 ICmpInst::isTrueWhenEqual(Cond)));
Nick Lewycky2de09a92007-09-06 02:40:25 +00005402
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005403 else if (NumDifferences == 1) {
5404 Value *LHSV = GEPLHS->getOperand(DiffOperand);
5405 Value *RHSV = GEPRHS->getOperand(DiffOperand);
5406 // Make sure we do a signed comparison here.
5407 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
5408 }
5409 }
5410
5411 // Only lower this if the icmp is the only user of the GEP or if we expect
5412 // the result to fold to a constant!
5413 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5414 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5415 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5416 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5417 Value *R = EmitGEPOffset(GEPRHS, I, *this);
5418 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
5419 }
5420 }
5421 return 0;
5422}
5423
Chris Lattnere6b62d92008-05-19 20:18:56 +00005424/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
5425///
5426Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
5427 Instruction *LHSI,
5428 Constant *RHSC) {
5429 if (!isa<ConstantFP>(RHSC)) return 0;
5430 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5431
5432 // Get the width of the mantissa. We don't want to hack on conversions that
5433 // might lose information from the integer, e.g. "i64 -> float"
Chris Lattner9ce836b2008-05-19 21:17:23 +00005434 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
Chris Lattnere6b62d92008-05-19 20:18:56 +00005435 if (MantissaWidth == -1) return 0; // Unknown.
5436
5437 // Check to see that the input is converted from an integer type that is small
5438 // enough that preserves all bits. TODO: check here for "known" sign bits.
5439 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5440 unsigned InputSize = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
5441
5442 // If this is a uitofp instruction, we need an extra bit to hold the sign.
Bill Wendling20636df2008-11-09 04:26:50 +00005443 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5444 if (LHSUnsigned)
Chris Lattnere6b62d92008-05-19 20:18:56 +00005445 ++InputSize;
5446
5447 // If the conversion would lose info, don't hack on this.
5448 if ((int)InputSize > MantissaWidth)
5449 return 0;
5450
5451 // Otherwise, we can potentially simplify the comparison. We know that it
5452 // will always come through as an integer value and we know the constant is
5453 // not a NAN (it would have been previously simplified).
5454 assert(!RHS.isNaN() && "NaN comparison not already folded!");
5455
5456 ICmpInst::Predicate Pred;
5457 switch (I.getPredicate()) {
5458 default: assert(0 && "Unexpected predicate!");
5459 case FCmpInst::FCMP_UEQ:
Bill Wendling20636df2008-11-09 04:26:50 +00005460 case FCmpInst::FCMP_OEQ:
5461 Pred = ICmpInst::ICMP_EQ;
5462 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005463 case FCmpInst::FCMP_UGT:
Bill Wendling20636df2008-11-09 04:26:50 +00005464 case FCmpInst::FCMP_OGT:
5465 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5466 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005467 case FCmpInst::FCMP_UGE:
Bill Wendling20636df2008-11-09 04:26:50 +00005468 case FCmpInst::FCMP_OGE:
5469 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5470 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005471 case FCmpInst::FCMP_ULT:
Bill Wendling20636df2008-11-09 04:26:50 +00005472 case FCmpInst::FCMP_OLT:
5473 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5474 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005475 case FCmpInst::FCMP_ULE:
Bill Wendling20636df2008-11-09 04:26:50 +00005476 case FCmpInst::FCMP_OLE:
5477 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5478 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005479 case FCmpInst::FCMP_UNE:
Bill Wendling20636df2008-11-09 04:26:50 +00005480 case FCmpInst::FCMP_ONE:
5481 Pred = ICmpInst::ICMP_NE;
5482 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005483 case FCmpInst::FCMP_ORD:
Eli Friedmanc9c96242008-11-30 22:48:49 +00005484 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005485 case FCmpInst::FCMP_UNO:
Eli Friedmanc9c96242008-11-30 22:48:49 +00005486 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005487 }
5488
5489 const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5490
5491 // Now we know that the APFloat is a normal number, zero or inf.
5492
Chris Lattnerf13ff492008-05-20 03:50:52 +00005493 // See if the FP constant is too large for the integer. For example,
Chris Lattnere6b62d92008-05-19 20:18:56 +00005494 // comparing an i8 to 300.0.
5495 unsigned IntWidth = IntTy->getPrimitiveSizeInBits();
5496
Bill Wendling20636df2008-11-09 04:26:50 +00005497 if (!LHSUnsigned) {
5498 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5499 // and large values.
5500 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
5501 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5502 APFloat::rmNearestTiesToEven);
5503 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
5504 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5505 Pred == ICmpInst::ICMP_SLE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005506 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5507 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005508 }
5509 } else {
5510 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5511 // +INF and large values.
5512 APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
5513 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5514 APFloat::rmNearestTiesToEven);
5515 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
5516 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
5517 Pred == ICmpInst::ICMP_ULE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005518 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5519 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005520 }
Chris Lattnere6b62d92008-05-19 20:18:56 +00005521 }
5522
Bill Wendling20636df2008-11-09 04:26:50 +00005523 if (!LHSUnsigned) {
5524 // See if the RHS value is < SignedMin.
5525 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
5526 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5527 APFloat::rmNearestTiesToEven);
5528 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5529 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5530 Pred == ICmpInst::ICMP_SGE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005531 return ReplaceInstUsesWith(I,ConstantInt::getTrue());
5532 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005533 }
Chris Lattnere6b62d92008-05-19 20:18:56 +00005534 }
5535
Bill Wendling20636df2008-11-09 04:26:50 +00005536 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5537 // [0, UMAX], but it may still be fractional. See if it is fractional by
5538 // casting the FP value to the integer value and back, checking for equality.
5539 // Don't do this for zero, because -0.0 is not fractional.
Chris Lattnere6b62d92008-05-19 20:18:56 +00005540 Constant *RHSInt = ConstantExpr::getFPToSI(RHSC, IntTy);
5541 if (!RHS.isZero() &&
5542 ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) != RHSC) {
Bill Wendling20636df2008-11-09 04:26:50 +00005543 // If we had a comparison against a fractional value, we have to adjust the
5544 // compare predicate and sometimes the value. RHSC is rounded towards zero
5545 // at this point.
Chris Lattnere6b62d92008-05-19 20:18:56 +00005546 switch (Pred) {
5547 default: assert(0 && "Unexpected integer comparison!");
5548 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
Eli Friedmanc9c96242008-11-30 22:48:49 +00005549 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005550 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
Eli Friedmanc9c96242008-11-30 22:48:49 +00005551 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005552 case ICmpInst::ICMP_ULE:
5553 // (float)int <= 4.4 --> int <= 4
5554 // (float)int <= -4.4 --> false
5555 if (RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005556 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005557 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005558 case ICmpInst::ICMP_SLE:
5559 // (float)int <= 4.4 --> int <= 4
5560 // (float)int <= -4.4 --> int < -4
5561 if (RHS.isNegative())
5562 Pred = ICmpInst::ICMP_SLT;
5563 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005564 case ICmpInst::ICMP_ULT:
5565 // (float)int < -4.4 --> false
5566 // (float)int < 4.4 --> int <= 4
5567 if (RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005568 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005569 Pred = ICmpInst::ICMP_ULE;
5570 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005571 case ICmpInst::ICMP_SLT:
5572 // (float)int < -4.4 --> int < -4
5573 // (float)int < 4.4 --> int <= 4
5574 if (!RHS.isNegative())
5575 Pred = ICmpInst::ICMP_SLE;
5576 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005577 case ICmpInst::ICMP_UGT:
5578 // (float)int > 4.4 --> int > 4
5579 // (float)int > -4.4 --> true
5580 if (RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005581 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Bill Wendling20636df2008-11-09 04:26:50 +00005582 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005583 case ICmpInst::ICMP_SGT:
5584 // (float)int > 4.4 --> int > 4
5585 // (float)int > -4.4 --> int >= -4
5586 if (RHS.isNegative())
5587 Pred = ICmpInst::ICMP_SGE;
5588 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005589 case ICmpInst::ICMP_UGE:
5590 // (float)int >= -4.4 --> true
5591 // (float)int >= 4.4 --> int > 4
5592 if (!RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005593 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Bill Wendling20636df2008-11-09 04:26:50 +00005594 Pred = ICmpInst::ICMP_UGT;
5595 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005596 case ICmpInst::ICMP_SGE:
5597 // (float)int >= -4.4 --> int >= -4
5598 // (float)int >= 4.4 --> int > 4
5599 if (!RHS.isNegative())
5600 Pred = ICmpInst::ICMP_SGT;
5601 break;
5602 }
5603 }
5604
5605 // Lower this FP comparison into an appropriate integer version of the
5606 // comparison.
5607 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5608}
5609
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005610Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5611 bool Changed = SimplifyCompare(I);
5612 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5613
5614 // Fold trivial predicates.
5615 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005616 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005617 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005618 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005619
5620 // Simplify 'fcmp pred X, X'
5621 if (Op0 == Op1) {
5622 switch (I.getPredicate()) {
5623 default: assert(0 && "Unknown predicate!");
5624 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5625 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5626 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
Eli Friedmanc9c96242008-11-30 22:48:49 +00005627 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005628 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5629 case FCmpInst::FCMP_OLT: // True if ordered and less than
5630 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
Eli Friedmanc9c96242008-11-30 22:48:49 +00005631 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005632
5633 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5634 case FCmpInst::FCMP_ULT: // True if unordered or less than
5635 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5636 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5637 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5638 I.setPredicate(FCmpInst::FCMP_UNO);
5639 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5640 return &I;
5641
5642 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5643 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5644 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5645 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5646 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5647 I.setPredicate(FCmpInst::FCMP_ORD);
5648 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5649 return &I;
5650 }
5651 }
5652
5653 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
5654 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
5655
5656 // Handle fcmp with constant RHS
5657 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
Chris Lattnere6b62d92008-05-19 20:18:56 +00005658 // If the constant is a nan, see if we can fold the comparison based on it.
5659 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
5660 if (CFP->getValueAPF().isNaN()) {
5661 if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and...
Eli Friedmanc9c96242008-11-30 22:48:49 +00005662 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnerf13ff492008-05-20 03:50:52 +00005663 assert(FCmpInst::isUnordered(I.getPredicate()) &&
5664 "Comparison must be either ordered or unordered!");
5665 // True if unordered.
Eli Friedmanc9c96242008-11-30 22:48:49 +00005666 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005667 }
5668 }
5669
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005670 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5671 switch (LHSI->getOpcode()) {
5672 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005673 // Only fold fcmp into the PHI if the phi and fcmp are in the same
5674 // block. If in the same block, we're encouraging jump threading. If
5675 // not, we are just pessimizing the code by making an i1 phi.
5676 if (LHSI->getParent() == I.getParent())
5677 if (Instruction *NV = FoldOpIntoPhi(I))
5678 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005679 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005680 case Instruction::SIToFP:
5681 case Instruction::UIToFP:
5682 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
5683 return NV;
5684 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005685 case Instruction::Select:
5686 // If either operand of the select is a constant, we can fold the
5687 // comparison into the select arms, which will cause one to be
5688 // constant folded and the select turned into a bitwise or.
5689 Value *Op1 = 0, *Op2 = 0;
5690 if (LHSI->hasOneUse()) {
5691 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5692 // Fold the known value into the constant operand.
5693 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5694 // Insert a new FCmp of the other select operand.
5695 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5696 LHSI->getOperand(2), RHSC,
5697 I.getName()), I);
5698 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5699 // Fold the known value into the constant operand.
5700 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5701 // Insert a new FCmp of the other select operand.
5702 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5703 LHSI->getOperand(1), RHSC,
5704 I.getName()), I);
5705 }
5706 }
5707
5708 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005709 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005710 break;
5711 }
5712 }
5713
5714 return Changed ? &I : 0;
5715}
5716
5717Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5718 bool Changed = SimplifyCompare(I);
5719 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5720 const Type *Ty = Op0->getType();
5721
5722 // icmp X, X
5723 if (Op0 == Op1)
5724 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005725 I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005726
5727 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
5728 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Christopher Lambf78cd322007-12-18 21:32:20 +00005729
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005730 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
5731 // addresses never equal each other! We already know that Op0 != Op1.
5732 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5733 isa<ConstantPointerNull>(Op0)) &&
5734 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
5735 isa<ConstantPointerNull>(Op1)))
5736 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005737 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005738
5739 // icmp's with boolean values can always be turned into bitwise operations
5740 if (Ty == Type::Int1Ty) {
5741 switch (I.getPredicate()) {
5742 default: assert(0 && "Invalid icmp instruction!");
Chris Lattnera02893d2008-07-11 04:20:58 +00005743 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
Gabor Greifa645dd32008-05-16 19:29:10 +00005744 Instruction *Xor = BinaryOperator::CreateXor(Op0, Op1, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005745 InsertNewInstBefore(Xor, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005746 return BinaryOperator::CreateNot(Xor);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005747 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005748 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
Gabor Greifa645dd32008-05-16 19:29:10 +00005749 return BinaryOperator::CreateXor(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005750
5751 case ICmpInst::ICMP_UGT:
Chris Lattnera02893d2008-07-11 04:20:58 +00005752 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005753 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005754 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
Gabor Greifa645dd32008-05-16 19:29:10 +00005755 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005756 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005757 return BinaryOperator::CreateAnd(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005758 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005759 case ICmpInst::ICMP_SGT:
5760 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005761 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005762 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
5763 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5764 InsertNewInstBefore(Not, I);
5765 return BinaryOperator::CreateAnd(Not, Op0);
5766 }
5767 case ICmpInst::ICMP_UGE:
5768 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
5769 // FALL THROUGH
5770 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
Gabor Greifa645dd32008-05-16 19:29:10 +00005771 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005772 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005773 return BinaryOperator::CreateOr(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005774 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005775 case ICmpInst::ICMP_SGE:
5776 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
5777 // FALL THROUGH
5778 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
5779 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5780 InsertNewInstBefore(Not, I);
5781 return BinaryOperator::CreateOr(Not, Op0);
5782 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005783 }
5784 }
5785
Dan Gohman58c09632008-09-16 18:46:06 +00005786 // See if we are doing a comparison with a constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005787 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner3d816532008-07-11 04:09:09 +00005788 Value *A, *B;
Christopher Lambfa6b3102007-12-20 07:21:11 +00005789
Chris Lattnerbe6c54a2008-01-05 01:18:20 +00005790 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5791 if (I.isEquality() && CI->isNullValue() &&
5792 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
5793 // (icmp cond A B) if cond is equality
5794 return new ICmpInst(I.getPredicate(), A, B);
Owen Anderson42f61ed2007-12-28 07:42:12 +00005795 }
Christopher Lambfa6b3102007-12-20 07:21:11 +00005796
Dan Gohman58c09632008-09-16 18:46:06 +00005797 // If we have an icmp le or icmp ge instruction, turn it into the
5798 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
5799 // them being folded in the code below.
Chris Lattner62d0f232008-07-11 05:08:55 +00005800 switch (I.getPredicate()) {
5801 default: break;
5802 case ICmpInst::ICMP_ULE:
5803 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
5804 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5805 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5806 case ICmpInst::ICMP_SLE:
5807 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
5808 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5809 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5810 case ICmpInst::ICMP_UGE:
5811 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
5812 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5813 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5814 case ICmpInst::ICMP_SGE:
5815 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
5816 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5817 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
5818 }
5819
Chris Lattnera1308652008-07-11 05:40:05 +00005820 // See if we can fold the comparison based on range information we can get
5821 // by checking whether bits are known to be zero or one in the input.
5822 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
5823 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5824
5825 // If this comparison is a normal comparison, it demands all
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005826 // bits, if it is a sign bit comparison, it only demands the sign bit.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005827 bool UnusedBit;
5828 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
5829
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005830 if (SimplifyDemandedBits(Op0,
5831 isSignBit ? APInt::getSignBit(BitWidth)
5832 : APInt::getAllOnesValue(BitWidth),
5833 KnownZero, KnownOne, 0))
5834 return &I;
5835
5836 // Given the known and unknown bits, compute a range that the LHS could be
Chris Lattner62d0f232008-07-11 05:08:55 +00005837 // in. Compute the Min, Max and RHS values based on the known bits. For the
5838 // EQ and NE we use unsigned values.
5839 APInt Min(BitWidth, 0), Max(BitWidth, 0);
Chris Lattner62d0f232008-07-11 05:08:55 +00005840 if (ICmpInst::isSignedPredicate(I.getPredicate()))
5841 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, Max);
5842 else
5843 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,Min,Max);
5844
Chris Lattnera1308652008-07-11 05:40:05 +00005845 // If Min and Max are known to be the same, then SimplifyDemandedBits
5846 // figured out that the LHS is a constant. Just constant fold this now so
5847 // that code below can assume that Min != Max.
5848 if (Min == Max)
5849 return ReplaceInstUsesWith(I, ConstantExpr::getICmp(I.getPredicate(),
5850 ConstantInt::get(Min),
5851 CI));
5852
5853 // Based on the range information we know about the LHS, see if we can
5854 // simplify this comparison. For example, (x&4) < 8 is always true.
5855 const APInt &RHSVal = CI->getValue();
Chris Lattner62d0f232008-07-11 05:08:55 +00005856 switch (I.getPredicate()) { // LE/GE have been folded already.
5857 default: assert(0 && "Unknown icmp opcode!");
5858 case ICmpInst::ICMP_EQ:
5859 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5860 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5861 break;
5862 case ICmpInst::ICMP_NE:
5863 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5864 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5865 break;
5866 case ICmpInst::ICMP_ULT:
Chris Lattnera1308652008-07-11 05:40:05 +00005867 if (Max.ult(RHSVal)) // A <u C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005868 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005869 if (Min.uge(RHSVal)) // A <u C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005870 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005871 if (RHSVal == Max) // A <u MAX -> A != MAX
5872 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5873 if (RHSVal == Min+1) // A <u MIN+1 -> A == MIN
5874 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5875
5876 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
5877 if (CI->isMinValue(true))
5878 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
5879 ConstantInt::getAllOnesValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005880 break;
5881 case ICmpInst::ICMP_UGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005882 if (Min.ugt(RHSVal)) // A >u C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005883 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005884 if (Max.ule(RHSVal)) // A >u C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005885 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005886
5887 if (RHSVal == Min) // A >u MIN -> A != MIN
5888 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5889 if (RHSVal == Max-1) // A >u MAX-1 -> A == MAX
5890 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5891
5892 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
5893 if (CI->isMaxValue(true))
5894 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
5895 ConstantInt::getNullValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005896 break;
5897 case ICmpInst::ICMP_SLT:
Chris Lattnera1308652008-07-11 05:40:05 +00005898 if (Max.slt(RHSVal)) // A <s C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005899 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner611b43e2008-07-11 06:40:29 +00005900 if (Min.sge(RHSVal)) // A <s C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005901 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005902 if (RHSVal == Max) // A <s MAX -> A != MAX
5903 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
Chris Lattner3496f3e2008-07-11 06:36:01 +00005904 if (RHSVal == Min+1) // A <s MIN+1 -> A == MIN
Chris Lattner55ab3152008-07-11 06:38:16 +00005905 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005906 break;
5907 case ICmpInst::ICMP_SGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005908 if (Min.sgt(RHSVal)) // A >s C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005909 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005910 if (Max.sle(RHSVal)) // A >s C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005911 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005912
5913 if (RHSVal == Min) // A >s MIN -> A != MIN
5914 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5915 if (RHSVal == Max-1) // A >s MAX-1 -> A == MAX
5916 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005917 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005918 }
Dan Gohman58c09632008-09-16 18:46:06 +00005919 }
5920
5921 // Test if the ICmpInst instruction is used exclusively by a select as
5922 // part of a minimum or maximum operation. If so, refrain from doing
5923 // any other folding. This helps out other analyses which understand
5924 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5925 // and CodeGen. And in this case, at least one of the comparison
5926 // operands has at least one user besides the compare (the select),
5927 // which would often largely negate the benefit of folding anyway.
5928 if (I.hasOneUse())
5929 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
5930 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
5931 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
5932 return 0;
5933
5934 // See if we are doing a comparison between a constant and an instruction that
5935 // can be folded into the comparison.
5936 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005937 // Since the RHS is a ConstantInt (CI), if the left hand side is an
5938 // instruction, see if that instruction also has constants so that the
5939 // instruction can be folded into the icmp
5940 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5941 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
5942 return Res;
5943 }
5944
5945 // Handle icmp with constant (but not simple integer constant) RHS
5946 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5947 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5948 switch (LHSI->getOpcode()) {
5949 case Instruction::GetElementPtr:
5950 if (RHSC->isNullValue()) {
5951 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
5952 bool isAllZeros = true;
5953 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5954 if (!isa<Constant>(LHSI->getOperand(i)) ||
5955 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5956 isAllZeros = false;
5957 break;
5958 }
5959 if (isAllZeros)
5960 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
5961 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5962 }
5963 break;
5964
5965 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005966 // Only fold icmp into the PHI if the phi and fcmp are in the same
5967 // block. If in the same block, we're encouraging jump threading. If
5968 // not, we are just pessimizing the code by making an i1 phi.
5969 if (LHSI->getParent() == I.getParent())
5970 if (Instruction *NV = FoldOpIntoPhi(I))
5971 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005972 break;
5973 case Instruction::Select: {
5974 // If either operand of the select is a constant, we can fold the
5975 // comparison into the select arms, which will cause one to be
5976 // constant folded and the select turned into a bitwise or.
5977 Value *Op1 = 0, *Op2 = 0;
5978 if (LHSI->hasOneUse()) {
5979 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5980 // Fold the known value into the constant operand.
5981 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5982 // Insert a new ICmp of the other select operand.
5983 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5984 LHSI->getOperand(2), RHSC,
5985 I.getName()), I);
5986 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5987 // Fold the known value into the constant operand.
5988 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5989 // Insert a new ICmp of the other select operand.
5990 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5991 LHSI->getOperand(1), RHSC,
5992 I.getName()), I);
5993 }
5994 }
5995
5996 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005997 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005998 break;
5999 }
6000 case Instruction::Malloc:
6001 // If we have (malloc != null), and if the malloc has a single use, we
6002 // can assume it is successful and remove the malloc.
6003 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
6004 AddToWorkList(LHSI);
6005 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00006006 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006007 }
6008 break;
6009 }
6010 }
6011
6012 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
6013 if (User *GEP = dyn_castGetElementPtr(Op0))
6014 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
6015 return NI;
6016 if (User *GEP = dyn_castGetElementPtr(Op1))
6017 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
6018 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
6019 return NI;
6020
6021 // Test to see if the operands of the icmp are casted versions of other
6022 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
6023 // now.
6024 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
6025 if (isa<PointerType>(Op0->getType()) &&
6026 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
6027 // We keep moving the cast from the left operand over to the right
6028 // operand, where it can often be eliminated completely.
6029 Op0 = CI->getOperand(0);
6030
6031 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
6032 // so eliminate it as well.
6033 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
6034 Op1 = CI2->getOperand(0);
6035
6036 // If Op1 is a constant, we can fold the cast into the constant.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006037 if (Op0->getType() != Op1->getType()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006038 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
6039 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
6040 } else {
6041 // Otherwise, cast the RHS right before the icmp
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006042 Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006043 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006044 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006045 return new ICmpInst(I.getPredicate(), Op0, Op1);
6046 }
6047 }
6048
6049 if (isa<CastInst>(Op0)) {
6050 // Handle the special case of: icmp (cast bool to X), <cst>
6051 // This comes up when you have code like
6052 // int X = A < B;
6053 // if (X) ...
6054 // For generality, we handle any zero-extension of any operand comparison
6055 // with a constant or another cast from the same type.
6056 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
6057 if (Instruction *R = visitICmpInstWithCastAndCast(I))
6058 return R;
6059 }
6060
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006061 // See if it's the same type of instruction on the left and right.
6062 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
6063 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006064 if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
6065 Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1) &&
6066 I.isEquality()) {
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00006067 switch (Op0I->getOpcode()) {
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006068 default: break;
6069 case Instruction::Add:
6070 case Instruction::Sub:
6071 case Instruction::Xor:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006072 // a+x icmp eq/ne b+x --> a icmp b
6073 return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
6074 Op1I->getOperand(0));
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006075 break;
6076 case Instruction::Mul:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006077 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
6078 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
6079 // Mask = -1 >> count-trailing-zeros(Cst).
6080 if (!CI->isZero() && !CI->isOne()) {
6081 const APInt &AP = CI->getValue();
6082 ConstantInt *Mask = ConstantInt::get(
6083 APInt::getLowBitsSet(AP.getBitWidth(),
6084 AP.getBitWidth() -
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006085 AP.countTrailingZeros()));
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006086 Instruction *And1 = BinaryOperator::CreateAnd(Op0I->getOperand(0),
6087 Mask);
6088 Instruction *And2 = BinaryOperator::CreateAnd(Op1I->getOperand(0),
6089 Mask);
6090 InsertNewInstBefore(And1, I);
6091 InsertNewInstBefore(And2, I);
6092 return new ICmpInst(I.getPredicate(), And1, And2);
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006093 }
6094 }
6095 break;
6096 }
6097 }
6098 }
6099 }
6100
Chris Lattnera4e1eef2008-05-09 05:19:28 +00006101 // ~x < ~y --> y < x
6102 { Value *A, *B;
6103 if (match(Op0, m_Not(m_Value(A))) &&
6104 match(Op1, m_Not(m_Value(B))))
6105 return new ICmpInst(I.getPredicate(), B, A);
6106 }
6107
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006108 if (I.isEquality()) {
6109 Value *A, *B, *C, *D;
Chris Lattnera4e1eef2008-05-09 05:19:28 +00006110
6111 // -x == -y --> x == y
6112 if (match(Op0, m_Neg(m_Value(A))) &&
6113 match(Op1, m_Neg(m_Value(B))))
6114 return new ICmpInst(I.getPredicate(), A, B);
6115
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006116 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
6117 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
6118 Value *OtherVal = A == Op1 ? B : A;
6119 return new ICmpInst(I.getPredicate(), OtherVal,
6120 Constant::getNullValue(A->getType()));
6121 }
6122
6123 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
6124 // A^c1 == C^c2 --> A == C^(c1^c2)
Chris Lattner3b874082008-11-16 05:38:51 +00006125 ConstantInt *C1, *C2;
6126 if (match(B, m_ConstantInt(C1)) &&
6127 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
6128 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
6129 Instruction *Xor = BinaryOperator::CreateXor(C, NC, "tmp");
6130 return new ICmpInst(I.getPredicate(), A,
6131 InsertNewInstBefore(Xor, I));
6132 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006133
6134 // A^B == A^D -> B == D
6135 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
6136 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
6137 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
6138 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
6139 }
6140 }
6141
6142 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
6143 (A == Op0 || B == Op0)) {
6144 // A == (A^B) -> B == 0
6145 Value *OtherVal = A == Op0 ? B : A;
6146 return new ICmpInst(I.getPredicate(), OtherVal,
6147 Constant::getNullValue(A->getType()));
6148 }
Chris Lattner3b874082008-11-16 05:38:51 +00006149
6150 // (A-B) == A -> B == 0
6151 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
6152 return new ICmpInst(I.getPredicate(), B,
6153 Constant::getNullValue(B->getType()));
6154
6155 // A == (A-B) -> B == 0
6156 if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006157 return new ICmpInst(I.getPredicate(), B,
6158 Constant::getNullValue(B->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006159
6160 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
6161 if (Op0->hasOneUse() && Op1->hasOneUse() &&
6162 match(Op0, m_And(m_Value(A), m_Value(B))) &&
6163 match(Op1, m_And(m_Value(C), m_Value(D)))) {
6164 Value *X = 0, *Y = 0, *Z = 0;
6165
6166 if (A == C) {
6167 X = B; Y = D; Z = A;
6168 } else if (A == D) {
6169 X = B; Y = C; Z = A;
6170 } else if (B == C) {
6171 X = A; Y = D; Z = B;
6172 } else if (B == D) {
6173 X = A; Y = C; Z = B;
6174 }
6175
6176 if (X) { // Build (X^Y) & Z
Gabor Greifa645dd32008-05-16 19:29:10 +00006177 Op1 = InsertNewInstBefore(BinaryOperator::CreateXor(X, Y, "tmp"), I);
6178 Op1 = InsertNewInstBefore(BinaryOperator::CreateAnd(Op1, Z, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006179 I.setOperand(0, Op1);
6180 I.setOperand(1, Constant::getNullValue(Op1->getType()));
6181 return &I;
6182 }
6183 }
6184 }
6185 return Changed ? &I : 0;
6186}
6187
6188
6189/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
6190/// and CmpRHS are both known to be integer constants.
6191Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
6192 ConstantInt *DivRHS) {
6193 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
6194 const APInt &CmpRHSV = CmpRHS->getValue();
6195
6196 // FIXME: If the operand types don't match the type of the divide
6197 // then don't attempt this transform. The code below doesn't have the
6198 // logic to deal with a signed divide and an unsigned compare (and
6199 // vice versa). This is because (x /s C1) <s C2 produces different
6200 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
6201 // (x /u C1) <u C2. Simply casting the operands and result won't
6202 // work. :( The if statement below tests that condition and bails
6203 // if it finds it.
6204 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
6205 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
6206 return 0;
6207 if (DivRHS->isZero())
6208 return 0; // The ProdOV computation fails on divide by zero.
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006209 if (DivIsSigned && DivRHS->isAllOnesValue())
6210 return 0; // The overflow computation also screws up here
6211 if (DivRHS->isOne())
6212 return 0; // Not worth bothering, and eliminates some funny cases
6213 // with INT_MIN.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006214
6215 // Compute Prod = CI * DivRHS. We are essentially solving an equation
6216 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
6217 // C2 (CI). By solving for X we can turn this into a range check
6218 // instead of computing a divide.
6219 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
6220
6221 // Determine if the product overflows by seeing if the product is
6222 // not equal to the divide. Make sure we do the same kind of divide
6223 // as in the LHS instruction that we're folding.
6224 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
6225 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
6226
6227 // Get the ICmp opcode
6228 ICmpInst::Predicate Pred = ICI.getPredicate();
6229
6230 // Figure out the interval that is being checked. For example, a comparison
6231 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
6232 // Compute this interval based on the constants involved and the signedness of
6233 // the compare/divide. This computes a half-open interval, keeping track of
6234 // whether either value in the interval overflows. After analysis each
6235 // overflow variable is set to 0 if it's corresponding bound variable is valid
6236 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
6237 int LoOverflow = 0, HiOverflow = 0;
6238 ConstantInt *LoBound = 0, *HiBound = 0;
6239
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006240 if (!DivIsSigned) { // udiv
6241 // e.g. X/5 op 3 --> [15, 20)
6242 LoBound = Prod;
6243 HiOverflow = LoOverflow = ProdOV;
6244 if (!HiOverflow)
6245 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
Dan Gohman5dceed12008-02-13 22:09:18 +00006246 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006247 if (CmpRHSV == 0) { // (X / pos) op 0
6248 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
6249 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
6250 HiBound = DivRHS;
Dan Gohman5dceed12008-02-13 22:09:18 +00006251 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006252 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
6253 HiOverflow = LoOverflow = ProdOV;
6254 if (!HiOverflow)
6255 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
6256 } else { // (X / pos) op neg
6257 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006258 HiBound = AddOne(Prod);
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006259 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
6260 if (!LoOverflow) {
6261 ConstantInt* DivNeg = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6262 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg,
6263 true) ? -1 : 0;
6264 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006265 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006266 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006267 if (CmpRHSV == 0) { // (X / neg) op 0
6268 // e.g. X/-5 op 0 --> [-4, 5)
6269 LoBound = AddOne(DivRHS);
6270 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6271 if (HiBound == DivRHS) { // -INTMIN = INTMIN
6272 HiOverflow = 1; // [INTMIN+1, overflow)
6273 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
6274 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006275 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006276 // e.g. X/-5 op 3 --> [-19, -14)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006277 HiBound = AddOne(Prod);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006278 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
6279 if (!LoOverflow)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006280 LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006281 } else { // (X / neg) op neg
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006282 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
6283 LoOverflow = HiOverflow = ProdOV;
Dan Gohman45408ea2008-09-11 00:25:00 +00006284 if (!HiOverflow)
6285 HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006286 }
6287
6288 // Dividing by a negative swaps the condition. LT <-> GT
6289 Pred = ICmpInst::getSwappedPredicate(Pred);
6290 }
6291
6292 Value *X = DivI->getOperand(0);
6293 switch (Pred) {
6294 default: assert(0 && "Unhandled icmp opcode!");
6295 case ICmpInst::ICMP_EQ:
6296 if (LoOverflow && HiOverflow)
6297 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6298 else if (HiOverflow)
6299 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6300 ICmpInst::ICMP_UGE, X, LoBound);
6301 else if (LoOverflow)
6302 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6303 ICmpInst::ICMP_ULT, X, HiBound);
6304 else
6305 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
6306 case ICmpInst::ICMP_NE:
6307 if (LoOverflow && HiOverflow)
6308 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6309 else if (HiOverflow)
6310 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6311 ICmpInst::ICMP_ULT, X, LoBound);
6312 else if (LoOverflow)
6313 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6314 ICmpInst::ICMP_UGE, X, HiBound);
6315 else
6316 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
6317 case ICmpInst::ICMP_ULT:
6318 case ICmpInst::ICMP_SLT:
6319 if (LoOverflow == +1) // Low bound is greater than input range.
6320 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6321 if (LoOverflow == -1) // Low bound is less than input range.
6322 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6323 return new ICmpInst(Pred, X, LoBound);
6324 case ICmpInst::ICMP_UGT:
6325 case ICmpInst::ICMP_SGT:
6326 if (HiOverflow == +1) // High bound greater than input range.
6327 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6328 else if (HiOverflow == -1) // High bound less than input range.
6329 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6330 if (Pred == ICmpInst::ICMP_UGT)
6331 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
6332 else
6333 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
6334 }
6335}
6336
6337
6338/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
6339///
6340Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
6341 Instruction *LHSI,
6342 ConstantInt *RHS) {
6343 const APInt &RHSV = RHS->getValue();
6344
6345 switch (LHSI->getOpcode()) {
Chris Lattner56be1232009-01-09 07:47:06 +00006346 case Instruction::Trunc:
6347 if (ICI.isEquality() && LHSI->hasOneUse()) {
6348 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
6349 // of the high bits truncated out of x are known.
6350 unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
6351 SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
6352 APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
6353 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
6354 ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
6355
6356 // If all the high bits are known, we can do this xform.
6357 if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
6358 // Pull in the high bits from known-ones set.
6359 APInt NewRHS(RHS->getValue());
6360 NewRHS.zext(SrcBits);
6361 NewRHS |= KnownOne;
6362 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6363 ConstantInt::get(NewRHS));
6364 }
6365 }
6366 break;
6367
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006368 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
6369 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
6370 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
6371 // fold the xor.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006372 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
6373 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006374 Value *CompareVal = LHSI->getOperand(0);
6375
6376 // If the sign bit of the XorCST is not set, there is no change to
6377 // the operation, just stop using the Xor.
6378 if (!XorCST->getValue().isNegative()) {
6379 ICI.setOperand(0, CompareVal);
6380 AddToWorkList(LHSI);
6381 return &ICI;
6382 }
6383
6384 // Was the old condition true if the operand is positive?
6385 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
6386
6387 // If so, the new one isn't.
6388 isTrueIfPositive ^= true;
6389
6390 if (isTrueIfPositive)
6391 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
6392 else
6393 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
6394 }
6395 }
6396 break;
6397 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
6398 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
6399 LHSI->getOperand(0)->hasOneUse()) {
6400 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
6401
6402 // If the LHS is an AND of a truncating cast, we can widen the
6403 // and/compare to be the input width without changing the value
6404 // produced, eliminating a cast.
6405 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
6406 // We can do this transformation if either the AND constant does not
6407 // have its sign bit set or if it is an equality comparison.
6408 // Extending a relational comparison when we're checking the sign
6409 // bit would not work.
6410 if (Cast->hasOneUse() &&
Anton Korobeynikov6a4a9332008-02-20 12:07:57 +00006411 (ICI.isEquality() ||
6412 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006413 uint32_t BitWidth =
6414 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
6415 APInt NewCST = AndCST->getValue();
6416 NewCST.zext(BitWidth);
6417 APInt NewCI = RHSV;
6418 NewCI.zext(BitWidth);
6419 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006420 BinaryOperator::CreateAnd(Cast->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006421 ConstantInt::get(NewCST),LHSI->getName());
6422 InsertNewInstBefore(NewAnd, ICI);
6423 return new ICmpInst(ICI.getPredicate(), NewAnd,
6424 ConstantInt::get(NewCI));
6425 }
6426 }
6427
6428 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
6429 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
6430 // happens a LOT in code produced by the C front-end, for bitfield
6431 // access.
6432 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
6433 if (Shift && !Shift->isShift())
6434 Shift = 0;
6435
6436 ConstantInt *ShAmt;
6437 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
6438 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
6439 const Type *AndTy = AndCST->getType(); // Type of the and.
6440
6441 // We can fold this as long as we can't shift unknown bits
6442 // into the mask. This can only happen with signed shift
6443 // rights, as they sign-extend.
6444 if (ShAmt) {
6445 bool CanFold = Shift->isLogicalShift();
6446 if (!CanFold) {
6447 // To test for the bad case of the signed shr, see if any
6448 // of the bits shifted in could be tested after the mask.
6449 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
6450 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
6451
6452 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
6453 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
6454 AndCST->getValue()) == 0)
6455 CanFold = true;
6456 }
6457
6458 if (CanFold) {
6459 Constant *NewCst;
6460 if (Shift->getOpcode() == Instruction::Shl)
6461 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
6462 else
6463 NewCst = ConstantExpr::getShl(RHS, ShAmt);
6464
6465 // Check to see if we are shifting out any of the bits being
6466 // compared.
6467 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
6468 // If we shifted bits out, the fold is not going to work out.
6469 // As a special case, check to see if this means that the
6470 // result is always true or false now.
6471 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6472 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6473 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6474 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6475 } else {
6476 ICI.setOperand(1, NewCst);
6477 Constant *NewAndCST;
6478 if (Shift->getOpcode() == Instruction::Shl)
6479 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
6480 else
6481 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
6482 LHSI->setOperand(1, NewAndCST);
6483 LHSI->setOperand(0, Shift->getOperand(0));
6484 AddToWorkList(Shift); // Shift is dead.
6485 AddUsesToWorkList(ICI);
6486 return &ICI;
6487 }
6488 }
6489 }
6490
6491 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
6492 // preferable because it allows the C<<Y expression to be hoisted out
6493 // of a loop if Y is invariant and X is not.
6494 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
6495 ICI.isEquality() && !Shift->isArithmeticShift() &&
6496 isa<Instruction>(Shift->getOperand(0))) {
6497 // Compute C << Y.
6498 Value *NS;
6499 if (Shift->getOpcode() == Instruction::LShr) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006500 NS = BinaryOperator::CreateShl(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006501 Shift->getOperand(1), "tmp");
6502 } else {
6503 // Insert a logical shift.
Gabor Greifa645dd32008-05-16 19:29:10 +00006504 NS = BinaryOperator::CreateLShr(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006505 Shift->getOperand(1), "tmp");
6506 }
6507 InsertNewInstBefore(cast<Instruction>(NS), ICI);
6508
6509 // Compute X & (C << Y).
6510 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006511 BinaryOperator::CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006512 InsertNewInstBefore(NewAnd, ICI);
6513
6514 ICI.setOperand(0, NewAnd);
6515 return &ICI;
6516 }
6517 }
6518 break;
6519
6520 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
6521 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6522 if (!ShAmt) break;
6523
6524 uint32_t TypeBits = RHSV.getBitWidth();
6525
6526 // Check that the shift amount is in range. If not, don't perform
6527 // undefined shifts. When the shift is visited it will be
6528 // simplified.
6529 if (ShAmt->uge(TypeBits))
6530 break;
6531
6532 if (ICI.isEquality()) {
6533 // If we are comparing against bits always shifted out, the
6534 // comparison cannot succeed.
6535 Constant *Comp =
6536 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
6537 if (Comp != RHS) {// Comparing against a bit that we know is zero.
6538 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6539 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6540 return ReplaceInstUsesWith(ICI, Cst);
6541 }
6542
6543 if (LHSI->hasOneUse()) {
6544 // Otherwise strength reduce the shift into an and.
6545 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6546 Constant *Mask =
6547 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
6548
6549 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006550 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006551 Mask, LHSI->getName()+".mask");
6552 Value *And = InsertNewInstBefore(AndI, ICI);
6553 return new ICmpInst(ICI.getPredicate(), And,
6554 ConstantInt::get(RHSV.lshr(ShAmtVal)));
6555 }
6556 }
6557
6558 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
6559 bool TrueIfSigned = false;
6560 if (LHSI->hasOneUse() &&
6561 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
6562 // (X << 31) <s 0 --> (X&1) != 0
6563 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
6564 (TypeBits-ShAmt->getZExtValue()-1));
6565 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006566 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006567 Mask, LHSI->getName()+".mask");
6568 Value *And = InsertNewInstBefore(AndI, ICI);
6569
6570 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
6571 And, Constant::getNullValue(And->getType()));
6572 }
6573 break;
6574 }
6575
6576 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
6577 case Instruction::AShr: {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006578 // Only handle equality comparisons of shift-by-constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006579 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
Chris Lattner5ee84f82008-03-21 05:19:58 +00006580 if (!ShAmt || !ICI.isEquality()) break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006581
Chris Lattner5ee84f82008-03-21 05:19:58 +00006582 // Check that the shift amount is in range. If not, don't perform
6583 // undefined shifts. When the shift is visited it will be
6584 // simplified.
6585 uint32_t TypeBits = RHSV.getBitWidth();
6586 if (ShAmt->uge(TypeBits))
6587 break;
6588
6589 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006590
Chris Lattner5ee84f82008-03-21 05:19:58 +00006591 // If we are comparing against bits always shifted out, the
6592 // comparison cannot succeed.
6593 APInt Comp = RHSV << ShAmtVal;
6594 if (LHSI->getOpcode() == Instruction::LShr)
6595 Comp = Comp.lshr(ShAmtVal);
6596 else
6597 Comp = Comp.ashr(ShAmtVal);
6598
6599 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
6600 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6601 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6602 return ReplaceInstUsesWith(ICI, Cst);
6603 }
6604
6605 // Otherwise, check to see if the bits shifted out are known to be zero.
6606 // If so, we can compare against the unshifted value:
6607 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Evan Chengfb9292a2008-04-23 00:38:06 +00006608 if (LHSI->hasOneUse() &&
6609 MaskedValueIsZero(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006610 APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
6611 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6612 ConstantExpr::getShl(RHS, ShAmt));
6613 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006614
Evan Chengfb9292a2008-04-23 00:38:06 +00006615 if (LHSI->hasOneUse()) {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006616 // Otherwise strength reduce the shift into an and.
6617 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
6618 Constant *Mask = ConstantInt::get(Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006619
Chris Lattner5ee84f82008-03-21 05:19:58 +00006620 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006621 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006622 Mask, LHSI->getName()+".mask");
6623 Value *And = InsertNewInstBefore(AndI, ICI);
6624 return new ICmpInst(ICI.getPredicate(), And,
6625 ConstantExpr::getShl(RHS, ShAmt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006626 }
6627 break;
6628 }
6629
6630 case Instruction::SDiv:
6631 case Instruction::UDiv:
6632 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6633 // Fold this div into the comparison, producing a range check.
6634 // Determine, based on the divide type, what the range is being
6635 // checked. If there is an overflow on the low or high side, remember
6636 // it, otherwise compute the range [low, hi) bounding the new value.
6637 // See: InsertRangeTest above for the kinds of replacements possible.
6638 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
6639 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
6640 DivRHS))
6641 return R;
6642 break;
Nick Lewycky0185bbf2008-02-03 16:33:09 +00006643
6644 case Instruction::Add:
6645 // Fold: icmp pred (add, X, C1), C2
6646
6647 if (!ICI.isEquality()) {
6648 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6649 if (!LHSC) break;
6650 const APInt &LHSV = LHSC->getValue();
6651
6652 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
6653 .subtract(LHSV);
6654
6655 if (ICI.isSignedPredicate()) {
6656 if (CR.getLower().isSignBit()) {
6657 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
6658 ConstantInt::get(CR.getUpper()));
6659 } else if (CR.getUpper().isSignBit()) {
6660 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
6661 ConstantInt::get(CR.getLower()));
6662 }
6663 } else {
6664 if (CR.getLower().isMinValue()) {
6665 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
6666 ConstantInt::get(CR.getUpper()));
6667 } else if (CR.getUpper().isMinValue()) {
6668 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
6669 ConstantInt::get(CR.getLower()));
6670 }
6671 }
6672 }
6673 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006674 }
6675
6676 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6677 if (ICI.isEquality()) {
6678 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6679
6680 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6681 // the second operand is a constant, simplify a bit.
6682 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
6683 switch (BO->getOpcode()) {
6684 case Instruction::SRem:
6685 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
6686 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
6687 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
6688 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
6689 Instruction *NewRem =
Gabor Greifa645dd32008-05-16 19:29:10 +00006690 BinaryOperator::CreateURem(BO->getOperand(0), BO->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006691 BO->getName());
6692 InsertNewInstBefore(NewRem, ICI);
6693 return new ICmpInst(ICI.getPredicate(), NewRem,
6694 Constant::getNullValue(BO->getType()));
6695 }
6696 }
6697 break;
6698 case Instruction::Add:
6699 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
6700 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6701 if (BO->hasOneUse())
6702 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6703 Subtract(RHS, BOp1C));
6704 } else if (RHSV == 0) {
6705 // Replace ((add A, B) != 0) with (A != -B) if A or B is
6706 // efficiently invertible, or if the add has just this one use.
6707 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
6708
6709 if (Value *NegVal = dyn_castNegVal(BOp1))
6710 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
6711 else if (Value *NegVal = dyn_castNegVal(BOp0))
6712 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
6713 else if (BO->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006714 Instruction *Neg = BinaryOperator::CreateNeg(BOp1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006715 InsertNewInstBefore(Neg, ICI);
6716 Neg->takeName(BO);
6717 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
6718 }
6719 }
6720 break;
6721 case Instruction::Xor:
6722 // For the xor case, we can xor two constants together, eliminating
6723 // the explicit xor.
6724 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
6725 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6726 ConstantExpr::getXor(RHS, BOC));
6727
6728 // FALLTHROUGH
6729 case Instruction::Sub:
6730 // Replace (([sub|xor] A, B) != 0) with (A != B)
6731 if (RHSV == 0)
6732 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6733 BO->getOperand(1));
6734 break;
6735
6736 case Instruction::Or:
6737 // If bits are being or'd in that are not present in the constant we
6738 // are comparing against, then the comparison could never succeed!
6739 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
6740 Constant *NotCI = ConstantExpr::getNot(RHS);
6741 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
6742 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6743 isICMP_NE));
6744 }
6745 break;
6746
6747 case Instruction::And:
6748 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6749 // If bits are being compared against that are and'd out, then the
6750 // comparison can never succeed!
6751 if ((RHSV & ~BOC->getValue()) != 0)
6752 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6753 isICMP_NE));
6754
6755 // If we have ((X & C) == C), turn it into ((X & C) != 0).
6756 if (RHS == BOC && RHSV.isPowerOf2())
6757 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
6758 ICmpInst::ICMP_NE, LHSI,
6759 Constant::getNullValue(RHS->getType()));
6760
6761 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
Chris Lattner60813c22008-06-02 01:29:46 +00006762 if (BOC->getValue().isSignBit()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006763 Value *X = BO->getOperand(0);
6764 Constant *Zero = Constant::getNullValue(X->getType());
6765 ICmpInst::Predicate pred = isICMP_NE ?
6766 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
6767 return new ICmpInst(pred, X, Zero);
6768 }
6769
6770 // ((X & ~7) == 0) --> X < 8
6771 if (RHSV == 0 && isHighOnes(BOC)) {
6772 Value *X = BO->getOperand(0);
6773 Constant *NegX = ConstantExpr::getNeg(BOC);
6774 ICmpInst::Predicate pred = isICMP_NE ?
6775 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
6776 return new ICmpInst(pred, X, NegX);
6777 }
6778 }
6779 default: break;
6780 }
6781 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
6782 // Handle icmp {eq|ne} <intrinsic>, intcst.
6783 if (II->getIntrinsicID() == Intrinsic::bswap) {
6784 AddToWorkList(II);
6785 ICI.setOperand(0, II->getOperand(1));
6786 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
6787 return &ICI;
6788 }
6789 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006790 }
6791 return 0;
6792}
6793
6794/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
6795/// We only handle extending casts so far.
6796///
6797Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6798 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
6799 Value *LHSCIOp = LHSCI->getOperand(0);
6800 const Type *SrcTy = LHSCIOp->getType();
6801 const Type *DestTy = LHSCI->getType();
6802 Value *RHSCIOp;
6803
6804 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6805 // integer type is the same size as the pointer type.
6806 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
6807 getTargetData().getPointerSizeInBits() ==
6808 cast<IntegerType>(DestTy)->getBitWidth()) {
6809 Value *RHSOp = 0;
6810 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
6811 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
6812 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
6813 RHSOp = RHSC->getOperand(0);
6814 // If the pointer types don't match, insert a bitcast.
6815 if (LHSCIOp->getType() != RHSOp->getType())
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006816 RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006817 }
6818
6819 if (RHSOp)
6820 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
6821 }
6822
6823 // The code below only handles extension cast instructions, so far.
6824 // Enforce this.
6825 if (LHSCI->getOpcode() != Instruction::ZExt &&
6826 LHSCI->getOpcode() != Instruction::SExt)
6827 return 0;
6828
6829 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6830 bool isSignedCmp = ICI.isSignedPredicate();
6831
6832 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
6833 // Not an extension from the same type?
6834 RHSCIOp = CI->getOperand(0);
6835 if (RHSCIOp->getType() != LHSCIOp->getType())
6836 return 0;
6837
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006838 // If the signedness of the two casts doesn't agree (i.e. one is a sext
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006839 // and the other is a zext), then we can't handle this.
6840 if (CI->getOpcode() != LHSCI->getOpcode())
6841 return 0;
6842
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006843 // Deal with equality cases early.
6844 if (ICI.isEquality())
6845 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6846
6847 // A signed comparison of sign extended values simplifies into a
6848 // signed comparison.
6849 if (isSignedCmp && isSignedExt)
6850 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6851
6852 // The other three cases all fold into an unsigned comparison.
6853 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006854 }
6855
6856 // If we aren't dealing with a constant on the RHS, exit early
6857 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6858 if (!CI)
6859 return 0;
6860
6861 // Compute the constant that would happen if we truncated to SrcTy then
6862 // reextended to DestTy.
6863 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6864 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6865
6866 // If the re-extended constant didn't change...
6867 if (Res2 == CI) {
6868 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6869 // For example, we might have:
6870 // %A = sext short %X to uint
6871 // %B = icmp ugt uint %A, 1330
6872 // It is incorrect to transform this into
6873 // %B = icmp ugt short %X, 1330
6874 // because %A may have negative value.
6875 //
Chris Lattner3d816532008-07-11 04:09:09 +00006876 // However, we allow this when the compare is EQ/NE, because they are
6877 // signless.
6878 if (isSignedExt == isSignedCmp || ICI.isEquality())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006879 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
Chris Lattner3d816532008-07-11 04:09:09 +00006880 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006881 }
6882
6883 // The re-extended constant changed so the constant cannot be represented
6884 // in the shorter type. Consequently, we cannot emit a simple comparison.
6885
6886 // First, handle some easy cases. We know the result cannot be equal at this
6887 // point so handle the ICI.isEquality() cases
6888 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6889 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6890 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6891 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6892
6893 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6894 // should have been folded away previously and not enter in here.
6895 Value *Result;
6896 if (isSignedCmp) {
6897 // We're performing a signed comparison.
6898 if (cast<ConstantInt>(CI)->getValue().isNegative())
6899 Result = ConstantInt::getFalse(); // X < (small) --> false
6900 else
6901 Result = ConstantInt::getTrue(); // X < (large) --> true
6902 } else {
6903 // We're performing an unsigned comparison.
6904 if (isSignedExt) {
6905 // We're performing an unsigned comp with a sign extended value.
6906 // This is true if the input is >= 0. [aka >s -1]
6907 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
6908 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6909 NegOne, ICI.getName()), ICI);
6910 } else {
6911 // Unsigned extend & unsigned compare -> always true.
6912 Result = ConstantInt::getTrue();
6913 }
6914 }
6915
6916 // Finally, return the value computed.
6917 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
Chris Lattner3d816532008-07-11 04:09:09 +00006918 ICI.getPredicate() == ICmpInst::ICMP_SLT)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006919 return ReplaceInstUsesWith(ICI, Result);
Chris Lattner3d816532008-07-11 04:09:09 +00006920
6921 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6922 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6923 "ICmp should be folded!");
6924 if (Constant *CI = dyn_cast<Constant>(Result))
6925 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6926 return BinaryOperator::CreateNot(Result);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006927}
6928
6929Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6930 return commonShiftTransforms(I);
6931}
6932
6933Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6934 return commonShiftTransforms(I);
6935}
6936
6937Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
Chris Lattnere3c504f2007-12-06 01:59:46 +00006938 if (Instruction *R = commonShiftTransforms(I))
6939 return R;
6940
6941 Value *Op0 = I.getOperand(0);
6942
6943 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6944 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
6945 if (CSI->isAllOnesValue())
6946 return ReplaceInstUsesWith(I, CSI);
6947
6948 // See if we can turn a signed shr into an unsigned shr.
Nate Begemanbb1ce942008-07-29 15:49:41 +00006949 if (!isa<VectorType>(I.getType()) &&
6950 MaskedValueIsZero(Op0,
Chris Lattnere3c504f2007-12-06 01:59:46 +00006951 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
Gabor Greifa645dd32008-05-16 19:29:10 +00006952 return BinaryOperator::CreateLShr(Op0, I.getOperand(1));
Chris Lattnere3c504f2007-12-06 01:59:46 +00006953
6954 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006955}
6956
6957Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6958 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
6959 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6960
6961 // shl X, 0 == X and shr X, 0 == X
6962 // shl 0, X == 0 and shr 0, X == 0
6963 if (Op1 == Constant::getNullValue(Op1->getType()) ||
6964 Op0 == Constant::getNullValue(Op0->getType()))
6965 return ReplaceInstUsesWith(I, Op0);
6966
6967 if (isa<UndefValue>(Op0)) {
6968 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
6969 return ReplaceInstUsesWith(I, Op0);
6970 else // undef << X -> 0, undef >>u X -> 0
6971 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6972 }
6973 if (isa<UndefValue>(Op1)) {
6974 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6975 return ReplaceInstUsesWith(I, Op0);
6976 else // X << undef, X >>u undef -> 0
6977 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6978 }
6979
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006980 // Try to fold constant and into select arguments.
6981 if (isa<Constant>(Op0))
6982 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
6983 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6984 return R;
6985
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006986 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
6987 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
6988 return Res;
6989 return 0;
6990}
6991
6992Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
6993 BinaryOperator &I) {
6994 bool isLeftShift = I.getOpcode() == Instruction::Shl;
6995
6996 // See if we can simplify any instructions used by the instruction whose sole
6997 // purpose is to compute bits we don't care about.
6998 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
6999 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
7000 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
7001 KnownZero, KnownOne))
7002 return &I;
7003
7004 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
7005 // of a signed value.
7006 //
7007 if (Op1->uge(TypeBits)) {
7008 if (I.getOpcode() != Instruction::AShr)
7009 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
7010 else {
7011 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
7012 return &I;
7013 }
7014 }
7015
7016 // ((X*C1) << C2) == (X * (C1 << C2))
7017 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
7018 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
7019 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00007020 return BinaryOperator::CreateMul(BO->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007021 ConstantExpr::getShl(BOOp, Op1));
7022
7023 // Try to fold constant and into select arguments.
7024 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
7025 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
7026 return R;
7027 if (isa<PHINode>(Op0))
7028 if (Instruction *NV = FoldOpIntoPhi(I))
7029 return NV;
7030
Chris Lattnerc6d1f642007-12-22 09:07:47 +00007031 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
7032 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
7033 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
7034 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
7035 // place. Don't try to do this transformation in this case. Also, we
7036 // require that the input operand is a shift-by-constant so that we have
7037 // confidence that the shifts will get folded together. We could do this
7038 // xform in more cases, but it is unlikely to be profitable.
7039 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
7040 isa<ConstantInt>(TrOp->getOperand(1))) {
7041 // Okay, we'll do this xform. Make the shift of shift.
7042 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00007043 Instruction *NSh = BinaryOperator::Create(I.getOpcode(), TrOp, ShAmt,
Chris Lattnerc6d1f642007-12-22 09:07:47 +00007044 I.getName());
7045 InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
7046
7047 // For logical shifts, the truncation has the effect of making the high
7048 // part of the register be zeros. Emulate this by inserting an AND to
7049 // clear the top bits as needed. This 'and' will usually be zapped by
7050 // other xforms later if dead.
7051 unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
7052 unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
7053 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
7054
7055 // The mask we constructed says what the trunc would do if occurring
7056 // between the shifts. We want to know the effect *after* the second
7057 // shift. We know that it is a logical shift by a constant, so adjust the
7058 // mask as appropriate.
7059 if (I.getOpcode() == Instruction::Shl)
7060 MaskV <<= Op1->getZExtValue();
7061 else {
7062 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
7063 MaskV = MaskV.lshr(Op1->getZExtValue());
7064 }
7065
Gabor Greifa645dd32008-05-16 19:29:10 +00007066 Instruction *And = BinaryOperator::CreateAnd(NSh, ConstantInt::get(MaskV),
Chris Lattnerc6d1f642007-12-22 09:07:47 +00007067 TI->getName());
7068 InsertNewInstBefore(And, I); // shift1 & 0x00FF
7069
7070 // Return the value truncated to the interesting size.
7071 return new TruncInst(And, I.getType());
7072 }
7073 }
7074
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007075 if (Op0->hasOneUse()) {
7076 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
7077 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
7078 Value *V1, *V2;
7079 ConstantInt *CC;
7080 switch (Op0BO->getOpcode()) {
7081 default: break;
7082 case Instruction::Add:
7083 case Instruction::And:
7084 case Instruction::Or:
7085 case Instruction::Xor: {
7086 // These operators commute.
7087 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
7088 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
Chris Lattner3b874082008-11-16 05:38:51 +00007089 match(Op0BO->getOperand(1), m_Shr(m_Value(V1), m_Specific(Op1)))){
Gabor Greifa645dd32008-05-16 19:29:10 +00007090 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007091 Op0BO->getOperand(0), Op1,
7092 Op0BO->getName());
7093 InsertNewInstBefore(YS, I); // (Y << C)
7094 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00007095 BinaryOperator::Create(Op0BO->getOpcode(), YS, V1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007096 Op0BO->getOperand(1)->getName());
7097 InsertNewInstBefore(X, I); // (X + (Y << C))
7098 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00007099 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007100 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
7101 }
7102
7103 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
7104 Value *Op0BOOp1 = Op0BO->getOperand(1);
7105 if (isLeftShift && Op0BOOp1->hasOneUse() &&
7106 match(Op0BOOp1,
Chris Lattner3b874082008-11-16 05:38:51 +00007107 m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
7108 m_ConstantInt(CC))) &&
7109 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007110 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007111 Op0BO->getOperand(0), Op1,
7112 Op0BO->getName());
7113 InsertNewInstBefore(YS, I); // (Y << C)
7114 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00007115 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007116 V1->getName()+".mask");
7117 InsertNewInstBefore(XM, I); // X & (CC << C)
7118
Gabor Greifa645dd32008-05-16 19:29:10 +00007119 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007120 }
7121 }
7122
7123 // FALL THROUGH.
7124 case Instruction::Sub: {
7125 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
7126 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
Chris Lattner3b874082008-11-16 05:38:51 +00007127 match(Op0BO->getOperand(0), m_Shr(m_Value(V1), m_Specific(Op1)))){
Gabor Greifa645dd32008-05-16 19:29:10 +00007128 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007129 Op0BO->getOperand(1), Op1,
7130 Op0BO->getName());
7131 InsertNewInstBefore(YS, I); // (Y << C)
7132 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00007133 BinaryOperator::Create(Op0BO->getOpcode(), V1, YS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007134 Op0BO->getOperand(0)->getName());
7135 InsertNewInstBefore(X, I); // (X + (Y << C))
7136 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00007137 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007138 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
7139 }
7140
7141 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
7142 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
7143 match(Op0BO->getOperand(0),
7144 m_And(m_Shr(m_Value(V1), m_Value(V2)),
7145 m_ConstantInt(CC))) && V2 == Op1 &&
7146 cast<BinaryOperator>(Op0BO->getOperand(0))
7147 ->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007148 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007149 Op0BO->getOperand(1), Op1,
7150 Op0BO->getName());
7151 InsertNewInstBefore(YS, I); // (Y << C)
7152 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00007153 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007154 V1->getName()+".mask");
7155 InsertNewInstBefore(XM, I); // X & (CC << C)
7156
Gabor Greifa645dd32008-05-16 19:29:10 +00007157 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007158 }
7159
7160 break;
7161 }
7162 }
7163
7164
7165 // If the operand is an bitwise operator with a constant RHS, and the
7166 // shift is the only use, we can pull it out of the shift.
7167 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
7168 bool isValid = true; // Valid only for And, Or, Xor
7169 bool highBitSet = false; // Transform if high bit of constant set?
7170
7171 switch (Op0BO->getOpcode()) {
7172 default: isValid = false; break; // Do not perform transform!
7173 case Instruction::Add:
7174 isValid = isLeftShift;
7175 break;
7176 case Instruction::Or:
7177 case Instruction::Xor:
7178 highBitSet = false;
7179 break;
7180 case Instruction::And:
7181 highBitSet = true;
7182 break;
7183 }
7184
7185 // If this is a signed shift right, and the high bit is modified
7186 // by the logical operation, do not perform the transformation.
7187 // The highBitSet boolean indicates the value of the high bit of
7188 // the constant which would cause it to be modified for this
7189 // operation.
7190 //
Chris Lattner15b76e32007-12-06 06:25:04 +00007191 if (isValid && I.getOpcode() == Instruction::AShr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007192 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007193
7194 if (isValid) {
7195 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
7196
7197 Instruction *NewShift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007198 BinaryOperator::Create(I.getOpcode(), Op0BO->getOperand(0), Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007199 InsertNewInstBefore(NewShift, I);
7200 NewShift->takeName(Op0BO);
7201
Gabor Greifa645dd32008-05-16 19:29:10 +00007202 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007203 NewRHS);
7204 }
7205 }
7206 }
7207 }
7208
7209 // Find out if this is a shift of a shift by a constant.
7210 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
7211 if (ShiftOp && !ShiftOp->isShift())
7212 ShiftOp = 0;
7213
7214 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
7215 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
7216 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
7217 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
7218 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
7219 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
7220 Value *X = ShiftOp->getOperand(0);
7221
7222 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
7223 if (AmtSum > TypeBits)
7224 AmtSum = TypeBits;
7225
7226 const IntegerType *Ty = cast<IntegerType>(I.getType());
7227
7228 // Check for (X << c1) << c2 and (X >> c1) >> c2
7229 if (I.getOpcode() == ShiftOp->getOpcode()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007230 return BinaryOperator::Create(I.getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007231 ConstantInt::get(Ty, AmtSum));
7232 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
7233 I.getOpcode() == Instruction::AShr) {
7234 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
Gabor Greifa645dd32008-05-16 19:29:10 +00007235 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007236 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
7237 I.getOpcode() == Instruction::LShr) {
7238 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
7239 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007240 BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007241 InsertNewInstBefore(Shift, I);
7242
7243 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007244 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007245 }
7246
7247 // Okay, if we get here, one shift must be left, and the other shift must be
7248 // right. See if the amounts are equal.
7249 if (ShiftAmt1 == ShiftAmt2) {
7250 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
7251 if (I.getOpcode() == Instruction::Shl) {
7252 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007253 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007254 }
7255 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
7256 if (I.getOpcode() == Instruction::LShr) {
7257 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007258 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007259 }
7260 // We can simplify ((X << C) >>s C) into a trunc + sext.
7261 // NOTE: we could do this for any C, but that would make 'unusual' integer
7262 // types. For now, just stick to ones well-supported by the code
7263 // generators.
7264 const Type *SExtType = 0;
7265 switch (Ty->getBitWidth() - ShiftAmt1) {
7266 case 1 :
7267 case 8 :
7268 case 16 :
7269 case 32 :
7270 case 64 :
7271 case 128:
7272 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
7273 break;
7274 default: break;
7275 }
7276 if (SExtType) {
7277 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
7278 InsertNewInstBefore(NewTrunc, I);
7279 return new SExtInst(NewTrunc, Ty);
7280 }
7281 // Otherwise, we can't handle it yet.
7282 } else if (ShiftAmt1 < ShiftAmt2) {
7283 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
7284
7285 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
7286 if (I.getOpcode() == Instruction::Shl) {
7287 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7288 ShiftOp->getOpcode() == Instruction::AShr);
7289 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007290 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007291 InsertNewInstBefore(Shift, I);
7292
7293 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007294 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007295 }
7296
7297 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
7298 if (I.getOpcode() == Instruction::LShr) {
7299 assert(ShiftOp->getOpcode() == Instruction::Shl);
7300 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007301 BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007302 InsertNewInstBefore(Shift, I);
7303
7304 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007305 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007306 }
7307
7308 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
7309 } else {
7310 assert(ShiftAmt2 < ShiftAmt1);
7311 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
7312
7313 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
7314 if (I.getOpcode() == Instruction::Shl) {
7315 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7316 ShiftOp->getOpcode() == Instruction::AShr);
7317 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007318 BinaryOperator::Create(ShiftOp->getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007319 ConstantInt::get(Ty, ShiftDiff));
7320 InsertNewInstBefore(Shift, I);
7321
7322 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007323 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007324 }
7325
7326 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
7327 if (I.getOpcode() == Instruction::LShr) {
7328 assert(ShiftOp->getOpcode() == Instruction::Shl);
7329 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007330 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007331 InsertNewInstBefore(Shift, I);
7332
7333 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007334 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007335 }
7336
7337 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
7338 }
7339 }
7340 return 0;
7341}
7342
7343
7344/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
7345/// expression. If so, decompose it, returning some value X, such that Val is
7346/// X*Scale+Offset.
7347///
7348static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
7349 int &Offset) {
7350 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
7351 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
7352 Offset = CI->getZExtValue();
Chris Lattnerc59171a2007-10-12 05:30:59 +00007353 Scale = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007354 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattnerc59171a2007-10-12 05:30:59 +00007355 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
7356 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
7357 if (I->getOpcode() == Instruction::Shl) {
7358 // This is a value scaled by '1 << the shift amt'.
7359 Scale = 1U << RHS->getZExtValue();
7360 Offset = 0;
7361 return I->getOperand(0);
7362 } else if (I->getOpcode() == Instruction::Mul) {
7363 // This value is scaled by 'RHS'.
7364 Scale = RHS->getZExtValue();
7365 Offset = 0;
7366 return I->getOperand(0);
7367 } else if (I->getOpcode() == Instruction::Add) {
7368 // We have X+C. Check to see if we really have (X*C2)+C1,
7369 // where C1 is divisible by C2.
7370 unsigned SubScale;
7371 Value *SubVal =
7372 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
7373 Offset += RHS->getZExtValue();
7374 Scale = SubScale;
7375 return SubVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007376 }
7377 }
7378 }
7379
7380 // Otherwise, we can't look past this.
7381 Scale = 1;
7382 Offset = 0;
7383 return Val;
7384}
7385
7386
7387/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
7388/// try to eliminate the cast by moving the type information into the alloc.
7389Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
7390 AllocationInst &AI) {
7391 const PointerType *PTy = cast<PointerType>(CI.getType());
7392
7393 // Remove any uses of AI that are dead.
7394 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
7395
7396 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
7397 Instruction *User = cast<Instruction>(*UI++);
7398 if (isInstructionTriviallyDead(User)) {
7399 while (UI != E && *UI == User)
7400 ++UI; // If this instruction uses AI more than once, don't break UI.
7401
7402 ++NumDeadInst;
7403 DOUT << "IC: DCE: " << *User;
7404 EraseInstFromFunction(*User);
7405 }
7406 }
7407
7408 // Get the type really allocated and the type casted to.
7409 const Type *AllocElTy = AI.getAllocatedType();
7410 const Type *CastElTy = PTy->getElementType();
7411 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
7412
7413 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
7414 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
7415 if (CastElTyAlign < AllocElTyAlign) return 0;
7416
7417 // If the allocation has multiple uses, only promote it if we are strictly
7418 // increasing the alignment of the resultant allocation. If we keep it the
7419 // same, we open the door to infinite loops of various kinds.
7420 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
7421
Duncan Sandsd68f13b2009-01-12 20:38:59 +00007422 uint64_t AllocElTySize = TD->getTypePaddedSize(AllocElTy);
7423 uint64_t CastElTySize = TD->getTypePaddedSize(CastElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007424 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
7425
7426 // See if we can satisfy the modulus by pulling a scale out of the array
7427 // size argument.
7428 unsigned ArraySizeScale;
7429 int ArrayOffset;
7430 Value *NumElements = // See if the array size is a decomposable linear expr.
7431 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
7432
7433 // If we can now satisfy the modulus, by using a non-1 scale, we really can
7434 // do the xform.
7435 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
7436 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
7437
7438 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
7439 Value *Amt = 0;
7440 if (Scale == 1) {
7441 Amt = NumElements;
7442 } else {
7443 // If the allocation size is constant, form a constant mul expression
7444 Amt = ConstantInt::get(Type::Int32Ty, Scale);
7445 if (isa<ConstantInt>(NumElements))
7446 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
7447 // otherwise multiply the amount and the number of elements
7448 else if (Scale != 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007449 Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007450 Amt = InsertNewInstBefore(Tmp, AI);
7451 }
7452 }
7453
7454 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
7455 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
Gabor Greifa645dd32008-05-16 19:29:10 +00007456 Instruction *Tmp = BinaryOperator::CreateAdd(Amt, Off, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007457 Amt = InsertNewInstBefore(Tmp, AI);
7458 }
7459
7460 AllocationInst *New;
7461 if (isa<MallocInst>(AI))
7462 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
7463 else
7464 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
7465 InsertNewInstBefore(New, AI);
7466 New->takeName(&AI);
7467
7468 // If the allocation has multiple uses, insert a cast and change all things
7469 // that used it to use the new cast. This will also hack on CI, but it will
7470 // die soon.
7471 if (!AI.hasOneUse()) {
7472 AddUsesToWorkList(AI);
7473 // New is the allocation instruction, pointer typed. AI is the original
7474 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
7475 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
7476 InsertNewInstBefore(NewCast, AI);
7477 AI.replaceAllUsesWith(NewCast);
7478 }
7479 return ReplaceInstUsesWith(CI, New);
7480}
7481
7482/// CanEvaluateInDifferentType - Return true if we can take the specified value
7483/// and return it as type Ty without inserting any new casts and without
7484/// changing the computed value. This is used by code that tries to decide
7485/// whether promoting or shrinking integer operations to wider or smaller types
7486/// will allow us to eliminate a truncate or extend.
7487///
7488/// This is a truncation operation if Ty is smaller than V->getType(), or an
7489/// extension operation if Ty is larger.
Chris Lattner4200c2062008-06-18 04:00:49 +00007490///
7491/// If CastOpc is a truncation, then Ty will be a type smaller than V. We
7492/// should return true if trunc(V) can be computed by computing V in the smaller
7493/// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
7494/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
7495/// efficiently truncated.
7496///
7497/// If CastOpc is a sext or zext, we are asking if the low bits of the value can
7498/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
7499/// the final result.
Evan Cheng9ca34ab2009-01-15 17:01:23 +00007500bool
7501InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
7502 unsigned CastOpc,
7503 int &NumCastsRemoved, bool &SeenTrunc){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007504 // We can always evaluate constants in another type.
7505 if (isa<ConstantInt>(V))
7506 return true;
7507
7508 Instruction *I = dyn_cast<Instruction>(V);
7509 if (!I) return false;
7510
7511 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
7512
Chris Lattneref70bb82007-08-02 06:11:14 +00007513 // If this is an extension or truncate, we can often eliminate it.
7514 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7515 // If this is a cast from the destination type, we can trivially eliminate
7516 // it, and this will remove a cast overall.
7517 if (I->getOperand(0)->getType() == Ty) {
7518 // If the first operand is itself a cast, and is eliminable, do not count
7519 // this as an eliminable cast. We would prefer to eliminate those two
7520 // casts first.
Chris Lattner4200c2062008-06-18 04:00:49 +00007521 if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
Chris Lattneref70bb82007-08-02 06:11:14 +00007522 ++NumCastsRemoved;
Evan Cheng9ca34ab2009-01-15 17:01:23 +00007523 if (isa<TruncInst>(I))
7524 SeenTrunc = true;
Chris Lattneref70bb82007-08-02 06:11:14 +00007525 return true;
7526 }
7527 }
7528
7529 // We can't extend or shrink something that has multiple uses: doing so would
7530 // require duplicating the instruction in general, which isn't profitable.
7531 if (!I->hasOneUse()) return false;
7532
Evan Cheng9ca34ab2009-01-15 17:01:23 +00007533 unsigned Opc = I->getOpcode();
7534 switch (Opc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007535 case Instruction::Add:
7536 case Instruction::Sub:
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007537 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007538 case Instruction::And:
7539 case Instruction::Or:
7540 case Instruction::Xor:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007541 // These operators can all arbitrarily be extended or truncated.
Chris Lattneref70bb82007-08-02 06:11:14 +00007542 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
Evan Cheng9ca34ab2009-01-15 17:01:23 +00007543 NumCastsRemoved, SeenTrunc) &&
Chris Lattneref70bb82007-08-02 06:11:14 +00007544 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
Evan Cheng9ca34ab2009-01-15 17:01:23 +00007545 NumCastsRemoved, SeenTrunc);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007546
7547 case Instruction::Shl:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007548 // If we are truncating the result of this SHL, and if it's a shift of a
7549 // constant amount, we can always perform a SHL in a smaller type.
7550 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7551 uint32_t BitWidth = Ty->getBitWidth();
7552 if (BitWidth < OrigTy->getBitWidth() &&
7553 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattneref70bb82007-08-02 06:11:14 +00007554 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
Evan Cheng9ca34ab2009-01-15 17:01:23 +00007555 NumCastsRemoved, SeenTrunc);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007556 }
7557 break;
7558 case Instruction::LShr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007559 // If this is a truncate of a logical shr, we can truncate it to a smaller
7560 // lshr iff we know that the bits we would otherwise be shifting in are
7561 // already zeros.
7562 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7563 uint32_t OrigBitWidth = OrigTy->getBitWidth();
7564 uint32_t BitWidth = Ty->getBitWidth();
7565 if (BitWidth < OrigBitWidth &&
7566 MaskedValueIsZero(I->getOperand(0),
7567 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
7568 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattneref70bb82007-08-02 06:11:14 +00007569 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
Evan Cheng9ca34ab2009-01-15 17:01:23 +00007570 NumCastsRemoved, SeenTrunc);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007571 }
7572 }
7573 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007574 case Instruction::ZExt:
7575 case Instruction::SExt:
Chris Lattneref70bb82007-08-02 06:11:14 +00007576 case Instruction::Trunc:
7577 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner9c909d22007-08-02 17:23:38 +00007578 // can safely replace it. Note that replacing it does not reduce the number
7579 // of casts in the input.
Evan Cheng9ca34ab2009-01-15 17:01:23 +00007580 if (Opc == CastOpc)
7581 return true;
7582
7583 // sext (zext ty1), ty2 -> zext ty2
Evan Cheng7bb0d952009-01-15 17:09:07 +00007584 if (CastOpc == Instruction::SExt && Opc == Instruction::ZExt)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007585 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007586 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007587 case Instruction::Select: {
7588 SelectInst *SI = cast<SelectInst>(I);
7589 return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
Evan Cheng9ca34ab2009-01-15 17:01:23 +00007590 NumCastsRemoved, SeenTrunc) &&
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007591 CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
Evan Cheng9ca34ab2009-01-15 17:01:23 +00007592 NumCastsRemoved, SeenTrunc);
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007593 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007594 case Instruction::PHI: {
7595 // We can change a phi if we can change all operands.
7596 PHINode *PN = cast<PHINode>(I);
7597 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
7598 if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
Evan Cheng9ca34ab2009-01-15 17:01:23 +00007599 NumCastsRemoved, SeenTrunc))
Chris Lattner4200c2062008-06-18 04:00:49 +00007600 return false;
7601 return true;
7602 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007603 default:
7604 // TODO: Can handle more cases here.
7605 break;
7606 }
7607
7608 return false;
7609}
7610
7611/// EvaluateInDifferentType - Given an expression that
7612/// CanEvaluateInDifferentType returns true for, actually insert the code to
7613/// evaluate the expression.
7614Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
7615 bool isSigned) {
7616 if (Constant *C = dyn_cast<Constant>(V))
7617 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
7618
7619 // Otherwise, it must be an instruction.
7620 Instruction *I = cast<Instruction>(V);
7621 Instruction *Res = 0;
Evan Cheng9ca34ab2009-01-15 17:01:23 +00007622 unsigned Opc = I->getOpcode();
7623 switch (Opc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007624 case Instruction::Add:
7625 case Instruction::Sub:
Nick Lewyckyc52646a2008-01-22 05:08:48 +00007626 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007627 case Instruction::And:
7628 case Instruction::Or:
7629 case Instruction::Xor:
7630 case Instruction::AShr:
7631 case Instruction::LShr:
7632 case Instruction::Shl: {
7633 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
7634 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Evan Cheng9ca34ab2009-01-15 17:01:23 +00007635 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007636 break;
7637 }
7638 case Instruction::Trunc:
7639 case Instruction::ZExt:
7640 case Instruction::SExt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007641 // If the source type of the cast is the type we're trying for then we can
Chris Lattneref70bb82007-08-02 06:11:14 +00007642 // just return the source. There's no need to insert it because it is not
7643 // new.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007644 if (I->getOperand(0)->getType() == Ty)
7645 return I->getOperand(0);
7646
Chris Lattner4200c2062008-06-18 04:00:49 +00007647 // Otherwise, must be the same type of cast, so just reinsert a new one.
Gabor Greifa645dd32008-05-16 19:29:10 +00007648 Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
Chris Lattner4200c2062008-06-18 04:00:49 +00007649 Ty);
Chris Lattneref70bb82007-08-02 06:11:14 +00007650 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007651 case Instruction::Select: {
7652 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
7653 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
7654 Res = SelectInst::Create(I->getOperand(0), True, False);
7655 break;
7656 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007657 case Instruction::PHI: {
7658 PHINode *OPN = cast<PHINode>(I);
7659 PHINode *NPN = PHINode::Create(Ty);
7660 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
7661 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
7662 NPN->addIncoming(V, OPN->getIncomingBlock(i));
7663 }
7664 Res = NPN;
7665 break;
7666 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007667 default:
7668 // TODO: Can handle more cases here.
7669 assert(0 && "Unreachable!");
7670 break;
7671 }
7672
Chris Lattner4200c2062008-06-18 04:00:49 +00007673 Res->takeName(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007674 return InsertNewInstBefore(Res, *I);
7675}
7676
7677/// @brief Implement the transforms common to all CastInst visitors.
7678Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
7679 Value *Src = CI.getOperand(0);
7680
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007681 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
7682 // eliminate it now.
7683 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7684 if (Instruction::CastOps opc =
7685 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
7686 // The first cast (CSrc) is eliminable so we need to fix up or replace
7687 // the second cast (CI). CSrc will then have a good chance of being dead.
Gabor Greifa645dd32008-05-16 19:29:10 +00007688 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007689 }
7690 }
7691
7692 // If we are casting a select then fold the cast into the select
7693 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
7694 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
7695 return NV;
7696
7697 // If we are casting a PHI then fold the cast into the PHI
7698 if (isa<PHINode>(Src))
7699 if (Instruction *NV = FoldOpIntoPhi(CI))
7700 return NV;
7701
7702 return 0;
7703}
7704
Chris Lattner94ccd5f2009-01-09 05:44:56 +00007705/// FindElementAtOffset - Given a type and a constant offset, determine whether
7706/// or not there is a sequence of GEP indices into the type that will land us at
7707/// the specified offset. If so, fill them into NewIndices and return true,
7708/// otherwise return false.
7709static bool FindElementAtOffset(const Type *Ty, int64_t Offset,
7710 SmallVectorImpl<Value*> &NewIndices,
7711 const TargetData *TD) {
7712 if (!Ty->isSized()) return false;
7713
7714 // Start with the index over the outer type. Note that the type size
7715 // might be zero (even if the offset isn't zero) if the indexed type
7716 // is something like [0 x {int, int}]
7717 const Type *IntPtrTy = TD->getIntPtrType();
7718 int64_t FirstIdx = 0;
Duncan Sandsd68f13b2009-01-12 20:38:59 +00007719 if (int64_t TySize = TD->getTypePaddedSize(Ty)) {
Chris Lattner94ccd5f2009-01-09 05:44:56 +00007720 FirstIdx = Offset/TySize;
Chris Lattner0bd6f2b2009-01-11 20:41:36 +00007721 Offset -= FirstIdx*TySize;
Chris Lattner94ccd5f2009-01-09 05:44:56 +00007722
Chris Lattnerce48c462009-01-11 20:15:20 +00007723 // Handle hosts where % returns negative instead of values [0..TySize).
Chris Lattner94ccd5f2009-01-09 05:44:56 +00007724 if (Offset < 0) {
7725 --FirstIdx;
7726 Offset += TySize;
7727 assert(Offset >= 0);
7728 }
7729 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
7730 }
7731
7732 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
7733
7734 // Index into the types. If we fail, set OrigBase to null.
7735 while (Offset) {
Chris Lattnerce48c462009-01-11 20:15:20 +00007736 // Indexing into tail padding between struct/array elements.
7737 if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
7738 return false;
7739
Chris Lattner94ccd5f2009-01-09 05:44:56 +00007740 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
7741 const StructLayout *SL = TD->getStructLayout(STy);
Chris Lattnerce48c462009-01-11 20:15:20 +00007742 assert(Offset < (int64_t)SL->getSizeInBytes() &&
7743 "Offset must stay within the indexed type");
7744
Chris Lattner94ccd5f2009-01-09 05:44:56 +00007745 unsigned Elt = SL->getElementContainingOffset(Offset);
7746 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
7747
7748 Offset -= SL->getElementOffset(Elt);
7749 Ty = STy->getElementType(Elt);
Chris Lattnerd35ce6a2009-01-11 20:23:52 +00007750 } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
Duncan Sandsd68f13b2009-01-12 20:38:59 +00007751 uint64_t EltSize = TD->getTypePaddedSize(AT->getElementType());
Chris Lattnerce48c462009-01-11 20:15:20 +00007752 assert(EltSize && "Cannot index into a zero-sized array");
7753 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
7754 Offset %= EltSize;
Chris Lattnerd35ce6a2009-01-11 20:23:52 +00007755 Ty = AT->getElementType();
Chris Lattner94ccd5f2009-01-09 05:44:56 +00007756 } else {
Chris Lattnerce48c462009-01-11 20:15:20 +00007757 // Otherwise, we can't index into the middle of this atomic type, bail.
Chris Lattner94ccd5f2009-01-09 05:44:56 +00007758 return false;
7759 }
7760 }
7761
7762 return true;
7763}
7764
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007765/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
7766Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
7767 Value *Src = CI.getOperand(0);
7768
7769 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
7770 // If casting the result of a getelementptr instruction with no offset, turn
7771 // this into a cast of the original pointer!
7772 if (GEP->hasAllZeroIndices()) {
7773 // Changing the cast operand is usually not a good idea but it is safe
7774 // here because the pointer operand is being replaced with another
7775 // pointer operand so the opcode doesn't need to change.
7776 AddToWorkList(GEP);
7777 CI.setOperand(0, GEP->getOperand(0));
7778 return &CI;
7779 }
7780
7781 // If the GEP has a single use, and the base pointer is a bitcast, and the
7782 // GEP computes a constant offset, see if we can convert these three
7783 // instructions into fewer. This typically happens with unions and other
7784 // non-type-safe code.
7785 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
7786 if (GEP->hasAllConstantIndices()) {
7787 // We are guaranteed to get a constant from EmitGEPOffset.
7788 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
7789 int64_t Offset = OffsetV->getSExtValue();
7790
7791 // Get the base pointer input of the bitcast, and the type it points to.
7792 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
7793 const Type *GEPIdxTy =
7794 cast<PointerType>(OrigBase->getType())->getElementType();
Chris Lattner94ccd5f2009-01-09 05:44:56 +00007795 SmallVector<Value*, 8> NewIndices;
7796 if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices, TD)) {
7797 // If we were able to index down into an element, create the GEP
7798 // and bitcast the result. This eliminates one bitcast, potentially
7799 // two.
7800 Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
7801 NewIndices.begin(),
7802 NewIndices.end(), "");
7803 InsertNewInstBefore(NGEP, CI);
7804 NGEP->takeName(GEP);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007805
Chris Lattner94ccd5f2009-01-09 05:44:56 +00007806 if (isa<BitCastInst>(CI))
7807 return new BitCastInst(NGEP, CI.getType());
7808 assert(isa<PtrToIntInst>(CI));
7809 return new PtrToIntInst(NGEP, CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007810 }
7811 }
7812 }
7813 }
7814
7815 return commonCastTransforms(CI);
7816}
7817
7818
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007819/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
7820/// integer types. This function implements the common transforms for all those
7821/// cases.
7822/// @brief Implement the transforms common to CastInst with integer operands
7823Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
7824 if (Instruction *Result = commonCastTransforms(CI))
7825 return Result;
7826
7827 Value *Src = CI.getOperand(0);
7828 const Type *SrcTy = Src->getType();
7829 const Type *DestTy = CI.getType();
7830 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
7831 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
7832
7833 // See if we can simplify any instructions used by the LHS whose sole
7834 // purpose is to compute bits we don't care about.
7835 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
7836 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
7837 KnownZero, KnownOne))
7838 return &CI;
7839
7840 // If the source isn't an instruction or has more than one use then we
7841 // can't do anything more.
7842 Instruction *SrcI = dyn_cast<Instruction>(Src);
7843 if (!SrcI || !Src->hasOneUse())
7844 return 0;
7845
7846 // Attempt to propagate the cast into the instruction for int->int casts.
7847 int NumCastsRemoved = 0;
Evan Cheng9ca34ab2009-01-15 17:01:23 +00007848 bool SeenTrunc = false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007849 if (!isa<BitCastInst>(CI) &&
7850 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Evan Cheng9ca34ab2009-01-15 17:01:23 +00007851 CI.getOpcode(), NumCastsRemoved, SeenTrunc)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007852 // If this cast is a truncate, evaluting in a different type always
Chris Lattneref70bb82007-08-02 06:11:14 +00007853 // eliminates the cast, so it is always a win. If this is a zero-extension,
7854 // we need to do an AND to maintain the clear top-part of the computation,
7855 // so we require that the input have eliminated at least one cast. If this
7856 // is a sign extension, we insert two new casts (to do the extension) so we
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007857 // require that two casts have been eliminated.
Evan Cheng9ca34ab2009-01-15 17:01:23 +00007858 bool DoXForm = false;
7859 bool JustReplace = false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007860 switch (CI.getOpcode()) {
7861 default:
7862 // All the others use floating point so we shouldn't actually
7863 // get here because of the check above.
7864 assert(0 && "Unknown cast type");
7865 case Instruction::Trunc:
7866 DoXForm = true;
7867 break;
7868 case Instruction::ZExt:
7869 DoXForm = NumCastsRemoved >= 1;
Evan Cheng9ca34ab2009-01-15 17:01:23 +00007870 // TODO: Check if we need to insert an AND.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007871 break;
Evan Cheng9ca34ab2009-01-15 17:01:23 +00007872 case Instruction::SExt: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007873 DoXForm = NumCastsRemoved >= 2;
Evan Cheng9ca34ab2009-01-15 17:01:23 +00007874 if (!SeenTrunc) {
7875 // Do we have to emit a truncate to SrcBitSize followed by a sext?
7876 //
7877 // It's not safe to eliminate the trunc + sext pair if one of the
7878 // eliminated cast is a truncate. e.g.
7879 // t2 = trunc i32 t1 to i16
7880 // t3 = sext i16 t2 to i32
7881 // !=
7882 // i32 t1
7883 unsigned NumSignBits = ComputeNumSignBits(&CI);
7884 if (NumSignBits > (DestBitSize - SrcBitSize)) {
7885 DoXForm = true;
7886 JustReplace = true;
7887 }
7888 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007889 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007890 }
Evan Cheng9ca34ab2009-01-15 17:01:23 +00007891 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007892
7893 if (DoXForm) {
7894 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7895 CI.getOpcode() == Instruction::SExt);
7896 assert(Res->getType() == DestTy);
7897 switch (CI.getOpcode()) {
7898 default: assert(0 && "Unknown cast type!");
7899 case Instruction::Trunc:
7900 case Instruction::BitCast:
7901 // Just replace this cast with the result.
7902 return ReplaceInstUsesWith(CI, Res);
7903 case Instruction::ZExt: {
7904 // We need to emit an AND to clear the high bits.
7905 assert(SrcBitSize < DestBitSize && "Not a zext?");
7906 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
7907 SrcBitSize));
Gabor Greifa645dd32008-05-16 19:29:10 +00007908 return BinaryOperator::CreateAnd(Res, C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007909 }
7910 case Instruction::SExt:
Evan Cheng9ca34ab2009-01-15 17:01:23 +00007911 if (JustReplace)
7912 // Just replace this cast with the result.
7913 return ReplaceInstUsesWith(CI, Res);
7914
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007915 // We need to emit a cast to truncate, then a cast to sext.
Gabor Greifa645dd32008-05-16 19:29:10 +00007916 return CastInst::Create(Instruction::SExt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007917 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7918 CI), DestTy);
7919 }
7920 }
7921 }
7922
7923 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7924 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7925
7926 switch (SrcI->getOpcode()) {
7927 case Instruction::Add:
7928 case Instruction::Mul:
7929 case Instruction::And:
7930 case Instruction::Or:
7931 case Instruction::Xor:
7932 // If we are discarding information, rewrite.
7933 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7934 // Don't insert two casts if they cannot be eliminated. We allow
7935 // two casts to be inserted if the sizes are the same. This could
7936 // only be converting signedness, which is a noop.
7937 if (DestBitSize == SrcBitSize ||
7938 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7939 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7940 Instruction::CastOps opcode = CI.getOpcode();
Eli Friedman722b4792008-11-30 21:09:11 +00007941 Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI);
7942 Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007943 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007944 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7945 }
7946 }
7947
7948 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7949 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7950 SrcI->getOpcode() == Instruction::Xor &&
7951 Op1 == ConstantInt::getTrue() &&
7952 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
Eli Friedman722b4792008-11-30 21:09:11 +00007953 Value *New = InsertCastBefore(Instruction::ZExt, Op0, DestTy, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007954 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007955 }
7956 break;
7957 case Instruction::SDiv:
7958 case Instruction::UDiv:
7959 case Instruction::SRem:
7960 case Instruction::URem:
7961 // If we are just changing the sign, rewrite.
7962 if (DestBitSize == SrcBitSize) {
7963 // Don't insert two casts if they cannot be eliminated. We allow
7964 // two casts to be inserted if the sizes are the same. This could
7965 // only be converting signedness, which is a noop.
7966 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7967 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
Eli Friedman722b4792008-11-30 21:09:11 +00007968 Value *Op0c = InsertCastBefore(Instruction::BitCast,
7969 Op0, DestTy, *SrcI);
7970 Value *Op1c = InsertCastBefore(Instruction::BitCast,
7971 Op1, DestTy, *SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007972 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007973 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7974 }
7975 }
7976 break;
7977
7978 case Instruction::Shl:
7979 // Allow changing the sign of the source operand. Do not allow
7980 // changing the size of the shift, UNLESS the shift amount is a
7981 // constant. We must not change variable sized shifts to a smaller
7982 // size, because it is undefined to shift more bits out than exist
7983 // in the value.
7984 if (DestBitSize == SrcBitSize ||
7985 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
7986 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7987 Instruction::BitCast : Instruction::Trunc);
Eli Friedman722b4792008-11-30 21:09:11 +00007988 Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI);
7989 Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007990 return BinaryOperator::CreateShl(Op0c, Op1c);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007991 }
7992 break;
7993 case Instruction::AShr:
7994 // If this is a signed shr, and if all bits shifted in are about to be
7995 // truncated off, turn it into an unsigned shr to allow greater
7996 // simplifications.
7997 if (DestBitSize < SrcBitSize &&
7998 isa<ConstantInt>(Op1)) {
7999 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
8000 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
8001 // Insert the new logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00008002 return BinaryOperator::CreateLShr(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008003 }
8004 }
8005 break;
8006 }
8007 return 0;
8008}
8009
8010Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
8011 if (Instruction *Result = commonIntCastTransforms(CI))
8012 return Result;
8013
8014 Value *Src = CI.getOperand(0);
8015 const Type *Ty = CI.getType();
8016 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
8017 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
8018
8019 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
8020 switch (SrcI->getOpcode()) {
8021 default: break;
8022 case Instruction::LShr:
8023 // We can shrink lshr to something smaller if we know the bits shifted in
8024 // are already zeros.
8025 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
8026 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
8027
8028 // Get a mask for the bits shifting in.
8029 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
8030 Value* SrcIOp0 = SrcI->getOperand(0);
8031 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
8032 if (ShAmt >= DestBitWidth) // All zeros.
8033 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
8034
8035 // Okay, we can shrink this. Truncate the input, then return a new
8036 // shift.
8037 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
8038 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
8039 Ty, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008040 return BinaryOperator::CreateLShr(V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008041 }
8042 } else { // This is a variable shr.
8043
8044 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
8045 // more LLVM instructions, but allows '1 << Y' to be hoisted if
8046 // loop-invariant and CSE'd.
8047 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
8048 Value *One = ConstantInt::get(SrcI->getType(), 1);
8049
8050 Value *V = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00008051 BinaryOperator::CreateShl(One, SrcI->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008052 "tmp"), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008053 V = InsertNewInstBefore(BinaryOperator::CreateAnd(V,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008054 SrcI->getOperand(0),
8055 "tmp"), CI);
8056 Value *Zero = Constant::getNullValue(V->getType());
8057 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
8058 }
8059 }
8060 break;
8061 }
8062 }
8063
8064 return 0;
8065}
8066
Evan Chenge3779cf2008-03-24 00:21:34 +00008067/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
8068/// in order to eliminate the icmp.
8069Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
8070 bool DoXform) {
8071 // If we are just checking for a icmp eq of a single bit and zext'ing it
8072 // to an integer, then shift the bit to the appropriate place and then
8073 // cast to integer to avoid the comparison.
8074 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
8075 const APInt &Op1CV = Op1C->getValue();
8076
8077 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
8078 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
8079 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
8080 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
8081 if (!DoXform) return ICI;
8082
8083 Value *In = ICI->getOperand(0);
8084 Value *Sh = ConstantInt::get(In->getType(),
8085 In->getType()->getPrimitiveSizeInBits()-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008086 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh,
Evan Chenge3779cf2008-03-24 00:21:34 +00008087 In->getName()+".lobit"),
8088 CI);
8089 if (In->getType() != CI.getType())
Gabor Greifa645dd32008-05-16 19:29:10 +00008090 In = CastInst::CreateIntegerCast(In, CI.getType(),
Evan Chenge3779cf2008-03-24 00:21:34 +00008091 false/*ZExt*/, "tmp", &CI);
8092
8093 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
8094 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008095 In = InsertNewInstBefore(BinaryOperator::CreateXor(In, One,
Evan Chenge3779cf2008-03-24 00:21:34 +00008096 In->getName()+".not"),
8097 CI);
8098 }
8099
8100 return ReplaceInstUsesWith(CI, In);
8101 }
8102
8103
8104
8105 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
8106 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
8107 // zext (X == 1) to i32 --> X iff X has only the low bit set.
8108 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
8109 // zext (X != 0) to i32 --> X iff X has only the low bit set.
8110 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
8111 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
8112 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
8113 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
8114 // This only works for EQ and NE
8115 ICI->isEquality()) {
8116 // If Op1C some other power of two, convert:
8117 uint32_t BitWidth = Op1C->getType()->getBitWidth();
8118 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
8119 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
8120 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
8121
8122 APInt KnownZeroMask(~KnownZero);
8123 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
8124 if (!DoXform) return ICI;
8125
8126 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
8127 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
8128 // (X&4) == 2 --> false
8129 // (X&4) != 2 --> true
8130 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
8131 Res = ConstantExpr::getZExt(Res, CI.getType());
8132 return ReplaceInstUsesWith(CI, Res);
8133 }
8134
8135 uint32_t ShiftAmt = KnownZeroMask.logBase2();
8136 Value *In = ICI->getOperand(0);
8137 if (ShiftAmt) {
8138 // Perform a logical shr by shiftamt.
8139 // Insert the shift to put the result in the low bit.
Gabor Greifa645dd32008-05-16 19:29:10 +00008140 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In,
Evan Chenge3779cf2008-03-24 00:21:34 +00008141 ConstantInt::get(In->getType(), ShiftAmt),
8142 In->getName()+".lobit"), CI);
8143 }
8144
8145 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
8146 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008147 In = BinaryOperator::CreateXor(In, One, "tmp");
Evan Chenge3779cf2008-03-24 00:21:34 +00008148 InsertNewInstBefore(cast<Instruction>(In), CI);
8149 }
8150
8151 if (CI.getType() == In->getType())
8152 return ReplaceInstUsesWith(CI, In);
8153 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008154 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Evan Chenge3779cf2008-03-24 00:21:34 +00008155 }
8156 }
8157 }
8158
8159 return 0;
8160}
8161
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008162Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
8163 // If one of the common conversion will work ..
8164 if (Instruction *Result = commonIntCastTransforms(CI))
8165 return Result;
8166
8167 Value *Src = CI.getOperand(0);
8168
8169 // If this is a cast of a cast
8170 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
8171 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
8172 // types and if the sizes are just right we can convert this into a logical
8173 // 'and' which will be much cheaper than the pair of casts.
8174 if (isa<TruncInst>(CSrc)) {
8175 // Get the sizes of the types involved
8176 Value *A = CSrc->getOperand(0);
8177 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
8178 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
8179 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
8180 // If we're actually extending zero bits and the trunc is a no-op
8181 if (MidSize < DstSize && SrcSize == DstSize) {
8182 // Replace both of the casts with an And of the type mask.
8183 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
8184 Constant *AndConst = ConstantInt::get(AndValue);
8185 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +00008186 BinaryOperator::CreateAnd(CSrc->getOperand(0), AndConst);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008187 // Unfortunately, if the type changed, we need to cast it back.
8188 if (And->getType() != CI.getType()) {
8189 And->setName(CSrc->getName()+".mask");
8190 InsertNewInstBefore(And, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008191 And = CastInst::CreateIntegerCast(And, CI.getType(), false/*ZExt*/);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008192 }
8193 return And;
8194 }
8195 }
8196 }
8197
Evan Chenge3779cf2008-03-24 00:21:34 +00008198 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
8199 return transformZExtICmp(ICI, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008200
Evan Chenge3779cf2008-03-24 00:21:34 +00008201 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
8202 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
8203 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
8204 // of the (zext icmp) will be transformed.
8205 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
8206 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
8207 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
8208 (transformZExtICmp(LHS, CI, false) ||
8209 transformZExtICmp(RHS, CI, false))) {
8210 Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
8211 Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008212 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008213 }
Evan Chenge3779cf2008-03-24 00:21:34 +00008214 }
8215
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008216 return 0;
8217}
8218
8219Instruction *InstCombiner::visitSExt(SExtInst &CI) {
8220 if (Instruction *I = commonIntCastTransforms(CI))
8221 return I;
8222
8223 Value *Src = CI.getOperand(0);
8224
Dan Gohman35b76162008-10-30 20:40:10 +00008225 // Canonicalize sign-extend from i1 to a select.
8226 if (Src->getType() == Type::Int1Ty)
8227 return SelectInst::Create(Src,
8228 ConstantInt::getAllOnesValue(CI.getType()),
8229 Constant::getNullValue(CI.getType()));
Dan Gohmanf0f12022008-05-20 21:01:12 +00008230
8231 // See if the value being truncated is already sign extended. If so, just
8232 // eliminate the trunc/sext pair.
8233 if (getOpcode(Src) == Instruction::Trunc) {
8234 Value *Op = cast<User>(Src)->getOperand(0);
8235 unsigned OpBits = cast<IntegerType>(Op->getType())->getBitWidth();
8236 unsigned MidBits = cast<IntegerType>(Src->getType())->getBitWidth();
8237 unsigned DestBits = cast<IntegerType>(CI.getType())->getBitWidth();
8238 unsigned NumSignBits = ComputeNumSignBits(Op);
8239
8240 if (OpBits == DestBits) {
8241 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
8242 // bits, it is already ready.
8243 if (NumSignBits > DestBits-MidBits)
8244 return ReplaceInstUsesWith(CI, Op);
8245 } else if (OpBits < DestBits) {
8246 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
8247 // bits, just sext from i32.
8248 if (NumSignBits > OpBits-MidBits)
8249 return new SExtInst(Op, CI.getType(), "tmp");
8250 } else {
8251 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
8252 // bits, just truncate to i32.
8253 if (NumSignBits > OpBits-MidBits)
8254 return new TruncInst(Op, CI.getType(), "tmp");
8255 }
8256 }
Chris Lattner8a2d0592008-08-06 07:35:52 +00008257
8258 // If the input is a shl/ashr pair of a same constant, then this is a sign
8259 // extension from a smaller value. If we could trust arbitrary bitwidth
8260 // integers, we could turn this into a truncate to the smaller bit and then
8261 // use a sext for the whole extension. Since we don't, look deeper and check
8262 // for a truncate. If the source and dest are the same type, eliminate the
8263 // trunc and extend and just do shifts. For example, turn:
8264 // %a = trunc i32 %i to i8
8265 // %b = shl i8 %a, 6
8266 // %c = ashr i8 %b, 6
8267 // %d = sext i8 %c to i32
8268 // into:
8269 // %a = shl i32 %i, 30
8270 // %d = ashr i32 %a, 30
8271 Value *A = 0;
8272 ConstantInt *BA = 0, *CA = 0;
8273 if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
8274 m_ConstantInt(CA))) &&
8275 BA == CA && isa<TruncInst>(A)) {
8276 Value *I = cast<TruncInst>(A)->getOperand(0);
8277 if (I->getType() == CI.getType()) {
8278 unsigned MidSize = Src->getType()->getPrimitiveSizeInBits();
8279 unsigned SrcDstSize = CI.getType()->getPrimitiveSizeInBits();
8280 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
8281 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
8282 I = InsertNewInstBefore(BinaryOperator::CreateShl(I, ShAmtV,
8283 CI.getName()), CI);
8284 return BinaryOperator::CreateAShr(I, ShAmtV);
8285 }
8286 }
8287
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008288 return 0;
8289}
8290
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008291/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
8292/// in the specified FP type without changing its value.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008293static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
Dale Johannesen6e547b42008-10-09 23:00:39 +00008294 bool losesInfo;
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008295 APFloat F = CFP->getValueAPF();
Dale Johannesen6e547b42008-10-09 23:00:39 +00008296 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
8297 if (!losesInfo)
Chris Lattner5e0610f2008-04-20 00:41:09 +00008298 return ConstantFP::get(F);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008299 return 0;
8300}
8301
8302/// LookThroughFPExtensions - If this is an fp extension instruction, look
8303/// through it until we get the source value.
8304static Value *LookThroughFPExtensions(Value *V) {
8305 if (Instruction *I = dyn_cast<Instruction>(V))
8306 if (I->getOpcode() == Instruction::FPExt)
8307 return LookThroughFPExtensions(I->getOperand(0));
8308
8309 // If this value is a constant, return the constant in the smallest FP type
8310 // that can accurately represent it. This allows us to turn
8311 // (float)((double)X+2.0) into x+2.0f.
8312 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
8313 if (CFP->getType() == Type::PPC_FP128Ty)
8314 return V; // No constant folding of this.
8315 // See if the value can be truncated to float and then reextended.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008316 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008317 return V;
8318 if (CFP->getType() == Type::DoubleTy)
8319 return V; // Won't shrink.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008320 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008321 return V;
8322 // Don't try to shrink to various long double types.
8323 }
8324
8325 return V;
8326}
8327
8328Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
8329 if (Instruction *I = commonCastTransforms(CI))
8330 return I;
8331
8332 // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are
8333 // smaller than the destination type, we can eliminate the truncate by doing
8334 // the add as the smaller type. This applies to add/sub/mul/div as well as
8335 // many builtins (sqrt, etc).
8336 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
8337 if (OpI && OpI->hasOneUse()) {
8338 switch (OpI->getOpcode()) {
8339 default: break;
8340 case Instruction::Add:
8341 case Instruction::Sub:
8342 case Instruction::Mul:
8343 case Instruction::FDiv:
8344 case Instruction::FRem:
8345 const Type *SrcTy = OpI->getType();
8346 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
8347 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
8348 if (LHSTrunc->getType() != SrcTy &&
8349 RHSTrunc->getType() != SrcTy) {
8350 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
8351 // If the source types were both smaller than the destination type of
8352 // the cast, do this xform.
8353 if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize &&
8354 RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) {
8355 LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
8356 CI.getType(), CI);
8357 RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
8358 CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008359 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008360 }
8361 }
8362 break;
8363 }
8364 }
8365 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008366}
8367
8368Instruction *InstCombiner::visitFPExt(CastInst &CI) {
8369 return commonCastTransforms(CI);
8370}
8371
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008372Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008373 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8374 if (OpI == 0)
8375 return commonCastTransforms(FI);
8376
8377 // fptoui(uitofp(X)) --> X
8378 // fptoui(sitofp(X)) --> X
8379 // This is safe if the intermediate type has enough bits in its mantissa to
8380 // accurately represent all values of X. For example, do not do this with
8381 // i64->float->i64. This is also safe for sitofp case, because any negative
8382 // 'X' value would cause an undefined result for the fptoui.
8383 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8384 OpI->getOperand(0)->getType() == FI.getType() &&
8385 (int)FI.getType()->getPrimitiveSizeInBits() < /*extra bit for sign */
8386 OpI->getType()->getFPMantissaWidth())
8387 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008388
8389 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008390}
8391
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008392Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008393 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8394 if (OpI == 0)
8395 return commonCastTransforms(FI);
8396
8397 // fptosi(sitofp(X)) --> X
8398 // fptosi(uitofp(X)) --> X
8399 // This is safe if the intermediate type has enough bits in its mantissa to
8400 // accurately represent all values of X. For example, do not do this with
8401 // i64->float->i64. This is also safe for sitofp case, because any negative
8402 // 'X' value would cause an undefined result for the fptoui.
8403 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8404 OpI->getOperand(0)->getType() == FI.getType() &&
8405 (int)FI.getType()->getPrimitiveSizeInBits() <=
8406 OpI->getType()->getFPMantissaWidth())
8407 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008408
8409 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008410}
8411
8412Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
8413 return commonCastTransforms(CI);
8414}
8415
8416Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
8417 return commonCastTransforms(CI);
8418}
8419
8420Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
8421 return commonPointerCastTransforms(CI);
8422}
8423
Chris Lattner7c1626482008-01-08 07:23:51 +00008424Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
8425 if (Instruction *I = commonCastTransforms(CI))
8426 return I;
8427
8428 const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
8429 if (!DestPointee->isSized()) return 0;
8430
8431 // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
8432 ConstantInt *Cst;
8433 Value *X;
8434 if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
8435 m_ConstantInt(Cst)))) {
8436 // If the source and destination operands have the same type, see if this
8437 // is a single-index GEP.
8438 if (X->getType() == CI.getType()) {
8439 // Get the size of the pointee type.
Duncan Sandsd68f13b2009-01-12 20:38:59 +00008440 uint64_t Size = TD->getTypePaddedSize(DestPointee);
Chris Lattner7c1626482008-01-08 07:23:51 +00008441
8442 // Convert the constant to intptr type.
8443 APInt Offset = Cst->getValue();
8444 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8445
8446 // If Offset is evenly divisible by Size, we can do this xform.
8447 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8448 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
Gabor Greifd6da1d02008-04-06 20:25:17 +00008449 return GetElementPtrInst::Create(X, ConstantInt::get(Offset));
Chris Lattner7c1626482008-01-08 07:23:51 +00008450 }
8451 }
8452 // TODO: Could handle other cases, e.g. where add is indexing into field of
8453 // struct etc.
8454 } else if (CI.getOperand(0)->hasOneUse() &&
8455 match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
8456 // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
8457 // "inttoptr+GEP" instead of "add+intptr".
8458
8459 // Get the size of the pointee type.
Duncan Sandsd68f13b2009-01-12 20:38:59 +00008460 uint64_t Size = TD->getTypePaddedSize(DestPointee);
Chris Lattner7c1626482008-01-08 07:23:51 +00008461
8462 // Convert the constant to intptr type.
8463 APInt Offset = Cst->getValue();
8464 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8465
8466 // If Offset is evenly divisible by Size, we can do this xform.
8467 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8468 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
8469
8470 Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
8471 "tmp"), CI);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008472 return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp");
Chris Lattner7c1626482008-01-08 07:23:51 +00008473 }
8474 }
8475 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008476}
8477
8478Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
8479 // If the operands are integer typed then apply the integer transforms,
8480 // otherwise just apply the common ones.
8481 Value *Src = CI.getOperand(0);
8482 const Type *SrcTy = Src->getType();
8483 const Type *DestTy = CI.getType();
8484
8485 if (SrcTy->isInteger() && DestTy->isInteger()) {
8486 if (Instruction *Result = commonIntCastTransforms(CI))
8487 return Result;
8488 } else if (isa<PointerType>(SrcTy)) {
8489 if (Instruction *I = commonPointerCastTransforms(CI))
8490 return I;
8491 } else {
8492 if (Instruction *Result = commonCastTransforms(CI))
8493 return Result;
8494 }
8495
8496
8497 // Get rid of casts from one type to the same type. These are useless and can
8498 // be replaced by the operand.
8499 if (DestTy == Src->getType())
8500 return ReplaceInstUsesWith(CI, Src);
8501
8502 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
8503 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
8504 const Type *DstElTy = DstPTy->getElementType();
8505 const Type *SrcElTy = SrcPTy->getElementType();
8506
Nate Begemandf5b3612008-03-31 00:22:16 +00008507 // If the address spaces don't match, don't eliminate the bitcast, which is
8508 // required for changing types.
8509 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
8510 return 0;
8511
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008512 // If we are casting a malloc or alloca to a pointer to a type of the same
8513 // size, rewrite the allocation instruction to allocate the "right" type.
8514 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
8515 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
8516 return V;
8517
8518 // If the source and destination are pointers, and this cast is equivalent
8519 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
8520 // This can enhance SROA and other transforms that want type-safe pointers.
8521 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
8522 unsigned NumZeros = 0;
8523 while (SrcElTy != DstElTy &&
8524 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
8525 SrcElTy->getNumContainedTypes() /* not "{}" */) {
8526 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
8527 ++NumZeros;
8528 }
8529
8530 // If we found a path from the src to dest, create the getelementptr now.
8531 if (SrcElTy == DstElTy) {
8532 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008533 return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
8534 ((Instruction*) NULL));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008535 }
8536 }
8537
8538 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
8539 if (SVI->hasOneUse()) {
8540 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
8541 // a bitconvert to a vector with the same # elts.
8542 if (isa<VectorType>(DestTy) &&
Mon P Wangbff5d9c2008-11-10 04:46:22 +00008543 cast<VectorType>(DestTy)->getNumElements() ==
8544 SVI->getType()->getNumElements() &&
8545 SVI->getType()->getNumElements() ==
8546 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008547 CastInst *Tmp;
8548 // If either of the operands is a cast from CI.getType(), then
8549 // evaluating the shuffle in the casted destination's type will allow
8550 // us to eliminate at least one cast.
8551 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
8552 Tmp->getOperand(0)->getType() == DestTy) ||
8553 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
8554 Tmp->getOperand(0)->getType() == DestTy)) {
Eli Friedman722b4792008-11-30 21:09:11 +00008555 Value *LHS = InsertCastBefore(Instruction::BitCast,
8556 SVI->getOperand(0), DestTy, CI);
8557 Value *RHS = InsertCastBefore(Instruction::BitCast,
8558 SVI->getOperand(1), DestTy, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008559 // Return a new shuffle vector. Use the same element ID's, as we
8560 // know the vector types match #elts.
8561 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
8562 }
8563 }
8564 }
8565 }
8566 return 0;
8567}
8568
8569/// GetSelectFoldableOperands - We want to turn code that looks like this:
8570/// %C = or %A, %B
8571/// %D = select %cond, %C, %A
8572/// into:
8573/// %C = select %cond, %B, 0
8574/// %D = or %A, %C
8575///
8576/// Assuming that the specified instruction is an operand to the select, return
8577/// a bitmask indicating which operands of this instruction are foldable if they
8578/// equal the other incoming value of the select.
8579///
8580static unsigned GetSelectFoldableOperands(Instruction *I) {
8581 switch (I->getOpcode()) {
8582 case Instruction::Add:
8583 case Instruction::Mul:
8584 case Instruction::And:
8585 case Instruction::Or:
8586 case Instruction::Xor:
8587 return 3; // Can fold through either operand.
8588 case Instruction::Sub: // Can only fold on the amount subtracted.
8589 case Instruction::Shl: // Can only fold on the shift amount.
8590 case Instruction::LShr:
8591 case Instruction::AShr:
8592 return 1;
8593 default:
8594 return 0; // Cannot fold
8595 }
8596}
8597
8598/// GetSelectFoldableConstant - For the same transformation as the previous
8599/// function, return the identity constant that goes into the select.
8600static Constant *GetSelectFoldableConstant(Instruction *I) {
8601 switch (I->getOpcode()) {
8602 default: assert(0 && "This cannot happen!"); abort();
8603 case Instruction::Add:
8604 case Instruction::Sub:
8605 case Instruction::Or:
8606 case Instruction::Xor:
8607 case Instruction::Shl:
8608 case Instruction::LShr:
8609 case Instruction::AShr:
8610 return Constant::getNullValue(I->getType());
8611 case Instruction::And:
8612 return Constant::getAllOnesValue(I->getType());
8613 case Instruction::Mul:
8614 return ConstantInt::get(I->getType(), 1);
8615 }
8616}
8617
8618/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
8619/// have the same opcode and only one use each. Try to simplify this.
8620Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
8621 Instruction *FI) {
8622 if (TI->getNumOperands() == 1) {
8623 // If this is a non-volatile load or a cast from the same type,
8624 // merge.
8625 if (TI->isCast()) {
8626 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
8627 return 0;
8628 } else {
8629 return 0; // unknown unary op.
8630 }
8631
8632 // Fold this by inserting a select from the input values.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008633 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
8634 FI->getOperand(0), SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008635 InsertNewInstBefore(NewSI, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008636 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008637 TI->getType());
8638 }
8639
8640 // Only handle binary operators here.
8641 if (!isa<BinaryOperator>(TI))
8642 return 0;
8643
8644 // Figure out if the operations have any operands in common.
8645 Value *MatchOp, *OtherOpT, *OtherOpF;
8646 bool MatchIsOpZero;
8647 if (TI->getOperand(0) == FI->getOperand(0)) {
8648 MatchOp = TI->getOperand(0);
8649 OtherOpT = TI->getOperand(1);
8650 OtherOpF = FI->getOperand(1);
8651 MatchIsOpZero = true;
8652 } else if (TI->getOperand(1) == FI->getOperand(1)) {
8653 MatchOp = TI->getOperand(1);
8654 OtherOpT = TI->getOperand(0);
8655 OtherOpF = FI->getOperand(0);
8656 MatchIsOpZero = false;
8657 } else if (!TI->isCommutative()) {
8658 return 0;
8659 } else if (TI->getOperand(0) == FI->getOperand(1)) {
8660 MatchOp = TI->getOperand(0);
8661 OtherOpT = TI->getOperand(1);
8662 OtherOpF = FI->getOperand(0);
8663 MatchIsOpZero = true;
8664 } else if (TI->getOperand(1) == FI->getOperand(0)) {
8665 MatchOp = TI->getOperand(1);
8666 OtherOpT = TI->getOperand(0);
8667 OtherOpF = FI->getOperand(1);
8668 MatchIsOpZero = true;
8669 } else {
8670 return 0;
8671 }
8672
8673 // If we reach here, they do have operations in common.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008674 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
8675 OtherOpF, SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008676 InsertNewInstBefore(NewSI, SI);
8677
8678 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
8679 if (MatchIsOpZero)
Gabor Greifa645dd32008-05-16 19:29:10 +00008680 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008681 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008682 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008683 }
8684 assert(0 && "Shouldn't get here");
8685 return 0;
8686}
8687
Dan Gohman58c09632008-09-16 18:46:06 +00008688/// visitSelectInstWithICmp - Visit a SelectInst that has an
8689/// ICmpInst as its first operand.
8690///
8691Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
8692 ICmpInst *ICI) {
8693 bool Changed = false;
8694 ICmpInst::Predicate Pred = ICI->getPredicate();
8695 Value *CmpLHS = ICI->getOperand(0);
8696 Value *CmpRHS = ICI->getOperand(1);
8697 Value *TrueVal = SI.getTrueValue();
8698 Value *FalseVal = SI.getFalseValue();
8699
8700 // Check cases where the comparison is with a constant that
8701 // can be adjusted to fit the min/max idiom. We may edit ICI in
8702 // place here, so make sure the select is the only user.
8703 if (ICI->hasOneUse())
Dan Gohman35b76162008-10-30 20:40:10 +00008704 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
Dan Gohman58c09632008-09-16 18:46:06 +00008705 switch (Pred) {
8706 default: break;
8707 case ICmpInst::ICMP_ULT:
8708 case ICmpInst::ICMP_SLT: {
8709 // X < MIN ? T : F --> F
8710 if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
8711 return ReplaceInstUsesWith(SI, FalseVal);
8712 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
8713 Constant *AdjustedRHS = SubOne(CI);
8714 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8715 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8716 Pred = ICmpInst::getSwappedPredicate(Pred);
8717 CmpRHS = AdjustedRHS;
8718 std::swap(FalseVal, TrueVal);
8719 ICI->setPredicate(Pred);
8720 ICI->setOperand(1, CmpRHS);
8721 SI.setOperand(1, TrueVal);
8722 SI.setOperand(2, FalseVal);
8723 Changed = true;
8724 }
8725 break;
8726 }
8727 case ICmpInst::ICMP_UGT:
8728 case ICmpInst::ICMP_SGT: {
8729 // X > MAX ? T : F --> F
8730 if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
8731 return ReplaceInstUsesWith(SI, FalseVal);
8732 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
8733 Constant *AdjustedRHS = AddOne(CI);
8734 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8735 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8736 Pred = ICmpInst::getSwappedPredicate(Pred);
8737 CmpRHS = AdjustedRHS;
8738 std::swap(FalseVal, TrueVal);
8739 ICI->setPredicate(Pred);
8740 ICI->setOperand(1, CmpRHS);
8741 SI.setOperand(1, TrueVal);
8742 SI.setOperand(2, FalseVal);
8743 Changed = true;
8744 }
8745 break;
8746 }
8747 }
8748
Dan Gohman35b76162008-10-30 20:40:10 +00008749 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
8750 // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
Chris Lattner3b874082008-11-16 05:38:51 +00008751 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
Chris Lattner73c1ddb2009-01-05 23:53:12 +00008752 if (match(TrueVal, m_ConstantInt<-1>()) &&
8753 match(FalseVal, m_ConstantInt<0>()))
Chris Lattner3b874082008-11-16 05:38:51 +00008754 Pred = ICI->getPredicate();
Chris Lattner73c1ddb2009-01-05 23:53:12 +00008755 else if (match(TrueVal, m_ConstantInt<0>()) &&
8756 match(FalseVal, m_ConstantInt<-1>()))
Chris Lattner3b874082008-11-16 05:38:51 +00008757 Pred = CmpInst::getInversePredicate(ICI->getPredicate());
8758
Dan Gohman35b76162008-10-30 20:40:10 +00008759 if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
8760 // If we are just checking for a icmp eq of a single bit and zext'ing it
8761 // to an integer, then shift the bit to the appropriate place and then
8762 // cast to integer to avoid the comparison.
8763 const APInt &Op1CV = CI->getValue();
8764
8765 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
8766 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
8767 if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
Chris Lattner3b874082008-11-16 05:38:51 +00008768 (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
Dan Gohman35b76162008-10-30 20:40:10 +00008769 Value *In = ICI->getOperand(0);
8770 Value *Sh = ConstantInt::get(In->getType(),
8771 In->getType()->getPrimitiveSizeInBits()-1);
8772 In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
8773 In->getName()+".lobit"),
8774 *ICI);
Dan Gohman47a60772008-11-02 00:17:33 +00008775 if (In->getType() != SI.getType())
8776 In = CastInst::CreateIntegerCast(In, SI.getType(),
Dan Gohman35b76162008-10-30 20:40:10 +00008777 true/*SExt*/, "tmp", ICI);
8778
8779 if (Pred == ICmpInst::ICMP_SGT)
8780 In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
8781 In->getName()+".not"), *ICI);
8782
8783 return ReplaceInstUsesWith(SI, In);
8784 }
8785 }
8786 }
8787
Dan Gohman58c09632008-09-16 18:46:06 +00008788 if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
8789 // Transform (X == Y) ? X : Y -> Y
8790 if (Pred == ICmpInst::ICMP_EQ)
8791 return ReplaceInstUsesWith(SI, FalseVal);
8792 // Transform (X != Y) ? X : Y -> X
8793 if (Pred == ICmpInst::ICMP_NE)
8794 return ReplaceInstUsesWith(SI, TrueVal);
8795 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8796
8797 } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
8798 // Transform (X == Y) ? Y : X -> X
8799 if (Pred == ICmpInst::ICMP_EQ)
8800 return ReplaceInstUsesWith(SI, FalseVal);
8801 // Transform (X != Y) ? Y : X -> Y
8802 if (Pred == ICmpInst::ICMP_NE)
8803 return ReplaceInstUsesWith(SI, TrueVal);
8804 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8805 }
8806
8807 /// NOTE: if we wanted to, this is where to detect integer ABS
8808
8809 return Changed ? &SI : 0;
8810}
8811
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008812Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
8813 Value *CondVal = SI.getCondition();
8814 Value *TrueVal = SI.getTrueValue();
8815 Value *FalseVal = SI.getFalseValue();
8816
8817 // select true, X, Y -> X
8818 // select false, X, Y -> Y
8819 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
8820 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
8821
8822 // select C, X, X -> X
8823 if (TrueVal == FalseVal)
8824 return ReplaceInstUsesWith(SI, TrueVal);
8825
8826 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
8827 return ReplaceInstUsesWith(SI, FalseVal);
8828 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
8829 return ReplaceInstUsesWith(SI, TrueVal);
8830 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
8831 if (isa<Constant>(TrueVal))
8832 return ReplaceInstUsesWith(SI, TrueVal);
8833 else
8834 return ReplaceInstUsesWith(SI, FalseVal);
8835 }
8836
8837 if (SI.getType() == Type::Int1Ty) {
8838 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
8839 if (C->getZExtValue()) {
8840 // Change: A = select B, true, C --> A = or B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008841 return BinaryOperator::CreateOr(CondVal, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008842 } else {
8843 // Change: A = select B, false, C --> A = and !B, C
8844 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008845 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008846 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008847 return BinaryOperator::CreateAnd(NotCond, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008848 }
8849 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
8850 if (C->getZExtValue() == false) {
8851 // Change: A = select B, C, false --> A = and B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008852 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008853 } else {
8854 // Change: A = select B, C, true --> A = or !B, C
8855 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008856 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008857 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008858 return BinaryOperator::CreateOr(NotCond, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008859 }
8860 }
Chris Lattner53f85a72007-11-25 21:27:53 +00008861
8862 // select a, b, a -> a&b
8863 // select a, a, b -> a|b
8864 if (CondVal == TrueVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008865 return BinaryOperator::CreateOr(CondVal, FalseVal);
Chris Lattner53f85a72007-11-25 21:27:53 +00008866 else if (CondVal == FalseVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008867 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008868 }
8869
8870 // Selecting between two integer constants?
8871 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
8872 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
8873 // select C, 1, 0 -> zext C to int
8874 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00008875 return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008876 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
8877 // select C, 0, 1 -> zext !C to int
8878 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008879 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008880 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008881 return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008882 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008883
8884 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
8885
8886 // (x <s 0) ? -1 : 0 -> ashr x, 31
8887 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
8888 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
8889 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
8890 // The comparison constant and the result are not neccessarily the
8891 // same width. Make an all-ones value by inserting a AShr.
8892 Value *X = IC->getOperand(0);
8893 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
8894 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008895 Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008896 ShAmt, "ones");
8897 InsertNewInstBefore(SRA, SI);
Eli Friedman722b4792008-11-30 21:09:11 +00008898
8899 // Then cast to the appropriate width.
8900 return CastInst::CreateIntegerCast(SRA, SI.getType(), true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008901 }
8902 }
8903
8904
8905 // If one of the constants is zero (we know they can't both be) and we
8906 // have an icmp instruction with zero, and we have an 'and' with the
8907 // non-constant value, eliminate this whole mess. This corresponds to
8908 // cases like this: ((X & 27) ? 27 : 0)
8909 if (TrueValC->isZero() || FalseValC->isZero())
8910 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
8911 cast<Constant>(IC->getOperand(1))->isNullValue())
8912 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
8913 if (ICA->getOpcode() == Instruction::And &&
8914 isa<ConstantInt>(ICA->getOperand(1)) &&
8915 (ICA->getOperand(1) == TrueValC ||
8916 ICA->getOperand(1) == FalseValC) &&
8917 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
8918 // Okay, now we know that everything is set up, we just don't
8919 // know whether we have a icmp_ne or icmp_eq and whether the
8920 // true or false val is the zero.
8921 bool ShouldNotVal = !TrueValC->isZero();
8922 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
8923 Value *V = ICA;
8924 if (ShouldNotVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008925 V = InsertNewInstBefore(BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008926 Instruction::Xor, V, ICA->getOperand(1)), SI);
8927 return ReplaceInstUsesWith(SI, V);
8928 }
8929 }
8930 }
8931
8932 // See if we are selecting two values based on a comparison of the two values.
8933 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
8934 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
8935 // Transform (X == Y) ? X : Y -> Y
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008936 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8937 // This is not safe in general for floating point:
8938 // consider X== -0, Y== +0.
8939 // It becomes safe if either operand is a nonzero constant.
8940 ConstantFP *CFPt, *CFPf;
8941 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8942 !CFPt->getValueAPF().isZero()) ||
8943 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8944 !CFPf->getValueAPF().isZero()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008945 return ReplaceInstUsesWith(SI, FalseVal);
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008946 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008947 // Transform (X != Y) ? X : Y -> X
8948 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8949 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008950 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008951
8952 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
8953 // Transform (X == Y) ? Y : X -> X
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008954 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8955 // This is not safe in general for floating point:
8956 // consider X== -0, Y== +0.
8957 // It becomes safe if either operand is a nonzero constant.
8958 ConstantFP *CFPt, *CFPf;
8959 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8960 !CFPt->getValueAPF().isZero()) ||
8961 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8962 !CFPf->getValueAPF().isZero()))
8963 return ReplaceInstUsesWith(SI, FalseVal);
8964 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008965 // Transform (X != Y) ? Y : X -> Y
8966 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8967 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008968 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008969 }
Dan Gohman58c09632008-09-16 18:46:06 +00008970 // NOTE: if we wanted to, this is where to detect ABS
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008971 }
8972
8973 // See if we are selecting two values based on a comparison of the two values.
Dan Gohman58c09632008-09-16 18:46:06 +00008974 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
8975 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
8976 return Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008977
8978 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
8979 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
8980 if (TI->hasOneUse() && FI->hasOneUse()) {
8981 Instruction *AddOp = 0, *SubOp = 0;
8982
8983 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
8984 if (TI->getOpcode() == FI->getOpcode())
8985 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
8986 return IV;
8987
8988 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
8989 // even legal for FP.
8990 if (TI->getOpcode() == Instruction::Sub &&
8991 FI->getOpcode() == Instruction::Add) {
8992 AddOp = FI; SubOp = TI;
8993 } else if (FI->getOpcode() == Instruction::Sub &&
8994 TI->getOpcode() == Instruction::Add) {
8995 AddOp = TI; SubOp = FI;
8996 }
8997
8998 if (AddOp) {
8999 Value *OtherAddOp = 0;
9000 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
9001 OtherAddOp = AddOp->getOperand(1);
9002 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
9003 OtherAddOp = AddOp->getOperand(0);
9004 }
9005
9006 if (OtherAddOp) {
9007 // So at this point we know we have (Y -> OtherAddOp):
9008 // select C, (add X, Y), (sub X, Z)
9009 Value *NegVal; // Compute -Z
9010 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
9011 NegVal = ConstantExpr::getNeg(C);
9012 } else {
9013 NegVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00009014 BinaryOperator::CreateNeg(SubOp->getOperand(1), "tmp"), SI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009015 }
9016
9017 Value *NewTrueOp = OtherAddOp;
9018 Value *NewFalseOp = NegVal;
9019 if (AddOp != TI)
9020 std::swap(NewTrueOp, NewFalseOp);
9021 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009022 SelectInst::Create(CondVal, NewTrueOp,
9023 NewFalseOp, SI.getName() + ".p");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009024
9025 NewSel = InsertNewInstBefore(NewSel, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00009026 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009027 }
9028 }
9029 }
9030
9031 // See if we can fold the select into one of our operands.
9032 if (SI.getType()->isInteger()) {
9033 // See the comment above GetSelectFoldableOperands for a description of the
9034 // transformation we are doing here.
9035 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
9036 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
9037 !isa<Constant>(FalseVal))
9038 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
9039 unsigned OpToFold = 0;
9040 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
9041 OpToFold = 1;
9042 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
9043 OpToFold = 2;
9044 }
9045
9046 if (OpToFold) {
9047 Constant *C = GetSelectFoldableConstant(TVI);
9048 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009049 SelectInst::Create(SI.getCondition(),
9050 TVI->getOperand(2-OpToFold), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009051 InsertNewInstBefore(NewSel, SI);
9052 NewSel->takeName(TVI);
9053 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00009054 return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009055 else {
9056 assert(0 && "Unknown instruction!!");
9057 }
9058 }
9059 }
9060
9061 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
9062 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
9063 !isa<Constant>(TrueVal))
9064 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
9065 unsigned OpToFold = 0;
9066 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
9067 OpToFold = 1;
9068 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
9069 OpToFold = 2;
9070 }
9071
9072 if (OpToFold) {
9073 Constant *C = GetSelectFoldableConstant(FVI);
9074 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009075 SelectInst::Create(SI.getCondition(), C,
9076 FVI->getOperand(2-OpToFold));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009077 InsertNewInstBefore(NewSel, SI);
9078 NewSel->takeName(FVI);
9079 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00009080 return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009081 else
9082 assert(0 && "Unknown instruction!!");
9083 }
9084 }
9085 }
9086
9087 if (BinaryOperator::isNot(CondVal)) {
9088 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
9089 SI.setOperand(1, FalseVal);
9090 SI.setOperand(2, TrueVal);
9091 return &SI;
9092 }
9093
9094 return 0;
9095}
9096
Dan Gohman2d648bb2008-04-10 18:43:06 +00009097/// EnforceKnownAlignment - If the specified pointer points to an object that
9098/// we control, modify the object's alignment to PrefAlign. This isn't
9099/// often possible though. If alignment is important, a more reliable approach
9100/// is to simply align all global variables and allocation instructions to
9101/// their preferred alignment from the beginning.
9102///
9103static unsigned EnforceKnownAlignment(Value *V,
9104 unsigned Align, unsigned PrefAlign) {
Chris Lattner47cf3452007-08-09 19:05:49 +00009105
Dan Gohman2d648bb2008-04-10 18:43:06 +00009106 User *U = dyn_cast<User>(V);
9107 if (!U) return Align;
9108
9109 switch (getOpcode(U)) {
9110 default: break;
9111 case Instruction::BitCast:
9112 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
9113 case Instruction::GetElementPtr: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009114 // If all indexes are zero, it is just the alignment of the base pointer.
9115 bool AllZeroOperands = true;
Gabor Greife92fbe22008-06-12 21:51:29 +00009116 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
Gabor Greif17396002008-06-12 21:37:33 +00009117 if (!isa<Constant>(*i) ||
9118 !cast<Constant>(*i)->isNullValue()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009119 AllZeroOperands = false;
9120 break;
9121 }
Chris Lattner47cf3452007-08-09 19:05:49 +00009122
9123 if (AllZeroOperands) {
9124 // Treat this like a bitcast.
Dan Gohman2d648bb2008-04-10 18:43:06 +00009125 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
Chris Lattner47cf3452007-08-09 19:05:49 +00009126 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00009127 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009128 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00009129 }
9130
9131 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
9132 // If there is a large requested alignment and we can, bump up the alignment
9133 // of the global.
9134 if (!GV->isDeclaration()) {
9135 GV->setAlignment(PrefAlign);
9136 Align = PrefAlign;
9137 }
9138 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
9139 // If there is a requested alignment and if this is an alloca, round up. We
9140 // don't do this for malloc, because some systems can't respect the request.
9141 if (isa<AllocaInst>(AI)) {
9142 AI->setAlignment(PrefAlign);
9143 Align = PrefAlign;
9144 }
9145 }
9146
9147 return Align;
9148}
9149
9150/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
9151/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
9152/// and it is more than the alignment of the ultimate object, see if we can
9153/// increase the alignment of the ultimate object, making this check succeed.
9154unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
9155 unsigned PrefAlign) {
9156 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
9157 sizeof(PrefAlign) * CHAR_BIT;
9158 APInt Mask = APInt::getAllOnesValue(BitWidth);
9159 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
9160 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
9161 unsigned TrailZ = KnownZero.countTrailingOnes();
9162 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
9163
9164 if (PrefAlign > Align)
9165 Align = EnforceKnownAlignment(V, Align, PrefAlign);
9166
9167 // We don't need to make any adjustment.
9168 return Align;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009169}
9170
Chris Lattner00ae5132008-01-13 23:50:23 +00009171Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Dan Gohman2d648bb2008-04-10 18:43:06 +00009172 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
9173 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
Chris Lattner00ae5132008-01-13 23:50:23 +00009174 unsigned MinAlign = std::min(DstAlign, SrcAlign);
9175 unsigned CopyAlign = MI->getAlignment()->getZExtValue();
9176
9177 if (CopyAlign < MinAlign) {
9178 MI->setAlignment(ConstantInt::get(Type::Int32Ty, MinAlign));
9179 return MI;
9180 }
9181
9182 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
9183 // load/store.
9184 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
9185 if (MemOpLength == 0) return 0;
9186
Chris Lattnerc669fb62008-01-14 00:28:35 +00009187 // Source and destination pointer types are always "i8*" for intrinsic. See
9188 // if the size is something we can handle with a single primitive load/store.
9189 // A single load+store correctly handles overlapping memory in the memmove
9190 // case.
Chris Lattner00ae5132008-01-13 23:50:23 +00009191 unsigned Size = MemOpLength->getZExtValue();
Chris Lattner5af8a912008-04-30 06:39:11 +00009192 if (Size == 0) return MI; // Delete this mem transfer.
9193
9194 if (Size > 8 || (Size&(Size-1)))
Chris Lattnerc669fb62008-01-14 00:28:35 +00009195 return 0; // If not 1/2/4/8 bytes, exit.
Chris Lattner00ae5132008-01-13 23:50:23 +00009196
Chris Lattnerc669fb62008-01-14 00:28:35 +00009197 // Use an integer load+store unless we can find something better.
Chris Lattner00ae5132008-01-13 23:50:23 +00009198 Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));
Chris Lattnerc669fb62008-01-14 00:28:35 +00009199
9200 // Memcpy forces the use of i8* for the source and destination. That means
9201 // that if you're using memcpy to move one double around, you'll get a cast
9202 // from double* to i8*. We'd much rather use a double load+store rather than
9203 // an i64 load+store, here because this improves the odds that the source or
9204 // dest address will be promotable. See if we can find a better type than the
9205 // integer datatype.
9206 if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
9207 const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
9208 if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
9209 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
9210 // down through these levels if so.
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009211 while (!SrcETy->isSingleValueType()) {
Chris Lattnerc669fb62008-01-14 00:28:35 +00009212 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
9213 if (STy->getNumElements() == 1)
9214 SrcETy = STy->getElementType(0);
9215 else
9216 break;
9217 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
9218 if (ATy->getNumElements() == 1)
9219 SrcETy = ATy->getElementType();
9220 else
9221 break;
9222 } else
9223 break;
9224 }
9225
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009226 if (SrcETy->isSingleValueType())
Chris Lattnerc669fb62008-01-14 00:28:35 +00009227 NewPtrTy = PointerType::getUnqual(SrcETy);
9228 }
9229 }
9230
9231
Chris Lattner00ae5132008-01-13 23:50:23 +00009232 // If the memcpy/memmove provides better alignment info than we can
9233 // infer, use it.
9234 SrcAlign = std::max(SrcAlign, CopyAlign);
9235 DstAlign = std::max(DstAlign, CopyAlign);
9236
9237 Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
9238 Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
Chris Lattnerc669fb62008-01-14 00:28:35 +00009239 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
9240 InsertNewInstBefore(L, *MI);
9241 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
9242
9243 // Set the size of the copy to 0, it will be deleted on the next iteration.
9244 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
9245 return MI;
Chris Lattner00ae5132008-01-13 23:50:23 +00009246}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009247
Chris Lattner5af8a912008-04-30 06:39:11 +00009248Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
9249 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
9250 if (MI->getAlignment()->getZExtValue() < Alignment) {
9251 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
9252 return MI;
9253 }
9254
9255 // Extract the length and alignment and fill if they are constant.
9256 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
9257 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
9258 if (!LenC || !FillC || FillC->getType() != Type::Int8Ty)
9259 return 0;
9260 uint64_t Len = LenC->getZExtValue();
9261 Alignment = MI->getAlignment()->getZExtValue();
9262
9263 // If the length is zero, this is a no-op
9264 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
9265
9266 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
9267 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
9268 const Type *ITy = IntegerType::get(Len*8); // n=1 -> i8.
9269
9270 Value *Dest = MI->getDest();
9271 Dest = InsertBitCastBefore(Dest, PointerType::getUnqual(ITy), *MI);
9272
9273 // Alignment 0 is identity for alignment 1 for memset, but not store.
9274 if (Alignment == 0) Alignment = 1;
9275
9276 // Extract the fill value and store.
9277 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
9278 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), Dest, false,
9279 Alignment), *MI);
9280
9281 // Set the size of the copy to 0, it will be deleted on the next iteration.
9282 MI->setLength(Constant::getNullValue(LenC->getType()));
9283 return MI;
9284 }
9285
9286 return 0;
9287}
9288
9289
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009290/// visitCallInst - CallInst simplification. This mostly only handles folding
9291/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
9292/// the heavy lifting.
9293///
9294Instruction *InstCombiner::visitCallInst(CallInst &CI) {
9295 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
9296 if (!II) return visitCallSite(&CI);
9297
9298 // Intrinsics cannot occur in an invoke, so handle them here instead of in
9299 // visitCallSite.
9300 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
9301 bool Changed = false;
9302
9303 // memmove/cpy/set of zero bytes is a noop.
9304 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
9305 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
9306
9307 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
9308 if (CI->getZExtValue() == 1) {
9309 // Replace the instruction with just byte operations. We would
9310 // transform other cases to loads/stores, but we don't know if
9311 // alignment is sufficient.
9312 }
9313 }
9314
9315 // If we have a memmove and the source operation is a constant global,
9316 // then the source and dest pointers can't alias, so we can change this
9317 // into a call to memcpy.
Chris Lattner00ae5132008-01-13 23:50:23 +00009318 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009319 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
9320 if (GVSrc->isConstant()) {
9321 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner82c2e432008-11-21 16:42:48 +00009322 Intrinsic::ID MemCpyID = Intrinsic::memcpy;
9323 const Type *Tys[1];
9324 Tys[0] = CI.getOperand(3)->getType();
9325 CI.setOperand(0,
9326 Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009327 Changed = true;
9328 }
Chris Lattner59b27d92008-05-28 05:30:41 +00009329
9330 // memmove(x,x,size) -> noop.
9331 if (MMI->getSource() == MMI->getDest())
9332 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009333 }
9334
9335 // If we can determine a pointer alignment that is bigger than currently
9336 // set, update the alignment.
9337 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattner00ae5132008-01-13 23:50:23 +00009338 if (Instruction *I = SimplifyMemTransfer(MI))
9339 return I;
Chris Lattner5af8a912008-04-30 06:39:11 +00009340 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
9341 if (Instruction *I = SimplifyMemSet(MSI))
9342 return I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009343 }
9344
9345 if (Changed) return II;
Chris Lattner989ba312008-06-18 04:33:20 +00009346 }
9347
9348 switch (II->getIntrinsicID()) {
9349 default: break;
9350 case Intrinsic::bswap:
9351 // bswap(bswap(x)) -> x
9352 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
9353 if (Operand->getIntrinsicID() == Intrinsic::bswap)
9354 return ReplaceInstUsesWith(CI, Operand->getOperand(1));
9355 break;
9356 case Intrinsic::ppc_altivec_lvx:
9357 case Intrinsic::ppc_altivec_lvxl:
9358 case Intrinsic::x86_sse_loadu_ps:
9359 case Intrinsic::x86_sse2_loadu_pd:
9360 case Intrinsic::x86_sse2_loadu_dq:
9361 // Turn PPC lvx -> load if the pointer is known aligned.
9362 // Turn X86 loadups -> load if the pointer is known aligned.
9363 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9364 Value *Ptr = InsertBitCastBefore(II->getOperand(1),
9365 PointerType::getUnqual(II->getType()),
9366 CI);
9367 return new LoadInst(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009368 }
Chris Lattner989ba312008-06-18 04:33:20 +00009369 break;
9370 case Intrinsic::ppc_altivec_stvx:
9371 case Intrinsic::ppc_altivec_stvxl:
9372 // Turn stvx -> store if the pointer is known aligned.
9373 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
9374 const Type *OpPtrTy =
9375 PointerType::getUnqual(II->getOperand(1)->getType());
9376 Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
9377 return new StoreInst(II->getOperand(1), Ptr);
9378 }
9379 break;
9380 case Intrinsic::x86_sse_storeu_ps:
9381 case Intrinsic::x86_sse2_storeu_pd:
9382 case Intrinsic::x86_sse2_storeu_dq:
Chris Lattner989ba312008-06-18 04:33:20 +00009383 // Turn X86 storeu -> store if the pointer is known aligned.
9384 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9385 const Type *OpPtrTy =
9386 PointerType::getUnqual(II->getOperand(2)->getType());
9387 Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
9388 return new StoreInst(II->getOperand(2), Ptr);
9389 }
9390 break;
9391
9392 case Intrinsic::x86_sse_cvttss2si: {
9393 // These intrinsics only demands the 0th element of its input vector. If
9394 // we can simplify the input based on that, do so now.
9395 uint64_t UndefElts;
9396 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
9397 UndefElts)) {
9398 II->setOperand(1, V);
9399 return II;
9400 }
9401 break;
9402 }
9403
9404 case Intrinsic::ppc_altivec_vperm:
9405 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
9406 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
9407 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009408
Chris Lattner989ba312008-06-18 04:33:20 +00009409 // Check that all of the elements are integer constants or undefs.
9410 bool AllEltsOk = true;
9411 for (unsigned i = 0; i != 16; ++i) {
9412 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
9413 !isa<UndefValue>(Mask->getOperand(i))) {
9414 AllEltsOk = false;
9415 break;
9416 }
9417 }
9418
9419 if (AllEltsOk) {
9420 // Cast the input vectors to byte vectors.
9421 Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
9422 Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
9423 Value *Result = UndefValue::get(Op0->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009424
Chris Lattner989ba312008-06-18 04:33:20 +00009425 // Only extract each element once.
9426 Value *ExtractedElts[32];
9427 memset(ExtractedElts, 0, sizeof(ExtractedElts));
9428
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009429 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner989ba312008-06-18 04:33:20 +00009430 if (isa<UndefValue>(Mask->getOperand(i)))
9431 continue;
9432 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
9433 Idx &= 31; // Match the hardware behavior.
9434
9435 if (ExtractedElts[Idx] == 0) {
9436 Instruction *Elt =
9437 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
9438 InsertNewInstBefore(Elt, CI);
9439 ExtractedElts[Idx] = Elt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009440 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009441
Chris Lattner989ba312008-06-18 04:33:20 +00009442 // Insert this value into the result vector.
9443 Result = InsertElementInst::Create(Result, ExtractedElts[Idx],
9444 i, "tmp");
9445 InsertNewInstBefore(cast<Instruction>(Result), CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009446 }
Chris Lattner989ba312008-06-18 04:33:20 +00009447 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009448 }
Chris Lattner989ba312008-06-18 04:33:20 +00009449 }
9450 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009451
Chris Lattner989ba312008-06-18 04:33:20 +00009452 case Intrinsic::stackrestore: {
9453 // If the save is right next to the restore, remove the restore. This can
9454 // happen when variable allocas are DCE'd.
9455 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
9456 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
9457 BasicBlock::iterator BI = SS;
9458 if (&*++BI == II)
9459 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009460 }
Chris Lattner989ba312008-06-18 04:33:20 +00009461 }
9462
9463 // Scan down this block to see if there is another stack restore in the
9464 // same block without an intervening call/alloca.
9465 BasicBlock::iterator BI = II;
9466 TerminatorInst *TI = II->getParent()->getTerminator();
9467 bool CannotRemove = false;
9468 for (++BI; &*BI != TI; ++BI) {
9469 if (isa<AllocaInst>(BI)) {
9470 CannotRemove = true;
9471 break;
9472 }
Chris Lattnera6b477c2008-06-25 05:59:28 +00009473 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
9474 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
9475 // If there is a stackrestore below this one, remove this one.
9476 if (II->getIntrinsicID() == Intrinsic::stackrestore)
9477 return EraseInstFromFunction(CI);
9478 // Otherwise, ignore the intrinsic.
9479 } else {
9480 // If we found a non-intrinsic call, we can't remove the stack
9481 // restore.
Chris Lattner416d91c2008-02-18 06:12:38 +00009482 CannotRemove = true;
9483 break;
9484 }
Chris Lattner989ba312008-06-18 04:33:20 +00009485 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009486 }
Chris Lattner989ba312008-06-18 04:33:20 +00009487
9488 // If the stack restore is in a return/unwind block and if there are no
9489 // allocas or calls between the restore and the return, nuke the restore.
9490 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
9491 return EraseInstFromFunction(CI);
9492 break;
9493 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009494 }
9495
9496 return visitCallSite(II);
9497}
9498
9499// InvokeInst simplification
9500//
9501Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
9502 return visitCallSite(&II);
9503}
9504
Dale Johannesen96021832008-04-25 21:16:07 +00009505/// isSafeToEliminateVarargsCast - If this cast does not affect the value
9506/// passed through the varargs area, we can eliminate the use of the cast.
Dale Johannesen35615462008-04-23 18:34:37 +00009507static bool isSafeToEliminateVarargsCast(const CallSite CS,
9508 const CastInst * const CI,
9509 const TargetData * const TD,
9510 const int ix) {
9511 if (!CI->isLosslessCast())
9512 return false;
9513
9514 // The size of ByVal arguments is derived from the type, so we
9515 // can't change to a type with a different size. If the size were
9516 // passed explicitly we could avoid this check.
Devang Pateld222f862008-09-25 21:00:45 +00009517 if (!CS.paramHasAttr(ix, Attribute::ByVal))
Dale Johannesen35615462008-04-23 18:34:37 +00009518 return true;
9519
9520 const Type* SrcTy =
9521 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
9522 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
9523 if (!SrcTy->isSized() || !DstTy->isSized())
9524 return false;
Duncan Sandsd68f13b2009-01-12 20:38:59 +00009525 if (TD->getTypePaddedSize(SrcTy) != TD->getTypePaddedSize(DstTy))
Dale Johannesen35615462008-04-23 18:34:37 +00009526 return false;
9527 return true;
9528}
9529
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009530// visitCallSite - Improvements for call and invoke instructions.
9531//
9532Instruction *InstCombiner::visitCallSite(CallSite CS) {
9533 bool Changed = false;
9534
9535 // If the callee is a constexpr cast of a function, attempt to move the cast
9536 // to the arguments of the call/invoke.
9537 if (transformConstExprCastCall(CS)) return 0;
9538
9539 Value *Callee = CS.getCalledValue();
9540
9541 if (Function *CalleeF = dyn_cast<Function>(Callee))
9542 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
9543 Instruction *OldCall = CS.getInstruction();
9544 // If the call and callee calling conventions don't match, this call must
9545 // be unreachable, as the call is undefined.
9546 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009547 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
9548 OldCall);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009549 if (!OldCall->use_empty())
9550 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
9551 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
9552 return EraseInstFromFunction(*OldCall);
9553 return 0;
9554 }
9555
9556 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
9557 // This instruction is not reachable, just remove it. We insert a store to
9558 // undef so that we know that this code is not reachable, despite the fact
9559 // that we can't modify the CFG here.
9560 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009561 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009562 CS.getInstruction());
9563
9564 if (!CS.getInstruction()->use_empty())
9565 CS.getInstruction()->
9566 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
9567
9568 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
9569 // Don't break the CFG, insert a dummy cond branch.
Gabor Greifd6da1d02008-04-06 20:25:17 +00009570 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
9571 ConstantInt::getTrue(), II);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009572 }
9573 return EraseInstFromFunction(*CS.getInstruction());
9574 }
9575
Duncan Sands74833f22007-09-17 10:26:40 +00009576 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
9577 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
9578 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
9579 return transformCallThroughTrampoline(CS);
9580
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009581 const PointerType *PTy = cast<PointerType>(Callee->getType());
9582 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
9583 if (FTy->isVarArg()) {
Dale Johannesen502336c2008-04-23 01:03:05 +00009584 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009585 // See if we can optimize any arguments passed through the varargs area of
9586 // the call.
9587 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
Dale Johannesen35615462008-04-23 18:34:37 +00009588 E = CS.arg_end(); I != E; ++I, ++ix) {
9589 CastInst *CI = dyn_cast<CastInst>(*I);
9590 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
9591 *I = CI->getOperand(0);
9592 Changed = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009593 }
Dale Johannesen35615462008-04-23 18:34:37 +00009594 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009595 }
9596
Duncan Sands2937e352007-12-19 21:13:37 +00009597 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
Duncan Sands7868f3c2007-12-16 15:51:49 +00009598 // Inline asm calls cannot throw - mark them 'nounwind'.
Duncan Sands2937e352007-12-19 21:13:37 +00009599 CS.setDoesNotThrow();
Duncan Sands7868f3c2007-12-16 15:51:49 +00009600 Changed = true;
9601 }
9602
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009603 return Changed ? CS.getInstruction() : 0;
9604}
9605
9606// transformConstExprCastCall - If the callee is a constexpr cast of a function,
9607// attempt to move the cast to the arguments of the call/invoke.
9608//
9609bool InstCombiner::transformConstExprCastCall(CallSite CS) {
9610 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
9611 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
9612 if (CE->getOpcode() != Instruction::BitCast ||
9613 !isa<Function>(CE->getOperand(0)))
9614 return false;
9615 Function *Callee = cast<Function>(CE->getOperand(0));
9616 Instruction *Caller = CS.getInstruction();
Devang Pateld222f862008-09-25 21:00:45 +00009617 const AttrListPtr &CallerPAL = CS.getAttributes();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009618
9619 // Okay, this is a cast from a function to a different type. Unless doing so
9620 // would cause a type conversion of one of our arguments, change this call to
9621 // be a direct call with arguments casted to the appropriate types.
9622 //
9623 const FunctionType *FT = Callee->getFunctionType();
9624 const Type *OldRetTy = Caller->getType();
Duncan Sands7901ce12008-06-01 07:38:42 +00009625 const Type *NewRetTy = FT->getReturnType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009626
Duncan Sands7901ce12008-06-01 07:38:42 +00009627 if (isa<StructType>(NewRetTy))
Devang Pateld091d322008-03-11 18:04:06 +00009628 return false; // TODO: Handle multiple return values.
9629
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009630 // Check to see if we are changing the return type...
Duncan Sands7901ce12008-06-01 07:38:42 +00009631 if (OldRetTy != NewRetTy) {
Bill Wendlingd9644a42008-05-14 22:45:20 +00009632 if (Callee->isDeclaration() &&
Duncan Sands7901ce12008-06-01 07:38:42 +00009633 // Conversion is ok if changing from one pointer type to another or from
9634 // a pointer to an integer of the same size.
9635 !((isa<PointerType>(OldRetTy) || OldRetTy == TD->getIntPtrType()) &&
Duncan Sands886cadb2008-06-17 15:55:30 +00009636 (isa<PointerType>(NewRetTy) || NewRetTy == TD->getIntPtrType())))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009637 return false; // Cannot transform this return value.
9638
Duncan Sands5c489582008-01-06 10:12:28 +00009639 if (!Caller->use_empty() &&
Duncan Sands5c489582008-01-06 10:12:28 +00009640 // void -> non-void is handled specially
Duncan Sands7901ce12008-06-01 07:38:42 +00009641 NewRetTy != Type::VoidTy && !CastInst::isCastable(NewRetTy, OldRetTy))
Duncan Sands5c489582008-01-06 10:12:28 +00009642 return false; // Cannot transform this return value.
9643
Chris Lattner1c8733e2008-03-12 17:45:29 +00009644 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
Devang Patelf2a4a922008-09-26 22:53:05 +00009645 Attributes RAttrs = CallerPAL.getRetAttributes();
Devang Pateld222f862008-09-25 21:00:45 +00009646 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
Duncan Sandsdbe97dc2008-01-07 17:16:06 +00009647 return false; // Attribute not compatible with transformed value.
9648 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009649
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009650 // If the callsite is an invoke instruction, and the return value is used by
9651 // a PHI node in a successor, we cannot change the return type of the call
9652 // because there is no place to put the cast instruction (without breaking
9653 // the critical edge). Bail out in this case.
9654 if (!Caller->use_empty())
9655 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
9656 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
9657 UI != E; ++UI)
9658 if (PHINode *PN = dyn_cast<PHINode>(*UI))
9659 if (PN->getParent() == II->getNormalDest() ||
9660 PN->getParent() == II->getUnwindDest())
9661 return false;
9662 }
9663
9664 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
9665 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
9666
9667 CallSite::arg_iterator AI = CS.arg_begin();
9668 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
9669 const Type *ParamTy = FT->getParamType(i);
9670 const Type *ActTy = (*AI)->getType();
Duncan Sands5c489582008-01-06 10:12:28 +00009671
9672 if (!CastInst::isCastable(ActTy, ParamTy))
Duncan Sandsc849e662008-01-06 18:27:01 +00009673 return false; // Cannot transform this parameter value.
9674
Devang Patelf2a4a922008-09-26 22:53:05 +00009675 if (CallerPAL.getParamAttributes(i + 1)
9676 & Attribute::typeIncompatible(ParamTy))
Chris Lattner1c8733e2008-03-12 17:45:29 +00009677 return false; // Attribute not compatible with transformed value.
Duncan Sands5c489582008-01-06 10:12:28 +00009678
Duncan Sands7901ce12008-06-01 07:38:42 +00009679 // Converting from one pointer type to another or between a pointer and an
9680 // integer of the same size is safe even if we do not have a body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009681 bool isConvertible = ActTy == ParamTy ||
Duncan Sands7901ce12008-06-01 07:38:42 +00009682 ((isa<PointerType>(ParamTy) || ParamTy == TD->getIntPtrType()) &&
9683 (isa<PointerType>(ActTy) || ActTy == TD->getIntPtrType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009684 if (Callee->isDeclaration() && !isConvertible) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009685 }
9686
9687 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
9688 Callee->isDeclaration())
Chris Lattner1c8733e2008-03-12 17:45:29 +00009689 return false; // Do not delete arguments unless we have a function body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009690
Chris Lattner1c8733e2008-03-12 17:45:29 +00009691 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
9692 !CallerPAL.isEmpty())
Duncan Sandsc849e662008-01-06 18:27:01 +00009693 // In this case we have more arguments than the new function type, but we
Duncan Sands4ced1f82008-01-13 08:02:44 +00009694 // won't be dropping them. Check that these extra arguments have attributes
9695 // that are compatible with being a vararg call argument.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009696 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
9697 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
Duncan Sands4ced1f82008-01-13 08:02:44 +00009698 break;
Devang Patele480dfa2008-09-23 23:03:40 +00009699 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
Devang Pateld222f862008-09-25 21:00:45 +00009700 if (PAttrs & Attribute::VarArgsIncompatible)
Duncan Sands4ced1f82008-01-13 08:02:44 +00009701 return false;
9702 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009703
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009704 // Okay, we decided that this is a safe thing to do: go ahead and start
9705 // inserting cast instructions as necessary...
9706 std::vector<Value*> Args;
9707 Args.reserve(NumActualArgs);
Devang Pateld222f862008-09-25 21:00:45 +00009708 SmallVector<AttributeWithIndex, 8> attrVec;
Duncan Sandsc849e662008-01-06 18:27:01 +00009709 attrVec.reserve(NumCommonArgs);
9710
9711 // Get any return attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009712 Attributes RAttrs = CallerPAL.getRetAttributes();
Duncan Sandsc849e662008-01-06 18:27:01 +00009713
9714 // If the return value is not being used, the type may not be compatible
9715 // with the existing attributes. Wipe out any problematic attributes.
Devang Pateld222f862008-09-25 21:00:45 +00009716 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
Duncan Sandsc849e662008-01-06 18:27:01 +00009717
9718 // Add the new return attributes.
9719 if (RAttrs)
Devang Pateld222f862008-09-25 21:00:45 +00009720 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009721
9722 AI = CS.arg_begin();
9723 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
9724 const Type *ParamTy = FT->getParamType(i);
9725 if ((*AI)->getType() == ParamTy) {
9726 Args.push_back(*AI);
9727 } else {
9728 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
9729 false, ParamTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009730 CastInst *NewCast = CastInst::Create(opcode, *AI, ParamTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009731 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
9732 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009733
9734 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009735 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009736 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009737 }
9738
9739 // If the function takes more arguments than the call was taking, add them
9740 // now...
9741 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
9742 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
9743
9744 // If we are removing arguments to the function, emit an obnoxious warning...
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009745 if (FT->getNumParams() < NumActualArgs) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009746 if (!FT->isVarArg()) {
9747 cerr << "WARNING: While resolving call to function '"
9748 << Callee->getName() << "' arguments were dropped!\n";
9749 } else {
9750 // Add all of the arguments in their promoted form to the arg list...
9751 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
9752 const Type *PTy = getPromotedType((*AI)->getType());
9753 if (PTy != (*AI)->getType()) {
9754 // Must promote to pass through va_arg area!
9755 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
9756 PTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009757 Instruction *Cast = CastInst::Create(opcode, *AI, PTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009758 InsertNewInstBefore(Cast, *Caller);
9759 Args.push_back(Cast);
9760 } else {
9761 Args.push_back(*AI);
9762 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009763
Duncan Sands4ced1f82008-01-13 08:02:44 +00009764 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009765 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009766 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Duncan Sands4ced1f82008-01-13 08:02:44 +00009767 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009768 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009769 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009770
Devang Patelf2a4a922008-09-26 22:53:05 +00009771 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
9772 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
9773
Duncan Sands7901ce12008-06-01 07:38:42 +00009774 if (NewRetTy == Type::VoidTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009775 Caller->setName(""); // Void type should not have a name.
9776
Devang Pateld222f862008-09-25 21:00:45 +00009777 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),attrVec.end());
Duncan Sandsc849e662008-01-06 18:27:01 +00009778
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009779 Instruction *NC;
9780 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009781 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009782 Args.begin(), Args.end(),
9783 Caller->getName(), Caller);
Reid Spencer6b0b09a2007-07-30 19:53:57 +00009784 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009785 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009786 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009787 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
9788 Caller->getName(), Caller);
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009789 CallInst *CI = cast<CallInst>(Caller);
9790 if (CI->isTailCall())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009791 cast<CallInst>(NC)->setTailCall();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009792 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009793 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009794 }
9795
9796 // Insert a cast of the return type as necessary.
9797 Value *NV = NC;
Duncan Sands5c489582008-01-06 10:12:28 +00009798 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009799 if (NV->getType() != Type::VoidTy) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009800 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Duncan Sands5c489582008-01-06 10:12:28 +00009801 OldRetTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009802 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009803
9804 // If this is an invoke instruction, we should insert it after the first
9805 // non-phi, instruction in the normal successor block.
9806 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Dan Gohman514277c2008-05-23 21:05:58 +00009807 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009808 InsertNewInstBefore(NC, *I);
9809 } else {
9810 // Otherwise, it's a call, just insert cast right after the call instr
9811 InsertNewInstBefore(NC, *Caller);
9812 }
9813 AddUsersToWorkList(*Caller);
9814 } else {
9815 NV = UndefValue::get(Caller->getType());
9816 }
9817 }
9818
9819 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9820 Caller->replaceAllUsesWith(NV);
9821 Caller->eraseFromParent();
9822 RemoveFromWorkList(Caller);
9823 return true;
9824}
9825
Duncan Sands74833f22007-09-17 10:26:40 +00009826// transformCallThroughTrampoline - Turn a call to a function created by the
9827// init_trampoline intrinsic into a direct call to the underlying function.
9828//
9829Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
9830 Value *Callee = CS.getCalledValue();
9831 const PointerType *PTy = cast<PointerType>(Callee->getType());
9832 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Devang Pateld222f862008-09-25 21:00:45 +00009833 const AttrListPtr &Attrs = CS.getAttributes();
Duncan Sands48b81112008-01-14 19:52:09 +00009834
9835 // If the call already has the 'nest' attribute somewhere then give up -
9836 // otherwise 'nest' would occur twice after splicing in the chain.
Devang Pateld222f862008-09-25 21:00:45 +00009837 if (Attrs.hasAttrSomewhere(Attribute::Nest))
Duncan Sands48b81112008-01-14 19:52:09 +00009838 return 0;
Duncan Sands74833f22007-09-17 10:26:40 +00009839
9840 IntrinsicInst *Tramp =
9841 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
9842
Anton Korobeynikov48fc88f2008-05-07 22:54:15 +00009843 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
Duncan Sands74833f22007-09-17 10:26:40 +00009844 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
9845 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
9846
Devang Pateld222f862008-09-25 21:00:45 +00009847 const AttrListPtr &NestAttrs = NestF->getAttributes();
Chris Lattner1c8733e2008-03-12 17:45:29 +00009848 if (!NestAttrs.isEmpty()) {
Duncan Sands74833f22007-09-17 10:26:40 +00009849 unsigned NestIdx = 1;
9850 const Type *NestTy = 0;
Devang Pateld222f862008-09-25 21:00:45 +00009851 Attributes NestAttr = Attribute::None;
Duncan Sands74833f22007-09-17 10:26:40 +00009852
9853 // Look for a parameter marked with the 'nest' attribute.
9854 for (FunctionType::param_iterator I = NestFTy->param_begin(),
9855 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
Devang Pateld222f862008-09-25 21:00:45 +00009856 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
Duncan Sands74833f22007-09-17 10:26:40 +00009857 // Record the parameter type and any other attributes.
9858 NestTy = *I;
Devang Patelf2a4a922008-09-26 22:53:05 +00009859 NestAttr = NestAttrs.getParamAttributes(NestIdx);
Duncan Sands74833f22007-09-17 10:26:40 +00009860 break;
9861 }
9862
9863 if (NestTy) {
9864 Instruction *Caller = CS.getInstruction();
9865 std::vector<Value*> NewArgs;
9866 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
9867
Devang Pateld222f862008-09-25 21:00:45 +00009868 SmallVector<AttributeWithIndex, 8> NewAttrs;
Chris Lattner1c8733e2008-03-12 17:45:29 +00009869 NewAttrs.reserve(Attrs.getNumSlots() + 1);
Duncan Sands48b81112008-01-14 19:52:09 +00009870
Duncan Sands74833f22007-09-17 10:26:40 +00009871 // Insert the nest argument into the call argument list, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009872 // mean appending it. Likewise for attributes.
9873
Devang Patelf2a4a922008-09-26 22:53:05 +00009874 // Add any result attributes.
9875 if (Attributes Attr = Attrs.getRetAttributes())
Devang Pateld222f862008-09-25 21:00:45 +00009876 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
Duncan Sands48b81112008-01-14 19:52:09 +00009877
Duncan Sands74833f22007-09-17 10:26:40 +00009878 {
9879 unsigned Idx = 1;
9880 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
9881 do {
9882 if (Idx == NestIdx) {
Duncan Sands48b81112008-01-14 19:52:09 +00009883 // Add the chain argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009884 Value *NestVal = Tramp->getOperand(3);
9885 if (NestVal->getType() != NestTy)
9886 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
9887 NewArgs.push_back(NestVal);
Devang Pateld222f862008-09-25 21:00:45 +00009888 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
Duncan Sands74833f22007-09-17 10:26:40 +00009889 }
9890
9891 if (I == E)
9892 break;
9893
Duncan Sands48b81112008-01-14 19:52:09 +00009894 // Add the original argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009895 NewArgs.push_back(*I);
Devang Patelf2a4a922008-09-26 22:53:05 +00009896 if (Attributes Attr = Attrs.getParamAttributes(Idx))
Duncan Sands48b81112008-01-14 19:52:09 +00009897 NewAttrs.push_back
Devang Pateld222f862008-09-25 21:00:45 +00009898 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
Duncan Sands74833f22007-09-17 10:26:40 +00009899
9900 ++Idx, ++I;
9901 } while (1);
9902 }
9903
Devang Patelf2a4a922008-09-26 22:53:05 +00009904 // Add any function attributes.
9905 if (Attributes Attr = Attrs.getFnAttributes())
9906 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
9907
Duncan Sands74833f22007-09-17 10:26:40 +00009908 // The trampoline may have been bitcast to a bogus type (FTy).
9909 // Handle this by synthesizing a new function type, equal to FTy
Duncan Sands48b81112008-01-14 19:52:09 +00009910 // with the chain parameter inserted.
Duncan Sands74833f22007-09-17 10:26:40 +00009911
Duncan Sands74833f22007-09-17 10:26:40 +00009912 std::vector<const Type*> NewTypes;
Duncan Sands74833f22007-09-17 10:26:40 +00009913 NewTypes.reserve(FTy->getNumParams()+1);
9914
Duncan Sands74833f22007-09-17 10:26:40 +00009915 // Insert the chain's type into the list of parameter types, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009916 // mean appending it.
Duncan Sands74833f22007-09-17 10:26:40 +00009917 {
9918 unsigned Idx = 1;
9919 FunctionType::param_iterator I = FTy->param_begin(),
9920 E = FTy->param_end();
9921
9922 do {
Duncan Sands48b81112008-01-14 19:52:09 +00009923 if (Idx == NestIdx)
9924 // Add the chain's type.
Duncan Sands74833f22007-09-17 10:26:40 +00009925 NewTypes.push_back(NestTy);
Duncan Sands74833f22007-09-17 10:26:40 +00009926
9927 if (I == E)
9928 break;
9929
Duncan Sands48b81112008-01-14 19:52:09 +00009930 // Add the original type.
Duncan Sands74833f22007-09-17 10:26:40 +00009931 NewTypes.push_back(*I);
Duncan Sands74833f22007-09-17 10:26:40 +00009932
9933 ++Idx, ++I;
9934 } while (1);
9935 }
9936
9937 // Replace the trampoline call with a direct call. Let the generic
9938 // code sort out any function type mismatches.
9939 FunctionType *NewFTy =
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009940 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
Christopher Lambbb2f2222007-12-17 01:12:55 +00009941 Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
9942 NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
Devang Pateld222f862008-09-25 21:00:45 +00009943 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),NewAttrs.end());
Duncan Sands74833f22007-09-17 10:26:40 +00009944
9945 Instruction *NewCaller;
9946 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009947 NewCaller = InvokeInst::Create(NewCallee,
9948 II->getNormalDest(), II->getUnwindDest(),
9949 NewArgs.begin(), NewArgs.end(),
9950 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009951 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009952 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009953 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009954 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
9955 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009956 if (cast<CallInst>(Caller)->isTailCall())
9957 cast<CallInst>(NewCaller)->setTailCall();
9958 cast<CallInst>(NewCaller)->
9959 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009960 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009961 }
9962 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9963 Caller->replaceAllUsesWith(NewCaller);
9964 Caller->eraseFromParent();
9965 RemoveFromWorkList(Caller);
9966 return 0;
9967 }
9968 }
9969
9970 // Replace the trampoline call with a direct call. Since there is no 'nest'
9971 // parameter, there is no need to adjust the argument list. Let the generic
9972 // code sort out any function type mismatches.
9973 Constant *NewCallee =
9974 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
9975 CS.setCalledFunction(NewCallee);
9976 return CS.getInstruction();
9977}
9978
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009979/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
9980/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
9981/// and a single binop.
9982Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
9983 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
Chris Lattner30078012008-12-01 03:42:51 +00009984 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009985 unsigned Opc = FirstInst->getOpcode();
9986 Value *LHSVal = FirstInst->getOperand(0);
9987 Value *RHSVal = FirstInst->getOperand(1);
9988
9989 const Type *LHSType = LHSVal->getType();
9990 const Type *RHSType = RHSVal->getType();
9991
9992 // Scan to see if all operands are the same opcode, all have one use, and all
9993 // kill their operands (i.e. the operands have one use).
Chris Lattner9e1916e2008-12-01 02:34:36 +00009994 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009995 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
9996 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
9997 // Verify type of the LHS matches so we don't fold cmp's of different
9998 // types or GEP's with different index types.
9999 I->getOperand(0)->getType() != LHSType ||
10000 I->getOperand(1)->getType() != RHSType)
10001 return 0;
10002
10003 // If they are CmpInst instructions, check their predicates
10004 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
10005 if (cast<CmpInst>(I)->getPredicate() !=
10006 cast<CmpInst>(FirstInst)->getPredicate())
10007 return 0;
10008
10009 // Keep track of which operand needs a phi node.
10010 if (I->getOperand(0) != LHSVal) LHSVal = 0;
10011 if (I->getOperand(1) != RHSVal) RHSVal = 0;
10012 }
10013
Chris Lattner30078012008-12-01 03:42:51 +000010014 // Otherwise, this is safe to transform!
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010015
10016 Value *InLHS = FirstInst->getOperand(0);
10017 Value *InRHS = FirstInst->getOperand(1);
10018 PHINode *NewLHS = 0, *NewRHS = 0;
10019 if (LHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +000010020 NewLHS = PHINode::Create(LHSType,
10021 FirstInst->getOperand(0)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010022 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
10023 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
10024 InsertNewInstBefore(NewLHS, PN);
10025 LHSVal = NewLHS;
10026 }
10027
10028 if (RHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +000010029 NewRHS = PHINode::Create(RHSType,
10030 FirstInst->getOperand(1)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010031 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
10032 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
10033 InsertNewInstBefore(NewRHS, PN);
10034 RHSVal = NewRHS;
10035 }
10036
10037 // Add all operands to the new PHIs.
Chris Lattner9e1916e2008-12-01 02:34:36 +000010038 if (NewLHS || NewRHS) {
10039 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10040 Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
10041 if (NewLHS) {
10042 Value *NewInLHS = InInst->getOperand(0);
10043 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
10044 }
10045 if (NewRHS) {
10046 Value *NewInRHS = InInst->getOperand(1);
10047 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
10048 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010049 }
10050 }
10051
10052 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010053 return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
Chris Lattner30078012008-12-01 03:42:51 +000010054 CmpInst *CIOp = cast<CmpInst>(FirstInst);
10055 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
10056 RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010057}
10058
Chris Lattner9e1916e2008-12-01 02:34:36 +000010059Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
10060 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
10061
10062 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
10063 FirstInst->op_end());
10064
10065 // Scan to see if all operands are the same opcode, all have one use, and all
10066 // kill their operands (i.e. the operands have one use).
10067 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
10068 GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
10069 if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
10070 GEP->getNumOperands() != FirstInst->getNumOperands())
10071 return 0;
10072
10073 // Compare the operand lists.
10074 for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
10075 if (FirstInst->getOperand(op) == GEP->getOperand(op))
10076 continue;
10077
10078 // Don't merge two GEPs when two operands differ (introducing phi nodes)
10079 // if one of the PHIs has a constant for the index. The index may be
10080 // substantially cheaper to compute for the constants, so making it a
10081 // variable index could pessimize the path. This also handles the case
10082 // for struct indices, which must always be constant.
10083 if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
10084 isa<ConstantInt>(GEP->getOperand(op)))
10085 return 0;
10086
10087 if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
10088 return 0;
10089 FixedOperands[op] = 0; // Needs a PHI.
10090 }
10091 }
10092
10093 // Otherwise, this is safe to transform. Insert PHI nodes for each operand
10094 // that is variable.
10095 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
10096
10097 bool HasAnyPHIs = false;
10098 for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
10099 if (FixedOperands[i]) continue; // operand doesn't need a phi.
10100 Value *FirstOp = FirstInst->getOperand(i);
10101 PHINode *NewPN = PHINode::Create(FirstOp->getType(),
10102 FirstOp->getName()+".pn");
10103 InsertNewInstBefore(NewPN, PN);
10104
10105 NewPN->reserveOperandSpace(e);
10106 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
10107 OperandPhis[i] = NewPN;
10108 FixedOperands[i] = NewPN;
10109 HasAnyPHIs = true;
10110 }
10111
10112
10113 // Add all operands to the new PHIs.
10114 if (HasAnyPHIs) {
10115 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10116 GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
10117 BasicBlock *InBB = PN.getIncomingBlock(i);
10118
10119 for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
10120 if (PHINode *OpPhi = OperandPhis[op])
10121 OpPhi->addIncoming(InGEP->getOperand(op), InBB);
10122 }
10123 }
10124
10125 Value *Base = FixedOperands[0];
10126 return GetElementPtrInst::Create(Base, FixedOperands.begin()+1,
10127 FixedOperands.end());
10128}
10129
10130
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010131/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
10132/// of the block that defines it. This means that it must be obvious the value
10133/// of the load is not changed from the point of the load to the end of the
10134/// block it is in.
10135///
10136/// Finally, it is safe, but not profitable, to sink a load targetting a
10137/// non-address-taken alloca. Doing so will cause us to not promote the alloca
10138/// to a register.
10139static bool isSafeToSinkLoad(LoadInst *L) {
10140 BasicBlock::iterator BBI = L, E = L->getParent()->end();
10141
10142 for (++BBI; BBI != E; ++BBI)
10143 if (BBI->mayWriteToMemory())
10144 return false;
10145
10146 // Check for non-address taken alloca. If not address-taken already, it isn't
10147 // profitable to do this xform.
10148 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
10149 bool isAddressTaken = false;
10150 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
10151 UI != E; ++UI) {
10152 if (isa<LoadInst>(UI)) continue;
10153 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
10154 // If storing TO the alloca, then the address isn't taken.
10155 if (SI->getOperand(1) == AI) continue;
10156 }
10157 isAddressTaken = true;
10158 break;
10159 }
10160
10161 if (!isAddressTaken)
10162 return false;
10163 }
10164
10165 return true;
10166}
10167
10168
10169// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
10170// operator and they all are only used by the PHI, PHI together their
10171// inputs, and do the operation once, to the result of the PHI.
10172Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
10173 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
10174
10175 // Scan the instruction, looking for input operations that can be folded away.
10176 // If all input operands to the phi are the same instruction (e.g. a cast from
10177 // the same type or "+42") we can pull the operation through the PHI, reducing
10178 // code size and simplifying code.
10179 Constant *ConstantOp = 0;
10180 const Type *CastSrcTy = 0;
10181 bool isVolatile = false;
10182 if (isa<CastInst>(FirstInst)) {
10183 CastSrcTy = FirstInst->getOperand(0)->getType();
10184 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
10185 // Can fold binop, compare or shift here if the RHS is a constant,
10186 // otherwise call FoldPHIArgBinOpIntoPHI.
10187 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
10188 if (ConstantOp == 0)
10189 return FoldPHIArgBinOpIntoPHI(PN);
10190 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
10191 isVolatile = LI->isVolatile();
10192 // We can't sink the load if the loaded value could be modified between the
10193 // load and the PHI.
10194 if (LI->getParent() != PN.getIncomingBlock(0) ||
10195 !isSafeToSinkLoad(LI))
10196 return 0;
Chris Lattner2d9fdd82008-07-08 17:18:32 +000010197
10198 // If the PHI is of volatile loads and the load block has multiple
10199 // successors, sinking it would remove a load of the volatile value from
10200 // the path through the other successor.
10201 if (isVolatile &&
10202 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10203 return 0;
10204
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010205 } else if (isa<GetElementPtrInst>(FirstInst)) {
Chris Lattner9e1916e2008-12-01 02:34:36 +000010206 return FoldPHIArgGEPIntoPHI(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010207 } else {
10208 return 0; // Cannot fold this operation.
10209 }
10210
10211 // Check to see if all arguments are the same operation.
10212 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10213 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
10214 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
10215 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
10216 return 0;
10217 if (CastSrcTy) {
10218 if (I->getOperand(0)->getType() != CastSrcTy)
10219 return 0; // Cast operation must match.
10220 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
10221 // We can't sink the load if the loaded value could be modified between
10222 // the load and the PHI.
10223 if (LI->isVolatile() != isVolatile ||
10224 LI->getParent() != PN.getIncomingBlock(i) ||
10225 !isSafeToSinkLoad(LI))
10226 return 0;
Chris Lattnerf7867012008-04-29 17:28:22 +000010227
Chris Lattner2d9fdd82008-07-08 17:18:32 +000010228 // If the PHI is of volatile loads and the load block has multiple
10229 // successors, sinking it would remove a load of the volatile value from
10230 // the path through the other successor.
Chris Lattnerf7867012008-04-29 17:28:22 +000010231 if (isVolatile &&
10232 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10233 return 0;
10234
10235
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010236 } else if (I->getOperand(1) != ConstantOp) {
10237 return 0;
10238 }
10239 }
10240
10241 // Okay, they are all the same operation. Create a new PHI node of the
10242 // correct type, and PHI together all of the LHS's of the instructions.
Gabor Greifd6da1d02008-04-06 20:25:17 +000010243 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
10244 PN.getName()+".in");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010245 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
10246
10247 Value *InVal = FirstInst->getOperand(0);
10248 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
10249
10250 // Add all operands to the new PHI.
10251 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10252 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
10253 if (NewInVal != InVal)
10254 InVal = 0;
10255 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
10256 }
10257
10258 Value *PhiVal;
10259 if (InVal) {
10260 // The new PHI unions all of the same values together. This is really
10261 // common, so we handle it intelligently here for compile-time speed.
10262 PhiVal = InVal;
10263 delete NewPN;
10264 } else {
10265 InsertNewInstBefore(NewPN, PN);
10266 PhiVal = NewPN;
10267 }
10268
10269 // Insert and return the new operation.
10270 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010271 return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
Chris Lattnerfc984e92008-04-29 17:13:43 +000010272 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010273 return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010274 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010275 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010276 PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010277 assert(isa<LoadInst>(FirstInst) && "Unknown operation");
10278
10279 // If this was a volatile load that we are merging, make sure to loop through
10280 // and mark all the input loads as non-volatile. If we don't do this, we will
10281 // insert a new volatile load and the old ones will not be deletable.
10282 if (isVolatile)
10283 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
10284 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
10285
10286 return new LoadInst(PhiVal, "", isVolatile);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010287}
10288
10289/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
10290/// that is dead.
10291static bool DeadPHICycle(PHINode *PN,
10292 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
10293 if (PN->use_empty()) return true;
10294 if (!PN->hasOneUse()) return false;
10295
10296 // Remember this node, and if we find the cycle, return.
10297 if (!PotentiallyDeadPHIs.insert(PN))
10298 return true;
Chris Lattneradf2e342007-08-28 04:23:55 +000010299
10300 // Don't scan crazily complex things.
10301 if (PotentiallyDeadPHIs.size() == 16)
10302 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010303
10304 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
10305 return DeadPHICycle(PU, PotentiallyDeadPHIs);
10306
10307 return false;
10308}
10309
Chris Lattner27b695d2007-11-06 21:52:06 +000010310/// PHIsEqualValue - Return true if this phi node is always equal to
10311/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
10312/// z = some value; x = phi (y, z); y = phi (x, z)
10313static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
10314 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
10315 // See if we already saw this PHI node.
10316 if (!ValueEqualPHIs.insert(PN))
10317 return true;
10318
10319 // Don't scan crazily complex things.
10320 if (ValueEqualPHIs.size() == 16)
10321 return false;
10322
10323 // Scan the operands to see if they are either phi nodes or are equal to
10324 // the value.
10325 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
10326 Value *Op = PN->getIncomingValue(i);
10327 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
10328 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
10329 return false;
10330 } else if (Op != NonPhiInVal)
10331 return false;
10332 }
10333
10334 return true;
10335}
10336
10337
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010338// PHINode simplification
10339//
10340Instruction *InstCombiner::visitPHINode(PHINode &PN) {
10341 // If LCSSA is around, don't mess with Phi nodes
10342 if (MustPreserveLCSSA) return 0;
10343
10344 if (Value *V = PN.hasConstantValue())
10345 return ReplaceInstUsesWith(PN, V);
10346
10347 // If all PHI operands are the same operation, pull them through the PHI,
10348 // reducing code size.
10349 if (isa<Instruction>(PN.getIncomingValue(0)) &&
Chris Lattner9e1916e2008-12-01 02:34:36 +000010350 isa<Instruction>(PN.getIncomingValue(1)) &&
10351 cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
10352 cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
10353 // FIXME: The hasOneUse check will fail for PHIs that use the value more
10354 // than themselves more than once.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010355 PN.getIncomingValue(0)->hasOneUse())
10356 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
10357 return Result;
10358
10359 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
10360 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
10361 // PHI)... break the cycle.
10362 if (PN.hasOneUse()) {
10363 Instruction *PHIUser = cast<Instruction>(PN.use_back());
10364 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
10365 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
10366 PotentiallyDeadPHIs.insert(&PN);
10367 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
10368 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10369 }
10370
10371 // If this phi has a single use, and if that use just computes a value for
10372 // the next iteration of a loop, delete the phi. This occurs with unused
10373 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
10374 // common case here is good because the only other things that catch this
10375 // are induction variable analysis (sometimes) and ADCE, which is only run
10376 // late.
10377 if (PHIUser->hasOneUse() &&
10378 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
10379 PHIUser->use_back() == &PN) {
10380 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10381 }
10382 }
10383
Chris Lattner27b695d2007-11-06 21:52:06 +000010384 // We sometimes end up with phi cycles that non-obviously end up being the
10385 // same value, for example:
10386 // z = some value; x = phi (y, z); y = phi (x, z)
10387 // where the phi nodes don't necessarily need to be in the same block. Do a
10388 // quick check to see if the PHI node only contains a single non-phi value, if
10389 // so, scan to see if the phi cycle is actually equal to that value.
10390 {
10391 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
10392 // Scan for the first non-phi operand.
10393 while (InValNo != NumOperandVals &&
10394 isa<PHINode>(PN.getIncomingValue(InValNo)))
10395 ++InValNo;
10396
10397 if (InValNo != NumOperandVals) {
10398 Value *NonPhiInVal = PN.getOperand(InValNo);
10399
10400 // Scan the rest of the operands to see if there are any conflicts, if so
10401 // there is no need to recursively scan other phis.
10402 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
10403 Value *OpVal = PN.getIncomingValue(InValNo);
10404 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
10405 break;
10406 }
10407
10408 // If we scanned over all operands, then we have one unique value plus
10409 // phi values. Scan PHI nodes to see if they all merge in each other or
10410 // the value.
10411 if (InValNo == NumOperandVals) {
10412 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
10413 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
10414 return ReplaceInstUsesWith(PN, NonPhiInVal);
10415 }
10416 }
10417 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010418 return 0;
10419}
10420
10421static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
10422 Instruction *InsertPoint,
10423 InstCombiner *IC) {
10424 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
10425 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
10426 // We must cast correctly to the pointer type. Ensure that we
10427 // sign extend the integer value if it is smaller as this is
10428 // used for address computation.
10429 Instruction::CastOps opcode =
10430 (VTySize < PtrSize ? Instruction::SExt :
10431 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
10432 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
10433}
10434
10435
10436Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
10437 Value *PtrOp = GEP.getOperand(0);
10438 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
10439 // If so, eliminate the noop.
10440 if (GEP.getNumOperands() == 1)
10441 return ReplaceInstUsesWith(GEP, PtrOp);
10442
10443 if (isa<UndefValue>(GEP.getOperand(0)))
10444 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
10445
10446 bool HasZeroPointerIndex = false;
10447 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
10448 HasZeroPointerIndex = C->isNullValue();
10449
10450 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
10451 return ReplaceInstUsesWith(GEP, PtrOp);
10452
10453 // Eliminate unneeded casts for indices.
10454 bool MadeChange = false;
10455
10456 gep_type_iterator GTI = gep_type_begin(GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010457 for (User::op_iterator i = GEP.op_begin() + 1, e = GEP.op_end();
10458 i != e; ++i, ++GTI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010459 if (isa<SequentialType>(*GTI)) {
Gabor Greif17396002008-06-12 21:37:33 +000010460 if (CastInst *CI = dyn_cast<CastInst>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010461 if (CI->getOpcode() == Instruction::ZExt ||
10462 CI->getOpcode() == Instruction::SExt) {
10463 const Type *SrcTy = CI->getOperand(0)->getType();
10464 // We can eliminate a cast from i32 to i64 iff the target
10465 // is a 32-bit pointer target.
10466 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
10467 MadeChange = true;
Gabor Greif17396002008-06-12 21:37:33 +000010468 *i = CI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010469 }
10470 }
10471 }
10472 // If we are using a wider index than needed for this platform, shrink it
Dan Gohman5d639ed2008-09-11 23:06:38 +000010473 // to what we need. If narrower, sign-extend it to what we need.
10474 // If the incoming value needs a cast instruction,
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010475 // insert it. This explicit cast can make subsequent optimizations more
10476 // obvious.
Gabor Greif17396002008-06-12 21:37:33 +000010477 Value *Op = *i;
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010478 if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010479 if (Constant *C = dyn_cast<Constant>(Op)) {
Gabor Greif17396002008-06-12 21:37:33 +000010480 *i = ConstantExpr::getTrunc(C, TD->getIntPtrType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010481 MadeChange = true;
10482 } else {
10483 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
10484 GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010485 *i = Op;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010486 MadeChange = true;
10487 }
Dan Gohman5d639ed2008-09-11 23:06:38 +000010488 } else if (TD->getTypeSizeInBits(Op->getType()) < TD->getPointerSizeInBits()) {
10489 if (Constant *C = dyn_cast<Constant>(Op)) {
10490 *i = ConstantExpr::getSExt(C, TD->getIntPtrType());
10491 MadeChange = true;
10492 } else {
10493 Op = InsertCastBefore(Instruction::SExt, Op, TD->getIntPtrType(),
10494 GEP);
10495 *i = Op;
10496 MadeChange = true;
10497 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010498 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010499 }
10500 }
10501 if (MadeChange) return &GEP;
10502
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010503 // Combine Indices - If the source pointer to this getelementptr instruction
10504 // is a getelementptr instruction, combine the indices of the two
10505 // getelementptr instructions into a single instruction.
10506 //
10507 SmallVector<Value*, 8> SrcGEPOperands;
10508 if (User *Src = dyn_castGetElementPtr(PtrOp))
10509 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
10510
10511 if (!SrcGEPOperands.empty()) {
10512 // Note that if our source is a gep chain itself that we wait for that
10513 // chain to be resolved before we perform this transformation. This
10514 // avoids us creating a TON of code in some cases.
10515 //
10516 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
10517 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
10518 return 0; // Wait until our source is folded to completion.
10519
10520 SmallVector<Value*, 8> Indices;
10521
10522 // Find out whether the last index in the source GEP is a sequential idx.
10523 bool EndsWithSequential = false;
10524 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
10525 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
10526 EndsWithSequential = !isa<StructType>(*I);
10527
10528 // Can we combine the two pointer arithmetics offsets?
10529 if (EndsWithSequential) {
10530 // Replace: gep (gep %P, long B), long A, ...
10531 // With: T = long A+B; gep %P, T, ...
10532 //
10533 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
10534 if (SO1 == Constant::getNullValue(SO1->getType())) {
10535 Sum = GO1;
10536 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
10537 Sum = SO1;
10538 } else {
10539 // If they aren't the same type, convert both to an integer of the
10540 // target's pointer size.
10541 if (SO1->getType() != GO1->getType()) {
10542 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
10543 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
10544 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
10545 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
10546 } else {
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010547 unsigned PS = TD->getPointerSizeInBits();
10548 if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010549 // Convert GO1 to SO1's type.
10550 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
10551
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010552 } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010553 // Convert SO1 to GO1's type.
10554 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
10555 } else {
10556 const Type *PT = TD->getIntPtrType();
10557 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
10558 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
10559 }
10560 }
10561 }
10562 if (isa<Constant>(SO1) && isa<Constant>(GO1))
10563 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
10564 else {
Gabor Greifa645dd32008-05-16 19:29:10 +000010565 Sum = BinaryOperator::CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010566 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
10567 }
10568 }
10569
10570 // Recycle the GEP we already have if possible.
10571 if (SrcGEPOperands.size() == 2) {
10572 GEP.setOperand(0, SrcGEPOperands[0]);
10573 GEP.setOperand(1, Sum);
10574 return &GEP;
10575 } else {
10576 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10577 SrcGEPOperands.end()-1);
10578 Indices.push_back(Sum);
10579 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
10580 }
10581 } else if (isa<Constant>(*GEP.idx_begin()) &&
10582 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
10583 SrcGEPOperands.size() != 1) {
10584 // Otherwise we can do the fold if the first index of the GEP is a zero
10585 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10586 SrcGEPOperands.end());
10587 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
10588 }
10589
10590 if (!Indices.empty())
Gabor Greifd6da1d02008-04-06 20:25:17 +000010591 return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
10592 Indices.end(), GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010593
10594 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
10595 // GEP of global variable. If all of the indices for this GEP are
10596 // constants, we can promote this to a constexpr instead of an instruction.
10597
10598 // Scan for nonconstants...
10599 SmallVector<Constant*, 8> Indices;
10600 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
10601 for (; I != E && isa<Constant>(*I); ++I)
10602 Indices.push_back(cast<Constant>(*I));
10603
10604 if (I == E) { // If they are all constants...
10605 Constant *CE = ConstantExpr::getGetElementPtr(GV,
10606 &Indices[0],Indices.size());
10607
10608 // Replace all uses of the GEP with the new constexpr...
10609 return ReplaceInstUsesWith(GEP, CE);
10610 }
10611 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
10612 if (!isa<PointerType>(X->getType())) {
10613 // Not interesting. Source pointer must be a cast from pointer.
10614 } else if (HasZeroPointerIndex) {
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010615 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
10616 // into : GEP [10 x i8]* X, i32 0, ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010617 //
10618 // This occurs when the program declares an array extern like "int X[];"
10619 //
10620 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
10621 const PointerType *XTy = cast<PointerType>(X->getType());
10622 if (const ArrayType *XATy =
10623 dyn_cast<ArrayType>(XTy->getElementType()))
10624 if (const ArrayType *CATy =
10625 dyn_cast<ArrayType>(CPTy->getElementType()))
10626 if (CATy->getElementType() == XATy->getElementType()) {
10627 // At this point, we know that the cast source type is a pointer
10628 // to an array of the same type as the destination pointer
10629 // array. Because the array type is never stepped over (there
10630 // is a leading zero) we can fold the cast into this GEP.
10631 GEP.setOperand(0, X);
10632 return &GEP;
10633 }
10634 } else if (GEP.getNumOperands() == 2) {
10635 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010636 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
10637 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010638 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
10639 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
10640 if (isa<ArrayType>(SrcElTy) &&
Duncan Sandsd68f13b2009-01-12 20:38:59 +000010641 TD->getTypePaddedSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
10642 TD->getTypePaddedSize(ResElTy)) {
David Greene393be882007-09-04 15:46:09 +000010643 Value *Idx[2];
10644 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10645 Idx[1] = GEP.getOperand(1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010646 Value *V = InsertNewInstBefore(
Gabor Greifd6da1d02008-04-06 20:25:17 +000010647 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010648 // V and GEP are both pointer types --> BitCast
10649 return new BitCastInst(V, GEP.getType());
10650 }
10651
10652 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010653 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010654 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010655 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010656
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010657 if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010658 uint64_t ArrayEltSize =
Duncan Sandsd68f13b2009-01-12 20:38:59 +000010659 TD->getTypePaddedSize(cast<ArrayType>(SrcElTy)->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010660
10661 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
10662 // allow either a mul, shift, or constant here.
10663 Value *NewIdx = 0;
10664 ConstantInt *Scale = 0;
10665 if (ArrayEltSize == 1) {
10666 NewIdx = GEP.getOperand(1);
10667 Scale = ConstantInt::get(NewIdx->getType(), 1);
10668 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
10669 NewIdx = ConstantInt::get(CI->getType(), 1);
10670 Scale = CI;
10671 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
10672 if (Inst->getOpcode() == Instruction::Shl &&
10673 isa<ConstantInt>(Inst->getOperand(1))) {
10674 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
10675 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
10676 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
10677 NewIdx = Inst->getOperand(0);
10678 } else if (Inst->getOpcode() == Instruction::Mul &&
10679 isa<ConstantInt>(Inst->getOperand(1))) {
10680 Scale = cast<ConstantInt>(Inst->getOperand(1));
10681 NewIdx = Inst->getOperand(0);
10682 }
10683 }
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010684
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010685 // If the index will be to exactly the right offset with the scale taken
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010686 // out, perform the transformation. Note, we don't know whether Scale is
10687 // signed or not. We'll use unsigned version of division/modulo
10688 // operation after making sure Scale doesn't have the sign bit set.
10689 if (Scale && Scale->getSExtValue() >= 0LL &&
10690 Scale->getZExtValue() % ArrayEltSize == 0) {
10691 Scale = ConstantInt::get(Scale->getType(),
10692 Scale->getZExtValue() / ArrayEltSize);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010693 if (Scale->getZExtValue() != 1) {
10694 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010695 false /*ZExt*/);
Gabor Greifa645dd32008-05-16 19:29:10 +000010696 Instruction *Sc = BinaryOperator::CreateMul(NewIdx, C, "idxscale");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010697 NewIdx = InsertNewInstBefore(Sc, GEP);
10698 }
10699
10700 // Insert the new GEP instruction.
David Greene393be882007-09-04 15:46:09 +000010701 Value *Idx[2];
10702 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10703 Idx[1] = NewIdx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010704 Instruction *NewGEP =
Gabor Greifd6da1d02008-04-06 20:25:17 +000010705 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010706 NewGEP = InsertNewInstBefore(NewGEP, GEP);
10707 // The NewGEP must be pointer typed, so must the old one -> BitCast
10708 return new BitCastInst(NewGEP, GEP.getType());
10709 }
10710 }
10711 }
10712 }
Chris Lattner111ea772009-01-09 04:53:57 +000010713
Chris Lattner94ccd5f2009-01-09 05:44:56 +000010714 /// See if we can simplify:
10715 /// X = bitcast A to B*
10716 /// Y = gep X, <...constant indices...>
10717 /// into a gep of the original struct. This is important for SROA and alias
10718 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
Chris Lattner111ea772009-01-09 04:53:57 +000010719 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
Chris Lattner94ccd5f2009-01-09 05:44:56 +000010720 if (!isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) {
10721 // Determine how much the GEP moves the pointer. We are guaranteed to get
10722 // a constant back from EmitGEPOffset.
10723 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP, GEP, *this));
10724 int64_t Offset = OffsetV->getSExtValue();
10725
10726 // If this GEP instruction doesn't move the pointer, just replace the GEP
10727 // with a bitcast of the real input to the dest type.
10728 if (Offset == 0) {
10729 // If the bitcast is of an allocation, and the allocation will be
10730 // converted to match the type of the cast, don't touch this.
10731 if (isa<AllocationInst>(BCI->getOperand(0))) {
10732 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
10733 if (Instruction *I = visitBitCast(*BCI)) {
10734 if (I != BCI) {
10735 I->takeName(BCI);
10736 BCI->getParent()->getInstList().insert(BCI, I);
10737 ReplaceInstUsesWith(*BCI, I);
10738 }
10739 return &GEP;
Chris Lattner111ea772009-01-09 04:53:57 +000010740 }
Chris Lattner111ea772009-01-09 04:53:57 +000010741 }
Chris Lattner94ccd5f2009-01-09 05:44:56 +000010742 return new BitCastInst(BCI->getOperand(0), GEP.getType());
Chris Lattner111ea772009-01-09 04:53:57 +000010743 }
Chris Lattner94ccd5f2009-01-09 05:44:56 +000010744
10745 // Otherwise, if the offset is non-zero, we need to find out if there is a
10746 // field at Offset in 'A's type. If so, we can pull the cast through the
10747 // GEP.
10748 SmallVector<Value*, 8> NewIndices;
10749 const Type *InTy =
10750 cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
10751 if (FindElementAtOffset(InTy, Offset, NewIndices, TD)) {
10752 Instruction *NGEP =
10753 GetElementPtrInst::Create(BCI->getOperand(0), NewIndices.begin(),
10754 NewIndices.end());
10755 if (NGEP->getType() == GEP.getType()) return NGEP;
10756 InsertNewInstBefore(NGEP, GEP);
10757 NGEP->takeName(&GEP);
10758 return new BitCastInst(NGEP, GEP.getType());
10759 }
Chris Lattner111ea772009-01-09 04:53:57 +000010760 }
10761 }
10762
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010763 return 0;
10764}
10765
10766Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
10767 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010768 if (AI.isArrayAllocation()) { // Check C != 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010769 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
10770 const Type *NewTy =
10771 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
10772 AllocationInst *New = 0;
10773
10774 // Create and insert the replacement instruction...
10775 if (isa<MallocInst>(AI))
10776 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
10777 else {
10778 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
10779 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
10780 }
10781
10782 InsertNewInstBefore(New, AI);
10783
10784 // Scan to the end of the allocation instructions, to skip over a block of
10785 // allocas if possible...
10786 //
10787 BasicBlock::iterator It = New;
10788 while (isa<AllocationInst>(*It)) ++It;
10789
10790 // Now that I is pointing to the first non-allocation-inst in the block,
10791 // insert our getelementptr instruction...
10792 //
10793 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greene393be882007-09-04 15:46:09 +000010794 Value *Idx[2];
10795 Idx[0] = NullIdx;
10796 Idx[1] = NullIdx;
Gabor Greifd6da1d02008-04-06 20:25:17 +000010797 Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
10798 New->getName()+".sub", It);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010799
10800 // Now make everything use the getelementptr instead of the original
10801 // allocation.
10802 return ReplaceInstUsesWith(AI, V);
10803 } else if (isa<UndefValue>(AI.getArraySize())) {
10804 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10805 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010806 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010807
Dan Gohman28e78f02009-01-13 20:18:38 +000010808 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized()) {
10809 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
10810 // Note that we only do this for alloca's, because malloc should allocate and
10811 // return a unique pointer, even for a zero byte allocation.
10812 if (TD->getTypePaddedSize(AI.getAllocatedType()) == 0)
10813 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10814
10815 // If the alignment is 0 (unspecified), assign it the preferred alignment.
10816 if (AI.getAlignment() == 0)
10817 AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType()));
10818 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010819
10820 return 0;
10821}
10822
10823Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
10824 Value *Op = FI.getOperand(0);
10825
10826 // free undef -> unreachable.
10827 if (isa<UndefValue>(Op)) {
10828 // Insert a new store to null because we cannot modify the CFG here.
10829 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +000010830 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010831 return EraseInstFromFunction(FI);
10832 }
10833
10834 // If we have 'free null' delete the instruction. This can happen in stl code
10835 // when lots of inlining happens.
10836 if (isa<ConstantPointerNull>(Op))
10837 return EraseInstFromFunction(FI);
10838
10839 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
10840 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
10841 FI.setOperand(0, CI->getOperand(0));
10842 return &FI;
10843 }
10844
10845 // Change free (gep X, 0,0,0,0) into free(X)
10846 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10847 if (GEPI->hasAllZeroIndices()) {
10848 AddToWorkList(GEPI);
10849 FI.setOperand(0, GEPI->getOperand(0));
10850 return &FI;
10851 }
10852 }
10853
10854 // Change free(malloc) into nothing, if the malloc has a single use.
10855 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
10856 if (MI->hasOneUse()) {
10857 EraseInstFromFunction(FI);
10858 return EraseInstFromFunction(*MI);
10859 }
10860
10861 return 0;
10862}
10863
10864
10865/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Devang Patela0f8ea82007-10-18 19:52:32 +000010866static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
Bill Wendling44a36ea2008-02-26 10:53:30 +000010867 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010868 User *CI = cast<User>(LI.getOperand(0));
10869 Value *CastOp = CI->getOperand(0);
10870
Devang Patela0f8ea82007-10-18 19:52:32 +000010871 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
10872 // Instead of loading constant c string, use corresponding integer value
10873 // directly if string length is small enough.
Evan Cheng833501d2008-06-30 07:31:25 +000010874 std::string Str;
10875 if (GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010876 unsigned len = Str.length();
10877 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
10878 unsigned numBits = Ty->getPrimitiveSizeInBits();
10879 // Replace LI with immediate integer store.
10880 if ((numBits >> 3) == len + 1) {
Bill Wendling44a36ea2008-02-26 10:53:30 +000010881 APInt StrVal(numBits, 0);
10882 APInt SingleChar(numBits, 0);
10883 if (TD->isLittleEndian()) {
10884 for (signed i = len-1; i >= 0; i--) {
10885 SingleChar = (uint64_t) Str[i];
10886 StrVal = (StrVal << 8) | SingleChar;
10887 }
10888 } else {
10889 for (unsigned i = 0; i < len; i++) {
10890 SingleChar = (uint64_t) Str[i];
10891 StrVal = (StrVal << 8) | SingleChar;
10892 }
10893 // Append NULL at the end.
10894 SingleChar = 0;
10895 StrVal = (StrVal << 8) | SingleChar;
10896 }
10897 Value *NL = ConstantInt::get(StrVal);
10898 return IC.ReplaceInstUsesWith(LI, NL);
Devang Patela0f8ea82007-10-18 19:52:32 +000010899 }
10900 }
10901 }
10902
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010903 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10904 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10905 const Type *SrcPTy = SrcTy->getElementType();
10906
10907 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
10908 isa<VectorType>(DestPTy)) {
10909 // If the source is an array, the code below will not succeed. Check to
10910 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10911 // constants.
10912 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10913 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10914 if (ASrcTy->getNumElements() != 0) {
10915 Value *Idxs[2];
10916 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10917 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10918 SrcTy = cast<PointerType>(CastOp->getType());
10919 SrcPTy = SrcTy->getElementType();
10920 }
10921
10922 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
10923 isa<VectorType>(SrcPTy)) &&
10924 // Do not allow turning this into a load of an integer, which is then
10925 // casted to a pointer, this pessimizes pointer analysis a lot.
10926 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
10927 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10928 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10929
10930 // Okay, we are casting from one integer or pointer type to another of
10931 // the same size. Instead of casting the pointer before the load, cast
10932 // the result of the loaded value.
10933 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
10934 CI->getName(),
10935 LI.isVolatile()),LI);
10936 // Now cast the result of the load.
10937 return new BitCastInst(NewLoad, LI.getType());
10938 }
10939 }
10940 }
10941 return 0;
10942}
10943
10944/// isSafeToLoadUnconditionally - Return true if we know that executing a load
10945/// from this value cannot trap. If it is not obviously safe to load from the
10946/// specified pointer, we do a quick local scan of the basic block containing
10947/// ScanFrom, to determine if the address is already accessed.
10948static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010949 // If it is an alloca it is always safe to load from.
10950 if (isa<AllocaInst>(V)) return true;
10951
Duncan Sandse40a94a2007-09-19 10:25:38 +000010952 // If it is a global variable it is mostly safe to load from.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010953 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
Duncan Sandse40a94a2007-09-19 10:25:38 +000010954 // Don't try to evaluate aliases. External weak GV can be null.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010955 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010956
10957 // Otherwise, be a little bit agressive by scanning the local block where we
10958 // want to check to see if the pointer is already being loaded or stored
10959 // from/to. If so, the previous load or store would have already trapped,
10960 // so there is no harm doing an extra load (also, CSE will later eliminate
10961 // the load entirely).
10962 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
10963
10964 while (BBI != E) {
10965 --BBI;
10966
Chris Lattner476983a2008-06-20 05:12:56 +000010967 // If we see a free or a call (which might do a free) the pointer could be
10968 // marked invalid.
10969 if (isa<FreeInst>(BBI) || isa<CallInst>(BBI))
10970 return false;
10971
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010972 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
10973 if (LI->getOperand(0) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010974 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010975 if (SI->getOperand(1) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010976 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010977
10978 }
10979 return false;
10980}
10981
10982Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
10983 Value *Op = LI.getOperand(0);
10984
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010985 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010986 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op);
10987 if (KnownAlign >
10988 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
10989 LI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010990 LI.setAlignment(KnownAlign);
10991
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010992 // load (cast X) --> cast (load X) iff safe
10993 if (isa<CastInst>(Op))
Devang Patela0f8ea82007-10-18 19:52:32 +000010994 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010995 return Res;
10996
10997 // None of the following transforms are legal for volatile loads.
10998 if (LI.isVolatile()) return 0;
10999
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000011000 // Do really simple store-to-load forwarding and load CSE, to catch cases
11001 // where there are several consequtive memory accesses to the same location,
11002 // separated by a few arithmetic operations.
11003 BasicBlock::iterator BBI = &LI;
Chris Lattner6fd8c802008-11-27 08:56:30 +000011004 if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
11005 return ReplaceInstUsesWith(LI, AvailableVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011006
Christopher Lamb2c175392007-12-29 07:56:53 +000011007 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
11008 const Value *GEPI0 = GEPI->getOperand(0);
11009 // TODO: Consider a target hook for valid address spaces for this xform.
11010 if (isa<ConstantPointerNull>(GEPI0) &&
11011 cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011012 // Insert a new store to null instruction before the load to indicate
11013 // that this code is not reachable. We do this instead of inserting
11014 // an unreachable instruction directly because we cannot modify the
11015 // CFG.
11016 new StoreInst(UndefValue::get(LI.getType()),
11017 Constant::getNullValue(Op->getType()), &LI);
11018 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
11019 }
Christopher Lamb2c175392007-12-29 07:56:53 +000011020 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011021
11022 if (Constant *C = dyn_cast<Constant>(Op)) {
11023 // load null/undef -> undef
Christopher Lamb2c175392007-12-29 07:56:53 +000011024 // TODO: Consider a target hook for valid address spaces for this xform.
11025 if (isa<UndefValue>(C) || (C->isNullValue() &&
11026 cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011027 // Insert a new store to null instruction before the load to indicate that
11028 // this code is not reachable. We do this instead of inserting an
11029 // unreachable instruction directly because we cannot modify the CFG.
11030 new StoreInst(UndefValue::get(LI.getType()),
11031 Constant::getNullValue(Op->getType()), &LI);
11032 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
11033 }
11034
11035 // Instcombine load (constant global) into the value loaded.
11036 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
11037 if (GV->isConstant() && !GV->isDeclaration())
11038 return ReplaceInstUsesWith(LI, GV->getInitializer());
11039
11040 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000011041 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011042 if (CE->getOpcode() == Instruction::GetElementPtr) {
11043 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
11044 if (GV->isConstant() && !GV->isDeclaration())
11045 if (Constant *V =
11046 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
11047 return ReplaceInstUsesWith(LI, V);
11048 if (CE->getOperand(0)->isNullValue()) {
11049 // Insert a new store to null instruction before the load to indicate
11050 // that this code is not reachable. We do this instead of inserting
11051 // an unreachable instruction directly because we cannot modify the
11052 // CFG.
11053 new StoreInst(UndefValue::get(LI.getType()),
11054 Constant::getNullValue(Op->getType()), &LI);
11055 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
11056 }
11057
11058 } else if (CE->isCast()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000011059 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011060 return Res;
11061 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000011062 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011063 }
Chris Lattner0270a112007-08-11 18:48:48 +000011064
11065 // If this load comes from anywhere in a constant global, and if the global
11066 // is all undef or zero, we know what it loads.
Duncan Sands52fb8732008-10-01 15:25:41 +000011067 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op->getUnderlyingObject())){
Chris Lattner0270a112007-08-11 18:48:48 +000011068 if (GV->isConstant() && GV->hasInitializer()) {
11069 if (GV->getInitializer()->isNullValue())
11070 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
11071 else if (isa<UndefValue>(GV->getInitializer()))
11072 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
11073 }
11074 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011075
11076 if (Op->hasOneUse()) {
11077 // Change select and PHI nodes to select values instead of addresses: this
11078 // helps alias analysis out a lot, allows many others simplifications, and
11079 // exposes redundancy in the code.
11080 //
11081 // Note that we cannot do the transformation unless we know that the
11082 // introduced loads cannot trap! Something like this is valid as long as
11083 // the condition is always false: load (select bool %C, int* null, int* %G),
11084 // but it would not be valid if we transformed it to load from null
11085 // unconditionally.
11086 //
11087 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
11088 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
11089 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
11090 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
11091 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
11092 SI->getOperand(1)->getName()+".val"), LI);
11093 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
11094 SI->getOperand(2)->getName()+".val"), LI);
Gabor Greifd6da1d02008-04-06 20:25:17 +000011095 return SelectInst::Create(SI->getCondition(), V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011096 }
11097
11098 // load (select (cond, null, P)) -> load P
11099 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
11100 if (C->isNullValue()) {
11101 LI.setOperand(0, SI->getOperand(2));
11102 return &LI;
11103 }
11104
11105 // load (select (cond, P, null)) -> load P
11106 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
11107 if (C->isNullValue()) {
11108 LI.setOperand(0, SI->getOperand(1));
11109 return &LI;
11110 }
11111 }
11112 }
11113 return 0;
11114}
11115
11116/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
11117/// when possible.
11118static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
11119 User *CI = cast<User>(SI.getOperand(1));
11120 Value *CastOp = CI->getOperand(0);
11121
11122 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
11123 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
11124 const Type *SrcPTy = SrcTy->getElementType();
11125
11126 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
11127 // If the source is an array, the code below will not succeed. Check to
11128 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
11129 // constants.
11130 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
11131 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
11132 if (ASrcTy->getNumElements() != 0) {
11133 Value* Idxs[2];
11134 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
11135 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
11136 SrcTy = cast<PointerType>(CastOp->getType());
11137 SrcPTy = SrcTy->getElementType();
11138 }
11139
11140 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
11141 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
11142 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
11143
11144 // Okay, we are casting from one integer or pointer type to another of
11145 // the same size. Instead of casting the pointer before
11146 // the store, cast the value to be stored.
11147 Value *NewCast;
11148 Value *SIOp0 = SI.getOperand(0);
11149 Instruction::CastOps opcode = Instruction::BitCast;
11150 const Type* CastSrcTy = SIOp0->getType();
11151 const Type* CastDstTy = SrcPTy;
11152 if (isa<PointerType>(CastDstTy)) {
11153 if (CastSrcTy->isInteger())
11154 opcode = Instruction::IntToPtr;
11155 } else if (isa<IntegerType>(CastDstTy)) {
11156 if (isa<PointerType>(SIOp0->getType()))
11157 opcode = Instruction::PtrToInt;
11158 }
11159 if (Constant *C = dyn_cast<Constant>(SIOp0))
11160 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
11161 else
11162 NewCast = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +000011163 CastInst::Create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011164 SI);
11165 return new StoreInst(NewCast, CastOp);
11166 }
11167 }
11168 }
11169 return 0;
11170}
11171
Chris Lattner6fd8c802008-11-27 08:56:30 +000011172/// equivalentAddressValues - Test if A and B will obviously have the same
11173/// value. This includes recognizing that %t0 and %t1 will have the same
11174/// value in code like this:
11175/// %t0 = getelementptr @a, 0, 3
11176/// store i32 0, i32* %t0
11177/// %t1 = getelementptr @a, 0, 3
11178/// %t2 = load i32* %t1
11179///
11180static bool equivalentAddressValues(Value *A, Value *B) {
11181 // Test if the values are trivially equivalent.
11182 if (A == B) return true;
11183
11184 // Test if the values come form identical arithmetic instructions.
11185 if (isa<BinaryOperator>(A) ||
11186 isa<CastInst>(A) ||
11187 isa<PHINode>(A) ||
11188 isa<GetElementPtrInst>(A))
11189 if (Instruction *BI = dyn_cast<Instruction>(B))
11190 if (cast<Instruction>(A)->isIdenticalTo(BI))
11191 return true;
11192
11193 // Otherwise they may not be equivalent.
11194 return false;
11195}
11196
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011197Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
11198 Value *Val = SI.getOperand(0);
11199 Value *Ptr = SI.getOperand(1);
11200
11201 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
11202 EraseInstFromFunction(SI);
11203 ++NumCombined;
11204 return 0;
11205 }
11206
11207 // If the RHS is an alloca with a single use, zapify the store, making the
11208 // alloca dead.
Chris Lattnera02bacc2008-04-29 04:58:38 +000011209 if (Ptr->hasOneUse() && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011210 if (isa<AllocaInst>(Ptr)) {
11211 EraseInstFromFunction(SI);
11212 ++NumCombined;
11213 return 0;
11214 }
11215
11216 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
11217 if (isa<AllocaInst>(GEP->getOperand(0)) &&
11218 GEP->getOperand(0)->hasOneUse()) {
11219 EraseInstFromFunction(SI);
11220 ++NumCombined;
11221 return 0;
11222 }
11223 }
11224
Dan Gohman5c4d0e12007-07-20 16:34:21 +000011225 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000011226 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr);
11227 if (KnownAlign >
11228 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
11229 SI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000011230 SI.setAlignment(KnownAlign);
11231
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011232 // Do really simple DSE, to catch cases where there are several consequtive
11233 // stores to the same location, separated by a few arithmetic operations. This
11234 // situation often occurs with bitfield accesses.
11235 BasicBlock::iterator BBI = &SI;
11236 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
11237 --ScanInsts) {
11238 --BBI;
11239
11240 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
11241 // Prev store isn't volatile, and stores to the same location?
Chris Lattner6fd8c802008-11-27 08:56:30 +000011242 if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1),
11243 SI.getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011244 ++NumDeadStore;
11245 ++BBI;
11246 EraseInstFromFunction(*PrevSI);
11247 continue;
11248 }
11249 break;
11250 }
11251
11252 // If this is a load, we have to stop. However, if the loaded value is from
11253 // the pointer we're loading and is producing the pointer we're storing,
11254 // then *this* store is dead (X = load P; store X -> P).
11255 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000011256 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
11257 !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011258 EraseInstFromFunction(SI);
11259 ++NumCombined;
11260 return 0;
11261 }
11262 // Otherwise, this is a load from some other location. Stores before it
11263 // may not be dead.
11264 break;
11265 }
11266
11267 // Don't skip over loads or things that can modify memory.
Chris Lattner84504282008-05-08 17:20:30 +000011268 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011269 break;
11270 }
11271
11272
11273 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
11274
11275 // store X, null -> turns into 'unreachable' in SimplifyCFG
11276 if (isa<ConstantPointerNull>(Ptr)) {
11277 if (!isa<UndefValue>(Val)) {
11278 SI.setOperand(0, UndefValue::get(Val->getType()));
11279 if (Instruction *U = dyn_cast<Instruction>(Val))
11280 AddToWorkList(U); // Dropped a use.
11281 ++NumCombined;
11282 }
11283 return 0; // Do not modify these!
11284 }
11285
11286 // store undef, Ptr -> noop
11287 if (isa<UndefValue>(Val)) {
11288 EraseInstFromFunction(SI);
11289 ++NumCombined;
11290 return 0;
11291 }
11292
11293 // If the pointer destination is a cast, see if we can fold the cast into the
11294 // source instead.
11295 if (isa<CastInst>(Ptr))
11296 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11297 return Res;
11298 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
11299 if (CE->isCast())
11300 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11301 return Res;
11302
11303
11304 // If this store is the last instruction in the basic block, and if the block
11305 // ends with an unconditional branch, try to move it to the successor block.
11306 BBI = &SI; ++BBI;
11307 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
11308 if (BI->isUnconditional())
11309 if (SimplifyStoreAtEndOfBlock(SI))
11310 return 0; // xform done!
11311
11312 return 0;
11313}
11314
11315/// SimplifyStoreAtEndOfBlock - Turn things like:
11316/// if () { *P = v1; } else { *P = v2 }
11317/// into a phi node with a store in the successor.
11318///
11319/// Simplify things like:
11320/// *P = v1; if () { *P = v2; }
11321/// into a phi node with a store in the successor.
11322///
11323bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
11324 BasicBlock *StoreBB = SI.getParent();
11325
11326 // Check to see if the successor block has exactly two incoming edges. If
11327 // so, see if the other predecessor contains a store to the same location.
11328 // if so, insert a PHI node (if needed) and move the stores down.
11329 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
11330
11331 // Determine whether Dest has exactly two predecessors and, if so, compute
11332 // the other predecessor.
11333 pred_iterator PI = pred_begin(DestBB);
11334 BasicBlock *OtherBB = 0;
11335 if (*PI != StoreBB)
11336 OtherBB = *PI;
11337 ++PI;
11338 if (PI == pred_end(DestBB))
11339 return false;
11340
11341 if (*PI != StoreBB) {
11342 if (OtherBB)
11343 return false;
11344 OtherBB = *PI;
11345 }
11346 if (++PI != pred_end(DestBB))
11347 return false;
Eli Friedmanab39f9a2008-06-13 21:17:49 +000011348
11349 // Bail out if all the relevant blocks aren't distinct (this can happen,
11350 // for example, if SI is in an infinite loop)
11351 if (StoreBB == DestBB || OtherBB == DestBB)
11352 return false;
11353
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011354 // Verify that the other block ends in a branch and is not otherwise empty.
11355 BasicBlock::iterator BBI = OtherBB->getTerminator();
11356 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
11357 if (!OtherBr || BBI == OtherBB->begin())
11358 return false;
11359
11360 // If the other block ends in an unconditional branch, check for the 'if then
11361 // else' case. there is an instruction before the branch.
11362 StoreInst *OtherStore = 0;
11363 if (OtherBr->isUnconditional()) {
11364 // If this isn't a store, or isn't a store to the same location, bail out.
11365 --BBI;
11366 OtherStore = dyn_cast<StoreInst>(BBI);
11367 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
11368 return false;
11369 } else {
11370 // Otherwise, the other block ended with a conditional branch. If one of the
11371 // destinations is StoreBB, then we have the if/then case.
11372 if (OtherBr->getSuccessor(0) != StoreBB &&
11373 OtherBr->getSuccessor(1) != StoreBB)
11374 return false;
11375
11376 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
11377 // if/then triangle. See if there is a store to the same ptr as SI that
11378 // lives in OtherBB.
11379 for (;; --BBI) {
11380 // Check to see if we find the matching store.
11381 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
11382 if (OtherStore->getOperand(1) != SI.getOperand(1))
11383 return false;
11384 break;
11385 }
Eli Friedman3a311d52008-06-13 22:02:12 +000011386 // If we find something that may be using or overwriting the stored
11387 // value, or if we run out of instructions, we can't do the xform.
11388 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011389 BBI == OtherBB->begin())
11390 return false;
11391 }
11392
11393 // In order to eliminate the store in OtherBr, we have to
Eli Friedman3a311d52008-06-13 22:02:12 +000011394 // make sure nothing reads or overwrites the stored value in
11395 // StoreBB.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011396 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
11397 // FIXME: This should really be AA driven.
Eli Friedman3a311d52008-06-13 22:02:12 +000011398 if (I->mayReadFromMemory() || I->mayWriteToMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011399 return false;
11400 }
11401 }
11402
11403 // Insert a PHI node now if we need it.
11404 Value *MergedVal = OtherStore->getOperand(0);
11405 if (MergedVal != SI.getOperand(0)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +000011406 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011407 PN->reserveOperandSpace(2);
11408 PN->addIncoming(SI.getOperand(0), SI.getParent());
11409 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
11410 MergedVal = InsertNewInstBefore(PN, DestBB->front());
11411 }
11412
11413 // Advance to a place where it is safe to insert the new store and
11414 // insert it.
Dan Gohman514277c2008-05-23 21:05:58 +000011415 BBI = DestBB->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011416 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
11417 OtherStore->isVolatile()), *BBI);
11418
11419 // Nuke the old stores.
11420 EraseInstFromFunction(SI);
11421 EraseInstFromFunction(*OtherStore);
11422 ++NumCombined;
11423 return true;
11424}
11425
11426
11427Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
11428 // Change br (not X), label True, label False to: br X, label False, True
11429 Value *X = 0;
11430 BasicBlock *TrueDest;
11431 BasicBlock *FalseDest;
11432 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
11433 !isa<Constant>(X)) {
11434 // Swap Destinations and condition...
11435 BI.setCondition(X);
11436 BI.setSuccessor(0, FalseDest);
11437 BI.setSuccessor(1, TrueDest);
11438 return &BI;
11439 }
11440
11441 // Cannonicalize fcmp_one -> fcmp_oeq
11442 FCmpInst::Predicate FPred; Value *Y;
11443 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
11444 TrueDest, FalseDest)))
11445 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
11446 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
11447 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
11448 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
11449 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
11450 NewSCC->takeName(I);
11451 // Swap Destinations and condition...
11452 BI.setCondition(NewSCC);
11453 BI.setSuccessor(0, FalseDest);
11454 BI.setSuccessor(1, TrueDest);
11455 RemoveFromWorkList(I);
11456 I->eraseFromParent();
11457 AddToWorkList(NewSCC);
11458 return &BI;
11459 }
11460
11461 // Cannonicalize icmp_ne -> icmp_eq
11462 ICmpInst::Predicate IPred;
11463 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
11464 TrueDest, FalseDest)))
11465 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
11466 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
11467 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
11468 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
11469 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
11470 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
11471 NewSCC->takeName(I);
11472 // Swap Destinations and condition...
11473 BI.setCondition(NewSCC);
11474 BI.setSuccessor(0, FalseDest);
11475 BI.setSuccessor(1, TrueDest);
11476 RemoveFromWorkList(I);
11477 I->eraseFromParent();;
11478 AddToWorkList(NewSCC);
11479 return &BI;
11480 }
11481
11482 return 0;
11483}
11484
11485Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
11486 Value *Cond = SI.getCondition();
11487 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
11488 if (I->getOpcode() == Instruction::Add)
11489 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
11490 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
11491 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
11492 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
11493 AddRHS));
11494 SI.setOperand(0, I->getOperand(0));
11495 AddToWorkList(I);
11496 return &SI;
11497 }
11498 }
11499 return 0;
11500}
11501
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011502Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011503 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011504
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011505 if (!EV.hasIndices())
11506 return ReplaceInstUsesWith(EV, Agg);
11507
11508 if (Constant *C = dyn_cast<Constant>(Agg)) {
11509 if (isa<UndefValue>(C))
11510 return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
11511
11512 if (isa<ConstantAggregateZero>(C))
11513 return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
11514
11515 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
11516 // Extract the element indexed by the first index out of the constant
11517 Value *V = C->getOperand(*EV.idx_begin());
11518 if (EV.getNumIndices() > 1)
11519 // Extract the remaining indices out of the constant indexed by the
11520 // first index
11521 return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
11522 else
11523 return ReplaceInstUsesWith(EV, V);
11524 }
11525 return 0; // Can't handle other constants
11526 }
11527 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
11528 // We're extracting from an insertvalue instruction, compare the indices
11529 const unsigned *exti, *exte, *insi, *inse;
11530 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
11531 exte = EV.idx_end(), inse = IV->idx_end();
11532 exti != exte && insi != inse;
11533 ++exti, ++insi) {
11534 if (*insi != *exti)
11535 // The insert and extract both reference distinctly different elements.
11536 // This means the extract is not influenced by the insert, and we can
11537 // replace the aggregate operand of the extract with the aggregate
11538 // operand of the insert. i.e., replace
11539 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11540 // %E = extractvalue { i32, { i32 } } %I, 0
11541 // with
11542 // %E = extractvalue { i32, { i32 } } %A, 0
11543 return ExtractValueInst::Create(IV->getAggregateOperand(),
11544 EV.idx_begin(), EV.idx_end());
11545 }
11546 if (exti == exte && insi == inse)
11547 // Both iterators are at the end: Index lists are identical. Replace
11548 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11549 // %C = extractvalue { i32, { i32 } } %B, 1, 0
11550 // with "i32 42"
11551 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
11552 if (exti == exte) {
11553 // The extract list is a prefix of the insert list. i.e. replace
11554 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11555 // %E = extractvalue { i32, { i32 } } %I, 1
11556 // with
11557 // %X = extractvalue { i32, { i32 } } %A, 1
11558 // %E = insertvalue { i32 } %X, i32 42, 0
11559 // by switching the order of the insert and extract (though the
11560 // insertvalue should be left in, since it may have other uses).
11561 Value *NewEV = InsertNewInstBefore(
11562 ExtractValueInst::Create(IV->getAggregateOperand(),
11563 EV.idx_begin(), EV.idx_end()),
11564 EV);
11565 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
11566 insi, inse);
11567 }
11568 if (insi == inse)
11569 // The insert list is a prefix of the extract list
11570 // We can simply remove the common indices from the extract and make it
11571 // operate on the inserted value instead of the insertvalue result.
11572 // i.e., replace
11573 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11574 // %E = extractvalue { i32, { i32 } } %I, 1, 0
11575 // with
11576 // %E extractvalue { i32 } { i32 42 }, 0
11577 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
11578 exti, exte);
11579 }
11580 // Can't simplify extracts from other values. Note that nested extracts are
11581 // already simplified implicitely by the above (extract ( extract (insert) )
11582 // will be translated into extract ( insert ( extract ) ) first and then just
11583 // the value inserted, if appropriate).
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011584 return 0;
11585}
11586
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011587/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
11588/// is to leave as a vector operation.
11589static bool CheapToScalarize(Value *V, bool isConstant) {
11590 if (isa<ConstantAggregateZero>(V))
11591 return true;
11592 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
11593 if (isConstant) return true;
11594 // If all elts are the same, we can extract.
11595 Constant *Op0 = C->getOperand(0);
11596 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11597 if (C->getOperand(i) != Op0)
11598 return false;
11599 return true;
11600 }
11601 Instruction *I = dyn_cast<Instruction>(V);
11602 if (!I) return false;
11603
11604 // Insert element gets simplified to the inserted element or is deleted if
11605 // this is constant idx extract element and its a constant idx insertelt.
11606 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
11607 isa<ConstantInt>(I->getOperand(2)))
11608 return true;
11609 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
11610 return true;
11611 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
11612 if (BO->hasOneUse() &&
11613 (CheapToScalarize(BO->getOperand(0), isConstant) ||
11614 CheapToScalarize(BO->getOperand(1), isConstant)))
11615 return true;
11616 if (CmpInst *CI = dyn_cast<CmpInst>(I))
11617 if (CI->hasOneUse() &&
11618 (CheapToScalarize(CI->getOperand(0), isConstant) ||
11619 CheapToScalarize(CI->getOperand(1), isConstant)))
11620 return true;
11621
11622 return false;
11623}
11624
11625/// Read and decode a shufflevector mask.
11626///
11627/// It turns undef elements into values that are larger than the number of
11628/// elements in the input.
11629static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
11630 unsigned NElts = SVI->getType()->getNumElements();
11631 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
11632 return std::vector<unsigned>(NElts, 0);
11633 if (isa<UndefValue>(SVI->getOperand(2)))
11634 return std::vector<unsigned>(NElts, 2*NElts);
11635
11636 std::vector<unsigned> Result;
11637 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
Gabor Greif17396002008-06-12 21:37:33 +000011638 for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
11639 if (isa<UndefValue>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011640 Result.push_back(NElts*2); // undef -> 8
11641 else
Gabor Greif17396002008-06-12 21:37:33 +000011642 Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011643 return Result;
11644}
11645
11646/// FindScalarElement - Given a vector and an element number, see if the scalar
11647/// value is already around as a register, for example if it were inserted then
11648/// extracted from the vector.
11649static Value *FindScalarElement(Value *V, unsigned EltNo) {
11650 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
11651 const VectorType *PTy = cast<VectorType>(V->getType());
11652 unsigned Width = PTy->getNumElements();
11653 if (EltNo >= Width) // Out of range access.
11654 return UndefValue::get(PTy->getElementType());
11655
11656 if (isa<UndefValue>(V))
11657 return UndefValue::get(PTy->getElementType());
11658 else if (isa<ConstantAggregateZero>(V))
11659 return Constant::getNullValue(PTy->getElementType());
11660 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
11661 return CP->getOperand(EltNo);
11662 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
11663 // If this is an insert to a variable element, we don't know what it is.
11664 if (!isa<ConstantInt>(III->getOperand(2)))
11665 return 0;
11666 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
11667
11668 // If this is an insert to the element we are looking for, return the
11669 // inserted value.
11670 if (EltNo == IIElt)
11671 return III->getOperand(1);
11672
11673 // Otherwise, the insertelement doesn't modify the value, recurse on its
11674 // vector input.
11675 return FindScalarElement(III->getOperand(0), EltNo);
11676 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011677 unsigned LHSWidth =
11678 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011679 unsigned InEl = getShuffleMask(SVI)[EltNo];
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011680 if (InEl < LHSWidth)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011681 return FindScalarElement(SVI->getOperand(0), InEl);
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011682 else if (InEl < LHSWidth*2)
11683 return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011684 else
11685 return UndefValue::get(PTy->getElementType());
11686 }
11687
11688 // Otherwise, we don't know.
11689 return 0;
11690}
11691
11692Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011693 // If vector val is undef, replace extract with scalar undef.
11694 if (isa<UndefValue>(EI.getOperand(0)))
11695 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11696
11697 // If vector val is constant 0, replace extract with scalar 0.
11698 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
11699 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
11700
11701 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
Matthijs Kooijmandd3425f2008-06-11 09:00:12 +000011702 // If vector val is constant with all elements the same, replace EI with
11703 // that element. When the elements are not identical, we cannot replace yet
11704 // (we do that below, but only when the index is constant).
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011705 Constant *op0 = C->getOperand(0);
11706 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11707 if (C->getOperand(i) != op0) {
11708 op0 = 0;
11709 break;
11710 }
11711 if (op0)
11712 return ReplaceInstUsesWith(EI, op0);
11713 }
11714
11715 // If extracting a specified index from the vector, see if we can recursively
11716 // find a previously computed scalar that was inserted into the vector.
11717 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11718 unsigned IndexVal = IdxC->getZExtValue();
11719 unsigned VectorWidth =
11720 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
11721
11722 // If this is extracting an invalid index, turn this into undef, to avoid
11723 // crashing the code below.
11724 if (IndexVal >= VectorWidth)
11725 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11726
11727 // This instruction only demands the single element from the input vector.
11728 // If the input vector has a single use, simplify it based on this use
11729 // property.
11730 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
11731 uint64_t UndefElts;
11732 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
11733 1 << IndexVal,
11734 UndefElts)) {
11735 EI.setOperand(0, V);
11736 return &EI;
11737 }
11738 }
11739
11740 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
11741 return ReplaceInstUsesWith(EI, Elt);
11742
11743 // If the this extractelement is directly using a bitcast from a vector of
11744 // the same number of elements, see if we can find the source element from
11745 // it. In this case, we will end up needing to bitcast the scalars.
11746 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
11747 if (const VectorType *VT =
11748 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
11749 if (VT->getNumElements() == VectorWidth)
11750 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
11751 return new BitCastInst(Elt, EI.getType());
11752 }
11753 }
11754
11755 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
11756 if (I->hasOneUse()) {
11757 // Push extractelement into predecessor operation if legal and
11758 // profitable to do so
11759 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
11760 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
11761 if (CheapToScalarize(BO, isConstantElt)) {
11762 ExtractElementInst *newEI0 =
11763 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
11764 EI.getName()+".lhs");
11765 ExtractElementInst *newEI1 =
11766 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
11767 EI.getName()+".rhs");
11768 InsertNewInstBefore(newEI0, EI);
11769 InsertNewInstBefore(newEI1, EI);
Gabor Greifa645dd32008-05-16 19:29:10 +000011770 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011771 }
11772 } else if (isa<LoadInst>(I)) {
Christopher Lambbb2f2222007-12-17 01:12:55 +000011773 unsigned AS =
11774 cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +000011775 Value *Ptr = InsertBitCastBefore(I->getOperand(0),
11776 PointerType::get(EI.getType(), AS),EI);
Gabor Greifb91ea9d2008-05-15 10:04:30 +000011777 GetElementPtrInst *GEP =
11778 GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName()+".gep");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011779 InsertNewInstBefore(GEP, EI);
11780 return new LoadInst(GEP);
11781 }
11782 }
11783 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
11784 // Extracting the inserted element?
11785 if (IE->getOperand(2) == EI.getOperand(1))
11786 return ReplaceInstUsesWith(EI, IE->getOperand(1));
11787 // If the inserted and extracted elements are constants, they must not
11788 // be the same value, extract from the pre-inserted value instead.
11789 if (isa<Constant>(IE->getOperand(2)) &&
11790 isa<Constant>(EI.getOperand(1))) {
11791 AddUsesToWorkList(EI);
11792 EI.setOperand(0, IE->getOperand(0));
11793 return &EI;
11794 }
11795 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
11796 // If this is extracting an element from a shufflevector, figure out where
11797 // it came from and extract from the appropriate input element instead.
11798 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11799 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
11800 Value *Src;
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011801 unsigned LHSWidth =
11802 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
11803
11804 if (SrcIdx < LHSWidth)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011805 Src = SVI->getOperand(0);
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011806 else if (SrcIdx < LHSWidth*2) {
11807 SrcIdx -= LHSWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011808 Src = SVI->getOperand(1);
11809 } else {
11810 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11811 }
11812 return new ExtractElementInst(Src, SrcIdx);
11813 }
11814 }
11815 }
11816 return 0;
11817}
11818
11819/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
11820/// elements from either LHS or RHS, return the shuffle mask and true.
11821/// Otherwise, return false.
11822static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
11823 std::vector<Constant*> &Mask) {
11824 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
11825 "Invalid CollectSingleShuffleElements");
11826 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11827
11828 if (isa<UndefValue>(V)) {
11829 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11830 return true;
11831 } else if (V == LHS) {
11832 for (unsigned i = 0; i != NumElts; ++i)
11833 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11834 return true;
11835 } else if (V == RHS) {
11836 for (unsigned i = 0; i != NumElts; ++i)
11837 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
11838 return true;
11839 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11840 // If this is an insert of an extract from some other vector, include it.
11841 Value *VecOp = IEI->getOperand(0);
11842 Value *ScalarOp = IEI->getOperand(1);
11843 Value *IdxOp = IEI->getOperand(2);
11844
11845 if (!isa<ConstantInt>(IdxOp))
11846 return false;
11847 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11848
11849 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
11850 // Okay, we can handle this if the vector we are insertinting into is
11851 // transitively ok.
11852 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11853 // If so, update the mask to reflect the inserted undef.
11854 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
11855 return true;
11856 }
11857 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
11858 if (isa<ConstantInt>(EI->getOperand(1)) &&
11859 EI->getOperand(0)->getType() == V->getType()) {
11860 unsigned ExtractedIdx =
11861 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11862
11863 // This must be extracting from either LHS or RHS.
11864 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
11865 // Okay, we can handle this if the vector we are insertinting into is
11866 // transitively ok.
11867 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11868 // If so, update the mask to reflect the inserted value.
11869 if (EI->getOperand(0) == LHS) {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011870 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011871 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11872 } else {
11873 assert(EI->getOperand(0) == RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011874 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011875 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
11876
11877 }
11878 return true;
11879 }
11880 }
11881 }
11882 }
11883 }
11884 // TODO: Handle shufflevector here!
11885
11886 return false;
11887}
11888
11889/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
11890/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
11891/// that computes V and the LHS value of the shuffle.
11892static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
11893 Value *&RHS) {
11894 assert(isa<VectorType>(V->getType()) &&
11895 (RHS == 0 || V->getType() == RHS->getType()) &&
11896 "Invalid shuffle!");
11897 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11898
11899 if (isa<UndefValue>(V)) {
11900 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11901 return V;
11902 } else if (isa<ConstantAggregateZero>(V)) {
11903 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
11904 return V;
11905 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11906 // If this is an insert of an extract from some other vector, include it.
11907 Value *VecOp = IEI->getOperand(0);
11908 Value *ScalarOp = IEI->getOperand(1);
11909 Value *IdxOp = IEI->getOperand(2);
11910
11911 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11912 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11913 EI->getOperand(0)->getType() == V->getType()) {
11914 unsigned ExtractedIdx =
11915 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11916 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11917
11918 // Either the extracted from or inserted into vector must be RHSVec,
11919 // otherwise we'd end up with a shuffle of three inputs.
11920 if (EI->getOperand(0) == RHS || RHS == 0) {
11921 RHS = EI->getOperand(0);
11922 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011923 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011924 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
11925 return V;
11926 }
11927
11928 if (VecOp == RHS) {
11929 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
11930 // Everything but the extracted element is replaced with the RHS.
11931 for (unsigned i = 0; i != NumElts; ++i) {
11932 if (i != InsertedIdx)
11933 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
11934 }
11935 return V;
11936 }
11937
11938 // If this insertelement is a chain that comes from exactly these two
11939 // vectors, return the vector and the effective shuffle.
11940 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
11941 return EI->getOperand(0);
11942
11943 }
11944 }
11945 }
11946 // TODO: Handle shufflevector here!
11947
11948 // Otherwise, can't do anything fancy. Return an identity vector.
11949 for (unsigned i = 0; i != NumElts; ++i)
11950 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11951 return V;
11952}
11953
11954Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
11955 Value *VecOp = IE.getOperand(0);
11956 Value *ScalarOp = IE.getOperand(1);
11957 Value *IdxOp = IE.getOperand(2);
11958
11959 // Inserting an undef or into an undefined place, remove this.
11960 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
11961 ReplaceInstUsesWith(IE, VecOp);
11962
11963 // If the inserted element was extracted from some other vector, and if the
11964 // indexes are constant, try to turn this into a shufflevector operation.
11965 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11966 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11967 EI->getOperand(0)->getType() == IE.getType()) {
11968 unsigned NumVectorElts = IE.getType()->getNumElements();
11969 unsigned ExtractedIdx =
11970 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11971 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11972
11973 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
11974 return ReplaceInstUsesWith(IE, VecOp);
11975
11976 if (InsertedIdx >= NumVectorElts) // Out of range insert.
11977 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
11978
11979 // If we are extracting a value from a vector, then inserting it right
11980 // back into the same place, just use the input vector.
11981 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
11982 return ReplaceInstUsesWith(IE, VecOp);
11983
11984 // We could theoretically do this for ANY input. However, doing so could
11985 // turn chains of insertelement instructions into a chain of shufflevector
11986 // instructions, and right now we do not merge shufflevectors. As such,
11987 // only do this in a situation where it is clear that there is benefit.
11988 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
11989 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
11990 // the values of VecOp, except then one read from EIOp0.
11991 // Build a new shuffle mask.
11992 std::vector<Constant*> Mask;
11993 if (isa<UndefValue>(VecOp))
11994 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
11995 else {
11996 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
11997 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
11998 NumVectorElts));
11999 }
12000 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
12001 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
12002 ConstantVector::get(Mask));
12003 }
12004
12005 // If this insertelement isn't used by some other insertelement, turn it
12006 // (and any insertelements it points to), into one big shuffle.
12007 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
12008 std::vector<Constant*> Mask;
12009 Value *RHS = 0;
12010 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
12011 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
12012 // We now have a shuffle of LHS, RHS, Mask.
12013 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
12014 }
12015 }
12016 }
12017
12018 return 0;
12019}
12020
12021
12022Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
12023 Value *LHS = SVI.getOperand(0);
12024 Value *RHS = SVI.getOperand(1);
12025 std::vector<unsigned> Mask = getShuffleMask(&SVI);
12026
12027 bool MadeChange = false;
Mon P Wangbff5d9c2008-11-10 04:46:22 +000012028
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012029 // Undefined shuffle mask -> undefined value.
12030 if (isa<UndefValue>(SVI.getOperand(2)))
12031 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
Dan Gohmanda93bbe2008-09-09 18:11:14 +000012032
12033 uint64_t UndefElts;
12034 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
Mon P Wangbff5d9c2008-11-10 04:46:22 +000012035
12036 if (VWidth != cast<VectorType>(LHS->getType())->getNumElements())
12037 return 0;
12038
Dan Gohmanda93bbe2008-09-09 18:11:14 +000012039 uint64_t AllOnesEltMask = ~0ULL >> (64-VWidth);
12040 if (VWidth <= 64 &&
Dan Gohman83b702d2008-09-11 22:47:57 +000012041 SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
12042 LHS = SVI.getOperand(0);
12043 RHS = SVI.getOperand(1);
Dan Gohmanda93bbe2008-09-09 18:11:14 +000012044 MadeChange = true;
Dan Gohman83b702d2008-09-11 22:47:57 +000012045 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012046
12047 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
12048 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
12049 if (LHS == RHS || isa<UndefValue>(LHS)) {
12050 if (isa<UndefValue>(LHS) && LHS == RHS) {
12051 // shuffle(undef,undef,mask) -> undef.
12052 return ReplaceInstUsesWith(SVI, LHS);
12053 }
12054
12055 // Remap any references to RHS to use LHS.
12056 std::vector<Constant*> Elts;
12057 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
12058 if (Mask[i] >= 2*e)
12059 Elts.push_back(UndefValue::get(Type::Int32Ty));
12060 else {
12061 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
Dan Gohmanbba96b92008-08-06 18:17:32 +000012062 (Mask[i] < e && isa<UndefValue>(LHS))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012063 Mask[i] = 2*e; // Turn into undef.
Dan Gohmanbba96b92008-08-06 18:17:32 +000012064 Elts.push_back(UndefValue::get(Type::Int32Ty));
12065 } else {
Mon P Wang6bf3c592008-08-20 02:23:25 +000012066 Mask[i] = Mask[i] % e; // Force to LHS.
Dan Gohmanbba96b92008-08-06 18:17:32 +000012067 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
12068 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012069 }
12070 }
12071 SVI.setOperand(0, SVI.getOperand(1));
12072 SVI.setOperand(1, UndefValue::get(RHS->getType()));
12073 SVI.setOperand(2, ConstantVector::get(Elts));
12074 LHS = SVI.getOperand(0);
12075 RHS = SVI.getOperand(1);
12076 MadeChange = true;
12077 }
12078
12079 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
12080 bool isLHSID = true, isRHSID = true;
12081
12082 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
12083 if (Mask[i] >= e*2) continue; // Ignore undef values.
12084 // Is this an identity shuffle of the LHS value?
12085 isLHSID &= (Mask[i] == i);
12086
12087 // Is this an identity shuffle of the RHS value?
12088 isRHSID &= (Mask[i]-e == i);
12089 }
12090
12091 // Eliminate identity shuffles.
12092 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
12093 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
12094
12095 // If the LHS is a shufflevector itself, see if we can combine it with this
12096 // one without producing an unusual shuffle. Here we are really conservative:
12097 // we are absolutely afraid of producing a shuffle mask not in the input
12098 // program, because the code gen may not be smart enough to turn a merged
12099 // shuffle into two specific shuffles: it may produce worse code. As such,
12100 // we only merge two shuffles if the result is one of the two input shuffle
12101 // masks. In this case, merging the shuffles just removes one instruction,
12102 // which we know is safe. This is good for things like turning:
12103 // (splat(splat)) -> splat.
12104 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
12105 if (isa<UndefValue>(RHS)) {
12106 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
12107
12108 std::vector<unsigned> NewMask;
12109 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
12110 if (Mask[i] >= 2*e)
12111 NewMask.push_back(2*e);
12112 else
12113 NewMask.push_back(LHSMask[Mask[i]]);
12114
12115 // If the result mask is equal to the src shuffle or this shuffle mask, do
12116 // the replacement.
12117 if (NewMask == LHSMask || NewMask == Mask) {
12118 std::vector<Constant*> Elts;
12119 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
12120 if (NewMask[i] >= e*2) {
12121 Elts.push_back(UndefValue::get(Type::Int32Ty));
12122 } else {
12123 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
12124 }
12125 }
12126 return new ShuffleVectorInst(LHSSVI->getOperand(0),
12127 LHSSVI->getOperand(1),
12128 ConstantVector::get(Elts));
12129 }
12130 }
12131 }
12132
12133 return MadeChange ? &SVI : 0;
12134}
12135
12136
12137
12138
12139/// TryToSinkInstruction - Try to move the specified instruction from its
12140/// current block into the beginning of DestBlock, which can only happen if it's
12141/// safe to move the instruction past all of the instructions between it and the
12142/// end of its block.
12143static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
12144 assert(I->hasOneUse() && "Invariants didn't hold!");
12145
12146 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Chris Lattnercb19a1c2008-05-09 15:07:33 +000012147 if (isa<PHINode>(I) || I->mayWriteToMemory() || isa<TerminatorInst>(I))
12148 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012149
12150 // Do not sink alloca instructions out of the entry block.
12151 if (isa<AllocaInst>(I) && I->getParent() ==
12152 &DestBlock->getParent()->getEntryBlock())
12153 return false;
12154
12155 // We can only sink load instructions if there is nothing between the load and
12156 // the end of block that could change the value.
Chris Lattner0db40a62008-05-08 17:37:37 +000012157 if (I->mayReadFromMemory()) {
12158 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012159 Scan != E; ++Scan)
12160 if (Scan->mayWriteToMemory())
12161 return false;
12162 }
12163
Dan Gohman514277c2008-05-23 21:05:58 +000012164 BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012165
12166 I->moveBefore(InsertPos);
12167 ++NumSunkInst;
12168 return true;
12169}
12170
12171
12172/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
12173/// all reachable code to the worklist.
12174///
12175/// This has a couple of tricks to make the code faster and more powerful. In
12176/// particular, we constant fold and DCE instructions as we go, to avoid adding
12177/// them to the worklist (this significantly speeds up instcombine on code where
12178/// many instructions are dead or constant). Additionally, if we find a branch
12179/// whose condition is a known constant, we only visit the reachable successors.
12180///
12181static void AddReachableCodeToWorklist(BasicBlock *BB,
12182 SmallPtrSet<BasicBlock*, 64> &Visited,
12183 InstCombiner &IC,
12184 const TargetData *TD) {
Chris Lattnera06291a2008-08-15 04:03:01 +000012185 SmallVector<BasicBlock*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012186 Worklist.push_back(BB);
12187
12188 while (!Worklist.empty()) {
12189 BB = Worklist.back();
12190 Worklist.pop_back();
12191
12192 // We have now visited this block! If we've already been here, ignore it.
12193 if (!Visited.insert(BB)) continue;
Devang Patel794140c2008-11-19 18:56:50 +000012194
12195 DbgInfoIntrinsic *DBI_Prev = NULL;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012196 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
12197 Instruction *Inst = BBI++;
12198
12199 // DCE instruction if trivially dead.
12200 if (isInstructionTriviallyDead(Inst)) {
12201 ++NumDeadInst;
12202 DOUT << "IC: DCE: " << *Inst;
12203 Inst->eraseFromParent();
12204 continue;
12205 }
12206
12207 // ConstantProp instruction if trivially constant.
12208 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
12209 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
12210 Inst->replaceAllUsesWith(C);
12211 ++NumConstProp;
12212 Inst->eraseFromParent();
12213 continue;
12214 }
Chris Lattnere0f462d2007-07-20 22:06:41 +000012215
Devang Patel794140c2008-11-19 18:56:50 +000012216 // If there are two consecutive llvm.dbg.stoppoint calls then
12217 // it is likely that the optimizer deleted code in between these
12218 // two intrinsics.
12219 DbgInfoIntrinsic *DBI_Next = dyn_cast<DbgInfoIntrinsic>(Inst);
12220 if (DBI_Next) {
12221 if (DBI_Prev
12222 && DBI_Prev->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint
12223 && DBI_Next->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint) {
12224 IC.RemoveFromWorkList(DBI_Prev);
12225 DBI_Prev->eraseFromParent();
12226 }
12227 DBI_Prev = DBI_Next;
12228 }
12229
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012230 IC.AddToWorkList(Inst);
12231 }
12232
12233 // Recursively visit successors. If this is a branch or switch on a
12234 // constant, only visit the reachable successor.
12235 TerminatorInst *TI = BB->getTerminator();
12236 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
12237 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
12238 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewyckyd551cf12008-03-09 08:50:23 +000012239 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000012240 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012241 continue;
12242 }
12243 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
12244 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
12245 // See if this is an explicit destination.
12246 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
12247 if (SI->getCaseValue(i) == Cond) {
Nick Lewyckyd551cf12008-03-09 08:50:23 +000012248 BasicBlock *ReachableBB = SI->getSuccessor(i);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000012249 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012250 continue;
12251 }
12252
12253 // Otherwise it is the default destination.
12254 Worklist.push_back(SI->getSuccessor(0));
12255 continue;
12256 }
12257 }
12258
12259 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
12260 Worklist.push_back(TI->getSuccessor(i));
12261 }
12262}
12263
12264bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
12265 bool Changed = false;
12266 TD = &getAnalysis<TargetData>();
12267
12268 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
12269 << F.getNameStr() << "\n");
12270
12271 {
12272 // Do a depth-first traversal of the function, populate the worklist with
12273 // the reachable instructions. Ignore blocks that are not reachable. Keep
12274 // track of which blocks we visit.
12275 SmallPtrSet<BasicBlock*, 64> Visited;
12276 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
12277
12278 // Do a quick scan over the function. If we find any blocks that are
12279 // unreachable, remove any instructions inside of them. This prevents
12280 // the instcombine code from having to deal with some bad special cases.
12281 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
12282 if (!Visited.count(BB)) {
12283 Instruction *Term = BB->getTerminator();
12284 while (Term != BB->begin()) { // Remove instrs bottom-up
12285 BasicBlock::iterator I = Term; --I;
12286
12287 DOUT << "IC: DCE: " << *I;
12288 ++NumDeadInst;
12289
12290 if (!I->use_empty())
12291 I->replaceAllUsesWith(UndefValue::get(I->getType()));
12292 I->eraseFromParent();
12293 }
12294 }
12295 }
12296
12297 while (!Worklist.empty()) {
12298 Instruction *I = RemoveOneFromWorkList();
12299 if (I == 0) continue; // skip null values.
12300
12301 // Check to see if we can DCE the instruction.
12302 if (isInstructionTriviallyDead(I)) {
12303 // Add operands to the worklist.
12304 if (I->getNumOperands() < 4)
12305 AddUsesToWorkList(*I);
12306 ++NumDeadInst;
12307
12308 DOUT << "IC: DCE: " << *I;
12309
12310 I->eraseFromParent();
12311 RemoveFromWorkList(I);
12312 continue;
12313 }
12314
12315 // Instruction isn't dead, see if we can constant propagate it.
12316 if (Constant *C = ConstantFoldInstruction(I, TD)) {
12317 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
12318
12319 // Add operands to the worklist.
12320 AddUsesToWorkList(*I);
12321 ReplaceInstUsesWith(*I, C);
12322
12323 ++NumConstProp;
12324 I->eraseFromParent();
12325 RemoveFromWorkList(I);
12326 continue;
12327 }
12328
Nick Lewyckyadb67922008-05-25 20:56:15 +000012329 if (TD && I->getType()->getTypeID() == Type::VoidTyID) {
12330 // See if we can constant fold its operands.
12331 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
12332 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i)) {
12333 if (Constant *NewC = ConstantFoldConstantExpression(CE, TD))
12334 i->set(NewC);
12335 }
12336 }
12337 }
12338
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012339 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohman29474e92008-07-23 00:34:11 +000012340 if (I->hasOneUse()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012341 BasicBlock *BB = I->getParent();
12342 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
12343 if (UserParent != BB) {
12344 bool UserIsSuccessor = false;
12345 // See if the user is one of our successors.
12346 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
12347 if (*SI == UserParent) {
12348 UserIsSuccessor = true;
12349 break;
12350 }
12351
12352 // If the user is one of our immediate successors, and if that successor
12353 // only has us as a predecessors (we'd have to split the critical edge
12354 // otherwise), we can keep going.
12355 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
12356 next(pred_begin(UserParent)) == pred_end(UserParent))
12357 // Okay, the CFG is simple enough, try to sink this instruction.
12358 Changed |= TryToSinkInstruction(I, UserParent);
12359 }
12360 }
12361
12362 // Now that we have an instruction, try combining it to simplify it...
12363#ifndef NDEBUG
12364 std::string OrigI;
12365#endif
12366 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
12367 if (Instruction *Result = visit(*I)) {
12368 ++NumCombined;
12369 // Should we replace the old instruction with a new one?
12370 if (Result != I) {
12371 DOUT << "IC: Old = " << *I
12372 << " New = " << *Result;
12373
12374 // Everything uses the new instruction now.
12375 I->replaceAllUsesWith(Result);
12376
12377 // Push the new instruction and any users onto the worklist.
12378 AddToWorkList(Result);
12379 AddUsersToWorkList(*Result);
12380
12381 // Move the name to the new instruction first.
12382 Result->takeName(I);
12383
12384 // Insert the new instruction into the basic block...
12385 BasicBlock *InstParent = I->getParent();
12386 BasicBlock::iterator InsertPos = I;
12387
12388 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
12389 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
12390 ++InsertPos;
12391
12392 InstParent->getInstList().insert(InsertPos, Result);
12393
12394 // Make sure that we reprocess all operands now that we reduced their
12395 // use counts.
12396 AddUsesToWorkList(*I);
12397
12398 // Instructions can end up on the worklist more than once. Make sure
12399 // we do not process an instruction that has been deleted.
12400 RemoveFromWorkList(I);
12401
12402 // Erase the old instruction.
12403 InstParent->getInstList().erase(I);
12404 } else {
12405#ifndef NDEBUG
12406 DOUT << "IC: Mod = " << OrigI
12407 << " New = " << *I;
12408#endif
12409
12410 // If the instruction was modified, it's possible that it is now dead.
12411 // if so, remove it.
12412 if (isInstructionTriviallyDead(I)) {
12413 // Make sure we process all operands now that we are reducing their
12414 // use counts.
12415 AddUsesToWorkList(*I);
12416
12417 // Instructions may end up in the worklist more than once. Erase all
12418 // occurrences of this instruction.
12419 RemoveFromWorkList(I);
12420 I->eraseFromParent();
12421 } else {
12422 AddToWorkList(I);
12423 AddUsersToWorkList(*I);
12424 }
12425 }
12426 Changed = true;
12427 }
12428 }
12429
12430 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnerb933ea62007-08-05 08:47:58 +000012431
12432 // Do an explicit clear, this shrinks the map if needed.
12433 WorklistMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012434 return Changed;
12435}
12436
12437
12438bool InstCombiner::runOnFunction(Function &F) {
12439 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
12440
12441 bool EverMadeChange = false;
12442
12443 // Iterate while there is work to do.
12444 unsigned Iteration = 0;
Bill Wendlingd9644a42008-05-14 22:45:20 +000012445 while (DoOneIteration(F, Iteration++))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012446 EverMadeChange = true;
12447 return EverMadeChange;
12448}
12449
12450FunctionPass *llvm::createInstructionCombiningPass() {
12451 return new InstCombiner();
12452}