blob: a14c690d5c47e5309571c364dd9cde350d0befa3 [file] [log] [blame]
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00006//
7//===----------------------------------------------------------------------===//
8//
9// The LoopPredication pass tries to convert loop variant range checks to loop
10// invariant by widening checks across loop iterations. For example, it will
11// convert
12//
13// for (i = 0; i < n; i++) {
14// guard(i < len);
15// ...
16// }
17//
18// to
19//
20// for (i = 0; i < n; i++) {
21// guard(n - 1 < len);
22// ...
23// }
24//
25// After this transformation the condition of the guard is loop invariant, so
26// loop-unswitch can later unswitch the loop by this condition which basically
27// predicates the loop by the widened condition:
28//
29// if (n - 1 < len)
30// for (i = 0; i < n; i++) {
31// ...
32// }
33// else
34// deoptimize
35//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000036// It's tempting to rely on SCEV here, but it has proven to be problematic.
37// Generally the facts SCEV provides about the increment step of add
38// recurrences are true if the backedge of the loop is taken, which implicitly
39// assumes that the guard doesn't fail. Using these facts to optimize the
40// guard results in a circular logic where the guard is optimized under the
41// assumption that it never fails.
42//
43// For example, in the loop below the induction variable will be marked as nuw
44// basing on the guard. Basing on nuw the guard predicate will be considered
45// monotonic. Given a monotonic condition it's tempting to replace the induction
46// variable in the condition with its value on the last iteration. But this
47// transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48//
49// for (int i = b; i != e; i++)
50// guard(i u< len)
51//
52// One of the ways to reason about this problem is to use an inductive proof
53// approach. Given the loop:
54//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000055// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000056// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000057// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000058// I.INC = I + Step
59// guard(G(I));
Artur Pilipenko8aadc642017-10-27 14:46:17 +000060// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000061// }
62//
63// where B(x) and G(x) are predicates that map integers to booleans, we want a
64// loop invariant expression M such the following program has the same semantics
65// as the above:
66//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000067// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000068// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000069// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000070// I.INC = I + Step
Artur Pilipenko8aadc642017-10-27 14:46:17 +000071// guard(G(0) && M);
72// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000073// }
74//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000075// One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
Fangrui Songf78650a2018-07-30 19:41:25 +000076//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000077// Informal proof that the transformation above is correct:
78//
79// By the definition of guards we can rewrite the guard condition to:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000080// G(I) && G(0) && M
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000081//
82// Let's prove that for each iteration of the loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000083// G(0) && M => G(I)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000084// And the condition above can be simplified to G(Start) && M.
Fangrui Songf78650a2018-07-30 19:41:25 +000085//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000086// Induction base.
Artur Pilipenko8aadc642017-10-27 14:46:17 +000087// G(0) && M => G(0)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000088//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000089// Induction step. Assuming G(0) && M => G(I) on the subsequent
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000090// iteration:
91//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000092// B(I) is true because it's the backedge condition.
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000093// G(I) is true because the backedge is guarded by this condition.
94//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000095// So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000096//
97// Note that we can use anything stronger than M, i.e. any condition which
98// implies M.
99//
Anna Thomas7b360432017-12-04 15:11:48 +0000100// When S = 1 (i.e. forward iterating loop), the transformation is supported
101// when:
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000102// * The loop has a single latch with the condition of the form:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000103// B(X) = latchStart + X <pred> latchLimit,
104// where <pred> is u<, u<=, s<, or s<=.
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000105// * The guard condition is of the form
106// G(X) = guardStart + X u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000107//
Anna Thomas7b360432017-12-04 15:11:48 +0000108// For the ult latch comparison case M is:
109// forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110// guardStart + X + 1 u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000111//
Anna Thomas7b360432017-12-04 15:11:48 +0000112// The only way the antecedent can be true and the consequent can be false is
113// if
114// X == guardLimit - 1 - guardStart
115// (and guardLimit is non-zero, but we won't use this latter fact).
116// If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117// latchStart + guardLimit - 1 - guardStart u< latchLimit
118// and its negation is
119// latchStart + guardLimit - 1 - guardStart u>= latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000120//
Anna Thomas7b360432017-12-04 15:11:48 +0000121// In other words, if
122// latchLimit u<= latchStart + guardLimit - 1 - guardStart
123// then:
124// (the ranges below are written in ConstantRange notation, where [A, B) is the
125// set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000126//
Anna Thomas7b360432017-12-04 15:11:48 +0000127// forall X . guardStart + X u< guardLimit &&
128// latchStart + X u< latchLimit =>
129// guardStart + X + 1 u< guardLimit
130// == forall X . guardStart + X u< guardLimit &&
131// latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132// guardStart + X + 1 u< guardLimit
133// == forall X . (guardStart + X) in [0, guardLimit) &&
134// (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135// (guardStart + X + 1) in [0, guardLimit)
136// == forall X . X in [-guardStart, guardLimit - guardStart) &&
137// X in [-latchStart, guardLimit - 1 - guardStart) =>
138// X in [-guardStart - 1, guardLimit - guardStart - 1)
139// == true
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000140//
Anna Thomas7b360432017-12-04 15:11:48 +0000141// So the widened condition is:
142// guardStart u< guardLimit &&
143// latchStart + guardLimit - 1 - guardStart u>= latchLimit
144// Similarly for ule condition the widened condition is:
145// guardStart u< guardLimit &&
146// latchStart + guardLimit - 1 - guardStart u> latchLimit
147// For slt condition the widened condition is:
148// guardStart u< guardLimit &&
149// latchStart + guardLimit - 1 - guardStart s>= latchLimit
150// For sle condition the widened condition is:
151// guardStart u< guardLimit &&
152// latchStart + guardLimit - 1 - guardStart s> latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000153//
Anna Thomas7b360432017-12-04 15:11:48 +0000154// When S = -1 (i.e. reverse iterating loop), the transformation is supported
155// when:
156// * The loop has a single latch with the condition of the form:
Serguei Katkovc8016e72018-02-08 10:34:08 +0000157// B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
Anna Thomas7b360432017-12-04 15:11:48 +0000158// * The guard condition is of the form
159// G(X) = X - 1 u< guardLimit
160//
161// For the ugt latch comparison case M is:
162// forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163//
164// The only way the antecedent can be true and the consequent can be false is if
165// X == 1.
166// If X == 1 then the second half of the antecedent is
167// 1 u> latchLimit, and its negation is latchLimit u>= 1.
168//
169// So the widened condition is:
170// guardStart u< guardLimit && latchLimit u>= 1.
171// Similarly for sgt condition the widened condition is:
172// guardStart u< guardLimit && latchLimit s>= 1.
Serguei Katkovc8016e72018-02-08 10:34:08 +0000173// For uge condition the widened condition is:
174// guardStart u< guardLimit && latchLimit u> 1.
175// For sge condition the widened condition is:
176// guardStart u< guardLimit && latchLimit s> 1.
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000177//===----------------------------------------------------------------------===//
178
179#include "llvm/Transforms/Scalar/LoopPredication.h"
Fedor Sergeevc297e842018-10-17 09:02:54 +0000180#include "llvm/ADT/Statistic.h"
Philip Reames92a71772019-04-18 16:33:17 +0000181#include "llvm/Analysis/AliasAnalysis.h"
Anna Thomas9b1176b2018-03-22 16:03:59 +0000182#include "llvm/Analysis/BranchProbabilityInfo.h"
Max Kazantsev28298e92018-12-26 08:22:25 +0000183#include "llvm/Analysis/GuardUtils.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000184#include "llvm/Analysis/LoopInfo.h"
185#include "llvm/Analysis/LoopPass.h"
186#include "llvm/Analysis/ScalarEvolution.h"
187#include "llvm/Analysis/ScalarEvolutionExpander.h"
188#include "llvm/Analysis/ScalarEvolutionExpressions.h"
189#include "llvm/IR/Function.h"
190#include "llvm/IR/GlobalValue.h"
191#include "llvm/IR/IntrinsicInst.h"
192#include "llvm/IR/Module.h"
193#include "llvm/IR/PatternMatch.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000194#include "llvm/Pass.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000195#include "llvm/Support/Debug.h"
196#include "llvm/Transforms/Scalar.h"
Philip Reamesd109e2a2019-04-01 16:05:15 +0000197#include "llvm/Transforms/Utils/Local.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000198#include "llvm/Transforms/Utils/LoopUtils.h"
199
200#define DEBUG_TYPE "loop-predication"
201
Fedor Sergeevc297e842018-10-17 09:02:54 +0000202STATISTIC(TotalConsidered, "Number of guards considered");
203STATISTIC(TotalWidened, "Number of checks widened");
204
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000205using namespace llvm;
206
Anna Thomas1d02b132017-11-02 21:21:02 +0000207static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
208 cl::Hidden, cl::init(true));
209
Anna Thomas7b360432017-12-04 15:11:48 +0000210static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
211 cl::Hidden, cl::init(true));
Anna Thomas9b1176b2018-03-22 16:03:59 +0000212
213static cl::opt<bool>
214 SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
215 cl::Hidden, cl::init(false));
216
217// This is the scale factor for the latch probability. We use this during
218// profitability analysis to find other exiting blocks that have a much higher
219// probability of exiting the loop instead of loop exiting via latch.
220// This value should be greater than 1 for a sane profitability check.
221static cl::opt<float> LatchExitProbabilityScale(
222 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
223 cl::desc("scale factor for the latch probability. Value should be greater "
224 "than 1. Lower values are ignored"));
225
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000226static cl::opt<bool> PredicateWidenableBranchGuards(
227 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
228 cl::desc("Whether or not we should predicate guards "
229 "expressed as widenable branches to deoptimize blocks"),
230 cl::init(true));
231
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000232namespace {
Philip Reames099eca82019-06-01 00:31:58 +0000233/// Represents an induction variable check:
234/// icmp Pred, <induction variable>, <loop invariant limit>
235struct LoopICmp {
236 ICmpInst::Predicate Pred;
237 const SCEVAddRecExpr *IV;
238 const SCEV *Limit;
239 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
240 const SCEV *Limit)
241 : Pred(Pred), IV(IV), Limit(Limit) {}
242 LoopICmp() {}
243 void dump() {
244 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
245 << ", Limit = " << *Limit << "\n";
246 }
247};
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000248
Philip Reames099eca82019-06-01 00:31:58 +0000249class LoopPredication {
Philip Reames92a71772019-04-18 16:33:17 +0000250 AliasAnalysis *AA;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000251 ScalarEvolution *SE;
Anna Thomas9b1176b2018-03-22 16:03:59 +0000252 BranchProbabilityInfo *BPI;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000253
254 Loop *L;
255 const DataLayout *DL;
256 BasicBlock *Preheader;
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000257 LoopICmp LatchCheck;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000258
Anna Thomas68797212017-11-03 14:25:39 +0000259 bool isSupportedStep(const SCEV* Step);
Philip Reames19afdf72019-06-01 03:09:28 +0000260 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000261 Optional<LoopICmp> parseLoopLatchICmp();
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000262
Philip Reamesfbe64a22019-04-15 15:53:25 +0000263 /// Return an insertion point suitable for inserting a safe to speculate
264 /// instruction whose only user will be 'User' which has operands 'Ops'. A
265 /// trivial result would be the at the User itself, but we try to return a
266 /// loop invariant location if possible.
267 Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
Philip Reamese46d77d2019-04-15 18:15:08 +0000268 /// Same as above, *except* that this uses the SCEV definition of invariant
269 /// which is that an expression *can be made* invariant via SCEVExpander.
270 /// Thus, this version is only suitable for finding an insert point to be be
271 /// passed to SCEVExpander!
272 Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);
Philip Reamesfbe64a22019-04-15 15:53:25 +0000273
Philip Reames92a71772019-04-18 16:33:17 +0000274 /// Return true if the value is known to produce a single fixed value across
275 /// all iterations on which it executes. Note that this does not imply
276 /// speculation safety. That must be established seperately.
277 bool isLoopInvariantValue(const SCEV* S);
278
Philip Reamese46d77d2019-04-15 18:15:08 +0000279 Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
Philip Reames3d4e1082019-03-29 23:06:57 +0000280 ICmpInst::Predicate Pred, const SCEV *LHS,
281 const SCEV *RHS);
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000282
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000283 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000284 Instruction *Guard);
Anna Thomas68797212017-11-03 14:25:39 +0000285 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
286 LoopICmp RangeCheck,
287 SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000288 Instruction *Guard);
Anna Thomas7b360432017-12-04 15:11:48 +0000289 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
290 LoopICmp RangeCheck,
291 SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000292 Instruction *Guard);
Max Kazantsevca450872019-01-22 10:13:36 +0000293 unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
Philip Reamese46d77d2019-04-15 18:15:08 +0000294 SCEVExpander &Expander, Instruction *Guard);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000295 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000296 bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
Anna Thomas9b1176b2018-03-22 16:03:59 +0000297 // If the loop always exits through another block in the loop, we should not
298 // predicate based on the latch check. For example, the latch check can be a
299 // very coarse grained check and there can be more fine grained exit checks
300 // within the loop. We identify such unprofitable loops through BPI.
301 bool isLoopProfitableToPredicate();
302
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000303public:
Philip Reames92a71772019-04-18 16:33:17 +0000304 LoopPredication(AliasAnalysis *AA, ScalarEvolution *SE,
305 BranchProbabilityInfo *BPI)
306 : AA(AA), SE(SE), BPI(BPI){};
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000307 bool runOnLoop(Loop *L);
308};
309
310class LoopPredicationLegacyPass : public LoopPass {
311public:
312 static char ID;
313 LoopPredicationLegacyPass() : LoopPass(ID) {
314 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
315 }
316
317 void getAnalysisUsage(AnalysisUsage &AU) const override {
Anna Thomas9b1176b2018-03-22 16:03:59 +0000318 AU.addRequired<BranchProbabilityInfoWrapperPass>();
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000319 getLoopAnalysisUsage(AU);
320 }
321
322 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
323 if (skipLoop(L))
324 return false;
325 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Anna Thomas9b1176b2018-03-22 16:03:59 +0000326 BranchProbabilityInfo &BPI =
327 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
Philip Reames92a71772019-04-18 16:33:17 +0000328 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
329 LoopPredication LP(AA, SE, &BPI);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000330 return LP.runOnLoop(L);
331 }
332};
333
334char LoopPredicationLegacyPass::ID = 0;
335} // end namespace llvm
336
337INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
338 "Loop predication", false, false)
Anna Thomas9b1176b2018-03-22 16:03:59 +0000339INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000340INITIALIZE_PASS_DEPENDENCY(LoopPass)
341INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
342 "Loop predication", false, false)
343
344Pass *llvm::createLoopPredicationPass() {
345 return new LoopPredicationLegacyPass();
346}
347
348PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
349 LoopStandardAnalysisResults &AR,
350 LPMUpdater &U) {
Anna Thomas9b1176b2018-03-22 16:03:59 +0000351 const auto &FAM =
352 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
353 Function *F = L.getHeader()->getParent();
354 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
Philip Reames92a71772019-04-18 16:33:17 +0000355 LoopPredication LP(&AR.AA, &AR.SE, BPI);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000356 if (!LP.runOnLoop(&L))
357 return PreservedAnalyses::all();
358
359 return getLoopPassPreservedAnalyses();
360}
361
Philip Reames099eca82019-06-01 00:31:58 +0000362Optional<LoopICmp>
Philip Reames19afdf72019-06-01 03:09:28 +0000363LoopPredication::parseLoopICmp(ICmpInst *ICI) {
364 auto Pred = ICI->getPredicate();
365 auto *LHS = ICI->getOperand(0);
366 auto *RHS = ICI->getOperand(1);
367
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000368 const SCEV *LHSS = SE->getSCEV(LHS);
369 if (isa<SCEVCouldNotCompute>(LHSS))
370 return None;
371 const SCEV *RHSS = SE->getSCEV(RHS);
372 if (isa<SCEVCouldNotCompute>(RHSS))
373 return None;
374
375 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
376 if (SE->isLoopInvariant(LHSS, L)) {
377 std::swap(LHS, RHS);
378 std::swap(LHSS, RHSS);
379 Pred = ICmpInst::getSwappedPredicate(Pred);
380 }
381
382 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
383 if (!AR || AR->getLoop() != L)
384 return None;
385
386 return LoopICmp(Pred, AR, RHSS);
387}
388
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000389Value *LoopPredication::expandCheck(SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000390 Instruction *Guard,
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000391 ICmpInst::Predicate Pred, const SCEV *LHS,
Philip Reames3d4e1082019-03-29 23:06:57 +0000392 const SCEV *RHS) {
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000393 Type *Ty = LHS->getType();
394 assert(Ty == RHS->getType() && "expandCheck operands have different types?");
Artur Pilipenkoead69ee2017-10-12 21:21:17 +0000395
Philip Reamese46d77d2019-04-15 18:15:08 +0000396 if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
397 IRBuilder<> Builder(Guard);
398 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
399 return Builder.getTrue();
400 if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
401 LHS, RHS))
402 return Builder.getFalse();
403 }
Artur Pilipenkoead69ee2017-10-12 21:21:17 +0000404
Philip Reamese46d77d2019-04-15 18:15:08 +0000405 Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
406 Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
407 IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000408 return Builder.CreateICmp(Pred, LHSV, RHSV);
409}
410
Philip Reames0912b062019-06-03 16:17:14 +0000411
412// Returns true if its safe to truncate the IV to RangeCheckType.
413// When the IV type is wider than the range operand type, we can still do loop
414// predication, by generating SCEVs for the range and latch that are of the
415// same type. We achieve this by generating a SCEV truncate expression for the
416// latch IV. This is done iff truncation of the IV is a safe operation,
417// without loss of information.
418// Another way to achieve this is by generating a wider type SCEV for the
419// range check operand, however, this needs a more involved check that
420// operands do not overflow. This can lead to loss of information when the
421// range operand is of the form: add i32 %offset, %iv. We need to prove that
422// sext(x + y) is same as sext(x) + sext(y).
423// This function returns true if we can safely represent the IV type in
424// the RangeCheckType without loss of information.
Philip Reames9ed16732019-06-03 16:23:20 +0000425static bool isSafeToTruncateWideIVType(const DataLayout &DL,
426 ScalarEvolution &SE,
427 const LoopICmp LatchCheck,
428 Type *RangeCheckType) {
Philip Reames0912b062019-06-03 16:17:14 +0000429 if (!EnableIVTruncation)
430 return false;
431 assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()) >
432 DL.getTypeSizeInBits(RangeCheckType) &&
433 "Expected latch check IV type to be larger than range check operand "
434 "type!");
435 // The start and end values of the IV should be known. This is to guarantee
436 // that truncating the wide type will not lose information.
437 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
438 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
439 if (!Limit || !Start)
440 return false;
441 // This check makes sure that the IV does not change sign during loop
442 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
443 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
444 // IV wraps around, and the truncation of the IV would lose the range of
445 // iterations between 2^32 and 2^64.
446 bool Increasing;
447 if (!SE.isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
448 return false;
449 // The active bits should be less than the bits in the RangeCheckType. This
450 // guarantees that truncating the latch check to RangeCheckType is a safe
451 // operation.
452 auto RangeCheckTypeBitSize = DL.getTypeSizeInBits(RangeCheckType);
453 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
454 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
455}
456
457
Philip Reames9ed16732019-06-03 16:23:20 +0000458// Return an LoopICmp describing a latch check equivlent to LatchCheck but with
459// the requested type if safe to do so. May involve the use of a new IV.
460static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
461 ScalarEvolution &SE,
462 const LoopICmp LatchCheck,
463 Type *RangeCheckType) {
Anna Thomas1d02b132017-11-02 21:21:02 +0000464
465 auto *LatchType = LatchCheck.IV->getType();
466 if (RangeCheckType == LatchType)
467 return LatchCheck;
468 // For now, bail out if latch type is narrower than range type.
Philip Reames9ed16732019-06-03 16:23:20 +0000469 if (DL.getTypeSizeInBits(LatchType) < DL.getTypeSizeInBits(RangeCheckType))
Anna Thomas1d02b132017-11-02 21:21:02 +0000470 return None;
Philip Reames9ed16732019-06-03 16:23:20 +0000471 if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
Anna Thomas1d02b132017-11-02 21:21:02 +0000472 return None;
473 // We can now safely identify the truncated version of the IV and limit for
474 // RangeCheckType.
475 LoopICmp NewLatchCheck;
476 NewLatchCheck.Pred = LatchCheck.Pred;
477 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
Philip Reames9ed16732019-06-03 16:23:20 +0000478 SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
Anna Thomas1d02b132017-11-02 21:21:02 +0000479 if (!NewLatchCheck.IV)
480 return None;
Philip Reames9ed16732019-06-03 16:23:20 +0000481 NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000482 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
483 << "can be represented as range check type:"
484 << *RangeCheckType << "\n");
485 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
486 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
Anna Thomas1d02b132017-11-02 21:21:02 +0000487 return NewLatchCheck;
488}
489
Anna Thomas68797212017-11-03 14:25:39 +0000490bool LoopPredication::isSupportedStep(const SCEV* Step) {
Anna Thomas7b360432017-12-04 15:11:48 +0000491 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
Anna Thomas68797212017-11-03 14:25:39 +0000492}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000493
Philip Reamesfbe64a22019-04-15 15:53:25 +0000494Instruction *LoopPredication::findInsertPt(Instruction *Use,
495 ArrayRef<Value*> Ops) {
496 for (Value *Op : Ops)
497 if (!L->isLoopInvariant(Op))
498 return Use;
499 return Preheader->getTerminator();
500}
501
Philip Reamese46d77d2019-04-15 18:15:08 +0000502Instruction *LoopPredication::findInsertPt(Instruction *Use,
503 ArrayRef<const SCEV*> Ops) {
Philip Reames92a71772019-04-18 16:33:17 +0000504 // Subtlety: SCEV considers things to be invariant if the value produced is
505 // the same across iterations. This is not the same as being able to
506 // evaluate outside the loop, which is what we actually need here.
Philip Reamese46d77d2019-04-15 18:15:08 +0000507 for (const SCEV *Op : Ops)
Philip Reames92a71772019-04-18 16:33:17 +0000508 if (!SE->isLoopInvariant(Op, L) ||
509 !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
Philip Reamese46d77d2019-04-15 18:15:08 +0000510 return Use;
511 return Preheader->getTerminator();
512}
513
Philip Reames92a71772019-04-18 16:33:17 +0000514bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
515 // Handling expressions which produce invariant results, but *haven't* yet
516 // been removed from the loop serves two important purposes.
517 // 1) Most importantly, it resolves a pass ordering cycle which would
518 // otherwise need us to iteration licm, loop-predication, and either
519 // loop-unswitch or loop-peeling to make progress on examples with lots of
520 // predicable range checks in a row. (Since, in the general case, we can't
521 // hoist the length checks until the dominating checks have been discharged
522 // as we can't prove doing so is safe.)
523 // 2) As a nice side effect, this exposes the value of peeling or unswitching
524 // much more obviously in the IR. Otherwise, the cost modeling for other
525 // transforms would end up needing to duplicate all of this logic to model a
526 // check which becomes predictable based on a modeled peel or unswitch.
527 //
528 // The cost of doing so in the worst case is an extra fill from the stack in
529 // the loop to materialize the loop invariant test value instead of checking
530 // against the original IV which is presumable in a register inside the loop.
531 // Such cases are presumably rare, and hint at missing oppurtunities for
532 // other passes.
Philip Reamese46d77d2019-04-15 18:15:08 +0000533
Philip Reames92a71772019-04-18 16:33:17 +0000534 if (SE->isLoopInvariant(S, L))
535 // Note: This the SCEV variant, so the original Value* may be within the
536 // loop even though SCEV has proven it is loop invariant.
537 return true;
538
539 // Handle a particular important case which SCEV doesn't yet know about which
540 // shows up in range checks on arrays with immutable lengths.
541 // TODO: This should be sunk inside SCEV.
542 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
543 if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
Philip Reamesadf288c2019-04-18 17:01:19 +0000544 if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
Philip Reames92a71772019-04-18 16:33:17 +0000545 if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
546 LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
547 return true;
548 return false;
Anna Thomas68797212017-11-03 14:25:39 +0000549}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000550
Anna Thomas68797212017-11-03 14:25:39 +0000551Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
Philip Reames099eca82019-06-01 00:31:58 +0000552 LoopICmp LatchCheck, LoopICmp RangeCheck,
Philip Reamese46d77d2019-04-15 18:15:08 +0000553 SCEVExpander &Expander, Instruction *Guard) {
Anna Thomas68797212017-11-03 14:25:39 +0000554 auto *Ty = RangeCheck.IV->getType();
555 // Generate the widened condition for the forward loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000556 // guardStart u< guardLimit &&
557 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000558 // where <pred> depends on the latch condition predicate. See the file
559 // header comment for the reasoning.
Anna Thomas68797212017-11-03 14:25:39 +0000560 // guardLimit - guardStart + latchStart - 1
561 const SCEV *GuardStart = RangeCheck.IV->getStart();
562 const SCEV *GuardLimit = RangeCheck.Limit;
563 const SCEV *LatchStart = LatchCheck.IV->getStart();
564 const SCEV *LatchLimit = LatchCheck.Limit;
Philip Reames92a71772019-04-18 16:33:17 +0000565 // Subtlety: We need all the values to be *invariant* across all iterations,
566 // but we only need to check expansion safety for those which *aren't*
567 // already guaranteed to dominate the guard.
568 if (!isLoopInvariantValue(GuardStart) ||
569 !isLoopInvariantValue(GuardLimit) ||
570 !isLoopInvariantValue(LatchStart) ||
571 !isLoopInvariantValue(LatchLimit)) {
572 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
573 return None;
574 }
575 if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
576 !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
577 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
578 return None;
579 }
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000580
581 // guardLimit - guardStart + latchStart - 1
582 const SCEV *RHS =
583 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
584 SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
Serguei Katkov3cb4c342018-02-09 07:59:07 +0000585 auto LimitCheckPred =
586 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
Artur Pilipenkoaab28662017-05-19 14:00:04 +0000587
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000588 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
589 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
590 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
Philip Reames3d4e1082019-03-29 23:06:57 +0000591
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000592 auto *LimitCheck =
Philip Reamese46d77d2019-04-15 18:15:08 +0000593 expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
594 auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
Philip Reames3d4e1082019-03-29 23:06:57 +0000595 GuardStart, GuardLimit);
Philip Reamese46d77d2019-04-15 18:15:08 +0000596 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000597 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000598}
Anna Thomas7b360432017-12-04 15:11:48 +0000599
600Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
Philip Reames099eca82019-06-01 00:31:58 +0000601 LoopICmp LatchCheck, LoopICmp RangeCheck,
Philip Reamese46d77d2019-04-15 18:15:08 +0000602 SCEVExpander &Expander, Instruction *Guard) {
Anna Thomas7b360432017-12-04 15:11:48 +0000603 auto *Ty = RangeCheck.IV->getType();
604 const SCEV *GuardStart = RangeCheck.IV->getStart();
605 const SCEV *GuardLimit = RangeCheck.Limit;
Philip Reames92a71772019-04-18 16:33:17 +0000606 const SCEV *LatchStart = LatchCheck.IV->getStart();
Anna Thomas7b360432017-12-04 15:11:48 +0000607 const SCEV *LatchLimit = LatchCheck.Limit;
Philip Reames92a71772019-04-18 16:33:17 +0000608 // Subtlety: We need all the values to be *invariant* across all iterations,
609 // but we only need to check expansion safety for those which *aren't*
610 // already guaranteed to dominate the guard.
611 if (!isLoopInvariantValue(GuardStart) ||
612 !isLoopInvariantValue(GuardLimit) ||
613 !isLoopInvariantValue(LatchStart) ||
614 !isLoopInvariantValue(LatchLimit)) {
615 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
616 return None;
617 }
618 if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
619 !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000620 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000621 return None;
622 }
623 // The decrement of the latch check IV should be the same as the
624 // rangeCheckIV.
625 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
626 if (RangeCheck.IV != PostDecLatchCheckIV) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000627 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
628 << *PostDecLatchCheckIV
629 << " and RangeCheckIV: " << *RangeCheck.IV << "\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000630 return None;
631 }
632
633 // Generate the widened condition for CountDownLoop:
634 // guardStart u< guardLimit &&
635 // latchLimit <pred> 1.
636 // See the header comment for reasoning of the checks.
Serguei Katkov3cb4c342018-02-09 07:59:07 +0000637 auto LimitCheckPred =
638 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
Philip Reamese46d77d2019-04-15 18:15:08 +0000639 auto *FirstIterationCheck = expandCheck(Expander, Guard,
640 ICmpInst::ICMP_ULT,
Philip Reames3d4e1082019-03-29 23:06:57 +0000641 GuardStart, GuardLimit);
Philip Reamese46d77d2019-04-15 18:15:08 +0000642 auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
Philip Reames3d4e1082019-03-29 23:06:57 +0000643 SE->getOne(Ty));
Philip Reamese46d77d2019-04-15 18:15:08 +0000644 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
Anna Thomas7b360432017-12-04 15:11:48 +0000645 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
646}
647
Philip Reames099eca82019-06-01 00:31:58 +0000648static void normalizePredicate(ScalarEvolution *SE, Loop *L,
649 LoopICmp& RC) {
Philip Reames0e344e92019-07-09 02:03:31 +0000650 // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
651 // ULT/UGE form for ease of handling by our caller.
652 if (ICmpInst::isEquality(RC.Pred) &&
Philip Reames099eca82019-06-01 00:31:58 +0000653 RC.IV->getStepRecurrence(*SE)->isOne() &&
654 SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
Philip Reames0e344e92019-07-09 02:03:31 +0000655 RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
656 ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
Philip Reames099eca82019-06-01 00:31:58 +0000657}
658
659
Anna Thomas68797212017-11-03 14:25:39 +0000660/// If ICI can be widened to a loop invariant condition emits the loop
661/// invariant condition in the loop preheader and return it, otherwise
662/// returns None.
663Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
664 SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000665 Instruction *Guard) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000666 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
667 LLVM_DEBUG(ICI->dump());
Anna Thomas68797212017-11-03 14:25:39 +0000668
669 // parseLoopStructure guarantees that the latch condition is:
670 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
671 // We are looking for the range checks of the form:
672 // i u< guardLimit
673 auto RangeCheck = parseLoopICmp(ICI);
674 if (!RangeCheck) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000675 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000676 return None;
677 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000678 LLVM_DEBUG(dbgs() << "Guard check:\n");
679 LLVM_DEBUG(RangeCheck->dump());
Anna Thomas68797212017-11-03 14:25:39 +0000680 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000681 LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
682 << RangeCheck->Pred << ")!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000683 return None;
684 }
685 auto *RangeCheckIV = RangeCheck->IV;
686 if (!RangeCheckIV->isAffine()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000687 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000688 return None;
689 }
690 auto *Step = RangeCheckIV->getStepRecurrence(*SE);
691 // We cannot just compare with latch IV step because the latch and range IVs
692 // may have different types.
693 if (!isSupportedStep(Step)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000694 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000695 return None;
696 }
697 auto *Ty = RangeCheckIV->getType();
Philip Reames9ed16732019-06-03 16:23:20 +0000698 auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
Anna Thomas68797212017-11-03 14:25:39 +0000699 if (!CurrLatchCheckOpt) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000700 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
701 "corresponding to range type: "
702 << *Ty << "\n");
Anna Thomas68797212017-11-03 14:25:39 +0000703 return None;
704 }
705
706 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
Anna Thomas7b360432017-12-04 15:11:48 +0000707 // At this point, the range and latch step should have the same type, but need
708 // not have the same value (we support both 1 and -1 steps).
709 assert(Step->getType() ==
710 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
711 "Range and latch steps should be of same type!");
712 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000713 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000714 return None;
715 }
Anna Thomas68797212017-11-03 14:25:39 +0000716
Anna Thomas7b360432017-12-04 15:11:48 +0000717 if (Step->isOne())
718 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
Philip Reamese46d77d2019-04-15 18:15:08 +0000719 Expander, Guard);
Anna Thomas7b360432017-12-04 15:11:48 +0000720 else {
721 assert(Step->isAllOnesValue() && "Step should be -1!");
722 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
Philip Reamese46d77d2019-04-15 18:15:08 +0000723 Expander, Guard);
Anna Thomas7b360432017-12-04 15:11:48 +0000724 }
Anna Thomas68797212017-11-03 14:25:39 +0000725}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000726
Max Kazantsevca450872019-01-22 10:13:36 +0000727unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
728 Value *Condition,
729 SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000730 Instruction *Guard) {
Max Kazantsevca450872019-01-22 10:13:36 +0000731 unsigned NumWidened = 0;
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000732 // The guard condition is expected to be in form of:
733 // cond1 && cond2 && cond3 ...
Hiroshi Inoue0909ca12018-01-26 08:15:29 +0000734 // Iterate over subconditions looking for icmp conditions which can be
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000735 // widened across loop iterations. Widening these conditions remember the
736 // resulting list of subconditions in Checks vector.
Max Kazantsevca450872019-01-22 10:13:36 +0000737 SmallVector<Value *, 4> Worklist(1, Condition);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000738 SmallPtrSet<Value *, 4> Visited;
Philip Reamesadb3ece2019-04-02 02:42:57 +0000739 Value *WideableCond = nullptr;
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000740 do {
741 Value *Condition = Worklist.pop_back_val();
742 if (!Visited.insert(Condition).second)
743 continue;
744
745 Value *LHS, *RHS;
746 using namespace llvm::PatternMatch;
747 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
748 Worklist.push_back(LHS);
749 Worklist.push_back(RHS);
750 continue;
751 }
752
Philip Reamesadb3ece2019-04-02 02:42:57 +0000753 if (match(Condition,
754 m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
755 // Pick any, we don't care which
756 WideableCond = Condition;
757 continue;
758 }
759
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000760 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
Philip Reames3d4e1082019-03-29 23:06:57 +0000761 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000762 Guard)) {
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000763 Checks.push_back(NewRangeCheck.getValue());
764 NumWidened++;
765 continue;
766 }
767 }
768
769 // Save the condition as is if we can't widen it
770 Checks.push_back(Condition);
Max Kazantsevca450872019-01-22 10:13:36 +0000771 } while (!Worklist.empty());
Philip Reamesadb3ece2019-04-02 02:42:57 +0000772 // At the moment, our matching logic for wideable conditions implicitly
773 // assumes we preserve the form: (br (and Cond, WC())). FIXME
774 // Note that if there were multiple calls to wideable condition in the
775 // traversal, we only need to keep one, and which one is arbitrary.
776 if (WideableCond)
777 Checks.push_back(WideableCond);
Max Kazantsevca450872019-01-22 10:13:36 +0000778 return NumWidened;
779}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000780
Max Kazantsevca450872019-01-22 10:13:36 +0000781bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
782 SCEVExpander &Expander) {
783 LLVM_DEBUG(dbgs() << "Processing guard:\n");
784 LLVM_DEBUG(Guard->dump());
785
786 TotalConsidered++;
787 SmallVector<Value *, 4> Checks;
Max Kazantsevca450872019-01-22 10:13:36 +0000788 unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000789 Guard);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000790 if (NumWidened == 0)
791 return false;
792
Fedor Sergeevc297e842018-10-17 09:02:54 +0000793 TotalWidened += NumWidened;
794
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000795 // Emit the new guard condition
Philip Reamese46d77d2019-04-15 18:15:08 +0000796 IRBuilder<> Builder(findInsertPt(Guard, Checks));
Philip Reames9e62c862019-07-06 03:46:18 +0000797 Value *AllChecks = Builder.CreateAnd(Checks);
Philip Reamesd109e2a2019-04-01 16:05:15 +0000798 auto *OldCond = Guard->getOperand(0);
Philip Reames9e62c862019-07-06 03:46:18 +0000799 Guard->setOperand(0, AllChecks);
Philip Reamesd109e2a2019-04-01 16:05:15 +0000800 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000801
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000802 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000803 return true;
804}
805
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000806bool LoopPredication::widenWidenableBranchGuardConditions(
Philip Reamesf6086782019-04-01 22:39:54 +0000807 BranchInst *BI, SCEVExpander &Expander) {
808 assert(isGuardAsWidenableBranch(BI) && "Must be!");
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000809 LLVM_DEBUG(dbgs() << "Processing guard:\n");
Philip Reamesf6086782019-04-01 22:39:54 +0000810 LLVM_DEBUG(BI->dump());
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000811
812 TotalConsidered++;
813 SmallVector<Value *, 4> Checks;
Philip Reamesadb3ece2019-04-02 02:42:57 +0000814 unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
Philip Reamese46d77d2019-04-15 18:15:08 +0000815 Expander, BI);
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000816 if (NumWidened == 0)
817 return false;
818
819 TotalWidened += NumWidened;
820
821 // Emit the new guard condition
Philip Reamese46d77d2019-04-15 18:15:08 +0000822 IRBuilder<> Builder(findInsertPt(BI, Checks));
Philip Reames9e62c862019-07-06 03:46:18 +0000823 Value *AllChecks = Builder.CreateAnd(Checks);
Philip Reamesadb3ece2019-04-02 02:42:57 +0000824 auto *OldCond = BI->getCondition();
Philip Reames9e62c862019-07-06 03:46:18 +0000825 BI->setCondition(AllChecks);
Philip Reamesf6086782019-04-01 22:39:54 +0000826 assert(isGuardAsWidenableBranch(BI) &&
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000827 "Stopped being a guard after transform?");
Philip Reamesd109e2a2019-04-01 16:05:15 +0000828 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000829
830 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
831 return true;
832}
833
Philip Reames099eca82019-06-01 00:31:58 +0000834Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000835 using namespace PatternMatch;
836
837 BasicBlock *LoopLatch = L->getLoopLatch();
838 if (!LoopLatch) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000839 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000840 return None;
841 }
842
Philip Reames19afdf72019-06-01 03:09:28 +0000843 auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
Philip Reames101915c2019-06-06 18:02:36 +0000844 if (!BI || !BI->isConditional()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000845 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000846 return None;
847 }
Philip Reames19afdf72019-06-01 03:09:28 +0000848 BasicBlock *TrueDest = BI->getSuccessor(0);
Richard Trieu4e875462019-06-01 03:32:20 +0000849 assert(
850 (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
851 "One of the latch's destinations must be the header");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000852
Philip Reames19afdf72019-06-01 03:09:28 +0000853 auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
Philip Reames101915c2019-06-06 18:02:36 +0000854 if (!ICI) {
Philip Reames19afdf72019-06-01 03:09:28 +0000855 LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
856 return None;
857 }
858 auto Result = parseLoopICmp(ICI);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000859 if (!Result) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000860 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000861 return None;
862 }
863
Philip Reames19afdf72019-06-01 03:09:28 +0000864 if (TrueDest != L->getHeader())
865 Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
866
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000867 // Check affine first, so if it's not we don't try to compute the step
868 // recurrence.
869 if (!Result->IV->isAffine()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000870 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000871 return None;
872 }
873
874 auto *Step = Result->IV->getStepRecurrence(*SE);
Anna Thomas68797212017-11-03 14:25:39 +0000875 if (!isSupportedStep(Step)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000876 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000877 return None;
878 }
879
Anna Thomas68797212017-11-03 14:25:39 +0000880 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
Anna Thomas7b360432017-12-04 15:11:48 +0000881 if (Step->isOne()) {
882 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
883 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
884 } else {
885 assert(Step->isAllOnesValue() && "Step should be -1!");
Serguei Katkovc8016e72018-02-08 10:34:08 +0000886 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
887 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
Anna Thomas7b360432017-12-04 15:11:48 +0000888 }
Anna Thomas68797212017-11-03 14:25:39 +0000889 };
890
Philip Reames099eca82019-06-01 00:31:58 +0000891 normalizePredicate(SE, L, *Result);
Anna Thomas68797212017-11-03 14:25:39 +0000892 if (IsUnsupportedPredicate(Step, Result->Pred)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000893 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
894 << ")!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000895 return None;
896 }
Philip Reames19afdf72019-06-01 03:09:28 +0000897
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000898 return Result;
899}
900
Anna Thomas1d02b132017-11-02 21:21:02 +0000901
Anna Thomas9b1176b2018-03-22 16:03:59 +0000902bool LoopPredication::isLoopProfitableToPredicate() {
903 if (SkipProfitabilityChecks || !BPI)
904 return true;
905
906 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
907 L->getExitEdges(ExitEdges);
908 // If there is only one exiting edge in the loop, it is always profitable to
909 // predicate the loop.
910 if (ExitEdges.size() == 1)
911 return true;
912
913 // Calculate the exiting probabilities of all exiting edges from the loop,
914 // starting with the LatchExitProbability.
915 // Heuristic for profitability: If any of the exiting blocks' probability of
916 // exiting the loop is larger than exiting through the latch block, it's not
917 // profitable to predicate the loop.
918 auto *LatchBlock = L->getLoopLatch();
919 assert(LatchBlock && "Should have a single latch at this point!");
920 auto *LatchTerm = LatchBlock->getTerminator();
921 assert(LatchTerm->getNumSuccessors() == 2 &&
922 "expected to be an exiting block with 2 succs!");
923 unsigned LatchBrExitIdx =
924 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
925 BranchProbability LatchExitProbability =
926 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
927
928 // Protect against degenerate inputs provided by the user. Providing a value
929 // less than one, can invert the definition of profitable loop predication.
930 float ScaleFactor = LatchExitProbabilityScale;
931 if (ScaleFactor < 1) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000932 LLVM_DEBUG(
Anna Thomas9b1176b2018-03-22 16:03:59 +0000933 dbgs()
934 << "Ignored user setting for loop-predication-latch-probability-scale: "
935 << LatchExitProbabilityScale << "\n");
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000936 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
Anna Thomas9b1176b2018-03-22 16:03:59 +0000937 ScaleFactor = 1.0;
938 }
939 const auto LatchProbabilityThreshold =
940 LatchExitProbability * ScaleFactor;
941
942 for (const auto &ExitEdge : ExitEdges) {
943 BranchProbability ExitingBlockProbability =
944 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
945 // Some exiting edge has higher probability than the latch exiting edge.
946 // No longer profitable to predicate.
947 if (ExitingBlockProbability > LatchProbabilityThreshold)
948 return false;
949 }
950 // Using BPI, we have concluded that the most probable way to exit from the
951 // loop is through the latch (or there's no profile information and all
952 // exits are equally likely).
953 return true;
954}
955
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000956bool LoopPredication::runOnLoop(Loop *Loop) {
957 L = Loop;
958
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000959 LLVM_DEBUG(dbgs() << "Analyzing ");
960 LLVM_DEBUG(L->dump());
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000961
962 Module *M = L->getHeader()->getModule();
963
964 // There is nothing to do if the module doesn't use guards
965 auto *GuardDecl =
966 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000967 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
968 auto *WCDecl = M->getFunction(
969 Intrinsic::getName(Intrinsic::experimental_widenable_condition));
970 bool HasWidenableConditions =
971 PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
972 if (!HasIntrinsicGuards && !HasWidenableConditions)
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000973 return false;
974
975 DL = &M->getDataLayout();
976
977 Preheader = L->getLoopPreheader();
978 if (!Preheader)
979 return false;
980
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000981 auto LatchCheckOpt = parseLoopLatchICmp();
982 if (!LatchCheckOpt)
983 return false;
984 LatchCheck = *LatchCheckOpt;
985
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000986 LLVM_DEBUG(dbgs() << "Latch check:\n");
987 LLVM_DEBUG(LatchCheck.dump());
Anna Thomas68797212017-11-03 14:25:39 +0000988
Anna Thomas9b1176b2018-03-22 16:03:59 +0000989 if (!isLoopProfitableToPredicate()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000990 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
Anna Thomas9b1176b2018-03-22 16:03:59 +0000991 return false;
992 }
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000993 // Collect all the guards into a vector and process later, so as not
994 // to invalidate the instruction iterator.
995 SmallVector<IntrinsicInst *, 4> Guards;
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000996 SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
997 for (const auto BB : L->blocks()) {
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000998 for (auto &I : *BB)
Max Kazantsev28298e92018-12-26 08:22:25 +0000999 if (isGuard(&I))
1000 Guards.push_back(cast<IntrinsicInst>(&I));
Max Kazantsevfeb475f2019-01-22 11:49:06 +00001001 if (PredicateWidenableBranchGuards &&
1002 isGuardAsWidenableBranch(BB->getTerminator()))
1003 GuardsAsWidenableBranches.push_back(
1004 cast<BranchInst>(BB->getTerminator()));
1005 }
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001006
Max Kazantsevfeb475f2019-01-22 11:49:06 +00001007 if (Guards.empty() && GuardsAsWidenableBranches.empty())
Artur Pilipenko46c4e0a2017-05-19 13:59:34 +00001008 return false;
1009
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001010 SCEVExpander Expander(*SE, *DL, "loop-predication");
1011
1012 bool Changed = false;
1013 for (auto *Guard : Guards)
1014 Changed |= widenGuardConditions(Guard, Expander);
Max Kazantsevfeb475f2019-01-22 11:49:06 +00001015 for (auto *Guard : GuardsAsWidenableBranches)
1016 Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001017
1018 return Changed;
1019}