blob: 2232e419a6190739cf88500f038f8685ad743d6d [file] [log] [blame]
Tim Northover3b0846e2014-05-24 12:50:23 +00001//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AArch64TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AArch64ISelLowering.h"
Tim Northover3c55cca2014-11-27 21:02:42 +000015#include "AArch64CallingConvention.h"
Benjamin Kramer1f8930e2014-07-25 11:42:14 +000016#include "AArch64MachineFunctionInfo.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000017#include "AArch64PerfectShuffle.h"
18#include "AArch64Subtarget.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000019#include "AArch64TargetMachine.h"
20#include "AArch64TargetObjectFile.h"
21#include "MCTargetDesc/AArch64AddressingModes.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/IR/Function.h"
David Blaikie457343d2015-05-21 21:12:43 +000028#include "llvm/IR/GetElementPtrTypeIterator.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000029#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/Type.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetOptions.h"
36using namespace llvm;
37
38#define DEBUG_TYPE "aarch64-lower"
39
40STATISTIC(NumTailCalls, "Number of tail calls");
41STATISTIC(NumShiftInserts, "Number of vector shift inserts");
42
Tim Northover3b0846e2014-05-24 12:50:23 +000043// Place holder until extr generation is tested fully.
44static cl::opt<bool>
45EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
46 cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
47 cl::init(true));
48
49static cl::opt<bool>
50EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
Kristof Beylsaea84612015-03-04 09:12:08 +000051 cl::desc("Allow AArch64 SLI/SRI formation"),
52 cl::init(false));
53
54// FIXME: The necessary dtprel relocations don't seem to be supported
55// well in the GNU bfd and gold linkers at the moment. Therefore, by
56// default, for now, fall back to GeneralDynamic code generation.
57cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
58 "aarch64-elf-ldtls-generation", cl::Hidden,
59 cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
60 cl::init(false));
Tim Northover3b0846e2014-05-24 12:50:23 +000061
Matthias Braunaf7d7702015-07-16 20:02:37 +000062/// Value type used for condition codes.
63static const MVT MVT_CC = MVT::i32;
64
Eric Christopher905f12d2015-01-29 00:19:42 +000065AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
66 const AArch64Subtarget &STI)
67 : TargetLowering(TM), Subtarget(&STI) {
Tim Northover3b0846e2014-05-24 12:50:23 +000068
69 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
70 // we have to make something up. Arbitrarily, choose ZeroOrOne.
71 setBooleanContents(ZeroOrOneBooleanContent);
72 // When comparing vectors the result sets the different elements in the
73 // vector to all-one or all-zero.
74 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
75
76 // Set up the register classes.
77 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
78 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
79
80 if (Subtarget->hasFPARMv8()) {
81 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
82 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
83 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
84 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
85 }
86
87 if (Subtarget->hasNEON()) {
88 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
89 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
90 // Someone set us up the NEON.
91 addDRTypeForNEON(MVT::v2f32);
92 addDRTypeForNEON(MVT::v8i8);
93 addDRTypeForNEON(MVT::v4i16);
94 addDRTypeForNEON(MVT::v2i32);
95 addDRTypeForNEON(MVT::v1i64);
96 addDRTypeForNEON(MVT::v1f64);
Oliver Stannard89d15422014-08-27 16:16:04 +000097 addDRTypeForNEON(MVT::v4f16);
Tim Northover3b0846e2014-05-24 12:50:23 +000098
99 addQRTypeForNEON(MVT::v4f32);
100 addQRTypeForNEON(MVT::v2f64);
101 addQRTypeForNEON(MVT::v16i8);
102 addQRTypeForNEON(MVT::v8i16);
103 addQRTypeForNEON(MVT::v4i32);
104 addQRTypeForNEON(MVT::v2i64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000105 addQRTypeForNEON(MVT::v8f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000106 }
107
108 // Compute derived properties from the register classes
Eric Christopher23a3a7c2015-02-26 00:00:24 +0000109 computeRegisterProperties(Subtarget->getRegisterInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +0000110
111 // Provide all sorts of operation actions
112 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
113 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
114 setOperationAction(ISD::SETCC, MVT::i32, Custom);
115 setOperationAction(ISD::SETCC, MVT::i64, Custom);
116 setOperationAction(ISD::SETCC, MVT::f32, Custom);
117 setOperationAction(ISD::SETCC, MVT::f64, Custom);
118 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
119 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
120 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
121 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
122 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
123 setOperationAction(ISD::SELECT, MVT::i32, Custom);
124 setOperationAction(ISD::SELECT, MVT::i64, Custom);
125 setOperationAction(ISD::SELECT, MVT::f32, Custom);
126 setOperationAction(ISD::SELECT, MVT::f64, Custom);
127 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
128 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
129 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
130 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
131 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
132 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
133
134 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
135 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
136 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
137
138 setOperationAction(ISD::FREM, MVT::f32, Expand);
139 setOperationAction(ISD::FREM, MVT::f64, Expand);
140 setOperationAction(ISD::FREM, MVT::f80, Expand);
141
142 // Custom lowering hooks are needed for XOR
143 // to fold it into CSINC/CSINV.
144 setOperationAction(ISD::XOR, MVT::i32, Custom);
145 setOperationAction(ISD::XOR, MVT::i64, Custom);
146
147 // Virtually no operation on f128 is legal, but LLVM can't expand them when
148 // there's a valid register class, so we need custom operations in most cases.
149 setOperationAction(ISD::FABS, MVT::f128, Expand);
150 setOperationAction(ISD::FADD, MVT::f128, Custom);
151 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
152 setOperationAction(ISD::FCOS, MVT::f128, Expand);
153 setOperationAction(ISD::FDIV, MVT::f128, Custom);
154 setOperationAction(ISD::FMA, MVT::f128, Expand);
155 setOperationAction(ISD::FMUL, MVT::f128, Custom);
156 setOperationAction(ISD::FNEG, MVT::f128, Expand);
157 setOperationAction(ISD::FPOW, MVT::f128, Expand);
158 setOperationAction(ISD::FREM, MVT::f128, Expand);
159 setOperationAction(ISD::FRINT, MVT::f128, Expand);
160 setOperationAction(ISD::FSIN, MVT::f128, Expand);
161 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
162 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
163 setOperationAction(ISD::FSUB, MVT::f128, Custom);
164 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
165 setOperationAction(ISD::SETCC, MVT::f128, Custom);
166 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
167 setOperationAction(ISD::SELECT, MVT::f128, Custom);
168 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
169 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
170
171 // Lowering for many of the conversions is actually specified by the non-f128
172 // type. The LowerXXX function will be trivial when f128 isn't involved.
173 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
174 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
175 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
176 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
177 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
178 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
179 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
180 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
181 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
182 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
183 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
184 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
185 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
186 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
187
188 // Variable arguments.
189 setOperationAction(ISD::VASTART, MVT::Other, Custom);
190 setOperationAction(ISD::VAARG, MVT::Other, Custom);
191 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
192 setOperationAction(ISD::VAEND, MVT::Other, Expand);
193
194 // Variable-sized objects.
195 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
196 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
197 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
198
Tim Northover3b0846e2014-05-24 12:50:23 +0000199 // Constant pool entries
200 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
201
202 // BlockAddress
203 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
204
205 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
206 setOperationAction(ISD::ADDC, MVT::i32, Custom);
207 setOperationAction(ISD::ADDE, MVT::i32, Custom);
208 setOperationAction(ISD::SUBC, MVT::i32, Custom);
209 setOperationAction(ISD::SUBE, MVT::i32, Custom);
210 setOperationAction(ISD::ADDC, MVT::i64, Custom);
211 setOperationAction(ISD::ADDE, MVT::i64, Custom);
212 setOperationAction(ISD::SUBC, MVT::i64, Custom);
213 setOperationAction(ISD::SUBE, MVT::i64, Custom);
214
215 // AArch64 lacks both left-rotate and popcount instructions.
216 setOperationAction(ISD::ROTL, MVT::i32, Expand);
217 setOperationAction(ISD::ROTL, MVT::i64, Expand);
Charlie Turner458e79b2015-10-27 10:25:20 +0000218 for (MVT VT : MVT::vector_valuetypes()) {
219 setOperationAction(ISD::ROTL, VT, Expand);
220 setOperationAction(ISD::ROTR, VT, Expand);
221 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000222
223 // AArch64 doesn't have {U|S}MUL_LOHI.
224 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
225 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
226
227
228 // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
229 // counterparts, which AArch64 supports directly.
230 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
231 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
232 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
233 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
234
235 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
236 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
237
238 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
239 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
240 setOperationAction(ISD::SREM, MVT::i32, Expand);
241 setOperationAction(ISD::SREM, MVT::i64, Expand);
242 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
243 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
244 setOperationAction(ISD::UREM, MVT::i32, Expand);
245 setOperationAction(ISD::UREM, MVT::i64, Expand);
246
247 // Custom lower Add/Sub/Mul with overflow.
248 setOperationAction(ISD::SADDO, MVT::i32, Custom);
249 setOperationAction(ISD::SADDO, MVT::i64, Custom);
250 setOperationAction(ISD::UADDO, MVT::i32, Custom);
251 setOperationAction(ISD::UADDO, MVT::i64, Custom);
252 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
253 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
254 setOperationAction(ISD::USUBO, MVT::i32, Custom);
255 setOperationAction(ISD::USUBO, MVT::i64, Custom);
256 setOperationAction(ISD::SMULO, MVT::i32, Custom);
257 setOperationAction(ISD::SMULO, MVT::i64, Custom);
258 setOperationAction(ISD::UMULO, MVT::i32, Custom);
259 setOperationAction(ISD::UMULO, MVT::i64, Custom);
260
261 setOperationAction(ISD::FSIN, MVT::f32, Expand);
262 setOperationAction(ISD::FSIN, MVT::f64, Expand);
263 setOperationAction(ISD::FCOS, MVT::f32, Expand);
264 setOperationAction(ISD::FCOS, MVT::f64, Expand);
265 setOperationAction(ISD::FPOW, MVT::f32, Expand);
266 setOperationAction(ISD::FPOW, MVT::f64, Expand);
267 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
268 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
269
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +0000270 // f16 is a storage-only type, always promote it to f32.
271 setOperationAction(ISD::SETCC, MVT::f16, Promote);
272 setOperationAction(ISD::BR_CC, MVT::f16, Promote);
273 setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
274 setOperationAction(ISD::SELECT, MVT::f16, Promote);
275 setOperationAction(ISD::FADD, MVT::f16, Promote);
276 setOperationAction(ISD::FSUB, MVT::f16, Promote);
277 setOperationAction(ISD::FMUL, MVT::f16, Promote);
278 setOperationAction(ISD::FDIV, MVT::f16, Promote);
279 setOperationAction(ISD::FREM, MVT::f16, Promote);
280 setOperationAction(ISD::FMA, MVT::f16, Promote);
281 setOperationAction(ISD::FNEG, MVT::f16, Promote);
282 setOperationAction(ISD::FABS, MVT::f16, Promote);
283 setOperationAction(ISD::FCEIL, MVT::f16, Promote);
284 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
285 setOperationAction(ISD::FCOS, MVT::f16, Promote);
286 setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
287 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
288 setOperationAction(ISD::FPOW, MVT::f16, Promote);
289 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
290 setOperationAction(ISD::FRINT, MVT::f16, Promote);
291 setOperationAction(ISD::FSIN, MVT::f16, Promote);
292 setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
293 setOperationAction(ISD::FSQRT, MVT::f16, Promote);
294 setOperationAction(ISD::FEXP, MVT::f16, Promote);
295 setOperationAction(ISD::FEXP2, MVT::f16, Promote);
296 setOperationAction(ISD::FLOG, MVT::f16, Promote);
297 setOperationAction(ISD::FLOG2, MVT::f16, Promote);
298 setOperationAction(ISD::FLOG10, MVT::f16, Promote);
299 setOperationAction(ISD::FROUND, MVT::f16, Promote);
300 setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
301 setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
302 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
James Molloy63be1982015-08-14 09:08:50 +0000303 setOperationAction(ISD::FMINNAN, MVT::f16, Promote);
304 setOperationAction(ISD::FMAXNAN, MVT::f16, Promote);
Oliver Stannardf5469be2014-08-18 14:22:39 +0000305
Oliver Stannard89d15422014-08-27 16:16:04 +0000306 // v4f16 is also a storage-only type, so promote it to v4f32 when that is
307 // known to be safe.
308 setOperationAction(ISD::FADD, MVT::v4f16, Promote);
309 setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
310 setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
311 setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
312 setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
313 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
314 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
315 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
316 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
317 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
318 AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
319 AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
320
321 // Expand all other v4f16 operations.
322 // FIXME: We could generate better code by promoting some operations to
323 // a pair of v4f32s
324 setOperationAction(ISD::FABS, MVT::v4f16, Expand);
325 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
326 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
327 setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
328 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
329 setOperationAction(ISD::FMA, MVT::v4f16, Expand);
330 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
331 setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
332 setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
333 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
334 setOperationAction(ISD::FREM, MVT::v4f16, Expand);
335 setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
336 setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
337 setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
338 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
339 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
340 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
341 setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
342 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
343 setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
344 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
345 setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
346 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
347 setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
348 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
349 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
350
351
352 // v8f16 is also a storage-only type, so expand it.
353 setOperationAction(ISD::FABS, MVT::v8f16, Expand);
354 setOperationAction(ISD::FADD, MVT::v8f16, Expand);
355 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
356 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
357 setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
358 setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
359 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
360 setOperationAction(ISD::FMA, MVT::v8f16, Expand);
361 setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
362 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
363 setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
364 setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
365 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
366 setOperationAction(ISD::FREM, MVT::v8f16, Expand);
367 setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
368 setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
369 setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
370 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
371 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
372 setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
373 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
374 setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
375 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
376 setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
377 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
378 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
379 setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
380 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
381 setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
382 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
383 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
384
Tim Northover3b0846e2014-05-24 12:50:23 +0000385 // AArch64 has implementations of a lot of rounding-like FP operations.
Benjamin Kramer57a3d082015-03-08 16:07:39 +0000386 for (MVT Ty : {MVT::f32, MVT::f64}) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000387 setOperationAction(ISD::FFLOOR, Ty, Legal);
388 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
389 setOperationAction(ISD::FCEIL, Ty, Legal);
390 setOperationAction(ISD::FRINT, Ty, Legal);
391 setOperationAction(ISD::FTRUNC, Ty, Legal);
392 setOperationAction(ISD::FROUND, Ty, Legal);
James Molloyb7b2a1e2015-08-11 12:06:37 +0000393 setOperationAction(ISD::FMINNUM, Ty, Legal);
394 setOperationAction(ISD::FMAXNUM, Ty, Legal);
James Molloy88edc822015-08-17 07:13:20 +0000395 setOperationAction(ISD::FMINNAN, Ty, Legal);
396 setOperationAction(ISD::FMAXNAN, Ty, Legal);
Tim Northover3b0846e2014-05-24 12:50:23 +0000397 }
398
399 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
400
Ahmed Bougachab0ff6432015-09-01 16:23:45 +0000401 // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
402 // This requires the Performance Monitors extension.
403 if (Subtarget->hasPerfMon())
404 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
405
Tim Northover3b0846e2014-05-24 12:50:23 +0000406 if (Subtarget->isTargetMachO()) {
407 // For iOS, we don't want to the normal expansion of a libcall to
408 // sincos. We want to issue a libcall to __sincos_stret to avoid memory
409 // traffic.
410 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
411 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
412 } else {
413 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
414 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
415 }
416
Juergen Ributzka23266502014-12-10 19:43:32 +0000417 // Make floating-point constants legal for the large code model, so they don't
418 // become loads from the constant pool.
419 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
420 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
421 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
422 }
423
Tim Northover3b0846e2014-05-24 12:50:23 +0000424 // AArch64 does not have floating-point extending loads, i1 sign-extending
425 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000426 for (MVT VT : MVT::fp_valuetypes()) {
427 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
428 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
429 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
430 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
431 }
432 for (MVT VT : MVT::integer_valuetypes())
433 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
434
Tim Northover3b0846e2014-05-24 12:50:23 +0000435 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
436 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
437 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
438 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
439 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
440 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
441 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
Tim Northoverf8bfe212014-07-18 13:07:05 +0000442
443 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
444 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
445
Tim Northover3b0846e2014-05-24 12:50:23 +0000446 // Indexed loads and stores are supported.
447 for (unsigned im = (unsigned)ISD::PRE_INC;
448 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
449 setIndexedLoadAction(im, MVT::i8, Legal);
450 setIndexedLoadAction(im, MVT::i16, Legal);
451 setIndexedLoadAction(im, MVT::i32, Legal);
452 setIndexedLoadAction(im, MVT::i64, Legal);
453 setIndexedLoadAction(im, MVT::f64, Legal);
454 setIndexedLoadAction(im, MVT::f32, Legal);
Ahmed Bougachae0e12db2015-08-04 01:29:38 +0000455 setIndexedLoadAction(im, MVT::f16, Legal);
Tim Northover3b0846e2014-05-24 12:50:23 +0000456 setIndexedStoreAction(im, MVT::i8, Legal);
457 setIndexedStoreAction(im, MVT::i16, Legal);
458 setIndexedStoreAction(im, MVT::i32, Legal);
459 setIndexedStoreAction(im, MVT::i64, Legal);
460 setIndexedStoreAction(im, MVT::f64, Legal);
461 setIndexedStoreAction(im, MVT::f32, Legal);
Ahmed Bougachae0e12db2015-08-04 01:29:38 +0000462 setIndexedStoreAction(im, MVT::f16, Legal);
Tim Northover3b0846e2014-05-24 12:50:23 +0000463 }
464
465 // Trap.
466 setOperationAction(ISD::TRAP, MVT::Other, Legal);
467
468 // We combine OR nodes for bitfield operations.
469 setTargetDAGCombine(ISD::OR);
470
471 // Vector add and sub nodes may conceal a high-half opportunity.
472 // Also, try to fold ADD into CSINC/CSINV..
473 setTargetDAGCombine(ISD::ADD);
474 setTargetDAGCombine(ISD::SUB);
475
476 setTargetDAGCombine(ISD::XOR);
477 setTargetDAGCombine(ISD::SINT_TO_FP);
478 setTargetDAGCombine(ISD::UINT_TO_FP);
479
Chad Rosierfa30c9b2015-10-07 17:39:18 +0000480 setTargetDAGCombine(ISD::FP_TO_SINT);
481 setTargetDAGCombine(ISD::FP_TO_UINT);
Chad Rosier7c6ac2b2015-10-07 17:51:37 +0000482 setTargetDAGCombine(ISD::FDIV);
Chad Rosierfa30c9b2015-10-07 17:39:18 +0000483
Tim Northover3b0846e2014-05-24 12:50:23 +0000484 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
485
486 setTargetDAGCombine(ISD::ANY_EXTEND);
487 setTargetDAGCombine(ISD::ZERO_EXTEND);
488 setTargetDAGCombine(ISD::SIGN_EXTEND);
489 setTargetDAGCombine(ISD::BITCAST);
490 setTargetDAGCombine(ISD::CONCAT_VECTORS);
491 setTargetDAGCombine(ISD::STORE);
Tim Northover339c83e2015-11-10 00:44:23 +0000492 if (Subtarget->supportsAddressTopByteIgnored())
493 setTargetDAGCombine(ISD::LOAD);
Tim Northover3b0846e2014-05-24 12:50:23 +0000494
495 setTargetDAGCombine(ISD::MUL);
496
497 setTargetDAGCombine(ISD::SELECT);
498 setTargetDAGCombine(ISD::VSELECT);
499
500 setTargetDAGCombine(ISD::INTRINSIC_VOID);
501 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
502 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
Chad Rosier6c36eff2015-09-03 18:13:57 +0000503 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
Tim Northover3b0846e2014-05-24 12:50:23 +0000504
505 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
506 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
507 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
508
509 setStackPointerRegisterToSaveRestore(AArch64::SP);
510
511 setSchedulingPreference(Sched::Hybrid);
512
513 // Enable TBZ/TBNZ
514 MaskAndBranchFoldingIsLegal = true;
Quentin Colombet6843ac42015-03-31 20:52:32 +0000515 EnableExtLdPromotion = true;
Tim Northover3b0846e2014-05-24 12:50:23 +0000516
517 setMinFunctionAlignment(2);
518
Tim Northover3b0846e2014-05-24 12:50:23 +0000519 setHasExtractBitsInsn(true);
520
Adhemerval Zanella7bc33192015-07-28 13:03:31 +0000521 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
522
Tim Northover3b0846e2014-05-24 12:50:23 +0000523 if (Subtarget->hasNEON()) {
524 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
525 // silliness like this:
526 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
527 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
528 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
529 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
530 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
531 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
532 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
533 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
534 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
535 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
536 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
537 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
538 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
539 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
540 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
541 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
542 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
543 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
544 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
545 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
546 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
547 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
548 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
549 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
550 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
551
552 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
553 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
554 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
555 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
556 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
557
558 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
559
560 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
561 // elements smaller than i32, so promote the input to i32 first.
562 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
563 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
564 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
565 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
Pirama Arumuga Nainarb1881532015-04-23 17:16:27 +0000566 // i8 and i16 vector elements also need promotion to i32 for v8i8 or v8i16
567 // -> v8f16 conversions.
568 setOperationAction(ISD::SINT_TO_FP, MVT::v8i8, Promote);
569 setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Promote);
570 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote);
571 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Promote);
Tim Northover3b0846e2014-05-24 12:50:23 +0000572 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
573 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
574 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
575 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
576 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
Pirama Arumuga Nainarb1881532015-04-23 17:16:27 +0000577 // Or, direct i32 -> f16 vector conversion. Set it so custom, so the
578 // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
579 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
580 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
Tim Northover3b0846e2014-05-24 12:50:23 +0000581
582 // AArch64 doesn't have MUL.2d:
583 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
Chad Rosierd9d0f862014-10-08 02:31:24 +0000584 // Custom handling for some quad-vector types to detect MULL.
585 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
586 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
587 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
588
Tim Northover3b0846e2014-05-24 12:50:23 +0000589 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
590 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
591 // Likewise, narrowing and extending vector loads/stores aren't handled
592 // directly.
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000593 for (MVT VT : MVT::vector_valuetypes()) {
594 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000595
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000596 setOperationAction(ISD::MULHS, VT, Expand);
597 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
598 setOperationAction(ISD::MULHU, VT, Expand);
599 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000600
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000601 setOperationAction(ISD::BSWAP, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000602
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000603 for (MVT InnerVT : MVT::vector_valuetypes()) {
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000604 setTruncStoreAction(VT, InnerVT, Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000605 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
606 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
607 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
608 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000609 }
610
611 // AArch64 has implementations of a lot of rounding-like FP operations.
Benjamin Kramer57a3d082015-03-08 16:07:39 +0000612 for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000613 setOperationAction(ISD::FFLOOR, Ty, Legal);
614 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
615 setOperationAction(ISD::FCEIL, Ty, Legal);
616 setOperationAction(ISD::FRINT, Ty, Legal);
617 setOperationAction(ISD::FTRUNC, Ty, Legal);
618 setOperationAction(ISD::FROUND, Ty, Legal);
619 }
620 }
James Molloyf089ab72014-08-06 10:42:18 +0000621
622 // Prefer likely predicted branches to selects on out-of-order cores.
623 if (Subtarget->isCortexA57())
624 PredictableSelectIsExpensive = true;
Tim Northover3b0846e2014-05-24 12:50:23 +0000625}
626
627void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000628 if (VT == MVT::v2f32 || VT == MVT::v4f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000629 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
630 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
631
632 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
633 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000634 } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000635 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
636 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
637
638 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
639 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
640 }
641
642 // Mark vector float intrinsics as expand.
643 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
644 setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
645 setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
646 setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
647 setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
648 setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
649 setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
650 setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
651 setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
652 setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
Ahmed Bougachab0ae36f2015-08-04 00:42:34 +0000653
654 // But we do support custom-lowering for FCOPYSIGN.
655 setOperationAction(ISD::FCOPYSIGN, VT.getSimpleVT(), Custom);
Tim Northover3b0846e2014-05-24 12:50:23 +0000656 }
657
658 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
659 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
660 setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
661 setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
662 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
663 setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
664 setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
665 setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
666 setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
667 setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
668 setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
669 setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
670
671 setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
672 setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
673 setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000674 for (MVT InnerVT : MVT::all_valuetypes())
675 setLoadExtAction(ISD::EXTLOAD, InnerVT, VT.getSimpleVT(), Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000676
677 // CNT supports only B element sizes.
678 if (VT != MVT::v8i8 && VT != MVT::v16i8)
679 setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
680
681 setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
682 setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
683 setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
684 setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
685 setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
686
687 setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
688 setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
689
James Molloyfaf4e3c2015-07-17 17:10:45 +0000690 // [SU][MIN|MAX] and [SU]ABSDIFF are available for all NEON types apart from
691 // i64.
James Molloycfb04432015-05-15 16:15:57 +0000692 if (!VT.isFloatingPoint() &&
693 VT.getSimpleVT() != MVT::v2i64 && VT.getSimpleVT() != MVT::v1i64)
James Molloyfaf4e3c2015-07-17 17:10:45 +0000694 for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX,
695 ISD::SABSDIFF, ISD::UABSDIFF})
James Molloycfb04432015-05-15 16:15:57 +0000696 setOperationAction(Opcode, VT.getSimpleVT(), Legal);
697
James Molloy63be1982015-08-14 09:08:50 +0000698 // F[MIN|MAX][NUM|NAN] are available for all FP NEON types (not f16 though!).
699 if (VT.isFloatingPoint() && VT.getVectorElementType() != MVT::f16)
James Molloyb7b2a1e2015-08-11 12:06:37 +0000700 for (unsigned Opcode : {ISD::FMINNAN, ISD::FMAXNAN,
701 ISD::FMINNUM, ISD::FMAXNUM})
James Molloyedf38f02015-08-11 12:06:33 +0000702 setOperationAction(Opcode, VT.getSimpleVT(), Legal);
703
Tim Northover3b0846e2014-05-24 12:50:23 +0000704 if (Subtarget->isLittleEndian()) {
705 for (unsigned im = (unsigned)ISD::PRE_INC;
706 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
707 setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
708 setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
709 }
710 }
711}
712
713void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
714 addRegisterClass(VT, &AArch64::FPR64RegClass);
715 addTypeForNEON(VT, MVT::v2i32);
716}
717
718void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
719 addRegisterClass(VT, &AArch64::FPR128RegClass);
720 addTypeForNEON(VT, MVT::v4i32);
721}
722
Mehdi Amini44ede332015-07-09 02:09:04 +0000723EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
724 EVT VT) const {
Tim Northover3b0846e2014-05-24 12:50:23 +0000725 if (!VT.isVector())
726 return MVT::i32;
727 return VT.changeVectorElementTypeToInteger();
728}
729
730/// computeKnownBitsForTargetNode - Determine which of the bits specified in
731/// Mask are known to be either zero or one and return them in the
732/// KnownZero/KnownOne bitsets.
733void AArch64TargetLowering::computeKnownBitsForTargetNode(
734 const SDValue Op, APInt &KnownZero, APInt &KnownOne,
735 const SelectionDAG &DAG, unsigned Depth) const {
736 switch (Op.getOpcode()) {
737 default:
738 break;
739 case AArch64ISD::CSEL: {
740 APInt KnownZero2, KnownOne2;
741 DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
742 DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
743 KnownZero &= KnownZero2;
744 KnownOne &= KnownOne2;
745 break;
746 }
747 case ISD::INTRINSIC_W_CHAIN: {
Jun Bum Lim4d3c5982015-09-08 16:11:22 +0000748 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
Tim Northover3b0846e2014-05-24 12:50:23 +0000749 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
750 switch (IntID) {
751 default: return;
752 case Intrinsic::aarch64_ldaxr:
753 case Intrinsic::aarch64_ldxr: {
754 unsigned BitWidth = KnownOne.getBitWidth();
755 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
756 unsigned MemBits = VT.getScalarType().getSizeInBits();
757 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
758 return;
759 }
760 }
761 break;
762 }
763 case ISD::INTRINSIC_WO_CHAIN:
764 case ISD::INTRINSIC_VOID: {
765 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
766 switch (IntNo) {
767 default:
768 break;
769 case Intrinsic::aarch64_neon_umaxv:
770 case Intrinsic::aarch64_neon_uminv: {
771 // Figure out the datatype of the vector operand. The UMINV instruction
772 // will zero extend the result, so we can mark as known zero all the
773 // bits larger than the element datatype. 32-bit or larget doesn't need
774 // this as those are legal types and will be handled by isel directly.
775 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
776 unsigned BitWidth = KnownZero.getBitWidth();
777 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
778 assert(BitWidth >= 8 && "Unexpected width!");
779 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
780 KnownZero |= Mask;
781 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
782 assert(BitWidth >= 16 && "Unexpected width!");
783 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
784 KnownZero |= Mask;
785 }
786 break;
787 } break;
788 }
789 }
790 }
791}
792
Mehdi Aminieaabc512015-07-09 15:12:23 +0000793MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
794 EVT) const {
Tim Northover3b0846e2014-05-24 12:50:23 +0000795 return MVT::i64;
796}
797
Akira Hatanakaf53b0402015-07-29 14:17:26 +0000798bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
799 unsigned AddrSpace,
800 unsigned Align,
801 bool *Fast) const {
802 if (Subtarget->requiresStrictAlign())
803 return false;
Sanjay Patelbbbf9a12015-09-25 21:49:48 +0000804
805 // FIXME: This is mostly true for Cyclone, but not necessarily others.
806 if (Fast) {
807 // FIXME: Define an attribute for slow unaligned accesses instead of
808 // relying on the CPU type as a proxy.
809 // On Cyclone, unaligned 128-bit stores are slow.
810 *Fast = !Subtarget->isCyclone() || VT.getStoreSize() != 16 ||
811 // See comments in performSTORECombine() for more details about
812 // these conditions.
813
814 // Code that uses clang vector extensions can mark that it
815 // wants unaligned accesses to be treated as fast by
816 // underspecifying alignment to be 1 or 2.
817 Align <= 2 ||
818
819 // Disregard v2i64. Memcpy lowering produces those and splitting
820 // them regresses performance on micro-benchmarks and olden/bh.
821 VT == MVT::v2i64;
822 }
Akira Hatanakaf53b0402015-07-29 14:17:26 +0000823 return true;
824}
825
Tim Northover3b0846e2014-05-24 12:50:23 +0000826FastISel *
827AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
828 const TargetLibraryInfo *libInfo) const {
829 return AArch64::createFastISel(funcInfo, libInfo);
830}
831
832const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
Matthias Braund04893f2015-05-07 21:33:59 +0000833 switch ((AArch64ISD::NodeType)Opcode) {
834 case AArch64ISD::FIRST_NUMBER: break;
Tim Northover3b0846e2014-05-24 12:50:23 +0000835 case AArch64ISD::CALL: return "AArch64ISD::CALL";
836 case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
837 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
838 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
839 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
840 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
841 case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
842 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
843 case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
844 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
845 case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
846 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
Kristof Beylsaea84612015-03-04 09:12:08 +0000847 case AArch64ISD::TLSDESC_CALLSEQ: return "AArch64ISD::TLSDESC_CALLSEQ";
Tim Northover3b0846e2014-05-24 12:50:23 +0000848 case AArch64ISD::ADC: return "AArch64ISD::ADC";
849 case AArch64ISD::SBC: return "AArch64ISD::SBC";
850 case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
851 case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
852 case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
853 case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
854 case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
Matthias Braunaf7d7702015-07-16 20:02:37 +0000855 case AArch64ISD::CCMP: return "AArch64ISD::CCMP";
856 case AArch64ISD::CCMN: return "AArch64ISD::CCMN";
857 case AArch64ISD::FCCMP: return "AArch64ISD::FCCMP";
Tim Northover3b0846e2014-05-24 12:50:23 +0000858 case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
Tim Northover3b0846e2014-05-24 12:50:23 +0000859 case AArch64ISD::DUP: return "AArch64ISD::DUP";
860 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
861 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
862 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
863 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
864 case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
865 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
866 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
867 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
868 case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
869 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
870 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
871 case AArch64ISD::BICi: return "AArch64ISD::BICi";
872 case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
873 case AArch64ISD::BSL: return "AArch64ISD::BSL";
874 case AArch64ISD::NEG: return "AArch64ISD::NEG";
875 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
876 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
877 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
878 case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
879 case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
880 case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
881 case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
882 case AArch64ISD::REV16: return "AArch64ISD::REV16";
883 case AArch64ISD::REV32: return "AArch64ISD::REV32";
884 case AArch64ISD::REV64: return "AArch64ISD::REV64";
885 case AArch64ISD::EXT: return "AArch64ISD::EXT";
886 case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
887 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
888 case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
889 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
890 case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
891 case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
892 case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
893 case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
894 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
895 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
896 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
897 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
898 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
899 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
900 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
901 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
902 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
903 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
904 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
905 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
906 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
Ahmed Bougachafab58922015-03-10 20:45:38 +0000907 case AArch64ISD::SADDV: return "AArch64ISD::SADDV";
908 case AArch64ISD::UADDV: return "AArch64ISD::UADDV";
909 case AArch64ISD::SMINV: return "AArch64ISD::SMINV";
910 case AArch64ISD::UMINV: return "AArch64ISD::UMINV";
911 case AArch64ISD::SMAXV: return "AArch64ISD::SMAXV";
912 case AArch64ISD::UMAXV: return "AArch64ISD::UMAXV";
Tim Northover3b0846e2014-05-24 12:50:23 +0000913 case AArch64ISD::NOT: return "AArch64ISD::NOT";
914 case AArch64ISD::BIT: return "AArch64ISD::BIT";
915 case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
916 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
917 case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
918 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
919 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
Matthias Braund04893f2015-05-07 21:33:59 +0000920 case AArch64ISD::PREFETCH: return "AArch64ISD::PREFETCH";
Tim Northover3b0846e2014-05-24 12:50:23 +0000921 case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
922 case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
Asiri Rathnayake530b3ed2014-10-01 09:59:45 +0000923 case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
Tim Northover3b0846e2014-05-24 12:50:23 +0000924 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
925 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
926 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
927 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
928 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
929 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
930 case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
931 case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
932 case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
933 case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
934 case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
935 case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
936 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
937 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
938 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
939 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
940 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
941 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
942 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
943 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
944 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
945 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
946 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
947 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
948 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
949 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
950 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
951 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
952 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
Chad Rosierd9d0f862014-10-08 02:31:24 +0000953 case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
954 case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
Tim Northover3b0846e2014-05-24 12:50:23 +0000955 }
Matthias Braund04893f2015-05-07 21:33:59 +0000956 return nullptr;
Tim Northover3b0846e2014-05-24 12:50:23 +0000957}
958
959MachineBasicBlock *
960AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
961 MachineBasicBlock *MBB) const {
962 // We materialise the F128CSEL pseudo-instruction as some control flow and a
963 // phi node:
964
965 // OrigBB:
966 // [... previous instrs leading to comparison ...]
967 // b.ne TrueBB
968 // b EndBB
969 // TrueBB:
970 // ; Fallthrough
971 // EndBB:
972 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
973
Tim Northover3b0846e2014-05-24 12:50:23 +0000974 MachineFunction *MF = MBB->getParent();
Eric Christopher905f12d2015-01-29 00:19:42 +0000975 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +0000976 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
977 DebugLoc DL = MI->getDebugLoc();
Duncan P. N. Exon Smithd3b9df02015-10-13 20:02:15 +0000978 MachineFunction::iterator It = ++MBB->getIterator();
Tim Northover3b0846e2014-05-24 12:50:23 +0000979
980 unsigned DestReg = MI->getOperand(0).getReg();
981 unsigned IfTrueReg = MI->getOperand(1).getReg();
982 unsigned IfFalseReg = MI->getOperand(2).getReg();
983 unsigned CondCode = MI->getOperand(3).getImm();
984 bool NZCVKilled = MI->getOperand(4).isKill();
985
986 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
987 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
988 MF->insert(It, TrueBB);
989 MF->insert(It, EndBB);
990
991 // Transfer rest of current basic-block to EndBB
992 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
993 MBB->end());
994 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
995
996 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
997 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
998 MBB->addSuccessor(TrueBB);
999 MBB->addSuccessor(EndBB);
1000
1001 // TrueBB falls through to the end.
1002 TrueBB->addSuccessor(EndBB);
1003
1004 if (!NZCVKilled) {
1005 TrueBB->addLiveIn(AArch64::NZCV);
1006 EndBB->addLiveIn(AArch64::NZCV);
1007 }
1008
1009 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
1010 .addReg(IfTrueReg)
1011 .addMBB(TrueBB)
1012 .addReg(IfFalseReg)
1013 .addMBB(MBB);
1014
1015 MI->eraseFromParent();
1016 return EndBB;
1017}
1018
1019MachineBasicBlock *
1020AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1021 MachineBasicBlock *BB) const {
1022 switch (MI->getOpcode()) {
1023 default:
1024#ifndef NDEBUG
1025 MI->dump();
1026#endif
Craig Topper35b2f752014-06-19 06:10:58 +00001027 llvm_unreachable("Unexpected instruction for custom inserter!");
Tim Northover3b0846e2014-05-24 12:50:23 +00001028
1029 case AArch64::F128CSEL:
1030 return EmitF128CSEL(MI, BB);
1031
1032 case TargetOpcode::STACKMAP:
1033 case TargetOpcode::PATCHPOINT:
1034 return emitPatchPoint(MI, BB);
1035 }
Tim Northover3b0846e2014-05-24 12:50:23 +00001036}
1037
1038//===----------------------------------------------------------------------===//
1039// AArch64 Lowering private implementation.
1040//===----------------------------------------------------------------------===//
1041
1042//===----------------------------------------------------------------------===//
1043// Lowering Code
1044//===----------------------------------------------------------------------===//
1045
1046/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
1047/// CC
1048static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
1049 switch (CC) {
1050 default:
1051 llvm_unreachable("Unknown condition code!");
1052 case ISD::SETNE:
1053 return AArch64CC::NE;
1054 case ISD::SETEQ:
1055 return AArch64CC::EQ;
1056 case ISD::SETGT:
1057 return AArch64CC::GT;
1058 case ISD::SETGE:
1059 return AArch64CC::GE;
1060 case ISD::SETLT:
1061 return AArch64CC::LT;
1062 case ISD::SETLE:
1063 return AArch64CC::LE;
1064 case ISD::SETUGT:
1065 return AArch64CC::HI;
1066 case ISD::SETUGE:
1067 return AArch64CC::HS;
1068 case ISD::SETULT:
1069 return AArch64CC::LO;
1070 case ISD::SETULE:
1071 return AArch64CC::LS;
1072 }
1073}
1074
1075/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
1076static void changeFPCCToAArch64CC(ISD::CondCode CC,
1077 AArch64CC::CondCode &CondCode,
1078 AArch64CC::CondCode &CondCode2) {
1079 CondCode2 = AArch64CC::AL;
1080 switch (CC) {
1081 default:
1082 llvm_unreachable("Unknown FP condition!");
1083 case ISD::SETEQ:
1084 case ISD::SETOEQ:
1085 CondCode = AArch64CC::EQ;
1086 break;
1087 case ISD::SETGT:
1088 case ISD::SETOGT:
1089 CondCode = AArch64CC::GT;
1090 break;
1091 case ISD::SETGE:
1092 case ISD::SETOGE:
1093 CondCode = AArch64CC::GE;
1094 break;
1095 case ISD::SETOLT:
1096 CondCode = AArch64CC::MI;
1097 break;
1098 case ISD::SETOLE:
1099 CondCode = AArch64CC::LS;
1100 break;
1101 case ISD::SETONE:
1102 CondCode = AArch64CC::MI;
1103 CondCode2 = AArch64CC::GT;
1104 break;
1105 case ISD::SETO:
1106 CondCode = AArch64CC::VC;
1107 break;
1108 case ISD::SETUO:
1109 CondCode = AArch64CC::VS;
1110 break;
1111 case ISD::SETUEQ:
1112 CondCode = AArch64CC::EQ;
1113 CondCode2 = AArch64CC::VS;
1114 break;
1115 case ISD::SETUGT:
1116 CondCode = AArch64CC::HI;
1117 break;
1118 case ISD::SETUGE:
1119 CondCode = AArch64CC::PL;
1120 break;
1121 case ISD::SETLT:
1122 case ISD::SETULT:
1123 CondCode = AArch64CC::LT;
1124 break;
1125 case ISD::SETLE:
1126 case ISD::SETULE:
1127 CondCode = AArch64CC::LE;
1128 break;
1129 case ISD::SETNE:
1130 case ISD::SETUNE:
1131 CondCode = AArch64CC::NE;
1132 break;
1133 }
1134}
1135
1136/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1137/// CC usable with the vector instructions. Fewer operations are available
1138/// without a real NZCV register, so we have to use less efficient combinations
1139/// to get the same effect.
1140static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1141 AArch64CC::CondCode &CondCode,
1142 AArch64CC::CondCode &CondCode2,
1143 bool &Invert) {
1144 Invert = false;
1145 switch (CC) {
1146 default:
1147 // Mostly the scalar mappings work fine.
1148 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1149 break;
1150 case ISD::SETUO:
1151 Invert = true; // Fallthrough
1152 case ISD::SETO:
1153 CondCode = AArch64CC::MI;
1154 CondCode2 = AArch64CC::GE;
1155 break;
1156 case ISD::SETUEQ:
1157 case ISD::SETULT:
1158 case ISD::SETULE:
1159 case ISD::SETUGT:
1160 case ISD::SETUGE:
1161 // All of the compare-mask comparisons are ordered, but we can switch
1162 // between the two by a double inversion. E.g. ULE == !OGT.
1163 Invert = true;
1164 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1165 break;
1166 }
1167}
1168
1169static bool isLegalArithImmed(uint64_t C) {
1170 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1171 return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1172}
1173
1174static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1175 SDLoc dl, SelectionDAG &DAG) {
1176 EVT VT = LHS.getValueType();
1177
1178 if (VT.isFloatingPoint())
1179 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1180
1181 // The CMP instruction is just an alias for SUBS, and representing it as
1182 // SUBS means that it's possible to get CSE with subtract operations.
1183 // A later phase can perform the optimization of setting the destination
1184 // register to WZR/XZR if it ends up being unused.
1185 unsigned Opcode = AArch64ISD::SUBS;
1186
Artyom Skrobov314ee042015-11-25 19:41:11 +00001187 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001188 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1189 // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1190 // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1191 // can be set differently by this operation. It comes down to whether
1192 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1193 // everything is fine. If not then the optimization is wrong. Thus general
1194 // comparisons are only valid if op2 != 0.
1195
1196 // So, finally, the only LLVM-native comparisons that don't mention C and V
1197 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1198 // the absence of information about op2.
1199 Opcode = AArch64ISD::ADDS;
1200 RHS = RHS.getOperand(1);
Artyom Skrobov314ee042015-11-25 19:41:11 +00001201 } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001202 !isUnsignedIntSetCC(CC)) {
1203 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1204 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1205 // of the signed comparisons.
1206 Opcode = AArch64ISD::ANDS;
1207 RHS = LHS.getOperand(1);
1208 LHS = LHS.getOperand(0);
1209 }
1210
Matthias Braunaf7d7702015-07-16 20:02:37 +00001211 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
Tim Northover3b0846e2014-05-24 12:50:23 +00001212 .getValue(1);
1213}
1214
Matthias Braunaf7d7702015-07-16 20:02:37 +00001215/// \defgroup AArch64CCMP CMP;CCMP matching
1216///
1217/// These functions deal with the formation of CMP;CCMP;... sequences.
1218/// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
1219/// a comparison. They set the NZCV flags to a predefined value if their
1220/// predicate is false. This allows to express arbitrary conjunctions, for
1221/// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B))))"
1222/// expressed as:
1223/// cmp A
1224/// ccmp B, inv(CB), CA
1225/// check for CB flags
1226///
1227/// In general we can create code for arbitrary "... (and (and A B) C)"
1228/// sequences. We can also implement some "or" expressions, because "(or A B)"
1229/// is equivalent to "not (and (not A) (not B))" and we can implement some
1230/// negation operations:
1231/// We can negate the results of a single comparison by inverting the flags
1232/// used when the predicate fails and inverting the flags tested in the next
1233/// instruction; We can also negate the results of the whole previous
1234/// conditional compare sequence by inverting the flags tested in the next
1235/// instruction. However there is no way to negate the result of a partial
1236/// sequence.
1237///
1238/// Therefore on encountering an "or" expression we can negate the subtree on
1239/// one side and have to be able to push the negate to the leafs of the subtree
1240/// on the other side (see also the comments in code). As complete example:
1241/// "or (or (setCA (cmp A)) (setCB (cmp B)))
1242/// (and (setCC (cmp C)) (setCD (cmp D)))"
1243/// is transformed to
1244/// "not (and (not (and (setCC (cmp C)) (setCC (cmp D))))
1245/// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
1246/// and implemented as:
1247/// cmp C
1248/// ccmp D, inv(CD), CC
1249/// ccmp A, CA, inv(CD)
1250/// ccmp B, CB, inv(CA)
1251/// check for CB flags
1252/// A counterexample is "or (and A B) (and C D)" which cannot be implemented
1253/// by conditional compare sequences.
1254/// @{
1255
Geoff Berrye41c2df2015-07-20 22:03:52 +00001256/// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
Matthias Braunaf7d7702015-07-16 20:02:37 +00001257static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
1258 ISD::CondCode CC, SDValue CCOp,
1259 SDValue Condition, unsigned NZCV,
1260 SDLoc DL, SelectionDAG &DAG) {
1261 unsigned Opcode = 0;
1262 if (LHS.getValueType().isFloatingPoint())
1263 Opcode = AArch64ISD::FCCMP;
1264 else if (RHS.getOpcode() == ISD::SUB) {
1265 SDValue SubOp0 = RHS.getOperand(0);
Artyom Skrobov314ee042015-11-25 19:41:11 +00001266 if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
Matthias Braunaf7d7702015-07-16 20:02:37 +00001267 // See emitComparison() on why we can only do this for SETEQ and SETNE.
1268 Opcode = AArch64ISD::CCMN;
1269 RHS = RHS.getOperand(1);
1270 }
1271 }
1272 if (Opcode == 0)
1273 Opcode = AArch64ISD::CCMP;
1274
1275 SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
1276 return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
1277}
1278
1279/// Returns true if @p Val is a tree of AND/OR/SETCC operations.
1280/// CanPushNegate is set to true if we can push a negate operation through
1281/// the tree in a was that we are left with AND operations and negate operations
1282/// at the leafs only. i.e. "not (or (or x y) z)" can be changed to
1283/// "and (and (not x) (not y)) (not z)"; "not (or (and x y) z)" cannot be
1284/// brought into such a form.
1285static bool isConjunctionDisjunctionTree(const SDValue Val, bool &CanPushNegate,
1286 unsigned Depth = 0) {
1287 if (!Val.hasOneUse())
1288 return false;
1289 unsigned Opcode = Val->getOpcode();
1290 if (Opcode == ISD::SETCC) {
1291 CanPushNegate = true;
1292 return true;
1293 }
1294 // Protect against stack overflow.
1295 if (Depth > 15)
1296 return false;
1297 if (Opcode == ISD::AND || Opcode == ISD::OR) {
1298 SDValue O0 = Val->getOperand(0);
1299 SDValue O1 = Val->getOperand(1);
1300 bool CanPushNegateL;
1301 if (!isConjunctionDisjunctionTree(O0, CanPushNegateL, Depth+1))
1302 return false;
1303 bool CanPushNegateR;
1304 if (!isConjunctionDisjunctionTree(O1, CanPushNegateR, Depth+1))
1305 return false;
1306 // We cannot push a negate through an AND operation (it would become an OR),
1307 // we can however change a (not (or x y)) to (and (not x) (not y)) if we can
1308 // push the negate through the x/y subtrees.
1309 CanPushNegate = (Opcode == ISD::OR) && CanPushNegateL && CanPushNegateR;
1310 return true;
1311 }
1312 return false;
1313}
1314
1315/// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1316/// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1317/// Tries to transform the given i1 producing node @p Val to a series compare
1318/// and conditional compare operations. @returns an NZCV flags producing node
1319/// and sets @p OutCC to the flags that should be tested or returns SDValue() if
1320/// transformation was not possible.
1321/// On recursive invocations @p PushNegate may be set to true to have negation
1322/// effects pushed to the tree leafs; @p Predicate is an NZCV flag predicate
1323/// for the comparisons in the current subtree; @p Depth limits the search
1324/// depth to avoid stack overflow.
1325static SDValue emitConjunctionDisjunctionTree(SelectionDAG &DAG, SDValue Val,
1326 AArch64CC::CondCode &OutCC, bool PushNegate = false,
1327 SDValue CCOp = SDValue(), AArch64CC::CondCode Predicate = AArch64CC::AL,
1328 unsigned Depth = 0) {
1329 // We're at a tree leaf, produce a conditional comparison operation.
1330 unsigned Opcode = Val->getOpcode();
1331 if (Opcode == ISD::SETCC) {
1332 SDValue LHS = Val->getOperand(0);
1333 SDValue RHS = Val->getOperand(1);
1334 ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
1335 bool isInteger = LHS.getValueType().isInteger();
1336 if (PushNegate)
1337 CC = getSetCCInverse(CC, isInteger);
1338 SDLoc DL(Val);
1339 // Determine OutCC and handle FP special case.
1340 if (isInteger) {
1341 OutCC = changeIntCCToAArch64CC(CC);
1342 } else {
1343 assert(LHS.getValueType().isFloatingPoint());
1344 AArch64CC::CondCode ExtraCC;
1345 changeFPCCToAArch64CC(CC, OutCC, ExtraCC);
1346 // Surpisingly some floating point conditions can't be tested with a
1347 // single condition code. Construct an additional comparison in this case.
1348 // See comment below on how we deal with OR conditions.
1349 if (ExtraCC != AArch64CC::AL) {
1350 SDValue ExtraCmp;
1351 if (!CCOp.getNode())
1352 ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
1353 else {
1354 SDValue ConditionOp = DAG.getConstant(Predicate, DL, MVT_CC);
1355 // Note that we want the inverse of ExtraCC, so NZCV is not inversed.
1356 unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(ExtraCC);
1357 ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, ConditionOp,
1358 NZCV, DL, DAG);
1359 }
1360 CCOp = ExtraCmp;
1361 Predicate = AArch64CC::getInvertedCondCode(ExtraCC);
1362 OutCC = AArch64CC::getInvertedCondCode(OutCC);
1363 }
1364 }
1365
1366 // Produce a normal comparison if we are first in the chain
1367 if (!CCOp.getNode())
1368 return emitComparison(LHS, RHS, CC, DL, DAG);
1369 // Otherwise produce a ccmp.
1370 SDValue ConditionOp = DAG.getConstant(Predicate, DL, MVT_CC);
1371 AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
1372 unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
1373 return emitConditionalComparison(LHS, RHS, CC, CCOp, ConditionOp, NZCV, DL,
1374 DAG);
Matthias Braun266204b2015-08-20 23:33:31 +00001375 } else if ((Opcode != ISD::AND && Opcode != ISD::OR) || !Val->hasOneUse())
Matthias Braunaf7d7702015-07-16 20:02:37 +00001376 return SDValue();
1377
1378 assert((Opcode == ISD::OR || !PushNegate)
1379 && "Can only push negate through OR operation");
1380
1381 // Check if both sides can be transformed.
1382 SDValue LHS = Val->getOperand(0);
1383 SDValue RHS = Val->getOperand(1);
1384 bool CanPushNegateL;
1385 if (!isConjunctionDisjunctionTree(LHS, CanPushNegateL, Depth+1))
1386 return SDValue();
1387 bool CanPushNegateR;
1388 if (!isConjunctionDisjunctionTree(RHS, CanPushNegateR, Depth+1))
1389 return SDValue();
1390
1391 // Do we need to negate our operands?
1392 bool NegateOperands = Opcode == ISD::OR;
1393 // We can negate the results of all previous operations by inverting the
1394 // predicate flags giving us a free negation for one side. For the other side
1395 // we need to be able to push the negation to the leafs of the tree.
1396 if (NegateOperands) {
1397 if (!CanPushNegateL && !CanPushNegateR)
1398 return SDValue();
1399 // Order the side where we can push the negate through to LHS.
Matthias Braun46e56392015-08-20 23:33:34 +00001400 if (!CanPushNegateL && CanPushNegateR)
Matthias Braunaf7d7702015-07-16 20:02:37 +00001401 std::swap(LHS, RHS);
Matthias Braun46e56392015-08-20 23:33:34 +00001402 } else {
1403 bool NeedsNegOutL = LHS->getOpcode() == ISD::OR;
1404 bool NeedsNegOutR = RHS->getOpcode() == ISD::OR;
1405 if (NeedsNegOutL && NeedsNegOutR)
1406 return SDValue();
1407 // Order the side where we need to negate the output flags to RHS so it
1408 // gets emitted first.
1409 if (NeedsNegOutL)
1410 std::swap(LHS, RHS);
Matthias Braunaf7d7702015-07-16 20:02:37 +00001411 }
1412
1413 // Emit RHS. If we want to negate the tree we only need to push a negate
1414 // through if we are already in a PushNegate case, otherwise we can negate
1415 // the "flags to test" afterwards.
1416 AArch64CC::CondCode RHSCC;
1417 SDValue CmpR = emitConjunctionDisjunctionTree(DAG, RHS, RHSCC, PushNegate,
1418 CCOp, Predicate, Depth+1);
1419 if (NegateOperands && !PushNegate)
1420 RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
1421 // Emit LHS. We must push the negate through if we need to negate it.
1422 SDValue CmpL = emitConjunctionDisjunctionTree(DAG, LHS, OutCC, NegateOperands,
1423 CmpR, RHSCC, Depth+1);
1424 // If we transformed an OR to and AND then we have to negate the result
1425 // (or absorb a PushNegate resulting in a double negation).
1426 if (Opcode == ISD::OR && !PushNegate)
1427 OutCC = AArch64CC::getInvertedCondCode(OutCC);
1428 return CmpL;
1429}
1430
1431/// @}
1432
Tim Northover3b0846e2014-05-24 12:50:23 +00001433static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1434 SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
1435 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1436 EVT VT = RHS.getValueType();
1437 uint64_t C = RHSC->getZExtValue();
1438 if (!isLegalArithImmed(C)) {
1439 // Constant does not fit, try adjusting it by one?
1440 switch (CC) {
1441 default:
1442 break;
1443 case ISD::SETLT:
1444 case ISD::SETGE:
1445 if ((VT == MVT::i32 && C != 0x80000000 &&
1446 isLegalArithImmed((uint32_t)(C - 1))) ||
1447 (VT == MVT::i64 && C != 0x80000000ULL &&
1448 isLegalArithImmed(C - 1ULL))) {
1449 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1450 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001451 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001452 }
1453 break;
1454 case ISD::SETULT:
1455 case ISD::SETUGE:
1456 if ((VT == MVT::i32 && C != 0 &&
1457 isLegalArithImmed((uint32_t)(C - 1))) ||
1458 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1459 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1460 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001461 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001462 }
1463 break;
1464 case ISD::SETLE:
1465 case ISD::SETGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001466 if ((VT == MVT::i32 && C != INT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001467 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001468 (VT == MVT::i64 && C != INT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001469 isLegalArithImmed(C + 1ULL))) {
1470 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1471 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001472 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001473 }
1474 break;
1475 case ISD::SETULE:
1476 case ISD::SETUGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001477 if ((VT == MVT::i32 && C != UINT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001478 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001479 (VT == MVT::i64 && C != UINT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001480 isLegalArithImmed(C + 1ULL))) {
1481 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1482 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001483 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001484 }
1485 break;
1486 }
1487 }
1488 }
Matthias Braunaf7d7702015-07-16 20:02:37 +00001489 SDValue Cmp;
1490 AArch64CC::CondCode AArch64CC;
David Xuee978202014-08-28 04:59:53 +00001491 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
Matthias Braunaf7d7702015-07-16 20:02:37 +00001492 const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
1493
1494 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1495 // For the i8 operand, the largest immediate is 255, so this can be easily
1496 // encoded in the compare instruction. For the i16 operand, however, the
1497 // largest immediate cannot be encoded in the compare.
1498 // Therefore, use a sign extending load and cmn to avoid materializing the
1499 // -1 constant. For example,
1500 // movz w1, #65535
1501 // ldrh w0, [x0, #0]
1502 // cmp w0, w1
1503 // >
1504 // ldrsh w0, [x0, #0]
1505 // cmn w0, #1
1506 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1507 // if and only if (sext LHS) == (sext RHS). The checks are in place to
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001508 // ensure both the LHS and RHS are truly zero extended and to make sure the
Matthias Braunaf7d7702015-07-16 20:02:37 +00001509 // transformation is profitable.
1510 if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
1511 cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1512 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1513 LHS.getNode()->hasNUsesOfValue(1, 0)) {
1514 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1515 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1516 SDValue SExt =
1517 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1518 DAG.getValueType(MVT::i16));
1519 Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
1520 RHS.getValueType()),
1521 CC, dl, DAG);
1522 AArch64CC = changeIntCCToAArch64CC(CC);
1523 }
1524 }
1525
1526 if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
1527 if ((Cmp = emitConjunctionDisjunctionTree(DAG, LHS, AArch64CC))) {
1528 if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
1529 AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
David Xuee978202014-08-28 04:59:53 +00001530 }
1531 }
1532 }
Matthias Braunaf7d7702015-07-16 20:02:37 +00001533
1534 if (!Cmp) {
1535 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1536 AArch64CC = changeIntCCToAArch64CC(CC);
1537 }
1538 AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
Tim Northover3b0846e2014-05-24 12:50:23 +00001539 return Cmp;
1540}
1541
1542static std::pair<SDValue, SDValue>
1543getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1544 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1545 "Unsupported value type");
1546 SDValue Value, Overflow;
1547 SDLoc DL(Op);
1548 SDValue LHS = Op.getOperand(0);
1549 SDValue RHS = Op.getOperand(1);
1550 unsigned Opc = 0;
1551 switch (Op.getOpcode()) {
1552 default:
1553 llvm_unreachable("Unknown overflow instruction!");
1554 case ISD::SADDO:
1555 Opc = AArch64ISD::ADDS;
1556 CC = AArch64CC::VS;
1557 break;
1558 case ISD::UADDO:
1559 Opc = AArch64ISD::ADDS;
1560 CC = AArch64CC::HS;
1561 break;
1562 case ISD::SSUBO:
1563 Opc = AArch64ISD::SUBS;
1564 CC = AArch64CC::VS;
1565 break;
1566 case ISD::USUBO:
1567 Opc = AArch64ISD::SUBS;
1568 CC = AArch64CC::LO;
1569 break;
1570 // Multiply needs a little bit extra work.
1571 case ISD::SMULO:
1572 case ISD::UMULO: {
1573 CC = AArch64CC::NE;
David Blaikie186d2cb2015-03-24 16:24:01 +00001574 bool IsSigned = Op.getOpcode() == ISD::SMULO;
Tim Northover3b0846e2014-05-24 12:50:23 +00001575 if (Op.getValueType() == MVT::i32) {
1576 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1577 // For a 32 bit multiply with overflow check we want the instruction
1578 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1579 // need to generate the following pattern:
1580 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1581 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1582 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1583 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1584 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001585 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001586 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1587 // operation. We need to clear out the upper 32 bits, because we used a
1588 // widening multiply that wrote all 64 bits. In the end this should be a
1589 // noop.
1590 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1591 if (IsSigned) {
1592 // The signed overflow check requires more than just a simple check for
1593 // any bit set in the upper 32 bits of the result. These bits could be
1594 // just the sign bits of a negative number. To perform the overflow
1595 // check we have to arithmetic shift right the 32nd bit of the result by
1596 // 31 bits. Then we compare the result to the upper 32 bits.
1597 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001598 DAG.getConstant(32, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001599 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1600 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001601 DAG.getConstant(31, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001602 // It is important that LowerBits is last, otherwise the arithmetic
1603 // shift will not be folded into the compare (SUBS).
1604 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1605 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1606 .getValue(1);
1607 } else {
1608 // The overflow check for unsigned multiply is easy. We only need to
1609 // check if any of the upper 32 bits are set. This can be done with a
1610 // CMP (shifted register). For that we need to generate the following
1611 // pattern:
1612 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1613 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001614 DAG.getConstant(32, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001615 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1616 Overflow =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001617 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1618 DAG.getConstant(0, DL, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00001619 UpperBits).getValue(1);
1620 }
1621 break;
1622 }
1623 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1624 // For the 64 bit multiply
1625 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1626 if (IsSigned) {
1627 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1628 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001629 DAG.getConstant(63, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001630 // It is important that LowerBits is last, otherwise the arithmetic
1631 // shift will not be folded into the compare (SUBS).
1632 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1633 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1634 .getValue(1);
1635 } else {
1636 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1637 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1638 Overflow =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001639 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1640 DAG.getConstant(0, DL, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00001641 UpperBits).getValue(1);
1642 }
1643 break;
1644 }
1645 } // switch (...)
1646
1647 if (Opc) {
1648 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1649
1650 // Emit the AArch64 operation with overflow check.
1651 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1652 Overflow = Value.getValue(1);
1653 }
1654 return std::make_pair(Value, Overflow);
1655}
1656
1657SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1658 RTLIB::Libcall Call) const {
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00001659 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
Craig Topper8fe40e02015-10-22 17:05:00 +00001660 return makeLibCall(DAG, Call, MVT::f128, Ops, false, SDLoc(Op)).first;
Tim Northover3b0846e2014-05-24 12:50:23 +00001661}
1662
1663static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1664 SDValue Sel = Op.getOperand(0);
1665 SDValue Other = Op.getOperand(1);
1666
1667 // If neither operand is a SELECT_CC, give up.
1668 if (Sel.getOpcode() != ISD::SELECT_CC)
1669 std::swap(Sel, Other);
1670 if (Sel.getOpcode() != ISD::SELECT_CC)
1671 return Op;
1672
1673 // The folding we want to perform is:
1674 // (xor x, (select_cc a, b, cc, 0, -1) )
1675 // -->
1676 // (csel x, (xor x, -1), cc ...)
1677 //
1678 // The latter will get matched to a CSINV instruction.
1679
1680 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1681 SDValue LHS = Sel.getOperand(0);
1682 SDValue RHS = Sel.getOperand(1);
1683 SDValue TVal = Sel.getOperand(2);
1684 SDValue FVal = Sel.getOperand(3);
1685 SDLoc dl(Sel);
1686
1687 // FIXME: This could be generalized to non-integer comparisons.
1688 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1689 return Op;
1690
1691 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1692 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1693
Eric Christopher572e03a2015-06-19 01:53:21 +00001694 // The values aren't constants, this isn't the pattern we're looking for.
Tim Northover3b0846e2014-05-24 12:50:23 +00001695 if (!CFVal || !CTVal)
1696 return Op;
1697
1698 // We can commute the SELECT_CC by inverting the condition. This
1699 // might be needed to make this fit into a CSINV pattern.
1700 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1701 std::swap(TVal, FVal);
1702 std::swap(CTVal, CFVal);
1703 CC = ISD::getSetCCInverse(CC, true);
1704 }
1705
1706 // If the constants line up, perform the transform!
1707 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1708 SDValue CCVal;
1709 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1710
1711 FVal = Other;
1712 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001713 DAG.getConstant(-1ULL, dl, Other.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00001714
1715 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1716 CCVal, Cmp);
1717 }
1718
1719 return Op;
1720}
1721
1722static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1723 EVT VT = Op.getValueType();
1724
1725 // Let legalize expand this if it isn't a legal type yet.
1726 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1727 return SDValue();
1728
1729 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1730
1731 unsigned Opc;
1732 bool ExtraOp = false;
1733 switch (Op.getOpcode()) {
1734 default:
Craig Topper2a30d782014-06-18 05:05:13 +00001735 llvm_unreachable("Invalid code");
Tim Northover3b0846e2014-05-24 12:50:23 +00001736 case ISD::ADDC:
1737 Opc = AArch64ISD::ADDS;
1738 break;
1739 case ISD::SUBC:
1740 Opc = AArch64ISD::SUBS;
1741 break;
1742 case ISD::ADDE:
1743 Opc = AArch64ISD::ADCS;
1744 ExtraOp = true;
1745 break;
1746 case ISD::SUBE:
1747 Opc = AArch64ISD::SBCS;
1748 ExtraOp = true;
1749 break;
1750 }
1751
1752 if (!ExtraOp)
1753 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1754 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1755 Op.getOperand(2));
1756}
1757
1758static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1759 // Let legalize expand this if it isn't a legal type yet.
1760 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1761 return SDValue();
1762
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001763 SDLoc dl(Op);
Tim Northover3b0846e2014-05-24 12:50:23 +00001764 AArch64CC::CondCode CC;
1765 // The actual operation that sets the overflow or carry flag.
1766 SDValue Value, Overflow;
1767 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1768
1769 // We use 0 and 1 as false and true values.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001770 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
1771 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00001772
1773 // We use an inverted condition, because the conditional select is inverted
1774 // too. This will allow it to be selected to a single instruction:
1775 // CSINC Wd, WZR, WZR, invert(cond).
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001776 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
1777 Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
Tim Northover3b0846e2014-05-24 12:50:23 +00001778 CCVal, Overflow);
1779
1780 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001781 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
Tim Northover3b0846e2014-05-24 12:50:23 +00001782}
1783
1784// Prefetch operands are:
1785// 1: Address to prefetch
1786// 2: bool isWrite
1787// 3: int locality (0 = no locality ... 3 = extreme locality)
1788// 4: bool isDataCache
1789static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1790 SDLoc DL(Op);
1791 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1792 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
Yi Konge56de692014-08-05 12:46:47 +00001793 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00001794
1795 bool IsStream = !Locality;
1796 // When the locality number is set
1797 if (Locality) {
1798 // The front-end should have filtered out the out-of-range values
1799 assert(Locality <= 3 && "Prefetch locality out-of-range");
1800 // The locality degree is the opposite of the cache speed.
1801 // Put the number the other way around.
1802 // The encoding starts at 0 for level 1
1803 Locality = 3 - Locality;
1804 }
1805
1806 // built the mask value encoding the expected behavior.
1807 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
Yi Konge56de692014-08-05 12:46:47 +00001808 (!IsData << 3) | // IsDataCache bit
Tim Northover3b0846e2014-05-24 12:50:23 +00001809 (Locality << 1) | // Cache level bits
1810 (unsigned)IsStream; // Stream bit
1811 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001812 DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
Tim Northover3b0846e2014-05-24 12:50:23 +00001813}
1814
1815SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1816 SelectionDAG &DAG) const {
1817 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1818
1819 RTLIB::Libcall LC;
1820 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1821
1822 return LowerF128Call(Op, DAG, LC);
1823}
1824
1825SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1826 SelectionDAG &DAG) const {
1827 if (Op.getOperand(0).getValueType() != MVT::f128) {
1828 // It's legal except when f128 is involved
1829 return Op;
1830 }
1831
1832 RTLIB::Libcall LC;
1833 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1834
1835 // FP_ROUND node has a second operand indicating whether it is known to be
1836 // precise. That doesn't take part in the LibCall so we can't directly use
1837 // LowerF128Call.
1838 SDValue SrcVal = Op.getOperand(0);
Craig Topper8fe40e02015-10-22 17:05:00 +00001839 return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
1840 SDLoc(Op)).first;
Tim Northover3b0846e2014-05-24 12:50:23 +00001841}
1842
1843static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1844 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1845 // Any additional optimization in this function should be recorded
1846 // in the cost tables.
1847 EVT InVT = Op.getOperand(0).getValueType();
1848 EVT VT = Op.getValueType();
1849
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001850 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001851 SDLoc dl(Op);
1852 SDValue Cv =
1853 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1854 Op.getOperand(0));
1855 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001856 }
1857
1858 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001859 SDLoc dl(Op);
Oliver Stannard89d15422014-08-27 16:16:04 +00001860 MVT ExtVT =
1861 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
1862 VT.getVectorNumElements());
1863 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00001864 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1865 }
1866
1867 // Type changing conversions are illegal.
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001868 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001869}
1870
1871SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1872 SelectionDAG &DAG) const {
1873 if (Op.getOperand(0).getValueType().isVector())
1874 return LowerVectorFP_TO_INT(Op, DAG);
1875
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +00001876 // f16 conversions are promoted to f32.
1877 if (Op.getOperand(0).getValueType() == MVT::f16) {
1878 SDLoc dl(Op);
1879 return DAG.getNode(
1880 Op.getOpcode(), dl, Op.getValueType(),
1881 DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0)));
1882 }
1883
Tim Northover3b0846e2014-05-24 12:50:23 +00001884 if (Op.getOperand(0).getValueType() != MVT::f128) {
1885 // It's legal except when f128 is involved
1886 return Op;
1887 }
1888
1889 RTLIB::Libcall LC;
1890 if (Op.getOpcode() == ISD::FP_TO_SINT)
1891 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1892 else
1893 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1894
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00001895 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
Craig Topper8fe40e02015-10-22 17:05:00 +00001896 return makeLibCall(DAG, LC, Op.getValueType(), Ops, false, SDLoc(Op)).first;
Tim Northover3b0846e2014-05-24 12:50:23 +00001897}
1898
1899static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1900 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1901 // Any additional optimization in this function should be recorded
1902 // in the cost tables.
1903 EVT VT = Op.getValueType();
1904 SDLoc dl(Op);
1905 SDValue In = Op.getOperand(0);
1906 EVT InVT = In.getValueType();
1907
Tim Northoveref0d7602014-06-15 09:27:06 +00001908 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1909 MVT CastVT =
1910 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
1911 InVT.getVectorNumElements());
1912 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001913 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
Tim Northover3b0846e2014-05-24 12:50:23 +00001914 }
1915
Tim Northoveref0d7602014-06-15 09:27:06 +00001916 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1917 unsigned CastOpc =
1918 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1919 EVT CastVT = VT.changeVectorElementTypeToInteger();
1920 In = DAG.getNode(CastOpc, dl, CastVT, In);
1921 return DAG.getNode(Op.getOpcode(), dl, VT, In);
Tim Northover3b0846e2014-05-24 12:50:23 +00001922 }
1923
Tim Northoveref0d7602014-06-15 09:27:06 +00001924 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001925}
1926
1927SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
1928 SelectionDAG &DAG) const {
1929 if (Op.getValueType().isVector())
1930 return LowerVectorINT_TO_FP(Op, DAG);
1931
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +00001932 // f16 conversions are promoted to f32.
1933 if (Op.getValueType() == MVT::f16) {
1934 SDLoc dl(Op);
1935 return DAG.getNode(
1936 ISD::FP_ROUND, dl, MVT::f16,
1937 DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001938 DAG.getIntPtrConstant(0, dl));
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +00001939 }
1940
Tim Northover3b0846e2014-05-24 12:50:23 +00001941 // i128 conversions are libcalls.
1942 if (Op.getOperand(0).getValueType() == MVT::i128)
1943 return SDValue();
1944
1945 // Other conversions are legal, unless it's to the completely software-based
1946 // fp128.
1947 if (Op.getValueType() != MVT::f128)
1948 return Op;
1949
1950 RTLIB::Libcall LC;
1951 if (Op.getOpcode() == ISD::SINT_TO_FP)
1952 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1953 else
1954 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1955
1956 return LowerF128Call(Op, DAG, LC);
1957}
1958
1959SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
1960 SelectionDAG &DAG) const {
1961 // For iOS, we want to call an alternative entry point: __sincos_stret,
1962 // which returns the values in two S / D registers.
1963 SDLoc dl(Op);
1964 SDValue Arg = Op.getOperand(0);
1965 EVT ArgVT = Arg.getValueType();
1966 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1967
1968 ArgListTy Args;
1969 ArgListEntry Entry;
1970
1971 Entry.Node = Arg;
1972 Entry.Ty = ArgTy;
1973 Entry.isSExt = false;
1974 Entry.isZExt = false;
1975 Args.push_back(Entry);
1976
1977 const char *LibcallName =
1978 (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
Mehdi Amini44ede332015-07-09 02:09:04 +00001979 SDValue Callee =
1980 DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00001981
Reid Kleckner343c3952014-11-20 23:51:47 +00001982 StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
Tim Northover3b0846e2014-05-24 12:50:23 +00001983 TargetLowering::CallLoweringInfo CLI(DAG);
1984 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
Juergen Ributzka3bd03c72014-07-01 22:01:54 +00001985 .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00001986
1987 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1988 return CallResult.first;
1989}
1990
Tim Northoverf8bfe212014-07-18 13:07:05 +00001991static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
1992 if (Op.getValueType() != MVT::f16)
1993 return SDValue();
1994
1995 assert(Op.getOperand(0).getValueType() == MVT::i16);
1996 SDLoc DL(Op);
1997
1998 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
1999 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
2000 return SDValue(
2001 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002002 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
Tim Northoverf8bfe212014-07-18 13:07:05 +00002003 0);
2004}
2005
Chad Rosierd9d0f862014-10-08 02:31:24 +00002006static EVT getExtensionTo64Bits(const EVT &OrigVT) {
2007 if (OrigVT.getSizeInBits() >= 64)
2008 return OrigVT;
2009
2010 assert(OrigVT.isSimple() && "Expecting a simple value type");
2011
2012 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
2013 switch (OrigSimpleTy) {
2014 default: llvm_unreachable("Unexpected Vector Type");
2015 case MVT::v2i8:
2016 case MVT::v2i16:
2017 return MVT::v2i32;
2018 case MVT::v4i8:
2019 return MVT::v4i16;
2020 }
2021}
2022
2023static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
2024 const EVT &OrigTy,
2025 const EVT &ExtTy,
2026 unsigned ExtOpcode) {
2027 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
2028 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
2029 // 64-bits we need to insert a new extension so that it will be 64-bits.
2030 assert(ExtTy.is128BitVector() && "Unexpected extension size");
2031 if (OrigTy.getSizeInBits() >= 64)
2032 return N;
2033
2034 // Must extend size to at least 64 bits to be used as an operand for VMULL.
2035 EVT NewVT = getExtensionTo64Bits(OrigTy);
2036
2037 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
2038}
2039
2040static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
2041 bool isSigned) {
2042 EVT VT = N->getValueType(0);
2043
2044 if (N->getOpcode() != ISD::BUILD_VECTOR)
2045 return false;
2046
Pete Cooper3af9a252015-06-26 18:17:36 +00002047 for (const SDValue &Elt : N->op_values()) {
Chad Rosierd9d0f862014-10-08 02:31:24 +00002048 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
2049 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
2050 unsigned HalfSize = EltSize / 2;
2051 if (isSigned) {
2052 if (!isIntN(HalfSize, C->getSExtValue()))
2053 return false;
2054 } else {
2055 if (!isUIntN(HalfSize, C->getZExtValue()))
2056 return false;
2057 }
2058 continue;
2059 }
2060 return false;
2061 }
2062
2063 return true;
2064}
2065
2066static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
2067 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
2068 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
2069 N->getOperand(0)->getValueType(0),
2070 N->getValueType(0),
2071 N->getOpcode());
2072
2073 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
2074 EVT VT = N->getValueType(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002075 SDLoc dl(N);
Chad Rosierd9d0f862014-10-08 02:31:24 +00002076 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
2077 unsigned NumElts = VT.getVectorNumElements();
2078 MVT TruncVT = MVT::getIntegerVT(EltSize);
2079 SmallVector<SDValue, 8> Ops;
2080 for (unsigned i = 0; i != NumElts; ++i) {
2081 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
2082 const APInt &CInt = C->getAPIntValue();
2083 // Element types smaller than 32 bits are not legal, so use i32 elements.
2084 // The values are implicitly truncated so sext vs. zext doesn't matter.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002085 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
Chad Rosierd9d0f862014-10-08 02:31:24 +00002086 }
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002087 return DAG.getNode(ISD::BUILD_VECTOR, dl,
Chad Rosierd9d0f862014-10-08 02:31:24 +00002088 MVT::getVectorVT(TruncVT, NumElts), Ops);
2089}
2090
2091static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
2092 if (N->getOpcode() == ISD::SIGN_EXTEND)
2093 return true;
2094 if (isExtendedBUILD_VECTOR(N, DAG, true))
2095 return true;
2096 return false;
2097}
2098
2099static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
2100 if (N->getOpcode() == ISD::ZERO_EXTEND)
2101 return true;
2102 if (isExtendedBUILD_VECTOR(N, DAG, false))
2103 return true;
2104 return false;
2105}
2106
2107static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
2108 unsigned Opcode = N->getOpcode();
2109 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2110 SDNode *N0 = N->getOperand(0).getNode();
2111 SDNode *N1 = N->getOperand(1).getNode();
2112 return N0->hasOneUse() && N1->hasOneUse() &&
2113 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
2114 }
2115 return false;
2116}
2117
2118static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
2119 unsigned Opcode = N->getOpcode();
2120 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2121 SDNode *N0 = N->getOperand(0).getNode();
2122 SDNode *N1 = N->getOperand(1).getNode();
2123 return N0->hasOneUse() && N1->hasOneUse() &&
2124 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
2125 }
2126 return false;
2127}
2128
2129static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
2130 // Multiplications are only custom-lowered for 128-bit vectors so that
2131 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
2132 EVT VT = Op.getValueType();
2133 assert(VT.is128BitVector() && VT.isInteger() &&
2134 "unexpected type for custom-lowering ISD::MUL");
2135 SDNode *N0 = Op.getOperand(0).getNode();
2136 SDNode *N1 = Op.getOperand(1).getNode();
2137 unsigned NewOpc = 0;
2138 bool isMLA = false;
2139 bool isN0SExt = isSignExtended(N0, DAG);
2140 bool isN1SExt = isSignExtended(N1, DAG);
2141 if (isN0SExt && isN1SExt)
2142 NewOpc = AArch64ISD::SMULL;
2143 else {
2144 bool isN0ZExt = isZeroExtended(N0, DAG);
2145 bool isN1ZExt = isZeroExtended(N1, DAG);
2146 if (isN0ZExt && isN1ZExt)
2147 NewOpc = AArch64ISD::UMULL;
2148 else if (isN1SExt || isN1ZExt) {
2149 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
2150 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
2151 if (isN1SExt && isAddSubSExt(N0, DAG)) {
2152 NewOpc = AArch64ISD::SMULL;
2153 isMLA = true;
2154 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
2155 NewOpc = AArch64ISD::UMULL;
2156 isMLA = true;
2157 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
2158 std::swap(N0, N1);
2159 NewOpc = AArch64ISD::UMULL;
2160 isMLA = true;
2161 }
2162 }
2163
2164 if (!NewOpc) {
2165 if (VT == MVT::v2i64)
2166 // Fall through to expand this. It is not legal.
2167 return SDValue();
2168 else
2169 // Other vector multiplications are legal.
2170 return Op;
2171 }
2172 }
2173
2174 // Legalize to a S/UMULL instruction
2175 SDLoc DL(Op);
2176 SDValue Op0;
2177 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
2178 if (!isMLA) {
2179 Op0 = skipExtensionForVectorMULL(N0, DAG);
2180 assert(Op0.getValueType().is64BitVector() &&
2181 Op1.getValueType().is64BitVector() &&
2182 "unexpected types for extended operands to VMULL");
2183 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
2184 }
2185 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
2186 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
2187 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
2188 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
2189 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
2190 EVT Op1VT = Op1.getValueType();
2191 return DAG.getNode(N0->getOpcode(), DL, VT,
2192 DAG.getNode(NewOpc, DL, VT,
2193 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
2194 DAG.getNode(NewOpc, DL, VT,
2195 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
2196}
Tim Northoverf8bfe212014-07-18 13:07:05 +00002197
Adhemerval Zanella7bc33192015-07-28 13:03:31 +00002198SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2199 SelectionDAG &DAG) const {
2200 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2201 SDLoc dl(Op);
2202 switch (IntNo) {
2203 default: return SDValue(); // Don't custom lower most intrinsics.
2204 case Intrinsic::aarch64_thread_pointer: {
2205 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2206 return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
2207 }
Silviu Barangadb1ddb32015-08-26 11:11:14 +00002208 case Intrinsic::aarch64_neon_smax:
2209 return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
2210 Op.getOperand(1), Op.getOperand(2));
2211 case Intrinsic::aarch64_neon_umax:
2212 return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
2213 Op.getOperand(1), Op.getOperand(2));
2214 case Intrinsic::aarch64_neon_smin:
2215 return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
2216 Op.getOperand(1), Op.getOperand(2));
2217 case Intrinsic::aarch64_neon_umin:
2218 return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
2219 Op.getOperand(1), Op.getOperand(2));
Adhemerval Zanella7bc33192015-07-28 13:03:31 +00002220 }
2221}
2222
Tim Northover3b0846e2014-05-24 12:50:23 +00002223SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
2224 SelectionDAG &DAG) const {
2225 switch (Op.getOpcode()) {
2226 default:
2227 llvm_unreachable("unimplemented operand");
2228 return SDValue();
Tim Northoverf8bfe212014-07-18 13:07:05 +00002229 case ISD::BITCAST:
2230 return LowerBITCAST(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00002231 case ISD::GlobalAddress:
2232 return LowerGlobalAddress(Op, DAG);
2233 case ISD::GlobalTLSAddress:
2234 return LowerGlobalTLSAddress(Op, DAG);
2235 case ISD::SETCC:
2236 return LowerSETCC(Op, DAG);
2237 case ISD::BR_CC:
2238 return LowerBR_CC(Op, DAG);
2239 case ISD::SELECT:
2240 return LowerSELECT(Op, DAG);
2241 case ISD::SELECT_CC:
2242 return LowerSELECT_CC(Op, DAG);
2243 case ISD::JumpTable:
2244 return LowerJumpTable(Op, DAG);
2245 case ISD::ConstantPool:
2246 return LowerConstantPool(Op, DAG);
2247 case ISD::BlockAddress:
2248 return LowerBlockAddress(Op, DAG);
2249 case ISD::VASTART:
2250 return LowerVASTART(Op, DAG);
2251 case ISD::VACOPY:
2252 return LowerVACOPY(Op, DAG);
2253 case ISD::VAARG:
2254 return LowerVAARG(Op, DAG);
2255 case ISD::ADDC:
2256 case ISD::ADDE:
2257 case ISD::SUBC:
2258 case ISD::SUBE:
2259 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
2260 case ISD::SADDO:
2261 case ISD::UADDO:
2262 case ISD::SSUBO:
2263 case ISD::USUBO:
2264 case ISD::SMULO:
2265 case ISD::UMULO:
2266 return LowerXALUO(Op, DAG);
2267 case ISD::FADD:
2268 return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
2269 case ISD::FSUB:
2270 return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
2271 case ISD::FMUL:
2272 return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
2273 case ISD::FDIV:
2274 return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
2275 case ISD::FP_ROUND:
2276 return LowerFP_ROUND(Op, DAG);
2277 case ISD::FP_EXTEND:
2278 return LowerFP_EXTEND(Op, DAG);
2279 case ISD::FRAMEADDR:
2280 return LowerFRAMEADDR(Op, DAG);
2281 case ISD::RETURNADDR:
2282 return LowerRETURNADDR(Op, DAG);
2283 case ISD::INSERT_VECTOR_ELT:
2284 return LowerINSERT_VECTOR_ELT(Op, DAG);
2285 case ISD::EXTRACT_VECTOR_ELT:
2286 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2287 case ISD::BUILD_VECTOR:
2288 return LowerBUILD_VECTOR(Op, DAG);
2289 case ISD::VECTOR_SHUFFLE:
2290 return LowerVECTOR_SHUFFLE(Op, DAG);
2291 case ISD::EXTRACT_SUBVECTOR:
2292 return LowerEXTRACT_SUBVECTOR(Op, DAG);
2293 case ISD::SRA:
2294 case ISD::SRL:
2295 case ISD::SHL:
2296 return LowerVectorSRA_SRL_SHL(Op, DAG);
2297 case ISD::SHL_PARTS:
2298 return LowerShiftLeftParts(Op, DAG);
2299 case ISD::SRL_PARTS:
2300 case ISD::SRA_PARTS:
2301 return LowerShiftRightParts(Op, DAG);
2302 case ISD::CTPOP:
2303 return LowerCTPOP(Op, DAG);
2304 case ISD::FCOPYSIGN:
2305 return LowerFCOPYSIGN(Op, DAG);
2306 case ISD::AND:
2307 return LowerVectorAND(Op, DAG);
2308 case ISD::OR:
2309 return LowerVectorOR(Op, DAG);
2310 case ISD::XOR:
2311 return LowerXOR(Op, DAG);
2312 case ISD::PREFETCH:
2313 return LowerPREFETCH(Op, DAG);
2314 case ISD::SINT_TO_FP:
2315 case ISD::UINT_TO_FP:
2316 return LowerINT_TO_FP(Op, DAG);
2317 case ISD::FP_TO_SINT:
2318 case ISD::FP_TO_UINT:
2319 return LowerFP_TO_INT(Op, DAG);
2320 case ISD::FSINCOS:
2321 return LowerFSINCOS(Op, DAG);
Chad Rosierd9d0f862014-10-08 02:31:24 +00002322 case ISD::MUL:
2323 return LowerMUL(Op, DAG);
Adhemerval Zanella7bc33192015-07-28 13:03:31 +00002324 case ISD::INTRINSIC_WO_CHAIN:
2325 return LowerINTRINSIC_WO_CHAIN(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00002326 }
2327}
2328
2329/// getFunctionAlignment - Return the Log2 alignment of this function.
2330unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
2331 return 2;
2332}
2333
2334//===----------------------------------------------------------------------===//
2335// Calling Convention Implementation
2336//===----------------------------------------------------------------------===//
2337
2338#include "AArch64GenCallingConv.inc"
2339
Robin Morisset039781e2014-08-29 21:53:01 +00002340/// Selects the correct CCAssignFn for a given CallingConvention value.
Tim Northover3b0846e2014-05-24 12:50:23 +00002341CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2342 bool IsVarArg) const {
2343 switch (CC) {
2344 default:
2345 llvm_unreachable("Unsupported calling convention.");
2346 case CallingConv::WebKit_JS:
2347 return CC_AArch64_WebKit_JS;
Greg Fitzgeraldfa78d082015-01-19 17:40:05 +00002348 case CallingConv::GHC:
2349 return CC_AArch64_GHC;
Tim Northover3b0846e2014-05-24 12:50:23 +00002350 case CallingConv::C:
2351 case CallingConv::Fast:
2352 if (!Subtarget->isTargetDarwin())
2353 return CC_AArch64_AAPCS;
2354 return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
2355 }
2356}
2357
2358SDValue AArch64TargetLowering::LowerFormalArguments(
2359 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2360 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2361 SmallVectorImpl<SDValue> &InVals) const {
2362 MachineFunction &MF = DAG.getMachineFunction();
2363 MachineFrameInfo *MFI = MF.getFrameInfo();
2364
2365 // Assign locations to all of the incoming arguments.
2366 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002367 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2368 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002369
2370 // At this point, Ins[].VT may already be promoted to i32. To correctly
2371 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2372 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2373 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
2374 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
2375 // LocVT.
2376 unsigned NumArgs = Ins.size();
2377 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2378 unsigned CurArgIdx = 0;
2379 for (unsigned i = 0; i != NumArgs; ++i) {
2380 MVT ValVT = Ins[i].VT;
Andrew Trick05938a52015-02-16 18:10:47 +00002381 if (Ins[i].isOrigArg()) {
2382 std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
2383 CurArgIdx = Ins[i].getOrigArgIndex();
Tim Northover3b0846e2014-05-24 12:50:23 +00002384
Andrew Trick05938a52015-02-16 18:10:47 +00002385 // Get type of the original argument.
Mehdi Amini44ede332015-07-09 02:09:04 +00002386 EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
2387 /*AllowUnknown*/ true);
Andrew Trick05938a52015-02-16 18:10:47 +00002388 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
2389 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2390 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2391 ValVT = MVT::i8;
2392 else if (ActualMVT == MVT::i16)
2393 ValVT = MVT::i16;
2394 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002395 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2396 bool Res =
Tim Northover47e003c2014-05-26 17:21:53 +00002397 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002398 assert(!Res && "Call operand has unhandled type");
2399 (void)Res;
2400 }
2401 assert(ArgLocs.size() == Ins.size());
2402 SmallVector<SDValue, 16> ArgValues;
2403 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2404 CCValAssign &VA = ArgLocs[i];
2405
2406 if (Ins[i].Flags.isByVal()) {
2407 // Byval is used for HFAs in the PCS, but the system should work in a
2408 // non-compliant manner for larger structs.
Mehdi Amini44ede332015-07-09 02:09:04 +00002409 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00002410 int Size = Ins[i].Flags.getByValSize();
2411 unsigned NumRegs = (Size + 7) / 8;
2412
2413 // FIXME: This works on big-endian for composite byvals, which are the common
2414 // case. It should also work for fundamental types too.
2415 unsigned FrameIdx =
2416 MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
Mehdi Amini44ede332015-07-09 02:09:04 +00002417 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00002418 InVals.push_back(FrameIdxN);
2419
2420 continue;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002421 }
2422
2423 if (VA.isRegLoc()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00002424 // Arguments stored in registers.
2425 EVT RegVT = VA.getLocVT();
2426
2427 SDValue ArgValue;
2428 const TargetRegisterClass *RC;
2429
2430 if (RegVT == MVT::i32)
2431 RC = &AArch64::GPR32RegClass;
2432 else if (RegVT == MVT::i64)
2433 RC = &AArch64::GPR64RegClass;
Oliver Stannard6eda6ff2014-07-11 13:33:46 +00002434 else if (RegVT == MVT::f16)
2435 RC = &AArch64::FPR16RegClass;
Tim Northover3b0846e2014-05-24 12:50:23 +00002436 else if (RegVT == MVT::f32)
2437 RC = &AArch64::FPR32RegClass;
2438 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
2439 RC = &AArch64::FPR64RegClass;
2440 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
2441 RC = &AArch64::FPR128RegClass;
2442 else
2443 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2444
2445 // Transform the arguments in physical registers into virtual ones.
2446 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2447 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2448
2449 // If this is an 8, 16 or 32-bit value, it is really passed promoted
2450 // to 64 bits. Insert an assert[sz]ext to capture this, then
2451 // truncate to the right size.
2452 switch (VA.getLocInfo()) {
2453 default:
2454 llvm_unreachable("Unknown loc info!");
2455 case CCValAssign::Full:
2456 break;
2457 case CCValAssign::BCvt:
2458 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
2459 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002460 case CCValAssign::AExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002461 case CCValAssign::SExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002462 case CCValAssign::ZExt:
Tim Northover47e003c2014-05-26 17:21:53 +00002463 // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
2464 // nodes after our lowering.
2465 assert(RegVT == Ins[i].VT && "incorrect register location selected");
Tim Northover3b0846e2014-05-24 12:50:23 +00002466 break;
2467 }
2468
2469 InVals.push_back(ArgValue);
2470
2471 } else { // VA.isRegLoc()
2472 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
2473 unsigned ArgOffset = VA.getLocMemOffset();
Amara Emerson82da7d02014-08-15 14:29:57 +00002474 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002475
2476 uint32_t BEAlign = 0;
Tim Northover293d4142014-12-03 17:49:26 +00002477 if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
2478 !Ins[i].Flags.isInConsecutiveRegs())
Tim Northover3b0846e2014-05-24 12:50:23 +00002479 BEAlign = 8 - ArgSize;
2480
2481 int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
2482
2483 // Create load nodes to retrieve arguments from the stack.
Mehdi Amini44ede332015-07-09 02:09:04 +00002484 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00002485 SDValue ArgValue;
2486
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002487 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
Tim Northover47e003c2014-05-26 17:21:53 +00002488 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002489 MVT MemVT = VA.getValVT();
2490
Tim Northover47e003c2014-05-26 17:21:53 +00002491 switch (VA.getLocInfo()) {
2492 default:
2493 break;
Tim Northover6890add2014-06-03 13:54:53 +00002494 case CCValAssign::BCvt:
2495 MemVT = VA.getLocVT();
2496 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002497 case CCValAssign::SExt:
2498 ExtType = ISD::SEXTLOAD;
2499 break;
2500 case CCValAssign::ZExt:
2501 ExtType = ISD::ZEXTLOAD;
2502 break;
2503 case CCValAssign::AExt:
2504 ExtType = ISD::EXTLOAD;
2505 break;
Tim Northover3b0846e2014-05-24 12:50:23 +00002506 }
2507
Alex Lorenze40c8a22015-08-11 23:09:45 +00002508 ArgValue = DAG.getExtLoad(
2509 ExtType, DL, VA.getLocVT(), Chain, FIN,
2510 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
2511 MemVT, false, false, false, 0);
Tim Northover47e003c2014-05-26 17:21:53 +00002512
Tim Northover3b0846e2014-05-24 12:50:23 +00002513 InVals.push_back(ArgValue);
2514 }
2515 }
2516
2517 // varargs
2518 if (isVarArg) {
2519 if (!Subtarget->isTargetDarwin()) {
2520 // The AAPCS variadic function ABI is identical to the non-variadic
2521 // one. As a result there may be more arguments in registers and we should
2522 // save them for future reference.
2523 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
2524 }
2525
2526 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2527 // This will point to the next argument passed via stack.
2528 unsigned StackOffset = CCInfo.getNextStackOffset();
2529 // We currently pass all varargs at 8-byte alignment.
2530 StackOffset = ((StackOffset + 7) & ~7);
2531 AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
2532 }
2533
2534 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2535 unsigned StackArgSize = CCInfo.getNextStackOffset();
2536 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2537 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
2538 // This is a non-standard ABI so by fiat I say we're allowed to make full
2539 // use of the stack area to be popped, which must be aligned to 16 bytes in
2540 // any case:
2541 StackArgSize = RoundUpToAlignment(StackArgSize, 16);
2542
2543 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
2544 // a multiple of 16.
2545 FuncInfo->setArgumentStackToRestore(StackArgSize);
2546
2547 // This realignment carries over to the available bytes below. Our own
2548 // callers will guarantee the space is free by giving an aligned value to
2549 // CALLSEQ_START.
2550 }
2551 // Even if we're not expected to free up the space, it's useful to know how
2552 // much is there while considering tail calls (because we can reuse it).
2553 FuncInfo->setBytesInStackArgArea(StackArgSize);
2554
2555 return Chain;
2556}
2557
2558void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
2559 SelectionDAG &DAG, SDLoc DL,
2560 SDValue &Chain) const {
2561 MachineFunction &MF = DAG.getMachineFunction();
2562 MachineFrameInfo *MFI = MF.getFrameInfo();
2563 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
Mehdi Amini44ede332015-07-09 02:09:04 +00002564 auto PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00002565
2566 SmallVector<SDValue, 8> MemOps;
2567
2568 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
2569 AArch64::X3, AArch64::X4, AArch64::X5,
2570 AArch64::X6, AArch64::X7 };
2571 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
Tim Northover3b6b7ca2015-02-21 02:11:17 +00002572 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
Tim Northover3b0846e2014-05-24 12:50:23 +00002573
2574 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
2575 int GPRIdx = 0;
2576 if (GPRSaveSize != 0) {
2577 GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
2578
Mehdi Amini44ede332015-07-09 02:09:04 +00002579 SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00002580
2581 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
2582 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
2583 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
Alex Lorenze40c8a22015-08-11 23:09:45 +00002584 SDValue Store = DAG.getStore(
2585 Val.getValue(1), DL, Val, FIN,
2586 MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8), false,
2587 false, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00002588 MemOps.push_back(Store);
Mehdi Amini44ede332015-07-09 02:09:04 +00002589 FIN =
2590 DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00002591 }
2592 }
2593 FuncInfo->setVarArgsGPRIndex(GPRIdx);
2594 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
2595
2596 if (Subtarget->hasFPARMv8()) {
2597 static const MCPhysReg FPRArgRegs[] = {
2598 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
2599 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
2600 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
Tim Northover3b6b7ca2015-02-21 02:11:17 +00002601 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
Tim Northover3b0846e2014-05-24 12:50:23 +00002602
2603 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
2604 int FPRIdx = 0;
2605 if (FPRSaveSize != 0) {
2606 FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
2607
Mehdi Amini44ede332015-07-09 02:09:04 +00002608 SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00002609
2610 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
2611 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
2612 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
2613
Alex Lorenze40c8a22015-08-11 23:09:45 +00002614 SDValue Store = DAG.getStore(
2615 Val.getValue(1), DL, Val, FIN,
2616 MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16),
2617 false, false, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00002618 MemOps.push_back(Store);
Mehdi Amini44ede332015-07-09 02:09:04 +00002619 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
2620 DAG.getConstant(16, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00002621 }
2622 }
2623 FuncInfo->setVarArgsFPRIndex(FPRIdx);
2624 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
2625 }
2626
2627 if (!MemOps.empty()) {
2628 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2629 }
2630}
2631
2632/// LowerCallResult - Lower the result values of a call into the
2633/// appropriate copies out of appropriate physical registers.
2634SDValue AArch64TargetLowering::LowerCallResult(
2635 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2636 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2637 SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2638 SDValue ThisVal) const {
2639 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2640 ? RetCC_AArch64_WebKit_JS
2641 : RetCC_AArch64_AAPCS;
2642 // Assign locations to each value returned by this call.
2643 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002644 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2645 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002646 CCInfo.AnalyzeCallResult(Ins, RetCC);
2647
2648 // Copy all of the result registers out of their specified physreg.
2649 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2650 CCValAssign VA = RVLocs[i];
2651
2652 // Pass 'this' value directly from the argument to return value, to avoid
2653 // reg unit interference
2654 if (i == 0 && isThisReturn) {
2655 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
2656 "unexpected return calling convention register assignment");
2657 InVals.push_back(ThisVal);
2658 continue;
2659 }
2660
2661 SDValue Val =
2662 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2663 Chain = Val.getValue(1);
2664 InFlag = Val.getValue(2);
2665
2666 switch (VA.getLocInfo()) {
2667 default:
2668 llvm_unreachable("Unknown loc info!");
2669 case CCValAssign::Full:
2670 break;
2671 case CCValAssign::BCvt:
2672 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2673 break;
2674 }
2675
2676 InVals.push_back(Val);
2677 }
2678
2679 return Chain;
2680}
2681
2682bool AArch64TargetLowering::isEligibleForTailCallOptimization(
2683 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2684 bool isCalleeStructRet, bool isCallerStructRet,
2685 const SmallVectorImpl<ISD::OutputArg> &Outs,
2686 const SmallVectorImpl<SDValue> &OutVals,
2687 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2688 // For CallingConv::C this function knows whether the ABI needs
2689 // changing. That's not true for other conventions so they will have to opt in
2690 // manually.
2691 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
2692 return false;
2693
2694 const MachineFunction &MF = DAG.getMachineFunction();
2695 const Function *CallerF = MF.getFunction();
2696 CallingConv::ID CallerCC = CallerF->getCallingConv();
2697 bool CCMatch = CallerCC == CalleeCC;
2698
2699 // Byval parameters hand the function a pointer directly into the stack area
2700 // we want to reuse during a tail call. Working around this *is* possible (see
2701 // X86) but less efficient and uglier in LowerCall.
2702 for (Function::const_arg_iterator i = CallerF->arg_begin(),
2703 e = CallerF->arg_end();
2704 i != e; ++i)
2705 if (i->hasByValAttr())
2706 return false;
2707
2708 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2709 if (IsTailCallConvention(CalleeCC) && CCMatch)
2710 return true;
2711 return false;
2712 }
2713
Oliver Stannard12993dd2014-08-18 12:42:15 +00002714 // Externally-defined functions with weak linkage should not be
2715 // tail-called on AArch64 when the OS does not support dynamic
2716 // pre-emption of symbols, as the AAELF spec requires normal calls
2717 // to undefined weak functions to be replaced with a NOP or jump to the
2718 // next instruction. The behaviour of branch instructions in this
2719 // situation (as used for tail calls) is implementation-defined, so we
2720 // cannot rely on the linker replacing the tail call with a return.
2721 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2722 const GlobalValue *GV = G->getGlobal();
Daniel Sandersc81f4502015-06-16 15:44:21 +00002723 const Triple &TT = getTargetMachine().getTargetTriple();
Saleem Abdulrasool67f72992015-01-03 21:35:00 +00002724 if (GV->hasExternalWeakLinkage() &&
2725 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
Oliver Stannard12993dd2014-08-18 12:42:15 +00002726 return false;
2727 }
2728
Tim Northover3b0846e2014-05-24 12:50:23 +00002729 // Now we search for cases where we can use a tail call without changing the
2730 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
2731 // concept.
2732
2733 // I want anyone implementing a new calling convention to think long and hard
2734 // about this assert.
2735 assert((!isVarArg || CalleeCC == CallingConv::C) &&
2736 "Unexpected variadic calling convention");
2737
2738 if (isVarArg && !Outs.empty()) {
2739 // At least two cases here: if caller is fastcc then we can't have any
2740 // memory arguments (we'd be expected to clean up the stack afterwards). If
2741 // caller is C then we could potentially use its argument area.
2742
2743 // FIXME: for now we take the most conservative of these in both cases:
2744 // disallow all variadic memory operands.
2745 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002746 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2747 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002748
2749 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
Pete Cooper7be8f8f2015-08-03 19:04:32 +00002750 for (const CCValAssign &ArgLoc : ArgLocs)
2751 if (!ArgLoc.isRegLoc())
Tim Northover3b0846e2014-05-24 12:50:23 +00002752 return false;
2753 }
2754
2755 // If the calling conventions do not match, then we'd better make sure the
2756 // results are returned in the same way as what the caller expects.
2757 if (!CCMatch) {
2758 SmallVector<CCValAssign, 16> RVLocs1;
Eric Christopherb5217502014-08-06 18:45:26 +00002759 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
2760 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002761 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
2762
2763 SmallVector<CCValAssign, 16> RVLocs2;
Eric Christopherb5217502014-08-06 18:45:26 +00002764 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
2765 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002766 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
2767
2768 if (RVLocs1.size() != RVLocs2.size())
2769 return false;
2770 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2771 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2772 return false;
2773 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2774 return false;
2775 if (RVLocs1[i].isRegLoc()) {
2776 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2777 return false;
2778 } else {
2779 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2780 return false;
2781 }
2782 }
2783 }
2784
2785 // Nothing more to check if the callee is taking no arguments
2786 if (Outs.empty())
2787 return true;
2788
2789 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002790 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2791 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002792
2793 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2794
2795 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2796
2797 // If the stack arguments for this call would fit into our own save area then
2798 // the call can be made tail.
2799 return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
2800}
2801
2802SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2803 SelectionDAG &DAG,
2804 MachineFrameInfo *MFI,
2805 int ClobberedFI) const {
2806 SmallVector<SDValue, 8> ArgChains;
2807 int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2808 int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2809
2810 // Include the original chain at the beginning of the list. When this is
2811 // used by target LowerCall hooks, this helps legalize find the
2812 // CALLSEQ_BEGIN node.
2813 ArgChains.push_back(Chain);
2814
2815 // Add a chain value for each stack argument corresponding
2816 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2817 UE = DAG.getEntryNode().getNode()->use_end();
2818 U != UE; ++U)
2819 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2820 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2821 if (FI->getIndex() < 0) {
2822 int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2823 int64_t InLastByte = InFirstByte;
2824 InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2825
2826 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2827 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2828 ArgChains.push_back(SDValue(L, 1));
2829 }
2830
2831 // Build a tokenfactor for all the chains.
2832 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2833}
2834
2835bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2836 bool TailCallOpt) const {
2837 return CallCC == CallingConv::Fast && TailCallOpt;
2838}
2839
2840bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2841 return CallCC == CallingConv::Fast;
2842}
2843
2844/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2845/// and add input and output parameter nodes.
2846SDValue
2847AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2848 SmallVectorImpl<SDValue> &InVals) const {
2849 SelectionDAG &DAG = CLI.DAG;
2850 SDLoc &DL = CLI.DL;
2851 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2852 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2853 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2854 SDValue Chain = CLI.Chain;
2855 SDValue Callee = CLI.Callee;
2856 bool &IsTailCall = CLI.IsTailCall;
2857 CallingConv::ID CallConv = CLI.CallConv;
2858 bool IsVarArg = CLI.IsVarArg;
2859
2860 MachineFunction &MF = DAG.getMachineFunction();
2861 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2862 bool IsThisReturn = false;
2863
2864 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2865 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2866 bool IsSibCall = false;
2867
2868 if (IsTailCall) {
2869 // Check if it's really possible to do a tail call.
2870 IsTailCall = isEligibleForTailCallOptimization(
2871 Callee, CallConv, IsVarArg, IsStructRet,
2872 MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
2873 if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2874 report_fatal_error("failed to perform tail call elimination on a call "
2875 "site marked musttail");
2876
2877 // A sibling call is one where we're under the usual C ABI and not planning
2878 // to change that but can still do a tail call:
2879 if (!TailCallOpt && IsTailCall)
2880 IsSibCall = true;
2881
2882 if (IsTailCall)
2883 ++NumTailCalls;
2884 }
2885
2886 // Analyze operands of the call, assigning locations to each operand.
2887 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002888 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
2889 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002890
2891 if (IsVarArg) {
2892 // Handle fixed and variable vector arguments differently.
2893 // Variable vector arguments always go into memory.
2894 unsigned NumArgs = Outs.size();
2895
2896 for (unsigned i = 0; i != NumArgs; ++i) {
2897 MVT ArgVT = Outs[i].VT;
2898 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2899 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2900 /*IsVarArg=*/ !Outs[i].IsFixed);
2901 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2902 assert(!Res && "Call operand has unhandled type");
2903 (void)Res;
2904 }
2905 } else {
2906 // At this point, Outs[].VT may already be promoted to i32. To correctly
2907 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2908 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2909 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2910 // we use a special version of AnalyzeCallOperands to pass in ValVT and
2911 // LocVT.
2912 unsigned NumArgs = Outs.size();
2913 for (unsigned i = 0; i != NumArgs; ++i) {
2914 MVT ValVT = Outs[i].VT;
2915 // Get type of the original argument.
Mehdi Amini44ede332015-07-09 02:09:04 +00002916 EVT ActualVT = getValueType(DAG.getDataLayout(),
2917 CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
Tim Northover3b0846e2014-05-24 12:50:23 +00002918 /*AllowUnknown*/ true);
2919 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2920 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2921 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
Tim Northover3b0846e2014-05-24 12:50:23 +00002922 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
Tim Northover47e003c2014-05-26 17:21:53 +00002923 ValVT = MVT::i8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002924 else if (ActualMVT == MVT::i16)
Tim Northover47e003c2014-05-26 17:21:53 +00002925 ValVT = MVT::i16;
Tim Northover3b0846e2014-05-24 12:50:23 +00002926
2927 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
Tim Northover47e003c2014-05-26 17:21:53 +00002928 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002929 assert(!Res && "Call operand has unhandled type");
2930 (void)Res;
2931 }
2932 }
2933
2934 // Get a count of how many bytes are to be pushed on the stack.
2935 unsigned NumBytes = CCInfo.getNextStackOffset();
2936
2937 if (IsSibCall) {
2938 // Since we're not changing the ABI to make this a tail call, the memory
2939 // operands are already available in the caller's incoming argument space.
2940 NumBytes = 0;
2941 }
2942
2943 // FPDiff is the byte offset of the call's argument area from the callee's.
2944 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2945 // by this amount for a tail call. In a sibling call it must be 0 because the
2946 // caller will deallocate the entire stack and the callee still expects its
2947 // arguments to begin at SP+0. Completely unused for non-tail calls.
2948 int FPDiff = 0;
2949
2950 if (IsTailCall && !IsSibCall) {
2951 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
2952
2953 // Since callee will pop argument stack as a tail call, we must keep the
2954 // popped size 16-byte aligned.
2955 NumBytes = RoundUpToAlignment(NumBytes, 16);
2956
2957 // FPDiff will be negative if this tail call requires more space than we
2958 // would automatically have in our incoming argument space. Positive if we
2959 // can actually shrink the stack.
2960 FPDiff = NumReusableBytes - NumBytes;
2961
2962 // The stack pointer must be 16-byte aligned at all times it's used for a
2963 // memory operation, which in practice means at *all* times and in
2964 // particular across call boundaries. Therefore our own arguments started at
2965 // a 16-byte aligned SP and the delta applied for the tail call should
2966 // satisfy the same constraint.
2967 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
2968 }
2969
2970 // Adjust the stack pointer for the new arguments...
2971 // These operations are automatically eliminated by the prolog/epilog pass
2972 if (!IsSibCall)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002973 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, DL,
2974 true),
2975 DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00002976
Mehdi Amini44ede332015-07-09 02:09:04 +00002977 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
2978 getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00002979
2980 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2981 SmallVector<SDValue, 8> MemOpChains;
Mehdi Amini44ede332015-07-09 02:09:04 +00002982 auto PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00002983
2984 // Walk the register/memloc assignments, inserting copies/loads.
2985 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2986 ++i, ++realArgIdx) {
2987 CCValAssign &VA = ArgLocs[i];
2988 SDValue Arg = OutVals[realArgIdx];
2989 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2990
2991 // Promote the value if needed.
2992 switch (VA.getLocInfo()) {
2993 default:
2994 llvm_unreachable("Unknown loc info!");
2995 case CCValAssign::Full:
2996 break;
2997 case CCValAssign::SExt:
2998 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2999 break;
3000 case CCValAssign::ZExt:
3001 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3002 break;
3003 case CCValAssign::AExt:
Tim Northover68ae5032014-05-26 17:22:07 +00003004 if (Outs[realArgIdx].ArgVT == MVT::i1) {
3005 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
3006 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3007 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
3008 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003009 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3010 break;
3011 case CCValAssign::BCvt:
3012 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3013 break;
3014 case CCValAssign::FPExt:
3015 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3016 break;
3017 }
3018
3019 if (VA.isRegLoc()) {
3020 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
3021 assert(VA.getLocVT() == MVT::i64 &&
3022 "unexpected calling convention register assignment");
3023 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
3024 "unexpected use of 'returned'");
3025 IsThisReturn = true;
3026 }
3027 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3028 } else {
3029 assert(VA.isMemLoc());
3030
3031 SDValue DstAddr;
3032 MachinePointerInfo DstInfo;
3033
3034 // FIXME: This works on big-endian for composite byvals, which are the
3035 // common case. It should also work for fundamental types too.
3036 uint32_t BEAlign = 0;
3037 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
Amara Emerson82da7d02014-08-15 14:29:57 +00003038 : VA.getValVT().getSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00003039 OpSize = (OpSize + 7) / 8;
Tim Northover293d4142014-12-03 17:49:26 +00003040 if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
3041 !Flags.isInConsecutiveRegs()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00003042 if (OpSize < 8)
3043 BEAlign = 8 - OpSize;
3044 }
3045 unsigned LocMemOffset = VA.getLocMemOffset();
3046 int32_t Offset = LocMemOffset + BEAlign;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003047 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
Mehdi Amini44ede332015-07-09 02:09:04 +00003048 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
Tim Northover3b0846e2014-05-24 12:50:23 +00003049
3050 if (IsTailCall) {
3051 Offset = Offset + FPDiff;
3052 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3053
Mehdi Amini44ede332015-07-09 02:09:04 +00003054 DstAddr = DAG.getFrameIndex(FI, PtrVT);
Alex Lorenze40c8a22015-08-11 23:09:45 +00003055 DstInfo =
3056 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
Tim Northover3b0846e2014-05-24 12:50:23 +00003057
3058 // Make sure any stack arguments overlapping with where we're storing
3059 // are loaded before this eventual operation. Otherwise they'll be
3060 // clobbered.
3061 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
3062 } else {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003063 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00003064
Mehdi Amini44ede332015-07-09 02:09:04 +00003065 DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
Alex Lorenze40c8a22015-08-11 23:09:45 +00003066 DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(),
3067 LocMemOffset);
Tim Northover3b0846e2014-05-24 12:50:23 +00003068 }
3069
3070 if (Outs[i].Flags.isByVal()) {
3071 SDValue SizeNode =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003072 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00003073 SDValue Cpy = DAG.getMemcpy(
3074 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
Krzysztof Parzyszeka46c36b2015-04-13 17:16:45 +00003075 /*isVol = */ false, /*AlwaysInline = */ false,
3076 /*isTailCall = */ false,
3077 DstInfo, MachinePointerInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +00003078
3079 MemOpChains.push_back(Cpy);
3080 } else {
3081 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
3082 // promoted to a legal register type i32, we should truncate Arg back to
3083 // i1/i8/i16.
Tim Northover6890add2014-06-03 13:54:53 +00003084 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
3085 VA.getValVT() == MVT::i16)
3086 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
Tim Northover3b0846e2014-05-24 12:50:23 +00003087
3088 SDValue Store =
3089 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
3090 MemOpChains.push_back(Store);
3091 }
3092 }
3093 }
3094
3095 if (!MemOpChains.empty())
3096 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3097
3098 // Build a sequence of copy-to-reg nodes chained together with token chain
3099 // and flag operands which copy the outgoing args into the appropriate regs.
3100 SDValue InFlag;
Pete Cooper7be8f8f2015-08-03 19:04:32 +00003101 for (auto &RegToPass : RegsToPass) {
3102 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3103 RegToPass.second, InFlag);
Tim Northover3b0846e2014-05-24 12:50:23 +00003104 InFlag = Chain.getValue(1);
3105 }
3106
3107 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3108 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3109 // node so that legalize doesn't hack it.
3110 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3111 Subtarget->isTargetMachO()) {
3112 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3113 const GlobalValue *GV = G->getGlobal();
3114 bool InternalLinkage = GV->hasInternalLinkage();
3115 if (InternalLinkage)
Mehdi Amini44ede332015-07-09 02:09:04 +00003116 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00003117 else {
Mehdi Amini44ede332015-07-09 02:09:04 +00003118 Callee =
3119 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOT);
3120 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
Tim Northover3b0846e2014-05-24 12:50:23 +00003121 }
3122 } else if (ExternalSymbolSDNode *S =
3123 dyn_cast<ExternalSymbolSDNode>(Callee)) {
3124 const char *Sym = S->getSymbol();
Mehdi Amini44ede332015-07-09 02:09:04 +00003125 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
3126 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
Tim Northover3b0846e2014-05-24 12:50:23 +00003127 }
3128 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3129 const GlobalValue *GV = G->getGlobal();
Mehdi Amini44ede332015-07-09 02:09:04 +00003130 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00003131 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3132 const char *Sym = S->getSymbol();
Mehdi Amini44ede332015-07-09 02:09:04 +00003133 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00003134 }
3135
3136 // We don't usually want to end the call-sequence here because we would tidy
3137 // the frame up *after* the call, however in the ABI-changing tail-call case
3138 // we've carefully laid out the parameters so that when sp is reset they'll be
3139 // in the correct location.
3140 if (IsTailCall && !IsSibCall) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003141 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3142 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00003143 InFlag = Chain.getValue(1);
3144 }
3145
3146 std::vector<SDValue> Ops;
3147 Ops.push_back(Chain);
3148 Ops.push_back(Callee);
3149
3150 if (IsTailCall) {
3151 // Each tail call may have to adjust the stack by a different amount, so
3152 // this information must travel along with the operation for eventual
3153 // consumption by emitEpilogue.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003154 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00003155 }
3156
3157 // Add argument registers to the end of the list so that they are known live
3158 // into the call.
Pete Cooper7be8f8f2015-08-03 19:04:32 +00003159 for (auto &RegToPass : RegsToPass)
3160 Ops.push_back(DAG.getRegister(RegToPass.first,
3161 RegToPass.second.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00003162
3163 // Add a register mask operand representing the call-preserved registers.
3164 const uint32_t *Mask;
Eric Christopher905f12d2015-01-29 00:19:42 +00003165 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00003166 if (IsThisReturn) {
3167 // For 'this' returns, use the X0-preserving mask if applicable
Eric Christopher9deb75d2015-03-11 22:42:13 +00003168 Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00003169 if (!Mask) {
3170 IsThisReturn = false;
Eric Christopher9deb75d2015-03-11 22:42:13 +00003171 Mask = TRI->getCallPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00003172 }
3173 } else
Eric Christopher9deb75d2015-03-11 22:42:13 +00003174 Mask = TRI->getCallPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00003175
3176 assert(Mask && "Missing call preserved mask for calling convention");
3177 Ops.push_back(DAG.getRegisterMask(Mask));
3178
3179 if (InFlag.getNode())
3180 Ops.push_back(InFlag);
3181
3182 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3183
3184 // If we're doing a tall call, use a TC_RETURN here rather than an
3185 // actual call instruction.
Arnold Schwaighoferf54b73d2015-05-08 23:52:00 +00003186 if (IsTailCall) {
3187 MF.getFrameInfo()->setHasTailCall();
Tim Northover3b0846e2014-05-24 12:50:23 +00003188 return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
Arnold Schwaighoferf54b73d2015-05-08 23:52:00 +00003189 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003190
3191 // Returns a chain and a flag for retval copy to use.
3192 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
3193 InFlag = Chain.getValue(1);
3194
3195 uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
3196 ? RoundUpToAlignment(NumBytes, 16)
3197 : 0;
3198
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003199 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3200 DAG.getIntPtrConstant(CalleePopBytes, DL, true),
Tim Northover3b0846e2014-05-24 12:50:23 +00003201 InFlag, DL);
3202 if (!Ins.empty())
3203 InFlag = Chain.getValue(1);
3204
3205 // Handle result values, copying them out of physregs into vregs that we
3206 // return.
3207 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3208 InVals, IsThisReturn,
3209 IsThisReturn ? OutVals[0] : SDValue());
3210}
3211
3212bool AArch64TargetLowering::CanLowerReturn(
3213 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
3214 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
3215 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3216 ? RetCC_AArch64_WebKit_JS
3217 : RetCC_AArch64_AAPCS;
3218 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00003219 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
Tim Northover3b0846e2014-05-24 12:50:23 +00003220 return CCInfo.CheckReturn(Outs, RetCC);
3221}
3222
3223SDValue
3224AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3225 bool isVarArg,
3226 const SmallVectorImpl<ISD::OutputArg> &Outs,
3227 const SmallVectorImpl<SDValue> &OutVals,
3228 SDLoc DL, SelectionDAG &DAG) const {
3229 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3230 ? RetCC_AArch64_WebKit_JS
3231 : RetCC_AArch64_AAPCS;
3232 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00003233 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3234 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00003235 CCInfo.AnalyzeReturn(Outs, RetCC);
3236
3237 // Copy the result values into the output registers.
3238 SDValue Flag;
3239 SmallVector<SDValue, 4> RetOps(1, Chain);
3240 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
3241 ++i, ++realRVLocIdx) {
3242 CCValAssign &VA = RVLocs[i];
3243 assert(VA.isRegLoc() && "Can only return in registers!");
3244 SDValue Arg = OutVals[realRVLocIdx];
3245
3246 switch (VA.getLocInfo()) {
3247 default:
3248 llvm_unreachable("Unknown loc info!");
3249 case CCValAssign::Full:
Tim Northover68ae5032014-05-26 17:22:07 +00003250 if (Outs[i].ArgVT == MVT::i1) {
3251 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
3252 // value. This is strictly redundant on Darwin (which uses "zeroext
3253 // i1"), but will be optimised out before ISel.
3254 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3255 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3256 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003257 break;
3258 case CCValAssign::BCvt:
3259 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3260 break;
3261 }
3262
3263 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
3264 Flag = Chain.getValue(1);
3265 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3266 }
3267
3268 RetOps[0] = Chain; // Update chain.
3269
3270 // Add the flag if we have it.
3271 if (Flag.getNode())
3272 RetOps.push_back(Flag);
3273
3274 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
3275}
3276
3277//===----------------------------------------------------------------------===//
3278// Other Lowering Code
3279//===----------------------------------------------------------------------===//
3280
3281SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
3282 SelectionDAG &DAG) const {
Mehdi Amini44ede332015-07-09 02:09:04 +00003283 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003284 SDLoc DL(Op);
Asiri Rathnayake369c0302014-09-10 13:54:38 +00003285 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
3286 const GlobalValue *GV = GN->getGlobal();
Tim Northover3b0846e2014-05-24 12:50:23 +00003287 unsigned char OpFlags =
3288 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
3289
3290 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
3291 "unexpected offset in global node");
3292
3293 // This also catched the large code model case for Darwin.
3294 if ((OpFlags & AArch64II::MO_GOT) != 0) {
3295 SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
3296 // FIXME: Once remat is capable of dealing with instructions with register
3297 // operands, expand this into two nodes instead of using a wrapper node.
3298 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3299 }
3300
Asiri Rathnayake369c0302014-09-10 13:54:38 +00003301 if ((OpFlags & AArch64II::MO_CONSTPOOL) != 0) {
3302 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3303 "use of MO_CONSTPOOL only supported on small model");
3304 SDValue Hi = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, AArch64II::MO_PAGE);
3305 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3306 unsigned char LoFlags = AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
3307 SDValue Lo = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, LoFlags);
3308 SDValue PoolAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
Alex Lorenze40c8a22015-08-11 23:09:45 +00003309 SDValue GlobalAddr = DAG.getLoad(
3310 PtrVT, DL, DAG.getEntryNode(), PoolAddr,
3311 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
3312 /*isVolatile=*/false,
3313 /*isNonTemporal=*/true,
3314 /*isInvariant=*/true, 8);
Asiri Rathnayake369c0302014-09-10 13:54:38 +00003315 if (GN->getOffset() != 0)
3316 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalAddr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003317 DAG.getConstant(GN->getOffset(), DL, PtrVT));
Asiri Rathnayake369c0302014-09-10 13:54:38 +00003318 return GlobalAddr;
3319 }
3320
Tim Northover3b0846e2014-05-24 12:50:23 +00003321 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3322 const unsigned char MO_NC = AArch64II::MO_NC;
3323 return DAG.getNode(
3324 AArch64ISD::WrapperLarge, DL, PtrVT,
3325 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
3326 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3327 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3328 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3329 } else {
3330 // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
3331 // the only correct model on Darwin.
3332 SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3333 OpFlags | AArch64II::MO_PAGE);
3334 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
3335 SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
3336
3337 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3338 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3339 }
3340}
3341
3342/// \brief Convert a TLS address reference into the correct sequence of loads
3343/// and calls to compute the variable's address (for Darwin, currently) and
3344/// return an SDValue containing the final node.
3345
3346/// Darwin only has one TLS scheme which must be capable of dealing with the
3347/// fully general situation, in the worst case. This means:
3348/// + "extern __thread" declaration.
3349/// + Defined in a possibly unknown dynamic library.
3350///
3351/// The general system is that each __thread variable has a [3 x i64] descriptor
3352/// which contains information used by the runtime to calculate the address. The
3353/// only part of this the compiler needs to know about is the first xword, which
3354/// contains a function pointer that must be called with the address of the
3355/// entire descriptor in "x0".
3356///
3357/// Since this descriptor may be in a different unit, in general even the
3358/// descriptor must be accessed via an indirect load. The "ideal" code sequence
3359/// is:
3360/// adrp x0, _var@TLVPPAGE
3361/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
3362/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
3363/// ; the function pointer
3364/// blr x1 ; Uses descriptor address in x0
3365/// ; Address of _var is now in x0.
3366///
3367/// If the address of _var's descriptor *is* known to the linker, then it can
3368/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
3369/// a slight efficiency gain.
3370SDValue
3371AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
3372 SelectionDAG &DAG) const {
3373 assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
3374
3375 SDLoc DL(Op);
Mehdi Amini44ede332015-07-09 02:09:04 +00003376 MVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003377 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3378
3379 SDValue TLVPAddr =
3380 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3381 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
3382
3383 // The first entry in the descriptor is a function pointer that we must call
3384 // to obtain the address of the variable.
3385 SDValue Chain = DAG.getEntryNode();
3386 SDValue FuncTLVGet =
Alex Lorenze40c8a22015-08-11 23:09:45 +00003387 DAG.getLoad(MVT::i64, DL, Chain, DescAddr,
3388 MachinePointerInfo::getGOT(DAG.getMachineFunction()), false,
3389 true, true, 8);
Tim Northover3b0846e2014-05-24 12:50:23 +00003390 Chain = FuncTLVGet.getValue(1);
3391
3392 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3393 MFI->setAdjustsStack(true);
3394
3395 // TLS calls preserve all registers except those that absolutely must be
3396 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3397 // silly).
Eric Christopher6c901622015-01-28 03:51:33 +00003398 const uint32_t *Mask =
Eric Christopher905f12d2015-01-29 00:19:42 +00003399 Subtarget->getRegisterInfo()->getTLSCallPreservedMask();
Tim Northover3b0846e2014-05-24 12:50:23 +00003400
3401 // Finally, we can make the call. This is just a degenerate version of a
3402 // normal AArch64 call node: x0 takes the address of the descriptor, and
3403 // returns the address of the variable in this thread.
3404 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
3405 Chain =
3406 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3407 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
3408 DAG.getRegisterMask(Mask), Chain.getValue(1));
3409 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
3410}
3411
3412/// When accessing thread-local variables under either the general-dynamic or
3413/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
3414/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
Kristof Beylsaea84612015-03-04 09:12:08 +00003415/// is a function pointer to carry out the resolution.
Tim Northover3b0846e2014-05-24 12:50:23 +00003416///
Kristof Beylsaea84612015-03-04 09:12:08 +00003417/// The sequence is:
3418/// adrp x0, :tlsdesc:var
3419/// ldr x1, [x0, #:tlsdesc_lo12:var]
3420/// add x0, x0, #:tlsdesc_lo12:var
3421/// .tlsdesccall var
3422/// blr x1
3423/// (TPIDR_EL0 offset now in x0)
Tim Northover3b0846e2014-05-24 12:50:23 +00003424///
Kristof Beylsaea84612015-03-04 09:12:08 +00003425/// The above sequence must be produced unscheduled, to enable the linker to
3426/// optimize/relax this sequence.
3427/// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
3428/// above sequence, and expanded really late in the compilation flow, to ensure
3429/// the sequence is produced as per above.
3430SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr, SDLoc DL,
3431 SelectionDAG &DAG) const {
Mehdi Amini44ede332015-07-09 02:09:04 +00003432 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003433
Kristof Beylsaea84612015-03-04 09:12:08 +00003434 SDValue Chain = DAG.getEntryNode();
Tim Northover3b0846e2014-05-24 12:50:23 +00003435 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Kristof Beylsaea84612015-03-04 09:12:08 +00003436
3437 SmallVector<SDValue, 2> Ops;
3438 Ops.push_back(Chain);
3439 Ops.push_back(SymAddr);
3440
3441 Chain = DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, Ops);
3442 SDValue Glue = Chain.getValue(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003443
3444 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
3445}
3446
3447SDValue
3448AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
3449 SelectionDAG &DAG) const {
3450 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
3451 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3452 "ELF TLS only supported in small memory model");
Kristof Beylsaea84612015-03-04 09:12:08 +00003453 // Different choices can be made for the maximum size of the TLS area for a
3454 // module. For the small address model, the default TLS size is 16MiB and the
3455 // maximum TLS size is 4GiB.
3456 // FIXME: add -mtls-size command line option and make it control the 16MiB
3457 // vs. 4GiB code sequence generation.
Tim Northover3b0846e2014-05-24 12:50:23 +00003458 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3459
3460 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +00003461
3462 if (DAG.getTarget().Options.EmulatedTLS)
3463 return LowerToTLSEmulatedModel(GA, DAG);
3464
Kristof Beylsaea84612015-03-04 09:12:08 +00003465 if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
3466 if (Model == TLSModel::LocalDynamic)
3467 Model = TLSModel::GeneralDynamic;
3468 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003469
3470 SDValue TPOff;
Mehdi Amini44ede332015-07-09 02:09:04 +00003471 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003472 SDLoc DL(Op);
3473 const GlobalValue *GV = GA->getGlobal();
3474
3475 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
3476
3477 if (Model == TLSModel::LocalExec) {
3478 SDValue HiVar = DAG.getTargetGlobalAddress(
Kristof Beylsaea84612015-03-04 09:12:08 +00003479 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
Tim Northover3b0846e2014-05-24 12:50:23 +00003480 SDValue LoVar = DAG.getTargetGlobalAddress(
3481 GV, DL, PtrVT, 0,
Kristof Beylsaea84612015-03-04 09:12:08 +00003482 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
Tim Northover3b0846e2014-05-24 12:50:23 +00003483
Kristof Beylsaea84612015-03-04 09:12:08 +00003484 SDValue TPWithOff_lo =
3485 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003486 HiVar,
3487 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003488 0);
3489 SDValue TPWithOff =
3490 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003491 LoVar,
3492 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003493 0);
3494 return TPWithOff;
Tim Northover3b0846e2014-05-24 12:50:23 +00003495 } else if (Model == TLSModel::InitialExec) {
3496 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3497 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
3498 } else if (Model == TLSModel::LocalDynamic) {
3499 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
3500 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
3501 // the beginning of the module's TLS region, followed by a DTPREL offset
3502 // calculation.
3503
3504 // These accesses will need deduplicating if there's more than one.
3505 AArch64FunctionInfo *MFI =
3506 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3507 MFI->incNumLocalDynamicTLSAccesses();
3508
Tim Northover3b0846e2014-05-24 12:50:23 +00003509 // The call needs a relocation too for linker relaxation. It doesn't make
3510 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3511 // the address.
3512 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
3513 AArch64II::MO_TLS);
3514
3515 // Now we can calculate the offset from TPIDR_EL0 to this module's
3516 // thread-local area.
Kristof Beylsaea84612015-03-04 09:12:08 +00003517 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00003518
3519 // Now use :dtprel_whatever: operations to calculate this variable's offset
3520 // in its thread-storage area.
3521 SDValue HiVar = DAG.getTargetGlobalAddress(
Kristof Beylsaea84612015-03-04 09:12:08 +00003522 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
Tim Northover3b0846e2014-05-24 12:50:23 +00003523 SDValue LoVar = DAG.getTargetGlobalAddress(
3524 GV, DL, MVT::i64, 0,
Tim Northover3b0846e2014-05-24 12:50:23 +00003525 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3526
Kristof Beylsaea84612015-03-04 09:12:08 +00003527 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003528 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003529 0);
3530 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003531 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003532 0);
3533 } else if (Model == TLSModel::GeneralDynamic) {
Tim Northover3b0846e2014-05-24 12:50:23 +00003534 // The call needs a relocation too for linker relaxation. It doesn't make
3535 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3536 // the address.
3537 SDValue SymAddr =
3538 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3539
3540 // Finally we can make a call to calculate the offset from tpidr_el0.
Kristof Beylsaea84612015-03-04 09:12:08 +00003541 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00003542 } else
3543 llvm_unreachable("Unsupported ELF TLS access model");
3544
3545 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
3546}
3547
3548SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
3549 SelectionDAG &DAG) const {
3550 if (Subtarget->isTargetDarwin())
3551 return LowerDarwinGlobalTLSAddress(Op, DAG);
3552 else if (Subtarget->isTargetELF())
3553 return LowerELFGlobalTLSAddress(Op, DAG);
3554
3555 llvm_unreachable("Unexpected platform trying to use TLS");
3556}
3557SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3558 SDValue Chain = Op.getOperand(0);
3559 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3560 SDValue LHS = Op.getOperand(2);
3561 SDValue RHS = Op.getOperand(3);
3562 SDValue Dest = Op.getOperand(4);
3563 SDLoc dl(Op);
3564
3565 // Handle f128 first, since lowering it will result in comparing the return
3566 // value of a libcall against zero, which is just what the rest of LowerBR_CC
3567 // is expecting to deal with.
3568 if (LHS.getValueType() == MVT::f128) {
3569 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3570
3571 // If softenSetCCOperands returned a scalar, we need to compare the result
3572 // against zero to select between true and false values.
3573 if (!RHS.getNode()) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003574 RHS = DAG.getConstant(0, dl, LHS.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00003575 CC = ISD::SETNE;
3576 }
3577 }
3578
3579 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
3580 // instruction.
3581 unsigned Opc = LHS.getOpcode();
Artyom Skrobov314ee042015-11-25 19:41:11 +00003582 if (LHS.getResNo() == 1 && isOneConstant(RHS) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00003583 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3584 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3585 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
3586 "Unexpected condition code.");
3587 // Only lower legal XALUO ops.
3588 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
3589 return SDValue();
3590
3591 // The actual operation with overflow check.
3592 AArch64CC::CondCode OFCC;
3593 SDValue Value, Overflow;
3594 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
3595
3596 if (CC == ISD::SETNE)
3597 OFCC = getInvertedCondCode(OFCC);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003598 SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003599
Ahmed Bougachadf956a22015-02-06 23:15:39 +00003600 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3601 Overflow);
Tim Northover3b0846e2014-05-24 12:50:23 +00003602 }
3603
3604 if (LHS.getValueType().isInteger()) {
3605 assert((LHS.getValueType() == RHS.getValueType()) &&
3606 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3607
3608 // If the RHS of the comparison is zero, we can potentially fold this
3609 // to a specialized branch.
3610 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
3611 if (RHSC && RHSC->getZExtValue() == 0) {
3612 if (CC == ISD::SETEQ) {
3613 // See if we can use a TBZ to fold in an AND as well.
3614 // TBZ has a smaller branch displacement than CBZ. If the offset is
3615 // out of bounds, a late MI-layer pass rewrites branches.
3616 // 403.gcc is an example that hits this case.
3617 if (LHS.getOpcode() == ISD::AND &&
3618 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3619 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3620 SDValue Test = LHS.getOperand(0);
3621 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003622 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003623 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3624 Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003625 }
3626
3627 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
3628 } else if (CC == ISD::SETNE) {
3629 // See if we can use a TBZ to fold in an AND as well.
3630 // TBZ has a smaller branch displacement than CBZ. If the offset is
3631 // out of bounds, a late MI-layer pass rewrites branches.
3632 // 403.gcc is an example that hits this case.
3633 if (LHS.getOpcode() == ISD::AND &&
3634 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3635 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3636 SDValue Test = LHS.getOperand(0);
3637 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003638 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003639 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3640 Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003641 }
3642
3643 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
Chad Rosier579c02c2014-08-01 14:48:56 +00003644 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
3645 // Don't combine AND since emitComparison converts the AND to an ANDS
3646 // (a.k.a. TST) and the test in the test bit and branch instruction
3647 // becomes redundant. This would also increase register pressure.
3648 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3649 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003650 DAG.getConstant(Mask, dl, MVT::i64), Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003651 }
3652 }
Chad Rosier579c02c2014-08-01 14:48:56 +00003653 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
3654 LHS.getOpcode() != ISD::AND) {
3655 // Don't combine AND since emitComparison converts the AND to an ANDS
3656 // (a.k.a. TST) and the test in the test bit and branch instruction
3657 // becomes redundant. This would also increase register pressure.
3658 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3659 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003660 DAG.getConstant(Mask, dl, MVT::i64), Dest);
Chad Rosier579c02c2014-08-01 14:48:56 +00003661 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003662
3663 SDValue CCVal;
3664 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3665 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3666 Cmp);
3667 }
3668
3669 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3670
3671 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3672 // clean. Some of them require two branches to implement.
3673 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3674 AArch64CC::CondCode CC1, CC2;
3675 changeFPCCToAArch64CC(CC, CC1, CC2);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003676 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003677 SDValue BR1 =
3678 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
3679 if (CC2 != AArch64CC::AL) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003680 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003681 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
3682 Cmp);
3683 }
3684
3685 return BR1;
3686}
3687
3688SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
3689 SelectionDAG &DAG) const {
3690 EVT VT = Op.getValueType();
3691 SDLoc DL(Op);
3692
3693 SDValue In1 = Op.getOperand(0);
3694 SDValue In2 = Op.getOperand(1);
3695 EVT SrcVT = In2.getValueType();
Ahmed Bougacha2a97b1b2015-08-13 01:13:56 +00003696
3697 if (SrcVT.bitsLT(VT))
3698 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
3699 else if (SrcVT.bitsGT(VT))
3700 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));
Tim Northover3b0846e2014-05-24 12:50:23 +00003701
3702 EVT VecVT;
3703 EVT EltVT;
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003704 uint64_t EltMask;
3705 SDValue VecVal1, VecVal2;
Tim Northover3b0846e2014-05-24 12:50:23 +00003706 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
3707 EltVT = MVT::i32;
Ahmed Bougachab0ae36f2015-08-04 00:42:34 +00003708 VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32);
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003709 EltMask = 0x80000000ULL;
Tim Northover3b0846e2014-05-24 12:50:23 +00003710
3711 if (!VT.isVector()) {
3712 VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3713 DAG.getUNDEF(VecVT), In1);
3714 VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3715 DAG.getUNDEF(VecVT), In2);
3716 } else {
3717 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3718 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3719 }
3720 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
3721 EltVT = MVT::i64;
3722 VecVT = MVT::v2i64;
3723
Eric Christopher572e03a2015-06-19 01:53:21 +00003724 // We want to materialize a mask with the high bit set, but the AdvSIMD
Tim Northover3b0846e2014-05-24 12:50:23 +00003725 // immediate moves cannot materialize that in a single instruction for
3726 // 64-bit elements. Instead, materialize zero and then negate it.
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003727 EltMask = 0;
Tim Northover3b0846e2014-05-24 12:50:23 +00003728
3729 if (!VT.isVector()) {
3730 VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3731 DAG.getUNDEF(VecVT), In1);
3732 VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3733 DAG.getUNDEF(VecVT), In2);
3734 } else {
3735 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3736 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3737 }
3738 } else {
3739 llvm_unreachable("Invalid type for copysign!");
3740 }
3741
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003742 SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00003743
3744 // If we couldn't materialize the mask above, then the mask vector will be
3745 // the zero vector, and we need to negate it here.
3746 if (VT == MVT::f64 || VT == MVT::v2f64) {
3747 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3748 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3749 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3750 }
3751
3752 SDValue Sel =
3753 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3754
3755 if (VT == MVT::f32)
3756 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3757 else if (VT == MVT::f64)
3758 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3759 else
3760 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3761}
3762
3763SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00003764 if (DAG.getMachineFunction().getFunction()->hasFnAttribute(
3765 Attribute::NoImplicitFloat))
Tim Northover3b0846e2014-05-24 12:50:23 +00003766 return SDValue();
3767
Weiming Zhao7a2d1562014-11-19 00:29:14 +00003768 if (!Subtarget->hasNEON())
3769 return SDValue();
3770
Tim Northover3b0846e2014-05-24 12:50:23 +00003771 // While there is no integer popcount instruction, it can
3772 // be more efficiently lowered to the following sequence that uses
3773 // AdvSIMD registers/instructions as long as the copies to/from
3774 // the AdvSIMD registers are cheap.
3775 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
3776 // CNT V0.8B, V0.8B // 8xbyte pop-counts
3777 // ADDV B0, V0.8B // sum 8xbyte pop-counts
3778 // UMOV X0, V0.B[0] // copy byte result back to integer reg
3779 SDValue Val = Op.getOperand(0);
3780 SDLoc DL(Op);
3781 EVT VT = Op.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00003782
Hao Liue0335d72015-01-30 02:13:53 +00003783 if (VT == MVT::i32)
3784 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
3785 Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
Tim Northover3b0846e2014-05-24 12:50:23 +00003786
Hao Liue0335d72015-01-30 02:13:53 +00003787 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
Tim Northover3b0846e2014-05-24 12:50:23 +00003788 SDValue UaddLV = DAG.getNode(
3789 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003790 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
Tim Northover3b0846e2014-05-24 12:50:23 +00003791
3792 if (VT == MVT::i64)
3793 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3794 return UaddLV;
3795}
3796
3797SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3798
3799 if (Op.getValueType().isVector())
3800 return LowerVSETCC(Op, DAG);
3801
3802 SDValue LHS = Op.getOperand(0);
3803 SDValue RHS = Op.getOperand(1);
3804 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3805 SDLoc dl(Op);
3806
3807 // We chose ZeroOrOneBooleanContents, so use zero and one.
3808 EVT VT = Op.getValueType();
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003809 SDValue TVal = DAG.getConstant(1, dl, VT);
3810 SDValue FVal = DAG.getConstant(0, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00003811
3812 // Handle f128 first, since one possible outcome is a normal integer
3813 // comparison which gets picked up by the next if statement.
3814 if (LHS.getValueType() == MVT::f128) {
3815 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3816
3817 // If softenSetCCOperands returned a scalar, use it.
3818 if (!RHS.getNode()) {
3819 assert(LHS.getValueType() == Op.getValueType() &&
3820 "Unexpected setcc expansion!");
3821 return LHS;
3822 }
3823 }
3824
3825 if (LHS.getValueType().isInteger()) {
3826 SDValue CCVal;
3827 SDValue Cmp =
3828 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3829
3830 // Note that we inverted the condition above, so we reverse the order of
3831 // the true and false operands here. This will allow the setcc to be
3832 // matched to a single CSINC instruction.
3833 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3834 }
3835
3836 // Now we know we're dealing with FP values.
3837 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3838
3839 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3840 // and do the comparison.
3841 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3842
3843 AArch64CC::CondCode CC1, CC2;
3844 changeFPCCToAArch64CC(CC, CC1, CC2);
3845 if (CC2 == AArch64CC::AL) {
3846 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003847 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003848
3849 // Note that we inverted the condition above, so we reverse the order of
3850 // the true and false operands here. This will allow the setcc to be
3851 // matched to a single CSINC instruction.
3852 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3853 } else {
3854 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3855 // totally clean. Some of them require two CSELs to implement. As is in
3856 // this case, we emit the first CSEL and then emit a second using the output
3857 // of the first as the RHS. We're effectively OR'ing the two CC's together.
3858
3859 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003860 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003861 SDValue CS1 =
3862 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3863
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003864 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003865 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3866 }
3867}
3868
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003869SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
3870 SDValue RHS, SDValue TVal,
3871 SDValue FVal, SDLoc dl,
Tim Northover3b0846e2014-05-24 12:50:23 +00003872 SelectionDAG &DAG) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00003873 // Handle f128 first, because it will result in a comparison of some RTLIB
3874 // call result against zero.
3875 if (LHS.getValueType() == MVT::f128) {
3876 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3877
3878 // If softenSetCCOperands returned a scalar, we need to compare the result
3879 // against zero to select between true and false values.
3880 if (!RHS.getNode()) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003881 RHS = DAG.getConstant(0, dl, LHS.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00003882 CC = ISD::SETNE;
3883 }
3884 }
3885
Ahmed Bougacha88ddeae2015-11-17 16:45:40 +00003886 // Also handle f16, for which we need to do a f32 comparison.
3887 if (LHS.getValueType() == MVT::f16) {
3888 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
3889 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
3890 }
3891
3892 // Next, handle integers.
Tim Northover3b0846e2014-05-24 12:50:23 +00003893 if (LHS.getValueType().isInteger()) {
3894 assert((LHS.getValueType() == RHS.getValueType()) &&
3895 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3896
3897 unsigned Opcode = AArch64ISD::CSEL;
3898
3899 // If both the TVal and the FVal are constants, see if we can swap them in
3900 // order to for a CSINV or CSINC out of them.
3901 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3902 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3903
3904 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3905 std::swap(TVal, FVal);
3906 std::swap(CTVal, CFVal);
3907 CC = ISD::getSetCCInverse(CC, true);
3908 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3909 std::swap(TVal, FVal);
3910 std::swap(CTVal, CFVal);
3911 CC = ISD::getSetCCInverse(CC, true);
3912 } else if (TVal.getOpcode() == ISD::XOR) {
3913 // If TVal is a NOT we want to swap TVal and FVal so that we can match
3914 // with a CSINV rather than a CSEL.
Artyom Skrobov314ee042015-11-25 19:41:11 +00003915 if (isAllOnesConstant(TVal.getOperand(1))) {
Tim Northover3b0846e2014-05-24 12:50:23 +00003916 std::swap(TVal, FVal);
3917 std::swap(CTVal, CFVal);
3918 CC = ISD::getSetCCInverse(CC, true);
3919 }
3920 } else if (TVal.getOpcode() == ISD::SUB) {
3921 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3922 // that we can match with a CSNEG rather than a CSEL.
Artyom Skrobov314ee042015-11-25 19:41:11 +00003923 if (isNullConstant(TVal.getOperand(0))) {
Tim Northover3b0846e2014-05-24 12:50:23 +00003924 std::swap(TVal, FVal);
3925 std::swap(CTVal, CFVal);
3926 CC = ISD::getSetCCInverse(CC, true);
3927 }
3928 } else if (CTVal && CFVal) {
3929 const int64_t TrueVal = CTVal->getSExtValue();
3930 const int64_t FalseVal = CFVal->getSExtValue();
3931 bool Swap = false;
3932
3933 // If both TVal and FVal are constants, see if FVal is the
3934 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
3935 // instead of a CSEL in that case.
3936 if (TrueVal == ~FalseVal) {
3937 Opcode = AArch64ISD::CSINV;
3938 } else if (TrueVal == -FalseVal) {
3939 Opcode = AArch64ISD::CSNEG;
3940 } else if (TVal.getValueType() == MVT::i32) {
3941 // If our operands are only 32-bit wide, make sure we use 32-bit
3942 // arithmetic for the check whether we can use CSINC. This ensures that
3943 // the addition in the check will wrap around properly in case there is
3944 // an overflow (which would not be the case if we do the check with
3945 // 64-bit arithmetic).
3946 const uint32_t TrueVal32 = CTVal->getZExtValue();
3947 const uint32_t FalseVal32 = CFVal->getZExtValue();
3948
3949 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
3950 Opcode = AArch64ISD::CSINC;
3951
3952 if (TrueVal32 > FalseVal32) {
3953 Swap = true;
3954 }
3955 }
3956 // 64-bit check whether we can use CSINC.
3957 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
3958 Opcode = AArch64ISD::CSINC;
3959
3960 if (TrueVal > FalseVal) {
3961 Swap = true;
3962 }
3963 }
3964
3965 // Swap TVal and FVal if necessary.
3966 if (Swap) {
3967 std::swap(TVal, FVal);
3968 std::swap(CTVal, CFVal);
3969 CC = ISD::getSetCCInverse(CC, true);
3970 }
3971
3972 if (Opcode != AArch64ISD::CSEL) {
3973 // Drop FVal since we can get its value by simply inverting/negating
3974 // TVal.
3975 FVal = TVal;
3976 }
3977 }
3978
3979 SDValue CCVal;
3980 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3981
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003982 EVT VT = TVal.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00003983 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
3984 }
3985
3986 // Now we know we're dealing with FP values.
3987 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3988 assert(LHS.getValueType() == RHS.getValueType());
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003989 EVT VT = TVal.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00003990 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3991
3992 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3993 // clean. Some of them require two CSELs to implement.
3994 AArch64CC::CondCode CC1, CC2;
3995 changeFPCCToAArch64CC(CC, CC1, CC2);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003996 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003997 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3998
3999 // If we need a second CSEL, emit it, using the output of the first as the
4000 // RHS. We're effectively OR'ing the two CC's together.
4001 if (CC2 != AArch64CC::AL) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004002 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00004003 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
4004 }
4005
4006 // Otherwise, return the output of the first CSEL.
4007 return CS1;
4008}
4009
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00004010SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
4011 SelectionDAG &DAG) const {
4012 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4013 SDValue LHS = Op.getOperand(0);
4014 SDValue RHS = Op.getOperand(1);
4015 SDValue TVal = Op.getOperand(2);
4016 SDValue FVal = Op.getOperand(3);
4017 SDLoc DL(Op);
4018 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4019}
4020
4021SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
4022 SelectionDAG &DAG) const {
4023 SDValue CCVal = Op->getOperand(0);
4024 SDValue TVal = Op->getOperand(1);
4025 SDValue FVal = Op->getOperand(2);
4026 SDLoc DL(Op);
4027
4028 unsigned Opc = CCVal.getOpcode();
4029 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
4030 // instruction.
4031 if (CCVal.getResNo() == 1 &&
4032 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4033 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
4034 // Only lower legal XALUO ops.
4035 if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
4036 return SDValue();
4037
4038 AArch64CC::CondCode OFCC;
4039 SDValue Value, Overflow;
4040 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004041 SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00004042
4043 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
4044 CCVal, Overflow);
4045 }
4046
4047 // Lower it the same way as we would lower a SELECT_CC node.
4048 ISD::CondCode CC;
4049 SDValue LHS, RHS;
4050 if (CCVal.getOpcode() == ISD::SETCC) {
4051 LHS = CCVal.getOperand(0);
4052 RHS = CCVal.getOperand(1);
4053 CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
4054 } else {
4055 LHS = CCVal;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004056 RHS = DAG.getConstant(0, DL, CCVal.getValueType());
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00004057 CC = ISD::SETNE;
4058 }
4059 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4060}
4061
Tim Northover3b0846e2014-05-24 12:50:23 +00004062SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
4063 SelectionDAG &DAG) const {
4064 // Jump table entries as PC relative offsets. No additional tweaking
4065 // is necessary here. Just get the address of the jump table.
4066 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
Mehdi Amini44ede332015-07-09 02:09:04 +00004067 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004068 SDLoc DL(Op);
4069
4070 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4071 !Subtarget->isTargetMachO()) {
4072 const unsigned char MO_NC = AArch64II::MO_NC;
4073 return DAG.getNode(
4074 AArch64ISD::WrapperLarge, DL, PtrVT,
4075 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
4076 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
4077 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
4078 DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
4079 AArch64II::MO_G0 | MO_NC));
4080 }
4081
4082 SDValue Hi =
4083 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
4084 SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
4085 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4086 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4087 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4088}
4089
4090SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
4091 SelectionDAG &DAG) const {
4092 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
Mehdi Amini44ede332015-07-09 02:09:04 +00004093 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004094 SDLoc DL(Op);
4095
4096 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
4097 // Use the GOT for the large code model on iOS.
4098 if (Subtarget->isTargetMachO()) {
4099 SDValue GotAddr = DAG.getTargetConstantPool(
4100 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
4101 AArch64II::MO_GOT);
4102 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
4103 }
4104
4105 const unsigned char MO_NC = AArch64II::MO_NC;
4106 return DAG.getNode(
4107 AArch64ISD::WrapperLarge, DL, PtrVT,
4108 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4109 CP->getOffset(), AArch64II::MO_G3),
4110 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4111 CP->getOffset(), AArch64II::MO_G2 | MO_NC),
4112 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4113 CP->getOffset(), AArch64II::MO_G1 | MO_NC),
4114 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4115 CP->getOffset(), AArch64II::MO_G0 | MO_NC));
4116 } else {
4117 // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
4118 // ELF, the only valid one on Darwin.
4119 SDValue Hi =
4120 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4121 CP->getOffset(), AArch64II::MO_PAGE);
4122 SDValue Lo = DAG.getTargetConstantPool(
4123 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
4124 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4125
4126 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4127 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4128 }
4129}
4130
4131SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
4132 SelectionDAG &DAG) const {
4133 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
Mehdi Amini44ede332015-07-09 02:09:04 +00004134 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004135 SDLoc DL(Op);
4136 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4137 !Subtarget->isTargetMachO()) {
4138 const unsigned char MO_NC = AArch64II::MO_NC;
4139 return DAG.getNode(
4140 AArch64ISD::WrapperLarge, DL, PtrVT,
4141 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
4142 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
4143 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
4144 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
4145 } else {
4146 SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
4147 SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
4148 AArch64II::MO_NC);
4149 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4150 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4151 }
4152}
4153
4154SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
4155 SelectionDAG &DAG) const {
4156 AArch64FunctionInfo *FuncInfo =
4157 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
4158
4159 SDLoc DL(Op);
Mehdi Amini44ede332015-07-09 02:09:04 +00004160 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
4161 getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004162 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4163 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
4164 MachinePointerInfo(SV), false, false, 0);
4165}
4166
4167SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
4168 SelectionDAG &DAG) const {
4169 // The layout of the va_list struct is specified in the AArch64 Procedure Call
4170 // Standard, section B.3.
4171 MachineFunction &MF = DAG.getMachineFunction();
4172 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
Mehdi Amini44ede332015-07-09 02:09:04 +00004173 auto PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004174 SDLoc DL(Op);
4175
4176 SDValue Chain = Op.getOperand(0);
4177 SDValue VAList = Op.getOperand(1);
4178 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4179 SmallVector<SDValue, 4> MemOps;
4180
4181 // void *__stack at offset 0
Mehdi Amini44ede332015-07-09 02:09:04 +00004182 SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004183 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
4184 MachinePointerInfo(SV), false, false, 8));
4185
4186 // void *__gr_top at offset 8
4187 int GPRSize = FuncInfo->getVarArgsGPRSize();
4188 if (GPRSize > 0) {
4189 SDValue GRTop, GRTopAddr;
4190
Mehdi Amini44ede332015-07-09 02:09:04 +00004191 GRTopAddr =
4192 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004193
Mehdi Amini44ede332015-07-09 02:09:04 +00004194 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
4195 GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
4196 DAG.getConstant(GPRSize, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004197
4198 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
4199 MachinePointerInfo(SV, 8), false, false, 8));
4200 }
4201
4202 // void *__vr_top at offset 16
4203 int FPRSize = FuncInfo->getVarArgsFPRSize();
4204 if (FPRSize > 0) {
4205 SDValue VRTop, VRTopAddr;
Mehdi Amini44ede332015-07-09 02:09:04 +00004206 VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4207 DAG.getConstant(16, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004208
Mehdi Amini44ede332015-07-09 02:09:04 +00004209 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
4210 VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
4211 DAG.getConstant(FPRSize, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004212
4213 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
4214 MachinePointerInfo(SV, 16), false, false, 8));
4215 }
4216
4217 // int __gr_offs at offset 24
Mehdi Amini44ede332015-07-09 02:09:04 +00004218 SDValue GROffsAddr =
4219 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT));
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004220 MemOps.push_back(DAG.getStore(Chain, DL,
4221 DAG.getConstant(-GPRSize, DL, MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00004222 GROffsAddr, MachinePointerInfo(SV, 24), false,
4223 false, 4));
4224
4225 // int __vr_offs at offset 28
Mehdi Amini44ede332015-07-09 02:09:04 +00004226 SDValue VROffsAddr =
4227 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT));
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004228 MemOps.push_back(DAG.getStore(Chain, DL,
4229 DAG.getConstant(-FPRSize, DL, MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00004230 VROffsAddr, MachinePointerInfo(SV, 28), false,
4231 false, 4));
4232
4233 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
4234}
4235
4236SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
4237 SelectionDAG &DAG) const {
4238 return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
4239 : LowerAAPCS_VASTART(Op, DAG);
4240}
4241
4242SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
4243 SelectionDAG &DAG) const {
4244 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
4245 // pointer.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004246 SDLoc DL(Op);
Tim Northover3b0846e2014-05-24 12:50:23 +00004247 unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
4248 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
4249 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
4250
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004251 return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1),
4252 Op.getOperand(2),
4253 DAG.getConstant(VaListSize, DL, MVT::i32),
Krzysztof Parzyszeka46c36b2015-04-13 17:16:45 +00004254 8, false, false, false, MachinePointerInfo(DestSV),
Tim Northover3b0846e2014-05-24 12:50:23 +00004255 MachinePointerInfo(SrcSV));
4256}
4257
4258SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
4259 assert(Subtarget->isTargetDarwin() &&
4260 "automatic va_arg instruction only works on Darwin");
4261
4262 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4263 EVT VT = Op.getValueType();
4264 SDLoc DL(Op);
4265 SDValue Chain = Op.getOperand(0);
4266 SDValue Addr = Op.getOperand(1);
4267 unsigned Align = Op.getConstantOperandVal(3);
Mehdi Amini44ede332015-07-09 02:09:04 +00004268 auto PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004269
Mehdi Amini44ede332015-07-09 02:09:04 +00004270 SDValue VAList = DAG.getLoad(PtrVT, DL, Chain, Addr, MachinePointerInfo(V),
4271 false, false, false, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00004272 Chain = VAList.getValue(1);
4273
4274 if (Align > 8) {
4275 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
Mehdi Amini44ede332015-07-09 02:09:04 +00004276 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4277 DAG.getConstant(Align - 1, DL, PtrVT));
4278 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
4279 DAG.getConstant(-(int64_t)Align, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004280 }
4281
4282 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
Mehdi Amini44ede332015-07-09 02:09:04 +00004283 uint64_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
Tim Northover3b0846e2014-05-24 12:50:23 +00004284
4285 // Scalar integer and FP values smaller than 64 bits are implicitly extended
4286 // up to 64 bits. At the very least, we have to increase the striding of the
4287 // vaargs list to match this, and for FP values we need to introduce
4288 // FP_ROUND nodes as well.
4289 if (VT.isInteger() && !VT.isVector())
4290 ArgSize = 8;
4291 bool NeedFPTrunc = false;
4292 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
4293 ArgSize = 8;
4294 NeedFPTrunc = true;
4295 }
4296
4297 // Increment the pointer, VAList, to the next vaarg
Mehdi Amini44ede332015-07-09 02:09:04 +00004298 SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4299 DAG.getConstant(ArgSize, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004300 // Store the incremented VAList to the legalized pointer
4301 SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
4302 false, false, 0);
4303
4304 // Load the actual argument out of the pointer VAList
4305 if (NeedFPTrunc) {
4306 // Load the value as an f64.
4307 SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
4308 MachinePointerInfo(), false, false, false, 0);
4309 // Round the value down to an f32.
4310 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004311 DAG.getIntPtrConstant(1, DL));
Tim Northover3b0846e2014-05-24 12:50:23 +00004312 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
4313 // Merge the rounded value with the chain output of the load.
4314 return DAG.getMergeValues(Ops, DL);
4315 }
4316
4317 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
4318 false, false, 0);
4319}
4320
4321SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
4322 SelectionDAG &DAG) const {
4323 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4324 MFI->setFrameAddressIsTaken(true);
4325
4326 EVT VT = Op.getValueType();
4327 SDLoc DL(Op);
4328 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4329 SDValue FrameAddr =
4330 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
4331 while (Depth--)
4332 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
4333 MachinePointerInfo(), false, false, false, 0);
4334 return FrameAddr;
4335}
4336
4337// FIXME? Maybe this could be a TableGen attribute on some registers and
4338// this table could be generated automatically from RegInfo.
Pat Gavlina717f252015-07-09 17:40:29 +00004339unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT,
4340 SelectionDAG &DAG) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004341 unsigned Reg = StringSwitch<unsigned>(RegName)
4342 .Case("sp", AArch64::SP)
4343 .Default(0);
4344 if (Reg)
4345 return Reg;
Luke Cheeseman85fd06d2015-06-01 12:02:47 +00004346 report_fatal_error(Twine("Invalid register name \""
4347 + StringRef(RegName) + "\"."));
Tim Northover3b0846e2014-05-24 12:50:23 +00004348}
4349
4350SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
4351 SelectionDAG &DAG) const {
4352 MachineFunction &MF = DAG.getMachineFunction();
4353 MachineFrameInfo *MFI = MF.getFrameInfo();
4354 MFI->setReturnAddressIsTaken(true);
4355
4356 EVT VT = Op.getValueType();
4357 SDLoc DL(Op);
4358 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4359 if (Depth) {
4360 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
Mehdi Amini44ede332015-07-09 02:09:04 +00004361 SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004362 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4363 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4364 MachinePointerInfo(), false, false, false, 0);
4365 }
4366
4367 // Return LR, which contains the return address. Mark it an implicit live-in.
4368 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
4369 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4370}
4371
4372/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4373/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4374SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
4375 SelectionDAG &DAG) const {
4376 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4377 EVT VT = Op.getValueType();
4378 unsigned VTBits = VT.getSizeInBits();
4379 SDLoc dl(Op);
4380 SDValue ShOpLo = Op.getOperand(0);
4381 SDValue ShOpHi = Op.getOperand(1);
4382 SDValue ShAmt = Op.getOperand(2);
4383 SDValue ARMcc;
4384 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4385
4386 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4387
4388 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004389 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
Tim Northover3b0846e2014-05-24 12:50:23 +00004390 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4391 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004392 DAG.getConstant(VTBits, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004393 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4394
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004395 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00004396 ISD::SETGE, dl, DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004397 SDValue CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00004398
4399 SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4400 SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4401 SDValue Lo =
4402 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4403
4404 // AArch64 shifts larger than the register width are wrapped rather than
4405 // clamped, so we can't just emit "hi >> x".
4406 SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4407 SDValue TrueValHi = Opc == ISD::SRA
4408 ? DAG.getNode(Opc, dl, VT, ShOpHi,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004409 DAG.getConstant(VTBits - 1, dl,
4410 MVT::i64))
4411 : DAG.getConstant(0, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004412 SDValue Hi =
4413 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp);
4414
4415 SDValue Ops[2] = { Lo, Hi };
4416 return DAG.getMergeValues(Ops, dl);
4417}
4418
4419/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4420/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4421SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
4422 SelectionDAG &DAG) const {
4423 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4424 EVT VT = Op.getValueType();
4425 unsigned VTBits = VT.getSizeInBits();
4426 SDLoc dl(Op);
4427 SDValue ShOpLo = Op.getOperand(0);
4428 SDValue ShOpHi = Op.getOperand(1);
4429 SDValue ShAmt = Op.getOperand(2);
4430 SDValue ARMcc;
4431
4432 assert(Op.getOpcode() == ISD::SHL_PARTS);
4433 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004434 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
Tim Northover3b0846e2014-05-24 12:50:23 +00004435 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4436 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004437 DAG.getConstant(VTBits, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004438 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4439 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4440
4441 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4442
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004443 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00004444 ISD::SETGE, dl, DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004445 SDValue CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00004446 SDValue Hi =
4447 DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp);
4448
4449 // AArch64 shifts of larger than register sizes are wrapped rather than
4450 // clamped, so we can't just emit "lo << a" if a is too big.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004451 SDValue TrueValLo = DAG.getConstant(0, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004452 SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4453 SDValue Lo =
4454 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4455
4456 SDValue Ops[2] = { Lo, Hi };
4457 return DAG.getMergeValues(Ops, dl);
4458}
4459
4460bool AArch64TargetLowering::isOffsetFoldingLegal(
4461 const GlobalAddressSDNode *GA) const {
4462 // The AArch64 target doesn't support folding offsets into global addresses.
4463 return false;
4464}
4465
4466bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4467 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
4468 // FIXME: We should be able to handle f128 as well with a clever lowering.
4469 if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
4470 return true;
4471
4472 if (VT == MVT::f64)
4473 return AArch64_AM::getFP64Imm(Imm) != -1;
4474 else if (VT == MVT::f32)
4475 return AArch64_AM::getFP32Imm(Imm) != -1;
4476 return false;
4477}
4478
4479//===----------------------------------------------------------------------===//
4480// AArch64 Optimization Hooks
4481//===----------------------------------------------------------------------===//
4482
4483//===----------------------------------------------------------------------===//
4484// AArch64 Inline Assembly Support
4485//===----------------------------------------------------------------------===//
4486
4487// Table of Constraints
4488// TODO: This is the current set of constraints supported by ARM for the
4489// compiler, not all of them may make sense, e.g. S may be difficult to support.
4490//
4491// r - A general register
4492// w - An FP/SIMD register of some size in the range v0-v31
4493// x - An FP/SIMD register of some size in the range v0-v15
4494// I - Constant that can be used with an ADD instruction
4495// J - Constant that can be used with a SUB instruction
4496// K - Constant that can be used with a 32-bit logical instruction
4497// L - Constant that can be used with a 64-bit logical instruction
4498// M - Constant that can be used as a 32-bit MOV immediate
4499// N - Constant that can be used as a 64-bit MOV immediate
4500// Q - A memory reference with base register and no offset
4501// S - A symbolic address
4502// Y - Floating point constant zero
4503// Z - Integer constant zero
4504//
4505// Note that general register operands will be output using their 64-bit x
4506// register name, whatever the size of the variable, unless the asm operand
4507// is prefixed by the %w modifier. Floating-point and SIMD register operands
4508// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
4509// %q modifier.
4510
4511/// getConstraintType - Given a constraint letter, return the type of
4512/// constraint it is for this target.
4513AArch64TargetLowering::ConstraintType
Benjamin Kramer9bfb6272015-07-05 19:29:18 +00004514AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004515 if (Constraint.size() == 1) {
4516 switch (Constraint[0]) {
4517 default:
4518 break;
4519 case 'z':
4520 return C_Other;
4521 case 'x':
4522 case 'w':
4523 return C_RegisterClass;
4524 // An address with a single base register. Due to the way we
4525 // currently handle addresses it is the same as 'r'.
4526 case 'Q':
4527 return C_Memory;
4528 }
4529 }
4530 return TargetLowering::getConstraintType(Constraint);
4531}
4532
4533/// Examine constraint type and operand type and determine a weight value.
4534/// This object must already have been set up with the operand type
4535/// and the current alternative constraint selected.
4536TargetLowering::ConstraintWeight
4537AArch64TargetLowering::getSingleConstraintMatchWeight(
4538 AsmOperandInfo &info, const char *constraint) const {
4539 ConstraintWeight weight = CW_Invalid;
4540 Value *CallOperandVal = info.CallOperandVal;
4541 // If we don't have a value, we can't do a match,
4542 // but allow it at the lowest weight.
4543 if (!CallOperandVal)
4544 return CW_Default;
4545 Type *type = CallOperandVal->getType();
4546 // Look at the constraint type.
4547 switch (*constraint) {
4548 default:
4549 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
4550 break;
4551 case 'x':
4552 case 'w':
4553 if (type->isFloatingPointTy() || type->isVectorTy())
4554 weight = CW_Register;
4555 break;
4556 case 'z':
4557 weight = CW_Constant;
4558 break;
4559 }
4560 return weight;
4561}
4562
4563std::pair<unsigned, const TargetRegisterClass *>
4564AArch64TargetLowering::getRegForInlineAsmConstraint(
Benjamin Kramer9bfb6272015-07-05 19:29:18 +00004565 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004566 if (Constraint.size() == 1) {
4567 switch (Constraint[0]) {
4568 case 'r':
4569 if (VT.getSizeInBits() == 64)
4570 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
4571 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
4572 case 'w':
4573 if (VT == MVT::f32)
4574 return std::make_pair(0U, &AArch64::FPR32RegClass);
4575 if (VT.getSizeInBits() == 64)
4576 return std::make_pair(0U, &AArch64::FPR64RegClass);
4577 if (VT.getSizeInBits() == 128)
4578 return std::make_pair(0U, &AArch64::FPR128RegClass);
4579 break;
4580 // The instructions that this constraint is designed for can
4581 // only take 128-bit registers so just use that regclass.
4582 case 'x':
4583 if (VT.getSizeInBits() == 128)
4584 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
4585 break;
4586 }
4587 }
4588 if (StringRef("{cc}").equals_lower(Constraint))
4589 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
4590
4591 // Use the default implementation in TargetLowering to convert the register
4592 // constraint into a member of a register class.
4593 std::pair<unsigned, const TargetRegisterClass *> Res;
Eric Christopher11e4df72015-02-26 22:38:43 +00004594 Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004595
4596 // Not found as a standard register?
4597 if (!Res.second) {
4598 unsigned Size = Constraint.size();
4599 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
4600 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
Benjamin Kramer9bfb6272015-07-05 19:29:18 +00004601 int RegNo;
4602 bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
4603 if (!Failed && RegNo >= 0 && RegNo <= 31) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004604 // v0 - v31 are aliases of q0 - q31.
4605 // By default we'll emit v0-v31 for this unless there's a modifier where
4606 // we'll emit the correct register as well.
4607 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
4608 Res.second = &AArch64::FPR128RegClass;
4609 }
4610 }
4611 }
4612
4613 return Res;
4614}
4615
4616/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4617/// vector. If it is invalid, don't add anything to Ops.
4618void AArch64TargetLowering::LowerAsmOperandForConstraint(
4619 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
4620 SelectionDAG &DAG) const {
4621 SDValue Result;
4622
4623 // Currently only support length 1 constraints.
4624 if (Constraint.length() != 1)
4625 return;
4626
4627 char ConstraintLetter = Constraint[0];
4628 switch (ConstraintLetter) {
4629 default:
4630 break;
4631
4632 // This set of constraints deal with valid constants for various instructions.
4633 // Validate and return a target constant for them if we can.
4634 case 'z': {
4635 // 'z' maps to xzr or wzr so it needs an input of 0.
Artyom Skrobov314ee042015-11-25 19:41:11 +00004636 if (!isNullConstant(Op))
Tim Northover3b0846e2014-05-24 12:50:23 +00004637 return;
4638
4639 if (Op.getValueType() == MVT::i64)
4640 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
4641 else
4642 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
4643 break;
4644 }
4645
4646 case 'I':
4647 case 'J':
4648 case 'K':
4649 case 'L':
4650 case 'M':
4651 case 'N':
4652 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4653 if (!C)
4654 return;
4655
4656 // Grab the value and do some validation.
4657 uint64_t CVal = C->getZExtValue();
4658 switch (ConstraintLetter) {
4659 // The I constraint applies only to simple ADD or SUB immediate operands:
4660 // i.e. 0 to 4095 with optional shift by 12
4661 // The J constraint applies only to ADD or SUB immediates that would be
4662 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
4663 // instruction [or vice versa], in other words -1 to -4095 with optional
4664 // left shift by 12.
4665 case 'I':
4666 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
4667 break;
4668 return;
4669 case 'J': {
4670 uint64_t NVal = -C->getSExtValue();
Tim Northover2c46beb2014-07-27 07:10:29 +00004671 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
4672 CVal = C->getSExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004673 break;
Tim Northover2c46beb2014-07-27 07:10:29 +00004674 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004675 return;
4676 }
4677 // The K and L constraints apply *only* to logical immediates, including
4678 // what used to be the MOVI alias for ORR (though the MOVI alias has now
4679 // been removed and MOV should be used). So these constraints have to
4680 // distinguish between bit patterns that are valid 32-bit or 64-bit
4681 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4682 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4683 // versa.
4684 case 'K':
4685 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4686 break;
4687 return;
4688 case 'L':
4689 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4690 break;
4691 return;
4692 // The M and N constraints are a superset of K and L respectively, for use
4693 // with the MOV (immediate) alias. As well as the logical immediates they
4694 // also match 32 or 64-bit immediates that can be loaded either using a
4695 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4696 // (M) or 64-bit 0x1234000000000000 (N) etc.
4697 // As a note some of this code is liberally stolen from the asm parser.
4698 case 'M': {
4699 if (!isUInt<32>(CVal))
4700 return;
4701 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4702 break;
4703 if ((CVal & 0xFFFF) == CVal)
4704 break;
4705 if ((CVal & 0xFFFF0000ULL) == CVal)
4706 break;
4707 uint64_t NCVal = ~(uint32_t)CVal;
4708 if ((NCVal & 0xFFFFULL) == NCVal)
4709 break;
4710 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4711 break;
4712 return;
4713 }
4714 case 'N': {
4715 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4716 break;
4717 if ((CVal & 0xFFFFULL) == CVal)
4718 break;
4719 if ((CVal & 0xFFFF0000ULL) == CVal)
4720 break;
4721 if ((CVal & 0xFFFF00000000ULL) == CVal)
4722 break;
4723 if ((CVal & 0xFFFF000000000000ULL) == CVal)
4724 break;
4725 uint64_t NCVal = ~CVal;
4726 if ((NCVal & 0xFFFFULL) == NCVal)
4727 break;
4728 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4729 break;
4730 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4731 break;
4732 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4733 break;
4734 return;
4735 }
4736 default:
4737 return;
4738 }
4739
4740 // All assembler immediates are 64-bit integers.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004741 Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00004742 break;
4743 }
4744
4745 if (Result.getNode()) {
4746 Ops.push_back(Result);
4747 return;
4748 }
4749
4750 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4751}
4752
4753//===----------------------------------------------------------------------===//
4754// AArch64 Advanced SIMD Support
4755//===----------------------------------------------------------------------===//
4756
4757/// WidenVector - Given a value in the V64 register class, produce the
4758/// equivalent value in the V128 register class.
4759static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4760 EVT VT = V64Reg.getValueType();
4761 unsigned NarrowSize = VT.getVectorNumElements();
4762 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4763 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4764 SDLoc DL(V64Reg);
4765
4766 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004767 V64Reg, DAG.getConstant(0, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00004768}
4769
4770/// getExtFactor - Determine the adjustment factor for the position when
4771/// generating an "extract from vector registers" instruction.
4772static unsigned getExtFactor(SDValue &V) {
4773 EVT EltType = V.getValueType().getVectorElementType();
4774 return EltType.getSizeInBits() / 8;
4775}
4776
4777/// NarrowVector - Given a value in the V128 register class, produce the
4778/// equivalent value in the V64 register class.
4779static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4780 EVT VT = V128Reg.getValueType();
4781 unsigned WideSize = VT.getVectorNumElements();
4782 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4783 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4784 SDLoc DL(V128Reg);
4785
4786 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4787}
4788
4789// Gather data to see if the operation can be modelled as a
4790// shuffle in combination with VEXTs.
4791SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4792 SelectionDAG &DAG) const {
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004793 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00004794 SDLoc dl(Op);
4795 EVT VT = Op.getValueType();
4796 unsigned NumElts = VT.getVectorNumElements();
4797
Tim Northover7324e842014-07-24 15:39:55 +00004798 struct ShuffleSourceInfo {
4799 SDValue Vec;
4800 unsigned MinElt;
4801 unsigned MaxElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004802
Tim Northover7324e842014-07-24 15:39:55 +00004803 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
4804 // be compatible with the shuffle we intend to construct. As a result
4805 // ShuffleVec will be some sliding window into the original Vec.
4806 SDValue ShuffleVec;
4807
4808 // Code should guarantee that element i in Vec starts at element "WindowBase
4809 // + i * WindowScale in ShuffleVec".
4810 int WindowBase;
4811 int WindowScale;
4812
4813 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
4814 ShuffleSourceInfo(SDValue Vec)
4815 : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
4816 WindowScale(1) {}
4817 };
4818
4819 // First gather all vectors used as an immediate source for this BUILD_VECTOR
4820 // node.
4821 SmallVector<ShuffleSourceInfo, 2> Sources;
Tim Northover3b0846e2014-05-24 12:50:23 +00004822 for (unsigned i = 0; i < NumElts; ++i) {
4823 SDValue V = Op.getOperand(i);
4824 if (V.getOpcode() == ISD::UNDEF)
4825 continue;
4826 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4827 // A shuffle can only come from building a vector from various
4828 // elements of other vectors.
4829 return SDValue();
4830 }
4831
Tim Northover7324e842014-07-24 15:39:55 +00004832 // Add this element source to the list if it's not already there.
Tim Northover3b0846e2014-05-24 12:50:23 +00004833 SDValue SourceVec = V.getOperand(0);
Tim Northover7324e842014-07-24 15:39:55 +00004834 auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
4835 if (Source == Sources.end())
James Molloyf497d552014-10-17 17:06:31 +00004836 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
Tim Northover3b0846e2014-05-24 12:50:23 +00004837
Tim Northover7324e842014-07-24 15:39:55 +00004838 // Update the minimum and maximum lane number seen.
4839 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4840 Source->MinElt = std::min(Source->MinElt, EltNo);
4841 Source->MaxElt = std::max(Source->MaxElt, EltNo);
Tim Northover3b0846e2014-05-24 12:50:23 +00004842 }
4843
4844 // Currently only do something sane when at most two source vectors
Tim Northover7324e842014-07-24 15:39:55 +00004845 // are involved.
4846 if (Sources.size() > 2)
Tim Northover3b0846e2014-05-24 12:50:23 +00004847 return SDValue();
4848
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004849 // Find out the smallest element size among result and two sources, and use
4850 // it as element size to build the shuffle_vector.
4851 EVT SmallestEltTy = VT.getVectorElementType();
Tim Northover7324e842014-07-24 15:39:55 +00004852 for (auto &Source : Sources) {
4853 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004854 if (SrcEltTy.bitsLT(SmallestEltTy)) {
4855 SmallestEltTy = SrcEltTy;
4856 }
4857 }
4858 unsigned ResMultiplier =
4859 VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004860 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
4861 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00004862
Tim Northover7324e842014-07-24 15:39:55 +00004863 // If the source vector is too wide or too narrow, we may nevertheless be able
4864 // to construct a compatible shuffle either by concatenating it with UNDEF or
4865 // extracting a suitable range of elements.
4866 for (auto &Src : Sources) {
4867 EVT SrcVT = Src.ShuffleVec.getValueType();
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004868
Tim Northover7324e842014-07-24 15:39:55 +00004869 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
Tim Northover3b0846e2014-05-24 12:50:23 +00004870 continue;
Tim Northover7324e842014-07-24 15:39:55 +00004871
4872 // This stage of the search produces a source with the same element type as
4873 // the original, but with a total width matching the BUILD_VECTOR output.
4874 EVT EltVT = SrcVT.getVectorElementType();
James Molloyf497d552014-10-17 17:06:31 +00004875 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
4876 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
Tim Northover7324e842014-07-24 15:39:55 +00004877
4878 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
4879 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004880 // We can pad out the smaller vector for free, so if it's part of a
4881 // shuffle...
Tim Northover7324e842014-07-24 15:39:55 +00004882 Src.ShuffleVec =
4883 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
4884 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004885 continue;
4886 }
4887
Tim Northover7324e842014-07-24 15:39:55 +00004888 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004889
James Molloyf497d552014-10-17 17:06:31 +00004890 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004891 // Span too large for a VEXT to cope
4892 return SDValue();
4893 }
4894
James Molloyf497d552014-10-17 17:06:31 +00004895 if (Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004896 // The extraction can just take the second half
Tim Northover7324e842014-07-24 15:39:55 +00004897 Src.ShuffleVec =
4898 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004899 DAG.getConstant(NumSrcElts, dl, MVT::i64));
James Molloyf497d552014-10-17 17:06:31 +00004900 Src.WindowBase = -NumSrcElts;
4901 } else if (Src.MaxElt < NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004902 // The extraction can just take the first half
Tim Northover5e84fe32014-12-06 00:33:37 +00004903 Src.ShuffleVec =
4904 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004905 DAG.getConstant(0, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004906 } else {
4907 // An actual VEXT is needed
Tim Northover5e84fe32014-12-06 00:33:37 +00004908 SDValue VEXTSrc1 =
4909 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004910 DAG.getConstant(0, dl, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00004911 SDValue VEXTSrc2 =
4912 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004913 DAG.getConstant(NumSrcElts, dl, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00004914 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
4915
4916 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004917 VEXTSrc2,
4918 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover7324e842014-07-24 15:39:55 +00004919 Src.WindowBase = -Src.MinElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004920 }
4921 }
4922
Tim Northover7324e842014-07-24 15:39:55 +00004923 // Another possible incompatibility occurs from the vector element types. We
4924 // can fix this by bitcasting the source vectors to the same type we intend
4925 // for the shuffle.
4926 for (auto &Src : Sources) {
4927 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
4928 if (SrcEltTy == SmallestEltTy)
4929 continue;
4930 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
4931 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
4932 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
4933 Src.WindowBase *= Src.WindowScale;
4934 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004935
Tim Northover7324e842014-07-24 15:39:55 +00004936 // Final sanity check before we try to actually produce a shuffle.
4937 DEBUG(
4938 for (auto Src : Sources)
4939 assert(Src.ShuffleVec.getValueType() == ShuffleVT);
4940 );
4941
4942 // The stars all align, our next step is to produce the mask for the shuffle.
4943 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
4944 int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004945 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004946 SDValue Entry = Op.getOperand(i);
Tim Northover7324e842014-07-24 15:39:55 +00004947 if (Entry.getOpcode() == ISD::UNDEF)
4948 continue;
Tim Northover3b0846e2014-05-24 12:50:23 +00004949
Tim Northover7324e842014-07-24 15:39:55 +00004950 auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
4951 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
4952
4953 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
4954 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
4955 // segment.
4956 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
4957 int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
4958 VT.getVectorElementType().getSizeInBits());
4959 int LanesDefined = BitsDefined / BitsPerShuffleLane;
4960
4961 // This source is expected to fill ResMultiplier lanes of the final shuffle,
4962 // starting at the appropriate offset.
4963 int *LaneMask = &Mask[i * ResMultiplier];
4964
4965 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
4966 ExtractBase += NumElts * (Src - Sources.begin());
4967 for (int j = 0; j < LanesDefined; ++j)
4968 LaneMask[j] = ExtractBase + j;
Tim Northover3b0846e2014-05-24 12:50:23 +00004969 }
4970
4971 // Final check before we try to produce nonsense...
Tim Northover7324e842014-07-24 15:39:55 +00004972 if (!isShuffleMaskLegal(Mask, ShuffleVT))
4973 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004974
Tim Northover7324e842014-07-24 15:39:55 +00004975 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
4976 for (unsigned i = 0; i < Sources.size(); ++i)
4977 ShuffleOps[i] = Sources[i].ShuffleVec;
4978
4979 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
4980 ShuffleOps[1], &Mask[0]);
4981 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
Tim Northover3b0846e2014-05-24 12:50:23 +00004982}
4983
4984// check if an EXT instruction can handle the shuffle mask when the
4985// vector sources of the shuffle are the same.
4986static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4987 unsigned NumElts = VT.getVectorNumElements();
4988
4989 // Assume that the first shuffle index is not UNDEF. Fail if it is.
4990 if (M[0] < 0)
4991 return false;
4992
4993 Imm = M[0];
4994
4995 // If this is a VEXT shuffle, the immediate value is the index of the first
4996 // element. The other shuffle indices must be the successive elements after
4997 // the first one.
4998 unsigned ExpectedElt = Imm;
4999 for (unsigned i = 1; i < NumElts; ++i) {
5000 // Increment the expected index. If it wraps around, just follow it
5001 // back to index zero and keep going.
5002 ++ExpectedElt;
5003 if (ExpectedElt == NumElts)
5004 ExpectedElt = 0;
5005
5006 if (M[i] < 0)
5007 continue; // ignore UNDEF indices
5008 if (ExpectedElt != static_cast<unsigned>(M[i]))
5009 return false;
5010 }
5011
5012 return true;
5013}
5014
5015// check if an EXT instruction can handle the shuffle mask when the
5016// vector sources of the shuffle are different.
5017static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
5018 unsigned &Imm) {
5019 // Look for the first non-undef element.
5020 const int *FirstRealElt = std::find_if(M.begin(), M.end(),
5021 [](int Elt) {return Elt >= 0;});
5022
5023 // Benefit form APInt to handle overflow when calculating expected element.
5024 unsigned NumElts = VT.getVectorNumElements();
5025 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
5026 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
5027 // The following shuffle indices must be the successive elements after the
5028 // first real element.
5029 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
5030 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
5031 if (FirstWrongElt != M.end())
5032 return false;
5033
5034 // The index of an EXT is the first element if it is not UNDEF.
5035 // Watch out for the beginning UNDEFs. The EXT index should be the expected
5036 // value of the first element. E.g.
5037 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
5038 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
5039 // ExpectedElt is the last mask index plus 1.
5040 Imm = ExpectedElt.getZExtValue();
5041
5042 // There are two difference cases requiring to reverse input vectors.
5043 // For example, for vector <4 x i32> we have the following cases,
5044 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
5045 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
5046 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
5047 // to reverse two input vectors.
5048 if (Imm < NumElts)
5049 ReverseEXT = true;
5050 else
5051 Imm -= NumElts;
5052
5053 return true;
5054}
5055
5056/// isREVMask - Check if a vector shuffle corresponds to a REV
5057/// instruction with the specified blocksize. (The order of the elements
5058/// within each block of the vector is reversed.)
5059static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
5060 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
5061 "Only possible block sizes for REV are: 16, 32, 64");
5062
5063 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5064 if (EltSz == 64)
5065 return false;
5066
5067 unsigned NumElts = VT.getVectorNumElements();
5068 unsigned BlockElts = M[0] + 1;
5069 // If the first shuffle index is UNDEF, be optimistic.
5070 if (M[0] < 0)
5071 BlockElts = BlockSize / EltSz;
5072
5073 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
5074 return false;
5075
5076 for (unsigned i = 0; i < NumElts; ++i) {
5077 if (M[i] < 0)
5078 continue; // ignore UNDEF indices
5079 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
5080 return false;
5081 }
5082
5083 return true;
5084}
5085
5086static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5087 unsigned NumElts = VT.getVectorNumElements();
5088 WhichResult = (M[0] == 0 ? 0 : 1);
5089 unsigned Idx = WhichResult * NumElts / 2;
5090 for (unsigned i = 0; i != NumElts; i += 2) {
5091 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
5092 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
5093 return false;
5094 Idx += 1;
5095 }
5096
5097 return true;
5098}
5099
5100static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5101 unsigned NumElts = VT.getVectorNumElements();
5102 WhichResult = (M[0] == 0 ? 0 : 1);
5103 for (unsigned i = 0; i != NumElts; ++i) {
5104 if (M[i] < 0)
5105 continue; // ignore UNDEF indices
5106 if ((unsigned)M[i] != 2 * i + WhichResult)
5107 return false;
5108 }
5109
5110 return true;
5111}
5112
5113static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5114 unsigned NumElts = VT.getVectorNumElements();
5115 WhichResult = (M[0] == 0 ? 0 : 1);
5116 for (unsigned i = 0; i < NumElts; i += 2) {
5117 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
5118 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
5119 return false;
5120 }
5121 return true;
5122}
5123
5124/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
5125/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5126/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
5127static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5128 unsigned NumElts = VT.getVectorNumElements();
5129 WhichResult = (M[0] == 0 ? 0 : 1);
5130 unsigned Idx = WhichResult * NumElts / 2;
5131 for (unsigned i = 0; i != NumElts; i += 2) {
5132 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
5133 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
5134 return false;
5135 Idx += 1;
5136 }
5137
5138 return true;
5139}
5140
5141/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
5142/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5143/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
5144static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5145 unsigned Half = VT.getVectorNumElements() / 2;
5146 WhichResult = (M[0] == 0 ? 0 : 1);
5147 for (unsigned j = 0; j != 2; ++j) {
5148 unsigned Idx = WhichResult;
5149 for (unsigned i = 0; i != Half; ++i) {
5150 int MIdx = M[i + j * Half];
5151 if (MIdx >= 0 && (unsigned)MIdx != Idx)
5152 return false;
5153 Idx += 2;
5154 }
5155 }
5156
5157 return true;
5158}
5159
5160/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
5161/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5162/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
5163static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5164 unsigned NumElts = VT.getVectorNumElements();
5165 WhichResult = (M[0] == 0 ? 0 : 1);
5166 for (unsigned i = 0; i < NumElts; i += 2) {
5167 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
5168 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
5169 return false;
5170 }
5171 return true;
5172}
5173
5174static bool isINSMask(ArrayRef<int> M, int NumInputElements,
5175 bool &DstIsLeft, int &Anomaly) {
5176 if (M.size() != static_cast<size_t>(NumInputElements))
5177 return false;
5178
5179 int NumLHSMatch = 0, NumRHSMatch = 0;
5180 int LastLHSMismatch = -1, LastRHSMismatch = -1;
5181
5182 for (int i = 0; i < NumInputElements; ++i) {
5183 if (M[i] == -1) {
5184 ++NumLHSMatch;
5185 ++NumRHSMatch;
5186 continue;
5187 }
5188
5189 if (M[i] == i)
5190 ++NumLHSMatch;
5191 else
5192 LastLHSMismatch = i;
5193
5194 if (M[i] == i + NumInputElements)
5195 ++NumRHSMatch;
5196 else
5197 LastRHSMismatch = i;
5198 }
5199
5200 if (NumLHSMatch == NumInputElements - 1) {
5201 DstIsLeft = true;
5202 Anomaly = LastLHSMismatch;
5203 return true;
5204 } else if (NumRHSMatch == NumInputElements - 1) {
5205 DstIsLeft = false;
5206 Anomaly = LastRHSMismatch;
5207 return true;
5208 }
5209
5210 return false;
5211}
5212
5213static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
5214 if (VT.getSizeInBits() != 128)
5215 return false;
5216
5217 unsigned NumElts = VT.getVectorNumElements();
5218
5219 for (int I = 0, E = NumElts / 2; I != E; I++) {
5220 if (Mask[I] != I)
5221 return false;
5222 }
5223
5224 int Offset = NumElts / 2;
5225 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
5226 if (Mask[I] != I + SplitLHS * Offset)
5227 return false;
5228 }
5229
5230 return true;
5231}
5232
5233static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
5234 SDLoc DL(Op);
5235 EVT VT = Op.getValueType();
5236 SDValue V0 = Op.getOperand(0);
5237 SDValue V1 = Op.getOperand(1);
5238 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
5239
5240 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
5241 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
5242 return SDValue();
5243
5244 bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
5245
5246 if (!isConcatMask(Mask, VT, SplitV0))
5247 return SDValue();
5248
5249 EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
5250 VT.getVectorNumElements() / 2);
5251 if (SplitV0) {
5252 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005253 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00005254 }
5255 if (V1.getValueType().getSizeInBits() == 128) {
5256 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005257 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00005258 }
5259 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
5260}
5261
5262/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5263/// the specified operations to build the shuffle.
5264static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5265 SDValue RHS, SelectionDAG &DAG,
5266 SDLoc dl) {
5267 unsigned OpNum = (PFEntry >> 26) & 0x0F;
5268 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
5269 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
5270
5271 enum {
5272 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5273 OP_VREV,
5274 OP_VDUP0,
5275 OP_VDUP1,
5276 OP_VDUP2,
5277 OP_VDUP3,
5278 OP_VEXT1,
5279 OP_VEXT2,
5280 OP_VEXT3,
5281 OP_VUZPL, // VUZP, left result
5282 OP_VUZPR, // VUZP, right result
5283 OP_VZIPL, // VZIP, left result
5284 OP_VZIPR, // VZIP, right result
5285 OP_VTRNL, // VTRN, left result
5286 OP_VTRNR // VTRN, right result
5287 };
5288
5289 if (OpNum == OP_COPY) {
5290 if (LHSID == (1 * 9 + 2) * 9 + 3)
5291 return LHS;
5292 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
5293 return RHS;
5294 }
5295
5296 SDValue OpLHS, OpRHS;
5297 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5298 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5299 EVT VT = OpLHS.getValueType();
5300
5301 switch (OpNum) {
5302 default:
5303 llvm_unreachable("Unknown shuffle opcode!");
5304 case OP_VREV:
5305 // VREV divides the vector in half and swaps within the half.
5306 if (VT.getVectorElementType() == MVT::i32 ||
5307 VT.getVectorElementType() == MVT::f32)
5308 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
5309 // vrev <4 x i16> -> REV32
Oliver Stannard89d15422014-08-27 16:16:04 +00005310 if (VT.getVectorElementType() == MVT::i16 ||
5311 VT.getVectorElementType() == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005312 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
5313 // vrev <4 x i8> -> REV16
5314 assert(VT.getVectorElementType() == MVT::i8);
5315 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
5316 case OP_VDUP0:
5317 case OP_VDUP1:
5318 case OP_VDUP2:
5319 case OP_VDUP3: {
5320 EVT EltTy = VT.getVectorElementType();
5321 unsigned Opcode;
5322 if (EltTy == MVT::i8)
5323 Opcode = AArch64ISD::DUPLANE8;
Ahmed Bougacha941420d2015-04-16 23:57:07 +00005324 else if (EltTy == MVT::i16 || EltTy == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005325 Opcode = AArch64ISD::DUPLANE16;
5326 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
5327 Opcode = AArch64ISD::DUPLANE32;
5328 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
5329 Opcode = AArch64ISD::DUPLANE64;
5330 else
5331 llvm_unreachable("Invalid vector element type?");
5332
5333 if (VT.getSizeInBits() == 64)
5334 OpLHS = WidenVector(OpLHS, DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005335 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005336 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
5337 }
5338 case OP_VEXT1:
5339 case OP_VEXT2:
5340 case OP_VEXT3: {
5341 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
5342 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005343 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005344 }
5345 case OP_VUZPL:
5346 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
5347 OpRHS);
5348 case OP_VUZPR:
5349 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
5350 OpRHS);
5351 case OP_VZIPL:
5352 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
5353 OpRHS);
5354 case OP_VZIPR:
5355 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
5356 OpRHS);
5357 case OP_VTRNL:
5358 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
5359 OpRHS);
5360 case OP_VTRNR:
5361 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
5362 OpRHS);
5363 }
5364}
5365
5366static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
5367 SelectionDAG &DAG) {
5368 // Check to see if we can use the TBL instruction.
5369 SDValue V1 = Op.getOperand(0);
5370 SDValue V2 = Op.getOperand(1);
5371 SDLoc DL(Op);
5372
5373 EVT EltVT = Op.getValueType().getVectorElementType();
5374 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
5375
5376 SmallVector<SDValue, 8> TBLMask;
5377 for (int Val : ShuffleMask) {
5378 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
5379 unsigned Offset = Byte + Val * BytesPerElt;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005380 TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005381 }
5382 }
5383
5384 MVT IndexVT = MVT::v8i8;
5385 unsigned IndexLen = 8;
5386 if (Op.getValueType().getSizeInBits() == 128) {
5387 IndexVT = MVT::v16i8;
5388 IndexLen = 16;
5389 }
5390
5391 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
5392 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
5393
5394 SDValue Shuffle;
5395 if (V2.getNode()->getOpcode() == ISD::UNDEF) {
5396 if (IndexLen == 8)
5397 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
5398 Shuffle = DAG.getNode(
5399 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005400 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
Tim Northover3b0846e2014-05-24 12:50:23 +00005401 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5402 makeArrayRef(TBLMask.data(), IndexLen)));
5403 } else {
5404 if (IndexLen == 8) {
5405 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
5406 Shuffle = DAG.getNode(
5407 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005408 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
Tim Northover3b0846e2014-05-24 12:50:23 +00005409 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5410 makeArrayRef(TBLMask.data(), IndexLen)));
5411 } else {
5412 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
5413 // cannot currently represent the register constraints on the input
5414 // table registers.
5415 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
5416 // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5417 // &TBLMask[0], IndexLen));
5418 Shuffle = DAG.getNode(
5419 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005420 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32),
5421 V1Cst, V2Cst,
Tim Northover3b0846e2014-05-24 12:50:23 +00005422 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5423 makeArrayRef(TBLMask.data(), IndexLen)));
5424 }
5425 }
5426 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
5427}
5428
5429static unsigned getDUPLANEOp(EVT EltType) {
5430 if (EltType == MVT::i8)
5431 return AArch64ISD::DUPLANE8;
Oliver Stannard89d15422014-08-27 16:16:04 +00005432 if (EltType == MVT::i16 || EltType == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005433 return AArch64ISD::DUPLANE16;
5434 if (EltType == MVT::i32 || EltType == MVT::f32)
5435 return AArch64ISD::DUPLANE32;
5436 if (EltType == MVT::i64 || EltType == MVT::f64)
5437 return AArch64ISD::DUPLANE64;
5438
5439 llvm_unreachable("Invalid vector element type?");
5440}
5441
5442SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5443 SelectionDAG &DAG) const {
5444 SDLoc dl(Op);
5445 EVT VT = Op.getValueType();
5446
5447 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5448
5449 // Convert shuffles that are directly supported on NEON to target-specific
5450 // DAG nodes, instead of keeping them as shuffles and matching them again
5451 // during code selection. This is more efficient and avoids the possibility
5452 // of inconsistencies between legalization and selection.
5453 ArrayRef<int> ShuffleMask = SVN->getMask();
5454
5455 SDValue V1 = Op.getOperand(0);
5456 SDValue V2 = Op.getOperand(1);
5457
5458 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
5459 V1.getValueType().getSimpleVT())) {
5460 int Lane = SVN->getSplatIndex();
5461 // If this is undef splat, generate it via "just" vdup, if possible.
5462 if (Lane == -1)
5463 Lane = 0;
5464
5465 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
5466 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
5467 V1.getOperand(0));
5468 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
5469 // constant. If so, we can just reference the lane's definition directly.
5470 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
5471 !isa<ConstantSDNode>(V1.getOperand(Lane)))
5472 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
5473
5474 // Otherwise, duplicate from the lane of the input vector.
5475 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
5476
5477 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
5478 // to make a vector of the same size as this SHUFFLE. We can ignore the
5479 // extract entirely, and canonicalise the concat using WidenVector.
5480 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
5481 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
5482 V1 = V1.getOperand(0);
5483 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
5484 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
5485 Lane -= Idx * VT.getVectorNumElements() / 2;
5486 V1 = WidenVector(V1.getOperand(Idx), DAG);
5487 } else if (VT.getSizeInBits() == 64)
5488 V1 = WidenVector(V1, DAG);
5489
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005490 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00005491 }
5492
5493 if (isREVMask(ShuffleMask, VT, 64))
5494 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
5495 if (isREVMask(ShuffleMask, VT, 32))
5496 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
5497 if (isREVMask(ShuffleMask, VT, 16))
5498 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
5499
5500 bool ReverseEXT = false;
5501 unsigned Imm;
5502 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
5503 if (ReverseEXT)
5504 std::swap(V1, V2);
5505 Imm *= getExtFactor(V1);
5506 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005507 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005508 } else if (V2->getOpcode() == ISD::UNDEF &&
5509 isSingletonEXTMask(ShuffleMask, VT, Imm)) {
5510 Imm *= getExtFactor(V1);
5511 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005512 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005513 }
5514
5515 unsigned WhichResult;
5516 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
5517 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5518 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5519 }
5520 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
5521 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5522 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5523 }
5524 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
5525 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5526 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5527 }
5528
5529 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5530 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5531 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5532 }
5533 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5534 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5535 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5536 }
5537 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5538 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5539 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5540 }
5541
5542 SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
5543 if (Concat.getNode())
5544 return Concat;
5545
5546 bool DstIsLeft;
5547 int Anomaly;
5548 int NumInputElements = V1.getValueType().getVectorNumElements();
5549 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
5550 SDValue DstVec = DstIsLeft ? V1 : V2;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005551 SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005552
5553 SDValue SrcVec = V1;
5554 int SrcLane = ShuffleMask[Anomaly];
5555 if (SrcLane >= NumInputElements) {
5556 SrcVec = V2;
5557 SrcLane -= VT.getVectorNumElements();
5558 }
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005559 SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005560
5561 EVT ScalarVT = VT.getVectorElementType();
Oliver Stannard89d15422014-08-27 16:16:04 +00005562
5563 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00005564 ScalarVT = MVT::i32;
5565
5566 return DAG.getNode(
5567 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5568 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
5569 DstLaneV);
5570 }
5571
5572 // If the shuffle is not directly supported and it has 4 elements, use
5573 // the PerfectShuffle-generated table to synthesize it from other shuffles.
5574 unsigned NumElts = VT.getVectorNumElements();
5575 if (NumElts == 4) {
5576 unsigned PFIndexes[4];
5577 for (unsigned i = 0; i != 4; ++i) {
5578 if (ShuffleMask[i] < 0)
5579 PFIndexes[i] = 8;
5580 else
5581 PFIndexes[i] = ShuffleMask[i];
5582 }
5583
5584 // Compute the index in the perfect shuffle table.
5585 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5586 PFIndexes[2] * 9 + PFIndexes[3];
5587 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5588 unsigned Cost = (PFEntry >> 30);
5589
5590 if (Cost <= 4)
5591 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5592 }
5593
5594 return GenerateTBL(Op, ShuffleMask, DAG);
5595}
5596
5597static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
5598 APInt &UndefBits) {
5599 EVT VT = BVN->getValueType(0);
5600 APInt SplatBits, SplatUndef;
5601 unsigned SplatBitSize;
5602 bool HasAnyUndefs;
5603 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5604 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
5605
5606 for (unsigned i = 0; i < NumSplats; ++i) {
5607 CnstBits <<= SplatBitSize;
5608 UndefBits <<= SplatBitSize;
5609 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
5610 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
5611 }
5612
5613 return true;
5614 }
5615
5616 return false;
5617}
5618
5619SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
5620 SelectionDAG &DAG) const {
5621 BuildVectorSDNode *BVN =
5622 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5623 SDValue LHS = Op.getOperand(0);
5624 SDLoc dl(Op);
5625 EVT VT = Op.getValueType();
5626
5627 if (!BVN)
5628 return Op;
5629
5630 APInt CnstBits(VT.getSizeInBits(), 0);
5631 APInt UndefBits(VT.getSizeInBits(), 0);
5632 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5633 // We only have BIC vector immediate instruction, which is and-not.
5634 CnstBits = ~CnstBits;
5635
5636 // We make use of a little bit of goto ickiness in order to avoid having to
5637 // duplicate the immediate matching logic for the undef toggled case.
5638 bool SecondTry = false;
5639 AttemptModImm:
5640
5641 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5642 CnstBits = CnstBits.zextOrTrunc(64);
5643 uint64_t CnstVal = CnstBits.getZExtValue();
5644
5645 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5646 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5647 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5648 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005649 DAG.getConstant(CnstVal, dl, MVT::i32),
5650 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005651 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005652 }
5653
5654 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5655 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5656 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5657 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005658 DAG.getConstant(CnstVal, dl, MVT::i32),
5659 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005660 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005661 }
5662
5663 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5664 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5665 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5666 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005667 DAG.getConstant(CnstVal, dl, MVT::i32),
5668 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005669 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005670 }
5671
5672 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5673 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5674 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5675 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005676 DAG.getConstant(CnstVal, dl, MVT::i32),
5677 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005678 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005679 }
5680
5681 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5682 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5683 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5684 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005685 DAG.getConstant(CnstVal, dl, MVT::i32),
5686 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005687 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005688 }
5689
5690 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5691 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5692 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5693 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005694 DAG.getConstant(CnstVal, dl, MVT::i32),
5695 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005696 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005697 }
5698 }
5699
5700 if (SecondTry)
5701 goto FailedModImm;
5702 SecondTry = true;
5703 CnstBits = ~UndefBits;
5704 goto AttemptModImm;
5705 }
5706
5707// We can always fall back to a non-immediate AND.
5708FailedModImm:
5709 return Op;
5710}
5711
5712// Specialized code to quickly find if PotentialBVec is a BuildVector that
5713// consists of only the same constant int value, returned in reference arg
5714// ConstVal
5715static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
5716 uint64_t &ConstVal) {
5717 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
5718 if (!Bvec)
5719 return false;
5720 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
5721 if (!FirstElt)
5722 return false;
5723 EVT VT = Bvec->getValueType(0);
5724 unsigned NumElts = VT.getVectorNumElements();
5725 for (unsigned i = 1; i < NumElts; ++i)
5726 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
5727 return false;
5728 ConstVal = FirstElt->getZExtValue();
5729 return true;
5730}
5731
5732static unsigned getIntrinsicID(const SDNode *N) {
5733 unsigned Opcode = N->getOpcode();
5734 switch (Opcode) {
5735 default:
5736 return Intrinsic::not_intrinsic;
5737 case ISD::INTRINSIC_WO_CHAIN: {
5738 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5739 if (IID < Intrinsic::num_intrinsics)
5740 return IID;
5741 return Intrinsic::not_intrinsic;
5742 }
5743 }
5744}
5745
5746// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5747// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5748// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5749// Also, logical shift right -> sri, with the same structure.
5750static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5751 EVT VT = N->getValueType(0);
5752
5753 if (!VT.isVector())
5754 return SDValue();
5755
5756 SDLoc DL(N);
5757
5758 // Is the first op an AND?
5759 const SDValue And = N->getOperand(0);
5760 if (And.getOpcode() != ISD::AND)
5761 return SDValue();
5762
5763 // Is the second op an shl or lshr?
5764 SDValue Shift = N->getOperand(1);
5765 // This will have been turned into: AArch64ISD::VSHL vector, #shift
5766 // or AArch64ISD::VLSHR vector, #shift
5767 unsigned ShiftOpc = Shift.getOpcode();
5768 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5769 return SDValue();
5770 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5771
5772 // Is the shift amount constant?
5773 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5774 if (!C2node)
5775 return SDValue();
5776
5777 // Is the and mask vector all constant?
5778 uint64_t C1;
5779 if (!isAllConstantBuildVector(And.getOperand(1), C1))
5780 return SDValue();
5781
5782 // Is C1 == ~C2, taking into account how much one can shift elements of a
5783 // particular size?
5784 uint64_t C2 = C2node->getZExtValue();
5785 unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5786 if (C2 > ElemSizeInBits)
5787 return SDValue();
5788 unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5789 if ((C1 & ElemMask) != (~C2 & ElemMask))
5790 return SDValue();
5791
5792 SDValue X = And.getOperand(0);
5793 SDValue Y = Shift.getOperand(0);
5794
5795 unsigned Intrin =
5796 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5797 SDValue ResultSLI =
5798 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005799 DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
5800 Shift.getOperand(1));
Tim Northover3b0846e2014-05-24 12:50:23 +00005801
5802 DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5803 DEBUG(N->dump(&DAG));
5804 DEBUG(dbgs() << "into: \n");
5805 DEBUG(ResultSLI->dump(&DAG));
5806
5807 ++NumShiftInserts;
5808 return ResultSLI;
5809}
5810
5811SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5812 SelectionDAG &DAG) const {
5813 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5814 if (EnableAArch64SlrGeneration) {
5815 SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
5816 if (Res.getNode())
5817 return Res;
5818 }
5819
5820 BuildVectorSDNode *BVN =
5821 dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5822 SDValue LHS = Op.getOperand(1);
5823 SDLoc dl(Op);
5824 EVT VT = Op.getValueType();
5825
5826 // OR commutes, so try swapping the operands.
5827 if (!BVN) {
5828 LHS = Op.getOperand(0);
5829 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5830 }
5831 if (!BVN)
5832 return Op;
5833
5834 APInt CnstBits(VT.getSizeInBits(), 0);
5835 APInt UndefBits(VT.getSizeInBits(), 0);
5836 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5837 // We make use of a little bit of goto ickiness in order to avoid having to
5838 // duplicate the immediate matching logic for the undef toggled case.
5839 bool SecondTry = false;
5840 AttemptModImm:
5841
5842 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5843 CnstBits = CnstBits.zextOrTrunc(64);
5844 uint64_t CnstVal = CnstBits.getZExtValue();
5845
5846 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5847 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5848 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5849 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005850 DAG.getConstant(CnstVal, dl, MVT::i32),
5851 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005852 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005853 }
5854
5855 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5856 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5857 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5858 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005859 DAG.getConstant(CnstVal, dl, MVT::i32),
5860 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005861 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005862 }
5863
5864 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5865 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5866 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5867 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005868 DAG.getConstant(CnstVal, dl, MVT::i32),
5869 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005870 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005871 }
5872
5873 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5874 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5875 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5876 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005877 DAG.getConstant(CnstVal, dl, MVT::i32),
5878 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005879 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005880 }
5881
5882 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5883 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5884 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5885 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005886 DAG.getConstant(CnstVal, dl, MVT::i32),
5887 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005888 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005889 }
5890
5891 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5892 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5893 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5894 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005895 DAG.getConstant(CnstVal, dl, MVT::i32),
5896 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005897 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005898 }
5899 }
5900
5901 if (SecondTry)
5902 goto FailedModImm;
5903 SecondTry = true;
5904 CnstBits = UndefBits;
5905 goto AttemptModImm;
5906 }
5907
5908// We can always fall back to a non-immediate OR.
5909FailedModImm:
5910 return Op;
5911}
5912
Kevin Qin4473c192014-07-07 02:45:40 +00005913// Normalize the operands of BUILD_VECTOR. The value of constant operands will
5914// be truncated to fit element width.
5915static SDValue NormalizeBuildVector(SDValue Op,
5916 SelectionDAG &DAG) {
5917 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00005918 SDLoc dl(Op);
5919 EVT VT = Op.getValueType();
Kevin Qin4473c192014-07-07 02:45:40 +00005920 EVT EltTy= VT.getVectorElementType();
5921
5922 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
5923 return Op;
5924
5925 SmallVector<SDValue, 16> Ops;
Pete Cooper7be8f8f2015-08-03 19:04:32 +00005926 for (SDValue Lane : Op->ops()) {
5927 if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
Kevin Qin4473c192014-07-07 02:45:40 +00005928 APInt LowBits(EltTy.getSizeInBits(),
Pete Cooper7be8f8f2015-08-03 19:04:32 +00005929 CstLane->getZExtValue());
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005930 Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
Kevin Qin4473c192014-07-07 02:45:40 +00005931 }
5932 Ops.push_back(Lane);
5933 }
5934 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5935}
5936
5937SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
5938 SelectionDAG &DAG) const {
5939 SDLoc dl(Op);
5940 EVT VT = Op.getValueType();
5941 Op = NormalizeBuildVector(Op, DAG);
5942 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
Tim Northover3b0846e2014-05-24 12:50:23 +00005943
5944 APInt CnstBits(VT.getSizeInBits(), 0);
5945 APInt UndefBits(VT.getSizeInBits(), 0);
5946 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5947 // We make use of a little bit of goto ickiness in order to avoid having to
5948 // duplicate the immediate matching logic for the undef toggled case.
5949 bool SecondTry = false;
5950 AttemptModImm:
5951
5952 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5953 CnstBits = CnstBits.zextOrTrunc(64);
5954 uint64_t CnstVal = CnstBits.getZExtValue();
5955
5956 // Certain magic vector constants (used to express things like NOT
5957 // and NEG) are passed through unmodified. This allows codegen patterns
5958 // for these operations to match. Special-purpose patterns will lower
5959 // these immediates to MOVIs if it proves necessary.
5960 if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
5961 return Op;
5962
5963 // The many faces of MOVI...
5964 if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
5965 CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
5966 if (VT.getSizeInBits() == 128) {
5967 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005968 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005969 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005970 }
5971
5972 // Support the V64 version via subregister insertion.
5973 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005974 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005975 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005976 }
5977
5978 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5979 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5980 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5981 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005982 DAG.getConstant(CnstVal, dl, MVT::i32),
5983 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005984 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005985 }
5986
5987 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5988 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5989 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5990 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005991 DAG.getConstant(CnstVal, dl, MVT::i32),
5992 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005993 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005994 }
5995
5996 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5997 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5998 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5999 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006000 DAG.getConstant(CnstVal, dl, MVT::i32),
6001 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006002 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006003 }
6004
6005 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
6006 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
6007 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6008 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006009 DAG.getConstant(CnstVal, dl, MVT::i32),
6010 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006011 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006012 }
6013
6014 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
6015 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
6016 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6017 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006018 DAG.getConstant(CnstVal, dl, MVT::i32),
6019 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006020 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006021 }
6022
6023 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
6024 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6025 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6026 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006027 DAG.getConstant(CnstVal, dl, MVT::i32),
6028 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006029 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006030 }
6031
6032 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
6033 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
6034 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6035 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006036 DAG.getConstant(CnstVal, dl, MVT::i32),
6037 DAG.getConstant(264, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006038 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006039 }
6040
6041 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
6042 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
6043 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6044 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006045 DAG.getConstant(CnstVal, dl, MVT::i32),
6046 DAG.getConstant(272, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006047 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006048 }
6049
6050 if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
6051 CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
6052 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
6053 SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006054 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006055 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006056 }
6057
6058 // The few faces of FMOV...
6059 if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
6060 CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
6061 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
6062 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006063 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006064 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006065 }
6066
6067 if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
6068 VT.getSizeInBits() == 128) {
6069 CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
6070 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006071 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006072 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006073 }
6074
6075 // The many faces of MVNI...
6076 CnstVal = ~CnstVal;
6077 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
6078 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
6079 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6080 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006081 DAG.getConstant(CnstVal, dl, MVT::i32),
6082 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006083 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006084 }
6085
6086 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
6087 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
6088 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6089 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006090 DAG.getConstant(CnstVal, dl, MVT::i32),
6091 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006092 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006093 }
6094
6095 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
6096 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
6097 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6098 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006099 DAG.getConstant(CnstVal, dl, MVT::i32),
6100 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006101 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006102 }
6103
6104 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
6105 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
6106 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6107 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006108 DAG.getConstant(CnstVal, dl, MVT::i32),
6109 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006110 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006111 }
6112
6113 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
6114 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
6115 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6116 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006117 DAG.getConstant(CnstVal, dl, MVT::i32),
6118 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006119 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006120 }
6121
6122 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
6123 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6124 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6125 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006126 DAG.getConstant(CnstVal, dl, MVT::i32),
6127 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006128 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006129 }
6130
6131 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
6132 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
6133 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6134 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006135 DAG.getConstant(CnstVal, dl, MVT::i32),
6136 DAG.getConstant(264, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006137 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006138 }
6139
6140 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
6141 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
6142 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6143 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006144 DAG.getConstant(CnstVal, dl, MVT::i32),
6145 DAG.getConstant(272, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006146 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006147 }
6148 }
6149
6150 if (SecondTry)
6151 goto FailedModImm;
6152 SecondTry = true;
6153 CnstBits = UndefBits;
6154 goto AttemptModImm;
6155 }
6156FailedModImm:
6157
6158 // Scan through the operands to find some interesting properties we can
6159 // exploit:
6160 // 1) If only one value is used, we can use a DUP, or
6161 // 2) if only the low element is not undef, we can just insert that, or
6162 // 3) if only one constant value is used (w/ some non-constant lanes),
6163 // we can splat the constant value into the whole vector then fill
6164 // in the non-constant lanes.
6165 // 4) FIXME: If different constant values are used, but we can intelligently
6166 // select the values we'll be overwriting for the non-constant
6167 // lanes such that we can directly materialize the vector
6168 // some other way (MOVI, e.g.), we can be sneaky.
6169 unsigned NumElts = VT.getVectorNumElements();
6170 bool isOnlyLowElement = true;
6171 bool usesOnlyOneValue = true;
6172 bool usesOnlyOneConstantValue = true;
6173 bool isConstant = true;
6174 unsigned NumConstantLanes = 0;
6175 SDValue Value;
6176 SDValue ConstantValue;
6177 for (unsigned i = 0; i < NumElts; ++i) {
6178 SDValue V = Op.getOperand(i);
6179 if (V.getOpcode() == ISD::UNDEF)
6180 continue;
6181 if (i > 0)
6182 isOnlyLowElement = false;
6183 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
6184 isConstant = false;
6185
6186 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
6187 ++NumConstantLanes;
6188 if (!ConstantValue.getNode())
6189 ConstantValue = V;
6190 else if (ConstantValue != V)
6191 usesOnlyOneConstantValue = false;
6192 }
6193
6194 if (!Value.getNode())
6195 Value = V;
6196 else if (V != Value)
6197 usesOnlyOneValue = false;
6198 }
6199
6200 if (!Value.getNode())
6201 return DAG.getUNDEF(VT);
6202
6203 if (isOnlyLowElement)
6204 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
6205
6206 // Use DUP for non-constant splats. For f32 constant splats, reduce to
6207 // i32 and try again.
6208 if (usesOnlyOneValue) {
6209 if (!isConstant) {
6210 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6211 Value.getValueType() != VT)
6212 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
6213
6214 // This is actually a DUPLANExx operation, which keeps everything vectory.
6215
6216 // DUPLANE works on 128-bit vectors, widen it if necessary.
6217 SDValue Lane = Value.getOperand(1);
6218 Value = Value.getOperand(0);
6219 if (Value.getValueType().getSizeInBits() == 64)
6220 Value = WidenVector(Value, DAG);
6221
6222 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
6223 return DAG.getNode(Opcode, dl, VT, Value, Lane);
6224 }
6225
6226 if (VT.getVectorElementType().isFloatingPoint()) {
6227 SmallVector<SDValue, 8> Ops;
Pirama Arumuga Nainar12aeefc2015-03-17 23:10:29 +00006228 EVT EltTy = VT.getVectorElementType();
6229 assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
6230 "Unsupported floating-point vector type");
6231 MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00006232 for (unsigned i = 0; i < NumElts; ++i)
6233 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
6234 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
6235 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
6236 Val = LowerBUILD_VECTOR(Val, DAG);
6237 if (Val.getNode())
6238 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6239 }
6240 }
6241
6242 // If there was only one constant value used and for more than one lane,
6243 // start by splatting that value, then replace the non-constant lanes. This
6244 // is better than the default, which will perform a separate initialization
6245 // for each lane.
6246 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
6247 SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
6248 // Now insert the non-constant lanes.
6249 for (unsigned i = 0; i < NumElts; ++i) {
6250 SDValue V = Op.getOperand(i);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006251 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00006252 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
6253 // Note that type legalization likely mucked about with the VT of the
6254 // source operand, so we may have to convert it here before inserting.
6255 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
6256 }
6257 }
6258 return Val;
6259 }
6260
6261 // If all elements are constants and the case above didn't get hit, fall back
6262 // to the default expansion, which will generate a load from the constant
6263 // pool.
6264 if (isConstant)
6265 return SDValue();
6266
6267 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
6268 if (NumElts >= 4) {
Ahmed Bougacha239d6352015-08-04 00:48:02 +00006269 if (SDValue shuffle = ReconstructShuffle(Op, DAG))
Tim Northover3b0846e2014-05-24 12:50:23 +00006270 return shuffle;
6271 }
6272
6273 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6274 // know the default expansion would otherwise fall back on something even
6275 // worse. For a vector with one or two non-undef values, that's
6276 // scalar_to_vector for the elements followed by a shuffle (provided the
6277 // shuffle is valid for the target) and materialization element by element
6278 // on the stack followed by a load for everything else.
6279 if (!isConstant && !usesOnlyOneValue) {
6280 SDValue Vec = DAG.getUNDEF(VT);
6281 SDValue Op0 = Op.getOperand(0);
6282 unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
6283 unsigned i = 0;
6284 // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
6285 // a) Avoid a RMW dependency on the full vector register, and
6286 // b) Allow the register coalescer to fold away the copy if the
6287 // value is already in an S or D register.
Matthias Braun0acbd082015-08-31 18:25:15 +00006288 // Do not do this for UNDEF/LOAD nodes because we have better patterns
6289 // for those avoiding the SCALAR_TO_VECTOR/BUILD_VECTOR.
6290 if (Op0.getOpcode() != ISD::UNDEF && Op0.getOpcode() != ISD::LOAD &&
6291 (ElemSize == 32 || ElemSize == 64)) {
Tim Northover3b0846e2014-05-24 12:50:23 +00006292 unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
6293 MachineSDNode *N =
6294 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006295 DAG.getTargetConstant(SubIdx, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00006296 Vec = SDValue(N, 0);
6297 ++i;
6298 }
6299 for (; i < NumElts; ++i) {
6300 SDValue V = Op.getOperand(i);
6301 if (V.getOpcode() == ISD::UNDEF)
6302 continue;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006303 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00006304 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6305 }
6306 return Vec;
6307 }
6308
6309 // Just use the default expansion. We failed to find a better alternative.
6310 return SDValue();
6311}
6312
6313SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
6314 SelectionDAG &DAG) const {
6315 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
6316
Tim Northovere4b8e132014-07-15 10:00:26 +00006317 // Check for non-constant or out of range lane.
6318 EVT VT = Op.getOperand(0).getValueType();
6319 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
6320 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006321 return SDValue();
6322
Tim Northover3b0846e2014-05-24 12:50:23 +00006323
6324 // Insertion/extraction are legal for V128 types.
6325 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006326 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6327 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006328 return Op;
6329
6330 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006331 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006332 return SDValue();
6333
6334 // For V64 types, we perform insertion by expanding the value
6335 // to a V128 type and perform the insertion on that.
6336 SDLoc DL(Op);
6337 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6338 EVT WideTy = WideVec.getValueType();
6339
6340 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
6341 Op.getOperand(1), Op.getOperand(2));
6342 // Re-narrow the resultant vector.
6343 return NarrowVector(Node, DAG);
6344}
6345
6346SDValue
6347AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6348 SelectionDAG &DAG) const {
6349 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
6350
Tim Northovere4b8e132014-07-15 10:00:26 +00006351 // Check for non-constant or out of range lane.
6352 EVT VT = Op.getOperand(0).getValueType();
6353 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6354 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006355 return SDValue();
6356
Tim Northover3b0846e2014-05-24 12:50:23 +00006357
6358 // Insertion/extraction are legal for V128 types.
6359 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006360 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6361 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006362 return Op;
6363
6364 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006365 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006366 return SDValue();
6367
6368 // For V64 types, we perform extraction by expanding the value
6369 // to a V128 type and perform the extraction on that.
6370 SDLoc DL(Op);
6371 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6372 EVT WideTy = WideVec.getValueType();
6373
6374 EVT ExtrTy = WideTy.getVectorElementType();
6375 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
6376 ExtrTy = MVT::i32;
6377
6378 // For extractions, we just return the result directly.
6379 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
6380 Op.getOperand(1));
6381}
6382
6383SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
6384 SelectionDAG &DAG) const {
6385 EVT VT = Op.getOperand(0).getValueType();
6386 SDLoc dl(Op);
6387 // Just in case...
6388 if (!VT.isVector())
6389 return SDValue();
6390
6391 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6392 if (!Cst)
6393 return SDValue();
6394 unsigned Val = Cst->getZExtValue();
6395
6396 unsigned Size = Op.getValueType().getSizeInBits();
Charlie Turner7b7b06f2015-11-09 12:45:11 +00006397
6398 // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
6399 if (Val == 0)
6400 return Op;
6401
Tim Northover3b0846e2014-05-24 12:50:23 +00006402 // If this is extracting the upper 64-bits of a 128-bit vector, we match
6403 // that directly.
6404 if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
6405 return Op;
6406
6407 return SDValue();
6408}
6409
6410bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6411 EVT VT) const {
6412 if (VT.getVectorNumElements() == 4 &&
6413 (VT.is128BitVector() || VT.is64BitVector())) {
6414 unsigned PFIndexes[4];
6415 for (unsigned i = 0; i != 4; ++i) {
6416 if (M[i] < 0)
6417 PFIndexes[i] = 8;
6418 else
6419 PFIndexes[i] = M[i];
6420 }
6421
6422 // Compute the index in the perfect shuffle table.
6423 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6424 PFIndexes[2] * 9 + PFIndexes[3];
6425 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6426 unsigned Cost = (PFEntry >> 30);
6427
6428 if (Cost <= 4)
6429 return true;
6430 }
6431
6432 bool DummyBool;
6433 int DummyInt;
6434 unsigned DummyUnsigned;
6435
6436 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
6437 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
6438 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
6439 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
6440 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
6441 isZIPMask(M, VT, DummyUnsigned) ||
6442 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
6443 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
6444 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
6445 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
6446 isConcatMask(M, VT, VT.getSizeInBits() == 128));
6447}
6448
6449/// getVShiftImm - Check if this is a valid build_vector for the immediate
6450/// operand of a vector shift operation, where all the elements of the
6451/// build_vector must have the same constant integer value.
6452static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6453 // Ignore bit_converts.
6454 while (Op.getOpcode() == ISD::BITCAST)
6455 Op = Op.getOperand(0);
6456 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6457 APInt SplatBits, SplatUndef;
6458 unsigned SplatBitSize;
6459 bool HasAnyUndefs;
6460 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6461 HasAnyUndefs, ElementBits) ||
6462 SplatBitSize > ElementBits)
6463 return false;
6464 Cnt = SplatBits.getSExtValue();
6465 return true;
6466}
6467
6468/// isVShiftLImm - Check if this is a valid build_vector for the immediate
6469/// operand of a vector shift left operation. That value must be in the range:
6470/// 0 <= Value < ElementBits for a left shift; or
6471/// 0 <= Value <= ElementBits for a long left shift.
6472static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6473 assert(VT.isVector() && "vector shift count is not a vector type");
Luke Cheesemanb5c627a2015-07-24 09:31:48 +00006474 int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00006475 if (!getVShiftImm(Op, ElementBits, Cnt))
6476 return false;
6477 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6478}
6479
6480/// isVShiftRImm - Check if this is a valid build_vector for the immediate
Luke Cheesemanb5c627a2015-07-24 09:31:48 +00006481/// operand of a vector shift right operation. The value must be in the range:
6482/// 1 <= Value <= ElementBits for a right shift; or
6483static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
Tim Northover3b0846e2014-05-24 12:50:23 +00006484 assert(VT.isVector() && "vector shift count is not a vector type");
Luke Cheesemanb5c627a2015-07-24 09:31:48 +00006485 int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00006486 if (!getVShiftImm(Op, ElementBits, Cnt))
6487 return false;
Tim Northover3b0846e2014-05-24 12:50:23 +00006488 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6489}
6490
6491SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
6492 SelectionDAG &DAG) const {
6493 EVT VT = Op.getValueType();
6494 SDLoc DL(Op);
6495 int64_t Cnt;
6496
6497 if (!Op.getOperand(1).getValueType().isVector())
6498 return Op;
6499 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6500
6501 switch (Op.getOpcode()) {
6502 default:
6503 llvm_unreachable("unexpected shift opcode");
6504
6505 case ISD::SHL:
6506 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006507 return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
6508 DAG.getConstant(Cnt, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00006509 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006510 DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
6511 MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00006512 Op.getOperand(0), Op.getOperand(1));
6513 case ISD::SRA:
6514 case ISD::SRL:
6515 // Right shift immediate
Luke Cheesemanb5c627a2015-07-24 09:31:48 +00006516 if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
Tim Northover3b0846e2014-05-24 12:50:23 +00006517 unsigned Opc =
6518 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006519 return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
6520 DAG.getConstant(Cnt, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00006521 }
6522
6523 // Right shift register. Note, there is not a shift right register
6524 // instruction, but the shift left register instruction takes a signed
6525 // value, where negative numbers specify a right shift.
6526 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
6527 : Intrinsic::aarch64_neon_ushl;
6528 // negate the shift amount
6529 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
6530 SDValue NegShiftLeft =
6531 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006532 DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
6533 NegShift);
Tim Northover3b0846e2014-05-24 12:50:23 +00006534 return NegShiftLeft;
6535 }
6536
6537 return SDValue();
6538}
6539
6540static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
6541 AArch64CC::CondCode CC, bool NoNans, EVT VT,
6542 SDLoc dl, SelectionDAG &DAG) {
6543 EVT SrcVT = LHS.getValueType();
Tim Northover45aa89c2015-02-08 00:50:47 +00006544 assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
6545 "function only supposed to emit natural comparisons");
Tim Northover3b0846e2014-05-24 12:50:23 +00006546
6547 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
6548 APInt CnstBits(VT.getSizeInBits(), 0);
6549 APInt UndefBits(VT.getSizeInBits(), 0);
6550 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
6551 bool IsZero = IsCnst && (CnstBits == 0);
6552
6553 if (SrcVT.getVectorElementType().isFloatingPoint()) {
6554 switch (CC) {
6555 default:
6556 return SDValue();
6557 case AArch64CC::NE: {
6558 SDValue Fcmeq;
6559 if (IsZero)
6560 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6561 else
6562 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6563 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
6564 }
6565 case AArch64CC::EQ:
6566 if (IsZero)
6567 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6568 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6569 case AArch64CC::GE:
6570 if (IsZero)
6571 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
6572 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
6573 case AArch64CC::GT:
6574 if (IsZero)
6575 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
6576 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
6577 case AArch64CC::LS:
6578 if (IsZero)
6579 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
6580 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
6581 case AArch64CC::LT:
6582 if (!NoNans)
6583 return SDValue();
6584 // If we ignore NaNs then we can use to the MI implementation.
6585 // Fallthrough.
6586 case AArch64CC::MI:
6587 if (IsZero)
6588 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
6589 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
6590 }
6591 }
6592
6593 switch (CC) {
6594 default:
6595 return SDValue();
6596 case AArch64CC::NE: {
6597 SDValue Cmeq;
6598 if (IsZero)
6599 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6600 else
6601 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6602 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
6603 }
6604 case AArch64CC::EQ:
6605 if (IsZero)
6606 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6607 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6608 case AArch64CC::GE:
6609 if (IsZero)
6610 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
6611 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
6612 case AArch64CC::GT:
6613 if (IsZero)
6614 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
6615 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
6616 case AArch64CC::LE:
6617 if (IsZero)
6618 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
6619 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
6620 case AArch64CC::LS:
6621 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
6622 case AArch64CC::LO:
6623 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
6624 case AArch64CC::LT:
6625 if (IsZero)
6626 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
6627 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
6628 case AArch64CC::HI:
6629 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
6630 case AArch64CC::HS:
6631 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
6632 }
6633}
6634
6635SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
6636 SelectionDAG &DAG) const {
6637 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6638 SDValue LHS = Op.getOperand(0);
6639 SDValue RHS = Op.getOperand(1);
Tim Northover45aa89c2015-02-08 00:50:47 +00006640 EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
Tim Northover3b0846e2014-05-24 12:50:23 +00006641 SDLoc dl(Op);
6642
6643 if (LHS.getValueType().getVectorElementType().isInteger()) {
6644 assert(LHS.getValueType() == RHS.getValueType());
6645 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
Tim Northover45aa89c2015-02-08 00:50:47 +00006646 SDValue Cmp =
6647 EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
6648 return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00006649 }
6650
6651 assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
6652 LHS.getValueType().getVectorElementType() == MVT::f64);
6653
6654 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
6655 // clean. Some of them require two branches to implement.
6656 AArch64CC::CondCode CC1, CC2;
6657 bool ShouldInvert;
6658 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
6659
6660 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
6661 SDValue Cmp =
Tim Northover45aa89c2015-02-08 00:50:47 +00006662 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00006663 if (!Cmp.getNode())
6664 return SDValue();
6665
6666 if (CC2 != AArch64CC::AL) {
6667 SDValue Cmp2 =
Tim Northover45aa89c2015-02-08 00:50:47 +00006668 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00006669 if (!Cmp2.getNode())
6670 return SDValue();
6671
Tim Northover45aa89c2015-02-08 00:50:47 +00006672 Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
Tim Northover3b0846e2014-05-24 12:50:23 +00006673 }
6674
Tim Northover45aa89c2015-02-08 00:50:47 +00006675 Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
6676
Tim Northover3b0846e2014-05-24 12:50:23 +00006677 if (ShouldInvert)
6678 return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
6679
6680 return Cmp;
6681}
6682
6683/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6684/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
6685/// specified in the intrinsic calls.
6686bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6687 const CallInst &I,
6688 unsigned Intrinsic) const {
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006689 auto &DL = I.getModule()->getDataLayout();
Tim Northover3b0846e2014-05-24 12:50:23 +00006690 switch (Intrinsic) {
6691 case Intrinsic::aarch64_neon_ld2:
6692 case Intrinsic::aarch64_neon_ld3:
6693 case Intrinsic::aarch64_neon_ld4:
6694 case Intrinsic::aarch64_neon_ld1x2:
6695 case Intrinsic::aarch64_neon_ld1x3:
6696 case Intrinsic::aarch64_neon_ld1x4:
6697 case Intrinsic::aarch64_neon_ld2lane:
6698 case Intrinsic::aarch64_neon_ld3lane:
6699 case Intrinsic::aarch64_neon_ld4lane:
6700 case Intrinsic::aarch64_neon_ld2r:
6701 case Intrinsic::aarch64_neon_ld3r:
6702 case Intrinsic::aarch64_neon_ld4r: {
6703 Info.opc = ISD::INTRINSIC_W_CHAIN;
6704 // Conservatively set memVT to the entire set of vectors loaded.
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006705 uint64_t NumElts = DL.getTypeAllocSize(I.getType()) / 8;
Tim Northover3b0846e2014-05-24 12:50:23 +00006706 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6707 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6708 Info.offset = 0;
6709 Info.align = 0;
6710 Info.vol = false; // volatile loads with NEON intrinsics not supported
6711 Info.readMem = true;
6712 Info.writeMem = false;
6713 return true;
6714 }
6715 case Intrinsic::aarch64_neon_st2:
6716 case Intrinsic::aarch64_neon_st3:
6717 case Intrinsic::aarch64_neon_st4:
6718 case Intrinsic::aarch64_neon_st1x2:
6719 case Intrinsic::aarch64_neon_st1x3:
6720 case Intrinsic::aarch64_neon_st1x4:
6721 case Intrinsic::aarch64_neon_st2lane:
6722 case Intrinsic::aarch64_neon_st3lane:
6723 case Intrinsic::aarch64_neon_st4lane: {
6724 Info.opc = ISD::INTRINSIC_VOID;
6725 // Conservatively set memVT to the entire set of vectors stored.
6726 unsigned NumElts = 0;
6727 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6728 Type *ArgTy = I.getArgOperand(ArgI)->getType();
6729 if (!ArgTy->isVectorTy())
6730 break;
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006731 NumElts += DL.getTypeAllocSize(ArgTy) / 8;
Tim Northover3b0846e2014-05-24 12:50:23 +00006732 }
6733 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6734 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6735 Info.offset = 0;
6736 Info.align = 0;
6737 Info.vol = false; // volatile stores with NEON intrinsics not supported
6738 Info.readMem = false;
6739 Info.writeMem = true;
6740 return true;
6741 }
6742 case Intrinsic::aarch64_ldaxr:
6743 case Intrinsic::aarch64_ldxr: {
6744 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
6745 Info.opc = ISD::INTRINSIC_W_CHAIN;
6746 Info.memVT = MVT::getVT(PtrTy->getElementType());
6747 Info.ptrVal = I.getArgOperand(0);
6748 Info.offset = 0;
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006749 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
Tim Northover3b0846e2014-05-24 12:50:23 +00006750 Info.vol = true;
6751 Info.readMem = true;
6752 Info.writeMem = false;
6753 return true;
6754 }
6755 case Intrinsic::aarch64_stlxr:
6756 case Intrinsic::aarch64_stxr: {
6757 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6758 Info.opc = ISD::INTRINSIC_W_CHAIN;
6759 Info.memVT = MVT::getVT(PtrTy->getElementType());
6760 Info.ptrVal = I.getArgOperand(1);
6761 Info.offset = 0;
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006762 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
Tim Northover3b0846e2014-05-24 12:50:23 +00006763 Info.vol = true;
6764 Info.readMem = false;
6765 Info.writeMem = true;
6766 return true;
6767 }
6768 case Intrinsic::aarch64_ldaxp:
6769 case Intrinsic::aarch64_ldxp: {
6770 Info.opc = ISD::INTRINSIC_W_CHAIN;
6771 Info.memVT = MVT::i128;
6772 Info.ptrVal = I.getArgOperand(0);
6773 Info.offset = 0;
6774 Info.align = 16;
6775 Info.vol = true;
6776 Info.readMem = true;
6777 Info.writeMem = false;
6778 return true;
6779 }
6780 case Intrinsic::aarch64_stlxp:
6781 case Intrinsic::aarch64_stxp: {
6782 Info.opc = ISD::INTRINSIC_W_CHAIN;
6783 Info.memVT = MVT::i128;
6784 Info.ptrVal = I.getArgOperand(2);
6785 Info.offset = 0;
6786 Info.align = 16;
6787 Info.vol = true;
6788 Info.readMem = false;
6789 Info.writeMem = true;
6790 return true;
6791 }
6792 default:
6793 break;
6794 }
6795
6796 return false;
6797}
6798
6799// Truncations from 64-bit GPR to 32-bit GPR is free.
6800bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6801 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6802 return false;
6803 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6804 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006805 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006806}
6807bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006808 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006809 return false;
6810 unsigned NumBits1 = VT1.getSizeInBits();
6811 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006812 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006813}
6814
Chad Rosier54390052015-02-23 19:15:16 +00006815/// Check if it is profitable to hoist instruction in then/else to if.
6816/// Not profitable if I and it's user can form a FMA instruction
6817/// because we prefer FMSUB/FMADD.
6818bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
6819 if (I->getOpcode() != Instruction::FMul)
6820 return true;
6821
6822 if (I->getNumUses() != 1)
6823 return true;
6824
6825 Instruction *User = I->user_back();
6826
6827 if (User &&
6828 !(User->getOpcode() == Instruction::FSub ||
6829 User->getOpcode() == Instruction::FAdd))
6830 return true;
6831
6832 const TargetOptions &Options = getTargetMachine().Options;
Mehdi Amini44ede332015-07-09 02:09:04 +00006833 const DataLayout &DL = I->getModule()->getDataLayout();
6834 EVT VT = getValueType(DL, User->getOperand(0)->getType());
Chad Rosier54390052015-02-23 19:15:16 +00006835
6836 if (isFMAFasterThanFMulAndFAdd(VT) &&
6837 isOperationLegalOrCustom(ISD::FMA, VT) &&
6838 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath))
6839 return false;
6840
6841 return true;
6842}
6843
Tim Northover3b0846e2014-05-24 12:50:23 +00006844// All 32-bit GPR operations implicitly zero the high-half of the corresponding
6845// 64-bit GPR.
6846bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6847 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6848 return false;
6849 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6850 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006851 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006852}
6853bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006854 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006855 return false;
6856 unsigned NumBits1 = VT1.getSizeInBits();
6857 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006858 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006859}
6860
6861bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6862 EVT VT1 = Val.getValueType();
6863 if (isZExtFree(VT1, VT2)) {
6864 return true;
6865 }
6866
6867 if (Val.getOpcode() != ISD::LOAD)
6868 return false;
6869
6870 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
Hao Liu40914502014-05-29 09:19:07 +00006871 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
6872 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
6873 VT1.getSizeInBits() <= 32);
Tim Northover3b0846e2014-05-24 12:50:23 +00006874}
6875
Quentin Colombet6843ac42015-03-31 20:52:32 +00006876bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
6877 if (isa<FPExtInst>(Ext))
6878 return false;
6879
6880 // Vector types are next free.
6881 if (Ext->getType()->isVectorTy())
6882 return false;
6883
6884 for (const Use &U : Ext->uses()) {
6885 // The extension is free if we can fold it with a left shift in an
6886 // addressing mode or an arithmetic operation: add, sub, and cmp.
6887
6888 // Is there a shift?
6889 const Instruction *Instr = cast<Instruction>(U.getUser());
6890
6891 // Is this a constant shift?
6892 switch (Instr->getOpcode()) {
6893 case Instruction::Shl:
6894 if (!isa<ConstantInt>(Instr->getOperand(1)))
6895 return false;
6896 break;
6897 case Instruction::GetElementPtr: {
6898 gep_type_iterator GTI = gep_type_begin(Instr);
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006899 auto &DL = Ext->getModule()->getDataLayout();
Quentin Colombet6843ac42015-03-31 20:52:32 +00006900 std::advance(GTI, U.getOperandNo());
6901 Type *IdxTy = *GTI;
6902 // This extension will end up with a shift because of the scaling factor.
6903 // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
6904 // Get the shift amount based on the scaling factor:
6905 // log2(sizeof(IdxTy)) - log2(8).
6906 uint64_t ShiftAmt =
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006907 countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy)) - 3;
Quentin Colombet6843ac42015-03-31 20:52:32 +00006908 // Is the constant foldable in the shift of the addressing mode?
6909 // I.e., shift amount is between 1 and 4 inclusive.
6910 if (ShiftAmt == 0 || ShiftAmt > 4)
6911 return false;
6912 break;
6913 }
6914 case Instruction::Trunc:
6915 // Check if this is a noop.
6916 // trunc(sext ty1 to ty2) to ty1.
6917 if (Instr->getType() == Ext->getOperand(0)->getType())
6918 continue;
6919 // FALL THROUGH.
6920 default:
6921 return false;
6922 }
6923
6924 // At this point we can use the bfm family, so this extension is free
6925 // for that use.
6926 }
6927 return true;
6928}
6929
Tim Northover3b0846e2014-05-24 12:50:23 +00006930bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
6931 unsigned &RequiredAligment) const {
6932 if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
6933 return false;
6934 // Cyclone supports unaligned accesses.
6935 RequiredAligment = 0;
6936 unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
6937 return NumBits == 32 || NumBits == 64;
6938}
6939
6940bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
6941 unsigned &RequiredAligment) const {
6942 if (!LoadedType.isSimple() ||
6943 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
6944 return false;
6945 // Cyclone supports unaligned accesses.
6946 RequiredAligment = 0;
6947 unsigned NumBits = LoadedType.getSizeInBits();
6948 return NumBits == 32 || NumBits == 64;
6949}
6950
Hao Liu7ec8ee32015-06-26 02:32:07 +00006951/// \brief Lower an interleaved load into a ldN intrinsic.
6952///
6953/// E.g. Lower an interleaved load (Factor = 2):
6954/// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
6955/// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
6956/// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
6957///
6958/// Into:
6959/// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
6960/// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
6961/// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
6962bool AArch64TargetLowering::lowerInterleavedLoad(
6963 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
6964 ArrayRef<unsigned> Indices, unsigned Factor) const {
6965 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
6966 "Invalid interleave factor");
6967 assert(!Shuffles.empty() && "Empty shufflevector input");
6968 assert(Shuffles.size() == Indices.size() &&
6969 "Unmatched number of shufflevectors and indices");
6970
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006971 const DataLayout &DL = LI->getModule()->getDataLayout();
Hao Liu7ec8ee32015-06-26 02:32:07 +00006972
6973 VectorType *VecTy = Shuffles[0]->getType();
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006974 unsigned VecSize = DL.getTypeAllocSizeInBits(VecTy);
Hao Liu7ec8ee32015-06-26 02:32:07 +00006975
Jeroen Ketemaaebca092015-10-07 14:53:29 +00006976 // Skip if we do not have NEON and skip illegal vector types.
6977 if (!Subtarget->hasNEON() || (VecSize != 64 && VecSize != 128))
Hao Liu7ec8ee32015-06-26 02:32:07 +00006978 return false;
6979
6980 // A pointer vector can not be the return type of the ldN intrinsics. Need to
6981 // load integer vectors first and then convert to pointer vectors.
6982 Type *EltTy = VecTy->getVectorElementType();
6983 if (EltTy->isPointerTy())
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006984 VecTy =
6985 VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
Hao Liu7ec8ee32015-06-26 02:32:07 +00006986
6987 Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
6988 Type *Tys[2] = {VecTy, PtrTy};
6989 static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
6990 Intrinsic::aarch64_neon_ld3,
6991 Intrinsic::aarch64_neon_ld4};
6992 Function *LdNFunc =
6993 Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
6994
6995 IRBuilder<> Builder(LI);
6996 Value *Ptr = Builder.CreateBitCast(LI->getPointerOperand(), PtrTy);
6997
6998 CallInst *LdN = Builder.CreateCall(LdNFunc, Ptr, "ldN");
6999
7000 // Replace uses of each shufflevector with the corresponding vector loaded
7001 // by ldN.
7002 for (unsigned i = 0; i < Shuffles.size(); i++) {
7003 ShuffleVectorInst *SVI = Shuffles[i];
7004 unsigned Index = Indices[i];
7005
7006 Value *SubVec = Builder.CreateExtractValue(LdN, Index);
7007
7008 // Convert the integer vector to pointer vector if the element is pointer.
7009 if (EltTy->isPointerTy())
7010 SubVec = Builder.CreateIntToPtr(SubVec, SVI->getType());
7011
7012 SVI->replaceAllUsesWith(SubVec);
7013 }
7014
7015 return true;
7016}
7017
7018/// \brief Get a mask consisting of sequential integers starting from \p Start.
7019///
7020/// I.e. <Start, Start + 1, ..., Start + NumElts - 1>
7021static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start,
7022 unsigned NumElts) {
7023 SmallVector<Constant *, 16> Mask;
7024 for (unsigned i = 0; i < NumElts; i++)
7025 Mask.push_back(Builder.getInt32(Start + i));
7026
7027 return ConstantVector::get(Mask);
7028}
7029
7030/// \brief Lower an interleaved store into a stN intrinsic.
7031///
7032/// E.g. Lower an interleaved store (Factor = 3):
7033/// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
7034/// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
7035/// store <12 x i32> %i.vec, <12 x i32>* %ptr
7036///
7037/// Into:
7038/// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
7039/// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
7040/// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
7041/// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
7042///
7043/// Note that the new shufflevectors will be removed and we'll only generate one
7044/// st3 instruction in CodeGen.
7045bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
7046 ShuffleVectorInst *SVI,
7047 unsigned Factor) const {
7048 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
7049 "Invalid interleave factor");
7050
7051 VectorType *VecTy = SVI->getType();
7052 assert(VecTy->getVectorNumElements() % Factor == 0 &&
7053 "Invalid interleaved store");
7054
7055 unsigned NumSubElts = VecTy->getVectorNumElements() / Factor;
7056 Type *EltTy = VecTy->getVectorElementType();
7057 VectorType *SubVecTy = VectorType::get(EltTy, NumSubElts);
7058
Mehdi Aminia749f2a2015-07-09 02:09:52 +00007059 const DataLayout &DL = SI->getModule()->getDataLayout();
7060 unsigned SubVecSize = DL.getTypeAllocSizeInBits(SubVecTy);
Hao Liu7ec8ee32015-06-26 02:32:07 +00007061
Jeroen Ketemaaebca092015-10-07 14:53:29 +00007062 // Skip if we do not have NEON and skip illegal vector types.
7063 if (!Subtarget->hasNEON() || (SubVecSize != 64 && SubVecSize != 128))
Hao Liu7ec8ee32015-06-26 02:32:07 +00007064 return false;
7065
7066 Value *Op0 = SVI->getOperand(0);
7067 Value *Op1 = SVI->getOperand(1);
7068 IRBuilder<> Builder(SI);
7069
7070 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
7071 // vectors to integer vectors.
7072 if (EltTy->isPointerTy()) {
Mehdi Aminia749f2a2015-07-09 02:09:52 +00007073 Type *IntTy = DL.getIntPtrType(EltTy);
Hao Liu7ec8ee32015-06-26 02:32:07 +00007074 unsigned NumOpElts =
7075 dyn_cast<VectorType>(Op0->getType())->getVectorNumElements();
7076
7077 // Convert to the corresponding integer vector.
7078 Type *IntVecTy = VectorType::get(IntTy, NumOpElts);
7079 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
7080 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
7081
7082 SubVecTy = VectorType::get(IntTy, NumSubElts);
7083 }
7084
7085 Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
7086 Type *Tys[2] = {SubVecTy, PtrTy};
7087 static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
7088 Intrinsic::aarch64_neon_st3,
7089 Intrinsic::aarch64_neon_st4};
7090 Function *StNFunc =
7091 Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
7092
7093 SmallVector<Value *, 5> Ops;
7094
7095 // Split the shufflevector operands into sub vectors for the new stN call.
7096 for (unsigned i = 0; i < Factor; i++)
7097 Ops.push_back(Builder.CreateShuffleVector(
7098 Op0, Op1, getSequentialMask(Builder, NumSubElts * i, NumSubElts)));
7099
7100 Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), PtrTy));
7101 Builder.CreateCall(StNFunc, Ops);
7102 return true;
7103}
7104
Tim Northover3b0846e2014-05-24 12:50:23 +00007105static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
7106 unsigned AlignCheck) {
7107 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
7108 (DstAlign == 0 || DstAlign % AlignCheck == 0));
7109}
7110
7111EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
7112 unsigned SrcAlign, bool IsMemset,
7113 bool ZeroMemset,
7114 bool MemcpyStrSrc,
7115 MachineFunction &MF) const {
7116 // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
7117 // instruction to materialize the v2i64 zero and one store (with restrictive
7118 // addressing mode). Just do two i64 store of zero-registers.
7119 bool Fast;
7120 const Function *F = MF.getFunction();
7121 if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00007122 !F->hasFnAttribute(Attribute::NoImplicitFloat) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00007123 (memOpAlign(SrcAlign, DstAlign, 16) ||
Matt Arsenault6f2a5262014-07-27 17:46:40 +00007124 (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
Tim Northover3b0846e2014-05-24 12:50:23 +00007125 return MVT::f128;
7126
Lang Hames90333852015-04-09 03:40:33 +00007127 if (Size >= 8 &&
7128 (memOpAlign(SrcAlign, DstAlign, 8) ||
7129 (allowsMisalignedMemoryAccesses(MVT::i64, 0, 1, &Fast) && Fast)))
7130 return MVT::i64;
7131
7132 if (Size >= 4 &&
7133 (memOpAlign(SrcAlign, DstAlign, 4) ||
7134 (allowsMisalignedMemoryAccesses(MVT::i32, 0, 1, &Fast) && Fast)))
Lang Hames522bf132015-04-09 05:34:57 +00007135 return MVT::i32;
Lang Hames90333852015-04-09 03:40:33 +00007136
7137 return MVT::Other;
Tim Northover3b0846e2014-05-24 12:50:23 +00007138}
7139
7140// 12-bit optionally shifted immediates are legal for adds.
7141bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
7142 if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
7143 return true;
7144 return false;
7145}
7146
7147// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
7148// immediates is the same as for an add or a sub.
7149bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
7150 if (Immed < 0)
7151 Immed *= -1;
7152 return isLegalAddImmediate(Immed);
7153}
7154
7155/// isLegalAddressingMode - Return true if the addressing mode represented
7156/// by AM is legal for this target, for a load/store of the specified type.
Mehdi Amini0cdec1e2015-07-09 02:09:40 +00007157bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
7158 const AddrMode &AM, Type *Ty,
Matt Arsenaultbd7d80a2015-06-01 05:31:59 +00007159 unsigned AS) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00007160 // AArch64 has five basic addressing modes:
7161 // reg
7162 // reg + 9-bit signed offset
7163 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
7164 // reg1 + reg2
7165 // reg + SIZE_IN_BYTES * reg
7166
7167 // No global is ever allowed as a base.
7168 if (AM.BaseGV)
7169 return false;
7170
7171 // No reg+reg+imm addressing.
7172 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
7173 return false;
7174
7175 // check reg + imm case:
7176 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
7177 uint64_t NumBytes = 0;
7178 if (Ty->isSized()) {
Mehdi Amini0cdec1e2015-07-09 02:09:40 +00007179 uint64_t NumBits = DL.getTypeSizeInBits(Ty);
Tim Northover3b0846e2014-05-24 12:50:23 +00007180 NumBytes = NumBits / 8;
7181 if (!isPowerOf2_64(NumBits))
7182 NumBytes = 0;
7183 }
7184
7185 if (!AM.Scale) {
7186 int64_t Offset = AM.BaseOffs;
7187
7188 // 9-bit signed offset
7189 if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
7190 return true;
7191
7192 // 12-bit unsigned offset
7193 unsigned shift = Log2_64(NumBytes);
7194 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
7195 // Must be a multiple of NumBytes (NumBytes is a power of 2)
7196 (Offset >> shift) << shift == Offset)
7197 return true;
7198 return false;
7199 }
7200
7201 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
7202
7203 if (!AM.Scale || AM.Scale == 1 ||
7204 (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
7205 return true;
7206 return false;
7207}
7208
Mehdi Amini0cdec1e2015-07-09 02:09:40 +00007209int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL,
7210 const AddrMode &AM, Type *Ty,
Matt Arsenaultbd7d80a2015-06-01 05:31:59 +00007211 unsigned AS) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00007212 // Scaling factors are not free at all.
7213 // Operands | Rt Latency
7214 // -------------------------------------------
7215 // Rt, [Xn, Xm] | 4
7216 // -------------------------------------------
7217 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
7218 // Rt, [Xn, Wm, <extend> #imm] |
Mehdi Amini0cdec1e2015-07-09 02:09:40 +00007219 if (isLegalAddressingMode(DL, AM, Ty, AS))
Tim Northover3b0846e2014-05-24 12:50:23 +00007220 // Scale represents reg2 * scale, thus account for 1 if
7221 // it is not equal to 0 or 1.
7222 return AM.Scale != 0 && AM.Scale != 1;
7223 return -1;
7224}
7225
7226bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
7227 VT = VT.getScalarType();
7228
7229 if (!VT.isSimple())
7230 return false;
7231
7232 switch (VT.getSimpleVT().SimpleTy) {
7233 case MVT::f32:
7234 case MVT::f64:
7235 return true;
7236 default:
7237 break;
7238 }
7239
7240 return false;
7241}
7242
7243const MCPhysReg *
7244AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
7245 // LR is a callee-save register, but we must treat it as clobbered by any call
7246 // site. Hence we include LR in the scratch registers, which are in turn added
7247 // as implicit-defs for stackmaps and patchpoints.
7248 static const MCPhysReg ScratchRegs[] = {
7249 AArch64::X16, AArch64::X17, AArch64::LR, 0
7250 };
7251 return ScratchRegs;
7252}
7253
7254bool
7255AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
7256 EVT VT = N->getValueType(0);
7257 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
7258 // it with shift to let it be lowered to UBFX.
7259 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
7260 isa<ConstantSDNode>(N->getOperand(1))) {
7261 uint64_t TruncMask = N->getConstantOperandVal(1);
7262 if (isMask_64(TruncMask) &&
7263 N->getOperand(0).getOpcode() == ISD::SRL &&
7264 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
7265 return false;
7266 }
7267 return true;
7268}
7269
7270bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
7271 Type *Ty) const {
7272 assert(Ty->isIntegerTy());
7273
7274 unsigned BitSize = Ty->getPrimitiveSizeInBits();
7275 if (BitSize == 0)
7276 return false;
7277
7278 int64_t Val = Imm.getSExtValue();
7279 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
7280 return true;
7281
7282 if ((int64_t)Val < 0)
7283 Val = ~Val;
7284 if (BitSize == 32)
7285 Val &= (1LL << 32) - 1;
7286
7287 unsigned LZ = countLeadingZeros((uint64_t)Val);
7288 unsigned Shift = (63 - LZ) / 16;
7289 // MOVZ is free so return true for one or fewer MOVK.
David Blaikie186d2cb2015-03-24 16:24:01 +00007290 return Shift < 3;
Tim Northover3b0846e2014-05-24 12:50:23 +00007291}
7292
7293// Generate SUBS and CSEL for integer abs.
7294static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
7295 EVT VT = N->getValueType(0);
7296
7297 SDValue N0 = N->getOperand(0);
7298 SDValue N1 = N->getOperand(1);
7299 SDLoc DL(N);
7300
7301 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
7302 // and change it to SUB and CSEL.
7303 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
7304 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
7305 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
7306 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
7307 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007308 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
Tim Northover3b0846e2014-05-24 12:50:23 +00007309 N0.getOperand(0));
7310 // Generate SUBS & CSEL.
7311 SDValue Cmp =
7312 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007313 N0.getOperand(0), DAG.getConstant(0, DL, VT));
Tim Northover3b0846e2014-05-24 12:50:23 +00007314 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007315 DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00007316 SDValue(Cmp.getNode(), 1));
7317 }
7318 return SDValue();
7319}
7320
7321// performXorCombine - Attempts to handle integer ABS.
7322static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
7323 TargetLowering::DAGCombinerInfo &DCI,
7324 const AArch64Subtarget *Subtarget) {
7325 if (DCI.isBeforeLegalizeOps())
7326 return SDValue();
7327
7328 return performIntegerAbsCombine(N, DAG);
7329}
7330
Chad Rosier17020f92014-07-23 14:57:52 +00007331SDValue
7332AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
7333 SelectionDAG &DAG,
7334 std::vector<SDNode *> *Created) const {
7335 // fold (sdiv X, pow2)
7336 EVT VT = N->getValueType(0);
7337 if ((VT != MVT::i32 && VT != MVT::i64) ||
7338 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
7339 return SDValue();
7340
7341 SDLoc DL(N);
7342 SDValue N0 = N->getOperand(0);
7343 unsigned Lg2 = Divisor.countTrailingZeros();
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007344 SDValue Zero = DAG.getConstant(0, DL, VT);
7345 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
Chad Rosier17020f92014-07-23 14:57:52 +00007346
7347 // Add (N0 < 0) ? Pow2 - 1 : 0;
7348 SDValue CCVal;
7349 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
7350 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
7351 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
7352
7353 if (Created) {
7354 Created->push_back(Cmp.getNode());
7355 Created->push_back(Add.getNode());
7356 Created->push_back(CSel.getNode());
7357 }
7358
7359 // Divide by pow2.
7360 SDValue SRA =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007361 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
Chad Rosier17020f92014-07-23 14:57:52 +00007362
7363 // If we're dividing by a positive value, we're done. Otherwise, we must
7364 // negate the result.
7365 if (Divisor.isNonNegative())
7366 return SRA;
7367
7368 if (Created)
7369 Created->push_back(SRA.getNode());
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007370 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
Chad Rosier17020f92014-07-23 14:57:52 +00007371}
7372
Tim Northover3b0846e2014-05-24 12:50:23 +00007373static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
7374 TargetLowering::DAGCombinerInfo &DCI,
7375 const AArch64Subtarget *Subtarget) {
7376 if (DCI.isBeforeLegalizeOps())
7377 return SDValue();
7378
7379 // Multiplication of a power of two plus/minus one can be done more
7380 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
7381 // future CPUs have a cheaper MADD instruction, this may need to be
7382 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
7383 // 64-bit is 5 cycles, so this is always a win.
7384 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
7385 APInt Value = C->getAPIntValue();
7386 EVT VT = N->getValueType(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007387 SDLoc DL(N);
Chad Rosiere6b87612014-06-30 14:51:14 +00007388 if (Value.isNonNegative()) {
7389 // (mul x, 2^N + 1) => (add (shl x, N), x)
7390 APInt VM1 = Value - 1;
7391 if (VM1.isPowerOf2()) {
7392 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007393 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7394 DAG.getConstant(VM1.logBase2(), DL, MVT::i64));
7395 return DAG.getNode(ISD::ADD, DL, VT, ShiftedVal,
Chad Rosiere6b87612014-06-30 14:51:14 +00007396 N->getOperand(0));
7397 }
7398 // (mul x, 2^N - 1) => (sub (shl x, N), x)
7399 APInt VP1 = Value + 1;
7400 if (VP1.isPowerOf2()) {
7401 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007402 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7403 DAG.getConstant(VP1.logBase2(), DL, MVT::i64));
7404 return DAG.getNode(ISD::SUB, DL, VT, ShiftedVal,
Chad Rosiere6b87612014-06-30 14:51:14 +00007405 N->getOperand(0));
7406 }
7407 } else {
Chad Rosier8e38f302015-03-03 17:31:01 +00007408 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
7409 APInt VNP1 = -Value + 1;
7410 if (VNP1.isPowerOf2()) {
7411 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007412 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7413 DAG.getConstant(VNP1.logBase2(), DL, MVT::i64));
7414 return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0),
Chad Rosier8e38f302015-03-03 17:31:01 +00007415 ShiftedVal);
7416 }
Chad Rosiere6b87612014-06-30 14:51:14 +00007417 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
7418 APInt VNM1 = -Value - 1;
7419 if (VNM1.isPowerOf2()) {
7420 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007421 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7422 DAG.getConstant(VNM1.logBase2(), DL, MVT::i64));
Chad Rosiere6b87612014-06-30 14:51:14 +00007423 SDValue Add =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007424 DAG.getNode(ISD::ADD, DL, VT, ShiftedVal, N->getOperand(0));
7425 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Add);
Chad Rosiere6b87612014-06-30 14:51:14 +00007426 }
Chad Rosierd96e9f12014-06-09 01:25:51 +00007427 }
Tim Northover3b0846e2014-05-24 12:50:23 +00007428 }
7429 return SDValue();
7430}
7431
Jim Grosbachf7502c42014-07-18 00:40:52 +00007432static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
7433 SelectionDAG &DAG) {
7434 // Take advantage of vector comparisons producing 0 or -1 in each lane to
7435 // optimize away operation when it's from a constant.
7436 //
7437 // The general transformation is:
7438 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
7439 // AND(VECTOR_CMP(x,y), constant2)
7440 // constant2 = UNARYOP(constant)
7441
Jim Grosbach8f6f0852014-07-23 20:41:38 +00007442 // Early exit if this isn't a vector operation, the operand of the
7443 // unary operation isn't a bitwise AND, or if the sizes of the operations
7444 // aren't the same.
Jim Grosbachf7502c42014-07-18 00:40:52 +00007445 EVT VT = N->getValueType(0);
7446 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
Jim Grosbach8f6f0852014-07-23 20:41:38 +00007447 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
7448 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
Jim Grosbachf7502c42014-07-18 00:40:52 +00007449 return SDValue();
7450
Jim Grosbach724e4382014-07-23 20:41:43 +00007451 // Now check that the other operand of the AND is a constant. We could
Jim Grosbachf7502c42014-07-18 00:40:52 +00007452 // make the transformation for non-constant splats as well, but it's unclear
7453 // that would be a benefit as it would not eliminate any operations, just
7454 // perform one more step in scalar code before moving to the vector unit.
7455 if (BuildVectorSDNode *BV =
7456 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
Jim Grosbach724e4382014-07-23 20:41:43 +00007457 // Bail out if the vector isn't a constant.
7458 if (!BV->isConstant())
Jim Grosbachf7502c42014-07-18 00:40:52 +00007459 return SDValue();
7460
7461 // Everything checks out. Build up the new and improved node.
7462 SDLoc DL(N);
7463 EVT IntVT = BV->getValueType(0);
7464 // Create a new constant of the appropriate type for the transformed
7465 // DAG.
7466 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
7467 // The AND node needs bitcasts to/from an integer vector type around it.
7468 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
7469 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
7470 N->getOperand(0)->getOperand(0), MaskConst);
7471 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
7472 return Res;
7473 }
7474
7475 return SDValue();
7476}
7477
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00007478static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
7479 const AArch64Subtarget *Subtarget) {
Jim Grosbachf7502c42014-07-18 00:40:52 +00007480 // First try to optimize away the conversion when it's conditionally from
7481 // a constant. Vectors only.
Ahmed Bougacha239d6352015-08-04 00:48:02 +00007482 if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
Jim Grosbachf7502c42014-07-18 00:40:52 +00007483 return Res;
7484
Tim Northover3b0846e2014-05-24 12:50:23 +00007485 EVT VT = N->getValueType(0);
7486 if (VT != MVT::f32 && VT != MVT::f64)
7487 return SDValue();
Jim Grosbachf7502c42014-07-18 00:40:52 +00007488
Tim Northover3b0846e2014-05-24 12:50:23 +00007489 // Only optimize when the source and destination types have the same width.
7490 if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
7491 return SDValue();
7492
7493 // If the result of an integer load is only used by an integer-to-float
7494 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
Chad Rosier1f385612015-10-02 16:42:59 +00007495 // This eliminates an "integer-to-vector-move" UOP and improves throughput.
Tim Northover3b0846e2014-05-24 12:50:23 +00007496 SDValue N0 = N->getOperand(0);
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00007497 if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
Tim Northover3b0846e2014-05-24 12:50:23 +00007498 // Do not change the width of a volatile load.
7499 !cast<LoadSDNode>(N0)->isVolatile()) {
7500 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7501 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
7502 LN0->getPointerInfo(), LN0->isVolatile(),
7503 LN0->isNonTemporal(), LN0->isInvariant(),
7504 LN0->getAlignment());
7505
7506 // Make sure successors of the original load stay after it by updating them
7507 // to use the new Chain.
7508 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
7509
7510 unsigned Opcode =
7511 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
7512 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
7513 }
7514
7515 return SDValue();
7516}
7517
Chad Rosierfa30c9b2015-10-07 17:39:18 +00007518/// Fold a floating-point multiply by power of two into floating-point to
7519/// fixed-point conversion.
7520static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
7521 const AArch64Subtarget *Subtarget) {
7522 if (!Subtarget->hasNEON())
7523 return SDValue();
7524
7525 SDValue Op = N->getOperand(0);
7526 if (!Op.getValueType().isVector() || Op.getOpcode() != ISD::FMUL)
7527 return SDValue();
7528
7529 SDValue ConstVec = Op->getOperand(1);
7530 if (!isa<BuildVectorSDNode>(ConstVec))
7531 return SDValue();
7532
7533 MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
7534 uint32_t FloatBits = FloatTy.getSizeInBits();
7535 if (FloatBits != 32 && FloatBits != 64)
7536 return SDValue();
7537
7538 MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
7539 uint32_t IntBits = IntTy.getSizeInBits();
7540 if (IntBits != 16 && IntBits != 32 && IntBits != 64)
7541 return SDValue();
7542
7543 // Avoid conversions where iN is larger than the float (e.g., float -> i64).
7544 if (IntBits > FloatBits)
7545 return SDValue();
7546
7547 BitVector UndefElements;
7548 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
7549 int32_t Bits = IntBits == 64 ? 64 : 32;
7550 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
7551 if (C == -1 || C == 0 || C > Bits)
7552 return SDValue();
7553
7554 MVT ResTy;
7555 unsigned NumLanes = Op.getValueType().getVectorNumElements();
7556 switch (NumLanes) {
7557 default:
7558 return SDValue();
7559 case 2:
7560 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
7561 break;
7562 case 4:
7563 ResTy = MVT::v4i32;
7564 break;
7565 }
7566
7567 SDLoc DL(N);
7568 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
7569 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
7570 : Intrinsic::aarch64_neon_vcvtfp2fxu;
7571 SDValue FixConv =
7572 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
7573 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
7574 Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
7575 // We can handle smaller integers by generating an extra trunc.
7576 if (IntBits < FloatBits)
7577 FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);
7578
7579 return FixConv;
7580}
7581
Chad Rosier7c6ac2b2015-10-07 17:51:37 +00007582/// Fold a floating-point divide by power of two into fixed-point to
7583/// floating-point conversion.
7584static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
7585 const AArch64Subtarget *Subtarget) {
7586 if (!Subtarget->hasNEON())
7587 return SDValue();
7588
7589 SDValue Op = N->getOperand(0);
7590 unsigned Opc = Op->getOpcode();
7591 if (!Op.getValueType().isVector() ||
7592 (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
7593 return SDValue();
7594
7595 SDValue ConstVec = N->getOperand(1);
7596 if (!isa<BuildVectorSDNode>(ConstVec))
7597 return SDValue();
7598
7599 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
7600 int32_t IntBits = IntTy.getSizeInBits();
7601 if (IntBits != 16 && IntBits != 32 && IntBits != 64)
7602 return SDValue();
7603
7604 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
7605 int32_t FloatBits = FloatTy.getSizeInBits();
7606 if (FloatBits != 32 && FloatBits != 64)
7607 return SDValue();
7608
7609 // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
7610 if (IntBits > FloatBits)
7611 return SDValue();
7612
7613 BitVector UndefElements;
7614 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
7615 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
7616 if (C == -1 || C == 0 || C > FloatBits)
7617 return SDValue();
7618
7619 MVT ResTy;
7620 unsigned NumLanes = Op.getValueType().getVectorNumElements();
7621 switch (NumLanes) {
7622 default:
7623 return SDValue();
7624 case 2:
7625 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
7626 break;
7627 case 4:
7628 ResTy = MVT::v4i32;
7629 break;
7630 }
7631
7632 SDLoc DL(N);
7633 SDValue ConvInput = Op.getOperand(0);
7634 bool IsSigned = Opc == ISD::SINT_TO_FP;
7635 if (IntBits < FloatBits)
7636 ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
7637 ResTy, ConvInput);
7638
7639 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
7640 : Intrinsic::aarch64_neon_vcvtfxu2fp;
7641 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
7642 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
7643 DAG.getConstant(C, DL, MVT::i32));
7644}
7645
Tim Northover3b0846e2014-05-24 12:50:23 +00007646/// An EXTR instruction is made up of two shifts, ORed together. This helper
7647/// searches for and classifies those shifts.
7648static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
7649 bool &FromHi) {
7650 if (N.getOpcode() == ISD::SHL)
7651 FromHi = false;
7652 else if (N.getOpcode() == ISD::SRL)
7653 FromHi = true;
7654 else
7655 return false;
7656
7657 if (!isa<ConstantSDNode>(N.getOperand(1)))
7658 return false;
7659
7660 ShiftAmount = N->getConstantOperandVal(1);
7661 Src = N->getOperand(0);
7662 return true;
7663}
7664
7665/// EXTR instruction extracts a contiguous chunk of bits from two existing
7666/// registers viewed as a high/low pair. This function looks for the pattern:
7667/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
7668/// EXTR. Can't quite be done in TableGen because the two immediates aren't
7669/// independent.
7670static SDValue tryCombineToEXTR(SDNode *N,
7671 TargetLowering::DAGCombinerInfo &DCI) {
7672 SelectionDAG &DAG = DCI.DAG;
7673 SDLoc DL(N);
7674 EVT VT = N->getValueType(0);
7675
7676 assert(N->getOpcode() == ISD::OR && "Unexpected root");
7677
7678 if (VT != MVT::i32 && VT != MVT::i64)
7679 return SDValue();
7680
7681 SDValue LHS;
7682 uint32_t ShiftLHS = 0;
7683 bool LHSFromHi = 0;
7684 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
7685 return SDValue();
7686
7687 SDValue RHS;
7688 uint32_t ShiftRHS = 0;
7689 bool RHSFromHi = 0;
7690 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
7691 return SDValue();
7692
7693 // If they're both trying to come from the high part of the register, they're
7694 // not really an EXTR.
7695 if (LHSFromHi == RHSFromHi)
7696 return SDValue();
7697
7698 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
7699 return SDValue();
7700
7701 if (LHSFromHi) {
7702 std::swap(LHS, RHS);
7703 std::swap(ShiftLHS, ShiftRHS);
7704 }
7705
7706 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007707 DAG.getConstant(ShiftRHS, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007708}
7709
7710static SDValue tryCombineToBSL(SDNode *N,
7711 TargetLowering::DAGCombinerInfo &DCI) {
7712 EVT VT = N->getValueType(0);
7713 SelectionDAG &DAG = DCI.DAG;
7714 SDLoc DL(N);
7715
7716 if (!VT.isVector())
7717 return SDValue();
7718
7719 SDValue N0 = N->getOperand(0);
7720 if (N0.getOpcode() != ISD::AND)
7721 return SDValue();
7722
7723 SDValue N1 = N->getOperand(1);
7724 if (N1.getOpcode() != ISD::AND)
7725 return SDValue();
7726
7727 // We only have to look for constant vectors here since the general, variable
7728 // case can be handled in TableGen.
7729 unsigned Bits = VT.getVectorElementType().getSizeInBits();
7730 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
7731 for (int i = 1; i >= 0; --i)
7732 for (int j = 1; j >= 0; --j) {
7733 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
7734 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
7735 if (!BVN0 || !BVN1)
7736 continue;
7737
7738 bool FoundMatch = true;
7739 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
7740 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
7741 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
7742 if (!CN0 || !CN1 ||
7743 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
7744 FoundMatch = false;
7745 break;
7746 }
7747 }
7748
7749 if (FoundMatch)
7750 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
7751 N0->getOperand(1 - i), N1->getOperand(1 - j));
7752 }
7753
7754 return SDValue();
7755}
7756
7757static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
7758 const AArch64Subtarget *Subtarget) {
7759 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
7760 if (!EnableAArch64ExtrGeneration)
7761 return SDValue();
7762 SelectionDAG &DAG = DCI.DAG;
7763 EVT VT = N->getValueType(0);
7764
7765 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7766 return SDValue();
7767
7768 SDValue Res = tryCombineToEXTR(N, DCI);
7769 if (Res.getNode())
7770 return Res;
7771
7772 Res = tryCombineToBSL(N, DCI);
7773 if (Res.getNode())
7774 return Res;
7775
7776 return SDValue();
7777}
7778
7779static SDValue performBitcastCombine(SDNode *N,
7780 TargetLowering::DAGCombinerInfo &DCI,
7781 SelectionDAG &DAG) {
7782 // Wait 'til after everything is legalized to try this. That way we have
7783 // legal vector types and such.
7784 if (DCI.isBeforeLegalizeOps())
7785 return SDValue();
7786
7787 // Remove extraneous bitcasts around an extract_subvector.
7788 // For example,
7789 // (v4i16 (bitconvert
7790 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
7791 // becomes
7792 // (extract_subvector ((v8i16 ...), (i64 4)))
7793
7794 // Only interested in 64-bit vectors as the ultimate result.
7795 EVT VT = N->getValueType(0);
7796 if (!VT.isVector())
7797 return SDValue();
7798 if (VT.getSimpleVT().getSizeInBits() != 64)
7799 return SDValue();
7800 // Is the operand an extract_subvector starting at the beginning or halfway
7801 // point of the vector? A low half may also come through as an
7802 // EXTRACT_SUBREG, so look for that, too.
7803 SDValue Op0 = N->getOperand(0);
7804 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
7805 !(Op0->isMachineOpcode() &&
7806 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
7807 return SDValue();
7808 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
7809 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
7810 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
7811 return SDValue();
7812 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
7813 if (idx != AArch64::dsub)
7814 return SDValue();
7815 // The dsub reference is equivalent to a lane zero subvector reference.
7816 idx = 0;
7817 }
7818 // Look through the bitcast of the input to the extract.
7819 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
7820 return SDValue();
7821 SDValue Source = Op0->getOperand(0)->getOperand(0);
7822 // If the source type has twice the number of elements as our destination
7823 // type, we know this is an extract of the high or low half of the vector.
7824 EVT SVT = Source->getValueType(0);
7825 if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
7826 return SDValue();
7827
7828 DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
7829
7830 // Create the simplified form to just extract the low or high half of the
7831 // vector directly rather than bothering with the bitcasts.
7832 SDLoc dl(N);
7833 unsigned NumElements = VT.getVectorNumElements();
7834 if (idx) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007835 SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00007836 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
7837 } else {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007838 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00007839 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
7840 Source, SubReg),
7841 0);
7842 }
7843}
7844
7845static SDValue performConcatVectorsCombine(SDNode *N,
7846 TargetLowering::DAGCombinerInfo &DCI,
7847 SelectionDAG &DAG) {
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007848 SDLoc dl(N);
7849 EVT VT = N->getValueType(0);
7850 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
7851
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00007852 // Optimize concat_vectors of truncated vectors, where the intermediate
7853 // type is illegal, to avoid said illegality, e.g.,
7854 // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
7855 // (v2i16 (truncate (v2i64)))))
7856 // ->
Ahmed Bougachae6bb09a2015-03-21 01:08:39 +00007857 // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
7858 // (v4i32 (bitcast (v2i64))),
7859 // <0, 2, 4, 6>)))
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00007860 // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
7861 // on both input and result type, so we might generate worse code.
7862 // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
7863 if (N->getNumOperands() == 2 &&
7864 N0->getOpcode() == ISD::TRUNCATE &&
7865 N1->getOpcode() == ISD::TRUNCATE) {
7866 SDValue N00 = N0->getOperand(0);
7867 SDValue N10 = N1->getOperand(0);
7868 EVT N00VT = N00.getValueType();
7869
7870 if (N00VT == N10.getValueType() &&
7871 (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
7872 N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
Ahmed Bougachae6bb09a2015-03-21 01:08:39 +00007873 MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
7874 SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
7875 for (size_t i = 0; i < Mask.size(); ++i)
7876 Mask[i] = i * 2;
7877 return DAG.getNode(ISD::TRUNCATE, dl, VT,
7878 DAG.getVectorShuffle(
7879 MidVT, dl,
7880 DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
7881 DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00007882 }
7883 }
7884
Tim Northover3b0846e2014-05-24 12:50:23 +00007885 // Wait 'til after everything is legalized to try this. That way we have
7886 // legal vector types and such.
7887 if (DCI.isBeforeLegalizeOps())
7888 return SDValue();
7889
Tim Northover3b0846e2014-05-24 12:50:23 +00007890 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
7891 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
7892 // canonicalise to that.
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007893 if (N0 == N1 && VT.getVectorNumElements() == 2) {
Tim Northover3b0846e2014-05-24 12:50:23 +00007894 assert(VT.getVectorElementType().getSizeInBits() == 64);
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007895 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007896 DAG.getConstant(0, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007897 }
7898
7899 // Canonicalise concat_vectors so that the right-hand vector has as few
7900 // bit-casts as possible before its real operation. The primary matching
7901 // destination for these operations will be the narrowing "2" instructions,
7902 // which depend on the operation being performed on this right-hand vector.
7903 // For example,
7904 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
7905 // becomes
7906 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
7907
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007908 if (N1->getOpcode() != ISD::BITCAST)
Tim Northover3b0846e2014-05-24 12:50:23 +00007909 return SDValue();
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007910 SDValue RHS = N1->getOperand(0);
Tim Northover3b0846e2014-05-24 12:50:23 +00007911 MVT RHSTy = RHS.getValueType().getSimpleVT();
7912 // If the RHS is not a vector, this is not the pattern we're looking for.
7913 if (!RHSTy.isVector())
7914 return SDValue();
7915
7916 DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
7917
7918 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
7919 RHSTy.getVectorNumElements() * 2);
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007920 return DAG.getNode(ISD::BITCAST, dl, VT,
7921 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
7922 DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
7923 RHS));
Tim Northover3b0846e2014-05-24 12:50:23 +00007924}
7925
7926static SDValue tryCombineFixedPointConvert(SDNode *N,
7927 TargetLowering::DAGCombinerInfo &DCI,
7928 SelectionDAG &DAG) {
7929 // Wait 'til after everything is legalized to try this. That way we have
7930 // legal vector types and such.
7931 if (DCI.isBeforeLegalizeOps())
7932 return SDValue();
7933 // Transform a scalar conversion of a value from a lane extract into a
7934 // lane extract of a vector conversion. E.g., from foo1 to foo2:
7935 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
7936 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
7937 //
7938 // The second form interacts better with instruction selection and the
7939 // register allocator to avoid cross-class register copies that aren't
7940 // coalescable due to a lane reference.
7941
7942 // Check the operand and see if it originates from a lane extract.
7943 SDValue Op1 = N->getOperand(1);
7944 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7945 // Yep, no additional predication needed. Perform the transform.
7946 SDValue IID = N->getOperand(0);
7947 SDValue Shift = N->getOperand(2);
7948 SDValue Vec = Op1.getOperand(0);
7949 SDValue Lane = Op1.getOperand(1);
7950 EVT ResTy = N->getValueType(0);
7951 EVT VecResTy;
7952 SDLoc DL(N);
7953
7954 // The vector width should be 128 bits by the time we get here, even
7955 // if it started as 64 bits (the extract_vector handling will have
7956 // done so).
7957 assert(Vec.getValueType().getSizeInBits() == 128 &&
7958 "unexpected vector size on extract_vector_elt!");
7959 if (Vec.getValueType() == MVT::v4i32)
7960 VecResTy = MVT::v4f32;
7961 else if (Vec.getValueType() == MVT::v2i64)
7962 VecResTy = MVT::v2f64;
7963 else
Craig Topper2a30d782014-06-18 05:05:13 +00007964 llvm_unreachable("unexpected vector type!");
Tim Northover3b0846e2014-05-24 12:50:23 +00007965
7966 SDValue Convert =
7967 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
7968 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
7969 }
7970 return SDValue();
7971}
7972
7973// AArch64 high-vector "long" operations are formed by performing the non-high
7974// version on an extract_subvector of each operand which gets the high half:
7975//
7976// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
7977//
7978// However, there are cases which don't have an extract_high explicitly, but
7979// have another operation that can be made compatible with one for free. For
7980// example:
7981//
7982// (dupv64 scalar) --> (extract_high (dup128 scalar))
7983//
7984// This routine does the actual conversion of such DUPs, once outer routines
7985// have determined that everything else is in order.
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00007986// It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
7987// similarly here.
Tim Northover3b0846e2014-05-24 12:50:23 +00007988static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
Tim Northover3b0846e2014-05-24 12:50:23 +00007989 switch (N.getOpcode()) {
7990 case AArch64ISD::DUP:
Tim Northover3b0846e2014-05-24 12:50:23 +00007991 case AArch64ISD::DUPLANE8:
7992 case AArch64ISD::DUPLANE16:
7993 case AArch64ISD::DUPLANE32:
7994 case AArch64ISD::DUPLANE64:
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00007995 case AArch64ISD::MOVI:
7996 case AArch64ISD::MOVIshift:
7997 case AArch64ISD::MOVIedit:
7998 case AArch64ISD::MOVImsl:
7999 case AArch64ISD::MVNIshift:
8000 case AArch64ISD::MVNImsl:
Tim Northover3b0846e2014-05-24 12:50:23 +00008001 break;
8002 default:
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00008003 // FMOV could be supported, but isn't very useful, as it would only occur
8004 // if you passed a bitcast' floating point immediate to an eligible long
8005 // integer op (addl, smull, ...).
Tim Northover3b0846e2014-05-24 12:50:23 +00008006 return SDValue();
8007 }
8008
8009 MVT NarrowTy = N.getSimpleValueType();
8010 if (!NarrowTy.is64BitVector())
8011 return SDValue();
8012
8013 MVT ElementTy = NarrowTy.getVectorElementType();
8014 unsigned NumElems = NarrowTy.getVectorNumElements();
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00008015 MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
Tim Northover3b0846e2014-05-24 12:50:23 +00008016
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008017 SDLoc dl(N);
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00008018 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
8019 DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008020 DAG.getConstant(NumElems, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008021}
8022
8023static bool isEssentiallyExtractSubvector(SDValue N) {
8024 if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8025 return true;
8026
8027 return N.getOpcode() == ISD::BITCAST &&
8028 N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
8029}
8030
8031/// \brief Helper structure to keep track of ISD::SET_CC operands.
8032struct GenericSetCCInfo {
8033 const SDValue *Opnd0;
8034 const SDValue *Opnd1;
8035 ISD::CondCode CC;
8036};
8037
8038/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
8039struct AArch64SetCCInfo {
8040 const SDValue *Cmp;
8041 AArch64CC::CondCode CC;
8042};
8043
8044/// \brief Helper structure to keep track of SetCC information.
8045union SetCCInfo {
8046 GenericSetCCInfo Generic;
8047 AArch64SetCCInfo AArch64;
8048};
8049
8050/// \brief Helper structure to be able to read SetCC information. If set to
8051/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
8052/// GenericSetCCInfo.
8053struct SetCCInfoAndKind {
8054 SetCCInfo Info;
8055 bool IsAArch64;
8056};
8057
8058/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
8059/// an
8060/// AArch64 lowered one.
8061/// \p SetCCInfo is filled accordingly.
8062/// \post SetCCInfo is meanginfull only when this function returns true.
8063/// \return True when Op is a kind of SET_CC operation.
8064static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
8065 // If this is a setcc, this is straight forward.
8066 if (Op.getOpcode() == ISD::SETCC) {
8067 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
8068 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
8069 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8070 SetCCInfo.IsAArch64 = false;
8071 return true;
8072 }
8073 // Otherwise, check if this is a matching csel instruction.
8074 // In other words:
8075 // - csel 1, 0, cc
8076 // - csel 0, 1, !cc
8077 if (Op.getOpcode() != AArch64ISD::CSEL)
8078 return false;
8079 // Set the information about the operands.
8080 // TODO: we want the operands of the Cmp not the csel
8081 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
8082 SetCCInfo.IsAArch64 = true;
8083 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
8084 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
8085
8086 // Check that the operands matches the constraints:
8087 // (1) Both operands must be constants.
8088 // (2) One must be 1 and the other must be 0.
8089 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
8090 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8091
8092 // Check (1).
8093 if (!TValue || !FValue)
8094 return false;
8095
8096 // Check (2).
8097 if (!TValue->isOne()) {
8098 // Update the comparison when we are interested in !cc.
8099 std::swap(TValue, FValue);
8100 SetCCInfo.Info.AArch64.CC =
8101 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
8102 }
8103 return TValue->isOne() && FValue->isNullValue();
8104}
8105
8106// Returns true if Op is setcc or zext of setcc.
8107static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
8108 if (isSetCC(Op, Info))
8109 return true;
8110 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
8111 isSetCC(Op->getOperand(0), Info));
8112}
8113
8114// The folding we want to perform is:
8115// (add x, [zext] (setcc cc ...) )
8116// -->
8117// (csel x, (add x, 1), !cc ...)
8118//
8119// The latter will get matched to a CSINC instruction.
8120static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
8121 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
8122 SDValue LHS = Op->getOperand(0);
8123 SDValue RHS = Op->getOperand(1);
8124 SetCCInfoAndKind InfoAndKind;
8125
8126 // If neither operand is a SET_CC, give up.
8127 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
8128 std::swap(LHS, RHS);
8129 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
8130 return SDValue();
8131 }
8132
8133 // FIXME: This could be generatized to work for FP comparisons.
8134 EVT CmpVT = InfoAndKind.IsAArch64
8135 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
8136 : InfoAndKind.Info.Generic.Opnd0->getValueType();
8137 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
8138 return SDValue();
8139
8140 SDValue CCVal;
8141 SDValue Cmp;
8142 SDLoc dl(Op);
8143 if (InfoAndKind.IsAArch64) {
8144 CCVal = DAG.getConstant(
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008145 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
8146 MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00008147 Cmp = *InfoAndKind.Info.AArch64.Cmp;
8148 } else
8149 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
8150 *InfoAndKind.Info.Generic.Opnd1,
8151 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
8152 CCVal, DAG, dl);
8153
8154 EVT VT = Op->getValueType(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008155 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
Tim Northover3b0846e2014-05-24 12:50:23 +00008156 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
8157}
8158
8159// The basic add/sub long vector instructions have variants with "2" on the end
8160// which act on the high-half of their inputs. They are normally matched by
8161// patterns like:
8162//
8163// (add (zeroext (extract_high LHS)),
8164// (zeroext (extract_high RHS)))
8165// -> uaddl2 vD, vN, vM
8166//
8167// However, if one of the extracts is something like a duplicate, this
8168// instruction can still be used profitably. This function puts the DAG into a
8169// more appropriate form for those patterns to trigger.
8170static SDValue performAddSubLongCombine(SDNode *N,
8171 TargetLowering::DAGCombinerInfo &DCI,
8172 SelectionDAG &DAG) {
8173 if (DCI.isBeforeLegalizeOps())
8174 return SDValue();
8175
8176 MVT VT = N->getSimpleValueType(0);
8177 if (!VT.is128BitVector()) {
8178 if (N->getOpcode() == ISD::ADD)
8179 return performSetccAddFolding(N, DAG);
8180 return SDValue();
8181 }
8182
8183 // Make sure both branches are extended in the same way.
8184 SDValue LHS = N->getOperand(0);
8185 SDValue RHS = N->getOperand(1);
8186 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
8187 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
8188 LHS.getOpcode() != RHS.getOpcode())
8189 return SDValue();
8190
8191 unsigned ExtType = LHS.getOpcode();
8192
8193 // It's not worth doing if at least one of the inputs isn't already an
8194 // extract, but we don't know which it'll be so we have to try both.
8195 if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
8196 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
8197 if (!RHS.getNode())
8198 return SDValue();
8199
8200 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
8201 } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
8202 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
8203 if (!LHS.getNode())
8204 return SDValue();
8205
8206 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
8207 }
8208
8209 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
8210}
8211
8212// Massage DAGs which we can use the high-half "long" operations on into
8213// something isel will recognize better. E.g.
8214//
8215// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
8216// (aarch64_neon_umull (extract_high (v2i64 vec)))
8217// (extract_high (v2i64 (dup128 scalar)))))
8218//
James Molloyfaf4e3c2015-07-17 17:10:45 +00008219static SDValue tryCombineLongOpWithDup(SDNode *N,
Tim Northover3b0846e2014-05-24 12:50:23 +00008220 TargetLowering::DAGCombinerInfo &DCI,
8221 SelectionDAG &DAG) {
8222 if (DCI.isBeforeLegalizeOps())
8223 return SDValue();
8224
James Molloyfaf4e3c2015-07-17 17:10:45 +00008225 bool IsIntrinsic = N->getOpcode() == ISD::INTRINSIC_WO_CHAIN;
8226 SDValue LHS = N->getOperand(IsIntrinsic ? 1 : 0);
8227 SDValue RHS = N->getOperand(IsIntrinsic ? 2 : 1);
Tim Northover3b0846e2014-05-24 12:50:23 +00008228 assert(LHS.getValueType().is64BitVector() &&
8229 RHS.getValueType().is64BitVector() &&
8230 "unexpected shape for long operation");
8231
8232 // Either node could be a DUP, but it's not worth doing both of them (you'd
8233 // just as well use the non-high version) so look for a corresponding extract
8234 // operation on the other "wing".
8235 if (isEssentiallyExtractSubvector(LHS)) {
8236 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
8237 if (!RHS.getNode())
8238 return SDValue();
8239 } else if (isEssentiallyExtractSubvector(RHS)) {
8240 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
8241 if (!LHS.getNode())
8242 return SDValue();
8243 }
8244
James Molloyfaf4e3c2015-07-17 17:10:45 +00008245 // N could either be an intrinsic or a sabsdiff/uabsdiff node.
8246 if (IsIntrinsic)
8247 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
8248 N->getOperand(0), LHS, RHS);
8249 else
8250 return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
8251 LHS, RHS);
Tim Northover3b0846e2014-05-24 12:50:23 +00008252}
8253
8254static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
8255 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
8256 unsigned ElemBits = ElemTy.getSizeInBits();
8257
8258 int64_t ShiftAmount;
8259 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
8260 APInt SplatValue, SplatUndef;
8261 unsigned SplatBitSize;
8262 bool HasAnyUndefs;
8263 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
8264 HasAnyUndefs, ElemBits) ||
8265 SplatBitSize != ElemBits)
8266 return SDValue();
8267
8268 ShiftAmount = SplatValue.getSExtValue();
8269 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
8270 ShiftAmount = CVN->getSExtValue();
8271 } else
8272 return SDValue();
8273
8274 unsigned Opcode;
8275 bool IsRightShift;
8276 switch (IID) {
8277 default:
8278 llvm_unreachable("Unknown shift intrinsic");
8279 case Intrinsic::aarch64_neon_sqshl:
8280 Opcode = AArch64ISD::SQSHL_I;
8281 IsRightShift = false;
8282 break;
8283 case Intrinsic::aarch64_neon_uqshl:
8284 Opcode = AArch64ISD::UQSHL_I;
8285 IsRightShift = false;
8286 break;
8287 case Intrinsic::aarch64_neon_srshl:
8288 Opcode = AArch64ISD::SRSHR_I;
8289 IsRightShift = true;
8290 break;
8291 case Intrinsic::aarch64_neon_urshl:
8292 Opcode = AArch64ISD::URSHR_I;
8293 IsRightShift = true;
8294 break;
8295 case Intrinsic::aarch64_neon_sqshlu:
8296 Opcode = AArch64ISD::SQSHLU_I;
8297 IsRightShift = false;
8298 break;
8299 }
8300
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008301 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
8302 SDLoc dl(N);
8303 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
8304 DAG.getConstant(-ShiftAmount, dl, MVT::i32));
8305 } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
8306 SDLoc dl(N);
8307 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
8308 DAG.getConstant(ShiftAmount, dl, MVT::i32));
8309 }
Tim Northover3b0846e2014-05-24 12:50:23 +00008310
8311 return SDValue();
8312}
8313
8314// The CRC32[BH] instructions ignore the high bits of their data operand. Since
8315// the intrinsics must be legal and take an i32, this means there's almost
8316// certainly going to be a zext in the DAG which we can eliminate.
8317static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
8318 SDValue AndN = N->getOperand(2);
8319 if (AndN.getOpcode() != ISD::AND)
8320 return SDValue();
8321
8322 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
8323 if (!CMask || CMask->getZExtValue() != Mask)
8324 return SDValue();
8325
8326 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
8327 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
8328}
8329
Ahmed Bougachafab58922015-03-10 20:45:38 +00008330static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
8331 SelectionDAG &DAG) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008332 SDLoc dl(N);
8333 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
8334 DAG.getNode(Opc, dl,
Ahmed Bougachafab58922015-03-10 20:45:38 +00008335 N->getOperand(1).getSimpleValueType(),
8336 N->getOperand(1)),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008337 DAG.getConstant(0, dl, MVT::i64));
Ahmed Bougachafab58922015-03-10 20:45:38 +00008338}
8339
Tim Northover3b0846e2014-05-24 12:50:23 +00008340static SDValue performIntrinsicCombine(SDNode *N,
8341 TargetLowering::DAGCombinerInfo &DCI,
8342 const AArch64Subtarget *Subtarget) {
8343 SelectionDAG &DAG = DCI.DAG;
8344 unsigned IID = getIntrinsicID(N);
8345 switch (IID) {
8346 default:
8347 break;
8348 case Intrinsic::aarch64_neon_vcvtfxs2fp:
8349 case Intrinsic::aarch64_neon_vcvtfxu2fp:
8350 return tryCombineFixedPointConvert(N, DCI, DAG);
Ahmed Bougachafab58922015-03-10 20:45:38 +00008351 case Intrinsic::aarch64_neon_saddv:
8352 return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
8353 case Intrinsic::aarch64_neon_uaddv:
8354 return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
8355 case Intrinsic::aarch64_neon_sminv:
8356 return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
8357 case Intrinsic::aarch64_neon_uminv:
8358 return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
8359 case Intrinsic::aarch64_neon_smaxv:
8360 return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
8361 case Intrinsic::aarch64_neon_umaxv:
8362 return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00008363 case Intrinsic::aarch64_neon_fmax:
James Molloyedf38f02015-08-11 12:06:33 +00008364 return DAG.getNode(ISD::FMAXNAN, SDLoc(N), N->getValueType(0),
Tim Northover3b0846e2014-05-24 12:50:23 +00008365 N->getOperand(1), N->getOperand(2));
8366 case Intrinsic::aarch64_neon_fmin:
James Molloyedf38f02015-08-11 12:06:33 +00008367 return DAG.getNode(ISD::FMINNAN, SDLoc(N), N->getValueType(0),
Tim Northover3b0846e2014-05-24 12:50:23 +00008368 N->getOperand(1), N->getOperand(2));
James Molloyfaf4e3c2015-07-17 17:10:45 +00008369 case Intrinsic::aarch64_neon_sabd:
8370 return DAG.getNode(ISD::SABSDIFF, SDLoc(N), N->getValueType(0),
8371 N->getOperand(1), N->getOperand(2));
8372 case Intrinsic::aarch64_neon_uabd:
8373 return DAG.getNode(ISD::UABSDIFF, SDLoc(N), N->getValueType(0),
8374 N->getOperand(1), N->getOperand(2));
James Molloyb7b2a1e2015-08-11 12:06:37 +00008375 case Intrinsic::aarch64_neon_fmaxnm:
8376 return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
8377 N->getOperand(1), N->getOperand(2));
8378 case Intrinsic::aarch64_neon_fminnm:
8379 return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
8380 N->getOperand(1), N->getOperand(2));
Tim Northover3b0846e2014-05-24 12:50:23 +00008381 case Intrinsic::aarch64_neon_smull:
8382 case Intrinsic::aarch64_neon_umull:
8383 case Intrinsic::aarch64_neon_pmull:
8384 case Intrinsic::aarch64_neon_sqdmull:
James Molloyfaf4e3c2015-07-17 17:10:45 +00008385 return tryCombineLongOpWithDup(N, DCI, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00008386 case Intrinsic::aarch64_neon_sqshl:
8387 case Intrinsic::aarch64_neon_uqshl:
8388 case Intrinsic::aarch64_neon_sqshlu:
8389 case Intrinsic::aarch64_neon_srshl:
8390 case Intrinsic::aarch64_neon_urshl:
8391 return tryCombineShiftImm(IID, N, DAG);
8392 case Intrinsic::aarch64_crc32b:
8393 case Intrinsic::aarch64_crc32cb:
8394 return tryCombineCRC32(0xff, N, DAG);
8395 case Intrinsic::aarch64_crc32h:
8396 case Intrinsic::aarch64_crc32ch:
8397 return tryCombineCRC32(0xffff, N, DAG);
8398 }
8399 return SDValue();
8400}
8401
8402static SDValue performExtendCombine(SDNode *N,
8403 TargetLowering::DAGCombinerInfo &DCI,
8404 SelectionDAG &DAG) {
8405 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
8406 // we can convert that DUP into another extract_high (of a bigger DUP), which
8407 // helps the backend to decide that an sabdl2 would be useful, saving a real
8408 // extract_high operation.
8409 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
James Molloyfaf4e3c2015-07-17 17:10:45 +00008410 (N->getOperand(0).getOpcode() == ISD::SABSDIFF ||
8411 N->getOperand(0).getOpcode() == ISD::UABSDIFF)) {
Tim Northover3b0846e2014-05-24 12:50:23 +00008412 SDNode *ABDNode = N->getOperand(0).getNode();
James Molloyfaf4e3c2015-07-17 17:10:45 +00008413 SDValue NewABD = tryCombineLongOpWithDup(ABDNode, DCI, DAG);
8414 if (!NewABD.getNode())
8415 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00008416
James Molloyfaf4e3c2015-07-17 17:10:45 +00008417 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
8418 NewABD);
Tim Northover3b0846e2014-05-24 12:50:23 +00008419 }
8420
8421 // This is effectively a custom type legalization for AArch64.
8422 //
8423 // Type legalization will split an extend of a small, legal, type to a larger
8424 // illegal type by first splitting the destination type, often creating
8425 // illegal source types, which then get legalized in isel-confusing ways,
8426 // leading to really terrible codegen. E.g.,
8427 // %result = v8i32 sext v8i8 %value
8428 // becomes
8429 // %losrc = extract_subreg %value, ...
8430 // %hisrc = extract_subreg %value, ...
8431 // %lo = v4i32 sext v4i8 %losrc
8432 // %hi = v4i32 sext v4i8 %hisrc
8433 // Things go rapidly downhill from there.
8434 //
8435 // For AArch64, the [sz]ext vector instructions can only go up one element
8436 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
8437 // take two instructions.
8438 //
8439 // This implies that the most efficient way to do the extend from v8i8
8440 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
8441 // the normal splitting to happen for the v8i16->v8i32.
8442
8443 // This is pre-legalization to catch some cases where the default
8444 // type legalization will create ill-tempered code.
8445 if (!DCI.isBeforeLegalizeOps())
8446 return SDValue();
8447
8448 // We're only interested in cleaning things up for non-legal vector types
8449 // here. If both the source and destination are legal, things will just
8450 // work naturally without any fiddling.
8451 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8452 EVT ResVT = N->getValueType(0);
8453 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
8454 return SDValue();
8455 // If the vector type isn't a simple VT, it's beyond the scope of what
8456 // we're worried about here. Let legalization do its thing and hope for
8457 // the best.
Jim Grosbachec2b0d02014-08-28 22:08:28 +00008458 SDValue Src = N->getOperand(0);
8459 EVT SrcVT = Src->getValueType(0);
8460 if (!ResVT.isSimple() || !SrcVT.isSimple())
Tim Northover3b0846e2014-05-24 12:50:23 +00008461 return SDValue();
8462
Tim Northover3b0846e2014-05-24 12:50:23 +00008463 // If the source VT is a 64-bit vector, we can play games and get the
8464 // better results we want.
8465 if (SrcVT.getSizeInBits() != 64)
8466 return SDValue();
8467
8468 unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
8469 unsigned ElementCount = SrcVT.getVectorNumElements();
8470 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
8471 SDLoc DL(N);
8472 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
8473
8474 // Now split the rest of the operation into two halves, each with a 64
8475 // bit source.
8476 EVT LoVT, HiVT;
8477 SDValue Lo, Hi;
8478 unsigned NumElements = ResVT.getVectorNumElements();
8479 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
8480 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
8481 ResVT.getVectorElementType(), NumElements / 2);
8482
8483 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
8484 LoVT.getVectorNumElements());
8485 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008486 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008487 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008488 DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008489 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
8490 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
8491
8492 // Now combine the parts back together so we still have a single result
8493 // like the combiner expects.
8494 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
8495}
8496
8497/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
8498/// value. The load store optimizer pass will merge them to store pair stores.
8499/// This has better performance than a splat of the scalar followed by a split
8500/// vector store. Even if the stores are not merged it is four stores vs a dup,
8501/// followed by an ext.b and two stores.
8502static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
8503 SDValue StVal = St->getValue();
8504 EVT VT = StVal.getValueType();
8505
8506 // Don't replace floating point stores, they possibly won't be transformed to
8507 // stp because of the store pair suppress pass.
8508 if (VT.isFloatingPoint())
8509 return SDValue();
8510
8511 // Check for insert vector elements.
8512 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
8513 return SDValue();
8514
8515 // We can express a splat as store pair(s) for 2 or 4 elements.
8516 unsigned NumVecElts = VT.getVectorNumElements();
8517 if (NumVecElts != 4 && NumVecElts != 2)
8518 return SDValue();
8519 SDValue SplatVal = StVal.getOperand(1);
8520 unsigned RemainInsertElts = NumVecElts - 1;
8521
8522 // Check that this is a splat.
8523 while (--RemainInsertElts) {
8524 SDValue NextInsertElt = StVal.getOperand(0);
8525 if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
8526 return SDValue();
8527 if (NextInsertElt.getOperand(1) != SplatVal)
8528 return SDValue();
8529 StVal = NextInsertElt;
8530 }
8531 unsigned OrigAlignment = St->getAlignment();
8532 unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
8533 unsigned Alignment = std::min(OrigAlignment, EltOffset);
8534
8535 // Create scalar stores. This is at least as good as the code sequence for a
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00008536 // split unaligned store which is a dup.s, ext.b, and two stores.
Tim Northover3b0846e2014-05-24 12:50:23 +00008537 // Most of the time the three stores should be replaced by store pair
8538 // instructions (stp).
8539 SDLoc DL(St);
8540 SDValue BasePtr = St->getBasePtr();
8541 SDValue NewST1 =
8542 DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
8543 St->isVolatile(), St->isNonTemporal(), St->getAlignment());
8544
8545 unsigned Offset = EltOffset;
8546 while (--NumVecElts) {
8547 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008548 DAG.getConstant(Offset, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008549 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
8550 St->getPointerInfo(), St->isVolatile(),
8551 St->isNonTemporal(), Alignment);
8552 Offset += EltOffset;
8553 }
8554 return NewST1;
8555}
8556
Tim Northover339c83e2015-11-10 00:44:23 +00008557static SDValue split16BStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
8558 SelectionDAG &DAG,
8559 const AArch64Subtarget *Subtarget) {
Tim Northover3b0846e2014-05-24 12:50:23 +00008560 if (!DCI.isBeforeLegalize())
8561 return SDValue();
8562
8563 StoreSDNode *S = cast<StoreSDNode>(N);
8564 if (S->isVolatile())
8565 return SDValue();
8566
Sanjay Patelbbbf9a12015-09-25 21:49:48 +00008567 // FIXME: The logic for deciding if an unaligned store should be split should
8568 // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
8569 // a call to that function here.
8570
Tim Northover3b0846e2014-05-24 12:50:23 +00008571 // Cyclone has bad performance on unaligned 16B stores when crossing line and
Sanjay Patel08efcd92015-01-28 22:37:32 +00008572 // page boundaries. We want to split such stores.
Tim Northover3b0846e2014-05-24 12:50:23 +00008573 if (!Subtarget->isCyclone())
8574 return SDValue();
8575
Sanjay Patel924879a2015-08-04 15:49:57 +00008576 // Don't split at -Oz.
8577 if (DAG.getMachineFunction().getFunction()->optForMinSize())
Tim Northover3b0846e2014-05-24 12:50:23 +00008578 return SDValue();
8579
8580 SDValue StVal = S->getValue();
8581 EVT VT = StVal.getValueType();
8582
8583 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
8584 // those up regresses performance on micro-benchmarks and olden/bh.
8585 if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
8586 return SDValue();
8587
8588 // Split unaligned 16B stores. They are terrible for performance.
8589 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
8590 // extensions can use this to mark that it does not want splitting to happen
8591 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
8592 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
8593 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
8594 S->getAlignment() <= 2)
8595 return SDValue();
8596
8597 // If we get a splat of a scalar convert this vector store to a store of
8598 // scalars. They will be merged into store pairs thereby removing two
8599 // instructions.
Ahmed Bougacha239d6352015-08-04 00:48:02 +00008600 if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S))
Tim Northover3b0846e2014-05-24 12:50:23 +00008601 return ReplacedSplat;
8602
8603 SDLoc DL(S);
8604 unsigned NumElts = VT.getVectorNumElements() / 2;
8605 // Split VT into two.
8606 EVT HalfVT =
8607 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
8608 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008609 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008610 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008611 DAG.getConstant(NumElts, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008612 SDValue BasePtr = S->getBasePtr();
8613 SDValue NewST1 =
8614 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
8615 S->isVolatile(), S->isNonTemporal(), S->getAlignment());
8616 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008617 DAG.getConstant(8, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008618 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
8619 S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
8620 S->getAlignment());
8621}
8622
8623/// Target-specific DAG combine function for post-increment LD1 (lane) and
8624/// post-increment LD1R.
8625static SDValue performPostLD1Combine(SDNode *N,
8626 TargetLowering::DAGCombinerInfo &DCI,
8627 bool IsLaneOp) {
8628 if (DCI.isBeforeLegalizeOps())
8629 return SDValue();
8630
8631 SelectionDAG &DAG = DCI.DAG;
8632 EVT VT = N->getValueType(0);
8633
8634 unsigned LoadIdx = IsLaneOp ? 1 : 0;
8635 SDNode *LD = N->getOperand(LoadIdx).getNode();
8636 // If it is not LOAD, can not do such combine.
8637 if (LD->getOpcode() != ISD::LOAD)
8638 return SDValue();
8639
8640 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
8641 EVT MemVT = LoadSDN->getMemoryVT();
8642 // Check if memory operand is the same type as the vector element.
8643 if (MemVT != VT.getVectorElementType())
8644 return SDValue();
8645
8646 // Check if there are other uses. If so, do not combine as it will introduce
8647 // an extra load.
8648 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
8649 ++UI) {
8650 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
8651 continue;
8652 if (*UI != N)
8653 return SDValue();
8654 }
8655
8656 SDValue Addr = LD->getOperand(1);
8657 SDValue Vector = N->getOperand(0);
8658 // Search for a use of the address operand that is an increment.
8659 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
8660 Addr.getNode()->use_end(); UI != UE; ++UI) {
8661 SDNode *User = *UI;
8662 if (User->getOpcode() != ISD::ADD
8663 || UI.getUse().getResNo() != Addr.getResNo())
8664 continue;
8665
8666 // Check that the add is independent of the load. Otherwise, folding it
8667 // would create a cycle.
8668 if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
8669 continue;
8670 // Also check that add is not used in the vector operand. This would also
8671 // create a cycle.
8672 if (User->isPredecessorOf(Vector.getNode()))
8673 continue;
8674
8675 // If the increment is a constant, it must match the memory ref size.
8676 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8677 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8678 uint32_t IncVal = CInc->getZExtValue();
8679 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
8680 if (IncVal != NumBytes)
8681 continue;
8682 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
8683 }
8684
Ahmed Bougacha2448ef52015-04-17 21:02:30 +00008685 // Finally, check that the vector doesn't depend on the load.
8686 // Again, this would create a cycle.
8687 // The load depending on the vector is fine, as that's the case for the
8688 // LD1*post we'll eventually generate anyway.
8689 if (LoadSDN->isPredecessorOf(Vector.getNode()))
8690 continue;
8691
Tim Northover3b0846e2014-05-24 12:50:23 +00008692 SmallVector<SDValue, 8> Ops;
8693 Ops.push_back(LD->getOperand(0)); // Chain
8694 if (IsLaneOp) {
8695 Ops.push_back(Vector); // The vector to be inserted
8696 Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
8697 }
8698 Ops.push_back(Addr);
8699 Ops.push_back(Inc);
8700
8701 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
Craig Toppere1d12942014-08-27 05:25:25 +00008702 SDVTList SDTys = DAG.getVTList(Tys);
Tim Northover3b0846e2014-05-24 12:50:23 +00008703 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
8704 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
8705 MemVT,
8706 LoadSDN->getMemOperand());
8707
8708 // Update the uses.
Ahmed Bougacha4c2b0782015-02-19 23:13:10 +00008709 SmallVector<SDValue, 2> NewResults;
Tim Northover3b0846e2014-05-24 12:50:23 +00008710 NewResults.push_back(SDValue(LD, 0)); // The result of load
8711 NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
8712 DCI.CombineTo(LD, NewResults);
8713 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
8714 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
8715
8716 break;
8717 }
8718 return SDValue();
8719}
8720
Tim Northover339c83e2015-11-10 00:44:23 +00008721/// Simplify \Addr given that the top byte of it is ignored by HW during
8722/// address translation.
8723static bool performTBISimplification(SDValue Addr,
8724 TargetLowering::DAGCombinerInfo &DCI,
8725 SelectionDAG &DAG) {
8726 APInt DemandedMask = APInt::getLowBitsSet(64, 56);
8727 APInt KnownZero, KnownOne;
8728 TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
8729 DCI.isBeforeLegalizeOps());
8730 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8731 if (TLI.SimplifyDemandedBits(Addr, DemandedMask, KnownZero, KnownOne, TLO)) {
8732 DCI.CommitTargetLoweringOpt(TLO);
8733 return true;
8734 }
8735 return false;
8736}
8737
8738static SDValue performSTORECombine(SDNode *N,
8739 TargetLowering::DAGCombinerInfo &DCI,
8740 SelectionDAG &DAG,
8741 const AArch64Subtarget *Subtarget) {
8742 SDValue Split = split16BStores(N, DCI, DAG, Subtarget);
8743 if (Split.getNode())
8744 return Split;
8745
8746 if (Subtarget->supportsAddressTopByteIgnored() &&
8747 performTBISimplification(N->getOperand(2), DCI, DAG))
8748 return SDValue(N, 0);
8749
8750 return SDValue();
8751}
8752
8753 /// This function handles the log2-shuffle pattern produced by the
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008754/// LoopVectorizer for the across vector reduction. It consists of
8755/// log2(NumVectorElements) steps and, in each step, 2^(s) elements
8756/// are reduced, where s is an induction variable from 0 to
8757/// log2(NumVectorElements).
8758static SDValue tryMatchAcrossLaneShuffleForReduction(SDNode *N, SDValue OpV,
8759 unsigned Op,
8760 SelectionDAG &DAG) {
8761 EVT VTy = OpV->getOperand(0).getValueType();
8762 if (!VTy.isVector())
Chad Rosier6c36eff2015-09-03 18:13:57 +00008763 return SDValue();
8764
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008765 int NumVecElts = VTy.getVectorNumElements();
Jun Bum Lim0aace132015-10-09 14:11:25 +00008766 if (Op == ISD::FMAXNUM || Op == ISD::FMINNUM) {
8767 if (NumVecElts != 4)
8768 return SDValue();
8769 } else {
8770 if (NumVecElts != 4 && NumVecElts != 8 && NumVecElts != 16)
8771 return SDValue();
8772 }
Chad Rosier6c36eff2015-09-03 18:13:57 +00008773
8774 int NumExpectedSteps = APInt(8, NumVecElts).logBase2();
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008775 SDValue PreOp = OpV;
Chad Rosier6c36eff2015-09-03 18:13:57 +00008776 // Iterate over each step of the across vector reduction.
8777 for (int CurStep = 0; CurStep != NumExpectedSteps; ++CurStep) {
Chad Rosier6c36eff2015-09-03 18:13:57 +00008778 SDValue CurOp = PreOp.getOperand(0);
8779 SDValue Shuffle = PreOp.getOperand(1);
8780 if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE) {
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008781 // Try to swap the 1st and 2nd operand as add and min/max instructions
8782 // are commutative.
Chad Rosier6c36eff2015-09-03 18:13:57 +00008783 CurOp = PreOp.getOperand(1);
8784 Shuffle = PreOp.getOperand(0);
8785 if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE)
8786 return SDValue();
8787 }
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008788
8789 // Check if the input vector is fed by the operator we want to handle,
8790 // except the last step; the very first input vector is not necessarily
8791 // the same operator we are handling.
8792 if (CurOp.getOpcode() != Op && (CurStep != (NumExpectedSteps - 1)))
8793 return SDValue();
8794
Chad Rosier6c36eff2015-09-03 18:13:57 +00008795 // Check if it forms one step of the across vector reduction.
8796 // E.g.,
8797 // %cur = add %1, %0
8798 // %shuffle = vector_shuffle %cur, <2, 3, u, u>
8799 // %pre = add %cur, %shuffle
8800 if (Shuffle.getOperand(0) != CurOp)
8801 return SDValue();
8802
8803 int NumMaskElts = 1 << CurStep;
8804 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Shuffle)->getMask();
8805 // Check mask values in each step.
8806 // We expect the shuffle mask in each step follows a specific pattern
8807 // denoted here by the <M, U> form, where M is a sequence of integers
8808 // starting from NumMaskElts, increasing by 1, and the number integers
8809 // in M should be NumMaskElts. U is a sequence of UNDEFs and the number
8810 // of undef in U should be NumVecElts - NumMaskElts.
8811 // E.g., for <8 x i16>, mask values in each step should be :
8812 // step 0 : <1,u,u,u,u,u,u,u>
8813 // step 1 : <2,3,u,u,u,u,u,u>
8814 // step 2 : <4,5,6,7,u,u,u,u>
8815 for (int i = 0; i < NumVecElts; ++i)
8816 if ((i < NumMaskElts && Mask[i] != (NumMaskElts + i)) ||
8817 (i >= NumMaskElts && !(Mask[i] < 0)))
8818 return SDValue();
8819
8820 PreOp = CurOp;
8821 }
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008822 unsigned Opcode;
Jun Bum Lim0aace132015-10-09 14:11:25 +00008823 bool IsIntrinsic = false;
8824
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008825 switch (Op) {
8826 default:
8827 llvm_unreachable("Unexpected operator for across vector reduction");
8828 case ISD::ADD:
8829 Opcode = AArch64ISD::UADDV;
8830 break;
8831 case ISD::SMAX:
8832 Opcode = AArch64ISD::SMAXV;
8833 break;
8834 case ISD::UMAX:
8835 Opcode = AArch64ISD::UMAXV;
8836 break;
8837 case ISD::SMIN:
8838 Opcode = AArch64ISD::SMINV;
8839 break;
8840 case ISD::UMIN:
8841 Opcode = AArch64ISD::UMINV;
8842 break;
Jun Bum Lim0aace132015-10-09 14:11:25 +00008843 case ISD::FMAXNUM:
8844 Opcode = Intrinsic::aarch64_neon_fmaxnmv;
8845 IsIntrinsic = true;
8846 break;
8847 case ISD::FMINNUM:
8848 Opcode = Intrinsic::aarch64_neon_fminnmv;
8849 IsIntrinsic = true;
8850 break;
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008851 }
Chad Rosier6c36eff2015-09-03 18:13:57 +00008852 SDLoc DL(N);
Jun Bum Lim0aace132015-10-09 14:11:25 +00008853
8854 return IsIntrinsic
8855 ? DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, N->getValueType(0),
8856 DAG.getConstant(Opcode, DL, MVT::i32), PreOp)
8857 : DAG.getNode(
8858 ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0),
8859 DAG.getNode(Opcode, DL, PreOp.getSimpleValueType(), PreOp),
8860 DAG.getConstant(0, DL, MVT::i64));
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008861}
8862
8863/// Target-specific DAG combine for the across vector min/max reductions.
8864/// This function specifically handles the final clean-up step of the vector
8865/// min/max reductions produced by the LoopVectorizer. It is the log2-shuffle
8866/// pattern, which narrows down and finds the final min/max value from all
8867/// elements of the vector.
8868/// For example, for a <16 x i8> vector :
8869/// svn0 = vector_shuffle %0, undef<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u>
8870/// %smax0 = smax %arr, svn0
8871/// %svn1 = vector_shuffle %smax0, undef<4,5,6,7,u,u,u,u,u,u,u,u,u,u,u,u>
8872/// %smax1 = smax %smax0, %svn1
8873/// %svn2 = vector_shuffle %smax1, undef<2,3,u,u,u,u,u,u,u,u,u,u,u,u,u,u>
8874/// %smax2 = smax %smax1, svn2
8875/// %svn3 = vector_shuffle %smax2, undef<1,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u>
8876/// %sc = setcc %smax2, %svn3, gt
8877/// %n0 = extract_vector_elt %sc, #0
8878/// %n1 = extract_vector_elt %smax2, #0
8879/// %n2 = extract_vector_elt $smax2, #1
8880/// %result = select %n0, %n1, n2
8881/// becomes :
8882/// %1 = smaxv %0
8883/// %result = extract_vector_elt %1, 0
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008884static SDValue
8885performAcrossLaneMinMaxReductionCombine(SDNode *N, SelectionDAG &DAG,
8886 const AArch64Subtarget *Subtarget) {
8887 if (!Subtarget->hasNEON())
8888 return SDValue();
8889
8890 SDValue N0 = N->getOperand(0);
8891 SDValue IfTrue = N->getOperand(1);
8892 SDValue IfFalse = N->getOperand(2);
8893
8894 // Check if the SELECT merges up the final result of the min/max
8895 // from a vector.
8896 if (N0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8897 IfTrue.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8898 IfFalse.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8899 return SDValue();
8900
8901 // Expect N0 is fed by SETCC.
8902 SDValue SetCC = N0.getOperand(0);
8903 EVT SetCCVT = SetCC.getValueType();
8904 if (SetCC.getOpcode() != ISD::SETCC || !SetCCVT.isVector() ||
8905 SetCCVT.getVectorElementType() != MVT::i1)
8906 return SDValue();
8907
8908 SDValue VectorOp = SetCC.getOperand(0);
8909 unsigned Op = VectorOp->getOpcode();
8910 // Check if the input vector is fed by the operator we want to handle.
Jun Bum Lim0aace132015-10-09 14:11:25 +00008911 if (Op != ISD::SMAX && Op != ISD::UMAX && Op != ISD::SMIN &&
8912 Op != ISD::UMIN && Op != ISD::FMAXNUM && Op != ISD::FMINNUM)
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008913 return SDValue();
8914
8915 EVT VTy = VectorOp.getValueType();
8916 if (!VTy.isVector())
8917 return SDValue();
8918
Jun Bum Lim0aace132015-10-09 14:11:25 +00008919 if (VTy.getSizeInBits() < 64)
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008920 return SDValue();
8921
Jun Bum Lim0aace132015-10-09 14:11:25 +00008922 EVT EltTy = VTy.getVectorElementType();
8923 if (Op == ISD::FMAXNUM || Op == ISD::FMINNUM) {
8924 if (EltTy != MVT::f32)
8925 return SDValue();
8926 } else {
8927 if (EltTy != MVT::i32 && EltTy != MVT::i16 && EltTy != MVT::i8)
8928 return SDValue();
8929 }
8930
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008931 // Check if extracting from the same vector.
8932 // For example,
8933 // %sc = setcc %vector, %svn1, gt
8934 // %n0 = extract_vector_elt %sc, #0
8935 // %n1 = extract_vector_elt %vector, #0
8936 // %n2 = extract_vector_elt $vector, #1
8937 if (!(VectorOp == IfTrue->getOperand(0) &&
8938 VectorOp == IfFalse->getOperand(0)))
8939 return SDValue();
8940
8941 // Check if the condition code is matched with the operator type.
8942 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
8943 if ((Op == ISD::SMAX && CC != ISD::SETGT && CC != ISD::SETGE) ||
8944 (Op == ISD::UMAX && CC != ISD::SETUGT && CC != ISD::SETUGE) ||
8945 (Op == ISD::SMIN && CC != ISD::SETLT && CC != ISD::SETLE) ||
Jun Bum Lim0aace132015-10-09 14:11:25 +00008946 (Op == ISD::UMIN && CC != ISD::SETULT && CC != ISD::SETULE) ||
8947 (Op == ISD::FMAXNUM && CC != ISD::SETOGT && CC != ISD::SETOGE &&
8948 CC != ISD::SETUGT && CC != ISD::SETUGE && CC != ISD::SETGT &&
8949 CC != ISD::SETGE) ||
8950 (Op == ISD::FMINNUM && CC != ISD::SETOLT && CC != ISD::SETOLE &&
8951 CC != ISD::SETULT && CC != ISD::SETULE && CC != ISD::SETLT &&
8952 CC != ISD::SETLE))
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008953 return SDValue();
8954
8955 // Expect to check only lane 0 from the vector SETCC.
Artyom Skrobov314ee042015-11-25 19:41:11 +00008956 if (!isNullConstant(N0.getOperand(1)))
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008957 return SDValue();
8958
8959 // Expect to extract the true value from lane 0.
Artyom Skrobov314ee042015-11-25 19:41:11 +00008960 if (!isNullConstant(IfTrue.getOperand(1)))
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008961 return SDValue();
8962
8963 // Expect to extract the false value from lane 1.
Artyom Skrobov314ee042015-11-25 19:41:11 +00008964 if (!isOneConstant(IfFalse.getOperand(1)))
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008965 return SDValue();
8966
8967 return tryMatchAcrossLaneShuffleForReduction(N, SetCC, Op, DAG);
8968}
8969
8970/// Target-specific DAG combine for the across vector add reduction.
8971/// This function specifically handles the final clean-up step of the vector
8972/// add reduction produced by the LoopVectorizer. It is the log2-shuffle
8973/// pattern, which adds all elements of a vector together.
8974/// For example, for a <4 x i32> vector :
8975/// %1 = vector_shuffle %0, <2,3,u,u>
8976/// %2 = add %0, %1
8977/// %3 = vector_shuffle %2, <1,u,u,u>
8978/// %4 = add %2, %3
8979/// %result = extract_vector_elt %4, 0
8980/// becomes :
8981/// %0 = uaddv %0
8982/// %result = extract_vector_elt %0, 0
8983static SDValue
8984performAcrossLaneAddReductionCombine(SDNode *N, SelectionDAG &DAG,
8985 const AArch64Subtarget *Subtarget) {
8986 if (!Subtarget->hasNEON())
8987 return SDValue();
8988 SDValue N0 = N->getOperand(0);
8989 SDValue N1 = N->getOperand(1);
8990
8991 // Check if the input vector is fed by the ADD.
8992 if (N0->getOpcode() != ISD::ADD)
8993 return SDValue();
8994
8995 // The vector extract idx must constant zero because we only expect the final
8996 // result of the reduction is placed in lane 0.
Artyom Skrobov314ee042015-11-25 19:41:11 +00008997 if (!isNullConstant(N1))
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008998 return SDValue();
8999
9000 EVT VTy = N0.getValueType();
9001 if (!VTy.isVector())
9002 return SDValue();
9003
9004 EVT EltTy = VTy.getVectorElementType();
9005 if (EltTy != MVT::i32 && EltTy != MVT::i16 && EltTy != MVT::i8)
9006 return SDValue();
9007
Jun Bum Lim0aace132015-10-09 14:11:25 +00009008 if (VTy.getSizeInBits() < 64)
9009 return SDValue();
9010
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009011 return tryMatchAcrossLaneShuffleForReduction(N, N0, ISD::ADD, DAG);
Chad Rosier6c36eff2015-09-03 18:13:57 +00009012}
9013
Tim Northover3b0846e2014-05-24 12:50:23 +00009014/// Target-specific DAG combine function for NEON load/store intrinsics
9015/// to merge base address updates.
9016static SDValue performNEONPostLDSTCombine(SDNode *N,
9017 TargetLowering::DAGCombinerInfo &DCI,
9018 SelectionDAG &DAG) {
9019 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9020 return SDValue();
9021
9022 unsigned AddrOpIdx = N->getNumOperands() - 1;
9023 SDValue Addr = N->getOperand(AddrOpIdx);
9024
9025 // Search for a use of the address operand that is an increment.
9026 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
9027 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
9028 SDNode *User = *UI;
9029 if (User->getOpcode() != ISD::ADD ||
9030 UI.getUse().getResNo() != Addr.getResNo())
9031 continue;
9032
9033 // Check that the add is independent of the load/store. Otherwise, folding
9034 // it would create a cycle.
9035 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
9036 continue;
9037
9038 // Find the new opcode for the updating load/store.
9039 bool IsStore = false;
9040 bool IsLaneOp = false;
9041 bool IsDupOp = false;
9042 unsigned NewOpc = 0;
9043 unsigned NumVecs = 0;
9044 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9045 switch (IntNo) {
9046 default: llvm_unreachable("unexpected intrinsic for Neon base update");
9047 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
9048 NumVecs = 2; break;
9049 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
9050 NumVecs = 3; break;
9051 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
9052 NumVecs = 4; break;
9053 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
9054 NumVecs = 2; IsStore = true; break;
9055 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
9056 NumVecs = 3; IsStore = true; break;
9057 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
9058 NumVecs = 4; IsStore = true; break;
9059 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
9060 NumVecs = 2; break;
9061 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
9062 NumVecs = 3; break;
9063 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
9064 NumVecs = 4; break;
9065 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
9066 NumVecs = 2; IsStore = true; break;
9067 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
9068 NumVecs = 3; IsStore = true; break;
9069 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
9070 NumVecs = 4; IsStore = true; break;
9071 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
9072 NumVecs = 2; IsDupOp = true; break;
9073 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
9074 NumVecs = 3; IsDupOp = true; break;
9075 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
9076 NumVecs = 4; IsDupOp = true; break;
9077 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
9078 NumVecs = 2; IsLaneOp = true; break;
9079 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
9080 NumVecs = 3; IsLaneOp = true; break;
9081 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
9082 NumVecs = 4; IsLaneOp = true; break;
9083 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
9084 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
9085 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
9086 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
9087 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
9088 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
9089 }
9090
9091 EVT VecTy;
9092 if (IsStore)
9093 VecTy = N->getOperand(2).getValueType();
9094 else
9095 VecTy = N->getValueType(0);
9096
9097 // If the increment is a constant, it must match the memory ref size.
9098 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
9099 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
9100 uint32_t IncVal = CInc->getZExtValue();
9101 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
9102 if (IsLaneOp || IsDupOp)
9103 NumBytes /= VecTy.getVectorNumElements();
9104 if (IncVal != NumBytes)
9105 continue;
9106 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
9107 }
9108 SmallVector<SDValue, 8> Ops;
9109 Ops.push_back(N->getOperand(0)); // Incoming chain
9110 // Load lane and store have vector list as input.
9111 if (IsLaneOp || IsStore)
9112 for (unsigned i = 2; i < AddrOpIdx; ++i)
9113 Ops.push_back(N->getOperand(i));
9114 Ops.push_back(Addr); // Base register
9115 Ops.push_back(Inc);
9116
9117 // Return Types.
9118 EVT Tys[6];
9119 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
9120 unsigned n;
9121 for (n = 0; n < NumResultVecs; ++n)
9122 Tys[n] = VecTy;
9123 Tys[n++] = MVT::i64; // Type of write back register
9124 Tys[n] = MVT::Other; // Type of the chain
Craig Toppere1d12942014-08-27 05:25:25 +00009125 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
Tim Northover3b0846e2014-05-24 12:50:23 +00009126
9127 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
9128 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
9129 MemInt->getMemoryVT(),
9130 MemInt->getMemOperand());
9131
9132 // Update the uses.
9133 std::vector<SDValue> NewResults;
9134 for (unsigned i = 0; i < NumResultVecs; ++i) {
9135 NewResults.push_back(SDValue(UpdN.getNode(), i));
9136 }
9137 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
9138 DCI.CombineTo(N, NewResults);
9139 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
9140
9141 break;
9142 }
9143 return SDValue();
9144}
9145
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009146// Checks to see if the value is the prescribed width and returns information
9147// about its extension mode.
9148static
9149bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
9150 ExtType = ISD::NON_EXTLOAD;
9151 switch(V.getNode()->getOpcode()) {
9152 default:
9153 return false;
9154 case ISD::LOAD: {
9155 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
9156 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
9157 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
9158 ExtType = LoadNode->getExtensionType();
9159 return true;
9160 }
9161 return false;
9162 }
9163 case ISD::AssertSext: {
9164 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
9165 if ((TypeNode->getVT() == MVT::i8 && width == 8)
9166 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
9167 ExtType = ISD::SEXTLOAD;
9168 return true;
9169 }
9170 return false;
9171 }
9172 case ISD::AssertZext: {
9173 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
9174 if ((TypeNode->getVT() == MVT::i8 && width == 8)
9175 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
9176 ExtType = ISD::ZEXTLOAD;
9177 return true;
9178 }
9179 return false;
9180 }
9181 case ISD::Constant:
9182 case ISD::TargetConstant: {
Reid Kleckner39ad7c92014-08-29 22:14:26 +00009183 if (std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
Aaron Ballman8ca53882014-09-02 12:19:02 +00009184 1LL << (width - 1))
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009185 return true;
9186 return false;
9187 }
9188 }
9189
9190 return true;
9191}
9192
9193// This function does a whole lot of voodoo to determine if the tests are
9194// equivalent without and with a mask. Essentially what happens is that given a
9195// DAG resembling:
9196//
9197// +-------------+ +-------------+ +-------------+ +-------------+
9198// | Input | | AddConstant | | CompConstant| | CC |
9199// +-------------+ +-------------+ +-------------+ +-------------+
9200// | | | |
9201// V V | +----------+
9202// +-------------+ +----+ | |
9203// | ADD | |0xff| | |
9204// +-------------+ +----+ | |
9205// | | | |
9206// V V | |
9207// +-------------+ | |
9208// | AND | | |
9209// +-------------+ | |
9210// | | |
9211// +-----+ | |
9212// | | |
9213// V V V
9214// +-------------+
9215// | CMP |
9216// +-------------+
9217//
9218// The AND node may be safely removed for some combinations of inputs. In
9219// particular we need to take into account the extension type of the Input,
9220// the exact values of AddConstant, CompConstant, and CC, along with the nominal
9221// width of the input (this can work for any width inputs, the above graph is
9222// specific to 8 bits.
9223//
9224// The specific equations were worked out by generating output tables for each
9225// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
9226// problem was simplified by working with 4 bit inputs, which means we only
9227// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
9228// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
9229// patterns present in both extensions (0,7). For every distinct set of
9230// AddConstant and CompConstants bit patterns we can consider the masked and
9231// unmasked versions to be equivalent if the result of this function is true for
9232// all 16 distinct bit patterns of for the current extension type of Input (w0).
9233//
9234// sub w8, w0, w1
9235// and w10, w8, #0x0f
9236// cmp w8, w2
9237// cset w9, AArch64CC
9238// cmp w10, w2
9239// cset w11, AArch64CC
9240// cmp w9, w11
9241// cset w0, eq
9242// ret
9243//
9244// Since the above function shows when the outputs are equivalent it defines
9245// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
9246// would be expensive to run during compiles. The equations below were written
9247// in a test harness that confirmed they gave equivalent outputs to the above
9248// for all inputs function, so they can be used determine if the removal is
9249// legal instead.
9250//
9251// isEquivalentMaskless() is the code for testing if the AND can be removed
9252// factored out of the DAG recognition as the DAG can take several forms.
9253
9254static
9255bool isEquivalentMaskless(unsigned CC, unsigned width,
9256 ISD::LoadExtType ExtType, signed AddConstant,
9257 signed CompConstant) {
9258 // By being careful about our equations and only writing the in term
9259 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
9260 // make them generally applicable to all bit widths.
9261 signed MaxUInt = (1 << width);
9262
9263 // For the purposes of these comparisons sign extending the type is
9264 // equivalent to zero extending the add and displacing it by half the integer
9265 // width. Provided we are careful and make sure our equations are valid over
9266 // the whole range we can just adjust the input and avoid writing equations
9267 // for sign extended inputs.
9268 if (ExtType == ISD::SEXTLOAD)
9269 AddConstant -= (1 << (width-1));
9270
9271 switch(CC) {
9272 case AArch64CC::LE:
9273 case AArch64CC::GT: {
9274 if ((AddConstant == 0) ||
9275 (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
9276 (AddConstant >= 0 && CompConstant < 0) ||
9277 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
9278 return true;
9279 } break;
9280 case AArch64CC::LT:
9281 case AArch64CC::GE: {
9282 if ((AddConstant == 0) ||
9283 (AddConstant >= 0 && CompConstant <= 0) ||
9284 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
9285 return true;
9286 } break;
9287 case AArch64CC::HI:
9288 case AArch64CC::LS: {
9289 if ((AddConstant >= 0 && CompConstant < 0) ||
9290 (AddConstant <= 0 && CompConstant >= -1 &&
9291 CompConstant < AddConstant + MaxUInt))
9292 return true;
9293 } break;
9294 case AArch64CC::PL:
9295 case AArch64CC::MI: {
9296 if ((AddConstant == 0) ||
9297 (AddConstant > 0 && CompConstant <= 0) ||
9298 (AddConstant < 0 && CompConstant <= AddConstant))
9299 return true;
9300 } break;
9301 case AArch64CC::LO:
9302 case AArch64CC::HS: {
9303 if ((AddConstant >= 0 && CompConstant <= 0) ||
9304 (AddConstant <= 0 && CompConstant >= 0 &&
9305 CompConstant <= AddConstant + MaxUInt))
9306 return true;
9307 } break;
9308 case AArch64CC::EQ:
9309 case AArch64CC::NE: {
9310 if ((AddConstant > 0 && CompConstant < 0) ||
9311 (AddConstant < 0 && CompConstant >= 0 &&
9312 CompConstant < AddConstant + MaxUInt) ||
9313 (AddConstant >= 0 && CompConstant >= 0 &&
9314 CompConstant >= AddConstant) ||
9315 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
9316
9317 return true;
9318 } break;
9319 case AArch64CC::VS:
9320 case AArch64CC::VC:
9321 case AArch64CC::AL:
9322 case AArch64CC::NV:
9323 return true;
9324 case AArch64CC::Invalid:
9325 break;
9326 }
9327
9328 return false;
9329}
9330
9331static
9332SDValue performCONDCombine(SDNode *N,
9333 TargetLowering::DAGCombinerInfo &DCI,
9334 SelectionDAG &DAG, unsigned CCIndex,
9335 unsigned CmpIndex) {
9336 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
9337 SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
9338 unsigned CondOpcode = SubsNode->getOpcode();
9339
9340 if (CondOpcode != AArch64ISD::SUBS)
9341 return SDValue();
9342
9343 // There is a SUBS feeding this condition. Is it fed by a mask we can
9344 // use?
9345
9346 SDNode *AndNode = SubsNode->getOperand(0).getNode();
9347 unsigned MaskBits = 0;
9348
9349 if (AndNode->getOpcode() != ISD::AND)
9350 return SDValue();
9351
9352 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
9353 uint32_t CNV = CN->getZExtValue();
9354 if (CNV == 255)
9355 MaskBits = 8;
9356 else if (CNV == 65535)
9357 MaskBits = 16;
9358 }
9359
9360 if (!MaskBits)
9361 return SDValue();
9362
9363 SDValue AddValue = AndNode->getOperand(0);
9364
9365 if (AddValue.getOpcode() != ISD::ADD)
9366 return SDValue();
9367
9368 // The basic dag structure is correct, grab the inputs and validate them.
9369
9370 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
9371 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
9372 SDValue SubsInputValue = SubsNode->getOperand(1);
9373
9374 // The mask is present and the provenance of all the values is a smaller type,
9375 // lets see if the mask is superfluous.
9376
9377 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
9378 !isa<ConstantSDNode>(SubsInputValue.getNode()))
9379 return SDValue();
9380
9381 ISD::LoadExtType ExtType;
9382
9383 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
9384 !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
9385 !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
9386 return SDValue();
9387
9388 if(!isEquivalentMaskless(CC, MaskBits, ExtType,
9389 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
9390 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
9391 return SDValue();
9392
9393 // The AND is not necessary, remove it.
9394
9395 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
9396 SubsNode->getValueType(1));
9397 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
9398
9399 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
9400 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
9401
9402 return SDValue(N, 0);
9403}
9404
Tim Northover3b0846e2014-05-24 12:50:23 +00009405// Optimize compare with zero and branch.
9406static SDValue performBRCONDCombine(SDNode *N,
9407 TargetLowering::DAGCombinerInfo &DCI,
9408 SelectionDAG &DAG) {
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009409 SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3);
9410 if (NV.getNode())
9411 N = NV.getNode();
Tim Northover3b0846e2014-05-24 12:50:23 +00009412 SDValue Chain = N->getOperand(0);
9413 SDValue Dest = N->getOperand(1);
9414 SDValue CCVal = N->getOperand(2);
9415 SDValue Cmp = N->getOperand(3);
9416
9417 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
9418 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
9419 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
9420 return SDValue();
9421
9422 unsigned CmpOpc = Cmp.getOpcode();
9423 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
9424 return SDValue();
9425
9426 // Only attempt folding if there is only one use of the flag and no use of the
9427 // value.
9428 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
9429 return SDValue();
9430
9431 SDValue LHS = Cmp.getOperand(0);
9432 SDValue RHS = Cmp.getOperand(1);
9433
9434 assert(LHS.getValueType() == RHS.getValueType() &&
9435 "Expected the value type to be the same for both operands!");
9436 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
9437 return SDValue();
9438
Artyom Skrobov314ee042015-11-25 19:41:11 +00009439 if (isNullConstant(LHS))
Tim Northover3b0846e2014-05-24 12:50:23 +00009440 std::swap(LHS, RHS);
9441
Artyom Skrobov314ee042015-11-25 19:41:11 +00009442 if (!isNullConstant(RHS))
Tim Northover3b0846e2014-05-24 12:50:23 +00009443 return SDValue();
9444
9445 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
9446 LHS.getOpcode() == ISD::SRL)
9447 return SDValue();
9448
9449 // Fold the compare into the branch instruction.
9450 SDValue BR;
9451 if (CC == AArch64CC::EQ)
9452 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
9453 else
9454 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
9455
9456 // Do not add new nodes to DAG combiner worklist.
9457 DCI.CombineTo(N, BR, false);
9458
9459 return SDValue();
9460}
9461
9462// vselect (v1i1 setcc) ->
9463// vselect (v1iXX setcc) (XX is the size of the compared operand type)
9464// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
9465// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
9466// such VSELECT.
9467static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
9468 SDValue N0 = N->getOperand(0);
9469 EVT CCVT = N0.getValueType();
9470
9471 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
9472 CCVT.getVectorElementType() != MVT::i1)
9473 return SDValue();
9474
9475 EVT ResVT = N->getValueType(0);
9476 EVT CmpVT = N0.getOperand(0).getValueType();
9477 // Only combine when the result type is of the same size as the compared
9478 // operands.
9479 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
9480 return SDValue();
9481
9482 SDValue IfTrue = N->getOperand(1);
9483 SDValue IfFalse = N->getOperand(2);
9484 SDValue SetCC =
9485 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
9486 N0.getOperand(0), N0.getOperand(1),
9487 cast<CondCodeSDNode>(N0.getOperand(2))->get());
9488 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
9489 IfTrue, IfFalse);
9490}
9491
9492/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
9493/// the compare-mask instructions rather than going via NZCV, even if LHS and
9494/// RHS are really scalar. This replaces any scalar setcc in the above pattern
9495/// with a vector one followed by a DUP shuffle on the result.
Ahmed Bougachac004c602015-04-27 21:43:12 +00009496static SDValue performSelectCombine(SDNode *N,
9497 TargetLowering::DAGCombinerInfo &DCI) {
9498 SelectionDAG &DAG = DCI.DAG;
Tim Northover3b0846e2014-05-24 12:50:23 +00009499 SDValue N0 = N->getOperand(0);
9500 EVT ResVT = N->getValueType(0);
Tim Northover3c0915e2014-08-29 15:34:58 +00009501
Ahmed Bougachac004c602015-04-27 21:43:12 +00009502 if (N0.getOpcode() != ISD::SETCC)
Tim Northover3c0915e2014-08-29 15:34:58 +00009503 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00009504
Ahmed Bougachac004c602015-04-27 21:43:12 +00009505 // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
9506 // scalar SetCCResultType. We also don't expect vectors, because we assume
9507 // that selects fed by vector SETCCs are canonicalized to VSELECT.
9508 assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
9509 "Scalar-SETCC feeding SELECT has unexpected result type!");
9510
Tim Northoverc1c05ae2014-08-29 13:05:18 +00009511 // If NumMaskElts == 0, the comparison is larger than select result. The
9512 // largest real NEON comparison is 64-bits per lane, which means the result is
9513 // at most 32-bits and an illegal vector. Just bail out for now.
Tim Northover3c0915e2014-08-29 15:34:58 +00009514 EVT SrcVT = N0.getOperand(0).getValueType();
Ahmed Bougachad0ce0582014-12-01 20:59:00 +00009515
9516 // Don't try to do this optimization when the setcc itself has i1 operands.
9517 // There are no legal vectors of i1, so this would be pointless.
9518 if (SrcVT == MVT::i1)
9519 return SDValue();
9520
Tim Northover3c0915e2014-08-29 15:34:58 +00009521 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
Tim Northoverc1c05ae2014-08-29 13:05:18 +00009522 if (!ResVT.isVector() || NumMaskElts == 0)
Tim Northover3b0846e2014-05-24 12:50:23 +00009523 return SDValue();
9524
Tim Northoverc1c05ae2014-08-29 13:05:18 +00009525 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00009526 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
9527
Ahmed Bougacha89bba612015-04-27 21:01:20 +00009528 // Also bail out if the vector CCVT isn't the same size as ResVT.
9529 // This can happen if the SETCC operand size doesn't divide the ResVT size
9530 // (e.g., f64 vs v3f32).
9531 if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
9532 return SDValue();
9533
Ahmed Bougachac004c602015-04-27 21:43:12 +00009534 // Make sure we didn't create illegal types, if we're not supposed to.
9535 assert(DCI.isBeforeLegalize() ||
9536 DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
9537
Tim Northover3b0846e2014-05-24 12:50:23 +00009538 // First perform a vector comparison, where lane 0 is the one we're interested
9539 // in.
Tim Northoverc1c05ae2014-08-29 13:05:18 +00009540 SDLoc DL(N0);
Tim Northover3b0846e2014-05-24 12:50:23 +00009541 SDValue LHS =
9542 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
9543 SDValue RHS =
9544 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
9545 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
9546
9547 // Now duplicate the comparison mask we want across all other lanes.
9548 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
9549 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
Tim Northoverc1c05ae2014-08-29 13:05:18 +00009550 Mask = DAG.getNode(ISD::BITCAST, DL,
9551 ResVT.changeVectorElementTypeToInteger(), Mask);
Tim Northover3b0846e2014-05-24 12:50:23 +00009552
9553 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
9554}
9555
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00009556/// Get rid of unnecessary NVCASTs (that don't change the type).
9557static SDValue performNVCASTCombine(SDNode *N) {
9558 if (N->getValueType(0) == N->getOperand(0).getValueType())
9559 return N->getOperand(0);
9560
9561 return SDValue();
9562}
9563
Tim Northover3b0846e2014-05-24 12:50:23 +00009564SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
9565 DAGCombinerInfo &DCI) const {
9566 SelectionDAG &DAG = DCI.DAG;
9567 switch (N->getOpcode()) {
9568 default:
9569 break;
9570 case ISD::ADD:
9571 case ISD::SUB:
9572 return performAddSubLongCombine(N, DCI, DAG);
9573 case ISD::XOR:
9574 return performXorCombine(N, DAG, DCI, Subtarget);
9575 case ISD::MUL:
9576 return performMulCombine(N, DAG, DCI, Subtarget);
9577 case ISD::SINT_TO_FP:
9578 case ISD::UINT_TO_FP:
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00009579 return performIntToFpCombine(N, DAG, Subtarget);
Chad Rosierfa30c9b2015-10-07 17:39:18 +00009580 case ISD::FP_TO_SINT:
9581 case ISD::FP_TO_UINT:
9582 return performFpToIntCombine(N, DAG, Subtarget);
Chad Rosier7c6ac2b2015-10-07 17:51:37 +00009583 case ISD::FDIV:
9584 return performFDivCombine(N, DAG, Subtarget);
Tim Northover3b0846e2014-05-24 12:50:23 +00009585 case ISD::OR:
9586 return performORCombine(N, DCI, Subtarget);
9587 case ISD::INTRINSIC_WO_CHAIN:
9588 return performIntrinsicCombine(N, DCI, Subtarget);
9589 case ISD::ANY_EXTEND:
9590 case ISD::ZERO_EXTEND:
9591 case ISD::SIGN_EXTEND:
9592 return performExtendCombine(N, DCI, DAG);
9593 case ISD::BITCAST:
9594 return performBitcastCombine(N, DCI, DAG);
9595 case ISD::CONCAT_VECTORS:
9596 return performConcatVectorsCombine(N, DCI, DAG);
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009597 case ISD::SELECT: {
9598 SDValue RV = performSelectCombine(N, DCI);
9599 if (!RV.getNode())
9600 RV = performAcrossLaneMinMaxReductionCombine(N, DAG, Subtarget);
9601 return RV;
9602 }
Tim Northover3b0846e2014-05-24 12:50:23 +00009603 case ISD::VSELECT:
9604 return performVSelectCombine(N, DCI.DAG);
Tim Northover339c83e2015-11-10 00:44:23 +00009605 case ISD::LOAD:
9606 if (performTBISimplification(N->getOperand(1), DCI, DAG))
9607 return SDValue(N, 0);
9608 break;
Tim Northover3b0846e2014-05-24 12:50:23 +00009609 case ISD::STORE:
9610 return performSTORECombine(N, DCI, DAG, Subtarget);
9611 case AArch64ISD::BRCOND:
9612 return performBRCONDCombine(N, DCI, DAG);
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009613 case AArch64ISD::CSEL:
9614 return performCONDCombine(N, DCI, DAG, 2, 3);
Tim Northover3b0846e2014-05-24 12:50:23 +00009615 case AArch64ISD::DUP:
9616 return performPostLD1Combine(N, DCI, false);
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00009617 case AArch64ISD::NVCAST:
9618 return performNVCASTCombine(N);
Tim Northover3b0846e2014-05-24 12:50:23 +00009619 case ISD::INSERT_VECTOR_ELT:
9620 return performPostLD1Combine(N, DCI, true);
Chad Rosier6c36eff2015-09-03 18:13:57 +00009621 case ISD::EXTRACT_VECTOR_ELT:
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009622 return performAcrossLaneAddReductionCombine(N, DAG, Subtarget);
Tim Northover3b0846e2014-05-24 12:50:23 +00009623 case ISD::INTRINSIC_VOID:
9624 case ISD::INTRINSIC_W_CHAIN:
9625 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9626 case Intrinsic::aarch64_neon_ld2:
9627 case Intrinsic::aarch64_neon_ld3:
9628 case Intrinsic::aarch64_neon_ld4:
9629 case Intrinsic::aarch64_neon_ld1x2:
9630 case Intrinsic::aarch64_neon_ld1x3:
9631 case Intrinsic::aarch64_neon_ld1x4:
9632 case Intrinsic::aarch64_neon_ld2lane:
9633 case Intrinsic::aarch64_neon_ld3lane:
9634 case Intrinsic::aarch64_neon_ld4lane:
9635 case Intrinsic::aarch64_neon_ld2r:
9636 case Intrinsic::aarch64_neon_ld3r:
9637 case Intrinsic::aarch64_neon_ld4r:
9638 case Intrinsic::aarch64_neon_st2:
9639 case Intrinsic::aarch64_neon_st3:
9640 case Intrinsic::aarch64_neon_st4:
9641 case Intrinsic::aarch64_neon_st1x2:
9642 case Intrinsic::aarch64_neon_st1x3:
9643 case Intrinsic::aarch64_neon_st1x4:
9644 case Intrinsic::aarch64_neon_st2lane:
9645 case Intrinsic::aarch64_neon_st3lane:
9646 case Intrinsic::aarch64_neon_st4lane:
9647 return performNEONPostLDSTCombine(N, DCI, DAG);
9648 default:
9649 break;
9650 }
9651 }
9652 return SDValue();
9653}
9654
9655// Check if the return value is used as only a return value, as otherwise
9656// we can't perform a tail-call. In particular, we need to check for
9657// target ISD nodes that are returns and any other "odd" constructs
9658// that the generic analysis code won't necessarily catch.
9659bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
9660 SDValue &Chain) const {
9661 if (N->getNumValues() != 1)
9662 return false;
9663 if (!N->hasNUsesOfValue(1, 0))
9664 return false;
9665
9666 SDValue TCChain = Chain;
9667 SDNode *Copy = *N->use_begin();
9668 if (Copy->getOpcode() == ISD::CopyToReg) {
9669 // If the copy has a glue operand, we conservatively assume it isn't safe to
9670 // perform a tail call.
9671 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
9672 MVT::Glue)
9673 return false;
9674 TCChain = Copy->getOperand(0);
9675 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
9676 return false;
9677
9678 bool HasRet = false;
9679 for (SDNode *Node : Copy->uses()) {
9680 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
9681 return false;
9682 HasRet = true;
9683 }
9684
9685 if (!HasRet)
9686 return false;
9687
9688 Chain = TCChain;
9689 return true;
9690}
9691
9692// Return whether the an instruction can potentially be optimized to a tail
9693// call. This will cause the optimizers to attempt to move, or duplicate,
9694// return instructions to help enable tail call optimizations for this
9695// instruction.
9696bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
9697 if (!CI->isTailCall())
9698 return false;
9699
9700 return true;
9701}
9702
9703bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
9704 SDValue &Offset,
9705 ISD::MemIndexedMode &AM,
9706 bool &IsInc,
9707 SelectionDAG &DAG) const {
9708 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
9709 return false;
9710
9711 Base = Op->getOperand(0);
9712 // All of the indexed addressing mode instructions take a signed
9713 // 9 bit immediate offset.
9714 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
9715 int64_t RHSC = (int64_t)RHS->getZExtValue();
9716 if (RHSC >= 256 || RHSC <= -256)
9717 return false;
9718 IsInc = (Op->getOpcode() == ISD::ADD);
9719 Offset = Op->getOperand(1);
9720 return true;
9721 }
9722 return false;
9723}
9724
9725bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
9726 SDValue &Offset,
9727 ISD::MemIndexedMode &AM,
9728 SelectionDAG &DAG) const {
9729 EVT VT;
9730 SDValue Ptr;
9731 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9732 VT = LD->getMemoryVT();
9733 Ptr = LD->getBasePtr();
9734 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9735 VT = ST->getMemoryVT();
9736 Ptr = ST->getBasePtr();
9737 } else
9738 return false;
9739
9740 bool IsInc;
9741 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
9742 return false;
9743 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
9744 return true;
9745}
9746
9747bool AArch64TargetLowering::getPostIndexedAddressParts(
9748 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
9749 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
9750 EVT VT;
9751 SDValue Ptr;
9752 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9753 VT = LD->getMemoryVT();
9754 Ptr = LD->getBasePtr();
9755 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9756 VT = ST->getMemoryVT();
9757 Ptr = ST->getBasePtr();
9758 } else
9759 return false;
9760
9761 bool IsInc;
9762 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
9763 return false;
9764 // Post-indexing updates the base, so it's not a valid transform
9765 // if that's not the same as the load's pointer.
9766 if (Ptr != Base)
9767 return false;
9768 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
9769 return true;
9770}
9771
Tim Northoverf8bfe212014-07-18 13:07:05 +00009772static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
9773 SelectionDAG &DAG) {
Tim Northoverf8bfe212014-07-18 13:07:05 +00009774 SDLoc DL(N);
9775 SDValue Op = N->getOperand(0);
Ahmed Bougacha87946322014-12-01 20:52:32 +00009776
9777 if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
9778 return;
9779
Tim Northoverf8bfe212014-07-18 13:07:05 +00009780 Op = SDValue(
9781 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
9782 DAG.getUNDEF(MVT::i32), Op,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00009783 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
Tim Northoverf8bfe212014-07-18 13:07:05 +00009784 0);
9785 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
9786 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
9787}
9788
Charlie Turner434d4592015-10-16 15:38:25 +00009789static void ReplaceReductionResults(SDNode *N,
9790 SmallVectorImpl<SDValue> &Results,
9791 SelectionDAG &DAG, unsigned InterOp,
9792 unsigned AcrossOp) {
9793 EVT LoVT, HiVT;
9794 SDValue Lo, Hi;
9795 SDLoc dl(N);
9796 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
9797 std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
9798 SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
9799 SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
9800 Results.push_back(SplitVal);
9801}
9802
Tim Northover3b0846e2014-05-24 12:50:23 +00009803void AArch64TargetLowering::ReplaceNodeResults(
9804 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
9805 switch (N->getOpcode()) {
9806 default:
9807 llvm_unreachable("Don't know how to custom expand this");
Tim Northoverf8bfe212014-07-18 13:07:05 +00009808 case ISD::BITCAST:
9809 ReplaceBITCASTResults(N, Results, DAG);
9810 return;
Charlie Turner434d4592015-10-16 15:38:25 +00009811 case AArch64ISD::SADDV:
9812 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
9813 return;
9814 case AArch64ISD::UADDV:
9815 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
9816 return;
9817 case AArch64ISD::SMINV:
9818 ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
9819 return;
9820 case AArch64ISD::UMINV:
9821 ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
9822 return;
9823 case AArch64ISD::SMAXV:
9824 ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
9825 return;
9826 case AArch64ISD::UMAXV:
9827 ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
9828 return;
Tim Northover3b0846e2014-05-24 12:50:23 +00009829 case ISD::FP_TO_UINT:
9830 case ISD::FP_TO_SINT:
9831 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
9832 // Let normal code take care of it by not adding anything to Results.
9833 return;
9834 }
9835}
9836
Akira Hatanakae5b6e0d2014-07-25 19:31:34 +00009837bool AArch64TargetLowering::useLoadStackGuardNode() const {
9838 return true;
9839}
9840
Sanjay Patel1dd15592015-07-28 23:05:48 +00009841unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
Hao Liu44e5d7a2014-11-21 06:39:58 +00009842 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
9843 // reciprocal if there are three or more FDIVs.
Sanjay Patel1dd15592015-07-28 23:05:48 +00009844 return 3;
Hao Liu44e5d7a2014-11-21 06:39:58 +00009845}
9846
Chandler Carruth9d010ff2014-07-03 00:23:43 +00009847TargetLoweringBase::LegalizeTypeAction
9848AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
9849 MVT SVT = VT.getSimpleVT();
9850 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
9851 // v4i16, v2i32 instead of to promote.
9852 if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
9853 || SVT == MVT::v1f32)
9854 return TypeWidenVector;
9855
9856 return TargetLoweringBase::getPreferredVectorAction(VT);
9857}
9858
Robin Morisseted3d48f2014-09-03 21:29:59 +00009859// Loads and stores less than 128-bits are already atomic; ones above that
9860// are doomed anyway, so defer to the default libcall and blame the OS when
9861// things go wrong.
9862bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
9863 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
9864 return Size == 128;
9865}
9866
9867// Loads and stores less than 128-bits are already atomic; ones above that
9868// are doomed anyway, so defer to the default libcall and blame the OS when
9869// things go wrong.
Ahmed Bougacha52468672015-09-11 17:08:28 +00009870TargetLowering::AtomicExpansionKind
9871AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
Robin Morisseted3d48f2014-09-03 21:29:59 +00009872 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
Ahmed Bougacha52468672015-09-11 17:08:28 +00009873 return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
Robin Morisseted3d48f2014-09-03 21:29:59 +00009874}
9875
9876// For the real atomic operations, we have ldxr/stxr up to 128 bits,
Ahmed Bougacha52468672015-09-11 17:08:28 +00009877TargetLowering::AtomicExpansionKind
JF Bastienf14889e2015-03-04 15:47:57 +00009878AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
Robin Morisseted3d48f2014-09-03 21:29:59 +00009879 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
Ahmed Bougacha9d677132015-09-11 17:08:17 +00009880 return Size <= 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
Robin Morisseted3d48f2014-09-03 21:29:59 +00009881}
9882
Ahmed Bougacha52468672015-09-11 17:08:28 +00009883bool AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
9884 AtomicCmpXchgInst *AI) const {
Robin Morisset25c8e312014-09-17 00:06:58 +00009885 return true;
9886}
9887
Tim Northover3b0846e2014-05-24 12:50:23 +00009888Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
9889 AtomicOrdering Ord) const {
9890 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9891 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
Robin Morissetb155f522014-08-18 16:48:58 +00009892 bool IsAcquire = isAtLeastAcquire(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00009893
9894 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
9895 // intrinsic must return {i64, i64} and we have to recombine them into a
9896 // single i128 here.
9897 if (ValTy->getPrimitiveSizeInBits() == 128) {
9898 Intrinsic::ID Int =
9899 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
9900 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
9901
9902 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
9903 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
9904
9905 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
9906 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
9907 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
9908 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
9909 return Builder.CreateOr(
9910 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
9911 }
9912
9913 Type *Tys[] = { Addr->getType() };
9914 Intrinsic::ID Int =
9915 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
9916 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
9917
9918 return Builder.CreateTruncOrBitCast(
9919 Builder.CreateCall(Ldxr, Addr),
9920 cast<PointerType>(Addr->getType())->getElementType());
9921}
9922
Ahmed Bougacha07a844d2015-09-22 17:21:44 +00009923void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
9924 IRBuilder<> &Builder) const {
9925 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9926 Builder.CreateCall(
9927 llvm::Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
9928}
9929
Tim Northover3b0846e2014-05-24 12:50:23 +00009930Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
9931 Value *Val, Value *Addr,
9932 AtomicOrdering Ord) const {
9933 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Robin Morissetb155f522014-08-18 16:48:58 +00009934 bool IsRelease = isAtLeastRelease(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00009935
9936 // Since the intrinsics must have legal type, the i128 intrinsics take two
9937 // parameters: "i64, i64". We must marshal Val into the appropriate form
9938 // before the call.
9939 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
9940 Intrinsic::ID Int =
9941 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
9942 Function *Stxr = Intrinsic::getDeclaration(M, Int);
9943 Type *Int64Ty = Type::getInt64Ty(M->getContext());
9944
9945 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
9946 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
9947 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
David Blaikieff6409d2015-05-18 22:13:54 +00009948 return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
Tim Northover3b0846e2014-05-24 12:50:23 +00009949 }
9950
9951 Intrinsic::ID Int =
9952 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
9953 Type *Tys[] = { Addr->getType() };
9954 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
9955
David Blaikieff6409d2015-05-18 22:13:54 +00009956 return Builder.CreateCall(Stxr,
9957 {Builder.CreateZExtOrBitCast(
9958 Val, Stxr->getFunctionType()->getParamType(0)),
9959 Addr});
Tim Northover3b0846e2014-05-24 12:50:23 +00009960}
Tim Northover3c55cca2014-11-27 21:02:42 +00009961
9962bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
9963 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
9964 return Ty->isArrayTy();
9965}
Matthias Braunaf7d7702015-07-16 20:02:37 +00009966
9967bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
9968 EVT) const {
9969 return false;
9970}
Evgeniy Stepanovd1aad262015-10-26 18:28:25 +00009971
9972Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
9973 if (!Subtarget->isTargetAndroid())
9974 return TargetLowering::getSafeStackPointerLocation(IRB);
9975
9976 // Android provides a fixed TLS slot for the SafeStack pointer. See the
9977 // definition of TLS_SLOT_SAFESTACK in
9978 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
9979 const unsigned TlsOffset = 0x48;
9980 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
9981 Function *ThreadPointerFunc =
9982 Intrinsic::getDeclaration(M, Intrinsic::aarch64_thread_pointer);
9983 return IRB.CreatePointerCast(
9984 IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), TlsOffset),
9985 Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0));
9986}