blob: d8ac35256d1b4ba53601bcb6500c3444d589d904 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`math` --- Mathematical functions
2======================================
3
4.. module:: math
5 :synopsis: Mathematical functions (sin() etc.).
6
Łukasz Langa288234f2013-01-18 13:40:43 +01007.. testsetup::
8
9 from math import fsum
Georg Brandl116aa622007-08-15 14:28:22 +000010
Terry Jan Reedyfa089b92016-06-11 15:02:54 -040011--------------
12
Ned Batchelder6faad352019-05-17 05:59:14 -040013This module provides access to the mathematical functions defined by the C
14standard.
Georg Brandl116aa622007-08-15 14:28:22 +000015
16These functions cannot be used with complex numbers; use the functions of the
17same name from the :mod:`cmath` module if you require support for complex
18numbers. The distinction between functions which support complex numbers and
19those which don't is made since most users do not want to learn quite as much
20mathematics as required to understand complex numbers. Receiving an exception
21instead of a complex result allows earlier detection of the unexpected complex
22number used as a parameter, so that the programmer can determine how and why it
23was generated in the first place.
24
25The following functions are provided by this module. Except when explicitly
26noted otherwise, all return values are floats.
27
Georg Brandl116aa622007-08-15 14:28:22 +000028
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +000029Number-theoretic and representation functions
30---------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +000031
32.. function:: ceil(x)
33
Georg Brandl2a033732008-04-05 17:37:09 +000034 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
35 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
Serhiy Storchakabfdcd432013-10-13 23:09:14 +030036 :class:`~numbers.Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000037
38
Raymond Hettingerb7fade42019-06-01 15:01:46 -070039.. function:: comb(n, k)
40
41 Return the number of ways to choose *k* items from *n* items without repetition
42 and without order.
43
Raymond Hettinger963eb0f2019-06-04 01:23:06 -070044 Evaluates to ``n! / (k! * (n - k)!)`` when ``k <= n`` and evaluates
45 to zero when ``k > n``.
Raymond Hettingerb7fade42019-06-01 15:01:46 -070046
Raymond Hettinger963eb0f2019-06-04 01:23:06 -070047 Also called the binomial coefficient because it is equivalent
48 to the coefficient of k-th term in polynomial expansion of the
49 expression ``(1 + x) ** n``.
50
Raymond Hettinger8f4bbb52019-06-04 03:40:23 -070051 Raises :exc:`TypeError` if either of the arguments are not integers.
Raymond Hettinger963eb0f2019-06-04 01:23:06 -070052 Raises :exc:`ValueError` if either of the arguments are negative.
Raymond Hettingerb7fade42019-06-01 15:01:46 -070053
54 .. versionadded:: 3.8
55
56
Christian Heimes072c0f12008-01-03 23:01:04 +000057.. function:: copysign(x, y)
58
Andrew Kuchling8cb1ec32014-02-16 11:11:25 -050059 Return a float with the magnitude (absolute value) of *x* but the sign of
60 *y*. On platforms that support signed zeros, ``copysign(1.0, -0.0)``
61 returns *-1.0*.
Christian Heimes072c0f12008-01-03 23:01:04 +000062
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030063
Georg Brandl116aa622007-08-15 14:28:22 +000064.. function:: fabs(x)
65
66 Return the absolute value of *x*.
67
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030068
Georg Brandlc28e1fa2008-06-10 19:20:26 +000069.. function:: factorial(x)
70
Akshay Sharma46126712019-05-31 22:11:17 +053071 Return *x* factorial as an integer. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000072 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000073
Serhiy Storchaka231aad32019-06-17 16:57:27 +030074 .. deprecated:: 3.9
75 Accepting floats with integral values (like ``5.0``) is deprecated.
76
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030077
Georg Brandl116aa622007-08-15 14:28:22 +000078.. function:: floor(x)
79
Georg Brandl2a033732008-04-05 17:37:09 +000080 Return the floor of *x*, the largest integer less than or equal to *x*.
81 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
Serhiy Storchakabfdcd432013-10-13 23:09:14 +030082 :class:`~numbers.Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000083
84
85.. function:: fmod(x, y)
86
87 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
88 Python expression ``x % y`` may not return the same result. The intent of the C
89 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
90 precision) equal to ``x - n*y`` for some integer *n* such that the result has
91 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
92 returns a result with the sign of *y* instead, and may not be exactly computable
93 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
94 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
95 represented exactly as a float, and rounds to the surprising ``1e100``. For
96 this reason, function :func:`fmod` is generally preferred when working with
97 floats, while Python's ``x % y`` is preferred when working with integers.
98
99
100.. function:: frexp(x)
101
102 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
103 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
104 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
105 apart" the internal representation of a float in a portable way.
106
107
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000108.. function:: fsum(iterable)
109
110 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000111 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000112
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000113 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinson5a55b612009-06-28 20:59:42 +0000114 0.9999999999999999
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000115 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
116 1.0
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000117
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000118 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
119 typical case where the rounding mode is half-even. On some non-Windows
120 builds, the underlying C library uses extended precision addition and may
121 occasionally double-round an intermediate sum causing it to be off in its
122 least significant bit.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000123
Raymond Hettinger477be822009-02-19 06:44:30 +0000124 For further discussion and two alternative approaches, see the `ASPN cookbook
125 recipes for accurate floating point summation
Georg Brandl5d941342016-02-26 19:37:12 +0100126 <https://code.activestate.com/recipes/393090/>`_\.
Raymond Hettinger477be822009-02-19 06:44:30 +0000127
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000128
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300129.. function:: gcd(a, b)
130
131 Return the greatest common divisor of the integers *a* and *b*. If either
132 *a* or *b* is nonzero, then the value of ``gcd(a, b)`` is the largest
133 positive integer that divides both *a* and *b*. ``gcd(0, 0)`` returns
134 ``0``.
135
Benjamin Petersone960d182015-05-12 17:24:17 -0400136 .. versionadded:: 3.5
137
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300138
ananthan-123f2ee21d2020-02-19 23:51:37 +0530139.. function:: lcm(a, b)
140
141 Return the least common multiple of integers *a* and *b*. The value of
142 ``lcm(a, b)`` is the smallest nonnegative integer that is a multiple of
143 both *a* and *b*. If either *a* or *b* is zero then ``lcm(a, b)`` is zero.
144
145 .. versionadded:: 3.9
146
147
Tal Einatd5519ed2015-05-31 22:05:00 +0300148.. function:: isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
149
150 Return ``True`` if the values *a* and *b* are close to each other and
151 ``False`` otherwise.
152
153 Whether or not two values are considered close is determined according to
154 given absolute and relative tolerances.
155
156 *rel_tol* is the relative tolerance -- it is the maximum allowed difference
157 between *a* and *b*, relative to the larger absolute value of *a* or *b*.
158 For example, to set a tolerance of 5%, pass ``rel_tol=0.05``. The default
159 tolerance is ``1e-09``, which assures that the two values are the same
160 within about 9 decimal digits. *rel_tol* must be greater than zero.
161
162 *abs_tol* is the minimum absolute tolerance -- useful for comparisons near
163 zero. *abs_tol* must be at least zero.
164
165 If no errors occur, the result will be:
166 ``abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)``.
167
168 The IEEE 754 special values of ``NaN``, ``inf``, and ``-inf`` will be
169 handled according to IEEE rules. Specifically, ``NaN`` is not considered
170 close to any other value, including ``NaN``. ``inf`` and ``-inf`` are only
171 considered close to themselves.
172
173 .. versionadded:: 3.5
174
175 .. seealso::
176
177 :pep:`485` -- A function for testing approximate equality
178
179
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000180.. function:: isfinite(x)
181
182 Return ``True`` if *x* is neither an infinity nor a NaN, and
183 ``False`` otherwise. (Note that ``0.0`` *is* considered finite.)
184
Mark Dickinsonc7622422010-07-11 19:47:37 +0000185 .. versionadded:: 3.2
186
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000187
Christian Heimes072c0f12008-01-03 23:01:04 +0000188.. function:: isinf(x)
189
Mark Dickinsonc7622422010-07-11 19:47:37 +0000190 Return ``True`` if *x* is a positive or negative infinity, and
191 ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000192
Christian Heimes072c0f12008-01-03 23:01:04 +0000193
194.. function:: isnan(x)
195
Mark Dickinsonc7622422010-07-11 19:47:37 +0000196 Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000197
Christian Heimes072c0f12008-01-03 23:01:04 +0000198
Mark Dickinson73934b92019-05-18 12:29:50 +0100199.. function:: isqrt(n)
200
201 Return the integer square root of the nonnegative integer *n*. This is the
202 floor of the exact square root of *n*, or equivalently the greatest integer
203 *a* such that *a*\ ² |nbsp| ≤ |nbsp| *n*.
204
205 For some applications, it may be more convenient to have the least integer
206 *a* such that *n* |nbsp| ≤ |nbsp| *a*\ ², or in other words the ceiling of
207 the exact square root of *n*. For positive *n*, this can be computed using
208 ``a = 1 + isqrt(n - 1)``.
209
210 .. versionadded:: 3.8
211
212
Georg Brandl116aa622007-08-15 14:28:22 +0000213.. function:: ldexp(x, i)
214
215 Return ``x * (2**i)``. This is essentially the inverse of function
216 :func:`frexp`.
217
218
219.. function:: modf(x)
220
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000221 Return the fractional and integer parts of *x*. Both results carry the sign
222 of *x* and are floats.
Georg Brandl116aa622007-08-15 14:28:22 +0000223
Christian Heimes400adb02008-02-01 08:12:03 +0000224
Victor Stinner100fafc2020-01-12 02:15:42 +0100225.. function:: nextafter(x, y)
226
227 Return the next floating-point value after *x* towards *y*.
228
229 If *x* is equal to *y*, return *y*.
230
Victor Stinner54cfbb22020-01-12 12:57:47 +0100231 Examples:
232
233 * ``math.nextafter(x, math.inf)`` goes up: towards positive infinity.
234 * ``math.nextafter(x, -math.inf)`` goes down: towards minus infinity.
235 * ``math.nextafter(x, 0.0)`` goes towards zero.
236 * ``math.nextafter(x, math.copysign(math.inf, x))`` goes away from zero.
237
Victor Stinner0b2ab212020-01-13 12:44:35 +0100238 See also :func:`math.ulp`.
239
Victor Stinner100fafc2020-01-12 02:15:42 +0100240 .. versionadded:: 3.9
241
Raymond Hettingere119b3d2019-06-08 08:58:11 -0700242.. function:: perm(n, k=None)
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +0300243
244 Return the number of ways to choose *k* items from *n* items
245 without repetition and with order.
246
Raymond Hettinger963eb0f2019-06-04 01:23:06 -0700247 Evaluates to ``n! / (n - k)!`` when ``k <= n`` and evaluates
248 to zero when ``k > n``.
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +0300249
Raymond Hettingere119b3d2019-06-08 08:58:11 -0700250 If *k* is not specified or is None, then *k* defaults to *n*
251 and the function returns ``n!``.
252
Raymond Hettinger8f4bbb52019-06-04 03:40:23 -0700253 Raises :exc:`TypeError` if either of the arguments are not integers.
Raymond Hettinger963eb0f2019-06-04 01:23:06 -0700254 Raises :exc:`ValueError` if either of the arguments are negative.
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +0300255
256 .. versionadded:: 3.8
257
258
Pablo Galindobc098512019-02-07 07:04:02 +0000259.. function:: prod(iterable, *, start=1)
260
261 Calculate the product of all the elements in the input *iterable*.
262 The default *start* value for the product is ``1``.
263
264 When the iterable is empty, return the start value. This function is
265 intended specifically for use with numeric values and may reject
266 non-numeric types.
267
268 .. versionadded:: 3.8
269
270
Mark Dickinsona0ce3752017-04-05 18:34:27 +0100271.. function:: remainder(x, y)
272
273 Return the IEEE 754-style remainder of *x* with respect to *y*. For
274 finite *x* and finite nonzero *y*, this is the difference ``x - n*y``,
275 where ``n`` is the closest integer to the exact value of the quotient ``x /
276 y``. If ``x / y`` is exactly halfway between two consecutive integers, the
277 nearest *even* integer is used for ``n``. The remainder ``r = remainder(x,
278 y)`` thus always satisfies ``abs(r) <= 0.5 * abs(y)``.
279
280 Special cases follow IEEE 754: in particular, ``remainder(x, math.inf)`` is
281 *x* for any finite *x*, and ``remainder(x, 0)`` and
282 ``remainder(math.inf, x)`` raise :exc:`ValueError` for any non-NaN *x*.
283 If the result of the remainder operation is zero, that zero will have
284 the same sign as *x*.
285
286 On platforms using IEEE 754 binary floating-point, the result of this
287 operation is always exactly representable: no rounding error is introduced.
288
289 .. versionadded:: 3.7
290
291
Christian Heimes400adb02008-02-01 08:12:03 +0000292.. function:: trunc(x)
293
Serhiy Storchakabfdcd432013-10-13 23:09:14 +0300294 Return the :class:`~numbers.Real` value *x* truncated to an
295 :class:`~numbers.Integral` (usually an integer). Delegates to
Eric Appelt308eab92018-03-10 02:44:12 -0600296 :meth:`x.__trunc__() <object.__trunc__>`.
Christian Heimes400adb02008-02-01 08:12:03 +0000297
Victor Stinner0b2ab212020-01-13 12:44:35 +0100298.. function:: ulp(x)
299
300 Return the value of the least significant bit of the float *x*:
301
302 * If *x* is a NaN (not a number), return *x*.
303 * If *x* is negative, return ``ulp(-x)``.
304 * If *x* is a positive infinity, return *x*.
305 * If *x* is equal to zero, return the smallest positive
306 *denormalized* representable float (smaller than the minimum positive
307 *normalized* float, :data:`sys.float_info.min <sys.float_info>`).
308 * If *x* is equal to the largest positive representable float,
309 return the value of the least significant bit of *x*, such that the first
310 float smaller than *x* is ``x - ulp(x)``.
311 * Otherwise (*x* is a positive finite number), return the value of the least
312 significant bit of *x*, such that the first float bigger than *x*
313 is ``x + ulp(x)``.
314
315 ULP stands for "Unit in the Last Place".
316
317 See also :func:`math.nextafter` and :data:`sys.float_info.epsilon
318 <sys.float_info>`.
319
320 .. versionadded:: 3.9
321
Christian Heimes400adb02008-02-01 08:12:03 +0000322
Georg Brandl116aa622007-08-15 14:28:22 +0000323Note that :func:`frexp` and :func:`modf` have a different call/return pattern
324than their C equivalents: they take a single argument and return a pair of
325values, rather than returning their second return value through an 'output
326parameter' (there is no such thing in Python).
327
328For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
329floating-point numbers of sufficiently large magnitude are exact integers.
330Python floats typically carry no more than 53 bits of precision (the same as the
331platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
332necessarily has no fractional bits.
333
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000334
335Power and logarithmic functions
336-------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000337
Georg Brandl116aa622007-08-15 14:28:22 +0000338.. function:: exp(x)
339
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300340 Return *e* raised to the power *x*, where *e* = 2.718281... is the base
341 of natural logarithms. This is usually more accurate than ``math.e ** x``
342 or ``pow(math.e, x)``.
343
Georg Brandl116aa622007-08-15 14:28:22 +0000344
Mark Dickinson664b5112009-12-16 20:23:42 +0000345.. function:: expm1(x)
346
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300347 Return *e* raised to the power *x*, minus 1. Here *e* is the base of natural
348 logarithms. For small floats *x*, the subtraction in ``exp(x) - 1``
Raymond Hettinger1081d482011-03-31 12:04:53 -0700349 can result in a `significant loss of precision
Georg Brandl5d941342016-02-26 19:37:12 +0100350 <https://en.wikipedia.org/wiki/Loss_of_significance>`_\; the :func:`expm1`
Raymond Hettinger1081d482011-03-31 12:04:53 -0700351 function provides a way to compute this quantity to full precision::
Mark Dickinson664b5112009-12-16 20:23:42 +0000352
353 >>> from math import exp, expm1
354 >>> exp(1e-5) - 1 # gives result accurate to 11 places
355 1.0000050000069649e-05
356 >>> expm1(1e-5) # result accurate to full precision
357 1.0000050000166668e-05
358
Mark Dickinson45f992a2009-12-19 11:20:49 +0000359 .. versionadded:: 3.2
360
Mark Dickinson664b5112009-12-16 20:23:42 +0000361
Georg Brandl116aa622007-08-15 14:28:22 +0000362.. function:: log(x[, base])
363
Georg Brandla6053b42009-09-01 08:11:14 +0000364 With one argument, return the natural logarithm of *x* (to base *e*).
365
366 With two arguments, return the logarithm of *x* to the given *base*,
367 calculated as ``log(x)/log(base)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000368
Georg Brandl116aa622007-08-15 14:28:22 +0000369
Christian Heimes53876d92008-04-19 00:31:39 +0000370.. function:: log1p(x)
371
372 Return the natural logarithm of *1+x* (base *e*). The
373 result is calculated in a way which is accurate for *x* near zero.
374
Christian Heimes53876d92008-04-19 00:31:39 +0000375
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200376.. function:: log2(x)
377
Benjamin Petersoneaee1382011-05-08 19:48:08 -0500378 Return the base-2 logarithm of *x*. This is usually more accurate than
379 ``log(x, 2)``.
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200380
381 .. versionadded:: 3.3
382
Victor Stinner9415afc2011-09-21 03:35:18 +0200383 .. seealso::
384
385 :meth:`int.bit_length` returns the number of bits necessary to represent
386 an integer in binary, excluding the sign and leading zeros.
387
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200388
Georg Brandl116aa622007-08-15 14:28:22 +0000389.. function:: log10(x)
390
Georg Brandla6053b42009-09-01 08:11:14 +0000391 Return the base-10 logarithm of *x*. This is usually more accurate
392 than ``log(x, 10)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000393
394
395.. function:: pow(x, y)
396
Christian Heimesa342c012008-04-20 21:01:16 +0000397 Return ``x`` raised to the power ``y``. Exceptional cases follow
398 Annex 'F' of the C99 standard as far as possible. In particular,
399 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
400 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
401 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
402 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000403
Ezio Melotti739d5492013-02-23 04:53:44 +0200404 Unlike the built-in ``**`` operator, :func:`math.pow` converts both
405 its arguments to type :class:`float`. Use ``**`` or the built-in
406 :func:`pow` function for computing exact integer powers.
407
Georg Brandl116aa622007-08-15 14:28:22 +0000408
409.. function:: sqrt(x)
410
411 Return the square root of *x*.
412
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300413
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000414Trigonometric functions
415-----------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000416
Georg Brandl116aa622007-08-15 14:28:22 +0000417.. function:: acos(x)
418
Giovanni Cappellottodc3f99f2019-07-13 09:59:55 -0400419 Return the arc cosine of *x*, in radians. The result is between ``0`` and
420 ``pi``.
Georg Brandl116aa622007-08-15 14:28:22 +0000421
422
423.. function:: asin(x)
424
Giovanni Cappellottodc3f99f2019-07-13 09:59:55 -0400425 Return the arc sine of *x*, in radians. The result is between ``-pi/2`` and
426 ``pi/2``.
Georg Brandl116aa622007-08-15 14:28:22 +0000427
428
429.. function:: atan(x)
430
Giovanni Cappellottodc3f99f2019-07-13 09:59:55 -0400431 Return the arc tangent of *x*, in radians. The result is between ``-pi/2`` and
432 ``pi/2``.
Georg Brandl116aa622007-08-15 14:28:22 +0000433
434
435.. function:: atan2(y, x)
436
437 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
438 The vector in the plane from the origin to point ``(x, y)`` makes this angle
439 with the positive X axis. The point of :func:`atan2` is that the signs of both
440 inputs are known to it, so it can compute the correct quadrant for the angle.
Mark Dickinson603b7532010-04-06 19:55:03 +0000441 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
Georg Brandl116aa622007-08-15 14:28:22 +0000442 -1)`` is ``-3*pi/4``.
443
444
445.. function:: cos(x)
446
447 Return the cosine of *x* radians.
448
449
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -0700450.. function:: dist(p, q)
451
452 Return the Euclidean distance between two points *p* and *q*, each
Raymond Hettinger6b5f1b42019-07-27 14:04:29 -0700453 given as a sequence (or iterable) of coordinates. The two points
454 must have the same dimension.
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -0700455
456 Roughly equivalent to::
457
458 sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
459
460 .. versionadded:: 3.8
461
462
Raymond Hettingerc6dabe32018-07-28 07:48:04 -0700463.. function:: hypot(*coordinates)
Georg Brandl116aa622007-08-15 14:28:22 +0000464
Raymond Hettingerc6dabe32018-07-28 07:48:04 -0700465 Return the Euclidean norm, ``sqrt(sum(x**2 for x in coordinates))``.
466 This is the length of the vector from the origin to the point
467 given by the coordinates.
468
469 For a two dimensional point ``(x, y)``, this is equivalent to computing
470 the hypotenuse of a right triangle using the Pythagorean theorem,
471 ``sqrt(x*x + y*y)``.
472
473 .. versionchanged:: 3.8
474 Added support for n-dimensional points. Formerly, only the two
475 dimensional case was supported.
Georg Brandl116aa622007-08-15 14:28:22 +0000476
477
478.. function:: sin(x)
479
480 Return the sine of *x* radians.
481
482
483.. function:: tan(x)
484
485 Return the tangent of *x* radians.
486
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300487
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000488Angular conversion
489------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000490
Georg Brandl116aa622007-08-15 14:28:22 +0000491.. function:: degrees(x)
492
Benjamin Peterson19a3f172015-05-12 19:15:53 -0400493 Convert angle *x* from radians to degrees.
Georg Brandl116aa622007-08-15 14:28:22 +0000494
495
496.. function:: radians(x)
497
Benjamin Peterson19a3f172015-05-12 19:15:53 -0400498 Convert angle *x* from degrees to radians.
Georg Brandl116aa622007-08-15 14:28:22 +0000499
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300500
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000501Hyperbolic functions
502--------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000503
Georg Brandl5d941342016-02-26 19:37:12 +0100504`Hyperbolic functions <https://en.wikipedia.org/wiki/Hyperbolic_function>`_
Raymond Hettinger1081d482011-03-31 12:04:53 -0700505are analogs of trigonometric functions that are based on hyperbolas
506instead of circles.
Georg Brandl116aa622007-08-15 14:28:22 +0000507
Christian Heimesa342c012008-04-20 21:01:16 +0000508.. function:: acosh(x)
509
510 Return the inverse hyperbolic cosine of *x*.
511
Christian Heimesa342c012008-04-20 21:01:16 +0000512
513.. function:: asinh(x)
514
515 Return the inverse hyperbolic sine of *x*.
516
Christian Heimesa342c012008-04-20 21:01:16 +0000517
518.. function:: atanh(x)
519
520 Return the inverse hyperbolic tangent of *x*.
521
Christian Heimesa342c012008-04-20 21:01:16 +0000522
Georg Brandl116aa622007-08-15 14:28:22 +0000523.. function:: cosh(x)
524
525 Return the hyperbolic cosine of *x*.
526
527
528.. function:: sinh(x)
529
530 Return the hyperbolic sine of *x*.
531
532
533.. function:: tanh(x)
534
535 Return the hyperbolic tangent of *x*.
536
Christian Heimes53876d92008-04-19 00:31:39 +0000537
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000538Special functions
539-----------------
540
Mark Dickinson45f992a2009-12-19 11:20:49 +0000541.. function:: erf(x)
542
Georg Brandl5d941342016-02-26 19:37:12 +0100543 Return the `error function <https://en.wikipedia.org/wiki/Error_function>`_ at
Raymond Hettinger1081d482011-03-31 12:04:53 -0700544 *x*.
545
546 The :func:`erf` function can be used to compute traditional statistical
547 functions such as the `cumulative standard normal distribution
Georg Brandl5d941342016-02-26 19:37:12 +0100548 <https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function>`_::
Raymond Hettinger1081d482011-03-31 12:04:53 -0700549
550 def phi(x):
551 'Cumulative distribution function for the standard normal distribution'
552 return (1.0 + erf(x / sqrt(2.0))) / 2.0
Mark Dickinson45f992a2009-12-19 11:20:49 +0000553
554 .. versionadded:: 3.2
555
556
557.. function:: erfc(x)
558
Raymond Hettinger1081d482011-03-31 12:04:53 -0700559 Return the complementary error function at *x*. The `complementary error
Georg Brandl5d941342016-02-26 19:37:12 +0100560 function <https://en.wikipedia.org/wiki/Error_function>`_ is defined as
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700561 ``1.0 - erf(x)``. It is used for large values of *x* where a subtraction
562 from one would cause a `loss of significance
Georg Brandl5d941342016-02-26 19:37:12 +0100563 <https://en.wikipedia.org/wiki/Loss_of_significance>`_\.
Mark Dickinson45f992a2009-12-19 11:20:49 +0000564
565 .. versionadded:: 3.2
566
567
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000568.. function:: gamma(x)
569
Georg Brandl5d941342016-02-26 19:37:12 +0100570 Return the `Gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ at
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700571 *x*.
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000572
Mark Dickinson56e09662009-10-01 16:13:29 +0000573 .. versionadded:: 3.2
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000574
575
Mark Dickinson05d2e082009-12-11 20:17:17 +0000576.. function:: lgamma(x)
577
578 Return the natural logarithm of the absolute value of the Gamma
579 function at *x*.
580
Mark Dickinson45f992a2009-12-19 11:20:49 +0000581 .. versionadded:: 3.2
Mark Dickinson05d2e082009-12-11 20:17:17 +0000582
583
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000584Constants
Mark Dickinson60fe6b02009-06-02 12:53:15 +0000585---------
Georg Brandl116aa622007-08-15 14:28:22 +0000586
587.. data:: pi
588
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300589 The mathematical constant *π* = 3.141592..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000590
591
592.. data:: e
593
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300594 The mathematical constant *e* = 2.718281..., to available precision.
595
Georg Brandl116aa622007-08-15 14:28:22 +0000596
Guido van Rossum0a891d72016-08-15 09:12:52 -0700597.. data:: tau
598
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300599 The mathematical constant *τ* = 6.283185..., to available precision.
600 Tau is a circle constant equal to 2\ *π*, the ratio of a circle's circumference to
Guido van Rossum0a891d72016-08-15 09:12:52 -0700601 its radius. To learn more about Tau, check out Vi Hart's video `Pi is (still)
602 Wrong <https://www.youtube.com/watch?v=jG7vhMMXagQ>`_, and start celebrating
Sanyam Khurana338cd832018-01-20 05:55:37 +0530603 `Tau day <https://tauday.com/>`_ by eating twice as much pie!
Christian Heimes53876d92008-04-19 00:31:39 +0000604
Georg Brandl4770d6e2016-08-16 07:08:46 +0200605 .. versionadded:: 3.6
606
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300607
Mark Dickinsona5d0c7c2015-01-11 11:55:29 +0000608.. data:: inf
609
610 A floating-point positive infinity. (For negative infinity, use
611 ``-math.inf``.) Equivalent to the output of ``float('inf')``.
612
613 .. versionadded:: 3.5
614
615
616.. data:: nan
617
618 A floating-point "not a number" (NaN) value. Equivalent to the output of
619 ``float('nan')``.
620
621 .. versionadded:: 3.5
622
623
Georg Brandl495f7b52009-10-27 15:28:25 +0000624.. impl-detail::
Georg Brandl116aa622007-08-15 14:28:22 +0000625
626 The :mod:`math` module consists mostly of thin wrappers around the platform C
Mark Dickinson603b7532010-04-06 19:55:03 +0000627 math library functions. Behavior in exceptional cases follows Annex F of
628 the C99 standard where appropriate. The current implementation will raise
629 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
630 (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
631 and :exc:`OverflowError` for results that overflow (for example,
Benjamin Peterson08bf91c2010-04-11 16:12:57 +0000632 ``exp(1000.0)``). A NaN will not be returned from any of the functions
633 above unless one or more of the input arguments was a NaN; in that case,
634 most functions will return a NaN, but (again following C99 Annex F) there
Mark Dickinson603b7532010-04-06 19:55:03 +0000635 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
636 ``hypot(float('nan'), float('inf'))``.
Georg Brandl116aa622007-08-15 14:28:22 +0000637
Mark Dickinson42dfeec2010-04-06 22:13:37 +0000638 Note that Python makes no effort to distinguish signaling NaNs from
639 quiet NaNs, and behavior for signaling NaNs remains unspecified.
640 Typical behavior is to treat all NaNs as though they were quiet.
Christian Heimes53876d92008-04-19 00:31:39 +0000641
Georg Brandl116aa622007-08-15 14:28:22 +0000642
643.. seealso::
644
645 Module :mod:`cmath`
646 Complex number versions of many of these functions.
Mark Dickinson73934b92019-05-18 12:29:50 +0100647
648.. |nbsp| unicode:: 0xA0
649 :trim: