blob: 17ff08d96c78d6a26fe581c6beebfe79e1f81137 [file] [log] [blame]
Dan Gohman2d1be872009-04-16 03:18:22 +00001//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
Nate Begemaneaa13852004-10-18 21:08:22 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
Nate Begemaneaa13852004-10-18 21:08:22 +00008//===----------------------------------------------------------------------===//
9//
Dan Gohmancec8f9d2009-05-19 20:37:36 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
Nate Begemaneaa13852004-10-18 21:08:22 +000014// This pass performs a strength reduction on array references inside loops that
Dan Gohmancec8f9d2009-05-19 20:37:36 +000015// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
Nate Begemaneaa13852004-10-18 21:08:22 +000019//
Dan Gohman572645c2010-02-12 10:34:29 +000020// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24// %i = phi [ 0, %entry ], [ %i.next, %latch ]
25// ...
26// %i.next = add %i, 1
27// %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41// instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44// smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47// multiple base registers, or as the increment expression in an addrec),
48// we may not actually need both reg and (-1 * reg) in registers; the
49// negation can be implemented by using a sub instead of an add. The
50// lack of support for taking this into consideration when making
51// register pressure decisions is partly worked around by the "Special"
52// use kind.
53//
Nate Begemaneaa13852004-10-18 21:08:22 +000054//===----------------------------------------------------------------------===//
55
Chris Lattnerbe3e5212005-08-03 23:30:08 +000056#define DEBUG_TYPE "loop-reduce"
Nate Begemaneaa13852004-10-18 21:08:22 +000057#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
Dan Gohmane5b01be2007-05-04 14:59:09 +000060#include "llvm/IntrinsicInst.h"
Jeff Cohen2f3c9b72005-03-04 04:04:26 +000061#include "llvm/DerivedTypes.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000062#include "llvm/Analysis/IVUsers.h"
Dan Gohman572645c2010-02-12 10:34:29 +000063#include "llvm/Analysis/Dominators.h"
Devang Patel0f54dcb2007-03-06 21:14:09 +000064#include "llvm/Analysis/LoopPass.h"
Nate Begeman16997482005-07-30 00:15:07 +000065#include "llvm/Analysis/ScalarEvolutionExpander.h"
Chris Lattnere0391be2005-08-12 22:06:11 +000066#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Nate Begemaneaa13852004-10-18 21:08:22 +000067#include "llvm/Transforms/Utils/Local.h"
Dan Gohman572645c2010-02-12 10:34:29 +000068#include "llvm/ADT/SmallBitVector.h"
69#include "llvm/ADT/SetVector.h"
70#include "llvm/ADT/DenseSet.h"
Nate Begeman16997482005-07-30 00:15:07 +000071#include "llvm/Support/Debug.h"
Dan Gohmanafc36a92009-05-02 18:29:22 +000072#include "llvm/Support/ValueHandle.h"
Daniel Dunbar460f6562009-07-26 09:48:23 +000073#include "llvm/Support/raw_ostream.h"
Evan Chengd277f2c2006-03-13 23:14:23 +000074#include "llvm/Target/TargetLowering.h"
Jeff Cohencfb1d422005-07-30 18:22:27 +000075#include <algorithm>
Nate Begemaneaa13852004-10-18 21:08:22 +000076using namespace llvm;
77
Dan Gohman572645c2010-02-12 10:34:29 +000078namespace {
Nate Begemaneaa13852004-10-18 21:08:22 +000079
Dan Gohman572645c2010-02-12 10:34:29 +000080/// RegSortData - This class holds data which is used to order reuse candidates.
81class RegSortData {
82public:
83 /// UsedByIndices - This represents the set of LSRUse indices which reference
84 /// a particular register.
85 SmallBitVector UsedByIndices;
86
87 RegSortData() {}
88
89 void print(raw_ostream &OS) const;
90 void dump() const;
91};
92
93}
94
95void RegSortData::print(raw_ostream &OS) const {
96 OS << "[NumUses=" << UsedByIndices.count() << ']';
97}
98
99void RegSortData::dump() const {
100 print(errs()); errs() << '\n';
101}
Dan Gohmanc17e0cf2009-02-20 04:17:46 +0000102
Chris Lattner0e5f4992006-12-19 21:40:18 +0000103namespace {
Dale Johannesendc42f482007-03-20 00:47:50 +0000104
Dan Gohman572645c2010-02-12 10:34:29 +0000105/// RegUseTracker - Map register candidates to information about how they are
106/// used.
107class RegUseTracker {
108 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
Dale Johannesendc42f482007-03-20 00:47:50 +0000109
Dan Gohman90bb3552010-05-18 22:33:00 +0000110 RegUsesTy RegUsesMap;
Dan Gohman572645c2010-02-12 10:34:29 +0000111 SmallVector<const SCEV *, 16> RegSequence;
Evan Chengd1d6b5c2006-03-16 21:53:05 +0000112
Dan Gohman572645c2010-02-12 10:34:29 +0000113public:
114 void CountRegister(const SCEV *Reg, size_t LUIdx);
Dan Gohmanb2df4332010-05-18 23:42:37 +0000115 void DropRegister(const SCEV *Reg, size_t LUIdx);
Dan Gohmana2086b32010-05-19 23:43:12 +0000116 void DropUse(size_t LUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000117
Dan Gohman572645c2010-02-12 10:34:29 +0000118 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000119
Dan Gohman572645c2010-02-12 10:34:29 +0000120 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000121
Dan Gohman572645c2010-02-12 10:34:29 +0000122 void clear();
Dan Gohmana10756e2010-01-21 02:09:26 +0000123
Dan Gohman572645c2010-02-12 10:34:29 +0000124 typedef SmallVectorImpl<const SCEV *>::iterator iterator;
125 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
126 iterator begin() { return RegSequence.begin(); }
127 iterator end() { return RegSequence.end(); }
128 const_iterator begin() const { return RegSequence.begin(); }
129 const_iterator end() const { return RegSequence.end(); }
130};
Dan Gohmana10756e2010-01-21 02:09:26 +0000131
Dan Gohmana10756e2010-01-21 02:09:26 +0000132}
133
Dan Gohman572645c2010-02-12 10:34:29 +0000134void
135RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
136 std::pair<RegUsesTy::iterator, bool> Pair =
Dan Gohman90bb3552010-05-18 22:33:00 +0000137 RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
Dan Gohman572645c2010-02-12 10:34:29 +0000138 RegSortData &RSD = Pair.first->second;
139 if (Pair.second)
140 RegSequence.push_back(Reg);
141 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
142 RSD.UsedByIndices.set(LUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000143}
144
Dan Gohmanb2df4332010-05-18 23:42:37 +0000145void
146RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
147 RegUsesTy::iterator It = RegUsesMap.find(Reg);
148 assert(It != RegUsesMap.end());
149 RegSortData &RSD = It->second;
150 assert(RSD.UsedByIndices.size() > LUIdx);
151 RSD.UsedByIndices.reset(LUIdx);
152}
153
Dan Gohmana2086b32010-05-19 23:43:12 +0000154void
155RegUseTracker::DropUse(size_t LUIdx) {
156 // Remove the use index from every register's use list.
157 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
158 I != E; ++I)
159 I->second.UsedByIndices.reset(LUIdx);
160}
161
Dan Gohman572645c2010-02-12 10:34:29 +0000162bool
163RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
Dan Gohman46fd7a62010-08-29 15:18:49 +0000164 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
165 if (I == RegUsesMap.end())
166 return false;
167 const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
Dan Gohman572645c2010-02-12 10:34:29 +0000168 int i = UsedByIndices.find_first();
169 if (i == -1) return false;
170 if ((size_t)i != LUIdx) return true;
171 return UsedByIndices.find_next(i) != -1;
172}
Dan Gohmana10756e2010-01-21 02:09:26 +0000173
Dan Gohman572645c2010-02-12 10:34:29 +0000174const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
Dan Gohman90bb3552010-05-18 22:33:00 +0000175 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
176 assert(I != RegUsesMap.end() && "Unknown register!");
Dan Gohman572645c2010-02-12 10:34:29 +0000177 return I->second.UsedByIndices;
178}
Dan Gohmana10756e2010-01-21 02:09:26 +0000179
Dan Gohman572645c2010-02-12 10:34:29 +0000180void RegUseTracker::clear() {
Dan Gohman90bb3552010-05-18 22:33:00 +0000181 RegUsesMap.clear();
Dan Gohman572645c2010-02-12 10:34:29 +0000182 RegSequence.clear();
183}
Dan Gohmana10756e2010-01-21 02:09:26 +0000184
Dan Gohman572645c2010-02-12 10:34:29 +0000185namespace {
186
187/// Formula - This class holds information that describes a formula for
188/// computing satisfying a use. It may include broken-out immediates and scaled
189/// registers.
190struct Formula {
191 /// AM - This is used to represent complex addressing, as well as other kinds
192 /// of interesting uses.
193 TargetLowering::AddrMode AM;
194
195 /// BaseRegs - The list of "base" registers for this use. When this is
196 /// non-empty, AM.HasBaseReg should be set to true.
197 SmallVector<const SCEV *, 2> BaseRegs;
198
199 /// ScaledReg - The 'scaled' register for this use. This should be non-null
200 /// when AM.Scale is not zero.
201 const SCEV *ScaledReg;
202
203 Formula() : ScaledReg(0) {}
204
205 void InitialMatch(const SCEV *S, Loop *L,
206 ScalarEvolution &SE, DominatorTree &DT);
207
208 unsigned getNumRegs() const;
209 const Type *getType() const;
210
Dan Gohman5ce6d052010-05-20 15:17:54 +0000211 void DeleteBaseReg(const SCEV *&S);
212
Dan Gohman572645c2010-02-12 10:34:29 +0000213 bool referencesReg(const SCEV *S) const;
214 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
215 const RegUseTracker &RegUses) const;
216
217 void print(raw_ostream &OS) const;
218 void dump() const;
219};
220
221}
222
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000223/// DoInitialMatch - Recursion helper for InitialMatch.
Dan Gohman572645c2010-02-12 10:34:29 +0000224static void DoInitialMatch(const SCEV *S, Loop *L,
225 SmallVectorImpl<const SCEV *> &Good,
226 SmallVectorImpl<const SCEV *> &Bad,
227 ScalarEvolution &SE, DominatorTree &DT) {
228 // Collect expressions which properly dominate the loop header.
229 if (S->properlyDominates(L->getHeader(), &DT)) {
230 Good.push_back(S);
231 return;
Dan Gohmana10756e2010-01-21 02:09:26 +0000232 }
Dan Gohman572645c2010-02-12 10:34:29 +0000233
234 // Look at add operands.
235 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
236 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
237 I != E; ++I)
238 DoInitialMatch(*I, L, Good, Bad, SE, DT);
239 return;
240 }
241
242 // Look at addrec operands.
243 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
244 if (!AR->getStart()->isZero()) {
245 DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT);
Dan Gohmandeff6212010-05-03 22:09:21 +0000246 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
Dan Gohman572645c2010-02-12 10:34:29 +0000247 AR->getStepRecurrence(SE),
248 AR->getLoop()),
249 L, Good, Bad, SE, DT);
250 return;
251 }
252
253 // Handle a multiplication by -1 (negation) if it didn't fold.
254 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
255 if (Mul->getOperand(0)->isAllOnesValue()) {
256 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
257 const SCEV *NewMul = SE.getMulExpr(Ops);
258
259 SmallVector<const SCEV *, 4> MyGood;
260 SmallVector<const SCEV *, 4> MyBad;
261 DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT);
262 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
263 SE.getEffectiveSCEVType(NewMul->getType())));
264 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
265 E = MyGood.end(); I != E; ++I)
266 Good.push_back(SE.getMulExpr(NegOne, *I));
267 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
268 E = MyBad.end(); I != E; ++I)
269 Bad.push_back(SE.getMulExpr(NegOne, *I));
270 return;
271 }
272
273 // Ok, we can't do anything interesting. Just stuff the whole thing into a
274 // register and hope for the best.
275 Bad.push_back(S);
276}
277
278/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
279/// attempting to keep all loop-invariant and loop-computable values in a
280/// single base register.
281void Formula::InitialMatch(const SCEV *S, Loop *L,
282 ScalarEvolution &SE, DominatorTree &DT) {
283 SmallVector<const SCEV *, 4> Good;
284 SmallVector<const SCEV *, 4> Bad;
285 DoInitialMatch(S, L, Good, Bad, SE, DT);
286 if (!Good.empty()) {
Dan Gohmane60bb152010-04-08 23:36:27 +0000287 const SCEV *Sum = SE.getAddExpr(Good);
288 if (!Sum->isZero())
289 BaseRegs.push_back(Sum);
Dan Gohman572645c2010-02-12 10:34:29 +0000290 AM.HasBaseReg = true;
291 }
292 if (!Bad.empty()) {
Dan Gohmane60bb152010-04-08 23:36:27 +0000293 const SCEV *Sum = SE.getAddExpr(Bad);
294 if (!Sum->isZero())
295 BaseRegs.push_back(Sum);
Dan Gohman572645c2010-02-12 10:34:29 +0000296 AM.HasBaseReg = true;
297 }
298}
299
300/// getNumRegs - Return the total number of register operands used by this
301/// formula. This does not include register uses implied by non-constant
302/// addrec strides.
303unsigned Formula::getNumRegs() const {
304 return !!ScaledReg + BaseRegs.size();
305}
306
307/// getType - Return the type of this formula, if it has one, or null
308/// otherwise. This type is meaningless except for the bit size.
309const Type *Formula::getType() const {
310 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
311 ScaledReg ? ScaledReg->getType() :
312 AM.BaseGV ? AM.BaseGV->getType() :
313 0;
314}
315
Dan Gohman5ce6d052010-05-20 15:17:54 +0000316/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
317void Formula::DeleteBaseReg(const SCEV *&S) {
318 if (&S != &BaseRegs.back())
319 std::swap(S, BaseRegs.back());
320 BaseRegs.pop_back();
321}
322
Dan Gohman572645c2010-02-12 10:34:29 +0000323/// referencesReg - Test if this formula references the given register.
324bool Formula::referencesReg(const SCEV *S) const {
325 return S == ScaledReg ||
326 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
327}
328
329/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
330/// which are used by uses other than the use with the given index.
331bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
332 const RegUseTracker &RegUses) const {
333 if (ScaledReg)
334 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
335 return true;
336 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
337 E = BaseRegs.end(); I != E; ++I)
338 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
339 return true;
340 return false;
341}
342
343void Formula::print(raw_ostream &OS) const {
344 bool First = true;
345 if (AM.BaseGV) {
346 if (!First) OS << " + "; else First = false;
347 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
348 }
349 if (AM.BaseOffs != 0) {
350 if (!First) OS << " + "; else First = false;
351 OS << AM.BaseOffs;
352 }
353 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
354 E = BaseRegs.end(); I != E; ++I) {
355 if (!First) OS << " + "; else First = false;
356 OS << "reg(" << **I << ')';
357 }
Dan Gohmanc4cfbaf2010-05-18 22:35:55 +0000358 if (AM.HasBaseReg && BaseRegs.empty()) {
359 if (!First) OS << " + "; else First = false;
360 OS << "**error: HasBaseReg**";
361 } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
362 if (!First) OS << " + "; else First = false;
363 OS << "**error: !HasBaseReg**";
364 }
Dan Gohman572645c2010-02-12 10:34:29 +0000365 if (AM.Scale != 0) {
366 if (!First) OS << " + "; else First = false;
367 OS << AM.Scale << "*reg(";
368 if (ScaledReg)
369 OS << *ScaledReg;
370 else
371 OS << "<unknown>";
372 OS << ')';
373 }
374}
375
376void Formula::dump() const {
377 print(errs()); errs() << '\n';
378}
379
Dan Gohmanaae01f12010-02-19 19:32:49 +0000380/// isAddRecSExtable - Return true if the given addrec can be sign-extended
381/// without changing its value.
382static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
383 const Type *WideTy =
Dan Gohmanea507f52010-05-20 19:44:23 +0000384 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000385 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
386}
387
388/// isAddSExtable - Return true if the given add can be sign-extended
389/// without changing its value.
390static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
391 const Type *WideTy =
Dan Gohmanea507f52010-05-20 19:44:23 +0000392 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000393 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
394}
395
Dan Gohman473e6352010-06-24 16:45:11 +0000396/// isMulSExtable - Return true if the given mul can be sign-extended
Dan Gohmanaae01f12010-02-19 19:32:49 +0000397/// without changing its value.
Dan Gohman473e6352010-06-24 16:45:11 +0000398static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000399 const Type *WideTy =
Dan Gohman473e6352010-06-24 16:45:11 +0000400 IntegerType::get(SE.getContext(),
401 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
402 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
Dan Gohmanaae01f12010-02-19 19:32:49 +0000403}
404
Dan Gohmanf09b7122010-02-19 19:35:48 +0000405/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
406/// and if the remainder is known to be zero, or null otherwise. If
407/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
408/// to Y, ignoring that the multiplication may overflow, which is useful when
409/// the result will be used in a context where the most significant bits are
410/// ignored.
411static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
412 ScalarEvolution &SE,
413 bool IgnoreSignificantBits = false) {
Dan Gohman572645c2010-02-12 10:34:29 +0000414 // Handle the trivial case, which works for any SCEV type.
415 if (LHS == RHS)
Dan Gohmandeff6212010-05-03 22:09:21 +0000416 return SE.getConstant(LHS->getType(), 1);
Dan Gohman572645c2010-02-12 10:34:29 +0000417
Dan Gohmand42819a2010-06-24 16:51:25 +0000418 // Handle a few RHS special cases.
419 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
420 if (RC) {
421 const APInt &RA = RC->getValue()->getValue();
422 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
423 // some folding.
424 if (RA.isAllOnesValue())
425 return SE.getMulExpr(LHS, RC);
426 // Handle x /s 1 as x.
427 if (RA == 1)
428 return LHS;
429 }
Dan Gohman572645c2010-02-12 10:34:29 +0000430
431 // Check for a division of a constant by a constant.
432 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
Dan Gohman572645c2010-02-12 10:34:29 +0000433 if (!RC)
434 return 0;
Dan Gohmand42819a2010-06-24 16:51:25 +0000435 const APInt &LA = C->getValue()->getValue();
436 const APInt &RA = RC->getValue()->getValue();
437 if (LA.srem(RA) != 0)
Dan Gohman572645c2010-02-12 10:34:29 +0000438 return 0;
Dan Gohmand42819a2010-06-24 16:51:25 +0000439 return SE.getConstant(LA.sdiv(RA));
Dan Gohman572645c2010-02-12 10:34:29 +0000440 }
441
Dan Gohmanaae01f12010-02-19 19:32:49 +0000442 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000443 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000444 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000445 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
446 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000447 if (!Step) return 0;
Dan Gohman694a15e2010-08-19 01:02:31 +0000448 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
449 IgnoreSignificantBits);
450 if (!Start) return 0;
Dan Gohmanaae01f12010-02-19 19:32:49 +0000451 return SE.getAddRecExpr(Start, Step, AR->getLoop());
452 }
Dan Gohman2ea09e02010-06-24 16:57:52 +0000453 return 0;
Dan Gohman572645c2010-02-12 10:34:29 +0000454 }
455
Dan Gohmanaae01f12010-02-19 19:32:49 +0000456 // Distribute the sdiv over add operands, if the add doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000457 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000458 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
459 SmallVector<const SCEV *, 8> Ops;
460 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
461 I != E; ++I) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000462 const SCEV *Op = getExactSDiv(*I, RHS, SE,
463 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000464 if (!Op) return 0;
465 Ops.push_back(Op);
466 }
467 return SE.getAddExpr(Ops);
Dan Gohman572645c2010-02-12 10:34:29 +0000468 }
Dan Gohman2ea09e02010-06-24 16:57:52 +0000469 return 0;
Dan Gohman572645c2010-02-12 10:34:29 +0000470 }
471
472 // Check for a multiply operand that we can pull RHS out of.
Dan Gohman2ea09e02010-06-24 16:57:52 +0000473 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000474 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
Dan Gohman572645c2010-02-12 10:34:29 +0000475 SmallVector<const SCEV *, 4> Ops;
476 bool Found = false;
477 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
478 I != E; ++I) {
Dan Gohman47667442010-05-20 16:23:28 +0000479 const SCEV *S = *I;
Dan Gohman572645c2010-02-12 10:34:29 +0000480 if (!Found)
Dan Gohman47667442010-05-20 16:23:28 +0000481 if (const SCEV *Q = getExactSDiv(S, RHS, SE,
Dan Gohmanf09b7122010-02-19 19:35:48 +0000482 IgnoreSignificantBits)) {
Dan Gohman47667442010-05-20 16:23:28 +0000483 S = Q;
Dan Gohman572645c2010-02-12 10:34:29 +0000484 Found = true;
Dan Gohman572645c2010-02-12 10:34:29 +0000485 }
Dan Gohman47667442010-05-20 16:23:28 +0000486 Ops.push_back(S);
Dan Gohman572645c2010-02-12 10:34:29 +0000487 }
488 return Found ? SE.getMulExpr(Ops) : 0;
489 }
Dan Gohman2ea09e02010-06-24 16:57:52 +0000490 return 0;
491 }
Dan Gohman572645c2010-02-12 10:34:29 +0000492
493 // Otherwise we don't know.
494 return 0;
495}
496
497/// ExtractImmediate - If S involves the addition of a constant integer value,
498/// return that integer value, and mutate S to point to a new SCEV with that
499/// value excluded.
500static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
501 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
502 if (C->getValue()->getValue().getMinSignedBits() <= 64) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000503 S = SE.getConstant(C->getType(), 0);
Dan Gohman572645c2010-02-12 10:34:29 +0000504 return C->getValue()->getSExtValue();
505 }
506 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
507 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
508 int64_t Result = ExtractImmediate(NewOps.front(), SE);
Dan Gohmane62d5882010-08-13 21:17:19 +0000509 if (Result != 0)
510 S = SE.getAddExpr(NewOps);
Dan Gohman572645c2010-02-12 10:34:29 +0000511 return Result;
512 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
513 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
514 int64_t Result = ExtractImmediate(NewOps.front(), SE);
Dan Gohmane62d5882010-08-13 21:17:19 +0000515 if (Result != 0)
516 S = SE.getAddRecExpr(NewOps, AR->getLoop());
Dan Gohman572645c2010-02-12 10:34:29 +0000517 return Result;
518 }
519 return 0;
520}
521
522/// ExtractSymbol - If S involves the addition of a GlobalValue address,
523/// return that symbol, and mutate S to point to a new SCEV with that
524/// value excluded.
525static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
526 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
527 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000528 S = SE.getConstant(GV->getType(), 0);
Dan Gohman572645c2010-02-12 10:34:29 +0000529 return GV;
530 }
531 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
532 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
533 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
Dan Gohmane62d5882010-08-13 21:17:19 +0000534 if (Result)
535 S = SE.getAddExpr(NewOps);
Dan Gohman572645c2010-02-12 10:34:29 +0000536 return Result;
537 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
538 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
539 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
Dan Gohmane62d5882010-08-13 21:17:19 +0000540 if (Result)
541 S = SE.getAddRecExpr(NewOps, AR->getLoop());
Dan Gohman572645c2010-02-12 10:34:29 +0000542 return Result;
543 }
544 return 0;
Nate Begemaneaa13852004-10-18 21:08:22 +0000545}
546
Dan Gohmanf284ce22009-02-18 00:08:39 +0000547/// isAddressUse - Returns true if the specified instruction is using the
Dale Johannesen203af582008-12-05 21:47:27 +0000548/// specified value as an address.
549static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
550 bool isAddress = isa<LoadInst>(Inst);
551 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
552 if (SI->getOperand(1) == OperandVal)
553 isAddress = true;
554 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
555 // Addressing modes can also be folded into prefetches and a variety
556 // of intrinsics.
557 switch (II->getIntrinsicID()) {
558 default: break;
559 case Intrinsic::prefetch:
560 case Intrinsic::x86_sse2_loadu_dq:
561 case Intrinsic::x86_sse2_loadu_pd:
562 case Intrinsic::x86_sse_loadu_ps:
563 case Intrinsic::x86_sse_storeu_ps:
564 case Intrinsic::x86_sse2_storeu_pd:
565 case Intrinsic::x86_sse2_storeu_dq:
566 case Intrinsic::x86_sse2_storel_dq:
Gabor Greifad72e732010-06-30 09:15:28 +0000567 if (II->getArgOperand(0) == OperandVal)
Dale Johannesen203af582008-12-05 21:47:27 +0000568 isAddress = true;
569 break;
570 }
571 }
572 return isAddress;
573}
Chris Lattner0ae33eb2005-10-03 01:04:44 +0000574
Dan Gohman21e77222009-03-09 21:01:17 +0000575/// getAccessType - Return the type of the memory being accessed.
576static const Type *getAccessType(const Instruction *Inst) {
Dan Gohmana537bf82009-05-18 16:45:28 +0000577 const Type *AccessTy = Inst->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000578 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
Dan Gohmana537bf82009-05-18 16:45:28 +0000579 AccessTy = SI->getOperand(0)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000580 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
581 // Addressing modes can also be folded into prefetches and a variety
582 // of intrinsics.
583 switch (II->getIntrinsicID()) {
584 default: break;
585 case Intrinsic::x86_sse_storeu_ps:
586 case Intrinsic::x86_sse2_storeu_pd:
587 case Intrinsic::x86_sse2_storeu_dq:
588 case Intrinsic::x86_sse2_storel_dq:
Gabor Greifad72e732010-06-30 09:15:28 +0000589 AccessTy = II->getArgOperand(0)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000590 break;
591 }
592 }
Dan Gohman572645c2010-02-12 10:34:29 +0000593
594 // All pointers have the same requirements, so canonicalize them to an
595 // arbitrary pointer type to minimize variation.
596 if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
597 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
598 PTy->getAddressSpace());
599
Dan Gohmana537bf82009-05-18 16:45:28 +0000600 return AccessTy;
Dan Gohman21e77222009-03-09 21:01:17 +0000601}
602
Dan Gohman572645c2010-02-12 10:34:29 +0000603/// DeleteTriviallyDeadInstructions - If any of the instructions is the
604/// specified set are trivially dead, delete them and see if this makes any of
605/// their operands subsequently dead.
606static bool
607DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
608 bool Changed = false;
609
610 while (!DeadInsts.empty()) {
611 Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
612
613 if (I == 0 || !isInstructionTriviallyDead(I))
614 continue;
615
616 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
617 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
618 *OI = 0;
619 if (U->use_empty())
620 DeadInsts.push_back(U);
621 }
622
623 I->eraseFromParent();
624 Changed = true;
625 }
626
627 return Changed;
628}
629
Dan Gohman7979b722010-01-22 00:46:49 +0000630namespace {
Jim Grosbach56a1f802009-11-17 17:53:56 +0000631
Dan Gohman572645c2010-02-12 10:34:29 +0000632/// Cost - This class is used to measure and compare candidate formulae.
633class Cost {
634 /// TODO: Some of these could be merged. Also, a lexical ordering
635 /// isn't always optimal.
636 unsigned NumRegs;
637 unsigned AddRecCost;
638 unsigned NumIVMuls;
639 unsigned NumBaseAdds;
640 unsigned ImmCost;
641 unsigned SetupCost;
Nate Begeman16997482005-07-30 00:15:07 +0000642
Dan Gohman572645c2010-02-12 10:34:29 +0000643public:
644 Cost()
645 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
646 SetupCost(0) {}
Jim Grosbach56a1f802009-11-17 17:53:56 +0000647
Dan Gohman572645c2010-02-12 10:34:29 +0000648 unsigned getNumRegs() const { return NumRegs; }
Dan Gohman7979b722010-01-22 00:46:49 +0000649
Dan Gohman572645c2010-02-12 10:34:29 +0000650 bool operator<(const Cost &Other) const;
Dan Gohman7979b722010-01-22 00:46:49 +0000651
Dan Gohman572645c2010-02-12 10:34:29 +0000652 void Loose();
Dan Gohman7979b722010-01-22 00:46:49 +0000653
Dan Gohman572645c2010-02-12 10:34:29 +0000654 void RateFormula(const Formula &F,
655 SmallPtrSet<const SCEV *, 16> &Regs,
656 const DenseSet<const SCEV *> &VisitedRegs,
657 const Loop *L,
658 const SmallVectorImpl<int64_t> &Offsets,
659 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman7979b722010-01-22 00:46:49 +0000660
Dan Gohman572645c2010-02-12 10:34:29 +0000661 void print(raw_ostream &OS) const;
662 void dump() const;
Dan Gohman7979b722010-01-22 00:46:49 +0000663
Dan Gohman572645c2010-02-12 10:34:29 +0000664private:
665 void RateRegister(const SCEV *Reg,
666 SmallPtrSet<const SCEV *, 16> &Regs,
667 const Loop *L,
668 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman9214b822010-02-13 02:06:02 +0000669 void RatePrimaryRegister(const SCEV *Reg,
670 SmallPtrSet<const SCEV *, 16> &Regs,
671 const Loop *L,
672 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000673};
674
675}
676
677/// RateRegister - Tally up interesting quantities from the given register.
678void Cost::RateRegister(const SCEV *Reg,
679 SmallPtrSet<const SCEV *, 16> &Regs,
680 const Loop *L,
681 ScalarEvolution &SE, DominatorTree &DT) {
Dan Gohman9214b822010-02-13 02:06:02 +0000682 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
683 if (AR->getLoop() == L)
684 AddRecCost += 1; /// TODO: This should be a function of the stride.
Dan Gohman572645c2010-02-12 10:34:29 +0000685
Dan Gohman9214b822010-02-13 02:06:02 +0000686 // If this is an addrec for a loop that's already been visited by LSR,
687 // don't second-guess its addrec phi nodes. LSR isn't currently smart
688 // enough to reason about more than one loop at a time. Consider these
689 // registers free and leave them alone.
690 else if (L->contains(AR->getLoop()) ||
691 (!AR->getLoop()->contains(L) &&
692 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
693 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
694 PHINode *PN = dyn_cast<PHINode>(I); ++I)
695 if (SE.isSCEVable(PN->getType()) &&
696 (SE.getEffectiveSCEVType(PN->getType()) ==
697 SE.getEffectiveSCEVType(AR->getType())) &&
698 SE.getSCEV(PN) == AR)
699 return;
Dan Gohman572645c2010-02-12 10:34:29 +0000700
Dan Gohman9214b822010-02-13 02:06:02 +0000701 // If this isn't one of the addrecs that the loop already has, it
702 // would require a costly new phi and add. TODO: This isn't
703 // precisely modeled right now.
704 ++NumBaseAdds;
705 if (!Regs.count(AR->getStart()))
Dan Gohman572645c2010-02-12 10:34:29 +0000706 RateRegister(AR->getStart(), Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000707 }
Dan Gohman572645c2010-02-12 10:34:29 +0000708
Dan Gohman9214b822010-02-13 02:06:02 +0000709 // Add the step value register, if it needs one.
710 // TODO: The non-affine case isn't precisely modeled here.
711 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
712 if (!Regs.count(AR->getStart()))
713 RateRegister(AR->getOperand(1), Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000714 }
Dan Gohman9214b822010-02-13 02:06:02 +0000715 ++NumRegs;
716
717 // Rough heuristic; favor registers which don't require extra setup
718 // instructions in the preheader.
719 if (!isa<SCEVUnknown>(Reg) &&
720 !isa<SCEVConstant>(Reg) &&
721 !(isa<SCEVAddRecExpr>(Reg) &&
722 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
723 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
724 ++SetupCost;
725}
726
727/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
728/// before, rate it.
729void Cost::RatePrimaryRegister(const SCEV *Reg,
Dan Gohman7fca2292010-02-16 19:42:34 +0000730 SmallPtrSet<const SCEV *, 16> &Regs,
731 const Loop *L,
732 ScalarEvolution &SE, DominatorTree &DT) {
Dan Gohman9214b822010-02-13 02:06:02 +0000733 if (Regs.insert(Reg))
734 RateRegister(Reg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000735}
736
737void Cost::RateFormula(const Formula &F,
738 SmallPtrSet<const SCEV *, 16> &Regs,
739 const DenseSet<const SCEV *> &VisitedRegs,
740 const Loop *L,
741 const SmallVectorImpl<int64_t> &Offsets,
742 ScalarEvolution &SE, DominatorTree &DT) {
743 // Tally up the registers.
744 if (const SCEV *ScaledReg = F.ScaledReg) {
745 if (VisitedRegs.count(ScaledReg)) {
746 Loose();
747 return;
748 }
Dan Gohman9214b822010-02-13 02:06:02 +0000749 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000750 }
751 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
752 E = F.BaseRegs.end(); I != E; ++I) {
753 const SCEV *BaseReg = *I;
754 if (VisitedRegs.count(BaseReg)) {
755 Loose();
756 return;
757 }
Dan Gohman9214b822010-02-13 02:06:02 +0000758 RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000759
760 NumIVMuls += isa<SCEVMulExpr>(BaseReg) &&
761 BaseReg->hasComputableLoopEvolution(L);
762 }
763
764 if (F.BaseRegs.size() > 1)
765 NumBaseAdds += F.BaseRegs.size() - 1;
766
767 // Tally up the non-zero immediates.
768 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
769 E = Offsets.end(); I != E; ++I) {
770 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
771 if (F.AM.BaseGV)
772 ImmCost += 64; // Handle symbolic values conservatively.
773 // TODO: This should probably be the pointer size.
774 else if (Offset != 0)
775 ImmCost += APInt(64, Offset, true).getMinSignedBits();
776 }
777}
778
779/// Loose - Set this cost to a loosing value.
780void Cost::Loose() {
781 NumRegs = ~0u;
782 AddRecCost = ~0u;
783 NumIVMuls = ~0u;
784 NumBaseAdds = ~0u;
785 ImmCost = ~0u;
786 SetupCost = ~0u;
787}
788
789/// operator< - Choose the lower cost.
790bool Cost::operator<(const Cost &Other) const {
791 if (NumRegs != Other.NumRegs)
792 return NumRegs < Other.NumRegs;
793 if (AddRecCost != Other.AddRecCost)
794 return AddRecCost < Other.AddRecCost;
795 if (NumIVMuls != Other.NumIVMuls)
796 return NumIVMuls < Other.NumIVMuls;
797 if (NumBaseAdds != Other.NumBaseAdds)
798 return NumBaseAdds < Other.NumBaseAdds;
799 if (ImmCost != Other.ImmCost)
800 return ImmCost < Other.ImmCost;
801 if (SetupCost != Other.SetupCost)
802 return SetupCost < Other.SetupCost;
803 return false;
804}
805
806void Cost::print(raw_ostream &OS) const {
807 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
808 if (AddRecCost != 0)
809 OS << ", with addrec cost " << AddRecCost;
810 if (NumIVMuls != 0)
811 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
812 if (NumBaseAdds != 0)
813 OS << ", plus " << NumBaseAdds << " base add"
814 << (NumBaseAdds == 1 ? "" : "s");
815 if (ImmCost != 0)
816 OS << ", plus " << ImmCost << " imm cost";
817 if (SetupCost != 0)
818 OS << ", plus " << SetupCost << " setup cost";
819}
820
821void Cost::dump() const {
822 print(errs()); errs() << '\n';
823}
824
825namespace {
826
827/// LSRFixup - An operand value in an instruction which is to be replaced
828/// with some equivalent, possibly strength-reduced, replacement.
829struct LSRFixup {
830 /// UserInst - The instruction which will be updated.
831 Instruction *UserInst;
832
833 /// OperandValToReplace - The operand of the instruction which will
834 /// be replaced. The operand may be used more than once; every instance
835 /// will be replaced.
836 Value *OperandValToReplace;
837
Dan Gohman448db1c2010-04-07 22:27:08 +0000838 /// PostIncLoops - If this user is to use the post-incremented value of an
Dan Gohman572645c2010-02-12 10:34:29 +0000839 /// induction variable, this variable is non-null and holds the loop
840 /// associated with the induction variable.
Dan Gohman448db1c2010-04-07 22:27:08 +0000841 PostIncLoopSet PostIncLoops;
Dan Gohman572645c2010-02-12 10:34:29 +0000842
843 /// LUIdx - The index of the LSRUse describing the expression which
844 /// this fixup needs, minus an offset (below).
845 size_t LUIdx;
846
847 /// Offset - A constant offset to be added to the LSRUse expression.
848 /// This allows multiple fixups to share the same LSRUse with different
849 /// offsets, for example in an unrolled loop.
850 int64_t Offset;
851
Dan Gohman448db1c2010-04-07 22:27:08 +0000852 bool isUseFullyOutsideLoop(const Loop *L) const;
853
Dan Gohman572645c2010-02-12 10:34:29 +0000854 LSRFixup();
855
856 void print(raw_ostream &OS) const;
857 void dump() const;
858};
859
860}
861
862LSRFixup::LSRFixup()
Dan Gohmanea507f52010-05-20 19:44:23 +0000863 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
Dan Gohman572645c2010-02-12 10:34:29 +0000864
Dan Gohman448db1c2010-04-07 22:27:08 +0000865/// isUseFullyOutsideLoop - Test whether this fixup always uses its
866/// value outside of the given loop.
867bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
868 // PHI nodes use their value in their incoming blocks.
869 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
870 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
871 if (PN->getIncomingValue(i) == OperandValToReplace &&
872 L->contains(PN->getIncomingBlock(i)))
873 return false;
874 return true;
875 }
876
877 return !L->contains(UserInst);
878}
879
Dan Gohman572645c2010-02-12 10:34:29 +0000880void LSRFixup::print(raw_ostream &OS) const {
881 OS << "UserInst=";
882 // Store is common and interesting enough to be worth special-casing.
883 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
884 OS << "store ";
885 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
886 } else if (UserInst->getType()->isVoidTy())
887 OS << UserInst->getOpcodeName();
888 else
889 WriteAsOperand(OS, UserInst, /*PrintType=*/false);
890
891 OS << ", OperandValToReplace=";
892 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
893
Dan Gohman448db1c2010-04-07 22:27:08 +0000894 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
895 E = PostIncLoops.end(); I != E; ++I) {
Dan Gohman572645c2010-02-12 10:34:29 +0000896 OS << ", PostIncLoop=";
Dan Gohman448db1c2010-04-07 22:27:08 +0000897 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
Dan Gohman572645c2010-02-12 10:34:29 +0000898 }
899
900 if (LUIdx != ~size_t(0))
901 OS << ", LUIdx=" << LUIdx;
902
903 if (Offset != 0)
904 OS << ", Offset=" << Offset;
905}
906
907void LSRFixup::dump() const {
908 print(errs()); errs() << '\n';
909}
910
911namespace {
912
913/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
914/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
915struct UniquifierDenseMapInfo {
916 static SmallVector<const SCEV *, 2> getEmptyKey() {
917 SmallVector<const SCEV *, 2> V;
918 V.push_back(reinterpret_cast<const SCEV *>(-1));
919 return V;
920 }
921
922 static SmallVector<const SCEV *, 2> getTombstoneKey() {
923 SmallVector<const SCEV *, 2> V;
924 V.push_back(reinterpret_cast<const SCEV *>(-2));
925 return V;
926 }
927
928 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
929 unsigned Result = 0;
930 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
931 E = V.end(); I != E; ++I)
932 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
933 return Result;
934 }
935
936 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
937 const SmallVector<const SCEV *, 2> &RHS) {
938 return LHS == RHS;
939 }
940};
941
942/// LSRUse - This class holds the state that LSR keeps for each use in
943/// IVUsers, as well as uses invented by LSR itself. It includes information
944/// about what kinds of things can be folded into the user, information about
945/// the user itself, and information about how the use may be satisfied.
946/// TODO: Represent multiple users of the same expression in common?
947class LSRUse {
948 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
949
950public:
951 /// KindType - An enum for a kind of use, indicating what types of
952 /// scaled and immediate operands it might support.
953 enum KindType {
954 Basic, ///< A normal use, with no folding.
955 Special, ///< A special case of basic, allowing -1 scales.
956 Address, ///< An address use; folding according to TargetLowering
957 ICmpZero ///< An equality icmp with both operands folded into one.
958 // TODO: Add a generic icmp too?
Dan Gohman7979b722010-01-22 00:46:49 +0000959 };
Dan Gohman572645c2010-02-12 10:34:29 +0000960
961 KindType Kind;
962 const Type *AccessTy;
963
964 SmallVector<int64_t, 8> Offsets;
965 int64_t MinOffset;
966 int64_t MaxOffset;
967
968 /// AllFixupsOutsideLoop - This records whether all of the fixups using this
969 /// LSRUse are outside of the loop, in which case some special-case heuristics
970 /// may be used.
971 bool AllFixupsOutsideLoop;
972
Dan Gohmana9db1292010-07-15 20:24:58 +0000973 /// WidestFixupType - This records the widest use type for any fixup using
974 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
975 /// max fixup widths to be equivalent, because the narrower one may be relying
976 /// on the implicit truncation to truncate away bogus bits.
977 const Type *WidestFixupType;
978
Dan Gohman572645c2010-02-12 10:34:29 +0000979 /// Formulae - A list of ways to build a value that can satisfy this user.
980 /// After the list is populated, one of these is selected heuristically and
981 /// used to formulate a replacement for OperandValToReplace in UserInst.
982 SmallVector<Formula, 12> Formulae;
983
984 /// Regs - The set of register candidates used by all formulae in this LSRUse.
985 SmallPtrSet<const SCEV *, 4> Regs;
986
987 LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
988 MinOffset(INT64_MAX),
989 MaxOffset(INT64_MIN),
Dan Gohmana9db1292010-07-15 20:24:58 +0000990 AllFixupsOutsideLoop(true),
991 WidestFixupType(0) {}
Dan Gohman572645c2010-02-12 10:34:29 +0000992
Dan Gohmana2086b32010-05-19 23:43:12 +0000993 bool HasFormulaWithSameRegs(const Formula &F) const;
Dan Gohman454d26d2010-02-22 04:11:59 +0000994 bool InsertFormula(const Formula &F);
Dan Gohmand69d6282010-05-18 22:39:15 +0000995 void DeleteFormula(Formula &F);
Dan Gohmanb2df4332010-05-18 23:42:37 +0000996 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
Dan Gohman572645c2010-02-12 10:34:29 +0000997
Dan Gohman572645c2010-02-12 10:34:29 +0000998 void print(raw_ostream &OS) const;
999 void dump() const;
1000};
1001
Dan Gohmanb6211712010-06-19 21:21:39 +00001002}
1003
Dan Gohmana2086b32010-05-19 23:43:12 +00001004/// HasFormula - Test whether this use as a formula which has the same
1005/// registers as the given formula.
1006bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1007 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1008 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1009 // Unstable sort by host order ok, because this is only used for uniquifying.
1010 std::sort(Key.begin(), Key.end());
1011 return Uniquifier.count(Key);
1012}
1013
Dan Gohman572645c2010-02-12 10:34:29 +00001014/// InsertFormula - If the given formula has not yet been inserted, add it to
1015/// the list, and return true. Return false otherwise.
Dan Gohman454d26d2010-02-22 04:11:59 +00001016bool LSRUse::InsertFormula(const Formula &F) {
Dan Gohman572645c2010-02-12 10:34:29 +00001017 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1018 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1019 // Unstable sort by host order ok, because this is only used for uniquifying.
1020 std::sort(Key.begin(), Key.end());
1021
1022 if (!Uniquifier.insert(Key).second)
1023 return false;
1024
1025 // Using a register to hold the value of 0 is not profitable.
1026 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1027 "Zero allocated in a scaled register!");
1028#ifndef NDEBUG
1029 for (SmallVectorImpl<const SCEV *>::const_iterator I =
1030 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1031 assert(!(*I)->isZero() && "Zero allocated in a base register!");
1032#endif
1033
1034 // Add the formula to the list.
1035 Formulae.push_back(F);
1036
1037 // Record registers now being used by this use.
1038 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1039 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1040
1041 return true;
Dan Gohman7979b722010-01-22 00:46:49 +00001042}
1043
Dan Gohmand69d6282010-05-18 22:39:15 +00001044/// DeleteFormula - Remove the given formula from this use's list.
1045void LSRUse::DeleteFormula(Formula &F) {
Dan Gohman5ce6d052010-05-20 15:17:54 +00001046 if (&F != &Formulae.back())
1047 std::swap(F, Formulae.back());
Dan Gohmand69d6282010-05-18 22:39:15 +00001048 Formulae.pop_back();
Dan Gohmana2086b32010-05-19 23:43:12 +00001049 assert(!Formulae.empty() && "LSRUse has no formulae left!");
Dan Gohmand69d6282010-05-18 22:39:15 +00001050}
1051
Dan Gohmanb2df4332010-05-18 23:42:37 +00001052/// RecomputeRegs - Recompute the Regs field, and update RegUses.
1053void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1054 // Now that we've filtered out some formulae, recompute the Regs set.
1055 SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1056 Regs.clear();
Dan Gohman402d4352010-05-20 20:33:18 +00001057 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1058 E = Formulae.end(); I != E; ++I) {
1059 const Formula &F = *I;
Dan Gohmanb2df4332010-05-18 23:42:37 +00001060 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1061 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1062 }
1063
1064 // Update the RegTracker.
1065 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1066 E = OldRegs.end(); I != E; ++I)
1067 if (!Regs.count(*I))
1068 RegUses.DropRegister(*I, LUIdx);
1069}
1070
Dan Gohman572645c2010-02-12 10:34:29 +00001071void LSRUse::print(raw_ostream &OS) const {
1072 OS << "LSR Use: Kind=";
1073 switch (Kind) {
1074 case Basic: OS << "Basic"; break;
1075 case Special: OS << "Special"; break;
1076 case ICmpZero: OS << "ICmpZero"; break;
1077 case Address:
1078 OS << "Address of ";
Duncan Sands1df98592010-02-16 11:11:14 +00001079 if (AccessTy->isPointerTy())
Dan Gohman572645c2010-02-12 10:34:29 +00001080 OS << "pointer"; // the full pointer type could be really verbose
1081 else
1082 OS << *AccessTy;
Evan Chengcdf43b12007-10-25 09:11:16 +00001083 }
1084
Dan Gohman572645c2010-02-12 10:34:29 +00001085 OS << ", Offsets={";
1086 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1087 E = Offsets.end(); I != E; ++I) {
1088 OS << *I;
Oscar Fuentesee56c422010-08-02 06:00:15 +00001089 if (llvm::next(I) != E)
Dan Gohman572645c2010-02-12 10:34:29 +00001090 OS << ',';
Dan Gohman7979b722010-01-22 00:46:49 +00001091 }
Dan Gohman572645c2010-02-12 10:34:29 +00001092 OS << '}';
Dan Gohman7979b722010-01-22 00:46:49 +00001093
Dan Gohman572645c2010-02-12 10:34:29 +00001094 if (AllFixupsOutsideLoop)
1095 OS << ", all-fixups-outside-loop";
Dan Gohmana9db1292010-07-15 20:24:58 +00001096
1097 if (WidestFixupType)
1098 OS << ", widest fixup type: " << *WidestFixupType;
Dan Gohman7979b722010-01-22 00:46:49 +00001099}
1100
Dan Gohman572645c2010-02-12 10:34:29 +00001101void LSRUse::dump() const {
1102 print(errs()); errs() << '\n';
1103}
Dan Gohman7979b722010-01-22 00:46:49 +00001104
Dan Gohman572645c2010-02-12 10:34:29 +00001105/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1106/// be completely folded into the user instruction at isel time. This includes
1107/// address-mode folding and special icmp tricks.
1108static bool isLegalUse(const TargetLowering::AddrMode &AM,
1109 LSRUse::KindType Kind, const Type *AccessTy,
1110 const TargetLowering *TLI) {
1111 switch (Kind) {
1112 case LSRUse::Address:
1113 // If we have low-level target information, ask the target if it can
1114 // completely fold this address.
1115 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1116
1117 // Otherwise, just guess that reg+reg addressing is legal.
1118 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1119
1120 case LSRUse::ICmpZero:
1121 // There's not even a target hook for querying whether it would be legal to
1122 // fold a GV into an ICmp.
1123 if (AM.BaseGV)
1124 return false;
1125
1126 // ICmp only has two operands; don't allow more than two non-trivial parts.
1127 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1128 return false;
1129
1130 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1131 // putting the scaled register in the other operand of the icmp.
1132 if (AM.Scale != 0 && AM.Scale != -1)
1133 return false;
1134
1135 // If we have low-level target information, ask the target if it can fold an
1136 // integer immediate on an icmp.
1137 if (AM.BaseOffs != 0) {
1138 if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
1139 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001140 }
Dan Gohman572645c2010-02-12 10:34:29 +00001141
1142 return true;
1143
1144 case LSRUse::Basic:
1145 // Only handle single-register values.
1146 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1147
1148 case LSRUse::Special:
1149 // Only handle -1 scales, or no scale.
1150 return AM.Scale == 0 || AM.Scale == -1;
Dan Gohman7979b722010-01-22 00:46:49 +00001151 }
1152
Dan Gohman7979b722010-01-22 00:46:49 +00001153 return false;
1154}
1155
Dan Gohman572645c2010-02-12 10:34:29 +00001156static bool isLegalUse(TargetLowering::AddrMode AM,
1157 int64_t MinOffset, int64_t MaxOffset,
1158 LSRUse::KindType Kind, const Type *AccessTy,
1159 const TargetLowering *TLI) {
1160 // Check for overflow.
1161 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1162 (MinOffset > 0))
1163 return false;
1164 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1165 if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1166 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1167 // Check for overflow.
1168 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1169 (MaxOffset > 0))
1170 return false;
1171 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1172 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001173 }
Dan Gohman572645c2010-02-12 10:34:29 +00001174 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001175}
1176
Dan Gohman572645c2010-02-12 10:34:29 +00001177static bool isAlwaysFoldable(int64_t BaseOffs,
1178 GlobalValue *BaseGV,
1179 bool HasBaseReg,
1180 LSRUse::KindType Kind, const Type *AccessTy,
Dan Gohman454d26d2010-02-22 04:11:59 +00001181 const TargetLowering *TLI) {
Dan Gohman572645c2010-02-12 10:34:29 +00001182 // Fast-path: zero is always foldable.
1183 if (BaseOffs == 0 && !BaseGV) return true;
Dan Gohman7979b722010-01-22 00:46:49 +00001184
Dan Gohman572645c2010-02-12 10:34:29 +00001185 // Conservatively, create an address with an immediate and a
1186 // base and a scale.
1187 TargetLowering::AddrMode AM;
1188 AM.BaseOffs = BaseOffs;
1189 AM.BaseGV = BaseGV;
1190 AM.HasBaseReg = HasBaseReg;
1191 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001192
Dan Gohmana2086b32010-05-19 23:43:12 +00001193 // Canonicalize a scale of 1 to a base register if the formula doesn't
1194 // already have a base register.
1195 if (!AM.HasBaseReg && AM.Scale == 1) {
1196 AM.Scale = 0;
1197 AM.HasBaseReg = true;
1198 }
1199
Dan Gohman572645c2010-02-12 10:34:29 +00001200 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001201}
1202
Dan Gohman572645c2010-02-12 10:34:29 +00001203static bool isAlwaysFoldable(const SCEV *S,
1204 int64_t MinOffset, int64_t MaxOffset,
1205 bool HasBaseReg,
1206 LSRUse::KindType Kind, const Type *AccessTy,
1207 const TargetLowering *TLI,
1208 ScalarEvolution &SE) {
1209 // Fast-path: zero is always foldable.
1210 if (S->isZero()) return true;
1211
1212 // Conservatively, create an address with an immediate and a
1213 // base and a scale.
1214 int64_t BaseOffs = ExtractImmediate(S, SE);
1215 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1216
1217 // If there's anything else involved, it's not foldable.
1218 if (!S->isZero()) return false;
1219
1220 // Fast-path: zero is always foldable.
1221 if (BaseOffs == 0 && !BaseGV) return true;
1222
1223 // Conservatively, create an address with an immediate and a
1224 // base and a scale.
1225 TargetLowering::AddrMode AM;
1226 AM.BaseOffs = BaseOffs;
1227 AM.BaseGV = BaseGV;
1228 AM.HasBaseReg = HasBaseReg;
1229 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1230
1231 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001232}
1233
Dan Gohmanb6211712010-06-19 21:21:39 +00001234namespace {
1235
Dan Gohman1e3121c2010-06-19 21:29:59 +00001236/// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
1237/// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
1238struct UseMapDenseMapInfo {
1239 static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
1240 return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
1241 }
1242
1243 static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
1244 return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
1245 }
1246
1247 static unsigned
1248 getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
1249 unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
1250 Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
1251 return Result;
1252 }
1253
1254 static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
1255 const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
1256 return LHS == RHS;
1257 }
1258};
1259
Dan Gohman572645c2010-02-12 10:34:29 +00001260/// FormulaSorter - This class implements an ordering for formulae which sorts
1261/// the by their standalone cost.
1262class FormulaSorter {
1263 /// These two sets are kept empty, so that we compute standalone costs.
1264 DenseSet<const SCEV *> VisitedRegs;
1265 SmallPtrSet<const SCEV *, 16> Regs;
1266 Loop *L;
1267 LSRUse *LU;
1268 ScalarEvolution &SE;
1269 DominatorTree &DT;
1270
1271public:
1272 FormulaSorter(Loop *l, LSRUse &lu, ScalarEvolution &se, DominatorTree &dt)
1273 : L(l), LU(&lu), SE(se), DT(dt) {}
1274
1275 bool operator()(const Formula &A, const Formula &B) {
1276 Cost CostA;
1277 CostA.RateFormula(A, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1278 Regs.clear();
1279 Cost CostB;
1280 CostB.RateFormula(B, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1281 Regs.clear();
1282 return CostA < CostB;
1283 }
1284};
1285
1286/// LSRInstance - This class holds state for the main loop strength reduction
1287/// logic.
1288class LSRInstance {
1289 IVUsers &IU;
1290 ScalarEvolution &SE;
1291 DominatorTree &DT;
Dan Gohmane5f76872010-04-09 22:07:05 +00001292 LoopInfo &LI;
Dan Gohman572645c2010-02-12 10:34:29 +00001293 const TargetLowering *const TLI;
1294 Loop *const L;
1295 bool Changed;
1296
1297 /// IVIncInsertPos - This is the insert position that the current loop's
1298 /// induction variable increment should be placed. In simple loops, this is
1299 /// the latch block's terminator. But in more complicated cases, this is a
1300 /// position which will dominate all the in-loop post-increment users.
1301 Instruction *IVIncInsertPos;
1302
1303 /// Factors - Interesting factors between use strides.
1304 SmallSetVector<int64_t, 8> Factors;
1305
1306 /// Types - Interesting use types, to facilitate truncation reuse.
1307 SmallSetVector<const Type *, 4> Types;
1308
1309 /// Fixups - The list of operands which are to be replaced.
1310 SmallVector<LSRFixup, 16> Fixups;
1311
1312 /// Uses - The list of interesting uses.
1313 SmallVector<LSRUse, 16> Uses;
1314
1315 /// RegUses - Track which uses use which register candidates.
1316 RegUseTracker RegUses;
1317
1318 void OptimizeShadowIV();
1319 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1320 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
Dan Gohmanc6519f92010-05-20 20:05:31 +00001321 void OptimizeLoopTermCond();
Dan Gohman572645c2010-02-12 10:34:29 +00001322
1323 void CollectInterestingTypesAndFactors();
1324 void CollectFixupsAndInitialFormulae();
1325
1326 LSRFixup &getNewFixup() {
1327 Fixups.push_back(LSRFixup());
1328 return Fixups.back();
1329 }
1330
1331 // Support for sharing of LSRUses between LSRFixups.
Dan Gohman1e3121c2010-06-19 21:29:59 +00001332 typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
1333 size_t,
1334 UseMapDenseMapInfo> UseMapTy;
Dan Gohman572645c2010-02-12 10:34:29 +00001335 UseMapTy UseMap;
1336
Dan Gohmanea507f52010-05-20 19:44:23 +00001337 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
Dan Gohman572645c2010-02-12 10:34:29 +00001338 LSRUse::KindType Kind, const Type *AccessTy);
1339
1340 std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1341 LSRUse::KindType Kind,
1342 const Type *AccessTy);
1343
Dan Gohman5ce6d052010-05-20 15:17:54 +00001344 void DeleteUse(LSRUse &LU);
1345
Dan Gohmana2086b32010-05-19 23:43:12 +00001346 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1347
Dan Gohman572645c2010-02-12 10:34:29 +00001348public:
Dan Gohman454d26d2010-02-22 04:11:59 +00001349 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00001350 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1351 void CountRegisters(const Formula &F, size_t LUIdx);
1352 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1353
1354 void CollectLoopInvariantFixupsAndFormulae();
1355
1356 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1357 unsigned Depth = 0);
1358 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1359 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1360 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1361 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1362 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1363 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1364 void GenerateCrossUseConstantOffsets();
1365 void GenerateAllReuseFormulae();
1366
1367 void FilterOutUndesirableDedicatedRegisters();
Dan Gohmand079c302010-05-18 22:51:59 +00001368
1369 size_t EstimateSearchSpaceComplexity() const;
Dan Gohman572645c2010-02-12 10:34:29 +00001370 void NarrowSearchSpaceUsingHeuristics();
1371
1372 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1373 Cost &SolutionCost,
1374 SmallVectorImpl<const Formula *> &Workspace,
1375 const Cost &CurCost,
1376 const SmallPtrSet<const SCEV *, 16> &CurRegs,
1377 DenseSet<const SCEV *> &VisitedRegs) const;
1378 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1379
Dan Gohmane5f76872010-04-09 22:07:05 +00001380 BasicBlock::iterator
1381 HoistInsertPosition(BasicBlock::iterator IP,
1382 const SmallVectorImpl<Instruction *> &Inputs) const;
1383 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1384 const LSRFixup &LF,
1385 const LSRUse &LU) const;
Dan Gohmand96eae82010-04-09 02:00:38 +00001386
Dan Gohman572645c2010-02-12 10:34:29 +00001387 Value *Expand(const LSRFixup &LF,
1388 const Formula &F,
Dan Gohman454d26d2010-02-22 04:11:59 +00001389 BasicBlock::iterator IP,
Dan Gohman572645c2010-02-12 10:34:29 +00001390 SCEVExpander &Rewriter,
Dan Gohman454d26d2010-02-22 04:11:59 +00001391 SmallVectorImpl<WeakVH> &DeadInsts) const;
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001392 void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1393 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001394 SCEVExpander &Rewriter,
1395 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001396 Pass *P) const;
Dan Gohman572645c2010-02-12 10:34:29 +00001397 void Rewrite(const LSRFixup &LF,
1398 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00001399 SCEVExpander &Rewriter,
1400 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00001401 Pass *P) const;
1402 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1403 Pass *P);
1404
1405 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1406
1407 bool getChanged() const { return Changed; }
1408
1409 void print_factors_and_types(raw_ostream &OS) const;
1410 void print_fixups(raw_ostream &OS) const;
1411 void print_uses(raw_ostream &OS) const;
1412 void print(raw_ostream &OS) const;
1413 void dump() const;
1414};
1415
1416}
1417
1418/// OptimizeShadowIV - If IV is used in a int-to-float cast
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001419/// inside the loop then try to eliminate the cast operation.
Dan Gohman572645c2010-02-12 10:34:29 +00001420void LSRInstance::OptimizeShadowIV() {
1421 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1422 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1423 return;
1424
1425 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1426 UI != E; /* empty */) {
1427 IVUsers::const_iterator CandidateUI = UI;
1428 ++UI;
1429 Instruction *ShadowUse = CandidateUI->getUser();
1430 const Type *DestTy = NULL;
1431
1432 /* If shadow use is a int->float cast then insert a second IV
1433 to eliminate this cast.
1434
1435 for (unsigned i = 0; i < n; ++i)
1436 foo((double)i);
1437
1438 is transformed into
1439
1440 double d = 0.0;
1441 for (unsigned i = 0; i < n; ++i, ++d)
1442 foo(d);
1443 */
1444 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
1445 DestTy = UCast->getDestTy();
1446 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
1447 DestTy = SCast->getDestTy();
1448 if (!DestTy) continue;
1449
1450 if (TLI) {
1451 // If target does not support DestTy natively then do not apply
1452 // this transformation.
1453 EVT DVT = TLI->getValueType(DestTy);
1454 if (!TLI->isTypeLegal(DVT)) continue;
1455 }
1456
1457 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1458 if (!PH) continue;
1459 if (PH->getNumIncomingValues() != 2) continue;
1460
1461 const Type *SrcTy = PH->getType();
1462 int Mantissa = DestTy->getFPMantissaWidth();
1463 if (Mantissa == -1) continue;
1464 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1465 continue;
1466
1467 unsigned Entry, Latch;
1468 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1469 Entry = 0;
1470 Latch = 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001471 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00001472 Entry = 1;
1473 Latch = 0;
Dan Gohman7979b722010-01-22 00:46:49 +00001474 }
Dan Gohman7979b722010-01-22 00:46:49 +00001475
Dan Gohman572645c2010-02-12 10:34:29 +00001476 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1477 if (!Init) continue;
1478 Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
Dan Gohman7979b722010-01-22 00:46:49 +00001479
Dan Gohman572645c2010-02-12 10:34:29 +00001480 BinaryOperator *Incr =
1481 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1482 if (!Incr) continue;
1483 if (Incr->getOpcode() != Instruction::Add
1484 && Incr->getOpcode() != Instruction::Sub)
Dan Gohman7979b722010-01-22 00:46:49 +00001485 continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001486
Dan Gohman572645c2010-02-12 10:34:29 +00001487 /* Initialize new IV, double d = 0.0 in above example. */
1488 ConstantInt *C = NULL;
1489 if (Incr->getOperand(0) == PH)
1490 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1491 else if (Incr->getOperand(1) == PH)
1492 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001493 else
Dan Gohman7979b722010-01-22 00:46:49 +00001494 continue;
1495
Dan Gohman572645c2010-02-12 10:34:29 +00001496 if (!C) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001497
Dan Gohman572645c2010-02-12 10:34:29 +00001498 // Ignore negative constants, as the code below doesn't handle them
1499 // correctly. TODO: Remove this restriction.
1500 if (!C->getValue().isStrictlyPositive()) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001501
Dan Gohman572645c2010-02-12 10:34:29 +00001502 /* Add new PHINode. */
1503 PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
Dan Gohman7979b722010-01-22 00:46:49 +00001504
Dan Gohman572645c2010-02-12 10:34:29 +00001505 /* create new increment. '++d' in above example. */
1506 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1507 BinaryOperator *NewIncr =
1508 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1509 Instruction::FAdd : Instruction::FSub,
1510 NewPH, CFP, "IV.S.next.", Incr);
Dan Gohman7979b722010-01-22 00:46:49 +00001511
Dan Gohman572645c2010-02-12 10:34:29 +00001512 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1513 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
Dan Gohman7979b722010-01-22 00:46:49 +00001514
Dan Gohman572645c2010-02-12 10:34:29 +00001515 /* Remove cast operation */
1516 ShadowUse->replaceAllUsesWith(NewPH);
1517 ShadowUse->eraseFromParent();
Dan Gohmanc6519f92010-05-20 20:05:31 +00001518 Changed = true;
Dan Gohman572645c2010-02-12 10:34:29 +00001519 break;
Dan Gohman7979b722010-01-22 00:46:49 +00001520 }
1521}
1522
1523/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1524/// set the IV user and stride information and return true, otherwise return
1525/// false.
Dan Gohmanea507f52010-05-20 19:44:23 +00001526bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
Dan Gohman572645c2010-02-12 10:34:29 +00001527 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1528 if (UI->getUser() == Cond) {
1529 // NOTE: we could handle setcc instructions with multiple uses here, but
1530 // InstCombine does it as well for simple uses, it's not clear that it
1531 // occurs enough in real life to handle.
1532 CondUse = UI;
1533 return true;
1534 }
Dan Gohman7979b722010-01-22 00:46:49 +00001535 return false;
Evan Chengcdf43b12007-10-25 09:11:16 +00001536}
1537
Dan Gohman7979b722010-01-22 00:46:49 +00001538/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1539/// a max computation.
1540///
1541/// This is a narrow solution to a specific, but acute, problem. For loops
1542/// like this:
1543///
1544/// i = 0;
1545/// do {
1546/// p[i] = 0.0;
1547/// } while (++i < n);
1548///
1549/// the trip count isn't just 'n', because 'n' might not be positive. And
1550/// unfortunately this can come up even for loops where the user didn't use
1551/// a C do-while loop. For example, seemingly well-behaved top-test loops
1552/// will commonly be lowered like this:
1553//
1554/// if (n > 0) {
1555/// i = 0;
1556/// do {
1557/// p[i] = 0.0;
1558/// } while (++i < n);
1559/// }
1560///
1561/// and then it's possible for subsequent optimization to obscure the if
1562/// test in such a way that indvars can't find it.
1563///
1564/// When indvars can't find the if test in loops like this, it creates a
1565/// max expression, which allows it to give the loop a canonical
1566/// induction variable:
1567///
1568/// i = 0;
1569/// max = n < 1 ? 1 : n;
1570/// do {
1571/// p[i] = 0.0;
1572/// } while (++i != max);
1573///
1574/// Canonical induction variables are necessary because the loop passes
1575/// are designed around them. The most obvious example of this is the
1576/// LoopInfo analysis, which doesn't remember trip count values. It
1577/// expects to be able to rediscover the trip count each time it is
Dan Gohman572645c2010-02-12 10:34:29 +00001578/// needed, and it does this using a simple analysis that only succeeds if
Dan Gohman7979b722010-01-22 00:46:49 +00001579/// the loop has a canonical induction variable.
1580///
1581/// However, when it comes time to generate code, the maximum operation
1582/// can be quite costly, especially if it's inside of an outer loop.
1583///
1584/// This function solves this problem by detecting this type of loop and
1585/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1586/// the instructions for the maximum computation.
1587///
Dan Gohman572645c2010-02-12 10:34:29 +00001588ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
Dan Gohman7979b722010-01-22 00:46:49 +00001589 // Check that the loop matches the pattern we're looking for.
1590 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1591 Cond->getPredicate() != CmpInst::ICMP_NE)
1592 return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001593
Dan Gohman7979b722010-01-22 00:46:49 +00001594 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1595 if (!Sel || !Sel->hasOneUse()) return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001596
Dan Gohman572645c2010-02-12 10:34:29 +00001597 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
Dan Gohman7979b722010-01-22 00:46:49 +00001598 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1599 return Cond;
Dan Gohmandeff6212010-05-03 22:09:21 +00001600 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
Dan Gohmana10756e2010-01-21 02:09:26 +00001601
Dan Gohman7979b722010-01-22 00:46:49 +00001602 // Add one to the backedge-taken count to get the trip count.
Dan Gohman4065f602010-08-16 15:39:27 +00001603 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
Dan Gohman1d367982010-04-24 03:13:44 +00001604 if (IterationCount != SE.getSCEV(Sel)) return Cond;
Dan Gohman7979b722010-01-22 00:46:49 +00001605
Dan Gohman1d367982010-04-24 03:13:44 +00001606 // Check for a max calculation that matches the pattern. There's no check
1607 // for ICMP_ULE here because the comparison would be with zero, which
1608 // isn't interesting.
1609 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1610 const SCEVNAryExpr *Max = 0;
1611 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1612 Pred = ICmpInst::ICMP_SLE;
1613 Max = S;
1614 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1615 Pred = ICmpInst::ICMP_SLT;
1616 Max = S;
1617 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1618 Pred = ICmpInst::ICMP_ULT;
1619 Max = U;
1620 } else {
1621 // No match; bail.
Dan Gohman7979b722010-01-22 00:46:49 +00001622 return Cond;
Dan Gohman1d367982010-04-24 03:13:44 +00001623 }
Dan Gohman7979b722010-01-22 00:46:49 +00001624
1625 // To handle a max with more than two operands, this optimization would
1626 // require additional checking and setup.
1627 if (Max->getNumOperands() != 2)
1628 return Cond;
1629
1630 const SCEV *MaxLHS = Max->getOperand(0);
1631 const SCEV *MaxRHS = Max->getOperand(1);
Dan Gohman1d367982010-04-24 03:13:44 +00001632
1633 // ScalarEvolution canonicalizes constants to the left. For < and >, look
1634 // for a comparison with 1. For <= and >=, a comparison with zero.
1635 if (!MaxLHS ||
1636 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1637 return Cond;
1638
Dan Gohman7979b722010-01-22 00:46:49 +00001639 // Check the relevant induction variable for conformance to
1640 // the pattern.
Dan Gohman572645c2010-02-12 10:34:29 +00001641 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001642 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1643 if (!AR || !AR->isAffine() ||
1644 AR->getStart() != One ||
Dan Gohman572645c2010-02-12 10:34:29 +00001645 AR->getStepRecurrence(SE) != One)
Dan Gohman7979b722010-01-22 00:46:49 +00001646 return Cond;
1647
1648 assert(AR->getLoop() == L &&
1649 "Loop condition operand is an addrec in a different loop!");
1650
1651 // Check the right operand of the select, and remember it, as it will
1652 // be used in the new comparison instruction.
1653 Value *NewRHS = 0;
Dan Gohman1d367982010-04-24 03:13:44 +00001654 if (ICmpInst::isTrueWhenEqual(Pred)) {
1655 // Look for n+1, and grab n.
1656 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1657 if (isa<ConstantInt>(BO->getOperand(1)) &&
1658 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1659 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1660 NewRHS = BO->getOperand(0);
1661 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1662 if (isa<ConstantInt>(BO->getOperand(1)) &&
1663 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1664 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1665 NewRHS = BO->getOperand(0);
1666 if (!NewRHS)
1667 return Cond;
1668 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001669 NewRHS = Sel->getOperand(1);
Dan Gohman572645c2010-02-12 10:34:29 +00001670 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001671 NewRHS = Sel->getOperand(2);
Dan Gohmancaf71ab2010-06-22 23:07:13 +00001672 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
1673 NewRHS = SU->getValue();
Dan Gohman1d367982010-04-24 03:13:44 +00001674 else
Dan Gohmancaf71ab2010-06-22 23:07:13 +00001675 // Max doesn't match expected pattern.
1676 return Cond;
Dan Gohman7979b722010-01-22 00:46:49 +00001677
1678 // Determine the new comparison opcode. It may be signed or unsigned,
1679 // and the original comparison may be either equality or inequality.
Dan Gohman7979b722010-01-22 00:46:49 +00001680 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1681 Pred = CmpInst::getInversePredicate(Pred);
1682
1683 // Ok, everything looks ok to change the condition into an SLT or SGE and
1684 // delete the max calculation.
1685 ICmpInst *NewCond =
1686 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1687
1688 // Delete the max calculation instructions.
1689 Cond->replaceAllUsesWith(NewCond);
1690 CondUse->setUser(NewCond);
1691 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1692 Cond->eraseFromParent();
1693 Sel->eraseFromParent();
1694 if (Cmp->use_empty())
1695 Cmp->eraseFromParent();
1696 return NewCond;
Dan Gohmanad7321f2008-09-15 21:22:06 +00001697}
1698
Jim Grosbach56a1f802009-11-17 17:53:56 +00001699/// OptimizeLoopTermCond - Change loop terminating condition to use the
Evan Cheng586f69a2009-11-12 07:35:05 +00001700/// postinc iv when possible.
Dan Gohmanc6519f92010-05-20 20:05:31 +00001701void
Dan Gohman572645c2010-02-12 10:34:29 +00001702LSRInstance::OptimizeLoopTermCond() {
1703 SmallPtrSet<Instruction *, 4> PostIncs;
1704
Evan Cheng586f69a2009-11-12 07:35:05 +00001705 BasicBlock *LatchBlock = L->getLoopLatch();
Evan Cheng076e0852009-11-17 18:10:11 +00001706 SmallVector<BasicBlock*, 8> ExitingBlocks;
1707 L->getExitingBlocks(ExitingBlocks);
Jim Grosbach56a1f802009-11-17 17:53:56 +00001708
Evan Cheng076e0852009-11-17 18:10:11 +00001709 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1710 BasicBlock *ExitingBlock = ExitingBlocks[i];
Evan Cheng586f69a2009-11-12 07:35:05 +00001711
Dan Gohman572645c2010-02-12 10:34:29 +00001712 // Get the terminating condition for the loop if possible. If we
Evan Cheng076e0852009-11-17 18:10:11 +00001713 // can, we want to change it to use a post-incremented version of its
1714 // induction variable, to allow coalescing the live ranges for the IV into
1715 // one register value.
Evan Cheng586f69a2009-11-12 07:35:05 +00001716
Evan Cheng076e0852009-11-17 18:10:11 +00001717 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1718 if (!TermBr)
1719 continue;
1720 // FIXME: Overly conservative, termination condition could be an 'or' etc..
1721 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1722 continue;
Evan Cheng586f69a2009-11-12 07:35:05 +00001723
Evan Cheng076e0852009-11-17 18:10:11 +00001724 // Search IVUsesByStride to find Cond's IVUse if there is one.
1725 IVStrideUse *CondUse = 0;
Evan Cheng076e0852009-11-17 18:10:11 +00001726 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
Dan Gohman572645c2010-02-12 10:34:29 +00001727 if (!FindIVUserForCond(Cond, CondUse))
Evan Cheng076e0852009-11-17 18:10:11 +00001728 continue;
1729
Evan Cheng076e0852009-11-17 18:10:11 +00001730 // If the trip count is computed in terms of a max (due to ScalarEvolution
1731 // being unable to find a sufficient guard, for example), change the loop
1732 // comparison to use SLT or ULT instead of NE.
Dan Gohman572645c2010-02-12 10:34:29 +00001733 // One consequence of doing this now is that it disrupts the count-down
1734 // optimization. That's not always a bad thing though, because in such
1735 // cases it may still be worthwhile to avoid a max.
1736 Cond = OptimizeMax(Cond, CondUse);
Evan Cheng076e0852009-11-17 18:10:11 +00001737
Dan Gohman572645c2010-02-12 10:34:29 +00001738 // If this exiting block dominates the latch block, it may also use
1739 // the post-inc value if it won't be shared with other uses.
1740 // Check for dominance.
1741 if (!DT.dominates(ExitingBlock, LatchBlock))
Dan Gohman7979b722010-01-22 00:46:49 +00001742 continue;
Evan Cheng076e0852009-11-17 18:10:11 +00001743
Dan Gohman572645c2010-02-12 10:34:29 +00001744 // Conservatively avoid trying to use the post-inc value in non-latch
1745 // exits if there may be pre-inc users in intervening blocks.
Dan Gohman590bfe82010-02-14 03:21:49 +00001746 if (LatchBlock != ExitingBlock)
Dan Gohman572645c2010-02-12 10:34:29 +00001747 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1748 // Test if the use is reachable from the exiting block. This dominator
1749 // query is a conservative approximation of reachability.
1750 if (&*UI != CondUse &&
1751 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1752 // Conservatively assume there may be reuse if the quotient of their
1753 // strides could be a legal scale.
Dan Gohmanc0564542010-04-19 21:48:58 +00001754 const SCEV *A = IU.getStride(*CondUse, L);
1755 const SCEV *B = IU.getStride(*UI, L);
Dan Gohman448db1c2010-04-07 22:27:08 +00001756 if (!A || !B) continue;
Dan Gohman572645c2010-02-12 10:34:29 +00001757 if (SE.getTypeSizeInBits(A->getType()) !=
1758 SE.getTypeSizeInBits(B->getType())) {
1759 if (SE.getTypeSizeInBits(A->getType()) >
1760 SE.getTypeSizeInBits(B->getType()))
1761 B = SE.getSignExtendExpr(B, A->getType());
1762 else
1763 A = SE.getSignExtendExpr(A, B->getType());
1764 }
1765 if (const SCEVConstant *D =
Dan Gohmanf09b7122010-02-19 19:35:48 +00001766 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
Dan Gohman9f383eb2010-05-20 22:25:20 +00001767 const ConstantInt *C = D->getValue();
Dan Gohman572645c2010-02-12 10:34:29 +00001768 // Stride of one or negative one can have reuse with non-addresses.
Dan Gohman9f383eb2010-05-20 22:25:20 +00001769 if (C->isOne() || C->isAllOnesValue())
Dan Gohman572645c2010-02-12 10:34:29 +00001770 goto decline_post_inc;
1771 // Avoid weird situations.
Dan Gohman9f383eb2010-05-20 22:25:20 +00001772 if (C->getValue().getMinSignedBits() >= 64 ||
1773 C->getValue().isMinSignedValue())
Dan Gohman572645c2010-02-12 10:34:29 +00001774 goto decline_post_inc;
Dan Gohman590bfe82010-02-14 03:21:49 +00001775 // Without TLI, assume that any stride might be valid, and so any
1776 // use might be shared.
1777 if (!TLI)
1778 goto decline_post_inc;
Dan Gohman572645c2010-02-12 10:34:29 +00001779 // Check for possible scaled-address reuse.
1780 const Type *AccessTy = getAccessType(UI->getUser());
1781 TargetLowering::AddrMode AM;
Dan Gohman9f383eb2010-05-20 22:25:20 +00001782 AM.Scale = C->getSExtValue();
Dan Gohman2763dfd2010-02-14 02:45:21 +00001783 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001784 goto decline_post_inc;
1785 AM.Scale = -AM.Scale;
Dan Gohman2763dfd2010-02-14 02:45:21 +00001786 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001787 goto decline_post_inc;
1788 }
1789 }
1790
David Greene63c94632009-12-23 22:58:38 +00001791 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
Dan Gohman572645c2010-02-12 10:34:29 +00001792 << *Cond << '\n');
Evan Cheng076e0852009-11-17 18:10:11 +00001793
1794 // It's possible for the setcc instruction to be anywhere in the loop, and
1795 // possible for it to have multiple users. If it is not immediately before
1796 // the exiting block branch, move it.
Dan Gohman572645c2010-02-12 10:34:29 +00001797 if (&*++BasicBlock::iterator(Cond) != TermBr) {
1798 if (Cond->hasOneUse()) {
Evan Cheng076e0852009-11-17 18:10:11 +00001799 Cond->moveBefore(TermBr);
1800 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00001801 // Clone the terminating condition and insert into the loopend.
1802 ICmpInst *OldCond = Cond;
Evan Cheng076e0852009-11-17 18:10:11 +00001803 Cond = cast<ICmpInst>(Cond->clone());
1804 Cond->setName(L->getHeader()->getName() + ".termcond");
1805 ExitingBlock->getInstList().insert(TermBr, Cond);
1806
1807 // Clone the IVUse, as the old use still exists!
Dan Gohmanc0564542010-04-19 21:48:58 +00001808 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
Dan Gohman572645c2010-02-12 10:34:29 +00001809 TermBr->replaceUsesOfWith(OldCond, Cond);
Evan Cheng076e0852009-11-17 18:10:11 +00001810 }
Evan Cheng586f69a2009-11-12 07:35:05 +00001811 }
1812
Evan Cheng076e0852009-11-17 18:10:11 +00001813 // If we get to here, we know that we can transform the setcc instruction to
1814 // use the post-incremented version of the IV, allowing us to coalesce the
1815 // live ranges for the IV correctly.
Dan Gohman448db1c2010-04-07 22:27:08 +00001816 CondUse->transformToPostInc(L);
Evan Cheng076e0852009-11-17 18:10:11 +00001817 Changed = true;
1818
Dan Gohman572645c2010-02-12 10:34:29 +00001819 PostIncs.insert(Cond);
1820 decline_post_inc:;
Dan Gohmana10756e2010-01-21 02:09:26 +00001821 }
Dan Gohman572645c2010-02-12 10:34:29 +00001822
1823 // Determine an insertion point for the loop induction variable increment. It
1824 // must dominate all the post-inc comparisons we just set up, and it must
1825 // dominate the loop latch edge.
1826 IVIncInsertPos = L->getLoopLatch()->getTerminator();
1827 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1828 E = PostIncs.end(); I != E; ++I) {
1829 BasicBlock *BB =
1830 DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1831 (*I)->getParent());
1832 if (BB == (*I)->getParent())
1833 IVIncInsertPos = *I;
1834 else if (BB != IVIncInsertPos->getParent())
1835 IVIncInsertPos = BB->getTerminator();
1836 }
Dan Gohmana10756e2010-01-21 02:09:26 +00001837}
1838
Dan Gohman76c315a2010-05-20 20:52:00 +00001839/// reconcileNewOffset - Determine if the given use can accomodate a fixup
1840/// at the given offset and other details. If so, update the use and
1841/// return true.
Dan Gohman572645c2010-02-12 10:34:29 +00001842bool
Dan Gohmanea507f52010-05-20 19:44:23 +00001843LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
Dan Gohman572645c2010-02-12 10:34:29 +00001844 LSRUse::KindType Kind, const Type *AccessTy) {
1845 int64_t NewMinOffset = LU.MinOffset;
1846 int64_t NewMaxOffset = LU.MaxOffset;
1847 const Type *NewAccessTy = AccessTy;
Dan Gohman7979b722010-01-22 00:46:49 +00001848
Dan Gohman572645c2010-02-12 10:34:29 +00001849 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1850 // something conservative, however this can pessimize in the case that one of
1851 // the uses will have all its uses outside the loop, for example.
1852 if (LU.Kind != Kind)
Dan Gohman7979b722010-01-22 00:46:49 +00001853 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001854 // Conservatively assume HasBaseReg is true for now.
1855 if (NewOffset < LU.MinOffset) {
Dan Gohmana2086b32010-05-19 23:43:12 +00001856 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
Dan Gohman454d26d2010-02-22 04:11:59 +00001857 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00001858 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001859 NewMinOffset = NewOffset;
1860 } else if (NewOffset > LU.MaxOffset) {
Dan Gohmana2086b32010-05-19 23:43:12 +00001861 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
Dan Gohman454d26d2010-02-22 04:11:59 +00001862 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00001863 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001864 NewMaxOffset = NewOffset;
Dan Gohmana10756e2010-01-21 02:09:26 +00001865 }
Dan Gohman572645c2010-02-12 10:34:29 +00001866 // Check for a mismatched access type, and fall back conservatively as needed.
Dan Gohman74e5ef02010-06-19 21:30:18 +00001867 // TODO: Be less conservative when the type is similar and can use the same
1868 // addressing modes.
Dan Gohman572645c2010-02-12 10:34:29 +00001869 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1870 NewAccessTy = Type::getVoidTy(AccessTy->getContext());
Dan Gohmana10756e2010-01-21 02:09:26 +00001871
Dan Gohman572645c2010-02-12 10:34:29 +00001872 // Update the use.
1873 LU.MinOffset = NewMinOffset;
1874 LU.MaxOffset = NewMaxOffset;
1875 LU.AccessTy = NewAccessTy;
1876 if (NewOffset != LU.Offsets.back())
1877 LU.Offsets.push_back(NewOffset);
Dan Gohman8b0ade32010-01-21 22:42:49 +00001878 return true;
1879}
1880
Dan Gohman572645c2010-02-12 10:34:29 +00001881/// getUse - Return an LSRUse index and an offset value for a fixup which
1882/// needs the given expression, with the given kind and optional access type.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001883/// Either reuse an existing use or create a new one, as needed.
Dan Gohman572645c2010-02-12 10:34:29 +00001884std::pair<size_t, int64_t>
1885LSRInstance::getUse(const SCEV *&Expr,
1886 LSRUse::KindType Kind, const Type *AccessTy) {
1887 const SCEV *Copy = Expr;
1888 int64_t Offset = ExtractImmediate(Expr, SE);
Evan Cheng586f69a2009-11-12 07:35:05 +00001889
Dan Gohman572645c2010-02-12 10:34:29 +00001890 // Basic uses can't accept any offset, for example.
Dan Gohman454d26d2010-02-22 04:11:59 +00001891 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
Dan Gohman572645c2010-02-12 10:34:29 +00001892 Expr = Copy;
1893 Offset = 0;
1894 }
1895
1896 std::pair<UseMapTy::iterator, bool> P =
Dan Gohman1e3121c2010-06-19 21:29:59 +00001897 UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
Dan Gohman572645c2010-02-12 10:34:29 +00001898 if (!P.second) {
1899 // A use already existed with this base.
1900 size_t LUIdx = P.first->second;
1901 LSRUse &LU = Uses[LUIdx];
Dan Gohmana2086b32010-05-19 23:43:12 +00001902 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001903 // Reuse this use.
1904 return std::make_pair(LUIdx, Offset);
1905 }
1906
1907 // Create a new use.
1908 size_t LUIdx = Uses.size();
1909 P.first->second = LUIdx;
1910 Uses.push_back(LSRUse(Kind, AccessTy));
1911 LSRUse &LU = Uses[LUIdx];
1912
1913 // We don't need to track redundant offsets, but we don't need to go out
1914 // of our way here to avoid them.
1915 if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1916 LU.Offsets.push_back(Offset);
1917
1918 LU.MinOffset = Offset;
1919 LU.MaxOffset = Offset;
1920 return std::make_pair(LUIdx, Offset);
1921}
1922
Dan Gohman5ce6d052010-05-20 15:17:54 +00001923/// DeleteUse - Delete the given use from the Uses list.
1924void LSRInstance::DeleteUse(LSRUse &LU) {
1925 if (&LU != &Uses.back())
1926 std::swap(LU, Uses.back());
1927 Uses.pop_back();
1928}
1929
Dan Gohmana2086b32010-05-19 23:43:12 +00001930/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
1931/// a formula that has the same registers as the given formula.
1932LSRUse *
1933LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
1934 const LSRUse &OrigLU) {
Dan Gohman6a832712010-08-29 15:27:08 +00001935 // Search all uses for the formula. This could be more clever.
Dan Gohmana2086b32010-05-19 23:43:12 +00001936 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
1937 LSRUse &LU = Uses[LUIdx];
Dan Gohman6a832712010-08-29 15:27:08 +00001938 // Check whether this use is close enough to OrigLU, to see whether it's
1939 // worthwhile looking through its formulae.
1940 // Ignore ICmpZero uses because they may contain formulae generated by
1941 // GenerateICmpZeroScales, in which case adding fixup offsets may
1942 // be invalid.
Dan Gohmana2086b32010-05-19 23:43:12 +00001943 if (&LU != &OrigLU &&
1944 LU.Kind != LSRUse::ICmpZero &&
1945 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
Dan Gohmana9db1292010-07-15 20:24:58 +00001946 LU.WidestFixupType == OrigLU.WidestFixupType &&
Dan Gohmana2086b32010-05-19 23:43:12 +00001947 LU.HasFormulaWithSameRegs(OrigF)) {
Dan Gohman6a832712010-08-29 15:27:08 +00001948 // Scan through this use's formulae.
Dan Gohman402d4352010-05-20 20:33:18 +00001949 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
1950 E = LU.Formulae.end(); I != E; ++I) {
1951 const Formula &F = *I;
Dan Gohman6a832712010-08-29 15:27:08 +00001952 // Check to see if this formula has the same registers and symbols
1953 // as OrigF.
Dan Gohmana2086b32010-05-19 23:43:12 +00001954 if (F.BaseRegs == OrigF.BaseRegs &&
1955 F.ScaledReg == OrigF.ScaledReg &&
1956 F.AM.BaseGV == OrigF.AM.BaseGV &&
Dan Gohmane39a47c2010-08-29 15:30:29 +00001957 F.AM.Scale == OrigF.AM.Scale) {
Dan Gohmana2086b32010-05-19 23:43:12 +00001958 if (F.AM.BaseOffs == 0)
1959 return &LU;
Dan Gohman6a832712010-08-29 15:27:08 +00001960 // This is the formula where all the registers and symbols matched;
1961 // there aren't going to be any others. Since we declined it, we
1962 // can skip the rest of the formulae and procede to the next LSRUse.
Dan Gohmana2086b32010-05-19 23:43:12 +00001963 break;
1964 }
1965 }
1966 }
1967 }
1968
Dan Gohman6a832712010-08-29 15:27:08 +00001969 // Nothing looked good.
Dan Gohmana2086b32010-05-19 23:43:12 +00001970 return 0;
1971}
1972
Dan Gohman572645c2010-02-12 10:34:29 +00001973void LSRInstance::CollectInterestingTypesAndFactors() {
1974 SmallSetVector<const SCEV *, 4> Strides;
1975
Dan Gohman1b7bf182010-02-19 00:05:23 +00001976 // Collect interesting types and strides.
Dan Gohman448db1c2010-04-07 22:27:08 +00001977 SmallVector<const SCEV *, 4> Worklist;
Dan Gohman572645c2010-02-12 10:34:29 +00001978 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
Dan Gohmanc0564542010-04-19 21:48:58 +00001979 const SCEV *Expr = IU.getExpr(*UI);
Dan Gohman572645c2010-02-12 10:34:29 +00001980
1981 // Collect interesting types.
Dan Gohman448db1c2010-04-07 22:27:08 +00001982 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
Dan Gohman572645c2010-02-12 10:34:29 +00001983
Dan Gohman448db1c2010-04-07 22:27:08 +00001984 // Add strides for mentioned loops.
1985 Worklist.push_back(Expr);
1986 do {
1987 const SCEV *S = Worklist.pop_back_val();
1988 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1989 Strides.insert(AR->getStepRecurrence(SE));
1990 Worklist.push_back(AR->getStart());
1991 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001992 Worklist.append(Add->op_begin(), Add->op_end());
Dan Gohman448db1c2010-04-07 22:27:08 +00001993 }
1994 } while (!Worklist.empty());
Dan Gohman1b7bf182010-02-19 00:05:23 +00001995 }
1996
1997 // Compute interesting factors from the set of interesting strides.
1998 for (SmallSetVector<const SCEV *, 4>::const_iterator
1999 I = Strides.begin(), E = Strides.end(); I != E; ++I)
Dan Gohman572645c2010-02-12 10:34:29 +00002000 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
Oscar Fuentesee56c422010-08-02 06:00:15 +00002001 llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
Dan Gohman1b7bf182010-02-19 00:05:23 +00002002 const SCEV *OldStride = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00002003 const SCEV *NewStride = *NewStrideIter;
Dan Gohman572645c2010-02-12 10:34:29 +00002004
2005 if (SE.getTypeSizeInBits(OldStride->getType()) !=
2006 SE.getTypeSizeInBits(NewStride->getType())) {
2007 if (SE.getTypeSizeInBits(OldStride->getType()) >
2008 SE.getTypeSizeInBits(NewStride->getType()))
2009 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2010 else
2011 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2012 }
2013 if (const SCEVConstant *Factor =
Dan Gohmanf09b7122010-02-19 19:35:48 +00002014 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2015 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00002016 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2017 Factors.insert(Factor->getValue()->getValue().getSExtValue());
2018 } else if (const SCEVConstant *Factor =
Dan Gohman454d26d2010-02-22 04:11:59 +00002019 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2020 NewStride,
Dan Gohmanf09b7122010-02-19 19:35:48 +00002021 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00002022 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2023 Factors.insert(Factor->getValue()->getValue().getSExtValue());
2024 }
2025 }
Dan Gohman572645c2010-02-12 10:34:29 +00002026
2027 // If all uses use the same type, don't bother looking for truncation-based
2028 // reuse.
2029 if (Types.size() == 1)
2030 Types.clear();
2031
2032 DEBUG(print_factors_and_types(dbgs()));
2033}
2034
2035void LSRInstance::CollectFixupsAndInitialFormulae() {
2036 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2037 // Record the uses.
2038 LSRFixup &LF = getNewFixup();
2039 LF.UserInst = UI->getUser();
2040 LF.OperandValToReplace = UI->getOperandValToReplace();
Dan Gohman448db1c2010-04-07 22:27:08 +00002041 LF.PostIncLoops = UI->getPostIncLoops();
Dan Gohman572645c2010-02-12 10:34:29 +00002042
2043 LSRUse::KindType Kind = LSRUse::Basic;
2044 const Type *AccessTy = 0;
2045 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2046 Kind = LSRUse::Address;
2047 AccessTy = getAccessType(LF.UserInst);
2048 }
2049
Dan Gohmanc0564542010-04-19 21:48:58 +00002050 const SCEV *S = IU.getExpr(*UI);
Dan Gohman572645c2010-02-12 10:34:29 +00002051
2052 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2053 // (N - i == 0), and this allows (N - i) to be the expression that we work
2054 // with rather than just N or i, so we can consider the register
2055 // requirements for both N and i at the same time. Limiting this code to
2056 // equality icmps is not a problem because all interesting loops use
2057 // equality icmps, thanks to IndVarSimplify.
2058 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2059 if (CI->isEquality()) {
2060 // Swap the operands if needed to put the OperandValToReplace on the
2061 // left, for consistency.
2062 Value *NV = CI->getOperand(1);
2063 if (NV == LF.OperandValToReplace) {
2064 CI->setOperand(1, CI->getOperand(0));
2065 CI->setOperand(0, NV);
Dan Gohmanf182b232010-05-20 19:26:52 +00002066 NV = CI->getOperand(1);
Dan Gohman9da1bf42010-05-20 19:16:03 +00002067 Changed = true;
Dan Gohman572645c2010-02-12 10:34:29 +00002068 }
2069
2070 // x == y --> x - y == 0
2071 const SCEV *N = SE.getSCEV(NV);
2072 if (N->isLoopInvariant(L)) {
2073 Kind = LSRUse::ICmpZero;
2074 S = SE.getMinusSCEV(N, S);
2075 }
2076
2077 // -1 and the negations of all interesting strides (except the negation
2078 // of -1) are now also interesting.
2079 for (size_t i = 0, e = Factors.size(); i != e; ++i)
2080 if (Factors[i] != -1)
2081 Factors.insert(-(uint64_t)Factors[i]);
2082 Factors.insert(-1);
2083 }
2084
2085 // Set up the initial formula for this use.
2086 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2087 LF.LUIdx = P.first;
2088 LF.Offset = P.second;
2089 LSRUse &LU = Uses[LF.LUIdx];
Dan Gohman448db1c2010-04-07 22:27:08 +00002090 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
Dan Gohmana9db1292010-07-15 20:24:58 +00002091 if (!LU.WidestFixupType ||
2092 SE.getTypeSizeInBits(LU.WidestFixupType) <
2093 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2094 LU.WidestFixupType = LF.OperandValToReplace->getType();
Dan Gohman572645c2010-02-12 10:34:29 +00002095
2096 // If this is the first use of this LSRUse, give it a formula.
2097 if (LU.Formulae.empty()) {
Dan Gohman454d26d2010-02-22 04:11:59 +00002098 InsertInitialFormula(S, LU, LF.LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00002099 CountRegisters(LU.Formulae.back(), LF.LUIdx);
2100 }
2101 }
2102
2103 DEBUG(print_fixups(dbgs()));
2104}
2105
Dan Gohman76c315a2010-05-20 20:52:00 +00002106/// InsertInitialFormula - Insert a formula for the given expression into
2107/// the given use, separating out loop-variant portions from loop-invariant
2108/// and loop-computable portions.
Dan Gohman572645c2010-02-12 10:34:29 +00002109void
Dan Gohman454d26d2010-02-22 04:11:59 +00002110LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
Dan Gohman572645c2010-02-12 10:34:29 +00002111 Formula F;
2112 F.InitialMatch(S, L, SE, DT);
2113 bool Inserted = InsertFormula(LU, LUIdx, F);
2114 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2115}
2116
Dan Gohman76c315a2010-05-20 20:52:00 +00002117/// InsertSupplementalFormula - Insert a simple single-register formula for
2118/// the given expression into the given use.
Dan Gohman572645c2010-02-12 10:34:29 +00002119void
2120LSRInstance::InsertSupplementalFormula(const SCEV *S,
2121 LSRUse &LU, size_t LUIdx) {
2122 Formula F;
2123 F.BaseRegs.push_back(S);
2124 F.AM.HasBaseReg = true;
2125 bool Inserted = InsertFormula(LU, LUIdx, F);
2126 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2127}
2128
2129/// CountRegisters - Note which registers are used by the given formula,
2130/// updating RegUses.
2131void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2132 if (F.ScaledReg)
2133 RegUses.CountRegister(F.ScaledReg, LUIdx);
2134 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2135 E = F.BaseRegs.end(); I != E; ++I)
2136 RegUses.CountRegister(*I, LUIdx);
2137}
2138
2139/// InsertFormula - If the given formula has not yet been inserted, add it to
2140/// the list, and return true. Return false otherwise.
2141bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
Dan Gohman454d26d2010-02-22 04:11:59 +00002142 if (!LU.InsertFormula(F))
Dan Gohman572645c2010-02-12 10:34:29 +00002143 return false;
2144
2145 CountRegisters(F, LUIdx);
2146 return true;
2147}
2148
2149/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2150/// loop-invariant values which we're tracking. These other uses will pin these
2151/// values in registers, making them less profitable for elimination.
2152/// TODO: This currently misses non-constant addrec step registers.
2153/// TODO: Should this give more weight to users inside the loop?
2154void
2155LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2156 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2157 SmallPtrSet<const SCEV *, 8> Inserted;
2158
2159 while (!Worklist.empty()) {
2160 const SCEV *S = Worklist.pop_back_val();
2161
2162 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
Dan Gohman403a8cd2010-06-21 19:47:52 +00002163 Worklist.append(N->op_begin(), N->op_end());
Dan Gohman572645c2010-02-12 10:34:29 +00002164 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2165 Worklist.push_back(C->getOperand());
2166 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2167 Worklist.push_back(D->getLHS());
2168 Worklist.push_back(D->getRHS());
2169 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2170 if (!Inserted.insert(U)) continue;
2171 const Value *V = U->getValue();
Dan Gohmana15ec5d2010-06-04 23:16:05 +00002172 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2173 // Look for instructions defined outside the loop.
Dan Gohman572645c2010-02-12 10:34:29 +00002174 if (L->contains(Inst)) continue;
Dan Gohmana15ec5d2010-06-04 23:16:05 +00002175 } else if (isa<UndefValue>(V))
2176 // Undef doesn't have a live range, so it doesn't matter.
2177 continue;
Gabor Greif60ad7812010-03-25 23:06:16 +00002178 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
Dan Gohman572645c2010-02-12 10:34:29 +00002179 UI != UE; ++UI) {
2180 const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2181 // Ignore non-instructions.
2182 if (!UserInst)
Dan Gohman7979b722010-01-22 00:46:49 +00002183 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002184 // Ignore instructions in other functions (as can happen with
2185 // Constants).
2186 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
Dan Gohman7979b722010-01-22 00:46:49 +00002187 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002188 // Ignore instructions not dominated by the loop.
2189 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2190 UserInst->getParent() :
2191 cast<PHINode>(UserInst)->getIncomingBlock(
2192 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2193 if (!DT.dominates(L->getHeader(), UseBB))
2194 continue;
2195 // Ignore uses which are part of other SCEV expressions, to avoid
2196 // analyzing them multiple times.
Dan Gohman4a2a6832010-04-09 19:12:34 +00002197 if (SE.isSCEVable(UserInst->getType())) {
2198 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2199 // If the user is a no-op, look through to its uses.
2200 if (!isa<SCEVUnknown>(UserS))
2201 continue;
2202 if (UserS == U) {
2203 Worklist.push_back(
2204 SE.getUnknown(const_cast<Instruction *>(UserInst)));
2205 continue;
2206 }
2207 }
Dan Gohman572645c2010-02-12 10:34:29 +00002208 // Ignore icmp instructions which are already being analyzed.
2209 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2210 unsigned OtherIdx = !UI.getOperandNo();
2211 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2212 if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L))
2213 continue;
2214 }
2215
2216 LSRFixup &LF = getNewFixup();
2217 LF.UserInst = const_cast<Instruction *>(UserInst);
2218 LF.OperandValToReplace = UI.getUse();
2219 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2220 LF.LUIdx = P.first;
2221 LF.Offset = P.second;
2222 LSRUse &LU = Uses[LF.LUIdx];
Dan Gohman448db1c2010-04-07 22:27:08 +00002223 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
Dan Gohmana9db1292010-07-15 20:24:58 +00002224 if (!LU.WidestFixupType ||
2225 SE.getTypeSizeInBits(LU.WidestFixupType) <
2226 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2227 LU.WidestFixupType = LF.OperandValToReplace->getType();
Dan Gohman572645c2010-02-12 10:34:29 +00002228 InsertSupplementalFormula(U, LU, LF.LUIdx);
2229 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2230 break;
2231 }
2232 }
2233 }
2234}
2235
2236/// CollectSubexprs - Split S into subexpressions which can be pulled out into
2237/// separate registers. If C is non-null, multiply each subexpression by C.
2238static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2239 SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman3e3f15b2010-06-25 22:32:18 +00002240 const Loop *L,
Dan Gohman572645c2010-02-12 10:34:29 +00002241 ScalarEvolution &SE) {
2242 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2243 // Break out add operands.
2244 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2245 I != E; ++I)
Dan Gohman3e22b7c2010-08-16 15:50:00 +00002246 CollectSubexprs(*I, C, Ops, L, SE);
Dan Gohman572645c2010-02-12 10:34:29 +00002247 return;
2248 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2249 // Split a non-zero base out of an addrec.
2250 if (!AR->getStart()->isZero()) {
Dan Gohmandeff6212010-05-03 22:09:21 +00002251 CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
Dan Gohman572645c2010-02-12 10:34:29 +00002252 AR->getStepRecurrence(SE),
Dan Gohman3e3f15b2010-06-25 22:32:18 +00002253 AR->getLoop()),
Dan Gohman3e22b7c2010-08-16 15:50:00 +00002254 C, Ops, L, SE);
2255 CollectSubexprs(AR->getStart(), C, Ops, L, SE);
Dan Gohman572645c2010-02-12 10:34:29 +00002256 return;
2257 }
2258 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2259 // Break (C * (a + b + c)) into C*a + C*b + C*c.
2260 if (Mul->getNumOperands() == 2)
2261 if (const SCEVConstant *Op0 =
2262 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2263 CollectSubexprs(Mul->getOperand(1),
2264 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
Dan Gohman3e22b7c2010-08-16 15:50:00 +00002265 Ops, L, SE);
Dan Gohman572645c2010-02-12 10:34:29 +00002266 return;
2267 }
2268 }
2269
Dan Gohman3e22b7c2010-08-16 15:50:00 +00002270 // Otherwise use the value itself, optionally with a scale applied.
2271 Ops.push_back(C ? SE.getMulExpr(C, S) : S);
Dan Gohman572645c2010-02-12 10:34:29 +00002272}
2273
2274/// GenerateReassociations - Split out subexpressions from adds and the bases of
2275/// addrecs.
2276void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
2277 Formula Base,
2278 unsigned Depth) {
2279 // Arbitrarily cap recursion to protect compile time.
2280 if (Depth >= 3) return;
2281
2282 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2283 const SCEV *BaseReg = Base.BaseRegs[i];
2284
Dan Gohman3e22b7c2010-08-16 15:50:00 +00002285 SmallVector<const SCEV *, 8> AddOps;
2286 CollectSubexprs(BaseReg, 0, AddOps, L, SE);
Dan Gohman3e3f15b2010-06-25 22:32:18 +00002287
Dan Gohman572645c2010-02-12 10:34:29 +00002288 if (AddOps.size() == 1) continue;
2289
2290 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
2291 JE = AddOps.end(); J != JE; ++J) {
Dan Gohman3e22b7c2010-08-16 15:50:00 +00002292
2293 // Loop-variant "unknown" values are uninteresting; we won't be able to
2294 // do anything meaningful with them.
2295 if (isa<SCEVUnknown>(*J) && !(*J)->isLoopInvariant(L))
2296 continue;
2297
Dan Gohman572645c2010-02-12 10:34:29 +00002298 // Don't pull a constant into a register if the constant could be folded
2299 // into an immediate field.
2300 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
2301 Base.getNumRegs() > 1,
2302 LU.Kind, LU.AccessTy, TLI, SE))
2303 continue;
2304
2305 // Collect all operands except *J.
Dan Gohman403a8cd2010-06-21 19:47:52 +00002306 SmallVector<const SCEV *, 8> InnerAddOps
Dan Gohman4eaee282010-08-04 17:43:57 +00002307 (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002308 InnerAddOps.append
Oscar Fuentesee56c422010-08-02 06:00:15 +00002309 (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
Dan Gohman572645c2010-02-12 10:34:29 +00002310
2311 // Don't leave just a constant behind in a register if the constant could
2312 // be folded into an immediate field.
2313 if (InnerAddOps.size() == 1 &&
2314 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
2315 Base.getNumRegs() > 1,
2316 LU.Kind, LU.AccessTy, TLI, SE))
2317 continue;
2318
Dan Gohmanfafb8902010-04-23 01:55:05 +00002319 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
2320 if (InnerSum->isZero())
2321 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002322 Formula F = Base;
Dan Gohmanfafb8902010-04-23 01:55:05 +00002323 F.BaseRegs[i] = InnerSum;
Dan Gohman572645c2010-02-12 10:34:29 +00002324 F.BaseRegs.push_back(*J);
2325 if (InsertFormula(LU, LUIdx, F))
2326 // If that formula hadn't been seen before, recurse to find more like
2327 // it.
2328 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
2329 }
2330 }
2331}
2332
2333/// GenerateCombinations - Generate a formula consisting of all of the
2334/// loop-dominating registers added into a single register.
2335void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
Dan Gohman441a3892010-02-14 18:51:39 +00002336 Formula Base) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002337 // This method is only interesting on a plurality of registers.
Dan Gohman572645c2010-02-12 10:34:29 +00002338 if (Base.BaseRegs.size() <= 1) return;
2339
2340 Formula F = Base;
2341 F.BaseRegs.clear();
2342 SmallVector<const SCEV *, 4> Ops;
2343 for (SmallVectorImpl<const SCEV *>::const_iterator
2344 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2345 const SCEV *BaseReg = *I;
2346 if (BaseReg->properlyDominates(L->getHeader(), &DT) &&
2347 !BaseReg->hasComputableLoopEvolution(L))
2348 Ops.push_back(BaseReg);
2349 else
2350 F.BaseRegs.push_back(BaseReg);
2351 }
2352 if (Ops.size() > 1) {
Dan Gohmance947362010-02-14 18:50:49 +00002353 const SCEV *Sum = SE.getAddExpr(Ops);
2354 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2355 // opportunity to fold something. For now, just ignore such cases
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002356 // rather than proceed with zero in a register.
Dan Gohmance947362010-02-14 18:50:49 +00002357 if (!Sum->isZero()) {
2358 F.BaseRegs.push_back(Sum);
2359 (void)InsertFormula(LU, LUIdx, F);
2360 }
Dan Gohman572645c2010-02-12 10:34:29 +00002361 }
2362}
2363
2364/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2365void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2366 Formula Base) {
2367 // We can't add a symbolic offset if the address already contains one.
2368 if (Base.AM.BaseGV) return;
2369
2370 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2371 const SCEV *G = Base.BaseRegs[i];
2372 GlobalValue *GV = ExtractSymbol(G, SE);
2373 if (G->isZero() || !GV)
2374 continue;
2375 Formula F = Base;
2376 F.AM.BaseGV = GV;
2377 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2378 LU.Kind, LU.AccessTy, TLI))
2379 continue;
2380 F.BaseRegs[i] = G;
2381 (void)InsertFormula(LU, LUIdx, F);
2382 }
2383}
2384
2385/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2386void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2387 Formula Base) {
2388 // TODO: For now, just add the min and max offset, because it usually isn't
2389 // worthwhile looking at everything inbetween.
Dan Gohmanc88c1a42010-07-15 15:14:45 +00002390 SmallVector<int64_t, 2> Worklist;
Dan Gohman572645c2010-02-12 10:34:29 +00002391 Worklist.push_back(LU.MinOffset);
2392 if (LU.MaxOffset != LU.MinOffset)
2393 Worklist.push_back(LU.MaxOffset);
2394
2395 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2396 const SCEV *G = Base.BaseRegs[i];
2397
2398 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2399 E = Worklist.end(); I != E; ++I) {
2400 Formula F = Base;
2401 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2402 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2403 LU.Kind, LU.AccessTy, TLI)) {
Dan Gohmanc88c1a42010-07-15 15:14:45 +00002404 // Add the offset to the base register.
Dan Gohman4065f602010-08-16 15:39:27 +00002405 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
Dan Gohmanc88c1a42010-07-15 15:14:45 +00002406 // If it cancelled out, drop the base register, otherwise update it.
2407 if (NewG->isZero()) {
2408 std::swap(F.BaseRegs[i], F.BaseRegs.back());
2409 F.BaseRegs.pop_back();
2410 } else
2411 F.BaseRegs[i] = NewG;
Dan Gohman572645c2010-02-12 10:34:29 +00002412
2413 (void)InsertFormula(LU, LUIdx, F);
2414 }
2415 }
2416
2417 int64_t Imm = ExtractImmediate(G, SE);
2418 if (G->isZero() || Imm == 0)
2419 continue;
2420 Formula F = Base;
2421 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2422 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2423 LU.Kind, LU.AccessTy, TLI))
2424 continue;
2425 F.BaseRegs[i] = G;
2426 (void)InsertFormula(LU, LUIdx, F);
2427 }
2428}
2429
2430/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2431/// the comparison. For example, x == y -> x*c == y*c.
2432void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2433 Formula Base) {
2434 if (LU.Kind != LSRUse::ICmpZero) return;
2435
2436 // Determine the integer type for the base formula.
2437 const Type *IntTy = Base.getType();
2438 if (!IntTy) return;
2439 if (SE.getTypeSizeInBits(IntTy) > 64) return;
2440
2441 // Don't do this if there is more than one offset.
2442 if (LU.MinOffset != LU.MaxOffset) return;
2443
2444 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2445
2446 // Check each interesting stride.
2447 for (SmallSetVector<int64_t, 8>::const_iterator
2448 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2449 int64_t Factor = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00002450
2451 // Check that the multiplication doesn't overflow.
Dan Gohman2ea09e02010-06-24 16:57:52 +00002452 if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
Dan Gohman968cb932010-02-17 00:41:53 +00002453 continue;
Dan Gohman2ea09e02010-06-24 16:57:52 +00002454 int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
2455 if (NewBaseOffs / Factor != Base.AM.BaseOffs)
Dan Gohman572645c2010-02-12 10:34:29 +00002456 continue;
2457
2458 // Check that multiplying with the use offset doesn't overflow.
2459 int64_t Offset = LU.MinOffset;
Dan Gohman968cb932010-02-17 00:41:53 +00002460 if (Offset == INT64_MIN && Factor == -1)
2461 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002462 Offset = (uint64_t)Offset * Factor;
Dan Gohman378c0b32010-02-17 00:42:19 +00002463 if (Offset / Factor != LU.MinOffset)
Dan Gohman572645c2010-02-12 10:34:29 +00002464 continue;
2465
Dan Gohman2ea09e02010-06-24 16:57:52 +00002466 Formula F = Base;
2467 F.AM.BaseOffs = NewBaseOffs;
2468
Dan Gohman572645c2010-02-12 10:34:29 +00002469 // Check that this scale is legal.
2470 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2471 continue;
2472
2473 // Compensate for the use having MinOffset built into it.
2474 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2475
Dan Gohmandeff6212010-05-03 22:09:21 +00002476 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
Dan Gohman572645c2010-02-12 10:34:29 +00002477
2478 // Check that multiplying with each base register doesn't overflow.
2479 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2480 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00002481 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
Dan Gohman572645c2010-02-12 10:34:29 +00002482 goto next;
2483 }
2484
2485 // Check that multiplying with the scaled register doesn't overflow.
2486 if (F.ScaledReg) {
2487 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00002488 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
Dan Gohman572645c2010-02-12 10:34:29 +00002489 continue;
2490 }
2491
2492 // If we make it here and it's legal, add it.
2493 (void)InsertFormula(LU, LUIdx, F);
2494 next:;
2495 }
2496}
2497
2498/// GenerateScales - Generate stride factor reuse formulae by making use of
2499/// scaled-offset address modes, for example.
Dan Gohmanea507f52010-05-20 19:44:23 +00002500void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
Dan Gohman572645c2010-02-12 10:34:29 +00002501 // Determine the integer type for the base formula.
2502 const Type *IntTy = Base.getType();
2503 if (!IntTy) return;
2504
2505 // If this Formula already has a scaled register, we can't add another one.
2506 if (Base.AM.Scale != 0) return;
2507
2508 // Check each interesting stride.
2509 for (SmallSetVector<int64_t, 8>::const_iterator
2510 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2511 int64_t Factor = *I;
2512
2513 Base.AM.Scale = Factor;
2514 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2515 // Check whether this scale is going to be legal.
2516 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2517 LU.Kind, LU.AccessTy, TLI)) {
2518 // As a special-case, handle special out-of-loop Basic users specially.
2519 // TODO: Reconsider this special case.
2520 if (LU.Kind == LSRUse::Basic &&
2521 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2522 LSRUse::Special, LU.AccessTy, TLI) &&
2523 LU.AllFixupsOutsideLoop)
2524 LU.Kind = LSRUse::Special;
2525 else
2526 continue;
2527 }
2528 // For an ICmpZero, negating a solitary base register won't lead to
2529 // new solutions.
2530 if (LU.Kind == LSRUse::ICmpZero &&
2531 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2532 continue;
2533 // For each addrec base reg, apply the scale, if possible.
2534 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2535 if (const SCEVAddRecExpr *AR =
2536 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
Dan Gohmandeff6212010-05-03 22:09:21 +00002537 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
Dan Gohman572645c2010-02-12 10:34:29 +00002538 if (FactorS->isZero())
2539 continue;
2540 // Divide out the factor, ignoring high bits, since we'll be
2541 // scaling the value back up in the end.
Dan Gohmanf09b7122010-02-19 19:35:48 +00002542 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
Dan Gohman572645c2010-02-12 10:34:29 +00002543 // TODO: This could be optimized to avoid all the copying.
2544 Formula F = Base;
2545 F.ScaledReg = Quotient;
Dan Gohman5ce6d052010-05-20 15:17:54 +00002546 F.DeleteBaseReg(F.BaseRegs[i]);
Dan Gohman572645c2010-02-12 10:34:29 +00002547 (void)InsertFormula(LU, LUIdx, F);
2548 }
2549 }
2550 }
2551}
2552
2553/// GenerateTruncates - Generate reuse formulae from different IV types.
Dan Gohmanea507f52010-05-20 19:44:23 +00002554void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
Dan Gohman572645c2010-02-12 10:34:29 +00002555 // This requires TargetLowering to tell us which truncates are free.
2556 if (!TLI) return;
2557
2558 // Don't bother truncating symbolic values.
2559 if (Base.AM.BaseGV) return;
2560
2561 // Determine the integer type for the base formula.
2562 const Type *DstTy = Base.getType();
2563 if (!DstTy) return;
2564 DstTy = SE.getEffectiveSCEVType(DstTy);
2565
2566 for (SmallSetVector<const Type *, 4>::const_iterator
2567 I = Types.begin(), E = Types.end(); I != E; ++I) {
2568 const Type *SrcTy = *I;
2569 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2570 Formula F = Base;
2571
2572 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2573 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2574 JE = F.BaseRegs.end(); J != JE; ++J)
2575 *J = SE.getAnyExtendExpr(*J, SrcTy);
2576
2577 // TODO: This assumes we've done basic processing on all uses and
2578 // have an idea what the register usage is.
2579 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2580 continue;
2581
2582 (void)InsertFormula(LU, LUIdx, F);
2583 }
2584 }
2585}
2586
2587namespace {
2588
Dan Gohman6020d852010-02-14 18:51:20 +00002589/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
Dan Gohman572645c2010-02-12 10:34:29 +00002590/// defer modifications so that the search phase doesn't have to worry about
2591/// the data structures moving underneath it.
2592struct WorkItem {
2593 size_t LUIdx;
2594 int64_t Imm;
2595 const SCEV *OrigReg;
2596
2597 WorkItem(size_t LI, int64_t I, const SCEV *R)
2598 : LUIdx(LI), Imm(I), OrigReg(R) {}
2599
2600 void print(raw_ostream &OS) const;
2601 void dump() const;
2602};
2603
2604}
2605
2606void WorkItem::print(raw_ostream &OS) const {
2607 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2608 << " , add offset " << Imm;
2609}
2610
2611void WorkItem::dump() const {
2612 print(errs()); errs() << '\n';
2613}
2614
2615/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2616/// distance apart and try to form reuse opportunities between them.
2617void LSRInstance::GenerateCrossUseConstantOffsets() {
2618 // Group the registers by their value without any added constant offset.
2619 typedef std::map<int64_t, const SCEV *> ImmMapTy;
2620 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2621 RegMapTy Map;
2622 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2623 SmallVector<const SCEV *, 8> Sequence;
2624 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2625 I != E; ++I) {
2626 const SCEV *Reg = *I;
2627 int64_t Imm = ExtractImmediate(Reg, SE);
2628 std::pair<RegMapTy::iterator, bool> Pair =
2629 Map.insert(std::make_pair(Reg, ImmMapTy()));
2630 if (Pair.second)
2631 Sequence.push_back(Reg);
2632 Pair.first->second.insert(std::make_pair(Imm, *I));
2633 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2634 }
2635
2636 // Now examine each set of registers with the same base value. Build up
2637 // a list of work to do and do the work in a separate step so that we're
2638 // not adding formulae and register counts while we're searching.
2639 SmallVector<WorkItem, 32> WorkItems;
2640 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2641 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2642 E = Sequence.end(); I != E; ++I) {
2643 const SCEV *Reg = *I;
2644 const ImmMapTy &Imms = Map.find(Reg)->second;
2645
Dan Gohmancd045c02010-02-12 19:20:37 +00002646 // It's not worthwhile looking for reuse if there's only one offset.
2647 if (Imms.size() == 1)
2648 continue;
2649
Dan Gohman572645c2010-02-12 10:34:29 +00002650 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2651 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2652 J != JE; ++J)
2653 dbgs() << ' ' << J->first;
2654 dbgs() << '\n');
2655
2656 // Examine each offset.
2657 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2658 J != JE; ++J) {
2659 const SCEV *OrigReg = J->second;
2660
2661 int64_t JImm = J->first;
2662 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2663
2664 if (!isa<SCEVConstant>(OrigReg) &&
2665 UsedByIndicesMap[Reg].count() == 1) {
2666 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2667 continue;
2668 }
2669
2670 // Conservatively examine offsets between this orig reg a few selected
2671 // other orig regs.
2672 ImmMapTy::const_iterator OtherImms[] = {
2673 Imms.begin(), prior(Imms.end()),
2674 Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2675 };
2676 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2677 ImmMapTy::const_iterator M = OtherImms[i];
Dan Gohmancd045c02010-02-12 19:20:37 +00002678 if (M == J || M == JE) continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002679
2680 // Compute the difference between the two.
2681 int64_t Imm = (uint64_t)JImm - M->first;
2682 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2683 LUIdx = UsedByIndices.find_next(LUIdx))
2684 // Make a memo of this use, offset, and register tuple.
2685 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2686 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
Evan Cheng586f69a2009-11-12 07:35:05 +00002687 }
2688 }
2689 }
2690
Dan Gohman572645c2010-02-12 10:34:29 +00002691 Map.clear();
2692 Sequence.clear();
2693 UsedByIndicesMap.clear();
2694 UniqueItems.clear();
2695
2696 // Now iterate through the worklist and add new formulae.
2697 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2698 E = WorkItems.end(); I != E; ++I) {
2699 const WorkItem &WI = *I;
2700 size_t LUIdx = WI.LUIdx;
2701 LSRUse &LU = Uses[LUIdx];
2702 int64_t Imm = WI.Imm;
2703 const SCEV *OrigReg = WI.OrigReg;
2704
2705 const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2706 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2707 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2708
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002709 // TODO: Use a more targeted data structure.
Dan Gohman572645c2010-02-12 10:34:29 +00002710 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
Dan Gohman9f383eb2010-05-20 22:25:20 +00002711 const Formula &F = LU.Formulae[L];
Dan Gohman572645c2010-02-12 10:34:29 +00002712 // Use the immediate in the scaled register.
2713 if (F.ScaledReg == OrigReg) {
2714 int64_t Offs = (uint64_t)F.AM.BaseOffs +
2715 Imm * (uint64_t)F.AM.Scale;
2716 // Don't create 50 + reg(-50).
2717 if (F.referencesReg(SE.getSCEV(
2718 ConstantInt::get(IntTy, -(uint64_t)Offs))))
2719 continue;
2720 Formula NewF = F;
2721 NewF.AM.BaseOffs = Offs;
2722 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2723 LU.Kind, LU.AccessTy, TLI))
2724 continue;
2725 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2726
2727 // If the new scale is a constant in a register, and adding the constant
2728 // value to the immediate would produce a value closer to zero than the
2729 // immediate itself, then the formula isn't worthwhile.
2730 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2731 if (C->getValue()->getValue().isNegative() !=
2732 (NewF.AM.BaseOffs < 0) &&
2733 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
Dan Gohmane0567812010-04-08 23:03:40 +00002734 .ule(abs64(NewF.AM.BaseOffs)))
Dan Gohman572645c2010-02-12 10:34:29 +00002735 continue;
2736
2737 // OK, looks good.
2738 (void)InsertFormula(LU, LUIdx, NewF);
2739 } else {
2740 // Use the immediate in a base register.
2741 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2742 const SCEV *BaseReg = F.BaseRegs[N];
2743 if (BaseReg != OrigReg)
2744 continue;
2745 Formula NewF = F;
2746 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2747 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2748 LU.Kind, LU.AccessTy, TLI))
2749 continue;
2750 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2751
2752 // If the new formula has a constant in a register, and adding the
2753 // constant value to the immediate would produce a value closer to
2754 // zero than the immediate itself, then the formula isn't worthwhile.
2755 for (SmallVectorImpl<const SCEV *>::const_iterator
2756 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2757 J != JE; ++J)
2758 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
Dan Gohman360026f2010-05-18 23:48:08 +00002759 if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
2760 abs64(NewF.AM.BaseOffs)) &&
2761 (C->getValue()->getValue() +
2762 NewF.AM.BaseOffs).countTrailingZeros() >=
2763 CountTrailingZeros_64(NewF.AM.BaseOffs))
Dan Gohman572645c2010-02-12 10:34:29 +00002764 goto skip_formula;
2765
2766 // Ok, looks good.
2767 (void)InsertFormula(LU, LUIdx, NewF);
2768 break;
2769 skip_formula:;
2770 }
2771 }
2772 }
2773 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00002774}
2775
Dan Gohman572645c2010-02-12 10:34:29 +00002776/// GenerateAllReuseFormulae - Generate formulae for each use.
2777void
2778LSRInstance::GenerateAllReuseFormulae() {
Dan Gohmanc2385a02010-02-16 01:42:53 +00002779 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
Dan Gohman572645c2010-02-12 10:34:29 +00002780 // queries are more precise.
2781 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2782 LSRUse &LU = Uses[LUIdx];
2783 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2784 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2785 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2786 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2787 }
2788 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2789 LSRUse &LU = Uses[LUIdx];
2790 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2791 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2792 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2793 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2794 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2795 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2796 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2797 GenerateScales(LU, LUIdx, LU.Formulae[i]);
Dan Gohmanc2385a02010-02-16 01:42:53 +00002798 }
2799 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2800 LSRUse &LU = Uses[LUIdx];
Dan Gohman572645c2010-02-12 10:34:29 +00002801 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2802 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2803 }
2804
2805 GenerateCrossUseConstantOffsets();
Dan Gohman3902f9f2010-08-29 15:21:38 +00002806
2807 DEBUG(dbgs() << "\n"
2808 "After generating reuse formulae:\n";
2809 print_uses(dbgs()));
Dan Gohman572645c2010-02-12 10:34:29 +00002810}
2811
2812/// If their are multiple formulae with the same set of registers used
2813/// by other uses, pick the best one and delete the others.
2814void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2815#ifndef NDEBUG
Dan Gohmanc6519f92010-05-20 20:05:31 +00002816 bool ChangedFormulae = false;
Dan Gohman572645c2010-02-12 10:34:29 +00002817#endif
2818
2819 // Collect the best formula for each unique set of shared registers. This
2820 // is reset for each use.
2821 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2822 BestFormulaeTy;
2823 BestFormulaeTy BestFormulae;
2824
2825 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2826 LSRUse &LU = Uses[LUIdx];
2827 FormulaSorter Sorter(L, LU, SE, DT);
Dan Gohmanea507f52010-05-20 19:44:23 +00002828 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
Dan Gohman572645c2010-02-12 10:34:29 +00002829
Dan Gohmanb2df4332010-05-18 23:42:37 +00002830 bool Any = false;
Dan Gohman572645c2010-02-12 10:34:29 +00002831 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2832 FIdx != NumForms; ++FIdx) {
2833 Formula &F = LU.Formulae[FIdx];
2834
2835 SmallVector<const SCEV *, 2> Key;
2836 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2837 JE = F.BaseRegs.end(); J != JE; ++J) {
2838 const SCEV *Reg = *J;
2839 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2840 Key.push_back(Reg);
2841 }
2842 if (F.ScaledReg &&
2843 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2844 Key.push_back(F.ScaledReg);
2845 // Unstable sort by host order ok, because this is only used for
2846 // uniquifying.
2847 std::sort(Key.begin(), Key.end());
2848
2849 std::pair<BestFormulaeTy::const_iterator, bool> P =
2850 BestFormulae.insert(std::make_pair(Key, FIdx));
2851 if (!P.second) {
2852 Formula &Best = LU.Formulae[P.first->second];
2853 if (Sorter.operator()(F, Best))
2854 std::swap(F, Best);
Dan Gohman6458ff92010-05-18 22:37:37 +00002855 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
Dan Gohman572645c2010-02-12 10:34:29 +00002856 dbgs() << "\n"
Dan Gohman6458ff92010-05-18 22:37:37 +00002857 " in favor of formula "; Best.print(dbgs());
Dan Gohman572645c2010-02-12 10:34:29 +00002858 dbgs() << '\n');
2859#ifndef NDEBUG
Dan Gohmanc6519f92010-05-20 20:05:31 +00002860 ChangedFormulae = true;
Dan Gohman572645c2010-02-12 10:34:29 +00002861#endif
Dan Gohmand69d6282010-05-18 22:39:15 +00002862 LU.DeleteFormula(F);
Dan Gohman572645c2010-02-12 10:34:29 +00002863 --FIdx;
2864 --NumForms;
Dan Gohmanb2df4332010-05-18 23:42:37 +00002865 Any = true;
Dan Gohman572645c2010-02-12 10:34:29 +00002866 continue;
2867 }
Dan Gohman59dc6032010-05-07 23:36:59 +00002868 }
2869
Dan Gohman57aaa0b2010-05-18 23:55:57 +00002870 // Now that we've filtered out some formulae, recompute the Regs set.
Dan Gohmanb2df4332010-05-18 23:42:37 +00002871 if (Any)
2872 LU.RecomputeRegs(LUIdx, RegUses);
Dan Gohman59dc6032010-05-07 23:36:59 +00002873
2874 // Reset this to prepare for the next use.
Dan Gohman572645c2010-02-12 10:34:29 +00002875 BestFormulae.clear();
2876 }
2877
Dan Gohmanc6519f92010-05-20 20:05:31 +00002878 DEBUG(if (ChangedFormulae) {
Dan Gohman9214b822010-02-13 02:06:02 +00002879 dbgs() << "\n"
2880 "After filtering out undesirable candidates:\n";
Dan Gohman572645c2010-02-12 10:34:29 +00002881 print_uses(dbgs());
2882 });
2883}
2884
Dan Gohmand079c302010-05-18 22:51:59 +00002885// This is a rough guess that seems to work fairly well.
2886static const size_t ComplexityLimit = UINT16_MAX;
2887
2888/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
2889/// solutions the solver might have to consider. It almost never considers
2890/// this many solutions because it prune the search space, but the pruning
2891/// isn't always sufficient.
2892size_t LSRInstance::EstimateSearchSpaceComplexity() const {
2893 uint32_t Power = 1;
2894 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
2895 E = Uses.end(); I != E; ++I) {
2896 size_t FSize = I->Formulae.size();
2897 if (FSize >= ComplexityLimit) {
2898 Power = ComplexityLimit;
2899 break;
2900 }
2901 Power *= FSize;
2902 if (Power >= ComplexityLimit)
2903 break;
2904 }
2905 return Power;
2906}
2907
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002908/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
Dan Gohman572645c2010-02-12 10:34:29 +00002909/// formulae to choose from, use some rough heuristics to prune down the number
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002910/// of formulae. This keeps the main solver from taking an extraordinary amount
Dan Gohman572645c2010-02-12 10:34:29 +00002911/// of time in some worst-case scenarios.
2912void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
Dan Gohmana2086b32010-05-19 23:43:12 +00002913 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2914 DEBUG(dbgs() << "The search space is too complex.\n");
2915
2916 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
2917 "which use a superset of registers used by other "
2918 "formulae.\n");
2919
2920 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2921 LSRUse &LU = Uses[LUIdx];
2922 bool Any = false;
2923 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2924 Formula &F = LU.Formulae[i];
Dan Gohmanf7ff37d2010-05-20 20:00:41 +00002925 // Look for a formula with a constant or GV in a register. If the use
2926 // also has a formula with that same value in an immediate field,
2927 // delete the one that uses a register.
Dan Gohmana2086b32010-05-19 23:43:12 +00002928 for (SmallVectorImpl<const SCEV *>::const_iterator
2929 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
2930 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
2931 Formula NewF = F;
2932 NewF.AM.BaseOffs += C->getValue()->getSExtValue();
2933 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2934 (I - F.BaseRegs.begin()));
2935 if (LU.HasFormulaWithSameRegs(NewF)) {
2936 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
2937 LU.DeleteFormula(F);
2938 --i;
2939 --e;
2940 Any = true;
2941 break;
2942 }
2943 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
2944 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
2945 if (!F.AM.BaseGV) {
2946 Formula NewF = F;
2947 NewF.AM.BaseGV = GV;
2948 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2949 (I - F.BaseRegs.begin()));
2950 if (LU.HasFormulaWithSameRegs(NewF)) {
2951 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
2952 dbgs() << '\n');
2953 LU.DeleteFormula(F);
2954 --i;
2955 --e;
2956 Any = true;
2957 break;
2958 }
2959 }
2960 }
2961 }
2962 }
2963 if (Any)
2964 LU.RecomputeRegs(LUIdx, RegUses);
2965 }
2966
2967 DEBUG(dbgs() << "After pre-selection:\n";
2968 print_uses(dbgs()));
2969 }
2970
2971 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2972 DEBUG(dbgs() << "The search space is too complex.\n");
2973
2974 DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
2975 "separated by a constant offset will use the same "
2976 "registers.\n");
2977
Dan Gohmanf7ff37d2010-05-20 20:00:41 +00002978 // This is especially useful for unrolled loops.
2979
Dan Gohmana2086b32010-05-19 23:43:12 +00002980 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2981 LSRUse &LU = Uses[LUIdx];
Dan Gohman402d4352010-05-20 20:33:18 +00002982 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2983 E = LU.Formulae.end(); I != E; ++I) {
2984 const Formula &F = *I;
Dan Gohmana2086b32010-05-19 23:43:12 +00002985 if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
2986 if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
2987 if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
2988 /*HasBaseReg=*/false,
2989 LU.Kind, LU.AccessTy)) {
2990 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs());
2991 dbgs() << '\n');
2992
2993 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
2994
2995 // Delete formulae from the new use which are no longer legal.
2996 bool Any = false;
2997 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
2998 Formula &F = LUThatHas->Formulae[i];
2999 if (!isLegalUse(F.AM,
3000 LUThatHas->MinOffset, LUThatHas->MaxOffset,
3001 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
3002 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
3003 dbgs() << '\n');
3004 LUThatHas->DeleteFormula(F);
3005 --i;
3006 --e;
3007 Any = true;
3008 }
3009 }
3010 if (Any)
3011 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
3012
3013 // Update the relocs to reference the new use.
Dan Gohman402d4352010-05-20 20:33:18 +00003014 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
3015 E = Fixups.end(); I != E; ++I) {
3016 LSRFixup &Fixup = *I;
3017 if (Fixup.LUIdx == LUIdx) {
3018 Fixup.LUIdx = LUThatHas - &Uses.front();
3019 Fixup.Offset += F.AM.BaseOffs;
Dan Gohmanef4308d2010-07-15 20:12:42 +00003020 DEBUG(dbgs() << "New fixup has offset "
Dan Gohman402d4352010-05-20 20:33:18 +00003021 << Fixup.Offset << '\n');
Dan Gohmana2086b32010-05-19 23:43:12 +00003022 }
Dan Gohman402d4352010-05-20 20:33:18 +00003023 if (Fixup.LUIdx == NumUses-1)
3024 Fixup.LUIdx = LUIdx;
Dan Gohmana2086b32010-05-19 23:43:12 +00003025 }
3026
3027 // Delete the old use.
Dan Gohman5ce6d052010-05-20 15:17:54 +00003028 DeleteUse(LU);
Dan Gohmana2086b32010-05-19 23:43:12 +00003029 --LUIdx;
3030 --NumUses;
3031 break;
3032 }
3033 }
3034 }
3035 }
3036 }
3037
3038 DEBUG(dbgs() << "After pre-selection:\n";
3039 print_uses(dbgs()));
3040 }
3041
Dan Gohman76c315a2010-05-20 20:52:00 +00003042 // With all other options exhausted, loop until the system is simple
3043 // enough to handle.
Dan Gohman572645c2010-02-12 10:34:29 +00003044 SmallPtrSet<const SCEV *, 4> Taken;
Dan Gohmand079c302010-05-18 22:51:59 +00003045 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
Dan Gohman572645c2010-02-12 10:34:29 +00003046 // Ok, we have too many of formulae on our hands to conveniently handle.
3047 // Use a rough heuristic to thin out the list.
Dan Gohman0da751b2010-05-18 22:41:32 +00003048 DEBUG(dbgs() << "The search space is too complex.\n");
Dan Gohman572645c2010-02-12 10:34:29 +00003049
3050 // Pick the register which is used by the most LSRUses, which is likely
3051 // to be a good reuse register candidate.
3052 const SCEV *Best = 0;
3053 unsigned BestNum = 0;
3054 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3055 I != E; ++I) {
3056 const SCEV *Reg = *I;
3057 if (Taken.count(Reg))
3058 continue;
3059 if (!Best)
3060 Best = Reg;
3061 else {
3062 unsigned Count = RegUses.getUsedByIndices(Reg).count();
3063 if (Count > BestNum) {
3064 Best = Reg;
3065 BestNum = Count;
3066 }
3067 }
3068 }
3069
3070 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003071 << " will yield profitable reuse.\n");
Dan Gohman572645c2010-02-12 10:34:29 +00003072 Taken.insert(Best);
3073
3074 // In any use with formulae which references this register, delete formulae
3075 // which don't reference it.
Dan Gohmanb2df4332010-05-18 23:42:37 +00003076 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3077 LSRUse &LU = Uses[LUIdx];
Dan Gohman572645c2010-02-12 10:34:29 +00003078 if (!LU.Regs.count(Best)) continue;
3079
Dan Gohmanb2df4332010-05-18 23:42:37 +00003080 bool Any = false;
Dan Gohman572645c2010-02-12 10:34:29 +00003081 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3082 Formula &F = LU.Formulae[i];
3083 if (!F.referencesReg(Best)) {
3084 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
Dan Gohmand69d6282010-05-18 22:39:15 +00003085 LU.DeleteFormula(F);
Dan Gohman572645c2010-02-12 10:34:29 +00003086 --e;
3087 --i;
Dan Gohmanb2df4332010-05-18 23:42:37 +00003088 Any = true;
Dan Gohman59dc6032010-05-07 23:36:59 +00003089 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
Dan Gohman572645c2010-02-12 10:34:29 +00003090 continue;
3091 }
Dan Gohman572645c2010-02-12 10:34:29 +00003092 }
Dan Gohmanb2df4332010-05-18 23:42:37 +00003093
3094 if (Any)
3095 LU.RecomputeRegs(LUIdx, RegUses);
Dan Gohman572645c2010-02-12 10:34:29 +00003096 }
3097
3098 DEBUG(dbgs() << "After pre-selection:\n";
3099 print_uses(dbgs()));
3100 }
3101}
3102
3103/// SolveRecurse - This is the recursive solver.
3104void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
3105 Cost &SolutionCost,
3106 SmallVectorImpl<const Formula *> &Workspace,
3107 const Cost &CurCost,
3108 const SmallPtrSet<const SCEV *, 16> &CurRegs,
3109 DenseSet<const SCEV *> &VisitedRegs) const {
3110 // Some ideas:
3111 // - prune more:
3112 // - use more aggressive filtering
3113 // - sort the formula so that the most profitable solutions are found first
3114 // - sort the uses too
3115 // - search faster:
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003116 // - don't compute a cost, and then compare. compare while computing a cost
Dan Gohman572645c2010-02-12 10:34:29 +00003117 // and bail early.
3118 // - track register sets with SmallBitVector
3119
3120 const LSRUse &LU = Uses[Workspace.size()];
3121
3122 // If this use references any register that's already a part of the
3123 // in-progress solution, consider it a requirement that a formula must
3124 // reference that register in order to be considered. This prunes out
3125 // unprofitable searching.
3126 SmallSetVector<const SCEV *, 4> ReqRegs;
3127 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
3128 E = CurRegs.end(); I != E; ++I)
Dan Gohman9214b822010-02-13 02:06:02 +00003129 if (LU.Regs.count(*I))
Dan Gohman572645c2010-02-12 10:34:29 +00003130 ReqRegs.insert(*I);
Dan Gohman572645c2010-02-12 10:34:29 +00003131
Dan Gohman9214b822010-02-13 02:06:02 +00003132 bool AnySatisfiedReqRegs = false;
Dan Gohman572645c2010-02-12 10:34:29 +00003133 SmallPtrSet<const SCEV *, 16> NewRegs;
3134 Cost NewCost;
Dan Gohman9214b822010-02-13 02:06:02 +00003135retry:
Dan Gohman572645c2010-02-12 10:34:29 +00003136 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3137 E = LU.Formulae.end(); I != E; ++I) {
3138 const Formula &F = *I;
3139
3140 // Ignore formulae which do not use any of the required registers.
3141 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
3142 JE = ReqRegs.end(); J != JE; ++J) {
3143 const SCEV *Reg = *J;
3144 if ((!F.ScaledReg || F.ScaledReg != Reg) &&
3145 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
3146 F.BaseRegs.end())
3147 goto skip;
3148 }
Dan Gohman9214b822010-02-13 02:06:02 +00003149 AnySatisfiedReqRegs = true;
Dan Gohman572645c2010-02-12 10:34:29 +00003150
3151 // Evaluate the cost of the current formula. If it's already worse than
3152 // the current best, prune the search at that point.
3153 NewCost = CurCost;
3154 NewRegs = CurRegs;
3155 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
3156 if (NewCost < SolutionCost) {
3157 Workspace.push_back(&F);
3158 if (Workspace.size() != Uses.size()) {
3159 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
3160 NewRegs, VisitedRegs);
3161 if (F.getNumRegs() == 1 && Workspace.size() == 1)
3162 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
3163 } else {
3164 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
3165 dbgs() << ". Regs:";
3166 for (SmallPtrSet<const SCEV *, 16>::const_iterator
3167 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
3168 dbgs() << ' ' << **I;
3169 dbgs() << '\n');
3170
3171 SolutionCost = NewCost;
3172 Solution = Workspace;
3173 }
3174 Workspace.pop_back();
3175 }
3176 skip:;
3177 }
Dan Gohman9214b822010-02-13 02:06:02 +00003178
3179 // If none of the formulae had all of the required registers, relax the
3180 // constraint so that we don't exclude all formulae.
3181 if (!AnySatisfiedReqRegs) {
Dan Gohman59dc6032010-05-07 23:36:59 +00003182 assert(!ReqRegs.empty() && "Solver failed even without required registers");
Dan Gohman9214b822010-02-13 02:06:02 +00003183 ReqRegs.clear();
3184 goto retry;
3185 }
Dan Gohman572645c2010-02-12 10:34:29 +00003186}
3187
Dan Gohman76c315a2010-05-20 20:52:00 +00003188/// Solve - Choose one formula from each use. Return the results in the given
3189/// Solution vector.
Dan Gohman572645c2010-02-12 10:34:29 +00003190void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
3191 SmallVector<const Formula *, 8> Workspace;
3192 Cost SolutionCost;
3193 SolutionCost.Loose();
3194 Cost CurCost;
3195 SmallPtrSet<const SCEV *, 16> CurRegs;
3196 DenseSet<const SCEV *> VisitedRegs;
3197 Workspace.reserve(Uses.size());
3198
Dan Gohmanf7ff37d2010-05-20 20:00:41 +00003199 // SolveRecurse does all the work.
Dan Gohman572645c2010-02-12 10:34:29 +00003200 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
3201 CurRegs, VisitedRegs);
3202
3203 // Ok, we've now made all our decisions.
3204 DEBUG(dbgs() << "\n"
3205 "The chosen solution requires "; SolutionCost.print(dbgs());
3206 dbgs() << ":\n";
3207 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
3208 dbgs() << " ";
3209 Uses[i].print(dbgs());
3210 dbgs() << "\n"
3211 " ";
3212 Solution[i]->print(dbgs());
3213 dbgs() << '\n';
3214 });
Dan Gohmana5528782010-05-20 20:59:23 +00003215
3216 assert(Solution.size() == Uses.size() && "Malformed solution!");
Dan Gohman572645c2010-02-12 10:34:29 +00003217}
3218
Dan Gohmane5f76872010-04-09 22:07:05 +00003219/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
3220/// the dominator tree far as we can go while still being dominated by the
3221/// input positions. This helps canonicalize the insert position, which
3222/// encourages sharing.
3223BasicBlock::iterator
3224LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
3225 const SmallVectorImpl<Instruction *> &Inputs)
3226 const {
3227 for (;;) {
3228 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
3229 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
3230
3231 BasicBlock *IDom;
Dan Gohmand974a0e2010-05-20 20:00:25 +00003232 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
Dan Gohman0fe46d92010-05-20 22:46:54 +00003233 if (!Rung) return IP;
Dan Gohmand974a0e2010-05-20 20:00:25 +00003234 Rung = Rung->getIDom();
3235 if (!Rung) return IP;
3236 IDom = Rung->getBlock();
Dan Gohmane5f76872010-04-09 22:07:05 +00003237
3238 // Don't climb into a loop though.
3239 const Loop *IDomLoop = LI.getLoopFor(IDom);
3240 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
3241 if (IDomDepth <= IPLoopDepth &&
3242 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
3243 break;
3244 }
3245
3246 bool AllDominate = true;
3247 Instruction *BetterPos = 0;
3248 Instruction *Tentative = IDom->getTerminator();
3249 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
3250 E = Inputs.end(); I != E; ++I) {
3251 Instruction *Inst = *I;
3252 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
3253 AllDominate = false;
3254 break;
3255 }
3256 // Attempt to find an insert position in the middle of the block,
3257 // instead of at the end, so that it can be used for other expansions.
3258 if (IDom == Inst->getParent() &&
3259 (!BetterPos || DT.dominates(BetterPos, Inst)))
Douglas Gregor7d9663c2010-05-11 06:17:44 +00003260 BetterPos = llvm::next(BasicBlock::iterator(Inst));
Dan Gohmane5f76872010-04-09 22:07:05 +00003261 }
3262 if (!AllDominate)
3263 break;
3264 if (BetterPos)
3265 IP = BetterPos;
3266 else
3267 IP = Tentative;
3268 }
3269
3270 return IP;
3271}
3272
3273/// AdjustInsertPositionForExpand - Determine an input position which will be
Dan Gohmand96eae82010-04-09 02:00:38 +00003274/// dominated by the operands and which will dominate the result.
3275BasicBlock::iterator
Dan Gohmane5f76872010-04-09 22:07:05 +00003276LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
3277 const LSRFixup &LF,
3278 const LSRUse &LU) const {
Dan Gohmand96eae82010-04-09 02:00:38 +00003279 // Collect some instructions which must be dominated by the
Dan Gohman448db1c2010-04-07 22:27:08 +00003280 // expanding replacement. These must be dominated by any operands that
Dan Gohman572645c2010-02-12 10:34:29 +00003281 // will be required in the expansion.
3282 SmallVector<Instruction *, 4> Inputs;
3283 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
3284 Inputs.push_back(I);
3285 if (LU.Kind == LSRUse::ICmpZero)
3286 if (Instruction *I =
3287 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
3288 Inputs.push_back(I);
Dan Gohman448db1c2010-04-07 22:27:08 +00003289 if (LF.PostIncLoops.count(L)) {
3290 if (LF.isUseFullyOutsideLoop(L))
Dan Gohman069d6f32010-03-02 01:59:21 +00003291 Inputs.push_back(L->getLoopLatch()->getTerminator());
3292 else
3293 Inputs.push_back(IVIncInsertPos);
3294 }
Dan Gohman701a4ae2010-04-08 05:57:57 +00003295 // The expansion must also be dominated by the increment positions of any
3296 // loops it for which it is using post-inc mode.
3297 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
3298 E = LF.PostIncLoops.end(); I != E; ++I) {
3299 const Loop *PIL = *I;
3300 if (PIL == L) continue;
3301
Dan Gohmane5f76872010-04-09 22:07:05 +00003302 // Be dominated by the loop exit.
Dan Gohman701a4ae2010-04-08 05:57:57 +00003303 SmallVector<BasicBlock *, 4> ExitingBlocks;
3304 PIL->getExitingBlocks(ExitingBlocks);
3305 if (!ExitingBlocks.empty()) {
3306 BasicBlock *BB = ExitingBlocks[0];
3307 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
3308 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
3309 Inputs.push_back(BB->getTerminator());
3310 }
3311 }
Dan Gohman572645c2010-02-12 10:34:29 +00003312
3313 // Then, climb up the immediate dominator tree as far as we can go while
3314 // still being dominated by the input positions.
Dan Gohmane5f76872010-04-09 22:07:05 +00003315 IP = HoistInsertPosition(IP, Inputs);
Dan Gohmand96eae82010-04-09 02:00:38 +00003316
3317 // Don't insert instructions before PHI nodes.
Dan Gohman572645c2010-02-12 10:34:29 +00003318 while (isa<PHINode>(IP)) ++IP;
Dan Gohmand96eae82010-04-09 02:00:38 +00003319
3320 // Ignore debug intrinsics.
Dan Gohman449f31c2010-03-26 00:33:27 +00003321 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
Dan Gohman572645c2010-02-12 10:34:29 +00003322
Dan Gohmand96eae82010-04-09 02:00:38 +00003323 return IP;
3324}
3325
Dan Gohman76c315a2010-05-20 20:52:00 +00003326/// Expand - Emit instructions for the leading candidate expression for this
3327/// LSRUse (this is called "expanding").
Dan Gohmand96eae82010-04-09 02:00:38 +00003328Value *LSRInstance::Expand(const LSRFixup &LF,
3329 const Formula &F,
3330 BasicBlock::iterator IP,
3331 SCEVExpander &Rewriter,
3332 SmallVectorImpl<WeakVH> &DeadInsts) const {
3333 const LSRUse &LU = Uses[LF.LUIdx];
3334
3335 // Determine an input position which will be dominated by the operands and
3336 // which will dominate the result.
Dan Gohmane5f76872010-04-09 22:07:05 +00003337 IP = AdjustInsertPositionForExpand(IP, LF, LU);
Dan Gohmand96eae82010-04-09 02:00:38 +00003338
Dan Gohman572645c2010-02-12 10:34:29 +00003339 // Inform the Rewriter if we have a post-increment use, so that it can
3340 // perform an advantageous expansion.
Dan Gohman448db1c2010-04-07 22:27:08 +00003341 Rewriter.setPostInc(LF.PostIncLoops);
Dan Gohman572645c2010-02-12 10:34:29 +00003342
3343 // This is the type that the user actually needs.
3344 const Type *OpTy = LF.OperandValToReplace->getType();
3345 // This will be the type that we'll initially expand to.
3346 const Type *Ty = F.getType();
3347 if (!Ty)
3348 // No type known; just expand directly to the ultimate type.
3349 Ty = OpTy;
3350 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
3351 // Expand directly to the ultimate type if it's the right size.
3352 Ty = OpTy;
3353 // This is the type to do integer arithmetic in.
3354 const Type *IntTy = SE.getEffectiveSCEVType(Ty);
3355
3356 // Build up a list of operands to add together to form the full base.
3357 SmallVector<const SCEV *, 8> Ops;
3358
3359 // Expand the BaseRegs portion.
3360 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
3361 E = F.BaseRegs.end(); I != E; ++I) {
3362 const SCEV *Reg = *I;
3363 assert(!Reg->isZero() && "Zero allocated in a base register!");
3364
Dan Gohman448db1c2010-04-07 22:27:08 +00003365 // If we're expanding for a post-inc user, make the post-inc adjustment.
3366 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3367 Reg = TransformForPostIncUse(Denormalize, Reg,
3368 LF.UserInst, LF.OperandValToReplace,
3369 Loops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00003370
3371 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
3372 }
3373
Dan Gohman087bd1e2010-03-03 05:29:13 +00003374 // Flush the operand list to suppress SCEVExpander hoisting.
3375 if (!Ops.empty()) {
3376 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3377 Ops.clear();
3378 Ops.push_back(SE.getUnknown(FullV));
3379 }
3380
Dan Gohman572645c2010-02-12 10:34:29 +00003381 // Expand the ScaledReg portion.
3382 Value *ICmpScaledV = 0;
3383 if (F.AM.Scale != 0) {
3384 const SCEV *ScaledS = F.ScaledReg;
3385
Dan Gohman448db1c2010-04-07 22:27:08 +00003386 // If we're expanding for a post-inc user, make the post-inc adjustment.
3387 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3388 ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
3389 LF.UserInst, LF.OperandValToReplace,
3390 Loops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00003391
3392 if (LU.Kind == LSRUse::ICmpZero) {
3393 // An interesting way of "folding" with an icmp is to use a negated
3394 // scale, which we'll implement by inserting it into the other operand
3395 // of the icmp.
3396 assert(F.AM.Scale == -1 &&
3397 "The only scale supported by ICmpZero uses is -1!");
3398 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
3399 } else {
3400 // Otherwise just expand the scaled register and an explicit scale,
3401 // which is expected to be matched as part of the address.
3402 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
3403 ScaledS = SE.getMulExpr(ScaledS,
Dan Gohmandeff6212010-05-03 22:09:21 +00003404 SE.getConstant(ScaledS->getType(), F.AM.Scale));
Dan Gohman572645c2010-02-12 10:34:29 +00003405 Ops.push_back(ScaledS);
Dan Gohman087bd1e2010-03-03 05:29:13 +00003406
3407 // Flush the operand list to suppress SCEVExpander hoisting.
3408 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3409 Ops.clear();
3410 Ops.push_back(SE.getUnknown(FullV));
Dan Gohman572645c2010-02-12 10:34:29 +00003411 }
3412 }
3413
Dan Gohman087bd1e2010-03-03 05:29:13 +00003414 // Expand the GV portion.
3415 if (F.AM.BaseGV) {
3416 Ops.push_back(SE.getUnknown(F.AM.BaseGV));
3417
3418 // Flush the operand list to suppress SCEVExpander hoisting.
3419 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3420 Ops.clear();
3421 Ops.push_back(SE.getUnknown(FullV));
3422 }
3423
3424 // Expand the immediate portion.
Dan Gohman572645c2010-02-12 10:34:29 +00003425 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
3426 if (Offset != 0) {
3427 if (LU.Kind == LSRUse::ICmpZero) {
3428 // The other interesting way of "folding" with an ICmpZero is to use a
3429 // negated immediate.
3430 if (!ICmpScaledV)
3431 ICmpScaledV = ConstantInt::get(IntTy, -Offset);
3432 else {
3433 Ops.push_back(SE.getUnknown(ICmpScaledV));
3434 ICmpScaledV = ConstantInt::get(IntTy, Offset);
3435 }
3436 } else {
3437 // Just add the immediate values. These again are expected to be matched
3438 // as part of the address.
Dan Gohman087bd1e2010-03-03 05:29:13 +00003439 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
Dan Gohman572645c2010-02-12 10:34:29 +00003440 }
3441 }
3442
3443 // Emit instructions summing all the operands.
3444 const SCEV *FullS = Ops.empty() ?
Dan Gohmandeff6212010-05-03 22:09:21 +00003445 SE.getConstant(IntTy, 0) :
Dan Gohman572645c2010-02-12 10:34:29 +00003446 SE.getAddExpr(Ops);
3447 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
3448
3449 // We're done expanding now, so reset the rewriter.
Dan Gohman448db1c2010-04-07 22:27:08 +00003450 Rewriter.clearPostInc();
Dan Gohman572645c2010-02-12 10:34:29 +00003451
3452 // An ICmpZero Formula represents an ICmp which we're handling as a
3453 // comparison against zero. Now that we've expanded an expression for that
3454 // form, update the ICmp's other operand.
3455 if (LU.Kind == LSRUse::ICmpZero) {
3456 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
3457 DeadInsts.push_back(CI->getOperand(1));
3458 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
3459 "a scale at the same time!");
3460 if (F.AM.Scale == -1) {
3461 if (ICmpScaledV->getType() != OpTy) {
3462 Instruction *Cast =
3463 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
3464 OpTy, false),
3465 ICmpScaledV, OpTy, "tmp", CI);
3466 ICmpScaledV = Cast;
3467 }
3468 CI->setOperand(1, ICmpScaledV);
3469 } else {
3470 assert(F.AM.Scale == 0 &&
3471 "ICmp does not support folding a global value and "
3472 "a scale at the same time!");
3473 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
3474 -(uint64_t)Offset);
3475 if (C->getType() != OpTy)
3476 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3477 OpTy, false),
3478 C, OpTy);
3479
3480 CI->setOperand(1, C);
3481 }
3482 }
3483
3484 return FullV;
3485}
3486
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003487/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
3488/// of their operands effectively happens in their predecessor blocks, so the
3489/// expression may need to be expanded in multiple places.
3490void LSRInstance::RewriteForPHI(PHINode *PN,
3491 const LSRFixup &LF,
3492 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003493 SCEVExpander &Rewriter,
3494 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003495 Pass *P) const {
3496 DenseMap<BasicBlock *, Value *> Inserted;
3497 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3498 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
3499 BasicBlock *BB = PN->getIncomingBlock(i);
3500
3501 // If this is a critical edge, split the edge so that we do not insert
3502 // the code on all predecessor/successor paths. We do this unless this
3503 // is the canonical backedge for this loop, which complicates post-inc
3504 // users.
3505 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
3506 !isa<IndirectBrInst>(BB->getTerminator()) &&
3507 (PN->getParent() != L->getHeader() || !L->contains(BB))) {
3508 // Split the critical edge.
3509 BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
3510
3511 // If PN is outside of the loop and BB is in the loop, we want to
3512 // move the block to be immediately before the PHI block, not
3513 // immediately after BB.
3514 if (L->contains(BB) && !L->contains(PN))
3515 NewBB->moveBefore(PN->getParent());
3516
3517 // Splitting the edge can reduce the number of PHI entries we have.
3518 e = PN->getNumIncomingValues();
3519 BB = NewBB;
3520 i = PN->getBasicBlockIndex(BB);
3521 }
3522
3523 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
3524 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
3525 if (!Pair.second)
3526 PN->setIncomingValue(i, Pair.first->second);
3527 else {
Dan Gohman454d26d2010-02-22 04:11:59 +00003528 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003529
3530 // If this is reuse-by-noop-cast, insert the noop cast.
3531 const Type *OpTy = LF.OperandValToReplace->getType();
3532 if (FullV->getType() != OpTy)
3533 FullV =
3534 CastInst::Create(CastInst::getCastOpcode(FullV, false,
3535 OpTy, false),
3536 FullV, LF.OperandValToReplace->getType(),
3537 "tmp", BB->getTerminator());
3538
3539 PN->setIncomingValue(i, FullV);
3540 Pair.first->second = FullV;
3541 }
3542 }
3543}
3544
Dan Gohman572645c2010-02-12 10:34:29 +00003545/// Rewrite - Emit instructions for the leading candidate expression for this
3546/// LSRUse (this is called "expanding"), and update the UserInst to reference
3547/// the newly expanded value.
3548void LSRInstance::Rewrite(const LSRFixup &LF,
3549 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00003550 SCEVExpander &Rewriter,
3551 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00003552 Pass *P) const {
Dan Gohman572645c2010-02-12 10:34:29 +00003553 // First, find an insertion point that dominates UserInst. For PHI nodes,
3554 // find the nearest block which dominates all the relevant uses.
3555 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
Dan Gohman454d26d2010-02-22 04:11:59 +00003556 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00003557 } else {
Dan Gohman454d26d2010-02-22 04:11:59 +00003558 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
Dan Gohman572645c2010-02-12 10:34:29 +00003559
3560 // If this is reuse-by-noop-cast, insert the noop cast.
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003561 const Type *OpTy = LF.OperandValToReplace->getType();
Dan Gohman572645c2010-02-12 10:34:29 +00003562 if (FullV->getType() != OpTy) {
3563 Instruction *Cast =
3564 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
3565 FullV, OpTy, "tmp", LF.UserInst);
3566 FullV = Cast;
3567 }
3568
3569 // Update the user. ICmpZero is handled specially here (for now) because
3570 // Expand may have updated one of the operands of the icmp already, and
3571 // its new value may happen to be equal to LF.OperandValToReplace, in
3572 // which case doing replaceUsesOfWith leads to replacing both operands
3573 // with the same value. TODO: Reorganize this.
3574 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3575 LF.UserInst->setOperand(0, FullV);
3576 else
3577 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3578 }
3579
3580 DeadInsts.push_back(LF.OperandValToReplace);
3581}
3582
Dan Gohman76c315a2010-05-20 20:52:00 +00003583/// ImplementSolution - Rewrite all the fixup locations with new values,
3584/// following the chosen solution.
Dan Gohman572645c2010-02-12 10:34:29 +00003585void
3586LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3587 Pass *P) {
3588 // Keep track of instructions we may have made dead, so that
3589 // we can remove them after we are done working.
3590 SmallVector<WeakVH, 16> DeadInsts;
3591
3592 SCEVExpander Rewriter(SE);
3593 Rewriter.disableCanonicalMode();
3594 Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3595
3596 // Expand the new value definitions and update the users.
Dan Gohman402d4352010-05-20 20:33:18 +00003597 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3598 E = Fixups.end(); I != E; ++I) {
3599 const LSRFixup &Fixup = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00003600
Dan Gohman402d4352010-05-20 20:33:18 +00003601 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00003602
3603 Changed = true;
3604 }
3605
3606 // Clean up after ourselves. This must be done before deleting any
3607 // instructions.
3608 Rewriter.clear();
3609
3610 Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3611}
3612
3613LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3614 : IU(P->getAnalysis<IVUsers>()),
3615 SE(P->getAnalysis<ScalarEvolution>()),
3616 DT(P->getAnalysis<DominatorTree>()),
Dan Gohmane5f76872010-04-09 22:07:05 +00003617 LI(P->getAnalysis<LoopInfo>()),
Dan Gohman572645c2010-02-12 10:34:29 +00003618 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
Devang Patel0f54dcb2007-03-06 21:14:09 +00003619
Dan Gohman03e896b2009-11-05 21:11:53 +00003620 // If LoopSimplify form is not available, stay out of trouble.
Dan Gohman572645c2010-02-12 10:34:29 +00003621 if (!L->isLoopSimplifyForm()) return;
Dan Gohman03e896b2009-11-05 21:11:53 +00003622
Dan Gohman572645c2010-02-12 10:34:29 +00003623 // If there's no interesting work to be done, bail early.
3624 if (IU.empty()) return;
Dan Gohman80b0f8c2009-03-09 20:34:59 +00003625
Dan Gohman572645c2010-02-12 10:34:29 +00003626 DEBUG(dbgs() << "\nLSR on loop ";
3627 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3628 dbgs() << ":\n");
Dan Gohmanf7912df2009-03-09 20:46:50 +00003629
Dan Gohman402d4352010-05-20 20:33:18 +00003630 // First, perform some low-level loop optimizations.
Dan Gohman572645c2010-02-12 10:34:29 +00003631 OptimizeShadowIV();
Dan Gohmanc6519f92010-05-20 20:05:31 +00003632 OptimizeLoopTermCond();
Evan Cheng5792f512009-05-11 22:33:01 +00003633
Dan Gohman402d4352010-05-20 20:33:18 +00003634 // Start collecting data and preparing for the solver.
Dan Gohman572645c2010-02-12 10:34:29 +00003635 CollectInterestingTypesAndFactors();
3636 CollectFixupsAndInitialFormulae();
3637 CollectLoopInvariantFixupsAndFormulae();
Chris Lattner010de252005-08-08 05:28:22 +00003638
Dan Gohman572645c2010-02-12 10:34:29 +00003639 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3640 print_uses(dbgs()));
Misha Brukmanfd939082005-04-21 23:48:37 +00003641
Dan Gohman572645c2010-02-12 10:34:29 +00003642 // Now use the reuse data to generate a bunch of interesting ways
3643 // to formulate the values needed for the uses.
3644 GenerateAllReuseFormulae();
Evan Chengd1d6b5c2006-03-16 21:53:05 +00003645
Dan Gohman572645c2010-02-12 10:34:29 +00003646 FilterOutUndesirableDedicatedRegisters();
3647 NarrowSearchSpaceUsingHeuristics();
Dan Gohman6bec5bb2009-12-18 00:06:20 +00003648
Dan Gohman572645c2010-02-12 10:34:29 +00003649 SmallVector<const Formula *, 8> Solution;
3650 Solve(Solution);
Dan Gohman6bec5bb2009-12-18 00:06:20 +00003651
Dan Gohman572645c2010-02-12 10:34:29 +00003652 // Release memory that is no longer needed.
3653 Factors.clear();
3654 Types.clear();
3655 RegUses.clear();
3656
3657#ifndef NDEBUG
3658 // Formulae should be legal.
3659 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3660 E = Uses.end(); I != E; ++I) {
3661 const LSRUse &LU = *I;
3662 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3663 JE = LU.Formulae.end(); J != JE; ++J)
3664 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3665 LU.Kind, LU.AccessTy, TLI) &&
3666 "Illegal formula generated!");
3667 };
3668#endif
3669
3670 // Now that we've decided what we want, make it so.
3671 ImplementSolution(Solution, P);
3672}
3673
3674void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3675 if (Factors.empty() && Types.empty()) return;
3676
3677 OS << "LSR has identified the following interesting factors and types: ";
3678 bool First = true;
3679
3680 for (SmallSetVector<int64_t, 8>::const_iterator
3681 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3682 if (!First) OS << ", ";
3683 First = false;
3684 OS << '*' << *I;
Evan Cheng81ebdcf2009-11-10 21:14:05 +00003685 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00003686
Dan Gohman572645c2010-02-12 10:34:29 +00003687 for (SmallSetVector<const Type *, 4>::const_iterator
3688 I = Types.begin(), E = Types.end(); I != E; ++I) {
3689 if (!First) OS << ", ";
3690 First = false;
3691 OS << '(' << **I << ')';
3692 }
3693 OS << '\n';
3694}
3695
3696void LSRInstance::print_fixups(raw_ostream &OS) const {
3697 OS << "LSR is examining the following fixup sites:\n";
3698 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3699 E = Fixups.end(); I != E; ++I) {
Dan Gohman572645c2010-02-12 10:34:29 +00003700 dbgs() << " ";
Dan Gohman9f383eb2010-05-20 22:25:20 +00003701 I->print(OS);
Dan Gohman572645c2010-02-12 10:34:29 +00003702 OS << '\n';
3703 }
3704}
3705
3706void LSRInstance::print_uses(raw_ostream &OS) const {
3707 OS << "LSR is examining the following uses:\n";
3708 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3709 E = Uses.end(); I != E; ++I) {
3710 const LSRUse &LU = *I;
3711 dbgs() << " ";
3712 LU.print(OS);
3713 OS << '\n';
3714 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3715 JE = LU.Formulae.end(); J != JE; ++J) {
3716 OS << " ";
3717 J->print(OS);
3718 OS << '\n';
3719 }
3720 }
3721}
3722
3723void LSRInstance::print(raw_ostream &OS) const {
3724 print_factors_and_types(OS);
3725 print_fixups(OS);
3726 print_uses(OS);
3727}
3728
3729void LSRInstance::dump() const {
3730 print(errs()); errs() << '\n';
3731}
3732
3733namespace {
3734
3735class LoopStrengthReduce : public LoopPass {
3736 /// TLI - Keep a pointer of a TargetLowering to consult for determining
3737 /// transformation profitability.
3738 const TargetLowering *const TLI;
3739
3740public:
3741 static char ID; // Pass ID, replacement for typeid
3742 explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3743
3744private:
3745 bool runOnLoop(Loop *L, LPPassManager &LPM);
3746 void getAnalysisUsage(AnalysisUsage &AU) const;
3747};
3748
3749}
3750
3751char LoopStrengthReduce::ID = 0;
Owen Andersond13db2c2010-07-21 22:09:45 +00003752INITIALIZE_PASS(LoopStrengthReduce, "loop-reduce",
3753 "Loop Strength Reduction", false, false);
Dan Gohman572645c2010-02-12 10:34:29 +00003754
3755Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3756 return new LoopStrengthReduce(TLI);
3757}
3758
3759LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
Owen Anderson90c579d2010-08-06 18:33:48 +00003760 : LoopPass(ID), TLI(tli) {}
Dan Gohman572645c2010-02-12 10:34:29 +00003761
3762void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3763 // We split critical edges, so we change the CFG. However, we do update
3764 // many analyses if they are around.
3765 AU.addPreservedID(LoopSimplifyID);
Dan Gohman572645c2010-02-12 10:34:29 +00003766 AU.addPreserved("domfrontier");
3767
Dan Gohmane5f76872010-04-09 22:07:05 +00003768 AU.addRequired<LoopInfo>();
3769 AU.addPreserved<LoopInfo>();
Dan Gohman572645c2010-02-12 10:34:29 +00003770 AU.addRequiredID(LoopSimplifyID);
3771 AU.addRequired<DominatorTree>();
3772 AU.addPreserved<DominatorTree>();
3773 AU.addRequired<ScalarEvolution>();
3774 AU.addPreserved<ScalarEvolution>();
3775 AU.addRequired<IVUsers>();
3776 AU.addPreserved<IVUsers>();
3777}
3778
3779bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
3780 bool Changed = false;
3781
3782 // Run the main LSR transformation.
3783 Changed |= LSRInstance(TLI, L, this).getChanged();
3784
Dan Gohmanafc36a92009-05-02 18:29:22 +00003785 // At this point, it is worth checking to see if any recurrence PHIs are also
Dan Gohman35738ac2009-05-04 22:30:44 +00003786 // dead, so that we can remove them as well.
Dan Gohman9fff2182010-01-05 16:31:45 +00003787 Changed |= DeleteDeadPHIs(L->getHeader());
Dan Gohmanafc36a92009-05-02 18:29:22 +00003788
Evan Cheng1ce75dc2008-07-07 19:51:32 +00003789 return Changed;
Nate Begemaneaa13852004-10-18 21:08:22 +00003790}