blob: 5130807cadd238ee1c96fb9644927839dbbf155e [file] [log] [blame]
Adam Nemet04563272015-02-01 16:56:15 +00001//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Adam Nemet04563272015-02-01 16:56:15 +00006//
7//===----------------------------------------------------------------------===//
8//
9// The implementation for the loop memory dependence that was originally
10// developed for the loop vectorizer.
11//
12//===----------------------------------------------------------------------===//
13
Chandler Carruth3bab7e12017-01-11 09:43:56 +000014#include "llvm/Analysis/LoopAccessAnalysis.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000015#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/DepthFirstIterator.h"
18#include "llvm/ADT/EquivalenceClasses.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000019#include "llvm/ADT/PointerIntPair.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000020#include "llvm/ADT/STLExtras.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000021#include "llvm/ADT/SetVector.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/SmallVector.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000025#include "llvm/ADT/iterator_range.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000026#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Analysis/AliasSetTracker.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000028#include "llvm/Analysis/LoopAnalysisManager.h"
Adam Nemet04563272015-02-01 16:56:15 +000029#include "llvm/Analysis/LoopInfo.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000030#include "llvm/Analysis/MemoryLocation.h"
Adam Nemet0965da22017-10-09 23:19:02 +000031#include "llvm/Analysis/OptimizationRemarkEmitter.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000032#include "llvm/Analysis/ScalarEvolution.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000033#include "llvm/Analysis/ScalarEvolutionExpander.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000034#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000035#include "llvm/Analysis/TargetLibraryInfo.h"
Adam Nemet04563272015-02-01 16:56:15 +000036#include "llvm/Analysis/ValueTracking.h"
Adam Nemetf45594c2016-07-01 00:09:02 +000037#include "llvm/Analysis/VectorUtils.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000038#include "llvm/IR/BasicBlock.h"
39#include "llvm/IR/Constants.h"
40#include "llvm/IR/DataLayout.h"
41#include "llvm/IR/DebugLoc.h"
42#include "llvm/IR/DerivedTypes.h"
43#include "llvm/IR/DiagnosticInfo.h"
Adam Nemet04563272015-02-01 16:56:15 +000044#include "llvm/IR/Dominators.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000045#include "llvm/IR/Function.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000046#include "llvm/IR/IRBuilder.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000047#include "llvm/IR/InstrTypes.h"
48#include "llvm/IR/Instruction.h"
49#include "llvm/IR/Instructions.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000050#include "llvm/IR/Operator.h"
Xinliang David Li8a021312016-07-02 21:18:40 +000051#include "llvm/IR/PassManager.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000052#include "llvm/IR/Type.h"
53#include "llvm/IR/Value.h"
54#include "llvm/IR/ValueHandle.h"
55#include "llvm/Pass.h"
56#include "llvm/Support/Casting.h"
57#include "llvm/Support/CommandLine.h"
Adam Nemet04563272015-02-01 16:56:15 +000058#include "llvm/Support/Debug.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000059#include "llvm/Support/ErrorHandling.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000060#include "llvm/Support/raw_ostream.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000061#include <algorithm>
62#include <cassert>
63#include <cstdint>
64#include <cstdlib>
65#include <iterator>
66#include <utility>
67#include <vector>
68
Adam Nemet04563272015-02-01 16:56:15 +000069using namespace llvm;
70
Adam Nemet339f42b2015-02-19 19:15:07 +000071#define DEBUG_TYPE "loop-accesses"
Adam Nemet04563272015-02-01 16:56:15 +000072
Adam Nemetf219c642015-02-19 19:14:52 +000073static cl::opt<unsigned, true>
74VectorizationFactor("force-vector-width", cl::Hidden,
75 cl::desc("Sets the SIMD width. Zero is autoselect."),
76 cl::location(VectorizerParams::VectorizationFactor));
Adam Nemet1d862af2015-02-26 04:39:09 +000077unsigned VectorizerParams::VectorizationFactor;
Adam Nemetf219c642015-02-19 19:14:52 +000078
79static cl::opt<unsigned, true>
80VectorizationInterleave("force-vector-interleave", cl::Hidden,
81 cl::desc("Sets the vectorization interleave count. "
82 "Zero is autoselect."),
83 cl::location(
84 VectorizerParams::VectorizationInterleave));
Adam Nemet1d862af2015-02-26 04:39:09 +000085unsigned VectorizerParams::VectorizationInterleave;
Adam Nemetf219c642015-02-19 19:14:52 +000086
Adam Nemet1d862af2015-02-26 04:39:09 +000087static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
88 "runtime-memory-check-threshold", cl::Hidden,
89 cl::desc("When performing memory disambiguation checks at runtime do not "
90 "generate more than this number of comparisons (default = 8)."),
91 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
92unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
Adam Nemetf219c642015-02-19 19:14:52 +000093
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000094/// The maximum iterations used to merge memory checks
Silviu Baranga1b6b50a2015-07-08 09:16:33 +000095static cl::opt<unsigned> MemoryCheckMergeThreshold(
96 "memory-check-merge-threshold", cl::Hidden,
97 cl::desc("Maximum number of comparisons done when trying to merge "
98 "runtime memory checks. (default = 100)"),
99 cl::init(100));
100
Adam Nemetf219c642015-02-19 19:14:52 +0000101/// Maximum SIMD width.
102const unsigned VectorizerParams::MaxVectorWidth = 64;
103
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000104/// We collect dependences up to this threshold.
Adam Nemeta2df7502015-11-03 21:39:52 +0000105static cl::opt<unsigned>
106 MaxDependences("max-dependences", cl::Hidden,
107 cl::desc("Maximum number of dependences collected by "
108 "loop-access analysis (default = 100)"),
109 cl::init(100));
Adam Nemet9c926572015-03-10 17:40:37 +0000110
Adam Nemeta9f09c62016-06-17 22:35:41 +0000111/// This enables versioning on the strides of symbolically striding memory
112/// accesses in code like the following.
113/// for (i = 0; i < N; ++i)
114/// A[i * Stride1] += B[i * Stride2] ...
115///
116/// Will be roughly translated to
117/// if (Stride1 == 1 && Stride2 == 1) {
118/// for (i = 0; i < N; i+=4)
119/// A[i:i+3] += ...
120/// } else
121/// ...
122static cl::opt<bool> EnableMemAccessVersioning(
123 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
124 cl::desc("Enable symbolic stride memory access versioning"));
125
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000126/// Enable store-to-load forwarding conflict detection. This option can
Matthew Simpson37ec5f92016-05-16 17:00:56 +0000127/// be disabled for correctness testing.
128static cl::opt<bool> EnableForwardingConflictDetection(
129 "store-to-load-forwarding-conflict-detection", cl::Hidden,
Matthew Simpsona250dc92016-05-16 14:14:49 +0000130 cl::desc("Enable conflict detection in loop-access analysis"),
131 cl::init(true));
132
Adam Nemetf219c642015-02-19 19:14:52 +0000133bool VectorizerParams::isInterleaveForced() {
134 return ::VectorizationInterleave.getNumOccurrences() > 0;
135}
136
Adam Nemet04563272015-02-01 16:56:15 +0000137Value *llvm::stripIntegerCast(Value *V) {
David Majnemer8b401012016-07-12 20:31:46 +0000138 if (auto *CI = dyn_cast<CastInst>(V))
Adam Nemet04563272015-02-01 16:56:15 +0000139 if (CI->getOperand(0)->getType()->isIntegerTy())
140 return CI->getOperand(0);
141 return V;
142}
143
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000144const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
Adam Nemet8bc61df2015-02-24 00:41:59 +0000145 const ValueToValueMap &PtrToStride,
Adam Nemet04563272015-02-01 16:56:15 +0000146 Value *Ptr, Value *OrigPtr) {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000147 const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000148
149 // If there is an entry in the map return the SCEV of the pointer with the
150 // symbolic stride replaced by one.
Adam Nemet8bc61df2015-02-24 00:41:59 +0000151 ValueToValueMap::const_iterator SI =
152 PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000153 if (SI != PtrToStride.end()) {
154 Value *StrideVal = SI->second;
155
156 // Strip casts.
157 StrideVal = stripIntegerCast(StrideVal);
158
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000159 ScalarEvolution *SE = PSE.getSE();
Silviu Barangae3c05342015-11-02 14:41:02 +0000160 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
161 const auto *CT =
162 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
163
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000164 PSE.addPredicate(*SE->getEqualPredicate(U, CT));
165 auto *Expr = PSE.getSCEV(Ptr);
Silviu Barangae3c05342015-11-02 14:41:02 +0000166
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000167 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
168 << " by: " << *Expr << "\n");
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000169 return Expr;
Adam Nemet04563272015-02-01 16:56:15 +0000170 }
171
172 // Otherwise, just return the SCEV of the original pointer.
Silviu Barangae3c05342015-11-02 14:41:02 +0000173 return OrigSCEV;
Adam Nemet04563272015-02-01 16:56:15 +0000174}
175
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000176/// Calculate Start and End points of memory access.
177/// Let's assume A is the first access and B is a memory access on N-th loop
Fangrui Songf78650a2018-07-30 19:41:25 +0000178/// iteration. Then B is calculated as:
179/// B = A + Step*N .
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000180/// Step value may be positive or negative.
181/// N is a calculated back-edge taken count:
182/// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
183/// Start and End points are calculated in the following way:
184/// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
185/// where SizeOfElt is the size of single memory access in bytes.
186///
187/// There is no conflict when the intervals are disjoint:
188/// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
Adam Nemet7cdebac2015-07-14 22:32:44 +0000189void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
190 unsigned DepSetId, unsigned ASId,
Silviu Barangae3c05342015-11-02 14:41:02 +0000191 const ValueToValueMap &Strides,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000192 PredicatedScalarEvolution &PSE) {
Adam Nemet04563272015-02-01 16:56:15 +0000193 // Get the stride replaced scev.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000194 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000195 ScalarEvolution *SE = PSE.getSE();
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000196
Adam Nemet279784f2016-03-24 04:28:47 +0000197 const SCEV *ScStart;
198 const SCEV *ScEnd;
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000199
Adam Nemet59a65502016-03-24 05:15:24 +0000200 if (SE->isLoopInvariant(Sc, Lp))
Adam Nemet279784f2016-03-24 04:28:47 +0000201 ScStart = ScEnd = Sc;
Adam Nemet279784f2016-03-24 04:28:47 +0000202 else {
203 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
204 assert(AR && "Invalid addrec expression");
Silviu Baranga6f444df2016-04-08 14:29:09 +0000205 const SCEV *Ex = PSE.getBackedgeTakenCount();
Adam Nemet279784f2016-03-24 04:28:47 +0000206
207 ScStart = AR->getStart();
208 ScEnd = AR->evaluateAtIteration(Ex, *SE);
209 const SCEV *Step = AR->getStepRecurrence(*SE);
210
211 // For expressions with negative step, the upper bound is ScStart and the
212 // lower bound is ScEnd.
David Majnemer8b401012016-07-12 20:31:46 +0000213 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
Adam Nemet279784f2016-03-24 04:28:47 +0000214 if (CStep->getValue()->isNegative())
215 std::swap(ScStart, ScEnd);
216 } else {
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000217 // Fallback case: the step is not constant, but we can still
Adam Nemet279784f2016-03-24 04:28:47 +0000218 // get the upper and lower bounds of the interval by using min/max
219 // expressions.
220 ScStart = SE->getUMinExpr(ScStart, ScEnd);
221 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
222 }
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000223 // Add the size of the pointed element to ScEnd.
224 unsigned EltSize =
225 Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8;
226 const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize);
227 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000228 }
229
230 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000231}
232
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000233SmallVector<RuntimePointerChecking::PointerCheck, 4>
Adam Nemet38530882015-08-09 20:06:06 +0000234RuntimePointerChecking::generateChecks() const {
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000235 SmallVector<PointerCheck, 4> Checks;
236
Adam Nemet7c52e052015-07-27 19:38:50 +0000237 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
238 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
239 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
240 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000241
Adam Nemet38530882015-08-09 20:06:06 +0000242 if (needsChecking(CGI, CGJ))
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000243 Checks.push_back(std::make_pair(&CGI, &CGJ));
244 }
245 }
246 return Checks;
247}
248
Adam Nemet15840392015-08-07 22:44:15 +0000249void RuntimePointerChecking::generateChecks(
250 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
251 assert(Checks.empty() && "Checks is not empty");
252 groupChecks(DepCands, UseDependencies);
253 Checks = generateChecks();
254}
255
Adam Nemet651a5a22015-08-09 20:06:08 +0000256bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
257 const CheckingPtrGroup &N) const {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000258 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
259 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
Adam Nemet651a5a22015-08-09 20:06:08 +0000260 if (needsChecking(M.Members[I], N.Members[J]))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000261 return true;
262 return false;
263}
264
265/// Compare \p I and \p J and return the minimum.
266/// Return nullptr in case we couldn't find an answer.
267static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
268 ScalarEvolution *SE) {
269 const SCEV *Diff = SE->getMinusSCEV(J, I);
270 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
271
272 if (!C)
273 return nullptr;
274 if (C->getValue()->isNegative())
275 return J;
276 return I;
277}
278
Adam Nemet7cdebac2015-07-14 22:32:44 +0000279bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000280 const SCEV *Start = RtCheck.Pointers[Index].Start;
281 const SCEV *End = RtCheck.Pointers[Index].End;
282
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000283 // Compare the starts and ends with the known minimum and maximum
284 // of this set. We need to know how we compare against the min/max
285 // of the set in order to be able to emit memchecks.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000286 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000287 if (!Min0)
288 return false;
289
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000290 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000291 if (!Min1)
292 return false;
293
294 // Update the low bound expression if we've found a new min value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000295 if (Min0 == Start)
296 Low = Start;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000297
298 // Update the high bound expression if we've found a new max value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000299 if (Min1 != End)
300 High = End;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000301
302 Members.push_back(Index);
303 return true;
304}
305
Adam Nemet7cdebac2015-07-14 22:32:44 +0000306void RuntimePointerChecking::groupChecks(
307 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000308 // We build the groups from dependency candidates equivalence classes
309 // because:
310 // - We know that pointers in the same equivalence class share
311 // the same underlying object and therefore there is a chance
312 // that we can compare pointers
313 // - We wouldn't be able to merge two pointers for which we need
314 // to emit a memcheck. The classes in DepCands are already
315 // conveniently built such that no two pointers in the same
316 // class need checking against each other.
317
318 // We use the following (greedy) algorithm to construct the groups
319 // For every pointer in the equivalence class:
320 // For each existing group:
321 // - if the difference between this pointer and the min/max bounds
322 // of the group is a constant, then make the pointer part of the
323 // group and update the min/max bounds of that group as required.
324
325 CheckingGroups.clear();
326
Silviu Baranga48250602015-07-28 13:44:08 +0000327 // If we need to check two pointers to the same underlying object
328 // with a non-constant difference, we shouldn't perform any pointer
329 // grouping with those pointers. This is because we can easily get
330 // into cases where the resulting check would return false, even when
331 // the accesses are safe.
332 //
333 // The following example shows this:
334 // for (i = 0; i < 1000; ++i)
335 // a[5000 + i * m] = a[i] + a[i + 9000]
336 //
337 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
338 // (0, 10000) which is always false. However, if m is 1, there is no
339 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
340 // us to perform an accurate check in this case.
341 //
342 // The above case requires that we have an UnknownDependence between
343 // accesses to the same underlying object. This cannot happen unless
Florian Hahnef307b82018-12-20 18:49:09 +0000344 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
Silviu Baranga48250602015-07-28 13:44:08 +0000345 // is also false. In this case we will use the fallback path and create
346 // separate checking groups for all pointers.
Mehdi Aminiafd13512015-11-05 05:49:43 +0000347
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000348 // If we don't have the dependency partitions, construct a new
Silviu Baranga48250602015-07-28 13:44:08 +0000349 // checking pointer group for each pointer. This is also required
350 // for correctness, because in this case we can have checking between
351 // pointers to the same underlying object.
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000352 if (!UseDependencies) {
353 for (unsigned I = 0; I < Pointers.size(); ++I)
354 CheckingGroups.push_back(CheckingPtrGroup(I, *this));
355 return;
356 }
357
358 unsigned TotalComparisons = 0;
359
360 DenseMap<Value *, unsigned> PositionMap;
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000361 for (unsigned Index = 0; Index < Pointers.size(); ++Index)
362 PositionMap[Pointers[Index].PointerValue] = Index;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000363
Silviu Barangace3877f2015-07-09 15:18:25 +0000364 // We need to keep track of what pointers we've already seen so we
365 // don't process them twice.
366 SmallSet<unsigned, 2> Seen;
367
Sanjay Patele4b9f502015-12-07 19:21:39 +0000368 // Go through all equivalence classes, get the "pointer check groups"
Silviu Barangace3877f2015-07-09 15:18:25 +0000369 // and add them to the overall solution. We use the order in which accesses
370 // appear in 'Pointers' to enforce determinism.
371 for (unsigned I = 0; I < Pointers.size(); ++I) {
372 // We've seen this pointer before, and therefore already processed
373 // its equivalence class.
374 if (Seen.count(I))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000375 continue;
376
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000377 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
378 Pointers[I].IsWritePtr);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000379
Silviu Barangace3877f2015-07-09 15:18:25 +0000380 SmallVector<CheckingPtrGroup, 2> Groups;
381 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
382
Silviu Barangaa647c302015-07-13 14:48:24 +0000383 // Because DepCands is constructed by visiting accesses in the order in
384 // which they appear in alias sets (which is deterministic) and the
385 // iteration order within an equivalence class member is only dependent on
386 // the order in which unions and insertions are performed on the
387 // equivalence class, the iteration order is deterministic.
Silviu Barangace3877f2015-07-09 15:18:25 +0000388 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000389 MI != ME; ++MI) {
390 unsigned Pointer = PositionMap[MI->getPointer()];
391 bool Merged = false;
Silviu Barangace3877f2015-07-09 15:18:25 +0000392 // Mark this pointer as seen.
393 Seen.insert(Pointer);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000394
395 // Go through all the existing sets and see if we can find one
396 // which can include this pointer.
397 for (CheckingPtrGroup &Group : Groups) {
398 // Don't perform more than a certain amount of comparisons.
399 // This should limit the cost of grouping the pointers to something
400 // reasonable. If we do end up hitting this threshold, the algorithm
401 // will create separate groups for all remaining pointers.
402 if (TotalComparisons > MemoryCheckMergeThreshold)
403 break;
404
405 TotalComparisons++;
406
407 if (Group.addPointer(Pointer)) {
408 Merged = true;
409 break;
410 }
411 }
412
413 if (!Merged)
414 // We couldn't add this pointer to any existing set or the threshold
415 // for the number of comparisons has been reached. Create a new group
416 // to hold the current pointer.
417 Groups.push_back(CheckingPtrGroup(Pointer, *this));
418 }
419
420 // We've computed the grouped checks for this partition.
421 // Save the results and continue with the next one.
Fangrui Song75709322018-11-17 01:44:25 +0000422 llvm::copy(Groups, std::back_inserter(CheckingGroups));
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000423 }
Adam Nemet04563272015-02-01 16:56:15 +0000424}
425
Adam Nemet041e6de2015-07-16 02:48:05 +0000426bool RuntimePointerChecking::arePointersInSamePartition(
427 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
428 unsigned PtrIdx2) {
429 return (PtrToPartition[PtrIdx1] != -1 &&
430 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
431}
432
Adam Nemet651a5a22015-08-09 20:06:08 +0000433bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000434 const PointerInfo &PointerI = Pointers[I];
435 const PointerInfo &PointerJ = Pointers[J];
436
Adam Nemeta8945b72015-02-18 03:43:58 +0000437 // No need to check if two readonly pointers intersect.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000438 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
Adam Nemeta8945b72015-02-18 03:43:58 +0000439 return false;
440
441 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000442 if (PointerI.DependencySetId == PointerJ.DependencySetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000443 return false;
444
445 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000446 if (PointerI.AliasSetId != PointerJ.AliasSetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000447 return false;
448
449 return true;
450}
451
Adam Nemet54f0b832015-07-27 23:54:41 +0000452void RuntimePointerChecking::printChecks(
453 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
454 unsigned Depth) const {
455 unsigned N = 0;
456 for (const auto &Check : Checks) {
457 const auto &First = Check.first->Members, &Second = Check.second->Members;
458
459 OS.indent(Depth) << "Check " << N++ << ":\n";
460
461 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
462 for (unsigned K = 0; K < First.size(); ++K)
463 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
464
465 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
466 for (unsigned K = 0; K < Second.size(); ++K)
467 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
468 }
469}
470
Adam Nemet3a91e942015-08-07 19:44:48 +0000471void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
Adam Nemete91cc6e2015-02-19 19:15:19 +0000472
473 OS.indent(Depth) << "Run-time memory checks:\n";
Adam Nemet15840392015-08-07 22:44:15 +0000474 printChecks(OS, Checks, Depth);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000475
476 OS.indent(Depth) << "Grouped accesses:\n";
477 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
Adam Nemet54f0b832015-07-27 23:54:41 +0000478 const auto &CG = CheckingGroups[I];
479
480 OS.indent(Depth + 2) << "Group " << &CG << ":\n";
481 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
482 << ")\n";
483 for (unsigned J = 0; J < CG.Members.size(); ++J) {
484 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000485 << "\n";
486 }
487 }
Adam Nemete91cc6e2015-02-19 19:15:19 +0000488}
489
Adam Nemet04563272015-02-01 16:56:15 +0000490namespace {
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +0000491
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000492/// Analyses memory accesses in a loop.
Adam Nemet04563272015-02-01 16:56:15 +0000493///
494/// Checks whether run time pointer checks are needed and builds sets for data
495/// dependence checking.
496class AccessAnalysis {
497public:
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000498 /// Read or write access location.
Adam Nemet04563272015-02-01 16:56:15 +0000499 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
Amjad Aboud5448e982017-03-08 05:09:10 +0000500 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
Adam Nemet04563272015-02-01 16:56:15 +0000501
Manoj Gupta77eeac32018-07-09 22:27:23 +0000502 AccessAnalysis(const DataLayout &Dl, Loop *TheLoop, AliasAnalysis *AA,
503 LoopInfo *LI, MemoryDepChecker::DepCandidates &DA,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000504 PredicatedScalarEvolution &PSE)
Manoj Gupta77eeac32018-07-09 22:27:23 +0000505 : DL(Dl), TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA),
506 IsRTCheckAnalysisNeeded(false), PSE(PSE) {}
Adam Nemet04563272015-02-01 16:56:15 +0000507
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000508 /// Register a load and whether it is only read from.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000509 void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
Adam Nemet04563272015-02-01 16:56:15 +0000510 Value *Ptr = const_cast<Value*>(Loc.Ptr);
George Burgess IV6ef80022018-10-10 21:28:44 +0000511 AST.add(Ptr, LocationSize::unknown(), Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000512 Accesses.insert(MemAccessInfo(Ptr, false));
513 if (IsReadOnly)
514 ReadOnlyPtr.insert(Ptr);
515 }
516
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000517 /// Register a store.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000518 void addStore(MemoryLocation &Loc) {
Adam Nemet04563272015-02-01 16:56:15 +0000519 Value *Ptr = const_cast<Value*>(Loc.Ptr);
George Burgess IV6ef80022018-10-10 21:28:44 +0000520 AST.add(Ptr, LocationSize::unknown(), Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000521 Accesses.insert(MemAccessInfo(Ptr, true));
522 }
523
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000524 /// Check if we can emit a run-time no-alias check for \p Access.
Silviu Barangaac920f72017-09-12 07:48:22 +0000525 ///
526 /// Returns true if we can emit a run-time no alias check for \p Access.
527 /// If we can check this access, this also adds it to a dependence set and
528 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
529 /// we will attempt to use additional run-time checks in order to get
530 /// the bounds of the pointer.
531 bool createCheckForAccess(RuntimePointerChecking &RtCheck,
532 MemAccessInfo Access,
533 const ValueToValueMap &Strides,
534 DenseMap<Value *, unsigned> &DepSetId,
535 Loop *TheLoop, unsigned &RunningDepId,
536 unsigned ASId, bool ShouldCheckStride,
537 bool Assume);
538
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000539 /// Check whether we can check the pointers at runtime for
Adam Nemetee614742015-07-09 22:17:38 +0000540 /// non-intersection.
541 ///
542 /// Returns true if we need no check or if we do and we can generate them
543 /// (i.e. the pointers have computable bounds).
Adam Nemet7cdebac2015-07-14 22:32:44 +0000544 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
545 Loop *TheLoop, const ValueToValueMap &Strides,
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000546 bool ShouldCheckWrap = false);
Adam Nemet04563272015-02-01 16:56:15 +0000547
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000548 /// Goes over all memory accesses, checks whether a RT check is needed
Adam Nemet04563272015-02-01 16:56:15 +0000549 /// and builds sets of dependent accesses.
550 void buildDependenceSets() {
551 processMemAccesses();
552 }
553
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000554 /// Initial processing of memory accesses determined that we need to
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000555 /// perform dependency checking.
556 ///
557 /// Note that this can later be cleared if we retry memcheck analysis without
Florian Hahnef307b82018-12-20 18:49:09 +0000558 /// dependency checking (i.e. FoundNonConstantDistanceDependence).
Adam Nemet04563272015-02-01 16:56:15 +0000559 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000560
561 /// We decided that no dependence analysis would be used. Reset the state.
562 void resetDepChecks(MemoryDepChecker &DepChecker) {
563 CheckDeps.clear();
Adam Nemeta2df7502015-11-03 21:39:52 +0000564 DepChecker.clearDependences();
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000565 }
Adam Nemet04563272015-02-01 16:56:15 +0000566
Amjad Aboud5448e982017-03-08 05:09:10 +0000567 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
Adam Nemet04563272015-02-01 16:56:15 +0000568
569private:
570 typedef SetVector<MemAccessInfo> PtrAccessSet;
571
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000572 /// Go over all memory access and check whether runtime pointer checks
Adam Nemetb41d2d32015-07-09 06:47:21 +0000573 /// are needed and build sets of dependency check candidates.
Adam Nemet04563272015-02-01 16:56:15 +0000574 void processMemAccesses();
575
576 /// Set of all accesses.
577 PtrAccessSet Accesses;
578
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000579 const DataLayout &DL;
580
Manoj Gupta77eeac32018-07-09 22:27:23 +0000581 /// The loop being checked.
582 const Loop *TheLoop;
583
Amjad Aboud5448e982017-03-08 05:09:10 +0000584 /// List of accesses that need a further dependence check.
585 MemAccessInfoList CheckDeps;
Adam Nemet04563272015-02-01 16:56:15 +0000586
587 /// Set of pointers that are read only.
588 SmallPtrSet<Value*, 16> ReadOnlyPtr;
589
Adam Nemet04563272015-02-01 16:56:15 +0000590 /// An alias set tracker to partition the access set by underlying object and
591 //intrinsic property (such as TBAA metadata).
592 AliasSetTracker AST;
593
Adam Nemete2b885c2015-04-23 20:09:20 +0000594 LoopInfo *LI;
595
Adam Nemet04563272015-02-01 16:56:15 +0000596 /// Sets of potentially dependent accesses - members of one set share an
597 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
598 /// dependence check.
Adam Nemetdee666b2015-03-10 17:40:34 +0000599 MemoryDepChecker::DepCandidates &DepCands;
Adam Nemet04563272015-02-01 16:56:15 +0000600
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000601 /// Initial processing of memory accesses determined that we may need
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000602 /// to add memchecks. Perform the analysis to determine the necessary checks.
603 ///
604 /// Note that, this is different from isDependencyCheckNeeded. When we retry
605 /// memcheck analysis without dependency checking
Florian Hahnef307b82018-12-20 18:49:09 +0000606 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
607 /// cleared while this remains set if we have potentially dependent accesses.
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000608 bool IsRTCheckAnalysisNeeded;
Silviu Barangae3c05342015-11-02 14:41:02 +0000609
610 /// The SCEV predicate containing all the SCEV-related assumptions.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000611 PredicatedScalarEvolution &PSE;
Adam Nemet04563272015-02-01 16:56:15 +0000612};
613
614} // end anonymous namespace
615
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000616/// Check whether a pointer can participate in a runtime bounds check.
Silviu Barangaac920f72017-09-12 07:48:22 +0000617/// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
618/// by adding run-time checks (overflow checks) if necessary.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000619static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
Silviu Barangae3c05342015-11-02 14:41:02 +0000620 const ValueToValueMap &Strides, Value *Ptr,
Silviu Barangaac920f72017-09-12 07:48:22 +0000621 Loop *L, bool Assume) {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000622 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Adam Nemet279784f2016-03-24 04:28:47 +0000623
624 // The bounds for loop-invariant pointer is trivial.
625 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
626 return true;
627
Adam Nemet04563272015-02-01 16:56:15 +0000628 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
Silviu Barangaac920f72017-09-12 07:48:22 +0000629
630 if (!AR && Assume)
631 AR = PSE.getAsAddRec(Ptr);
632
Adam Nemet04563272015-02-01 16:56:15 +0000633 if (!AR)
634 return false;
635
636 return AR->isAffine();
637}
638
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000639/// Check whether a pointer address cannot wrap.
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000640static bool isNoWrap(PredicatedScalarEvolution &PSE,
641 const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
642 const SCEV *PtrScev = PSE.getSCEV(Ptr);
643 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
644 return true;
645
David Majnemer7afb46d2016-07-07 06:24:36 +0000646 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
Silviu Barangaac920f72017-09-12 07:48:22 +0000647 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
648 return true;
649
650 return false;
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000651}
652
Silviu Barangaac920f72017-09-12 07:48:22 +0000653bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
654 MemAccessInfo Access,
655 const ValueToValueMap &StridesMap,
656 DenseMap<Value *, unsigned> &DepSetId,
657 Loop *TheLoop, unsigned &RunningDepId,
658 unsigned ASId, bool ShouldCheckWrap,
659 bool Assume) {
660 Value *Ptr = Access.getPointer();
661
662 if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume))
663 return false;
664
665 // When we run after a failing dependency check we have to make sure
666 // we don't have wrapping pointers.
667 if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) {
668 auto *Expr = PSE.getSCEV(Ptr);
669 if (!Assume || !isa<SCEVAddRecExpr>(Expr))
670 return false;
671 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
672 }
673
674 // The id of the dependence set.
675 unsigned DepId;
676
677 if (isDependencyCheckNeeded()) {
678 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
679 unsigned &LeaderId = DepSetId[Leader];
680 if (!LeaderId)
681 LeaderId = RunningDepId++;
682 DepId = LeaderId;
683 } else
684 // Each access has its own dependence set.
685 DepId = RunningDepId++;
686
687 bool IsWrite = Access.getInt();
688 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000689 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
Silviu Barangaac920f72017-09-12 07:48:22 +0000690
691 return true;
692 }
693
Adam Nemet7cdebac2015-07-14 22:32:44 +0000694bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
695 ScalarEvolution *SE, Loop *TheLoop,
696 const ValueToValueMap &StridesMap,
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000697 bool ShouldCheckWrap) {
Adam Nemet04563272015-02-01 16:56:15 +0000698 // Find pointers with computable bounds. We are going to use this information
699 // to place a runtime bound check.
700 bool CanDoRT = true;
701
Adam Nemetee614742015-07-09 22:17:38 +0000702 bool NeedRTCheck = false;
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000703 if (!IsRTCheckAnalysisNeeded) return true;
Silviu Baranga98a13712015-06-08 10:27:06 +0000704
Adam Nemet04563272015-02-01 16:56:15 +0000705 bool IsDepCheckNeeded = isDependencyCheckNeeded();
Adam Nemet04563272015-02-01 16:56:15 +0000706
707 // We assign a consecutive id to access from different alias sets.
708 // Accesses between different groups doesn't need to be checked.
709 unsigned ASId = 1;
710 for (auto &AS : AST) {
Adam Nemet424edc62015-07-08 22:58:48 +0000711 int NumReadPtrChecks = 0;
712 int NumWritePtrChecks = 0;
Silviu Barangaac920f72017-09-12 07:48:22 +0000713 bool CanDoAliasSetRT = true;
Adam Nemet424edc62015-07-08 22:58:48 +0000714
Adam Nemet04563272015-02-01 16:56:15 +0000715 // We assign consecutive id to access from different dependence sets.
716 // Accesses within the same set don't need a runtime check.
717 unsigned RunningDepId = 1;
718 DenseMap<Value *, unsigned> DepSetId;
719
Silviu Barangaac920f72017-09-12 07:48:22 +0000720 SmallVector<MemAccessInfo, 4> Retries;
721
Adam Nemet04563272015-02-01 16:56:15 +0000722 for (auto A : AS) {
723 Value *Ptr = A.getValue();
724 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
725 MemAccessInfo Access(Ptr, IsWrite);
726
Adam Nemet424edc62015-07-08 22:58:48 +0000727 if (IsWrite)
728 ++NumWritePtrChecks;
729 else
730 ++NumReadPtrChecks;
731
Silviu Barangaac920f72017-09-12 07:48:22 +0000732 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop,
733 RunningDepId, ASId, ShouldCheckWrap, false)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000734 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
Silviu Barangaac920f72017-09-12 07:48:22 +0000735 Retries.push_back(Access);
736 CanDoAliasSetRT = false;
Adam Nemet04563272015-02-01 16:56:15 +0000737 }
738 }
739
Adam Nemet424edc62015-07-08 22:58:48 +0000740 // If we have at least two writes or one write and a read then we need to
741 // check them. But there is no need to checks if there is only one
742 // dependence set for this alias set.
743 //
744 // Note that this function computes CanDoRT and NeedRTCheck independently.
745 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
746 // for which we couldn't find the bounds but we don't actually need to emit
747 // any checks so it does not matter.
Silviu Barangaac920f72017-09-12 07:48:22 +0000748 bool NeedsAliasSetRTCheck = false;
749 if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2))
750 NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 ||
751 (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1));
Adam Nemet424edc62015-07-08 22:58:48 +0000752
Silviu Barangaac920f72017-09-12 07:48:22 +0000753 // We need to perform run-time alias checks, but some pointers had bounds
754 // that couldn't be checked.
755 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
756 // Reset the CanDoSetRt flag and retry all accesses that have failed.
757 // We know that we need these checks, so we can now be more aggressive
758 // and add further checks if required (overflow checks).
759 CanDoAliasSetRT = true;
760 for (auto Access : Retries)
761 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId,
762 TheLoop, RunningDepId, ASId,
763 ShouldCheckWrap, /*Assume=*/true)) {
764 CanDoAliasSetRT = false;
765 break;
766 }
767 }
768
769 CanDoRT &= CanDoAliasSetRT;
770 NeedRTCheck |= NeedsAliasSetRTCheck;
Adam Nemet04563272015-02-01 16:56:15 +0000771 ++ASId;
772 }
773
774 // If the pointers that we would use for the bounds comparison have different
775 // address spaces, assume the values aren't directly comparable, so we can't
776 // use them for the runtime check. We also have to assume they could
777 // overlap. In the future there should be metadata for whether address spaces
778 // are disjoint.
779 unsigned NumPointers = RtCheck.Pointers.size();
780 for (unsigned i = 0; i < NumPointers; ++i) {
781 for (unsigned j = i + 1; j < NumPointers; ++j) {
782 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000783 if (RtCheck.Pointers[i].DependencySetId ==
784 RtCheck.Pointers[j].DependencySetId)
Adam Nemet04563272015-02-01 16:56:15 +0000785 continue;
786 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000787 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
Adam Nemet04563272015-02-01 16:56:15 +0000788 continue;
789
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000790 Value *PtrI = RtCheck.Pointers[i].PointerValue;
791 Value *PtrJ = RtCheck.Pointers[j].PointerValue;
Adam Nemet04563272015-02-01 16:56:15 +0000792
793 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
794 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
795 if (ASi != ASj) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000796 LLVM_DEBUG(
797 dbgs() << "LAA: Runtime check would require comparison between"
798 " different address spaces\n");
Adam Nemet04563272015-02-01 16:56:15 +0000799 return false;
800 }
801 }
802 }
803
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000804 if (NeedRTCheck && CanDoRT)
Adam Nemet15840392015-08-07 22:44:15 +0000805 RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000806
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000807 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
808 << " pointer comparisons.\n");
Adam Nemetee614742015-07-09 22:17:38 +0000809
810 RtCheck.Need = NeedRTCheck;
811
812 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
813 if (!CanDoRTIfNeeded)
814 RtCheck.reset();
815 return CanDoRTIfNeeded;
Adam Nemet04563272015-02-01 16:56:15 +0000816}
817
818void AccessAnalysis::processMemAccesses() {
819 // We process the set twice: first we process read-write pointers, last we
820 // process read-only pointers. This allows us to skip dependence tests for
821 // read-only pointers.
822
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000823 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
824 LLVM_DEBUG(dbgs() << " AST: "; AST.dump());
825 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
826 LLVM_DEBUG({
Adam Nemet04563272015-02-01 16:56:15 +0000827 for (auto A : Accesses)
828 dbgs() << "\t" << *A.getPointer() << " (" <<
829 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
830 "read-only" : "read")) << ")\n";
831 });
832
833 // The AliasSetTracker has nicely partitioned our pointers by metadata
834 // compatibility and potential for underlying-object overlap. As a result, we
835 // only need to check for potential pointer dependencies within each alias
836 // set.
837 for (auto &AS : AST) {
838 // Note that both the alias-set tracker and the alias sets themselves used
839 // linked lists internally and so the iteration order here is deterministic
840 // (matching the original instruction order within each set).
841
842 bool SetHasWrite = false;
843
844 // Map of pointers to last access encountered.
845 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
846 UnderlyingObjToAccessMap ObjToLastAccess;
847
848 // Set of access to check after all writes have been processed.
849 PtrAccessSet DeferredAccesses;
850
851 // Iterate over each alias set twice, once to process read/write pointers,
852 // and then to process read-only pointers.
853 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
854 bool UseDeferred = SetIteration > 0;
855 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
856
857 for (auto AV : AS) {
858 Value *Ptr = AV.getValue();
859
860 // For a single memory access in AliasSetTracker, Accesses may contain
861 // both read and write, and they both need to be handled for CheckDeps.
862 for (auto AC : S) {
863 if (AC.getPointer() != Ptr)
864 continue;
865
866 bool IsWrite = AC.getInt();
867
868 // If we're using the deferred access set, then it contains only
869 // reads.
870 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
871 if (UseDeferred && !IsReadOnlyPtr)
872 continue;
873 // Otherwise, the pointer must be in the PtrAccessSet, either as a
874 // read or a write.
875 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
876 S.count(MemAccessInfo(Ptr, false))) &&
877 "Alias-set pointer not in the access set?");
878
879 MemAccessInfo Access(Ptr, IsWrite);
880 DepCands.insert(Access);
881
882 // Memorize read-only pointers for later processing and skip them in
883 // the first round (they need to be checked after we have seen all
884 // write pointers). Note: we also mark pointer that are not
885 // consecutive as "read-only" pointers (so that we check
886 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
887 if (!UseDeferred && IsReadOnlyPtr) {
888 DeferredAccesses.insert(Access);
889 continue;
890 }
891
892 // If this is a write - check other reads and writes for conflicts. If
893 // this is a read only check other writes for conflicts (but only if
894 // there is no other write to the ptr - this is an optimization to
895 // catch "a[i] = a[i] + " without having to do a dependence check).
896 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
Amjad Aboud5448e982017-03-08 05:09:10 +0000897 CheckDeps.push_back(Access);
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000898 IsRTCheckAnalysisNeeded = true;
Adam Nemet04563272015-02-01 16:56:15 +0000899 }
900
901 if (IsWrite)
902 SetHasWrite = true;
903
904 // Create sets of pointers connected by a shared alias set and
905 // underlying object.
906 typedef SmallVector<Value *, 16> ValueVector;
907 ValueVector TempObjects;
Adam Nemete2b885c2015-04-23 20:09:20 +0000908
909 GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000910 LLVM_DEBUG(dbgs()
911 << "Underlying objects for pointer " << *Ptr << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000912 for (Value *UnderlyingObj : TempObjects) {
Mehdi Aminiafd13512015-11-05 05:49:43 +0000913 // nullptr never alias, don't join sets for pointer that have "null"
914 // in their UnderlyingObjects list.
Manoj Gupta77eeac32018-07-09 22:27:23 +0000915 if (isa<ConstantPointerNull>(UnderlyingObj) &&
916 !NullPointerIsDefined(
917 TheLoop->getHeader()->getParent(),
918 UnderlyingObj->getType()->getPointerAddressSpace()))
Mehdi Aminiafd13512015-11-05 05:49:43 +0000919 continue;
920
Adam Nemet04563272015-02-01 16:56:15 +0000921 UnderlyingObjToAccessMap::iterator Prev =
922 ObjToLastAccess.find(UnderlyingObj);
923 if (Prev != ObjToLastAccess.end())
924 DepCands.unionSets(Access, Prev->second);
925
926 ObjToLastAccess[UnderlyingObj] = Access;
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000927 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000928 }
929 }
930 }
931 }
932 }
933}
934
Adam Nemet04563272015-02-01 16:56:15 +0000935static bool isInBoundsGep(Value *Ptr) {
936 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
937 return GEP->isInBounds();
938 return false;
939}
940
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000941/// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
Adam Nemetc4866d22015-06-26 17:25:43 +0000942/// i.e. monotonically increasing/decreasing.
943static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000944 PredicatedScalarEvolution &PSE, const Loop *L) {
Adam Nemetc4866d22015-06-26 17:25:43 +0000945 // FIXME: This should probably only return true for NUW.
946 if (AR->getNoWrapFlags(SCEV::NoWrapMask))
947 return true;
948
949 // Scalar evolution does not propagate the non-wrapping flags to values that
950 // are derived from a non-wrapping induction variable because non-wrapping
951 // could be flow-sensitive.
952 //
953 // Look through the potentially overflowing instruction to try to prove
954 // non-wrapping for the *specific* value of Ptr.
955
956 // The arithmetic implied by an inbounds GEP can't overflow.
957 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
958 if (!GEP || !GEP->isInBounds())
959 return false;
960
961 // Make sure there is only one non-const index and analyze that.
962 Value *NonConstIndex = nullptr;
David Majnemer8b401012016-07-12 20:31:46 +0000963 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
964 if (!isa<ConstantInt>(Index)) {
Adam Nemetc4866d22015-06-26 17:25:43 +0000965 if (NonConstIndex)
966 return false;
David Majnemer8b401012016-07-12 20:31:46 +0000967 NonConstIndex = Index;
Adam Nemetc4866d22015-06-26 17:25:43 +0000968 }
969 if (!NonConstIndex)
970 // The recurrence is on the pointer, ignore for now.
971 return false;
972
973 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
974 // AddRec using a NSW operation.
975 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
976 if (OBO->hasNoSignedWrap() &&
977 // Assume constant for other the operand so that the AddRec can be
978 // easily found.
979 isa<ConstantInt>(OBO->getOperand(1))) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000980 auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
Adam Nemetc4866d22015-06-26 17:25:43 +0000981
982 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
983 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
984 }
985
986 return false;
987}
988
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000989/// Check whether the access through \p Ptr has a constant stride.
David Majnemer7afb46d2016-07-07 06:24:36 +0000990int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
991 const Loop *Lp, const ValueToValueMap &StridesMap,
Elena Demikhovsky5f8cc0c2016-09-18 13:56:08 +0000992 bool Assume, bool ShouldCheckWrap) {
Craig Toppere3dcce92015-08-01 22:20:21 +0000993 Type *Ty = Ptr->getType();
Adam Nemet04563272015-02-01 16:56:15 +0000994 assert(Ty->isPointerTy() && "Unexpected non-ptr");
995
996 // Make sure that the pointer does not point to aggregate types.
Craig Toppere3dcce92015-08-01 22:20:21 +0000997 auto *PtrTy = cast<PointerType>(Ty);
Adam Nemet04563272015-02-01 16:56:15 +0000998 if (PtrTy->getElementType()->isAggregateType()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000999 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
1000 << *Ptr << "\n");
Adam Nemet04563272015-02-01 16:56:15 +00001001 return 0;
1002 }
1003
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001004 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
Adam Nemet04563272015-02-01 16:56:15 +00001005
1006 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001007 if (Assume && !AR)
Silviu Barangad68ed852016-03-23 15:29:30 +00001008 AR = PSE.getAsAddRec(Ptr);
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001009
Adam Nemet04563272015-02-01 16:56:15 +00001010 if (!AR) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001011 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1012 << " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +00001013 return 0;
1014 }
1015
Hiroshi Inouec437f312019-01-30 05:26:31 +00001016 // The access function must stride over the innermost loop.
Adam Nemet04563272015-02-01 16:56:15 +00001017 if (Lp != AR->getLoop()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001018 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1019 << *Ptr << " SCEV: " << *AR << "\n");
Kyle Butta02ce982016-01-08 01:55:13 +00001020 return 0;
Adam Nemet04563272015-02-01 16:56:15 +00001021 }
1022
1023 // The address calculation must not wrap. Otherwise, a dependence could be
1024 // inverted.
1025 // An inbounds getelementptr that is a AddRec with a unit stride
1026 // cannot wrap per definition. The unit stride requirement is checked later.
1027 // An getelementptr without an inbounds attribute and unit stride would have
1028 // to access the pointer value "0" which is undefined behavior in address
1029 // space 0, therefore we can also vectorize this case.
1030 bool IsInBoundsGEP = isInBoundsGep(Ptr);
Elena Demikhovsky5f8cc0c2016-09-18 13:56:08 +00001031 bool IsNoWrapAddRec = !ShouldCheckWrap ||
1032 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
1033 isNoWrapAddRec(Ptr, AR, PSE, Lp);
Manoj Gupta77eeac32018-07-09 22:27:23 +00001034 if (!IsNoWrapAddRec && !IsInBoundsGEP &&
1035 NullPointerIsDefined(Lp->getHeader()->getParent(),
1036 PtrTy->getAddressSpace())) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001037 if (Assume) {
1038 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1039 IsNoWrapAddRec = true;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001040 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
1041 << "LAA: Pointer: " << *Ptr << "\n"
1042 << "LAA: SCEV: " << *AR << "\n"
1043 << "LAA: Added an overflow assumption\n");
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001044 } else {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001045 LLVM_DEBUG(
1046 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1047 << *Ptr << " SCEV: " << *AR << "\n");
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001048 return 0;
1049 }
Adam Nemet04563272015-02-01 16:56:15 +00001050 }
1051
1052 // Check the step is constant.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001053 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
Adam Nemet04563272015-02-01 16:56:15 +00001054
Adam Nemet943befe2015-07-09 00:03:22 +00001055 // Calculate the pointer stride and check if it is constant.
Adam Nemet04563272015-02-01 16:56:15 +00001056 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1057 if (!C) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001058 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1059 << " SCEV: " << *AR << "\n");
Adam Nemet04563272015-02-01 16:56:15 +00001060 return 0;
1061 }
1062
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001063 auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1064 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001065 const APInt &APStepVal = C->getAPInt();
Adam Nemet04563272015-02-01 16:56:15 +00001066
1067 // Huge step value - give up.
1068 if (APStepVal.getBitWidth() > 64)
1069 return 0;
1070
1071 int64_t StepVal = APStepVal.getSExtValue();
1072
1073 // Strided access.
1074 int64_t Stride = StepVal / Size;
1075 int64_t Rem = StepVal % Size;
1076 if (Rem)
1077 return 0;
1078
1079 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1080 // know we can't "wrap around the address space". In case of address space
1081 // zero we know that this won't happen without triggering undefined behavior.
Manoj Gupta77eeac32018-07-09 22:27:23 +00001082 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 &&
1083 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(),
1084 PtrTy->getAddressSpace()))) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001085 if (Assume) {
1086 // We can avoid this case by adding a run-time check.
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001087 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
Hiroshi Inouec437f312019-01-30 05:26:31 +00001088 << "inbounds or in address space 0 may wrap:\n"
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001089 << "LAA: Pointer: " << *Ptr << "\n"
1090 << "LAA: SCEV: " << *AR << "\n"
1091 << "LAA: Added an overflow assumption\n");
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001092 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1093 } else
1094 return 0;
1095 }
Adam Nemet04563272015-02-01 16:56:15 +00001096
1097 return Stride;
1098}
1099
Alexey Bataev428e9d92018-04-03 17:14:47 +00001100bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
1101 ScalarEvolution &SE,
1102 SmallVectorImpl<unsigned> &SortedIndices) {
1103 assert(llvm::all_of(
1104 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1105 "Expected list of pointer operands.");
1106 SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs;
1107 OffValPairs.reserve(VL.size());
1108
1109 // Walk over the pointers, and map each of them to an offset relative to
1110 // first pointer in the array.
1111 Value *Ptr0 = VL[0];
1112 const SCEV *Scev0 = SE.getSCEV(Ptr0);
1113 Value *Obj0 = GetUnderlyingObject(Ptr0, DL);
1114
1115 llvm::SmallSet<int64_t, 4> Offsets;
1116 for (auto *Ptr : VL) {
1117 // TODO: Outline this code as a special, more time consuming, version of
1118 // computeConstantDifference() function.
1119 if (Ptr->getType()->getPointerAddressSpace() !=
1120 Ptr0->getType()->getPointerAddressSpace())
1121 return false;
1122 // If a pointer refers to a different underlying object, bail - the
1123 // pointers are by definition incomparable.
1124 Value *CurrObj = GetUnderlyingObject(Ptr, DL);
1125 if (CurrObj != Obj0)
1126 return false;
1127
1128 const SCEV *Scev = SE.getSCEV(Ptr);
1129 const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0));
1130 // The pointers may not have a constant offset from each other, or SCEV
1131 // may just not be smart enough to figure out they do. Regardless,
1132 // there's nothing we can do.
1133 if (!Diff)
1134 return false;
1135
1136 // Check if the pointer with the same offset is found.
1137 int64_t Offset = Diff->getAPInt().getSExtValue();
1138 if (!Offsets.insert(Offset).second)
1139 return false;
1140 OffValPairs.emplace_back(Offset, Ptr);
1141 }
1142 SortedIndices.clear();
1143 SortedIndices.resize(VL.size());
1144 std::iota(SortedIndices.begin(), SortedIndices.end(), 0);
1145
1146 // Sort the memory accesses and keep the order of their uses in UseOrder.
1147 std::stable_sort(SortedIndices.begin(), SortedIndices.end(),
1148 [&OffValPairs](unsigned Left, unsigned Right) {
1149 return OffValPairs[Left].first < OffValPairs[Right].first;
1150 });
1151
1152 // Check if the order is consecutive already.
1153 if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) {
1154 return I == SortedIndices[I];
1155 }))
1156 SortedIndices.clear();
1157
1158 return true;
1159}
1160
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001161/// Take the address space operand from the Load/Store instruction.
1162/// Returns -1 if this is not a valid Load/Store instruction.
1163static unsigned getAddressSpaceOperand(Value *I) {
1164 if (LoadInst *L = dyn_cast<LoadInst>(I))
1165 return L->getPointerAddressSpace();
1166 if (StoreInst *S = dyn_cast<StoreInst>(I))
1167 return S->getPointerAddressSpace();
1168 return -1;
1169}
1170
1171/// Returns true if the memory operations \p A and \p B are consecutive.
1172bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1173 ScalarEvolution &SE, bool CheckType) {
Renato Golin038ede22018-03-09 21:05:58 +00001174 Value *PtrA = getLoadStorePointerOperand(A);
1175 Value *PtrB = getLoadStorePointerOperand(B);
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001176 unsigned ASA = getAddressSpaceOperand(A);
1177 unsigned ASB = getAddressSpaceOperand(B);
1178
1179 // Check that the address spaces match and that the pointers are valid.
1180 if (!PtrA || !PtrB || (ASA != ASB))
1181 return false;
1182
1183 // Make sure that A and B are different pointers.
1184 if (PtrA == PtrB)
1185 return false;
1186
1187 // Make sure that A and B have the same type if required.
Chad Rosier83a12032016-08-31 18:37:52 +00001188 if (CheckType && PtrA->getType() != PtrB->getType())
1189 return false;
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001190
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001191 unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001192 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001193 APInt Size(IdxWidth, DL.getTypeStoreSize(Ty));
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001194
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001195 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001196 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1197 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1198
1199 // OffsetDelta = OffsetB - OffsetA;
1200 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1201 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1202 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1203 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1204 const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1205 // Check if they are based on the same pointer. That makes the offsets
1206 // sufficient.
1207 if (PtrA == PtrB)
1208 return OffsetDelta == Size;
1209
1210 // Compute the necessary base pointer delta to have the necessary final delta
1211 // equal to the size.
1212 // BaseDelta = Size - OffsetDelta;
1213 const SCEV *SizeSCEV = SE.getConstant(Size);
1214 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1215
1216 // Otherwise compute the distance with SCEV between the base pointers.
1217 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1218 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1219 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1220 return X == PtrSCEVB;
1221}
1222
Florian Hahn485f2822018-12-18 22:25:11 +00001223MemoryDepChecker::VectorizationSafetyStatus
1224MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
Adam Nemet9c926572015-03-10 17:40:37 +00001225 switch (Type) {
1226 case NoDep:
1227 case Forward:
1228 case BackwardVectorizable:
Florian Hahn485f2822018-12-18 22:25:11 +00001229 return VectorizationSafetyStatus::Safe;
Adam Nemet9c926572015-03-10 17:40:37 +00001230
1231 case Unknown:
Florian Hahnef307b82018-12-20 18:49:09 +00001232 return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
Adam Nemet9c926572015-03-10 17:40:37 +00001233 case ForwardButPreventsForwarding:
1234 case Backward:
1235 case BackwardVectorizableButPreventsForwarding:
Florian Hahn485f2822018-12-18 22:25:11 +00001236 return VectorizationSafetyStatus::Unsafe;
Adam Nemet9c926572015-03-10 17:40:37 +00001237 }
David Majnemerd388e932015-03-10 20:23:29 +00001238 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001239}
1240
Adam Nemet397f5822015-11-03 23:50:03 +00001241bool MemoryDepChecker::Dependence::isBackward() const {
Adam Nemet9c926572015-03-10 17:40:37 +00001242 switch (Type) {
1243 case NoDep:
1244 case Forward:
1245 case ForwardButPreventsForwarding:
Adam Nemet397f5822015-11-03 23:50:03 +00001246 case Unknown:
Adam Nemet9c926572015-03-10 17:40:37 +00001247 return false;
1248
Adam Nemet9c926572015-03-10 17:40:37 +00001249 case BackwardVectorizable:
1250 case Backward:
1251 case BackwardVectorizableButPreventsForwarding:
1252 return true;
1253 }
David Majnemerd388e932015-03-10 20:23:29 +00001254 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001255}
1256
Adam Nemet397f5822015-11-03 23:50:03 +00001257bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1258 return isBackward() || Type == Unknown;
1259}
1260
1261bool MemoryDepChecker::Dependence::isForward() const {
1262 switch (Type) {
1263 case Forward:
1264 case ForwardButPreventsForwarding:
1265 return true;
1266
1267 case NoDep:
1268 case Unknown:
1269 case BackwardVectorizable:
1270 case Backward:
1271 case BackwardVectorizableButPreventsForwarding:
1272 return false;
1273 }
1274 llvm_unreachable("unexpected DepType!");
1275}
1276
David Majnemer7afb46d2016-07-07 06:24:36 +00001277bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1278 uint64_t TypeByteSize) {
Adam Nemet04563272015-02-01 16:56:15 +00001279 // If loads occur at a distance that is not a multiple of a feasible vector
1280 // factor store-load forwarding does not take place.
1281 // Positive dependences might cause troubles because vectorizing them might
1282 // prevent store-load forwarding making vectorized code run a lot slower.
1283 // a[i] = a[i-3] ^ a[i-8];
1284 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1285 // hence on your typical architecture store-load forwarding does not take
1286 // place. Vectorizing in such cases does not make sense.
1287 // Store-load forwarding distance.
Adam Nemet884d3132016-05-16 16:57:47 +00001288
1289 // After this many iterations store-to-load forwarding conflicts should not
1290 // cause any slowdowns.
David Majnemer7afb46d2016-07-07 06:24:36 +00001291 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
Adam Nemet04563272015-02-01 16:56:15 +00001292 // Maximum vector factor.
David Majnemer7afb46d2016-07-07 06:24:36 +00001293 uint64_t MaxVFWithoutSLForwardIssues = std::min(
Adam Nemet2c34ab52016-05-12 21:41:53 +00001294 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
Adam Nemet04563272015-02-01 16:56:15 +00001295
Adam Nemet884d3132016-05-16 16:57:47 +00001296 // Compute the smallest VF at which the store and load would be misaligned.
David Majnemer7afb46d2016-07-07 06:24:36 +00001297 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
Adam Nemet9b5852a2016-05-16 16:57:42 +00001298 VF *= 2) {
Adam Nemet884d3132016-05-16 16:57:47 +00001299 // If the number of vector iteration between the store and the load are
1300 // small we could incur conflicts.
1301 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
Adam Nemet9b5852a2016-05-16 16:57:42 +00001302 MaxVFWithoutSLForwardIssues = (VF >>= 1);
Adam Nemet04563272015-02-01 16:56:15 +00001303 break;
1304 }
1305 }
1306
Adam Nemet9b5852a2016-05-16 16:57:42 +00001307 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001308 LLVM_DEBUG(
1309 dbgs() << "LAA: Distance " << Distance
1310 << " that could cause a store-load forwarding conflict\n");
Adam Nemet04563272015-02-01 16:56:15 +00001311 return true;
1312 }
1313
1314 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
Adam Nemetf219c642015-02-19 19:14:52 +00001315 MaxVFWithoutSLForwardIssues !=
Adam Nemet9b5852a2016-05-16 16:57:42 +00001316 VectorizerParams::MaxVectorWidth * TypeByteSize)
Adam Nemet04563272015-02-01 16:56:15 +00001317 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1318 return false;
1319}
1320
Florian Hahn485f2822018-12-18 22:25:11 +00001321void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1322 if (Status < S)
1323 Status = S;
1324}
1325
Fangrui Songf78650a2018-07-30 19:41:25 +00001326/// Given a non-constant (unknown) dependence-distance \p Dist between two
Dorit Nuzmaneac89d72017-02-12 09:32:53 +00001327/// memory accesses, that have the same stride whose absolute value is given
1328/// in \p Stride, and that have the same type size \p TypeByteSize,
1329/// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1330/// possible to prove statically that the dependence distance is larger
1331/// than the range that the accesses will travel through the execution of
1332/// the loop. If so, return true; false otherwise. This is useful for
1333/// example in loops such as the following (PR31098):
1334/// for (i = 0; i < D; ++i) {
1335/// = out[i];
1336/// out[i+D] =
1337/// }
1338static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1339 const SCEV &BackedgeTakenCount,
1340 const SCEV &Dist, uint64_t Stride,
1341 uint64_t TypeByteSize) {
1342
1343 // If we can prove that
1344 // (**) |Dist| > BackedgeTakenCount * Step
Fangrui Songf78650a2018-07-30 19:41:25 +00001345 // where Step is the absolute stride of the memory accesses in bytes,
Dorit Nuzmaneac89d72017-02-12 09:32:53 +00001346 // then there is no dependence.
1347 //
Hiroshi Inouec437f312019-01-30 05:26:31 +00001348 // Rationale:
Fangrui Songf78650a2018-07-30 19:41:25 +00001349 // We basically want to check if the absolute distance (|Dist/Step|)
1350 // is >= the loop iteration count (or > BackedgeTakenCount).
1351 // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1352 // Section 4.2.1); Note, that for vectorization it is sufficient to prove
Dorit Nuzmaneac89d72017-02-12 09:32:53 +00001353 // that the dependence distance is >= VF; This is checked elsewhere.
Fangrui Songf78650a2018-07-30 19:41:25 +00001354 // But in some cases we can prune unknown dependence distances early, and
1355 // even before selecting the VF, and without a runtime test, by comparing
1356 // the distance against the loop iteration count. Since the vectorized code
1357 // will be executed only if LoopCount >= VF, proving distance >= LoopCount
Dorit Nuzmaneac89d72017-02-12 09:32:53 +00001358 // also guarantees that distance >= VF.
1359 //
1360 const uint64_t ByteStride = Stride * TypeByteSize;
1361 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1362 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1363
1364 const SCEV *CastedDist = &Dist;
1365 const SCEV *CastedProduct = Product;
1366 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType());
1367 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType());
1368
Fangrui Songf78650a2018-07-30 19:41:25 +00001369 // The dependence distance can be positive/negative, so we sign extend Dist;
1370 // The multiplication of the absolute stride in bytes and the
Hiroshi Inouec437f312019-01-30 05:26:31 +00001371 // backedgeTakenCount is non-negative, so we zero extend Product.
Dorit Nuzmaneac89d72017-02-12 09:32:53 +00001372 if (DistTypeSize > ProductTypeSize)
1373 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1374 else
1375 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1376
1377 // Is Dist - (BackedgeTakenCount * Step) > 0 ?
1378 // (If so, then we have proven (**) because |Dist| >= Dist)
1379 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1380 if (SE.isKnownPositive(Minus))
1381 return true;
1382
1383 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ?
1384 // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1385 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1386 Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1387 if (SE.isKnownPositive(Minus))
1388 return true;
1389
1390 return false;
1391}
1392
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001393/// Check the dependence for two accesses with the same stride \p Stride.
Hao Liu751004a2015-06-08 04:48:37 +00001394/// \p Distance is the positive distance and \p TypeByteSize is type size in
1395/// bytes.
1396///
1397/// \returns true if they are independent.
David Majnemer7afb46d2016-07-07 06:24:36 +00001398static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1399 uint64_t TypeByteSize) {
Hao Liu751004a2015-06-08 04:48:37 +00001400 assert(Stride > 1 && "The stride must be greater than 1");
1401 assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1402 assert(Distance > 0 && "The distance must be non-zero");
1403
1404 // Skip if the distance is not multiple of type byte size.
1405 if (Distance % TypeByteSize)
1406 return false;
1407
David Majnemer7afb46d2016-07-07 06:24:36 +00001408 uint64_t ScaledDist = Distance / TypeByteSize;
Hao Liu751004a2015-06-08 04:48:37 +00001409
1410 // No dependence if the scaled distance is not multiple of the stride.
1411 // E.g.
1412 // for (i = 0; i < 1024 ; i += 4)
1413 // A[i+2] = A[i] + 1;
1414 //
1415 // Two accesses in memory (scaled distance is 2, stride is 4):
1416 // | A[0] | | | | A[4] | | | |
1417 // | | | A[2] | | | | A[6] | |
1418 //
1419 // E.g.
1420 // for (i = 0; i < 1024 ; i += 3)
1421 // A[i+4] = A[i] + 1;
1422 //
1423 // Two accesses in memory (scaled distance is 4, stride is 3):
1424 // | A[0] | | | A[3] | | | A[6] | | |
1425 // | | | | | A[4] | | | A[7] | |
1426 return ScaledDist % Stride;
1427}
1428
Adam Nemet9c926572015-03-10 17:40:37 +00001429MemoryDepChecker::Dependence::DepType
1430MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1431 const MemAccessInfo &B, unsigned BIdx,
1432 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001433 assert (AIdx < BIdx && "Must pass arguments in program order");
1434
1435 Value *APtr = A.getPointer();
1436 Value *BPtr = B.getPointer();
1437 bool AIsWrite = A.getInt();
1438 bool BIsWrite = B.getInt();
1439
1440 // Two reads are independent.
1441 if (!AIsWrite && !BIsWrite)
Adam Nemet9c926572015-03-10 17:40:37 +00001442 return Dependence::NoDep;
Adam Nemet04563272015-02-01 16:56:15 +00001443
1444 // We cannot check pointers in different address spaces.
1445 if (APtr->getType()->getPointerAddressSpace() !=
1446 BPtr->getType()->getPointerAddressSpace())
Adam Nemet9c926572015-03-10 17:40:37 +00001447 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001448
David Majnemer7afb46d2016-07-07 06:24:36 +00001449 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1450 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
Adam Nemet04563272015-02-01 16:56:15 +00001451
Silviu Barangaadf4b732016-05-10 12:28:49 +00001452 const SCEV *Src = PSE.getSCEV(APtr);
1453 const SCEV *Sink = PSE.getSCEV(BPtr);
Adam Nemet04563272015-02-01 16:56:15 +00001454
1455 // If the induction step is negative we have to invert source and sink of the
1456 // dependence.
1457 if (StrideAPtr < 0) {
Adam Nemet04563272015-02-01 16:56:15 +00001458 std::swap(APtr, BPtr);
1459 std::swap(Src, Sink);
1460 std::swap(AIsWrite, BIsWrite);
1461 std::swap(AIdx, BIdx);
1462 std::swap(StrideAPtr, StrideBPtr);
1463 }
1464
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001465 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
Adam Nemet04563272015-02-01 16:56:15 +00001466
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001467 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1468 << "(Induction step: " << StrideAPtr << ")\n");
1469 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1470 << *InstMap[BIdx] << ": " << *Dist << "\n");
Adam Nemet04563272015-02-01 16:56:15 +00001471
Adam Nemet943befe2015-07-09 00:03:22 +00001472 // Need accesses with constant stride. We don't want to vectorize
Adam Nemet04563272015-02-01 16:56:15 +00001473 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1474 // the address space.
1475 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001476 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001477 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001478 }
1479
Dorit Nuzmaneac89d72017-02-12 09:32:53 +00001480 Type *ATy = APtr->getType()->getPointerElementType();
1481 Type *BTy = BPtr->getType()->getPointerElementType();
1482 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1483 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1484 uint64_t Stride = std::abs(StrideAPtr);
Adam Nemet04563272015-02-01 16:56:15 +00001485 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1486 if (!C) {
Dorit Nuzmaneac89d72017-02-12 09:32:53 +00001487 if (TypeByteSize == DL.getTypeAllocSize(BTy) &&
1488 isSafeDependenceDistance(DL, *(PSE.getSE()),
1489 *(PSE.getBackedgeTakenCount()), *Dist, Stride,
1490 TypeByteSize))
1491 return Dependence::NoDep;
1492
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001493 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
Florian Hahnef307b82018-12-20 18:49:09 +00001494 FoundNonConstantDistanceDependence = true;
Adam Nemet9c926572015-03-10 17:40:37 +00001495 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001496 }
1497
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001498 const APInt &Val = C->getAPInt();
Matthew Simpson6feebe92016-05-19 15:37:19 +00001499 int64_t Distance = Val.getSExtValue();
Matthew Simpson6feebe92016-05-19 15:37:19 +00001500
1501 // Attempt to prove strided accesses independent.
1502 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1503 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001504 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
Matthew Simpson6feebe92016-05-19 15:37:19 +00001505 return Dependence::NoDep;
1506 }
1507
1508 // Negative distances are not plausible dependencies.
Adam Nemet04563272015-02-01 16:56:15 +00001509 if (Val.isNegative()) {
1510 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001511 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001512 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
Adam Nemetb8486e52016-03-01 00:50:08 +00001513 ATy != BTy)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001514 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001515 return Dependence::ForwardButPreventsForwarding;
Adam Nemetb8486e52016-03-01 00:50:08 +00001516 }
Adam Nemet04563272015-02-01 16:56:15 +00001517
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001518 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001519 return Dependence::Forward;
Adam Nemet04563272015-02-01 16:56:15 +00001520 }
1521
1522 // Write to the same location with the same size.
1523 // Could be improved to assert type sizes are the same (i32 == float, etc).
1524 if (Val == 0) {
1525 if (ATy == BTy)
Adam Nemetd7037c52015-11-03 20:13:43 +00001526 return Dependence::Forward;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001527 LLVM_DEBUG(
1528 dbgs() << "LAA: Zero dependence difference but different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001529 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001530 }
1531
1532 assert(Val.isStrictlyPositive() && "Expect a positive value");
1533
Adam Nemet04563272015-02-01 16:56:15 +00001534 if (ATy != BTy) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001535 LLVM_DEBUG(
1536 dbgs()
1537 << "LAA: ReadWrite-Write positive dependency with different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001538 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001539 }
1540
Adam Nemet04563272015-02-01 16:56:15 +00001541 // Bail out early if passed-in parameters make vectorization not feasible.
Adam Nemetf219c642015-02-19 19:14:52 +00001542 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1543 VectorizerParams::VectorizationFactor : 1);
1544 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1545 VectorizerParams::VectorizationInterleave : 1);
Hao Liu751004a2015-06-08 04:48:37 +00001546 // The minimum number of iterations for a vectorized/unrolled version.
1547 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
Adam Nemet04563272015-02-01 16:56:15 +00001548
Hao Liu751004a2015-06-08 04:48:37 +00001549 // It's not vectorizable if the distance is smaller than the minimum distance
1550 // needed for a vectroized/unrolled version. Vectorizing one iteration in
1551 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1552 // TypeByteSize (No need to plus the last gap distance).
1553 //
1554 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1555 // foo(int *A) {
1556 // int *B = (int *)((char *)A + 14);
1557 // for (i = 0 ; i < 1024 ; i += 2)
1558 // B[i] = A[i] + 1;
1559 // }
1560 //
1561 // Two accesses in memory (stride is 2):
1562 // | A[0] | | A[2] | | A[4] | | A[6] | |
1563 // | B[0] | | B[2] | | B[4] |
1564 //
1565 // Distance needs for vectorizing iterations except the last iteration:
1566 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1567 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1568 //
1569 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1570 // 12, which is less than distance.
1571 //
1572 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1573 // the minimum distance needed is 28, which is greater than distance. It is
1574 // not safe to do vectorization.
David Majnemer7afb46d2016-07-07 06:24:36 +00001575 uint64_t MinDistanceNeeded =
Hao Liu751004a2015-06-08 04:48:37 +00001576 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
David Majnemer7afb46d2016-07-07 06:24:36 +00001577 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001578 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
1579 << Distance << '\n');
Hao Liu751004a2015-06-08 04:48:37 +00001580 return Dependence::Backward;
1581 }
1582
1583 // Unsafe if the minimum distance needed is greater than max safe distance.
1584 if (MinDistanceNeeded > MaxSafeDepDistBytes) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001585 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
1586 << MinDistanceNeeded << " size in bytes");
Adam Nemet9c926572015-03-10 17:40:37 +00001587 return Dependence::Backward;
Adam Nemet04563272015-02-01 16:56:15 +00001588 }
1589
Adam Nemet9cc0c392015-02-26 17:58:48 +00001590 // Positive distance bigger than max vectorization factor.
Hao Liu751004a2015-06-08 04:48:37 +00001591 // FIXME: Should use max factor instead of max distance in bytes, which could
1592 // not handle different types.
1593 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1594 // void foo (int *A, char *B) {
1595 // for (unsigned i = 0; i < 1024; i++) {
1596 // A[i+2] = A[i] + 1;
1597 // B[i+2] = B[i] + 1;
1598 // }
1599 // }
1600 //
1601 // This case is currently unsafe according to the max safe distance. If we
1602 // analyze the two accesses on array B, the max safe dependence distance
1603 // is 2. Then we analyze the accesses on array A, the minimum distance needed
1604 // is 8, which is less than 2 and forbidden vectorization, But actually
1605 // both A and B could be vectorized by 2 iterations.
1606 MaxSafeDepDistBytes =
David Majnemer7afb46d2016-07-07 06:24:36 +00001607 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
Adam Nemet04563272015-02-01 16:56:15 +00001608
1609 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001610 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001611 couldPreventStoreLoadForward(Distance, TypeByteSize))
Adam Nemet9c926572015-03-10 17:40:37 +00001612 return Dependence::BackwardVectorizableButPreventsForwarding;
Adam Nemet04563272015-02-01 16:56:15 +00001613
Alon Kom682cfc12017-09-14 07:40:02 +00001614 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001615 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1616 << " with max VF = " << MaxVF << '\n');
Alon Kom682cfc12017-09-14 07:40:02 +00001617 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
1618 MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits);
Adam Nemet9c926572015-03-10 17:40:37 +00001619 return Dependence::BackwardVectorizable;
Adam Nemet04563272015-02-01 16:56:15 +00001620}
1621
Adam Nemetdee666b2015-03-10 17:40:34 +00001622bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
Amjad Aboud5448e982017-03-08 05:09:10 +00001623 MemAccessInfoList &CheckDeps,
Adam Nemet8bc61df2015-02-24 00:41:59 +00001624 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001625
David Majnemer7afb46d2016-07-07 06:24:36 +00001626 MaxSafeDepDistBytes = -1;
Amjad Aboud5448e982017-03-08 05:09:10 +00001627 SmallPtrSet<MemAccessInfo, 8> Visited;
1628 for (MemAccessInfo CurAccess : CheckDeps) {
1629 if (Visited.count(CurAccess))
1630 continue;
Adam Nemet04563272015-02-01 16:56:15 +00001631
1632 // Get the relevant memory access set.
1633 EquivalenceClasses<MemAccessInfo>::iterator I =
1634 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1635
1636 // Check accesses within this set.
Richard Trieu7a083812016-02-18 22:09:30 +00001637 EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1638 AccessSets.member_begin(I);
1639 EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1640 AccessSets.member_end();
Adam Nemet04563272015-02-01 16:56:15 +00001641
1642 // Check every access pair.
1643 while (AI != AE) {
Amjad Aboud5448e982017-03-08 05:09:10 +00001644 Visited.insert(*AI);
Adam Nemet04563272015-02-01 16:56:15 +00001645 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1646 while (OI != AE) {
1647 // Check every accessing instruction pair in program order.
1648 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1649 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1650 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1651 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
Adam Nemet9c926572015-03-10 17:40:37 +00001652 auto A = std::make_pair(&*AI, *I1);
1653 auto B = std::make_pair(&*OI, *I2);
1654
1655 assert(*I1 != *I2);
1656 if (*I1 > *I2)
1657 std::swap(A, B);
1658
1659 Dependence::DepType Type =
1660 isDependent(*A.first, A.second, *B.first, B.second, Strides);
Florian Hahn485f2822018-12-18 22:25:11 +00001661 mergeInStatus(Dependence::isSafeForVectorization(Type));
Adam Nemet9c926572015-03-10 17:40:37 +00001662
Adam Nemeta2df7502015-11-03 21:39:52 +00001663 // Gather dependences unless we accumulated MaxDependences
Adam Nemet9c926572015-03-10 17:40:37 +00001664 // dependences. In that case return as soon as we find the first
1665 // unsafe dependence. This puts a limit on this quadratic
1666 // algorithm.
Adam Nemeta2df7502015-11-03 21:39:52 +00001667 if (RecordDependences) {
1668 if (Type != Dependence::NoDep)
1669 Dependences.push_back(Dependence(A.second, B.second, Type));
Adam Nemet9c926572015-03-10 17:40:37 +00001670
Adam Nemeta2df7502015-11-03 21:39:52 +00001671 if (Dependences.size() >= MaxDependences) {
1672 RecordDependences = false;
1673 Dependences.clear();
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001674 LLVM_DEBUG(dbgs()
1675 << "Too many dependences, stopped recording\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001676 }
1677 }
Florian Hahn485f2822018-12-18 22:25:11 +00001678 if (!RecordDependences && !isSafeForVectorization())
Adam Nemet04563272015-02-01 16:56:15 +00001679 return false;
1680 }
1681 ++OI;
1682 }
1683 AI++;
1684 }
1685 }
Adam Nemet9c926572015-03-10 17:40:37 +00001686
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001687 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
Florian Hahn485f2822018-12-18 22:25:11 +00001688 return isSafeForVectorization();
Adam Nemet04563272015-02-01 16:56:15 +00001689}
1690
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001691SmallVector<Instruction *, 4>
1692MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1693 MemAccessInfo Access(Ptr, isWrite);
1694 auto &IndexVector = Accesses.find(Access)->second;
1695
1696 SmallVector<Instruction *, 4> Insts;
David Majnemer2d006e72016-08-12 04:32:42 +00001697 transform(IndexVector,
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001698 std::back_inserter(Insts),
1699 [&](unsigned Idx) { return this->InstMap[Idx]; });
1700 return Insts;
1701}
1702
Adam Nemet58913d62015-03-10 17:40:43 +00001703const char *MemoryDepChecker::Dependence::DepName[] = {
1704 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1705 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1706
1707void MemoryDepChecker::Dependence::print(
1708 raw_ostream &OS, unsigned Depth,
1709 const SmallVectorImpl<Instruction *> &Instrs) const {
1710 OS.indent(Depth) << DepName[Type] << ":\n";
1711 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1712 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1713}
1714
Adam Nemet929c38e2015-02-19 19:15:10 +00001715bool LoopAccessInfo::canAnalyzeLoop() {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001716 // We need to have a loop header.
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001717 LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
1718 << TheLoop->getHeader()->getParent()->getName() << ": "
1719 << TheLoop->getHeader()->getName() << '\n');
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001720
Adam Nemetd8968f02016-01-18 21:16:33 +00001721 // We can only analyze innermost loops.
Adam Nemet929c38e2015-02-19 19:15:10 +00001722 if (!TheLoop->empty()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001723 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001724 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
Adam Nemet929c38e2015-02-19 19:15:10 +00001725 return false;
1726 }
1727
1728 // We must have a single backedge.
1729 if (TheLoop->getNumBackEdges() != 1) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001730 LLVM_DEBUG(
1731 dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001732 recordAnalysis("CFGNotUnderstood")
1733 << "loop control flow is not understood by analyzer";
Adam Nemet929c38e2015-02-19 19:15:10 +00001734 return false;
1735 }
1736
1737 // We must have a single exiting block.
1738 if (!TheLoop->getExitingBlock()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001739 LLVM_DEBUG(
1740 dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001741 recordAnalysis("CFGNotUnderstood")
1742 << "loop control flow is not understood by analyzer";
Adam Nemet929c38e2015-02-19 19:15:10 +00001743 return false;
1744 }
1745
1746 // We only handle bottom-tested loops, i.e. loop in which the condition is
1747 // checked at the end of each iteration. With that we can assume that all
1748 // instructions in the loop are executed the same number of times.
1749 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001750 LLVM_DEBUG(
1751 dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001752 recordAnalysis("CFGNotUnderstood")
1753 << "loop control flow is not understood by analyzer";
Adam Nemet929c38e2015-02-19 19:15:10 +00001754 return false;
1755 }
1756
Adam Nemet929c38e2015-02-19 19:15:10 +00001757 // ScalarEvolution needs to be able to find the exit count.
Xinliang David Li94734ee2016-07-01 05:59:55 +00001758 const SCEV *ExitCount = PSE->getBackedgeTakenCount();
1759 if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001760 recordAnalysis("CantComputeNumberOfIterations")
1761 << "could not determine number of loop iterations";
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001762 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001763 return false;
1764 }
1765
1766 return true;
1767}
1768
Adam Nemetb49d9a52016-07-13 22:36:27 +00001769void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
Adam Nemet7da74ab2016-07-13 22:36:35 +00001770 const TargetLibraryInfo *TLI,
1771 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001772 typedef SmallPtrSet<Value*, 16> ValueSet;
1773
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001774 // Holds the Load and Store instructions.
1775 SmallVector<LoadInst *, 16> Loads;
1776 SmallVector<StoreInst *, 16> Stores;
Adam Nemet04563272015-02-01 16:56:15 +00001777
1778 // Holds all the different accesses in the loop.
1779 unsigned NumReads = 0;
1780 unsigned NumReadWrites = 0;
1781
Xinliang David Lice030ac2016-06-22 23:20:59 +00001782 PtrRtChecking->Pointers.clear();
1783 PtrRtChecking->Need = false;
Adam Nemet04563272015-02-01 16:56:15 +00001784
1785 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
Adam Nemet04563272015-02-01 16:56:15 +00001786
1787 // For each block.
David Majnemer8b401012016-07-12 20:31:46 +00001788 for (BasicBlock *BB : TheLoop->blocks()) {
Adam Nemet04563272015-02-01 16:56:15 +00001789 // Scan the BB and collect legal loads and stores.
David Majnemer8b401012016-07-12 20:31:46 +00001790 for (Instruction &I : *BB) {
Adam Nemet04563272015-02-01 16:56:15 +00001791 // If this is a load, save it. If this instruction can read from memory
1792 // but is not a load, then we quit. Notice that we don't handle function
1793 // calls that read or write.
David Majnemer8b401012016-07-12 20:31:46 +00001794 if (I.mayReadFromMemory()) {
Adam Nemet04563272015-02-01 16:56:15 +00001795 // Many math library functions read the rounding mode. We will only
1796 // vectorize a loop if it contains known function calls that don't set
1797 // the flag. Therefore, it is safe to ignore this read from memory.
David Majnemer8b401012016-07-12 20:31:46 +00001798 auto *Call = dyn_cast<CallInst>(&I);
David Majnemerb4b27232016-04-19 19:10:21 +00001799 if (Call && getVectorIntrinsicIDForCall(Call, TLI))
Adam Nemet04563272015-02-01 16:56:15 +00001800 continue;
1801
Michael Zolotukhin9b3cf602015-03-17 19:46:50 +00001802 // If the function has an explicit vectorized counterpart, we can safely
1803 // assume that it can be vectorized.
1804 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1805 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1806 continue;
1807
David Majnemer8b401012016-07-12 20:31:46 +00001808 auto *Ld = dyn_cast<LoadInst>(&I);
Adam Nemet04563272015-02-01 16:56:15 +00001809 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001810 recordAnalysis("NonSimpleLoad", Ld)
1811 << "read with atomic ordering or volatile read";
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001812 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001813 CanVecMem = false;
1814 return;
Adam Nemet04563272015-02-01 16:56:15 +00001815 }
1816 NumLoads++;
1817 Loads.push_back(Ld);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001818 DepChecker->addAccess(Ld);
Adam Nemeta9f09c62016-06-17 22:35:41 +00001819 if (EnableMemAccessVersioning)
Adam Nemetc953bb92016-06-16 22:57:55 +00001820 collectStridedAccess(Ld);
Adam Nemet04563272015-02-01 16:56:15 +00001821 continue;
1822 }
1823
1824 // Save 'store' instructions. Abort if other instructions write to memory.
David Majnemer8b401012016-07-12 20:31:46 +00001825 if (I.mayWriteToMemory()) {
1826 auto *St = dyn_cast<StoreInst>(&I);
Adam Nemet04563272015-02-01 16:56:15 +00001827 if (!St) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001828 recordAnalysis("CantVectorizeInstruction", St)
1829 << "instruction cannot be vectorized";
Adam Nemet436018c2015-02-19 19:15:00 +00001830 CanVecMem = false;
1831 return;
Adam Nemet04563272015-02-01 16:56:15 +00001832 }
1833 if (!St->isSimple() && !IsAnnotatedParallel) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001834 recordAnalysis("NonSimpleStore", St)
1835 << "write with atomic ordering or volatile write";
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001836 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001837 CanVecMem = false;
1838 return;
Adam Nemet04563272015-02-01 16:56:15 +00001839 }
1840 NumStores++;
1841 Stores.push_back(St);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001842 DepChecker->addAccess(St);
Adam Nemeta9f09c62016-06-17 22:35:41 +00001843 if (EnableMemAccessVersioning)
Adam Nemetc953bb92016-06-16 22:57:55 +00001844 collectStridedAccess(St);
Adam Nemet04563272015-02-01 16:56:15 +00001845 }
1846 } // Next instr.
1847 } // Next block.
1848
1849 // Now we have two lists that hold the loads and the stores.
1850 // Next, we find the pointers that they use.
1851
1852 // Check if we see any stores. If there are no stores, then we don't
1853 // care if the pointers are *restrict*.
1854 if (!Stores.size()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001855 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001856 CanVecMem = true;
1857 return;
Adam Nemet04563272015-02-01 16:56:15 +00001858 }
1859
Adam Nemetdee666b2015-03-10 17:40:34 +00001860 MemoryDepChecker::DepCandidates DependentAccesses;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001861 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
Manoj Gupta77eeac32018-07-09 22:27:23 +00001862 TheLoop, AA, LI, DependentAccesses, *PSE);
Adam Nemet04563272015-02-01 16:56:15 +00001863
1864 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1865 // multiple times on the same object. If the ptr is accessed twice, once
1866 // for read and once for write, it will only appear once (on the write
1867 // list). This is okay, since we are going to check for conflicts between
1868 // writes and between reads and writes, but not between reads and reads.
1869 ValueSet Seen;
1870
Anna Thomasb1e3d452018-09-25 20:57:20 +00001871 // Record uniform store addresses to identify if we have multiple stores
1872 // to the same address.
1873 ValueSet UniformStores;
1874
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001875 for (StoreInst *ST : Stores) {
1876 Value *Ptr = ST->getPointerOperand();
Anna Thomasb1e3d452018-09-25 20:57:20 +00001877
Anna Thomas6f732bf2018-10-16 15:46:26 +00001878 if (isUniform(Ptr))
Anna Thomas5e9215f2018-11-19 15:39:59 +00001879 HasDependenceInvolvingLoopInvariantAddress |=
Anna Thomas6f732bf2018-10-16 15:46:26 +00001880 !UniformStores.insert(Ptr).second;
Anna Thomasb1e3d452018-09-25 20:57:20 +00001881
Adam Nemet04563272015-02-01 16:56:15 +00001882 // If we did *not* see this pointer before, insert it to the read-write
1883 // list. At this phase it is only a 'write' list.
1884 if (Seen.insert(Ptr).second) {
1885 ++NumReadWrites;
1886
Chandler Carruthac80dc72015-06-17 07:18:54 +00001887 MemoryLocation Loc = MemoryLocation::get(ST);
Adam Nemet04563272015-02-01 16:56:15 +00001888 // The TBAA metadata could have a control dependency on the predication
1889 // condition, so we cannot rely on it when determining whether or not we
1890 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001891 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001892 Loc.AATags.TBAA = nullptr;
1893
1894 Accesses.addStore(Loc);
1895 }
1896 }
1897
1898 if (IsAnnotatedParallel) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001899 LLVM_DEBUG(
1900 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
1901 << "checks.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001902 CanVecMem = true;
1903 return;
Adam Nemet04563272015-02-01 16:56:15 +00001904 }
1905
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001906 for (LoadInst *LD : Loads) {
1907 Value *Ptr = LD->getPointerOperand();
Adam Nemet04563272015-02-01 16:56:15 +00001908 // If we did *not* see this pointer before, insert it to the
1909 // read list. If we *did* see it before, then it is already in
1910 // the read-write list. This allows us to vectorize expressions
1911 // such as A[i] += x; Because the address of A[i] is a read-write
1912 // pointer. This only works if the index of A[i] is consecutive.
1913 // If the address of i is unknown (for example A[B[i]]) then we may
1914 // read a few words, modify, and write a few words, and some of the
1915 // words may be written to the same address.
1916 bool IsReadOnlyPtr = false;
Adam Nemet139ffba2016-06-16 08:27:03 +00001917 if (Seen.insert(Ptr).second ||
Xinliang David Li94734ee2016-07-01 05:59:55 +00001918 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
Adam Nemet04563272015-02-01 16:56:15 +00001919 ++NumReads;
1920 IsReadOnlyPtr = true;
1921 }
1922
Anna Thomas5e9215f2018-11-19 15:39:59 +00001923 // See if there is an unsafe dependency between a load to a uniform address and
1924 // store to the same uniform address.
1925 if (UniformStores.count(Ptr)) {
1926 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
1927 "load and uniform store to the same address!\n");
1928 HasDependenceInvolvingLoopInvariantAddress = true;
1929 }
1930
Chandler Carruthac80dc72015-06-17 07:18:54 +00001931 MemoryLocation Loc = MemoryLocation::get(LD);
Adam Nemet04563272015-02-01 16:56:15 +00001932 // The TBAA metadata could have a control dependency on the predication
1933 // condition, so we cannot rely on it when determining whether or not we
1934 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001935 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001936 Loc.AATags.TBAA = nullptr;
1937
1938 Accesses.addLoad(Loc, IsReadOnlyPtr);
1939 }
1940
1941 // If we write (or read-write) to a single destination and there are no
1942 // other reads in this loop then is it safe to vectorize.
1943 if (NumReadWrites == 1 && NumReads == 0) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001944 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001945 CanVecMem = true;
1946 return;
Adam Nemet04563272015-02-01 16:56:15 +00001947 }
1948
1949 // Build dependence sets and check whether we need a runtime pointer bounds
1950 // check.
1951 Accesses.buildDependenceSets();
Adam Nemet04563272015-02-01 16:56:15 +00001952
1953 // Find pointers with computable bounds. We are going to use this information
1954 // to place a runtime bound check.
Xinliang David Li94734ee2016-07-01 05:59:55 +00001955 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
Adam Nemet139ffba2016-06-16 08:27:03 +00001956 TheLoop, SymbolicStrides);
Adam Nemetee614742015-07-09 22:17:38 +00001957 if (!CanDoRTIfNeeded) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001958 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001959 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1960 << "the array bounds.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001961 CanVecMem = false;
1962 return;
Adam Nemet04563272015-02-01 16:56:15 +00001963 }
1964
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001965 LLVM_DEBUG(
1966 dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
Adam Nemet04563272015-02-01 16:56:15 +00001967
Adam Nemet436018c2015-02-19 19:15:00 +00001968 CanVecMem = true;
Adam Nemet04563272015-02-01 16:56:15 +00001969 if (Accesses.isDependencyCheckNeeded()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001970 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
Xinliang David Lice030ac2016-06-22 23:20:59 +00001971 CanVecMem = DepChecker->areDepsSafe(
Adam Nemet139ffba2016-06-16 08:27:03 +00001972 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001973 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
Adam Nemet04563272015-02-01 16:56:15 +00001974
Xinliang David Lice030ac2016-06-22 23:20:59 +00001975 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001976 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
Adam Nemet04563272015-02-01 16:56:15 +00001977
1978 // Clear the dependency checks. We assume they are not needed.
Xinliang David Lice030ac2016-06-22 23:20:59 +00001979 Accesses.resetDepChecks(*DepChecker);
Adam Nemet04563272015-02-01 16:56:15 +00001980
Xinliang David Lice030ac2016-06-22 23:20:59 +00001981 PtrRtChecking->reset();
1982 PtrRtChecking->Need = true;
Adam Nemet04563272015-02-01 16:56:15 +00001983
Xinliang David Li94734ee2016-07-01 05:59:55 +00001984 auto *SE = PSE->getSE();
Xinliang David Lice030ac2016-06-22 23:20:59 +00001985 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
Adam Nemet139ffba2016-06-16 08:27:03 +00001986 SymbolicStrides, true);
Silviu Baranga98a13712015-06-08 10:27:06 +00001987
Adam Nemet949e91a2015-03-10 19:12:41 +00001988 // Check that we found the bounds for the pointer.
Adam Nemetee614742015-07-09 22:17:38 +00001989 if (!CanDoRTIfNeeded) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001990 recordAnalysis("CantCheckMemDepsAtRunTime")
1991 << "cannot check memory dependencies at runtime";
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001992 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001993 CanVecMem = false;
1994 return;
1995 }
1996
Adam Nemet04563272015-02-01 16:56:15 +00001997 CanVecMem = true;
1998 }
1999 }
2000
Adam Nemet4bb90a72015-03-10 21:47:39 +00002001 if (CanVecMem)
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002002 LLVM_DEBUG(
2003 dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
2004 << (PtrRtChecking->Need ? "" : " don't")
2005 << " need runtime memory checks.\n");
Adam Nemet4bb90a72015-03-10 21:47:39 +00002006 else {
Adam Nemet877ccee2016-09-30 00:01:30 +00002007 recordAnalysis("UnsafeMemDep")
Adam Nemet0a77dfa2016-05-09 23:03:44 +00002008 << "unsafe dependent memory operations in loop. Use "
2009 "#pragma loop distribute(enable) to allow loop distribution "
2010 "to attempt to isolate the offending operations into a separate "
Adam Nemet877ccee2016-09-30 00:01:30 +00002011 "loop";
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002012 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
Adam Nemet4bb90a72015-03-10 21:47:39 +00002013 }
Adam Nemet04563272015-02-01 16:56:15 +00002014}
2015
Adam Nemet01abb2c2015-02-18 03:43:19 +00002016bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2017 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00002018 assert(TheLoop->contains(BB) && "Unknown block used");
2019
2020 // Blocks that do not dominate the latch need predication.
2021 BasicBlock* Latch = TheLoop->getLoopLatch();
2022 return !DT->dominates(BB, Latch);
2023}
2024
Adam Nemet877ccee2016-09-30 00:01:30 +00002025OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
2026 Instruction *I) {
Adam Nemetc9228532015-02-19 19:14:56 +00002027 assert(!Report && "Multiple reports generated");
Adam Nemet877ccee2016-09-30 00:01:30 +00002028
2029 Value *CodeRegion = TheLoop->getHeader();
2030 DebugLoc DL = TheLoop->getStartLoc();
2031
2032 if (I) {
2033 CodeRegion = I->getParent();
2034 // If there is no debug location attached to the instruction, revert back to
2035 // using the loop's.
2036 if (I->getDebugLoc())
2037 DL = I->getDebugLoc();
2038 }
2039
2040 Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2041 CodeRegion);
2042 return *Report;
Adam Nemet04563272015-02-01 16:56:15 +00002043}
2044
Adam Nemet57ac7662015-02-19 19:15:21 +00002045bool LoopAccessInfo::isUniform(Value *V) const {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +00002046 auto *SE = PSE->getSE();
2047 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
2048 // never considered uniform.
2049 // TODO: Is this really what we want? Even without FP SCEV, we may want some
2050 // trivially loop-invariant FP values to be considered uniform.
2051 if (!SE->isSCEVable(V->getType()))
2052 return false;
2053 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
Adam Nemet04563272015-02-01 16:56:15 +00002054}
Adam Nemet7206d7a2015-02-06 18:31:04 +00002055
2056// FIXME: this function is currently a duplicate of the one in
2057// LoopVectorize.cpp.
2058static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
2059 Instruction *Loc) {
2060 if (FirstInst)
2061 return FirstInst;
2062 if (Instruction *I = dyn_cast<Instruction>(V))
2063 return I->getParent() == Loc->getParent() ? I : nullptr;
2064 return nullptr;
2065}
2066
Benjamin Kramer039b1042015-10-28 13:54:36 +00002067namespace {
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00002068
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00002069/// IR Values for the lower and upper bounds of a pointer evolution. We
Adam Nemet4e533ef2015-08-21 23:19:57 +00002070/// need to use value-handles because SCEV expansion can invalidate previously
2071/// expanded values. Thus expansion of a pointer can invalidate the bounds for
2072/// a previous one.
Adam Nemet1da7df32015-07-26 05:32:14 +00002073struct PointerBounds {
Adam Nemet4e533ef2015-08-21 23:19:57 +00002074 TrackingVH<Value> Start;
2075 TrackingVH<Value> End;
Adam Nemet1da7df32015-07-26 05:32:14 +00002076};
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00002077
Benjamin Kramer039b1042015-10-28 13:54:36 +00002078} // end anonymous namespace
Adam Nemet7206d7a2015-02-06 18:31:04 +00002079
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00002080/// Expand code for the lower and upper bound of the pointer group \p CG
Adam Nemet1da7df32015-07-26 05:32:14 +00002081/// in \p TheLoop. \return the values for the bounds.
2082static PointerBounds
2083expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
2084 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
2085 const RuntimePointerChecking &PtrRtChecking) {
2086 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
2087 const SCEV *Sc = SE->getSCEV(Ptr);
2088
Keno Fischer92f377b2016-12-05 21:25:03 +00002089 unsigned AS = Ptr->getType()->getPointerAddressSpace();
2090 LLVMContext &Ctx = Loc->getContext();
2091
2092 // Use this type for pointer arithmetic.
2093 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
2094
Adam Nemet1da7df32015-07-26 05:32:14 +00002095 if (SE->isLoopInvariant(Sc, TheLoop)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002096 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
2097 << *Ptr << "\n");
Keno Fischer92f377b2016-12-05 21:25:03 +00002098 // Ptr could be in the loop body. If so, expand a new one at the correct
2099 // location.
2100 Instruction *Inst = dyn_cast<Instruction>(Ptr);
2101 Value *NewPtr = (Inst && TheLoop->contains(Inst))
2102 ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
2103 : Ptr;
James Molloy37dd4d72017-04-05 09:24:26 +00002104 // We must return a half-open range, which means incrementing Sc.
2105 const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
2106 Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
2107 return {NewPtr, NewPtrPlusOne};
Adam Nemet1da7df32015-07-26 05:32:14 +00002108 } else {
Adam Nemet1da7df32015-07-26 05:32:14 +00002109 Value *Start = nullptr, *End = nullptr;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002110 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
Adam Nemet1da7df32015-07-26 05:32:14 +00002111 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
2112 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002113 LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
2114 << "\n");
Adam Nemet1da7df32015-07-26 05:32:14 +00002115 return {Start, End};
2116 }
2117}
2118
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00002119/// Turns a collection of checks into a collection of expanded upper and
Adam Nemet1da7df32015-07-26 05:32:14 +00002120/// lower bounds for both pointers in the check.
2121static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
2122 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
2123 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
2124 const RuntimePointerChecking &PtrRtChecking) {
2125 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
2126
2127 // Here we're relying on the SCEV Expander's cache to only emit code for the
2128 // same bounds once.
David Majnemer2d006e72016-08-12 04:32:42 +00002129 transform(
2130 PointerChecks, std::back_inserter(ChecksWithBounds),
Adam Nemet1da7df32015-07-26 05:32:14 +00002131 [&](const RuntimePointerChecking::PointerCheck &Check) {
NAKAMURA Takumi94abbbd2015-07-27 01:35:30 +00002132 PointerBounds
2133 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
2134 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
2135 return std::make_pair(First, Second);
Adam Nemet1da7df32015-07-26 05:32:14 +00002136 });
2137
2138 return ChecksWithBounds;
2139}
2140
Adam Nemet5b0a4792015-08-11 00:09:37 +00002141std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
Adam Nemet1da7df32015-07-26 05:32:14 +00002142 Instruction *Loc,
2143 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
2144 const {
Adam Nemet1824e412016-07-13 22:18:51 +00002145 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
Xinliang David Li94734ee2016-07-01 05:59:55 +00002146 auto *SE = PSE->getSE();
Adam Nemet1824e412016-07-13 22:18:51 +00002147 SCEVExpander Exp(*SE, DL, "induction");
Adam Nemet1da7df32015-07-26 05:32:14 +00002148 auto ExpandedChecks =
Xinliang David Lice030ac2016-06-22 23:20:59 +00002149 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
Adam Nemet7206d7a2015-02-06 18:31:04 +00002150
2151 LLVMContext &Ctx = Loc->getContext();
Adam Nemet7206d7a2015-02-06 18:31:04 +00002152 Instruction *FirstInst = nullptr;
Adam Nemet7206d7a2015-02-06 18:31:04 +00002153 IRBuilder<> ChkBuilder(Loc);
2154 // Our instructions might fold to a constant.
2155 Value *MemoryRuntimeCheck = nullptr;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00002156
Adam Nemet1da7df32015-07-26 05:32:14 +00002157 for (const auto &Check : ExpandedChecks) {
2158 const PointerBounds &A = Check.first, &B = Check.second;
Adam Nemetcdb791c2015-08-19 17:24:36 +00002159 // Check if two pointers (A and B) conflict where conflict is computed as:
2160 // start(A) <= end(B) && start(B) <= end(A)
Adam Nemet1da7df32015-07-26 05:32:14 +00002161 unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
2162 unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
Adam Nemet7206d7a2015-02-06 18:31:04 +00002163
Adam Nemet1da7df32015-07-26 05:32:14 +00002164 assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
2165 (AS1 == A.End->getType()->getPointerAddressSpace()) &&
2166 "Trying to bounds check pointers with different address spaces");
Adam Nemet7206d7a2015-02-06 18:31:04 +00002167
Adam Nemet1da7df32015-07-26 05:32:14 +00002168 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
2169 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
Adam Nemet7206d7a2015-02-06 18:31:04 +00002170
Adam Nemet1da7df32015-07-26 05:32:14 +00002171 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
2172 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
2173 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
2174 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
Adam Nemet7206d7a2015-02-06 18:31:04 +00002175
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +00002176 // [A|B].Start points to the first accessed byte under base [A|B].
2177 // [A|B].End points to the last accessed byte, plus one.
2178 // There is no conflict when the intervals are disjoint:
2179 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
2180 //
2181 // bound0 = (B.Start < A.End)
2182 // bound1 = (A.Start < B.End)
2183 // IsConflict = bound0 & bound1
2184 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
Adam Nemet1da7df32015-07-26 05:32:14 +00002185 FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +00002186 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
Adam Nemet1da7df32015-07-26 05:32:14 +00002187 FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
2188 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
2189 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2190 if (MemoryRuntimeCheck) {
2191 IsConflict =
2192 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
Adam Nemet7206d7a2015-02-06 18:31:04 +00002193 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
Adam Nemet7206d7a2015-02-06 18:31:04 +00002194 }
Adam Nemet1da7df32015-07-26 05:32:14 +00002195 MemoryRuntimeCheck = IsConflict;
Adam Nemet7206d7a2015-02-06 18:31:04 +00002196 }
2197
Adam Nemet90fec842015-04-02 17:51:57 +00002198 if (!MemoryRuntimeCheck)
2199 return std::make_pair(nullptr, nullptr);
2200
Adam Nemet7206d7a2015-02-06 18:31:04 +00002201 // We have to do this trickery because the IRBuilder might fold the check to a
2202 // constant expression in which case there is no Instruction anchored in a
2203 // the block.
2204 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
2205 ConstantInt::getTrue(Ctx));
2206 ChkBuilder.Insert(Check, "memcheck.conflict");
2207 FirstInst = getFirstInst(FirstInst, Check, Loc);
2208 return std::make_pair(FirstInst, Check);
2209}
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002210
Adam Nemet5b0a4792015-08-11 00:09:37 +00002211std::pair<Instruction *, Instruction *>
2212LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
Xinliang David Lice030ac2016-06-22 23:20:59 +00002213 if (!PtrRtChecking->Need)
Adam Nemet1da7df32015-07-26 05:32:14 +00002214 return std::make_pair(nullptr, nullptr);
2215
Xinliang David Lice030ac2016-06-22 23:20:59 +00002216 return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
Adam Nemet1da7df32015-07-26 05:32:14 +00002217}
2218
Adam Nemetc953bb92016-06-16 22:57:55 +00002219void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2220 Value *Ptr = nullptr;
2221 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
2222 Ptr = LI->getPointerOperand();
2223 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
2224 Ptr = SI->getPointerOperand();
2225 else
2226 return;
2227
Xinliang David Li94734ee2016-07-01 05:59:55 +00002228 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
Adam Nemetc953bb92016-06-16 22:57:55 +00002229 if (!Stride)
2230 return;
2231
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002232 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2233 "versioning:");
2234 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
Dorit Nuzmaneb13dd32017-11-05 16:53:15 +00002235
Fangrui Songf78650a2018-07-30 19:41:25 +00002236 // Avoid adding the "Stride == 1" predicate when we know that
Dorit Nuzmaneb13dd32017-11-05 16:53:15 +00002237 // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2238 // or zero iteration loop, as Trip-Count <= Stride == 1.
Fangrui Songf78650a2018-07-30 19:41:25 +00002239 //
Dorit Nuzmaneb13dd32017-11-05 16:53:15 +00002240 // TODO: We are currently not making a very informed decision on when it is
2241 // beneficial to apply stride versioning. It might make more sense that the
Fangrui Songf78650a2018-07-30 19:41:25 +00002242 // users of this analysis (such as the vectorizer) will trigger it, based on
2243 // their specific cost considerations; For example, in cases where stride
Dorit Nuzmaneb13dd32017-11-05 16:53:15 +00002244 // versioning does not help resolving memory accesses/dependences, the
Fangrui Songf78650a2018-07-30 19:41:25 +00002245 // vectorizer should evaluate the cost of the runtime test, and the benefit
2246 // of various possible stride specializations, considering the alternatives
2247 // of using gather/scatters (if available).
2248
Dorit Nuzmaneb13dd32017-11-05 16:53:15 +00002249 const SCEV *StrideExpr = PSE->getSCEV(Stride);
Fangrui Songf78650a2018-07-30 19:41:25 +00002250 const SCEV *BETakenCount = PSE->getBackedgeTakenCount();
Dorit Nuzmaneb13dd32017-11-05 16:53:15 +00002251
2252 // Match the types so we can compare the stride and the BETakenCount.
Fangrui Songf78650a2018-07-30 19:41:25 +00002253 // The Stride can be positive/negative, so we sign extend Stride;
Hiroshi Inoue02a2bb22019-02-05 08:30:48 +00002254 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
Dorit Nuzmaneb13dd32017-11-05 16:53:15 +00002255 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2256 uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType());
2257 uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType());
2258 const SCEV *CastedStride = StrideExpr;
2259 const SCEV *CastedBECount = BETakenCount;
2260 ScalarEvolution *SE = PSE->getSE();
2261 if (BETypeSize >= StrideTypeSize)
2262 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
2263 else
2264 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
2265 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2266 // Since TripCount == BackEdgeTakenCount + 1, checking:
Fangrui Songf78650a2018-07-30 19:41:25 +00002267 // "Stride >= TripCount" is equivalent to checking:
Dorit Nuzmaneb13dd32017-11-05 16:53:15 +00002268 // Stride - BETakenCount > 0
2269 if (SE->isKnownPositive(StrideMinusBETaken)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002270 LLVM_DEBUG(
2271 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2272 "Stride==1 predicate will imply that the loop executes "
2273 "at most once.\n");
Dorit Nuzmaneb13dd32017-11-05 16:53:15 +00002274 return;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002275 }
2276 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.");
Dorit Nuzmaneb13dd32017-11-05 16:53:15 +00002277
Adam Nemetc953bb92016-06-16 22:57:55 +00002278 SymbolicStrides[Ptr] = Stride;
2279 StrideSet.insert(Stride);
2280}
2281
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002282LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002283 const TargetLibraryInfo *TLI, AliasAnalysis *AA,
Adam Nemeta9f09c62016-06-17 22:35:41 +00002284 DominatorTree *DT, LoopInfo *LI)
Xinliang David Li94734ee2016-07-01 05:59:55 +00002285 : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)),
Xinliang David Lice030ac2016-06-22 23:20:59 +00002286 PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)),
Xinliang David Li94734ee2016-07-01 05:59:55 +00002287 DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
Adam Nemet7da74ab2016-07-13 22:36:35 +00002288 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
Anna Thomas5e9215f2018-11-19 15:39:59 +00002289 HasDependenceInvolvingLoopInvariantAddress(false) {
Adam Nemet929c38e2015-02-19 19:15:10 +00002290 if (canAnalyzeLoop())
Adam Nemet7da74ab2016-07-13 22:36:35 +00002291 analyzeLoop(AA, LI, TLI, DT);
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002292}
2293
Adam Nemete91cc6e2015-02-19 19:15:19 +00002294void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2295 if (CanVecMem) {
Adam Nemet4ad38b62016-05-13 22:49:09 +00002296 OS.indent(Depth) << "Memory dependences are safe";
David Majnemer7afb46d2016-07-07 06:24:36 +00002297 if (MaxSafeDepDistBytes != -1ULL)
Adam Nemetc62e5542016-05-13 22:49:13 +00002298 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2299 << " bytes";
Xinliang David Lice030ac2016-06-22 23:20:59 +00002300 if (PtrRtChecking->Need)
Adam Nemet4ad38b62016-05-13 22:49:09 +00002301 OS << " with run-time checks";
2302 OS << "\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00002303 }
2304
2305 if (Report)
Adam Nemet877ccee2016-09-30 00:01:30 +00002306 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00002307
Xinliang David Lice030ac2016-06-22 23:20:59 +00002308 if (auto *Dependences = DepChecker->getDependences()) {
Adam Nemeta2df7502015-11-03 21:39:52 +00002309 OS.indent(Depth) << "Dependences:\n";
2310 for (auto &Dep : *Dependences) {
Xinliang David Lice030ac2016-06-22 23:20:59 +00002311 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
Adam Nemet58913d62015-03-10 17:40:43 +00002312 OS << "\n";
2313 }
2314 } else
Adam Nemeta2df7502015-11-03 21:39:52 +00002315 OS.indent(Depth) << "Too many dependences, not recorded\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00002316
2317 // List the pair of accesses need run-time checks to prove independence.
Xinliang David Lice030ac2016-06-22 23:20:59 +00002318 PtrRtChecking->print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00002319 OS << "\n";
Adam Nemetc3384322015-05-18 15:36:57 +00002320
Anna Thomas5e9215f2018-11-19 15:39:59 +00002321 OS.indent(Depth) << "Non vectorizable stores to invariant address were "
2322 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
Adam Nemetc3384322015-05-18 15:36:57 +00002323 << "found in loop.\n";
Silviu Barangae3c05342015-11-02 14:41:02 +00002324
2325 OS.indent(Depth) << "SCEV assumptions:\n";
Xinliang David Li94734ee2016-07-01 05:59:55 +00002326 PSE->getUnionPredicate().print(OS, Depth);
Silviu Barangab77365b2016-04-14 16:08:45 +00002327
2328 OS << "\n";
2329
2330 OS.indent(Depth) << "Expressions re-written:\n";
Xinliang David Li94734ee2016-07-01 05:59:55 +00002331 PSE->print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00002332}
2333
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002334const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002335 auto &LAI = LoopAccessInfoMap[L];
2336
Adam Nemet1824e412016-07-13 22:18:51 +00002337 if (!LAI)
2338 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
2339
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002340 return *LAI.get();
2341}
2342
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002343void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
2344 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
Xinliang David Liecde1c72016-06-09 03:22:39 +00002345
Adam Nemete91cc6e2015-02-19 19:15:19 +00002346 for (Loop *TopLevelLoop : *LI)
2347 for (Loop *L : depth_first(TopLevelLoop)) {
2348 OS.indent(2) << L->getHeader()->getName() << ":\n";
Adam Nemetbdbc5222016-06-16 08:26:56 +00002349 auto &LAI = LAA.getInfo(L);
Adam Nemete91cc6e2015-02-19 19:15:19 +00002350 LAI.print(OS, 4);
2351 }
2352}
2353
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002354bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
Xinliang David Liecde1c72016-06-09 03:22:39 +00002355 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002356 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
Xinliang David Liecde1c72016-06-09 03:22:39 +00002357 TLI = TLIP ? &TLIP->getTLI() : nullptr;
2358 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2359 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2360 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002361
2362 return false;
2363}
2364
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002365void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002366 AU.addRequired<ScalarEvolutionWrapperPass>();
Chandler Carruth7b560d42015-09-09 17:55:00 +00002367 AU.addRequired<AAResultsWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002368 AU.addRequired<DominatorTreeWrapperPass>();
Adam Nemete91cc6e2015-02-19 19:15:19 +00002369 AU.addRequired<LoopInfoWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002370
2371 AU.setPreservesAll();
2372}
2373
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002374char LoopAccessLegacyAnalysis::ID = 0;
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002375static const char laa_name[] = "Loop Access Analysis";
2376#define LAA_NAME "loop-accesses"
2377
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002378INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
Chandler Carruth7b560d42015-09-09 17:55:00 +00002379INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002380INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002381INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Adam Nemete91cc6e2015-02-19 19:15:19 +00002382INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002383INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002384
Chandler Carruthdab4eae2016-11-23 17:53:26 +00002385AnalysisKey LoopAccessAnalysis::Key;
Xinliang David Li8a021312016-07-02 21:18:40 +00002386
Chandler Carruth410eaeb2017-01-11 06:23:21 +00002387LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2388 LoopStandardAnalysisResults &AR) {
2389 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
Xinliang David Li8a021312016-07-02 21:18:40 +00002390}
2391
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002392namespace llvm {
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00002393
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002394 Pass *createLAAPass() {
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002395 return new LoopAccessLegacyAnalysis();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002396 }
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00002397
2398} // end namespace llvm