blob: 3a8b711dff3fd12abcbdf303b0958b626be5ce65 [file] [log] [blame]
Tim Northover3b0846e2014-05-24 12:50:23 +00001//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AArch64TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AArch64ISelLowering.h"
Tim Northover3c55cca2014-11-27 21:02:42 +000015#include "AArch64CallingConvention.h"
Benjamin Kramer1f8930e2014-07-25 11:42:14 +000016#include "AArch64MachineFunctionInfo.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000017#include "AArch64PerfectShuffle.h"
18#include "AArch64Subtarget.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000019#include "AArch64TargetMachine.h"
20#include "AArch64TargetObjectFile.h"
21#include "MCTargetDesc/AArch64AddressingModes.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/IR/Function.h"
David Blaikie457343d2015-05-21 21:12:43 +000028#include "llvm/IR/GetElementPtrTypeIterator.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000029#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/Type.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetOptions.h"
36using namespace llvm;
37
38#define DEBUG_TYPE "aarch64-lower"
39
40STATISTIC(NumTailCalls, "Number of tail calls");
41STATISTIC(NumShiftInserts, "Number of vector shift inserts");
42
Alexey Samsonovf17f03e2014-08-19 18:40:39 +000043namespace {
Tim Northover3b0846e2014-05-24 12:50:23 +000044enum AlignMode {
45 StrictAlign,
46 NoStrictAlign
47};
Alexey Samsonovf17f03e2014-08-19 18:40:39 +000048}
Tim Northover3b0846e2014-05-24 12:50:23 +000049
50static cl::opt<AlignMode>
51Align(cl::desc("Load/store alignment support"),
52 cl::Hidden, cl::init(NoStrictAlign),
53 cl::values(
54 clEnumValN(StrictAlign, "aarch64-strict-align",
55 "Disallow all unaligned memory accesses"),
56 clEnumValN(NoStrictAlign, "aarch64-no-strict-align",
57 "Allow unaligned memory accesses"),
58 clEnumValEnd));
59
60// Place holder until extr generation is tested fully.
61static cl::opt<bool>
62EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
63 cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
64 cl::init(true));
65
66static cl::opt<bool>
67EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
Kristof Beylsaea84612015-03-04 09:12:08 +000068 cl::desc("Allow AArch64 SLI/SRI formation"),
69 cl::init(false));
70
71// FIXME: The necessary dtprel relocations don't seem to be supported
72// well in the GNU bfd and gold linkers at the moment. Therefore, by
73// default, for now, fall back to GeneralDynamic code generation.
74cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
75 "aarch64-elf-ldtls-generation", cl::Hidden,
76 cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
77 cl::init(false));
Tim Northover3b0846e2014-05-24 12:50:23 +000078
Matthias Braunaf7d7702015-07-16 20:02:37 +000079/// Value type used for condition codes.
80static const MVT MVT_CC = MVT::i32;
81
Eric Christopher905f12d2015-01-29 00:19:42 +000082AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
83 const AArch64Subtarget &STI)
84 : TargetLowering(TM), Subtarget(&STI) {
Tim Northover3b0846e2014-05-24 12:50:23 +000085
86 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
87 // we have to make something up. Arbitrarily, choose ZeroOrOne.
88 setBooleanContents(ZeroOrOneBooleanContent);
89 // When comparing vectors the result sets the different elements in the
90 // vector to all-one or all-zero.
91 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
92
93 // Set up the register classes.
94 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
95 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
96
97 if (Subtarget->hasFPARMv8()) {
98 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
99 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
100 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
101 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
102 }
103
104 if (Subtarget->hasNEON()) {
105 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
106 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
107 // Someone set us up the NEON.
108 addDRTypeForNEON(MVT::v2f32);
109 addDRTypeForNEON(MVT::v8i8);
110 addDRTypeForNEON(MVT::v4i16);
111 addDRTypeForNEON(MVT::v2i32);
112 addDRTypeForNEON(MVT::v1i64);
113 addDRTypeForNEON(MVT::v1f64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000114 addDRTypeForNEON(MVT::v4f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000115
116 addQRTypeForNEON(MVT::v4f32);
117 addQRTypeForNEON(MVT::v2f64);
118 addQRTypeForNEON(MVT::v16i8);
119 addQRTypeForNEON(MVT::v8i16);
120 addQRTypeForNEON(MVT::v4i32);
121 addQRTypeForNEON(MVT::v2i64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000122 addQRTypeForNEON(MVT::v8f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000123 }
124
125 // Compute derived properties from the register classes
Eric Christopher23a3a7c2015-02-26 00:00:24 +0000126 computeRegisterProperties(Subtarget->getRegisterInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +0000127
128 // Provide all sorts of operation actions
129 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
130 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
131 setOperationAction(ISD::SETCC, MVT::i32, Custom);
132 setOperationAction(ISD::SETCC, MVT::i64, Custom);
133 setOperationAction(ISD::SETCC, MVT::f32, Custom);
134 setOperationAction(ISD::SETCC, MVT::f64, Custom);
135 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
136 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
137 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
138 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
139 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
140 setOperationAction(ISD::SELECT, MVT::i32, Custom);
141 setOperationAction(ISD::SELECT, MVT::i64, Custom);
142 setOperationAction(ISD::SELECT, MVT::f32, Custom);
143 setOperationAction(ISD::SELECT, MVT::f64, Custom);
144 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
145 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
146 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
147 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
148 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
149 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
150
151 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
152 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
153 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
154
155 setOperationAction(ISD::FREM, MVT::f32, Expand);
156 setOperationAction(ISD::FREM, MVT::f64, Expand);
157 setOperationAction(ISD::FREM, MVT::f80, Expand);
158
159 // Custom lowering hooks are needed for XOR
160 // to fold it into CSINC/CSINV.
161 setOperationAction(ISD::XOR, MVT::i32, Custom);
162 setOperationAction(ISD::XOR, MVT::i64, Custom);
163
164 // Virtually no operation on f128 is legal, but LLVM can't expand them when
165 // there's a valid register class, so we need custom operations in most cases.
166 setOperationAction(ISD::FABS, MVT::f128, Expand);
167 setOperationAction(ISD::FADD, MVT::f128, Custom);
168 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
169 setOperationAction(ISD::FCOS, MVT::f128, Expand);
170 setOperationAction(ISD::FDIV, MVT::f128, Custom);
171 setOperationAction(ISD::FMA, MVT::f128, Expand);
172 setOperationAction(ISD::FMUL, MVT::f128, Custom);
173 setOperationAction(ISD::FNEG, MVT::f128, Expand);
174 setOperationAction(ISD::FPOW, MVT::f128, Expand);
175 setOperationAction(ISD::FREM, MVT::f128, Expand);
176 setOperationAction(ISD::FRINT, MVT::f128, Expand);
177 setOperationAction(ISD::FSIN, MVT::f128, Expand);
178 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
179 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
180 setOperationAction(ISD::FSUB, MVT::f128, Custom);
181 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
182 setOperationAction(ISD::SETCC, MVT::f128, Custom);
183 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
184 setOperationAction(ISD::SELECT, MVT::f128, Custom);
185 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
186 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
187
188 // Lowering for many of the conversions is actually specified by the non-f128
189 // type. The LowerXXX function will be trivial when f128 isn't involved.
190 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
191 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
192 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
193 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
194 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
195 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
196 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
197 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
198 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
199 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
200 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
201 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
202 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
203 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
204
205 // Variable arguments.
206 setOperationAction(ISD::VASTART, MVT::Other, Custom);
207 setOperationAction(ISD::VAARG, MVT::Other, Custom);
208 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
209 setOperationAction(ISD::VAEND, MVT::Other, Expand);
210
211 // Variable-sized objects.
212 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
213 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
214 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
215
216 // Exception handling.
217 // FIXME: These are guesses. Has this been defined yet?
218 setExceptionPointerRegister(AArch64::X0);
219 setExceptionSelectorRegister(AArch64::X1);
220
221 // Constant pool entries
222 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
223
224 // BlockAddress
225 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
226
227 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
228 setOperationAction(ISD::ADDC, MVT::i32, Custom);
229 setOperationAction(ISD::ADDE, MVT::i32, Custom);
230 setOperationAction(ISD::SUBC, MVT::i32, Custom);
231 setOperationAction(ISD::SUBE, MVT::i32, Custom);
232 setOperationAction(ISD::ADDC, MVT::i64, Custom);
233 setOperationAction(ISD::ADDE, MVT::i64, Custom);
234 setOperationAction(ISD::SUBC, MVT::i64, Custom);
235 setOperationAction(ISD::SUBE, MVT::i64, Custom);
236
237 // AArch64 lacks both left-rotate and popcount instructions.
238 setOperationAction(ISD::ROTL, MVT::i32, Expand);
239 setOperationAction(ISD::ROTL, MVT::i64, Expand);
240
241 // AArch64 doesn't have {U|S}MUL_LOHI.
242 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
243 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
244
245
246 // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
247 // counterparts, which AArch64 supports directly.
248 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
249 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
250 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
251 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
252
253 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
254 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
255
256 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
257 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
258 setOperationAction(ISD::SREM, MVT::i32, Expand);
259 setOperationAction(ISD::SREM, MVT::i64, Expand);
260 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
261 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
262 setOperationAction(ISD::UREM, MVT::i32, Expand);
263 setOperationAction(ISD::UREM, MVT::i64, Expand);
264
265 // Custom lower Add/Sub/Mul with overflow.
266 setOperationAction(ISD::SADDO, MVT::i32, Custom);
267 setOperationAction(ISD::SADDO, MVT::i64, Custom);
268 setOperationAction(ISD::UADDO, MVT::i32, Custom);
269 setOperationAction(ISD::UADDO, MVT::i64, Custom);
270 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
271 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
272 setOperationAction(ISD::USUBO, MVT::i32, Custom);
273 setOperationAction(ISD::USUBO, MVT::i64, Custom);
274 setOperationAction(ISD::SMULO, MVT::i32, Custom);
275 setOperationAction(ISD::SMULO, MVT::i64, Custom);
276 setOperationAction(ISD::UMULO, MVT::i32, Custom);
277 setOperationAction(ISD::UMULO, MVT::i64, Custom);
278
279 setOperationAction(ISD::FSIN, MVT::f32, Expand);
280 setOperationAction(ISD::FSIN, MVT::f64, Expand);
281 setOperationAction(ISD::FCOS, MVT::f32, Expand);
282 setOperationAction(ISD::FCOS, MVT::f64, Expand);
283 setOperationAction(ISD::FPOW, MVT::f32, Expand);
284 setOperationAction(ISD::FPOW, MVT::f64, Expand);
285 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
286 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
287
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +0000288 // f16 is a storage-only type, always promote it to f32.
289 setOperationAction(ISD::SETCC, MVT::f16, Promote);
290 setOperationAction(ISD::BR_CC, MVT::f16, Promote);
291 setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
292 setOperationAction(ISD::SELECT, MVT::f16, Promote);
293 setOperationAction(ISD::FADD, MVT::f16, Promote);
294 setOperationAction(ISD::FSUB, MVT::f16, Promote);
295 setOperationAction(ISD::FMUL, MVT::f16, Promote);
296 setOperationAction(ISD::FDIV, MVT::f16, Promote);
297 setOperationAction(ISD::FREM, MVT::f16, Promote);
298 setOperationAction(ISD::FMA, MVT::f16, Promote);
299 setOperationAction(ISD::FNEG, MVT::f16, Promote);
300 setOperationAction(ISD::FABS, MVT::f16, Promote);
301 setOperationAction(ISD::FCEIL, MVT::f16, Promote);
302 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
303 setOperationAction(ISD::FCOS, MVT::f16, Promote);
304 setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
305 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
306 setOperationAction(ISD::FPOW, MVT::f16, Promote);
307 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
308 setOperationAction(ISD::FRINT, MVT::f16, Promote);
309 setOperationAction(ISD::FSIN, MVT::f16, Promote);
310 setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
311 setOperationAction(ISD::FSQRT, MVT::f16, Promote);
312 setOperationAction(ISD::FEXP, MVT::f16, Promote);
313 setOperationAction(ISD::FEXP2, MVT::f16, Promote);
314 setOperationAction(ISD::FLOG, MVT::f16, Promote);
315 setOperationAction(ISD::FLOG2, MVT::f16, Promote);
316 setOperationAction(ISD::FLOG10, MVT::f16, Promote);
317 setOperationAction(ISD::FROUND, MVT::f16, Promote);
318 setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
319 setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
320 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
Oliver Stannardf5469be2014-08-18 14:22:39 +0000321
Oliver Stannard89d15422014-08-27 16:16:04 +0000322 // v4f16 is also a storage-only type, so promote it to v4f32 when that is
323 // known to be safe.
324 setOperationAction(ISD::FADD, MVT::v4f16, Promote);
325 setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
326 setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
327 setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
328 setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
329 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
330 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
331 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
332 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
333 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
334 AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
335 AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
336
337 // Expand all other v4f16 operations.
338 // FIXME: We could generate better code by promoting some operations to
339 // a pair of v4f32s
340 setOperationAction(ISD::FABS, MVT::v4f16, Expand);
341 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
342 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
343 setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
344 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
345 setOperationAction(ISD::FMA, MVT::v4f16, Expand);
346 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
347 setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
348 setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
349 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
350 setOperationAction(ISD::FREM, MVT::v4f16, Expand);
351 setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
352 setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
353 setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
354 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
355 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
356 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
357 setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
358 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
359 setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
360 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
361 setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
362 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
363 setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
364 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
365 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
366
367
368 // v8f16 is also a storage-only type, so expand it.
369 setOperationAction(ISD::FABS, MVT::v8f16, Expand);
370 setOperationAction(ISD::FADD, MVT::v8f16, Expand);
371 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
372 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
373 setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
374 setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
375 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
376 setOperationAction(ISD::FMA, MVT::v8f16, Expand);
377 setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
378 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
379 setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
380 setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
381 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
382 setOperationAction(ISD::FREM, MVT::v8f16, Expand);
383 setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
384 setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
385 setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
386 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
387 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
388 setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
389 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
390 setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
391 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
392 setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
393 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
394 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
395 setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
396 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
397 setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
398 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
399 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
400
Tim Northover3b0846e2014-05-24 12:50:23 +0000401 // AArch64 has implementations of a lot of rounding-like FP operations.
Benjamin Kramer57a3d082015-03-08 16:07:39 +0000402 for (MVT Ty : {MVT::f32, MVT::f64}) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000403 setOperationAction(ISD::FFLOOR, Ty, Legal);
404 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
405 setOperationAction(ISD::FCEIL, Ty, Legal);
406 setOperationAction(ISD::FRINT, Ty, Legal);
407 setOperationAction(ISD::FTRUNC, Ty, Legal);
408 setOperationAction(ISD::FROUND, Ty, Legal);
409 }
410
411 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
412
413 if (Subtarget->isTargetMachO()) {
414 // For iOS, we don't want to the normal expansion of a libcall to
415 // sincos. We want to issue a libcall to __sincos_stret to avoid memory
416 // traffic.
417 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
418 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
419 } else {
420 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
421 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
422 }
423
Juergen Ributzka23266502014-12-10 19:43:32 +0000424 // Make floating-point constants legal for the large code model, so they don't
425 // become loads from the constant pool.
426 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
427 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
428 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
429 }
430
Tim Northover3b0846e2014-05-24 12:50:23 +0000431 // AArch64 does not have floating-point extending loads, i1 sign-extending
432 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000433 for (MVT VT : MVT::fp_valuetypes()) {
434 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
435 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
436 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
437 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
438 }
439 for (MVT VT : MVT::integer_valuetypes())
440 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
441
Tim Northover3b0846e2014-05-24 12:50:23 +0000442 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
443 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
444 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
445 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
446 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
447 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
448 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
Tim Northoverf8bfe212014-07-18 13:07:05 +0000449
450 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
451 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
452
Tim Northover3b0846e2014-05-24 12:50:23 +0000453 // Indexed loads and stores are supported.
454 for (unsigned im = (unsigned)ISD::PRE_INC;
455 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
456 setIndexedLoadAction(im, MVT::i8, Legal);
457 setIndexedLoadAction(im, MVT::i16, Legal);
458 setIndexedLoadAction(im, MVT::i32, Legal);
459 setIndexedLoadAction(im, MVT::i64, Legal);
460 setIndexedLoadAction(im, MVT::f64, Legal);
461 setIndexedLoadAction(im, MVT::f32, Legal);
462 setIndexedStoreAction(im, MVT::i8, Legal);
463 setIndexedStoreAction(im, MVT::i16, Legal);
464 setIndexedStoreAction(im, MVT::i32, Legal);
465 setIndexedStoreAction(im, MVT::i64, Legal);
466 setIndexedStoreAction(im, MVT::f64, Legal);
467 setIndexedStoreAction(im, MVT::f32, Legal);
468 }
469
470 // Trap.
471 setOperationAction(ISD::TRAP, MVT::Other, Legal);
472
473 // We combine OR nodes for bitfield operations.
474 setTargetDAGCombine(ISD::OR);
475
476 // Vector add and sub nodes may conceal a high-half opportunity.
477 // Also, try to fold ADD into CSINC/CSINV..
478 setTargetDAGCombine(ISD::ADD);
479 setTargetDAGCombine(ISD::SUB);
480
481 setTargetDAGCombine(ISD::XOR);
482 setTargetDAGCombine(ISD::SINT_TO_FP);
483 setTargetDAGCombine(ISD::UINT_TO_FP);
484
485 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
486
487 setTargetDAGCombine(ISD::ANY_EXTEND);
488 setTargetDAGCombine(ISD::ZERO_EXTEND);
489 setTargetDAGCombine(ISD::SIGN_EXTEND);
490 setTargetDAGCombine(ISD::BITCAST);
491 setTargetDAGCombine(ISD::CONCAT_VECTORS);
492 setTargetDAGCombine(ISD::STORE);
493
494 setTargetDAGCombine(ISD::MUL);
495
496 setTargetDAGCombine(ISD::SELECT);
497 setTargetDAGCombine(ISD::VSELECT);
Artyom Skrobova70dfe12015-05-14 12:59:46 +0000498 setTargetDAGCombine(ISD::SELECT_CC);
Tim Northover3b0846e2014-05-24 12:50:23 +0000499
500 setTargetDAGCombine(ISD::INTRINSIC_VOID);
501 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
502 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
503
504 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
505 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
506 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
507
508 setStackPointerRegisterToSaveRestore(AArch64::SP);
509
510 setSchedulingPreference(Sched::Hybrid);
511
512 // Enable TBZ/TBNZ
513 MaskAndBranchFoldingIsLegal = true;
Quentin Colombet6843ac42015-03-31 20:52:32 +0000514 EnableExtLdPromotion = true;
Tim Northover3b0846e2014-05-24 12:50:23 +0000515
516 setMinFunctionAlignment(2);
517
518 RequireStrictAlign = (Align == StrictAlign);
519
520 setHasExtractBitsInsn(true);
521
522 if (Subtarget->hasNEON()) {
523 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
524 // silliness like this:
525 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
526 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
527 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
528 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
529 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
530 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
531 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
532 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
533 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
534 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
535 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
536 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
537 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
538 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
539 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
540 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
541 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
542 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
543 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
544 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
545 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
546 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
547 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
548 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
549 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
550
551 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
552 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
553 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
554 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
555 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
556
557 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
558
559 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
560 // elements smaller than i32, so promote the input to i32 first.
561 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
562 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
563 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
564 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
Pirama Arumuga Nainarb1881532015-04-23 17:16:27 +0000565 // i8 and i16 vector elements also need promotion to i32 for v8i8 or v8i16
566 // -> v8f16 conversions.
567 setOperationAction(ISD::SINT_TO_FP, MVT::v8i8, Promote);
568 setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Promote);
569 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote);
570 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Promote);
Tim Northover3b0846e2014-05-24 12:50:23 +0000571 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
572 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
573 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
574 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
575 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
Pirama Arumuga Nainarb1881532015-04-23 17:16:27 +0000576 // Or, direct i32 -> f16 vector conversion. Set it so custom, so the
577 // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
578 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
579 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
Tim Northover3b0846e2014-05-24 12:50:23 +0000580
581 // AArch64 doesn't have MUL.2d:
582 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
Chad Rosierd9d0f862014-10-08 02:31:24 +0000583 // Custom handling for some quad-vector types to detect MULL.
584 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
585 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
586 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
587
Tim Northover3b0846e2014-05-24 12:50:23 +0000588 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
589 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
590 // Likewise, narrowing and extending vector loads/stores aren't handled
591 // directly.
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000592 for (MVT VT : MVT::vector_valuetypes()) {
593 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000594
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000595 setOperationAction(ISD::MULHS, VT, Expand);
596 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
597 setOperationAction(ISD::MULHU, VT, Expand);
598 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000599
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000600 setOperationAction(ISD::BSWAP, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000601
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000602 for (MVT InnerVT : MVT::vector_valuetypes()) {
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000603 setTruncStoreAction(VT, InnerVT, Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000604 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
605 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
606 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
607 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000608 }
609
610 // AArch64 has implementations of a lot of rounding-like FP operations.
Benjamin Kramer57a3d082015-03-08 16:07:39 +0000611 for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000612 setOperationAction(ISD::FFLOOR, Ty, Legal);
613 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
614 setOperationAction(ISD::FCEIL, Ty, Legal);
615 setOperationAction(ISD::FRINT, Ty, Legal);
616 setOperationAction(ISD::FTRUNC, Ty, Legal);
617 setOperationAction(ISD::FROUND, Ty, Legal);
618 }
619 }
James Molloyf089ab72014-08-06 10:42:18 +0000620
621 // Prefer likely predicted branches to selects on out-of-order cores.
622 if (Subtarget->isCortexA57())
623 PredictableSelectIsExpensive = true;
Tim Northover3b0846e2014-05-24 12:50:23 +0000624}
625
626void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000627 if (VT == MVT::v2f32 || VT == MVT::v4f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000628 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
629 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
630
631 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
632 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000633 } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000634 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
635 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
636
637 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
638 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
639 }
640
641 // Mark vector float intrinsics as expand.
642 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
643 setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
644 setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
645 setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
646 setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
647 setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
648 setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
649 setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
650 setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
651 setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
652 }
653
654 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
655 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
656 setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
657 setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
658 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
659 setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
660 setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
661 setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
662 setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
663 setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
664 setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
665 setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
666
667 setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
668 setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
669 setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000670 for (MVT InnerVT : MVT::all_valuetypes())
671 setLoadExtAction(ISD::EXTLOAD, InnerVT, VT.getSimpleVT(), Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000672
673 // CNT supports only B element sizes.
674 if (VT != MVT::v8i8 && VT != MVT::v16i8)
675 setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
676
677 setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
678 setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
679 setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
680 setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
681 setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
682
683 setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
684 setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
685
James Molloyfaf4e3c2015-07-17 17:10:45 +0000686 // [SU][MIN|MAX] and [SU]ABSDIFF are available for all NEON types apart from
687 // i64.
James Molloycfb04432015-05-15 16:15:57 +0000688 if (!VT.isFloatingPoint() &&
689 VT.getSimpleVT() != MVT::v2i64 && VT.getSimpleVT() != MVT::v1i64)
James Molloyfaf4e3c2015-07-17 17:10:45 +0000690 for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX,
691 ISD::SABSDIFF, ISD::UABSDIFF})
James Molloycfb04432015-05-15 16:15:57 +0000692 setOperationAction(Opcode, VT.getSimpleVT(), Legal);
693
Tim Northover3b0846e2014-05-24 12:50:23 +0000694 if (Subtarget->isLittleEndian()) {
695 for (unsigned im = (unsigned)ISD::PRE_INC;
696 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
697 setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
698 setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
699 }
700 }
701}
702
703void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
704 addRegisterClass(VT, &AArch64::FPR64RegClass);
705 addTypeForNEON(VT, MVT::v2i32);
706}
707
708void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
709 addRegisterClass(VT, &AArch64::FPR128RegClass);
710 addTypeForNEON(VT, MVT::v4i32);
711}
712
Mehdi Amini44ede332015-07-09 02:09:04 +0000713EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
714 EVT VT) const {
Tim Northover3b0846e2014-05-24 12:50:23 +0000715 if (!VT.isVector())
716 return MVT::i32;
717 return VT.changeVectorElementTypeToInteger();
718}
719
720/// computeKnownBitsForTargetNode - Determine which of the bits specified in
721/// Mask are known to be either zero or one and return them in the
722/// KnownZero/KnownOne bitsets.
723void AArch64TargetLowering::computeKnownBitsForTargetNode(
724 const SDValue Op, APInt &KnownZero, APInt &KnownOne,
725 const SelectionDAG &DAG, unsigned Depth) const {
726 switch (Op.getOpcode()) {
727 default:
728 break;
729 case AArch64ISD::CSEL: {
730 APInt KnownZero2, KnownOne2;
731 DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
732 DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
733 KnownZero &= KnownZero2;
734 KnownOne &= KnownOne2;
735 break;
736 }
737 case ISD::INTRINSIC_W_CHAIN: {
738 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
739 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
740 switch (IntID) {
741 default: return;
742 case Intrinsic::aarch64_ldaxr:
743 case Intrinsic::aarch64_ldxr: {
744 unsigned BitWidth = KnownOne.getBitWidth();
745 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
746 unsigned MemBits = VT.getScalarType().getSizeInBits();
747 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
748 return;
749 }
750 }
751 break;
752 }
753 case ISD::INTRINSIC_WO_CHAIN:
754 case ISD::INTRINSIC_VOID: {
755 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
756 switch (IntNo) {
757 default:
758 break;
759 case Intrinsic::aarch64_neon_umaxv:
760 case Intrinsic::aarch64_neon_uminv: {
761 // Figure out the datatype of the vector operand. The UMINV instruction
762 // will zero extend the result, so we can mark as known zero all the
763 // bits larger than the element datatype. 32-bit or larget doesn't need
764 // this as those are legal types and will be handled by isel directly.
765 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
766 unsigned BitWidth = KnownZero.getBitWidth();
767 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
768 assert(BitWidth >= 8 && "Unexpected width!");
769 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
770 KnownZero |= Mask;
771 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
772 assert(BitWidth >= 16 && "Unexpected width!");
773 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
774 KnownZero |= Mask;
775 }
776 break;
777 } break;
778 }
779 }
780 }
781}
782
Mehdi Aminieaabc512015-07-09 15:12:23 +0000783MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
784 EVT) const {
Tim Northover3b0846e2014-05-24 12:50:23 +0000785 return MVT::i64;
786}
787
Tim Northover3b0846e2014-05-24 12:50:23 +0000788FastISel *
789AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
790 const TargetLibraryInfo *libInfo) const {
791 return AArch64::createFastISel(funcInfo, libInfo);
792}
793
794const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
Matthias Braund04893f2015-05-07 21:33:59 +0000795 switch ((AArch64ISD::NodeType)Opcode) {
796 case AArch64ISD::FIRST_NUMBER: break;
Tim Northover3b0846e2014-05-24 12:50:23 +0000797 case AArch64ISD::CALL: return "AArch64ISD::CALL";
798 case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
799 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
800 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
801 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
802 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
803 case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
804 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
805 case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
806 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
807 case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
808 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
Kristof Beylsaea84612015-03-04 09:12:08 +0000809 case AArch64ISD::TLSDESC_CALLSEQ: return "AArch64ISD::TLSDESC_CALLSEQ";
Tim Northover3b0846e2014-05-24 12:50:23 +0000810 case AArch64ISD::ADC: return "AArch64ISD::ADC";
811 case AArch64ISD::SBC: return "AArch64ISD::SBC";
812 case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
813 case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
814 case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
815 case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
816 case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
Matthias Braunaf7d7702015-07-16 20:02:37 +0000817 case AArch64ISD::CCMP: return "AArch64ISD::CCMP";
818 case AArch64ISD::CCMN: return "AArch64ISD::CCMN";
819 case AArch64ISD::FCCMP: return "AArch64ISD::FCCMP";
Tim Northover3b0846e2014-05-24 12:50:23 +0000820 case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
821 case AArch64ISD::FMIN: return "AArch64ISD::FMIN";
822 case AArch64ISD::FMAX: return "AArch64ISD::FMAX";
823 case AArch64ISD::DUP: return "AArch64ISD::DUP";
824 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
825 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
826 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
827 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
828 case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
829 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
830 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
831 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
832 case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
833 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
834 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
835 case AArch64ISD::BICi: return "AArch64ISD::BICi";
836 case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
837 case AArch64ISD::BSL: return "AArch64ISD::BSL";
838 case AArch64ISD::NEG: return "AArch64ISD::NEG";
839 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
840 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
841 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
842 case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
843 case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
844 case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
845 case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
846 case AArch64ISD::REV16: return "AArch64ISD::REV16";
847 case AArch64ISD::REV32: return "AArch64ISD::REV32";
848 case AArch64ISD::REV64: return "AArch64ISD::REV64";
849 case AArch64ISD::EXT: return "AArch64ISD::EXT";
850 case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
851 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
852 case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
853 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
854 case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
855 case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
856 case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
857 case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
858 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
859 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
860 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
861 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
862 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
863 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
864 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
865 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
866 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
867 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
868 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
869 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
870 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
Ahmed Bougachafab58922015-03-10 20:45:38 +0000871 case AArch64ISD::SADDV: return "AArch64ISD::SADDV";
872 case AArch64ISD::UADDV: return "AArch64ISD::UADDV";
873 case AArch64ISD::SMINV: return "AArch64ISD::SMINV";
874 case AArch64ISD::UMINV: return "AArch64ISD::UMINV";
875 case AArch64ISD::SMAXV: return "AArch64ISD::SMAXV";
876 case AArch64ISD::UMAXV: return "AArch64ISD::UMAXV";
Tim Northover3b0846e2014-05-24 12:50:23 +0000877 case AArch64ISD::NOT: return "AArch64ISD::NOT";
878 case AArch64ISD::BIT: return "AArch64ISD::BIT";
879 case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
880 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
881 case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
882 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
883 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
Matthias Braund04893f2015-05-07 21:33:59 +0000884 case AArch64ISD::PREFETCH: return "AArch64ISD::PREFETCH";
Tim Northover3b0846e2014-05-24 12:50:23 +0000885 case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
886 case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
Asiri Rathnayake530b3ed2014-10-01 09:59:45 +0000887 case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
Tim Northover3b0846e2014-05-24 12:50:23 +0000888 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
889 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
890 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
891 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
892 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
893 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
894 case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
895 case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
896 case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
897 case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
898 case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
899 case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
900 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
901 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
902 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
903 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
904 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
905 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
906 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
907 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
908 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
909 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
910 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
911 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
912 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
913 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
914 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
915 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
916 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
Chad Rosierd9d0f862014-10-08 02:31:24 +0000917 case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
918 case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
Tim Northover3b0846e2014-05-24 12:50:23 +0000919 }
Matthias Braund04893f2015-05-07 21:33:59 +0000920 return nullptr;
Tim Northover3b0846e2014-05-24 12:50:23 +0000921}
922
923MachineBasicBlock *
924AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
925 MachineBasicBlock *MBB) const {
926 // We materialise the F128CSEL pseudo-instruction as some control flow and a
927 // phi node:
928
929 // OrigBB:
930 // [... previous instrs leading to comparison ...]
931 // b.ne TrueBB
932 // b EndBB
933 // TrueBB:
934 // ; Fallthrough
935 // EndBB:
936 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
937
Tim Northover3b0846e2014-05-24 12:50:23 +0000938 MachineFunction *MF = MBB->getParent();
Eric Christopher905f12d2015-01-29 00:19:42 +0000939 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +0000940 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
941 DebugLoc DL = MI->getDebugLoc();
942 MachineFunction::iterator It = MBB;
943 ++It;
944
945 unsigned DestReg = MI->getOperand(0).getReg();
946 unsigned IfTrueReg = MI->getOperand(1).getReg();
947 unsigned IfFalseReg = MI->getOperand(2).getReg();
948 unsigned CondCode = MI->getOperand(3).getImm();
949 bool NZCVKilled = MI->getOperand(4).isKill();
950
951 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
952 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
953 MF->insert(It, TrueBB);
954 MF->insert(It, EndBB);
955
956 // Transfer rest of current basic-block to EndBB
957 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
958 MBB->end());
959 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
960
961 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
962 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
963 MBB->addSuccessor(TrueBB);
964 MBB->addSuccessor(EndBB);
965
966 // TrueBB falls through to the end.
967 TrueBB->addSuccessor(EndBB);
968
969 if (!NZCVKilled) {
970 TrueBB->addLiveIn(AArch64::NZCV);
971 EndBB->addLiveIn(AArch64::NZCV);
972 }
973
974 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
975 .addReg(IfTrueReg)
976 .addMBB(TrueBB)
977 .addReg(IfFalseReg)
978 .addMBB(MBB);
979
980 MI->eraseFromParent();
981 return EndBB;
982}
983
984MachineBasicBlock *
985AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
986 MachineBasicBlock *BB) const {
987 switch (MI->getOpcode()) {
988 default:
989#ifndef NDEBUG
990 MI->dump();
991#endif
Craig Topper35b2f752014-06-19 06:10:58 +0000992 llvm_unreachable("Unexpected instruction for custom inserter!");
Tim Northover3b0846e2014-05-24 12:50:23 +0000993
994 case AArch64::F128CSEL:
995 return EmitF128CSEL(MI, BB);
996
997 case TargetOpcode::STACKMAP:
998 case TargetOpcode::PATCHPOINT:
999 return emitPatchPoint(MI, BB);
1000 }
Tim Northover3b0846e2014-05-24 12:50:23 +00001001}
1002
1003//===----------------------------------------------------------------------===//
1004// AArch64 Lowering private implementation.
1005//===----------------------------------------------------------------------===//
1006
1007//===----------------------------------------------------------------------===//
1008// Lowering Code
1009//===----------------------------------------------------------------------===//
1010
1011/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
1012/// CC
1013static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
1014 switch (CC) {
1015 default:
1016 llvm_unreachable("Unknown condition code!");
1017 case ISD::SETNE:
1018 return AArch64CC::NE;
1019 case ISD::SETEQ:
1020 return AArch64CC::EQ;
1021 case ISD::SETGT:
1022 return AArch64CC::GT;
1023 case ISD::SETGE:
1024 return AArch64CC::GE;
1025 case ISD::SETLT:
1026 return AArch64CC::LT;
1027 case ISD::SETLE:
1028 return AArch64CC::LE;
1029 case ISD::SETUGT:
1030 return AArch64CC::HI;
1031 case ISD::SETUGE:
1032 return AArch64CC::HS;
1033 case ISD::SETULT:
1034 return AArch64CC::LO;
1035 case ISD::SETULE:
1036 return AArch64CC::LS;
1037 }
1038}
1039
1040/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
1041static void changeFPCCToAArch64CC(ISD::CondCode CC,
1042 AArch64CC::CondCode &CondCode,
1043 AArch64CC::CondCode &CondCode2) {
1044 CondCode2 = AArch64CC::AL;
1045 switch (CC) {
1046 default:
1047 llvm_unreachable("Unknown FP condition!");
1048 case ISD::SETEQ:
1049 case ISD::SETOEQ:
1050 CondCode = AArch64CC::EQ;
1051 break;
1052 case ISD::SETGT:
1053 case ISD::SETOGT:
1054 CondCode = AArch64CC::GT;
1055 break;
1056 case ISD::SETGE:
1057 case ISD::SETOGE:
1058 CondCode = AArch64CC::GE;
1059 break;
1060 case ISD::SETOLT:
1061 CondCode = AArch64CC::MI;
1062 break;
1063 case ISD::SETOLE:
1064 CondCode = AArch64CC::LS;
1065 break;
1066 case ISD::SETONE:
1067 CondCode = AArch64CC::MI;
1068 CondCode2 = AArch64CC::GT;
1069 break;
1070 case ISD::SETO:
1071 CondCode = AArch64CC::VC;
1072 break;
1073 case ISD::SETUO:
1074 CondCode = AArch64CC::VS;
1075 break;
1076 case ISD::SETUEQ:
1077 CondCode = AArch64CC::EQ;
1078 CondCode2 = AArch64CC::VS;
1079 break;
1080 case ISD::SETUGT:
1081 CondCode = AArch64CC::HI;
1082 break;
1083 case ISD::SETUGE:
1084 CondCode = AArch64CC::PL;
1085 break;
1086 case ISD::SETLT:
1087 case ISD::SETULT:
1088 CondCode = AArch64CC::LT;
1089 break;
1090 case ISD::SETLE:
1091 case ISD::SETULE:
1092 CondCode = AArch64CC::LE;
1093 break;
1094 case ISD::SETNE:
1095 case ISD::SETUNE:
1096 CondCode = AArch64CC::NE;
1097 break;
1098 }
1099}
1100
1101/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1102/// CC usable with the vector instructions. Fewer operations are available
1103/// without a real NZCV register, so we have to use less efficient combinations
1104/// to get the same effect.
1105static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1106 AArch64CC::CondCode &CondCode,
1107 AArch64CC::CondCode &CondCode2,
1108 bool &Invert) {
1109 Invert = false;
1110 switch (CC) {
1111 default:
1112 // Mostly the scalar mappings work fine.
1113 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1114 break;
1115 case ISD::SETUO:
1116 Invert = true; // Fallthrough
1117 case ISD::SETO:
1118 CondCode = AArch64CC::MI;
1119 CondCode2 = AArch64CC::GE;
1120 break;
1121 case ISD::SETUEQ:
1122 case ISD::SETULT:
1123 case ISD::SETULE:
1124 case ISD::SETUGT:
1125 case ISD::SETUGE:
1126 // All of the compare-mask comparisons are ordered, but we can switch
1127 // between the two by a double inversion. E.g. ULE == !OGT.
1128 Invert = true;
1129 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1130 break;
1131 }
1132}
1133
1134static bool isLegalArithImmed(uint64_t C) {
1135 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1136 return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1137}
1138
1139static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1140 SDLoc dl, SelectionDAG &DAG) {
1141 EVT VT = LHS.getValueType();
1142
1143 if (VT.isFloatingPoint())
1144 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1145
1146 // The CMP instruction is just an alias for SUBS, and representing it as
1147 // SUBS means that it's possible to get CSE with subtract operations.
1148 // A later phase can perform the optimization of setting the destination
1149 // register to WZR/XZR if it ends up being unused.
1150 unsigned Opcode = AArch64ISD::SUBS;
1151
1152 if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) &&
1153 cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 &&
1154 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1155 // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1156 // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1157 // can be set differently by this operation. It comes down to whether
1158 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1159 // everything is fine. If not then the optimization is wrong. Thus general
1160 // comparisons are only valid if op2 != 0.
1161
1162 // So, finally, the only LLVM-native comparisons that don't mention C and V
1163 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1164 // the absence of information about op2.
1165 Opcode = AArch64ISD::ADDS;
1166 RHS = RHS.getOperand(1);
1167 } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) &&
1168 cast<ConstantSDNode>(RHS)->getZExtValue() == 0 &&
1169 !isUnsignedIntSetCC(CC)) {
1170 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1171 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1172 // of the signed comparisons.
1173 Opcode = AArch64ISD::ANDS;
1174 RHS = LHS.getOperand(1);
1175 LHS = LHS.getOperand(0);
1176 }
1177
Matthias Braunaf7d7702015-07-16 20:02:37 +00001178 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
Tim Northover3b0846e2014-05-24 12:50:23 +00001179 .getValue(1);
1180}
1181
Matthias Braunaf7d7702015-07-16 20:02:37 +00001182/// \defgroup AArch64CCMP CMP;CCMP matching
1183///
1184/// These functions deal with the formation of CMP;CCMP;... sequences.
1185/// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
1186/// a comparison. They set the NZCV flags to a predefined value if their
1187/// predicate is false. This allows to express arbitrary conjunctions, for
1188/// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B))))"
1189/// expressed as:
1190/// cmp A
1191/// ccmp B, inv(CB), CA
1192/// check for CB flags
1193///
1194/// In general we can create code for arbitrary "... (and (and A B) C)"
1195/// sequences. We can also implement some "or" expressions, because "(or A B)"
1196/// is equivalent to "not (and (not A) (not B))" and we can implement some
1197/// negation operations:
1198/// We can negate the results of a single comparison by inverting the flags
1199/// used when the predicate fails and inverting the flags tested in the next
1200/// instruction; We can also negate the results of the whole previous
1201/// conditional compare sequence by inverting the flags tested in the next
1202/// instruction. However there is no way to negate the result of a partial
1203/// sequence.
1204///
1205/// Therefore on encountering an "or" expression we can negate the subtree on
1206/// one side and have to be able to push the negate to the leafs of the subtree
1207/// on the other side (see also the comments in code). As complete example:
1208/// "or (or (setCA (cmp A)) (setCB (cmp B)))
1209/// (and (setCC (cmp C)) (setCD (cmp D)))"
1210/// is transformed to
1211/// "not (and (not (and (setCC (cmp C)) (setCC (cmp D))))
1212/// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
1213/// and implemented as:
1214/// cmp C
1215/// ccmp D, inv(CD), CC
1216/// ccmp A, CA, inv(CD)
1217/// ccmp B, CB, inv(CA)
1218/// check for CB flags
1219/// A counterexample is "or (and A B) (and C D)" which cannot be implemented
1220/// by conditional compare sequences.
1221/// @{
1222
1223/// Create a conditional comparison; Use CCMP, CCMN or FCCMP as apropriate.
1224static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
1225 ISD::CondCode CC, SDValue CCOp,
1226 SDValue Condition, unsigned NZCV,
1227 SDLoc DL, SelectionDAG &DAG) {
1228 unsigned Opcode = 0;
1229 if (LHS.getValueType().isFloatingPoint())
1230 Opcode = AArch64ISD::FCCMP;
1231 else if (RHS.getOpcode() == ISD::SUB) {
1232 SDValue SubOp0 = RHS.getOperand(0);
1233 if (const ConstantSDNode *SubOp0C = dyn_cast<ConstantSDNode>(SubOp0))
1234 if (SubOp0C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1235 // See emitComparison() on why we can only do this for SETEQ and SETNE.
1236 Opcode = AArch64ISD::CCMN;
1237 RHS = RHS.getOperand(1);
1238 }
1239 }
1240 if (Opcode == 0)
1241 Opcode = AArch64ISD::CCMP;
1242
1243 SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
1244 return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
1245}
1246
1247/// Returns true if @p Val is a tree of AND/OR/SETCC operations.
1248/// CanPushNegate is set to true if we can push a negate operation through
1249/// the tree in a was that we are left with AND operations and negate operations
1250/// at the leafs only. i.e. "not (or (or x y) z)" can be changed to
1251/// "and (and (not x) (not y)) (not z)"; "not (or (and x y) z)" cannot be
1252/// brought into such a form.
1253static bool isConjunctionDisjunctionTree(const SDValue Val, bool &CanPushNegate,
1254 unsigned Depth = 0) {
1255 if (!Val.hasOneUse())
1256 return false;
1257 unsigned Opcode = Val->getOpcode();
1258 if (Opcode == ISD::SETCC) {
1259 CanPushNegate = true;
1260 return true;
1261 }
1262 // Protect against stack overflow.
1263 if (Depth > 15)
1264 return false;
1265 if (Opcode == ISD::AND || Opcode == ISD::OR) {
1266 SDValue O0 = Val->getOperand(0);
1267 SDValue O1 = Val->getOperand(1);
1268 bool CanPushNegateL;
1269 if (!isConjunctionDisjunctionTree(O0, CanPushNegateL, Depth+1))
1270 return false;
1271 bool CanPushNegateR;
1272 if (!isConjunctionDisjunctionTree(O1, CanPushNegateR, Depth+1))
1273 return false;
1274 // We cannot push a negate through an AND operation (it would become an OR),
1275 // we can however change a (not (or x y)) to (and (not x) (not y)) if we can
1276 // push the negate through the x/y subtrees.
1277 CanPushNegate = (Opcode == ISD::OR) && CanPushNegateL && CanPushNegateR;
1278 return true;
1279 }
1280 return false;
1281}
1282
1283/// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1284/// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1285/// Tries to transform the given i1 producing node @p Val to a series compare
1286/// and conditional compare operations. @returns an NZCV flags producing node
1287/// and sets @p OutCC to the flags that should be tested or returns SDValue() if
1288/// transformation was not possible.
1289/// On recursive invocations @p PushNegate may be set to true to have negation
1290/// effects pushed to the tree leafs; @p Predicate is an NZCV flag predicate
1291/// for the comparisons in the current subtree; @p Depth limits the search
1292/// depth to avoid stack overflow.
1293static SDValue emitConjunctionDisjunctionTree(SelectionDAG &DAG, SDValue Val,
1294 AArch64CC::CondCode &OutCC, bool PushNegate = false,
1295 SDValue CCOp = SDValue(), AArch64CC::CondCode Predicate = AArch64CC::AL,
1296 unsigned Depth = 0) {
1297 // We're at a tree leaf, produce a conditional comparison operation.
1298 unsigned Opcode = Val->getOpcode();
1299 if (Opcode == ISD::SETCC) {
1300 SDValue LHS = Val->getOperand(0);
1301 SDValue RHS = Val->getOperand(1);
1302 ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
1303 bool isInteger = LHS.getValueType().isInteger();
1304 if (PushNegate)
1305 CC = getSetCCInverse(CC, isInteger);
1306 SDLoc DL(Val);
1307 // Determine OutCC and handle FP special case.
1308 if (isInteger) {
1309 OutCC = changeIntCCToAArch64CC(CC);
1310 } else {
1311 assert(LHS.getValueType().isFloatingPoint());
1312 AArch64CC::CondCode ExtraCC;
1313 changeFPCCToAArch64CC(CC, OutCC, ExtraCC);
1314 // Surpisingly some floating point conditions can't be tested with a
1315 // single condition code. Construct an additional comparison in this case.
1316 // See comment below on how we deal with OR conditions.
1317 if (ExtraCC != AArch64CC::AL) {
1318 SDValue ExtraCmp;
1319 if (!CCOp.getNode())
1320 ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
1321 else {
1322 SDValue ConditionOp = DAG.getConstant(Predicate, DL, MVT_CC);
1323 // Note that we want the inverse of ExtraCC, so NZCV is not inversed.
1324 unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(ExtraCC);
1325 ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, ConditionOp,
1326 NZCV, DL, DAG);
1327 }
1328 CCOp = ExtraCmp;
1329 Predicate = AArch64CC::getInvertedCondCode(ExtraCC);
1330 OutCC = AArch64CC::getInvertedCondCode(OutCC);
1331 }
1332 }
1333
1334 // Produce a normal comparison if we are first in the chain
1335 if (!CCOp.getNode())
1336 return emitComparison(LHS, RHS, CC, DL, DAG);
1337 // Otherwise produce a ccmp.
1338 SDValue ConditionOp = DAG.getConstant(Predicate, DL, MVT_CC);
1339 AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
1340 unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
1341 return emitConditionalComparison(LHS, RHS, CC, CCOp, ConditionOp, NZCV, DL,
1342 DAG);
1343 } else if (Opcode != ISD::AND && Opcode != ISD::OR)
1344 return SDValue();
1345
1346 assert((Opcode == ISD::OR || !PushNegate)
1347 && "Can only push negate through OR operation");
1348
1349 // Check if both sides can be transformed.
1350 SDValue LHS = Val->getOperand(0);
1351 SDValue RHS = Val->getOperand(1);
1352 bool CanPushNegateL;
1353 if (!isConjunctionDisjunctionTree(LHS, CanPushNegateL, Depth+1))
1354 return SDValue();
1355 bool CanPushNegateR;
1356 if (!isConjunctionDisjunctionTree(RHS, CanPushNegateR, Depth+1))
1357 return SDValue();
1358
1359 // Do we need to negate our operands?
1360 bool NegateOperands = Opcode == ISD::OR;
1361 // We can negate the results of all previous operations by inverting the
1362 // predicate flags giving us a free negation for one side. For the other side
1363 // we need to be able to push the negation to the leafs of the tree.
1364 if (NegateOperands) {
1365 if (!CanPushNegateL && !CanPushNegateR)
1366 return SDValue();
1367 // Order the side where we can push the negate through to LHS.
1368 if (!CanPushNegateL && CanPushNegateR) {
1369 std::swap(LHS, RHS);
1370 CanPushNegateL = true;
1371 }
1372 }
1373
1374 // Emit RHS. If we want to negate the tree we only need to push a negate
1375 // through if we are already in a PushNegate case, otherwise we can negate
1376 // the "flags to test" afterwards.
1377 AArch64CC::CondCode RHSCC;
1378 SDValue CmpR = emitConjunctionDisjunctionTree(DAG, RHS, RHSCC, PushNegate,
1379 CCOp, Predicate, Depth+1);
1380 if (NegateOperands && !PushNegate)
1381 RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
1382 // Emit LHS. We must push the negate through if we need to negate it.
1383 SDValue CmpL = emitConjunctionDisjunctionTree(DAG, LHS, OutCC, NegateOperands,
1384 CmpR, RHSCC, Depth+1);
1385 // If we transformed an OR to and AND then we have to negate the result
1386 // (or absorb a PushNegate resulting in a double negation).
1387 if (Opcode == ISD::OR && !PushNegate)
1388 OutCC = AArch64CC::getInvertedCondCode(OutCC);
1389 return CmpL;
1390}
1391
1392/// @}
1393
Tim Northover3b0846e2014-05-24 12:50:23 +00001394static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1395 SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
1396 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1397 EVT VT = RHS.getValueType();
1398 uint64_t C = RHSC->getZExtValue();
1399 if (!isLegalArithImmed(C)) {
1400 // Constant does not fit, try adjusting it by one?
1401 switch (CC) {
1402 default:
1403 break;
1404 case ISD::SETLT:
1405 case ISD::SETGE:
1406 if ((VT == MVT::i32 && C != 0x80000000 &&
1407 isLegalArithImmed((uint32_t)(C - 1))) ||
1408 (VT == MVT::i64 && C != 0x80000000ULL &&
1409 isLegalArithImmed(C - 1ULL))) {
1410 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1411 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001412 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001413 }
1414 break;
1415 case ISD::SETULT:
1416 case ISD::SETUGE:
1417 if ((VT == MVT::i32 && C != 0 &&
1418 isLegalArithImmed((uint32_t)(C - 1))) ||
1419 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1420 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1421 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001422 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001423 }
1424 break;
1425 case ISD::SETLE:
1426 case ISD::SETGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001427 if ((VT == MVT::i32 && C != INT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001428 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001429 (VT == MVT::i64 && C != INT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001430 isLegalArithImmed(C + 1ULL))) {
1431 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1432 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001433 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001434 }
1435 break;
1436 case ISD::SETULE:
1437 case ISD::SETUGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001438 if ((VT == MVT::i32 && C != UINT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001439 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001440 (VT == MVT::i64 && C != UINT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001441 isLegalArithImmed(C + 1ULL))) {
1442 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1443 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001444 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001445 }
1446 break;
1447 }
1448 }
1449 }
Matthias Braunaf7d7702015-07-16 20:02:37 +00001450 SDValue Cmp;
1451 AArch64CC::CondCode AArch64CC;
David Xuee978202014-08-28 04:59:53 +00001452 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
Matthias Braunaf7d7702015-07-16 20:02:37 +00001453 const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
1454
1455 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1456 // For the i8 operand, the largest immediate is 255, so this can be easily
1457 // encoded in the compare instruction. For the i16 operand, however, the
1458 // largest immediate cannot be encoded in the compare.
1459 // Therefore, use a sign extending load and cmn to avoid materializing the
1460 // -1 constant. For example,
1461 // movz w1, #65535
1462 // ldrh w0, [x0, #0]
1463 // cmp w0, w1
1464 // >
1465 // ldrsh w0, [x0, #0]
1466 // cmn w0, #1
1467 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1468 // if and only if (sext LHS) == (sext RHS). The checks are in place to
1469 // ensure both the LHS and RHS are truely zero extended and to make sure the
1470 // transformation is profitable.
1471 if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
1472 cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1473 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1474 LHS.getNode()->hasNUsesOfValue(1, 0)) {
1475 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1476 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1477 SDValue SExt =
1478 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1479 DAG.getValueType(MVT::i16));
1480 Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
1481 RHS.getValueType()),
1482 CC, dl, DAG);
1483 AArch64CC = changeIntCCToAArch64CC(CC);
1484 }
1485 }
1486
1487 if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
1488 if ((Cmp = emitConjunctionDisjunctionTree(DAG, LHS, AArch64CC))) {
1489 if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
1490 AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
David Xuee978202014-08-28 04:59:53 +00001491 }
1492 }
1493 }
Matthias Braunaf7d7702015-07-16 20:02:37 +00001494
1495 if (!Cmp) {
1496 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1497 AArch64CC = changeIntCCToAArch64CC(CC);
1498 }
1499 AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
Tim Northover3b0846e2014-05-24 12:50:23 +00001500 return Cmp;
1501}
1502
1503static std::pair<SDValue, SDValue>
1504getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1505 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1506 "Unsupported value type");
1507 SDValue Value, Overflow;
1508 SDLoc DL(Op);
1509 SDValue LHS = Op.getOperand(0);
1510 SDValue RHS = Op.getOperand(1);
1511 unsigned Opc = 0;
1512 switch (Op.getOpcode()) {
1513 default:
1514 llvm_unreachable("Unknown overflow instruction!");
1515 case ISD::SADDO:
1516 Opc = AArch64ISD::ADDS;
1517 CC = AArch64CC::VS;
1518 break;
1519 case ISD::UADDO:
1520 Opc = AArch64ISD::ADDS;
1521 CC = AArch64CC::HS;
1522 break;
1523 case ISD::SSUBO:
1524 Opc = AArch64ISD::SUBS;
1525 CC = AArch64CC::VS;
1526 break;
1527 case ISD::USUBO:
1528 Opc = AArch64ISD::SUBS;
1529 CC = AArch64CC::LO;
1530 break;
1531 // Multiply needs a little bit extra work.
1532 case ISD::SMULO:
1533 case ISD::UMULO: {
1534 CC = AArch64CC::NE;
David Blaikie186d2cb2015-03-24 16:24:01 +00001535 bool IsSigned = Op.getOpcode() == ISD::SMULO;
Tim Northover3b0846e2014-05-24 12:50:23 +00001536 if (Op.getValueType() == MVT::i32) {
1537 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1538 // For a 32 bit multiply with overflow check we want the instruction
1539 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1540 // need to generate the following pattern:
1541 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1542 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1543 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1544 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1545 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001546 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001547 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1548 // operation. We need to clear out the upper 32 bits, because we used a
1549 // widening multiply that wrote all 64 bits. In the end this should be a
1550 // noop.
1551 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1552 if (IsSigned) {
1553 // The signed overflow check requires more than just a simple check for
1554 // any bit set in the upper 32 bits of the result. These bits could be
1555 // just the sign bits of a negative number. To perform the overflow
1556 // check we have to arithmetic shift right the 32nd bit of the result by
1557 // 31 bits. Then we compare the result to the upper 32 bits.
1558 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001559 DAG.getConstant(32, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001560 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1561 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001562 DAG.getConstant(31, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001563 // It is important that LowerBits is last, otherwise the arithmetic
1564 // shift will not be folded into the compare (SUBS).
1565 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1566 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1567 .getValue(1);
1568 } else {
1569 // The overflow check for unsigned multiply is easy. We only need to
1570 // check if any of the upper 32 bits are set. This can be done with a
1571 // CMP (shifted register). For that we need to generate the following
1572 // pattern:
1573 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1574 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001575 DAG.getConstant(32, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001576 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1577 Overflow =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001578 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1579 DAG.getConstant(0, DL, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00001580 UpperBits).getValue(1);
1581 }
1582 break;
1583 }
1584 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1585 // For the 64 bit multiply
1586 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1587 if (IsSigned) {
1588 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1589 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001590 DAG.getConstant(63, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001591 // It is important that LowerBits is last, otherwise the arithmetic
1592 // shift will not be folded into the compare (SUBS).
1593 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1594 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1595 .getValue(1);
1596 } else {
1597 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1598 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1599 Overflow =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001600 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1601 DAG.getConstant(0, DL, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00001602 UpperBits).getValue(1);
1603 }
1604 break;
1605 }
1606 } // switch (...)
1607
1608 if (Opc) {
1609 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1610
1611 // Emit the AArch64 operation with overflow check.
1612 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1613 Overflow = Value.getValue(1);
1614 }
1615 return std::make_pair(Value, Overflow);
1616}
1617
1618SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1619 RTLIB::Libcall Call) const {
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00001620 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
Tim Northover3b0846e2014-05-24 12:50:23 +00001621 return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false,
1622 SDLoc(Op)).first;
1623}
1624
1625static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1626 SDValue Sel = Op.getOperand(0);
1627 SDValue Other = Op.getOperand(1);
1628
1629 // If neither operand is a SELECT_CC, give up.
1630 if (Sel.getOpcode() != ISD::SELECT_CC)
1631 std::swap(Sel, Other);
1632 if (Sel.getOpcode() != ISD::SELECT_CC)
1633 return Op;
1634
1635 // The folding we want to perform is:
1636 // (xor x, (select_cc a, b, cc, 0, -1) )
1637 // -->
1638 // (csel x, (xor x, -1), cc ...)
1639 //
1640 // The latter will get matched to a CSINV instruction.
1641
1642 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1643 SDValue LHS = Sel.getOperand(0);
1644 SDValue RHS = Sel.getOperand(1);
1645 SDValue TVal = Sel.getOperand(2);
1646 SDValue FVal = Sel.getOperand(3);
1647 SDLoc dl(Sel);
1648
1649 // FIXME: This could be generalized to non-integer comparisons.
1650 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1651 return Op;
1652
1653 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1654 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1655
Eric Christopher572e03a2015-06-19 01:53:21 +00001656 // The values aren't constants, this isn't the pattern we're looking for.
Tim Northover3b0846e2014-05-24 12:50:23 +00001657 if (!CFVal || !CTVal)
1658 return Op;
1659
1660 // We can commute the SELECT_CC by inverting the condition. This
1661 // might be needed to make this fit into a CSINV pattern.
1662 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1663 std::swap(TVal, FVal);
1664 std::swap(CTVal, CFVal);
1665 CC = ISD::getSetCCInverse(CC, true);
1666 }
1667
1668 // If the constants line up, perform the transform!
1669 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1670 SDValue CCVal;
1671 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1672
1673 FVal = Other;
1674 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001675 DAG.getConstant(-1ULL, dl, Other.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00001676
1677 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1678 CCVal, Cmp);
1679 }
1680
1681 return Op;
1682}
1683
1684static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1685 EVT VT = Op.getValueType();
1686
1687 // Let legalize expand this if it isn't a legal type yet.
1688 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1689 return SDValue();
1690
1691 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1692
1693 unsigned Opc;
1694 bool ExtraOp = false;
1695 switch (Op.getOpcode()) {
1696 default:
Craig Topper2a30d782014-06-18 05:05:13 +00001697 llvm_unreachable("Invalid code");
Tim Northover3b0846e2014-05-24 12:50:23 +00001698 case ISD::ADDC:
1699 Opc = AArch64ISD::ADDS;
1700 break;
1701 case ISD::SUBC:
1702 Opc = AArch64ISD::SUBS;
1703 break;
1704 case ISD::ADDE:
1705 Opc = AArch64ISD::ADCS;
1706 ExtraOp = true;
1707 break;
1708 case ISD::SUBE:
1709 Opc = AArch64ISD::SBCS;
1710 ExtraOp = true;
1711 break;
1712 }
1713
1714 if (!ExtraOp)
1715 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1716 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1717 Op.getOperand(2));
1718}
1719
1720static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1721 // Let legalize expand this if it isn't a legal type yet.
1722 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1723 return SDValue();
1724
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001725 SDLoc dl(Op);
Tim Northover3b0846e2014-05-24 12:50:23 +00001726 AArch64CC::CondCode CC;
1727 // The actual operation that sets the overflow or carry flag.
1728 SDValue Value, Overflow;
1729 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1730
1731 // We use 0 and 1 as false and true values.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001732 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
1733 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00001734
1735 // We use an inverted condition, because the conditional select is inverted
1736 // too. This will allow it to be selected to a single instruction:
1737 // CSINC Wd, WZR, WZR, invert(cond).
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001738 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
1739 Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
Tim Northover3b0846e2014-05-24 12:50:23 +00001740 CCVal, Overflow);
1741
1742 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001743 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
Tim Northover3b0846e2014-05-24 12:50:23 +00001744}
1745
1746// Prefetch operands are:
1747// 1: Address to prefetch
1748// 2: bool isWrite
1749// 3: int locality (0 = no locality ... 3 = extreme locality)
1750// 4: bool isDataCache
1751static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1752 SDLoc DL(Op);
1753 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1754 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
Yi Konge56de692014-08-05 12:46:47 +00001755 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00001756
1757 bool IsStream = !Locality;
1758 // When the locality number is set
1759 if (Locality) {
1760 // The front-end should have filtered out the out-of-range values
1761 assert(Locality <= 3 && "Prefetch locality out-of-range");
1762 // The locality degree is the opposite of the cache speed.
1763 // Put the number the other way around.
1764 // The encoding starts at 0 for level 1
1765 Locality = 3 - Locality;
1766 }
1767
1768 // built the mask value encoding the expected behavior.
1769 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
Yi Konge56de692014-08-05 12:46:47 +00001770 (!IsData << 3) | // IsDataCache bit
Tim Northover3b0846e2014-05-24 12:50:23 +00001771 (Locality << 1) | // Cache level bits
1772 (unsigned)IsStream; // Stream bit
1773 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001774 DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
Tim Northover3b0846e2014-05-24 12:50:23 +00001775}
1776
1777SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1778 SelectionDAG &DAG) const {
1779 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1780
1781 RTLIB::Libcall LC;
1782 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1783
1784 return LowerF128Call(Op, DAG, LC);
1785}
1786
1787SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1788 SelectionDAG &DAG) const {
1789 if (Op.getOperand(0).getValueType() != MVT::f128) {
1790 // It's legal except when f128 is involved
1791 return Op;
1792 }
1793
1794 RTLIB::Libcall LC;
1795 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1796
1797 // FP_ROUND node has a second operand indicating whether it is known to be
1798 // precise. That doesn't take part in the LibCall so we can't directly use
1799 // LowerF128Call.
1800 SDValue SrcVal = Op.getOperand(0);
1801 return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
1802 /*isSigned*/ false, SDLoc(Op)).first;
1803}
1804
1805static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1806 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1807 // Any additional optimization in this function should be recorded
1808 // in the cost tables.
1809 EVT InVT = Op.getOperand(0).getValueType();
1810 EVT VT = Op.getValueType();
1811
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001812 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001813 SDLoc dl(Op);
1814 SDValue Cv =
1815 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1816 Op.getOperand(0));
1817 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001818 }
1819
1820 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001821 SDLoc dl(Op);
Oliver Stannard89d15422014-08-27 16:16:04 +00001822 MVT ExtVT =
1823 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
1824 VT.getVectorNumElements());
1825 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00001826 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1827 }
1828
1829 // Type changing conversions are illegal.
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001830 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001831}
1832
1833SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1834 SelectionDAG &DAG) const {
1835 if (Op.getOperand(0).getValueType().isVector())
1836 return LowerVectorFP_TO_INT(Op, DAG);
1837
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +00001838 // f16 conversions are promoted to f32.
1839 if (Op.getOperand(0).getValueType() == MVT::f16) {
1840 SDLoc dl(Op);
1841 return DAG.getNode(
1842 Op.getOpcode(), dl, Op.getValueType(),
1843 DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0)));
1844 }
1845
Tim Northover3b0846e2014-05-24 12:50:23 +00001846 if (Op.getOperand(0).getValueType() != MVT::f128) {
1847 // It's legal except when f128 is involved
1848 return Op;
1849 }
1850
1851 RTLIB::Libcall LC;
1852 if (Op.getOpcode() == ISD::FP_TO_SINT)
1853 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1854 else
1855 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1856
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00001857 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
Tim Northover3b0846e2014-05-24 12:50:23 +00001858 return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false,
1859 SDLoc(Op)).first;
1860}
1861
1862static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1863 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1864 // Any additional optimization in this function should be recorded
1865 // in the cost tables.
1866 EVT VT = Op.getValueType();
1867 SDLoc dl(Op);
1868 SDValue In = Op.getOperand(0);
1869 EVT InVT = In.getValueType();
1870
Tim Northoveref0d7602014-06-15 09:27:06 +00001871 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1872 MVT CastVT =
1873 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
1874 InVT.getVectorNumElements());
1875 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001876 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
Tim Northover3b0846e2014-05-24 12:50:23 +00001877 }
1878
Tim Northoveref0d7602014-06-15 09:27:06 +00001879 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1880 unsigned CastOpc =
1881 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1882 EVT CastVT = VT.changeVectorElementTypeToInteger();
1883 In = DAG.getNode(CastOpc, dl, CastVT, In);
1884 return DAG.getNode(Op.getOpcode(), dl, VT, In);
Tim Northover3b0846e2014-05-24 12:50:23 +00001885 }
1886
Tim Northoveref0d7602014-06-15 09:27:06 +00001887 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001888}
1889
1890SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
1891 SelectionDAG &DAG) const {
1892 if (Op.getValueType().isVector())
1893 return LowerVectorINT_TO_FP(Op, DAG);
1894
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +00001895 // f16 conversions are promoted to f32.
1896 if (Op.getValueType() == MVT::f16) {
1897 SDLoc dl(Op);
1898 return DAG.getNode(
1899 ISD::FP_ROUND, dl, MVT::f16,
1900 DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001901 DAG.getIntPtrConstant(0, dl));
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +00001902 }
1903
Tim Northover3b0846e2014-05-24 12:50:23 +00001904 // i128 conversions are libcalls.
1905 if (Op.getOperand(0).getValueType() == MVT::i128)
1906 return SDValue();
1907
1908 // Other conversions are legal, unless it's to the completely software-based
1909 // fp128.
1910 if (Op.getValueType() != MVT::f128)
1911 return Op;
1912
1913 RTLIB::Libcall LC;
1914 if (Op.getOpcode() == ISD::SINT_TO_FP)
1915 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1916 else
1917 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1918
1919 return LowerF128Call(Op, DAG, LC);
1920}
1921
1922SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
1923 SelectionDAG &DAG) const {
1924 // For iOS, we want to call an alternative entry point: __sincos_stret,
1925 // which returns the values in two S / D registers.
1926 SDLoc dl(Op);
1927 SDValue Arg = Op.getOperand(0);
1928 EVT ArgVT = Arg.getValueType();
1929 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1930
1931 ArgListTy Args;
1932 ArgListEntry Entry;
1933
1934 Entry.Node = Arg;
1935 Entry.Ty = ArgTy;
1936 Entry.isSExt = false;
1937 Entry.isZExt = false;
1938 Args.push_back(Entry);
1939
1940 const char *LibcallName =
1941 (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
Mehdi Amini44ede332015-07-09 02:09:04 +00001942 SDValue Callee =
1943 DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00001944
Reid Kleckner343c3952014-11-20 23:51:47 +00001945 StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
Tim Northover3b0846e2014-05-24 12:50:23 +00001946 TargetLowering::CallLoweringInfo CLI(DAG);
1947 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
Juergen Ributzka3bd03c72014-07-01 22:01:54 +00001948 .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00001949
1950 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1951 return CallResult.first;
1952}
1953
Tim Northoverf8bfe212014-07-18 13:07:05 +00001954static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
1955 if (Op.getValueType() != MVT::f16)
1956 return SDValue();
1957
1958 assert(Op.getOperand(0).getValueType() == MVT::i16);
1959 SDLoc DL(Op);
1960
1961 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
1962 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
1963 return SDValue(
1964 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001965 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
Tim Northoverf8bfe212014-07-18 13:07:05 +00001966 0);
1967}
1968
Chad Rosierd9d0f862014-10-08 02:31:24 +00001969static EVT getExtensionTo64Bits(const EVT &OrigVT) {
1970 if (OrigVT.getSizeInBits() >= 64)
1971 return OrigVT;
1972
1973 assert(OrigVT.isSimple() && "Expecting a simple value type");
1974
1975 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
1976 switch (OrigSimpleTy) {
1977 default: llvm_unreachable("Unexpected Vector Type");
1978 case MVT::v2i8:
1979 case MVT::v2i16:
1980 return MVT::v2i32;
1981 case MVT::v4i8:
1982 return MVT::v4i16;
1983 }
1984}
1985
1986static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
1987 const EVT &OrigTy,
1988 const EVT &ExtTy,
1989 unsigned ExtOpcode) {
1990 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
1991 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
1992 // 64-bits we need to insert a new extension so that it will be 64-bits.
1993 assert(ExtTy.is128BitVector() && "Unexpected extension size");
1994 if (OrigTy.getSizeInBits() >= 64)
1995 return N;
1996
1997 // Must extend size to at least 64 bits to be used as an operand for VMULL.
1998 EVT NewVT = getExtensionTo64Bits(OrigTy);
1999
2000 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
2001}
2002
2003static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
2004 bool isSigned) {
2005 EVT VT = N->getValueType(0);
2006
2007 if (N->getOpcode() != ISD::BUILD_VECTOR)
2008 return false;
2009
Pete Cooper3af9a252015-06-26 18:17:36 +00002010 for (const SDValue &Elt : N->op_values()) {
Chad Rosierd9d0f862014-10-08 02:31:24 +00002011 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
2012 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
2013 unsigned HalfSize = EltSize / 2;
2014 if (isSigned) {
2015 if (!isIntN(HalfSize, C->getSExtValue()))
2016 return false;
2017 } else {
2018 if (!isUIntN(HalfSize, C->getZExtValue()))
2019 return false;
2020 }
2021 continue;
2022 }
2023 return false;
2024 }
2025
2026 return true;
2027}
2028
2029static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
2030 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
2031 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
2032 N->getOperand(0)->getValueType(0),
2033 N->getValueType(0),
2034 N->getOpcode());
2035
2036 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
2037 EVT VT = N->getValueType(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002038 SDLoc dl(N);
Chad Rosierd9d0f862014-10-08 02:31:24 +00002039 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
2040 unsigned NumElts = VT.getVectorNumElements();
2041 MVT TruncVT = MVT::getIntegerVT(EltSize);
2042 SmallVector<SDValue, 8> Ops;
2043 for (unsigned i = 0; i != NumElts; ++i) {
2044 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
2045 const APInt &CInt = C->getAPIntValue();
2046 // Element types smaller than 32 bits are not legal, so use i32 elements.
2047 // The values are implicitly truncated so sext vs. zext doesn't matter.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002048 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
Chad Rosierd9d0f862014-10-08 02:31:24 +00002049 }
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002050 return DAG.getNode(ISD::BUILD_VECTOR, dl,
Chad Rosierd9d0f862014-10-08 02:31:24 +00002051 MVT::getVectorVT(TruncVT, NumElts), Ops);
2052}
2053
2054static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
2055 if (N->getOpcode() == ISD::SIGN_EXTEND)
2056 return true;
2057 if (isExtendedBUILD_VECTOR(N, DAG, true))
2058 return true;
2059 return false;
2060}
2061
2062static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
2063 if (N->getOpcode() == ISD::ZERO_EXTEND)
2064 return true;
2065 if (isExtendedBUILD_VECTOR(N, DAG, false))
2066 return true;
2067 return false;
2068}
2069
2070static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
2071 unsigned Opcode = N->getOpcode();
2072 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2073 SDNode *N0 = N->getOperand(0).getNode();
2074 SDNode *N1 = N->getOperand(1).getNode();
2075 return N0->hasOneUse() && N1->hasOneUse() &&
2076 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
2077 }
2078 return false;
2079}
2080
2081static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
2082 unsigned Opcode = N->getOpcode();
2083 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2084 SDNode *N0 = N->getOperand(0).getNode();
2085 SDNode *N1 = N->getOperand(1).getNode();
2086 return N0->hasOneUse() && N1->hasOneUse() &&
2087 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
2088 }
2089 return false;
2090}
2091
2092static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
2093 // Multiplications are only custom-lowered for 128-bit vectors so that
2094 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
2095 EVT VT = Op.getValueType();
2096 assert(VT.is128BitVector() && VT.isInteger() &&
2097 "unexpected type for custom-lowering ISD::MUL");
2098 SDNode *N0 = Op.getOperand(0).getNode();
2099 SDNode *N1 = Op.getOperand(1).getNode();
2100 unsigned NewOpc = 0;
2101 bool isMLA = false;
2102 bool isN0SExt = isSignExtended(N0, DAG);
2103 bool isN1SExt = isSignExtended(N1, DAG);
2104 if (isN0SExt && isN1SExt)
2105 NewOpc = AArch64ISD::SMULL;
2106 else {
2107 bool isN0ZExt = isZeroExtended(N0, DAG);
2108 bool isN1ZExt = isZeroExtended(N1, DAG);
2109 if (isN0ZExt && isN1ZExt)
2110 NewOpc = AArch64ISD::UMULL;
2111 else if (isN1SExt || isN1ZExt) {
2112 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
2113 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
2114 if (isN1SExt && isAddSubSExt(N0, DAG)) {
2115 NewOpc = AArch64ISD::SMULL;
2116 isMLA = true;
2117 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
2118 NewOpc = AArch64ISD::UMULL;
2119 isMLA = true;
2120 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
2121 std::swap(N0, N1);
2122 NewOpc = AArch64ISD::UMULL;
2123 isMLA = true;
2124 }
2125 }
2126
2127 if (!NewOpc) {
2128 if (VT == MVT::v2i64)
2129 // Fall through to expand this. It is not legal.
2130 return SDValue();
2131 else
2132 // Other vector multiplications are legal.
2133 return Op;
2134 }
2135 }
2136
2137 // Legalize to a S/UMULL instruction
2138 SDLoc DL(Op);
2139 SDValue Op0;
2140 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
2141 if (!isMLA) {
2142 Op0 = skipExtensionForVectorMULL(N0, DAG);
2143 assert(Op0.getValueType().is64BitVector() &&
2144 Op1.getValueType().is64BitVector() &&
2145 "unexpected types for extended operands to VMULL");
2146 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
2147 }
2148 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
2149 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
2150 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
2151 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
2152 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
2153 EVT Op1VT = Op1.getValueType();
2154 return DAG.getNode(N0->getOpcode(), DL, VT,
2155 DAG.getNode(NewOpc, DL, VT,
2156 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
2157 DAG.getNode(NewOpc, DL, VT,
2158 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
2159}
Tim Northoverf8bfe212014-07-18 13:07:05 +00002160
Tim Northover3b0846e2014-05-24 12:50:23 +00002161SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
2162 SelectionDAG &DAG) const {
2163 switch (Op.getOpcode()) {
2164 default:
2165 llvm_unreachable("unimplemented operand");
2166 return SDValue();
Tim Northoverf8bfe212014-07-18 13:07:05 +00002167 case ISD::BITCAST:
2168 return LowerBITCAST(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00002169 case ISD::GlobalAddress:
2170 return LowerGlobalAddress(Op, DAG);
2171 case ISD::GlobalTLSAddress:
2172 return LowerGlobalTLSAddress(Op, DAG);
2173 case ISD::SETCC:
2174 return LowerSETCC(Op, DAG);
2175 case ISD::BR_CC:
2176 return LowerBR_CC(Op, DAG);
2177 case ISD::SELECT:
2178 return LowerSELECT(Op, DAG);
2179 case ISD::SELECT_CC:
2180 return LowerSELECT_CC(Op, DAG);
2181 case ISD::JumpTable:
2182 return LowerJumpTable(Op, DAG);
2183 case ISD::ConstantPool:
2184 return LowerConstantPool(Op, DAG);
2185 case ISD::BlockAddress:
2186 return LowerBlockAddress(Op, DAG);
2187 case ISD::VASTART:
2188 return LowerVASTART(Op, DAG);
2189 case ISD::VACOPY:
2190 return LowerVACOPY(Op, DAG);
2191 case ISD::VAARG:
2192 return LowerVAARG(Op, DAG);
2193 case ISD::ADDC:
2194 case ISD::ADDE:
2195 case ISD::SUBC:
2196 case ISD::SUBE:
2197 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
2198 case ISD::SADDO:
2199 case ISD::UADDO:
2200 case ISD::SSUBO:
2201 case ISD::USUBO:
2202 case ISD::SMULO:
2203 case ISD::UMULO:
2204 return LowerXALUO(Op, DAG);
2205 case ISD::FADD:
2206 return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
2207 case ISD::FSUB:
2208 return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
2209 case ISD::FMUL:
2210 return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
2211 case ISD::FDIV:
2212 return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
2213 case ISD::FP_ROUND:
2214 return LowerFP_ROUND(Op, DAG);
2215 case ISD::FP_EXTEND:
2216 return LowerFP_EXTEND(Op, DAG);
2217 case ISD::FRAMEADDR:
2218 return LowerFRAMEADDR(Op, DAG);
2219 case ISD::RETURNADDR:
2220 return LowerRETURNADDR(Op, DAG);
2221 case ISD::INSERT_VECTOR_ELT:
2222 return LowerINSERT_VECTOR_ELT(Op, DAG);
2223 case ISD::EXTRACT_VECTOR_ELT:
2224 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2225 case ISD::BUILD_VECTOR:
2226 return LowerBUILD_VECTOR(Op, DAG);
2227 case ISD::VECTOR_SHUFFLE:
2228 return LowerVECTOR_SHUFFLE(Op, DAG);
2229 case ISD::EXTRACT_SUBVECTOR:
2230 return LowerEXTRACT_SUBVECTOR(Op, DAG);
2231 case ISD::SRA:
2232 case ISD::SRL:
2233 case ISD::SHL:
2234 return LowerVectorSRA_SRL_SHL(Op, DAG);
2235 case ISD::SHL_PARTS:
2236 return LowerShiftLeftParts(Op, DAG);
2237 case ISD::SRL_PARTS:
2238 case ISD::SRA_PARTS:
2239 return LowerShiftRightParts(Op, DAG);
2240 case ISD::CTPOP:
2241 return LowerCTPOP(Op, DAG);
2242 case ISD::FCOPYSIGN:
2243 return LowerFCOPYSIGN(Op, DAG);
2244 case ISD::AND:
2245 return LowerVectorAND(Op, DAG);
2246 case ISD::OR:
2247 return LowerVectorOR(Op, DAG);
2248 case ISD::XOR:
2249 return LowerXOR(Op, DAG);
2250 case ISD::PREFETCH:
2251 return LowerPREFETCH(Op, DAG);
2252 case ISD::SINT_TO_FP:
2253 case ISD::UINT_TO_FP:
2254 return LowerINT_TO_FP(Op, DAG);
2255 case ISD::FP_TO_SINT:
2256 case ISD::FP_TO_UINT:
2257 return LowerFP_TO_INT(Op, DAG);
2258 case ISD::FSINCOS:
2259 return LowerFSINCOS(Op, DAG);
Chad Rosierd9d0f862014-10-08 02:31:24 +00002260 case ISD::MUL:
2261 return LowerMUL(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00002262 }
2263}
2264
2265/// getFunctionAlignment - Return the Log2 alignment of this function.
2266unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
2267 return 2;
2268}
2269
2270//===----------------------------------------------------------------------===//
2271// Calling Convention Implementation
2272//===----------------------------------------------------------------------===//
2273
2274#include "AArch64GenCallingConv.inc"
2275
Robin Morisset039781e2014-08-29 21:53:01 +00002276/// Selects the correct CCAssignFn for a given CallingConvention value.
Tim Northover3b0846e2014-05-24 12:50:23 +00002277CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2278 bool IsVarArg) const {
2279 switch (CC) {
2280 default:
2281 llvm_unreachable("Unsupported calling convention.");
2282 case CallingConv::WebKit_JS:
2283 return CC_AArch64_WebKit_JS;
Greg Fitzgeraldfa78d082015-01-19 17:40:05 +00002284 case CallingConv::GHC:
2285 return CC_AArch64_GHC;
Tim Northover3b0846e2014-05-24 12:50:23 +00002286 case CallingConv::C:
2287 case CallingConv::Fast:
2288 if (!Subtarget->isTargetDarwin())
2289 return CC_AArch64_AAPCS;
2290 return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
2291 }
2292}
2293
2294SDValue AArch64TargetLowering::LowerFormalArguments(
2295 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2296 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2297 SmallVectorImpl<SDValue> &InVals) const {
2298 MachineFunction &MF = DAG.getMachineFunction();
2299 MachineFrameInfo *MFI = MF.getFrameInfo();
2300
2301 // Assign locations to all of the incoming arguments.
2302 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002303 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2304 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002305
2306 // At this point, Ins[].VT may already be promoted to i32. To correctly
2307 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2308 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2309 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
2310 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
2311 // LocVT.
2312 unsigned NumArgs = Ins.size();
2313 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2314 unsigned CurArgIdx = 0;
2315 for (unsigned i = 0; i != NumArgs; ++i) {
2316 MVT ValVT = Ins[i].VT;
Andrew Trick05938a52015-02-16 18:10:47 +00002317 if (Ins[i].isOrigArg()) {
2318 std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
2319 CurArgIdx = Ins[i].getOrigArgIndex();
Tim Northover3b0846e2014-05-24 12:50:23 +00002320
Andrew Trick05938a52015-02-16 18:10:47 +00002321 // Get type of the original argument.
Mehdi Amini44ede332015-07-09 02:09:04 +00002322 EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
2323 /*AllowUnknown*/ true);
Andrew Trick05938a52015-02-16 18:10:47 +00002324 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
2325 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2326 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2327 ValVT = MVT::i8;
2328 else if (ActualMVT == MVT::i16)
2329 ValVT = MVT::i16;
2330 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002331 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2332 bool Res =
Tim Northover47e003c2014-05-26 17:21:53 +00002333 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002334 assert(!Res && "Call operand has unhandled type");
2335 (void)Res;
2336 }
2337 assert(ArgLocs.size() == Ins.size());
2338 SmallVector<SDValue, 16> ArgValues;
2339 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2340 CCValAssign &VA = ArgLocs[i];
2341
2342 if (Ins[i].Flags.isByVal()) {
2343 // Byval is used for HFAs in the PCS, but the system should work in a
2344 // non-compliant manner for larger structs.
Mehdi Amini44ede332015-07-09 02:09:04 +00002345 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00002346 int Size = Ins[i].Flags.getByValSize();
2347 unsigned NumRegs = (Size + 7) / 8;
2348
2349 // FIXME: This works on big-endian for composite byvals, which are the common
2350 // case. It should also work for fundamental types too.
2351 unsigned FrameIdx =
2352 MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
Mehdi Amini44ede332015-07-09 02:09:04 +00002353 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00002354 InVals.push_back(FrameIdxN);
2355
2356 continue;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002357 }
2358
2359 if (VA.isRegLoc()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00002360 // Arguments stored in registers.
2361 EVT RegVT = VA.getLocVT();
2362
2363 SDValue ArgValue;
2364 const TargetRegisterClass *RC;
2365
2366 if (RegVT == MVT::i32)
2367 RC = &AArch64::GPR32RegClass;
2368 else if (RegVT == MVT::i64)
2369 RC = &AArch64::GPR64RegClass;
Oliver Stannard6eda6ff2014-07-11 13:33:46 +00002370 else if (RegVT == MVT::f16)
2371 RC = &AArch64::FPR16RegClass;
Tim Northover3b0846e2014-05-24 12:50:23 +00002372 else if (RegVT == MVT::f32)
2373 RC = &AArch64::FPR32RegClass;
2374 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
2375 RC = &AArch64::FPR64RegClass;
2376 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
2377 RC = &AArch64::FPR128RegClass;
2378 else
2379 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2380
2381 // Transform the arguments in physical registers into virtual ones.
2382 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2383 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2384
2385 // If this is an 8, 16 or 32-bit value, it is really passed promoted
2386 // to 64 bits. Insert an assert[sz]ext to capture this, then
2387 // truncate to the right size.
2388 switch (VA.getLocInfo()) {
2389 default:
2390 llvm_unreachable("Unknown loc info!");
2391 case CCValAssign::Full:
2392 break;
2393 case CCValAssign::BCvt:
2394 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
2395 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002396 case CCValAssign::AExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002397 case CCValAssign::SExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002398 case CCValAssign::ZExt:
Tim Northover47e003c2014-05-26 17:21:53 +00002399 // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
2400 // nodes after our lowering.
2401 assert(RegVT == Ins[i].VT && "incorrect register location selected");
Tim Northover3b0846e2014-05-24 12:50:23 +00002402 break;
2403 }
2404
2405 InVals.push_back(ArgValue);
2406
2407 } else { // VA.isRegLoc()
2408 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
2409 unsigned ArgOffset = VA.getLocMemOffset();
Amara Emerson82da7d02014-08-15 14:29:57 +00002410 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002411
2412 uint32_t BEAlign = 0;
Tim Northover293d4142014-12-03 17:49:26 +00002413 if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
2414 !Ins[i].Flags.isInConsecutiveRegs())
Tim Northover3b0846e2014-05-24 12:50:23 +00002415 BEAlign = 8 - ArgSize;
2416
2417 int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
2418
2419 // Create load nodes to retrieve arguments from the stack.
Mehdi Amini44ede332015-07-09 02:09:04 +00002420 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00002421 SDValue ArgValue;
2422
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002423 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
Tim Northover47e003c2014-05-26 17:21:53 +00002424 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002425 MVT MemVT = VA.getValVT();
2426
Tim Northover47e003c2014-05-26 17:21:53 +00002427 switch (VA.getLocInfo()) {
2428 default:
2429 break;
Tim Northover6890add2014-06-03 13:54:53 +00002430 case CCValAssign::BCvt:
2431 MemVT = VA.getLocVT();
2432 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002433 case CCValAssign::SExt:
2434 ExtType = ISD::SEXTLOAD;
2435 break;
2436 case CCValAssign::ZExt:
2437 ExtType = ISD::ZEXTLOAD;
2438 break;
2439 case CCValAssign::AExt:
2440 ExtType = ISD::EXTLOAD;
2441 break;
Tim Northover3b0846e2014-05-24 12:50:23 +00002442 }
2443
Tim Northover6890add2014-06-03 13:54:53 +00002444 ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN,
Tim Northover47e003c2014-05-26 17:21:53 +00002445 MachinePointerInfo::getFixedStack(FI),
Benjamin Kramer2e52f022014-10-04 22:44:29 +00002446 MemVT, false, false, false, 0);
Tim Northover47e003c2014-05-26 17:21:53 +00002447
Tim Northover3b0846e2014-05-24 12:50:23 +00002448 InVals.push_back(ArgValue);
2449 }
2450 }
2451
2452 // varargs
2453 if (isVarArg) {
2454 if (!Subtarget->isTargetDarwin()) {
2455 // The AAPCS variadic function ABI is identical to the non-variadic
2456 // one. As a result there may be more arguments in registers and we should
2457 // save them for future reference.
2458 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
2459 }
2460
2461 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2462 // This will point to the next argument passed via stack.
2463 unsigned StackOffset = CCInfo.getNextStackOffset();
2464 // We currently pass all varargs at 8-byte alignment.
2465 StackOffset = ((StackOffset + 7) & ~7);
2466 AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
2467 }
2468
2469 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2470 unsigned StackArgSize = CCInfo.getNextStackOffset();
2471 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2472 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
2473 // This is a non-standard ABI so by fiat I say we're allowed to make full
2474 // use of the stack area to be popped, which must be aligned to 16 bytes in
2475 // any case:
2476 StackArgSize = RoundUpToAlignment(StackArgSize, 16);
2477
2478 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
2479 // a multiple of 16.
2480 FuncInfo->setArgumentStackToRestore(StackArgSize);
2481
2482 // This realignment carries over to the available bytes below. Our own
2483 // callers will guarantee the space is free by giving an aligned value to
2484 // CALLSEQ_START.
2485 }
2486 // Even if we're not expected to free up the space, it's useful to know how
2487 // much is there while considering tail calls (because we can reuse it).
2488 FuncInfo->setBytesInStackArgArea(StackArgSize);
2489
2490 return Chain;
2491}
2492
2493void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
2494 SelectionDAG &DAG, SDLoc DL,
2495 SDValue &Chain) const {
2496 MachineFunction &MF = DAG.getMachineFunction();
2497 MachineFrameInfo *MFI = MF.getFrameInfo();
2498 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
Mehdi Amini44ede332015-07-09 02:09:04 +00002499 auto PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00002500
2501 SmallVector<SDValue, 8> MemOps;
2502
2503 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
2504 AArch64::X3, AArch64::X4, AArch64::X5,
2505 AArch64::X6, AArch64::X7 };
2506 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
Tim Northover3b6b7ca2015-02-21 02:11:17 +00002507 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
Tim Northover3b0846e2014-05-24 12:50:23 +00002508
2509 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
2510 int GPRIdx = 0;
2511 if (GPRSaveSize != 0) {
2512 GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
2513
Mehdi Amini44ede332015-07-09 02:09:04 +00002514 SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00002515
2516 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
2517 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
2518 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
2519 SDValue Store =
2520 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2521 MachinePointerInfo::getStack(i * 8), false, false, 0);
2522 MemOps.push_back(Store);
Mehdi Amini44ede332015-07-09 02:09:04 +00002523 FIN =
2524 DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00002525 }
2526 }
2527 FuncInfo->setVarArgsGPRIndex(GPRIdx);
2528 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
2529
2530 if (Subtarget->hasFPARMv8()) {
2531 static const MCPhysReg FPRArgRegs[] = {
2532 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
2533 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
2534 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
Tim Northover3b6b7ca2015-02-21 02:11:17 +00002535 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
Tim Northover3b0846e2014-05-24 12:50:23 +00002536
2537 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
2538 int FPRIdx = 0;
2539 if (FPRSaveSize != 0) {
2540 FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
2541
Mehdi Amini44ede332015-07-09 02:09:04 +00002542 SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00002543
2544 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
2545 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
2546 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
2547
2548 SDValue Store =
2549 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2550 MachinePointerInfo::getStack(i * 16), false, false, 0);
2551 MemOps.push_back(Store);
Mehdi Amini44ede332015-07-09 02:09:04 +00002552 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
2553 DAG.getConstant(16, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00002554 }
2555 }
2556 FuncInfo->setVarArgsFPRIndex(FPRIdx);
2557 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
2558 }
2559
2560 if (!MemOps.empty()) {
2561 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2562 }
2563}
2564
2565/// LowerCallResult - Lower the result values of a call into the
2566/// appropriate copies out of appropriate physical registers.
2567SDValue AArch64TargetLowering::LowerCallResult(
2568 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2569 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2570 SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2571 SDValue ThisVal) const {
2572 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2573 ? RetCC_AArch64_WebKit_JS
2574 : RetCC_AArch64_AAPCS;
2575 // Assign locations to each value returned by this call.
2576 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002577 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2578 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002579 CCInfo.AnalyzeCallResult(Ins, RetCC);
2580
2581 // Copy all of the result registers out of their specified physreg.
2582 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2583 CCValAssign VA = RVLocs[i];
2584
2585 // Pass 'this' value directly from the argument to return value, to avoid
2586 // reg unit interference
2587 if (i == 0 && isThisReturn) {
2588 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
2589 "unexpected return calling convention register assignment");
2590 InVals.push_back(ThisVal);
2591 continue;
2592 }
2593
2594 SDValue Val =
2595 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2596 Chain = Val.getValue(1);
2597 InFlag = Val.getValue(2);
2598
2599 switch (VA.getLocInfo()) {
2600 default:
2601 llvm_unreachable("Unknown loc info!");
2602 case CCValAssign::Full:
2603 break;
2604 case CCValAssign::BCvt:
2605 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2606 break;
2607 }
2608
2609 InVals.push_back(Val);
2610 }
2611
2612 return Chain;
2613}
2614
2615bool AArch64TargetLowering::isEligibleForTailCallOptimization(
2616 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2617 bool isCalleeStructRet, bool isCallerStructRet,
2618 const SmallVectorImpl<ISD::OutputArg> &Outs,
2619 const SmallVectorImpl<SDValue> &OutVals,
2620 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2621 // For CallingConv::C this function knows whether the ABI needs
2622 // changing. That's not true for other conventions so they will have to opt in
2623 // manually.
2624 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
2625 return false;
2626
2627 const MachineFunction &MF = DAG.getMachineFunction();
2628 const Function *CallerF = MF.getFunction();
2629 CallingConv::ID CallerCC = CallerF->getCallingConv();
2630 bool CCMatch = CallerCC == CalleeCC;
2631
2632 // Byval parameters hand the function a pointer directly into the stack area
2633 // we want to reuse during a tail call. Working around this *is* possible (see
2634 // X86) but less efficient and uglier in LowerCall.
2635 for (Function::const_arg_iterator i = CallerF->arg_begin(),
2636 e = CallerF->arg_end();
2637 i != e; ++i)
2638 if (i->hasByValAttr())
2639 return false;
2640
2641 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2642 if (IsTailCallConvention(CalleeCC) && CCMatch)
2643 return true;
2644 return false;
2645 }
2646
Oliver Stannard12993dd2014-08-18 12:42:15 +00002647 // Externally-defined functions with weak linkage should not be
2648 // tail-called on AArch64 when the OS does not support dynamic
2649 // pre-emption of symbols, as the AAELF spec requires normal calls
2650 // to undefined weak functions to be replaced with a NOP or jump to the
2651 // next instruction. The behaviour of branch instructions in this
2652 // situation (as used for tail calls) is implementation-defined, so we
2653 // cannot rely on the linker replacing the tail call with a return.
2654 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2655 const GlobalValue *GV = G->getGlobal();
Daniel Sandersc81f4502015-06-16 15:44:21 +00002656 const Triple &TT = getTargetMachine().getTargetTriple();
Saleem Abdulrasool67f72992015-01-03 21:35:00 +00002657 if (GV->hasExternalWeakLinkage() &&
2658 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
Oliver Stannard12993dd2014-08-18 12:42:15 +00002659 return false;
2660 }
2661
Tim Northover3b0846e2014-05-24 12:50:23 +00002662 // Now we search for cases where we can use a tail call without changing the
2663 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
2664 // concept.
2665
2666 // I want anyone implementing a new calling convention to think long and hard
2667 // about this assert.
2668 assert((!isVarArg || CalleeCC == CallingConv::C) &&
2669 "Unexpected variadic calling convention");
2670
2671 if (isVarArg && !Outs.empty()) {
2672 // At least two cases here: if caller is fastcc then we can't have any
2673 // memory arguments (we'd be expected to clean up the stack afterwards). If
2674 // caller is C then we could potentially use its argument area.
2675
2676 // FIXME: for now we take the most conservative of these in both cases:
2677 // disallow all variadic memory operands.
2678 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002679 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2680 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002681
2682 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
2683 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2684 if (!ArgLocs[i].isRegLoc())
2685 return false;
2686 }
2687
2688 // If the calling conventions do not match, then we'd better make sure the
2689 // results are returned in the same way as what the caller expects.
2690 if (!CCMatch) {
2691 SmallVector<CCValAssign, 16> RVLocs1;
Eric Christopherb5217502014-08-06 18:45:26 +00002692 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
2693 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002694 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
2695
2696 SmallVector<CCValAssign, 16> RVLocs2;
Eric Christopherb5217502014-08-06 18:45:26 +00002697 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
2698 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002699 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
2700
2701 if (RVLocs1.size() != RVLocs2.size())
2702 return false;
2703 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2704 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2705 return false;
2706 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2707 return false;
2708 if (RVLocs1[i].isRegLoc()) {
2709 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2710 return false;
2711 } else {
2712 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2713 return false;
2714 }
2715 }
2716 }
2717
2718 // Nothing more to check if the callee is taking no arguments
2719 if (Outs.empty())
2720 return true;
2721
2722 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002723 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2724 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002725
2726 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2727
2728 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2729
2730 // If the stack arguments for this call would fit into our own save area then
2731 // the call can be made tail.
2732 return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
2733}
2734
2735SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2736 SelectionDAG &DAG,
2737 MachineFrameInfo *MFI,
2738 int ClobberedFI) const {
2739 SmallVector<SDValue, 8> ArgChains;
2740 int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2741 int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2742
2743 // Include the original chain at the beginning of the list. When this is
2744 // used by target LowerCall hooks, this helps legalize find the
2745 // CALLSEQ_BEGIN node.
2746 ArgChains.push_back(Chain);
2747
2748 // Add a chain value for each stack argument corresponding
2749 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2750 UE = DAG.getEntryNode().getNode()->use_end();
2751 U != UE; ++U)
2752 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2753 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2754 if (FI->getIndex() < 0) {
2755 int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2756 int64_t InLastByte = InFirstByte;
2757 InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2758
2759 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2760 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2761 ArgChains.push_back(SDValue(L, 1));
2762 }
2763
2764 // Build a tokenfactor for all the chains.
2765 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2766}
2767
2768bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2769 bool TailCallOpt) const {
2770 return CallCC == CallingConv::Fast && TailCallOpt;
2771}
2772
2773bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2774 return CallCC == CallingConv::Fast;
2775}
2776
2777/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2778/// and add input and output parameter nodes.
2779SDValue
2780AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2781 SmallVectorImpl<SDValue> &InVals) const {
2782 SelectionDAG &DAG = CLI.DAG;
2783 SDLoc &DL = CLI.DL;
2784 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2785 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2786 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2787 SDValue Chain = CLI.Chain;
2788 SDValue Callee = CLI.Callee;
2789 bool &IsTailCall = CLI.IsTailCall;
2790 CallingConv::ID CallConv = CLI.CallConv;
2791 bool IsVarArg = CLI.IsVarArg;
2792
2793 MachineFunction &MF = DAG.getMachineFunction();
2794 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2795 bool IsThisReturn = false;
2796
2797 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2798 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2799 bool IsSibCall = false;
2800
2801 if (IsTailCall) {
2802 // Check if it's really possible to do a tail call.
2803 IsTailCall = isEligibleForTailCallOptimization(
2804 Callee, CallConv, IsVarArg, IsStructRet,
2805 MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
2806 if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2807 report_fatal_error("failed to perform tail call elimination on a call "
2808 "site marked musttail");
2809
2810 // A sibling call is one where we're under the usual C ABI and not planning
2811 // to change that but can still do a tail call:
2812 if (!TailCallOpt && IsTailCall)
2813 IsSibCall = true;
2814
2815 if (IsTailCall)
2816 ++NumTailCalls;
2817 }
2818
2819 // Analyze operands of the call, assigning locations to each operand.
2820 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002821 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
2822 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002823
2824 if (IsVarArg) {
2825 // Handle fixed and variable vector arguments differently.
2826 // Variable vector arguments always go into memory.
2827 unsigned NumArgs = Outs.size();
2828
2829 for (unsigned i = 0; i != NumArgs; ++i) {
2830 MVT ArgVT = Outs[i].VT;
2831 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2832 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2833 /*IsVarArg=*/ !Outs[i].IsFixed);
2834 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2835 assert(!Res && "Call operand has unhandled type");
2836 (void)Res;
2837 }
2838 } else {
2839 // At this point, Outs[].VT may already be promoted to i32. To correctly
2840 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2841 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2842 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2843 // we use a special version of AnalyzeCallOperands to pass in ValVT and
2844 // LocVT.
2845 unsigned NumArgs = Outs.size();
2846 for (unsigned i = 0; i != NumArgs; ++i) {
2847 MVT ValVT = Outs[i].VT;
2848 // Get type of the original argument.
Mehdi Amini44ede332015-07-09 02:09:04 +00002849 EVT ActualVT = getValueType(DAG.getDataLayout(),
2850 CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
Tim Northover3b0846e2014-05-24 12:50:23 +00002851 /*AllowUnknown*/ true);
2852 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2853 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2854 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
Tim Northover3b0846e2014-05-24 12:50:23 +00002855 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
Tim Northover47e003c2014-05-26 17:21:53 +00002856 ValVT = MVT::i8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002857 else if (ActualMVT == MVT::i16)
Tim Northover47e003c2014-05-26 17:21:53 +00002858 ValVT = MVT::i16;
Tim Northover3b0846e2014-05-24 12:50:23 +00002859
2860 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
Tim Northover47e003c2014-05-26 17:21:53 +00002861 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002862 assert(!Res && "Call operand has unhandled type");
2863 (void)Res;
2864 }
2865 }
2866
2867 // Get a count of how many bytes are to be pushed on the stack.
2868 unsigned NumBytes = CCInfo.getNextStackOffset();
2869
2870 if (IsSibCall) {
2871 // Since we're not changing the ABI to make this a tail call, the memory
2872 // operands are already available in the caller's incoming argument space.
2873 NumBytes = 0;
2874 }
2875
2876 // FPDiff is the byte offset of the call's argument area from the callee's.
2877 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2878 // by this amount for a tail call. In a sibling call it must be 0 because the
2879 // caller will deallocate the entire stack and the callee still expects its
2880 // arguments to begin at SP+0. Completely unused for non-tail calls.
2881 int FPDiff = 0;
2882
2883 if (IsTailCall && !IsSibCall) {
2884 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
2885
2886 // Since callee will pop argument stack as a tail call, we must keep the
2887 // popped size 16-byte aligned.
2888 NumBytes = RoundUpToAlignment(NumBytes, 16);
2889
2890 // FPDiff will be negative if this tail call requires more space than we
2891 // would automatically have in our incoming argument space. Positive if we
2892 // can actually shrink the stack.
2893 FPDiff = NumReusableBytes - NumBytes;
2894
2895 // The stack pointer must be 16-byte aligned at all times it's used for a
2896 // memory operation, which in practice means at *all* times and in
2897 // particular across call boundaries. Therefore our own arguments started at
2898 // a 16-byte aligned SP and the delta applied for the tail call should
2899 // satisfy the same constraint.
2900 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
2901 }
2902
2903 // Adjust the stack pointer for the new arguments...
2904 // These operations are automatically eliminated by the prolog/epilog pass
2905 if (!IsSibCall)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002906 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, DL,
2907 true),
2908 DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00002909
Mehdi Amini44ede332015-07-09 02:09:04 +00002910 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
2911 getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00002912
2913 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2914 SmallVector<SDValue, 8> MemOpChains;
Mehdi Amini44ede332015-07-09 02:09:04 +00002915 auto PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00002916
2917 // Walk the register/memloc assignments, inserting copies/loads.
2918 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2919 ++i, ++realArgIdx) {
2920 CCValAssign &VA = ArgLocs[i];
2921 SDValue Arg = OutVals[realArgIdx];
2922 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2923
2924 // Promote the value if needed.
2925 switch (VA.getLocInfo()) {
2926 default:
2927 llvm_unreachable("Unknown loc info!");
2928 case CCValAssign::Full:
2929 break;
2930 case CCValAssign::SExt:
2931 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2932 break;
2933 case CCValAssign::ZExt:
2934 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2935 break;
2936 case CCValAssign::AExt:
Tim Northover68ae5032014-05-26 17:22:07 +00002937 if (Outs[realArgIdx].ArgVT == MVT::i1) {
2938 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
2939 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2940 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
2941 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002942 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2943 break;
2944 case CCValAssign::BCvt:
2945 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2946 break;
2947 case CCValAssign::FPExt:
2948 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2949 break;
2950 }
2951
2952 if (VA.isRegLoc()) {
2953 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
2954 assert(VA.getLocVT() == MVT::i64 &&
2955 "unexpected calling convention register assignment");
2956 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
2957 "unexpected use of 'returned'");
2958 IsThisReturn = true;
2959 }
2960 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2961 } else {
2962 assert(VA.isMemLoc());
2963
2964 SDValue DstAddr;
2965 MachinePointerInfo DstInfo;
2966
2967 // FIXME: This works on big-endian for composite byvals, which are the
2968 // common case. It should also work for fundamental types too.
2969 uint32_t BEAlign = 0;
2970 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
Amara Emerson82da7d02014-08-15 14:29:57 +00002971 : VA.getValVT().getSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00002972 OpSize = (OpSize + 7) / 8;
Tim Northover293d4142014-12-03 17:49:26 +00002973 if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
2974 !Flags.isInConsecutiveRegs()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00002975 if (OpSize < 8)
2976 BEAlign = 8 - OpSize;
2977 }
2978 unsigned LocMemOffset = VA.getLocMemOffset();
2979 int32_t Offset = LocMemOffset + BEAlign;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002980 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
Mehdi Amini44ede332015-07-09 02:09:04 +00002981 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
Tim Northover3b0846e2014-05-24 12:50:23 +00002982
2983 if (IsTailCall) {
2984 Offset = Offset + FPDiff;
2985 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2986
Mehdi Amini44ede332015-07-09 02:09:04 +00002987 DstAddr = DAG.getFrameIndex(FI, PtrVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00002988 DstInfo = MachinePointerInfo::getFixedStack(FI);
2989
2990 // Make sure any stack arguments overlapping with where we're storing
2991 // are loaded before this eventual operation. Otherwise they'll be
2992 // clobbered.
2993 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
2994 } else {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002995 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00002996
Mehdi Amini44ede332015-07-09 02:09:04 +00002997 DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
Tim Northover3b0846e2014-05-24 12:50:23 +00002998 DstInfo = MachinePointerInfo::getStack(LocMemOffset);
2999 }
3000
3001 if (Outs[i].Flags.isByVal()) {
3002 SDValue SizeNode =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003003 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00003004 SDValue Cpy = DAG.getMemcpy(
3005 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
Krzysztof Parzyszeka46c36b2015-04-13 17:16:45 +00003006 /*isVol = */ false, /*AlwaysInline = */ false,
3007 /*isTailCall = */ false,
3008 DstInfo, MachinePointerInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +00003009
3010 MemOpChains.push_back(Cpy);
3011 } else {
3012 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
3013 // promoted to a legal register type i32, we should truncate Arg back to
3014 // i1/i8/i16.
Tim Northover6890add2014-06-03 13:54:53 +00003015 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
3016 VA.getValVT() == MVT::i16)
3017 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
Tim Northover3b0846e2014-05-24 12:50:23 +00003018
3019 SDValue Store =
3020 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
3021 MemOpChains.push_back(Store);
3022 }
3023 }
3024 }
3025
3026 if (!MemOpChains.empty())
3027 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3028
3029 // Build a sequence of copy-to-reg nodes chained together with token chain
3030 // and flag operands which copy the outgoing args into the appropriate regs.
3031 SDValue InFlag;
3032 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3033 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
3034 RegsToPass[i].second, InFlag);
3035 InFlag = Chain.getValue(1);
3036 }
3037
3038 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3039 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3040 // node so that legalize doesn't hack it.
3041 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3042 Subtarget->isTargetMachO()) {
3043 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3044 const GlobalValue *GV = G->getGlobal();
3045 bool InternalLinkage = GV->hasInternalLinkage();
3046 if (InternalLinkage)
Mehdi Amini44ede332015-07-09 02:09:04 +00003047 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00003048 else {
Mehdi Amini44ede332015-07-09 02:09:04 +00003049 Callee =
3050 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOT);
3051 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
Tim Northover3b0846e2014-05-24 12:50:23 +00003052 }
3053 } else if (ExternalSymbolSDNode *S =
3054 dyn_cast<ExternalSymbolSDNode>(Callee)) {
3055 const char *Sym = S->getSymbol();
Mehdi Amini44ede332015-07-09 02:09:04 +00003056 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
3057 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
Tim Northover3b0846e2014-05-24 12:50:23 +00003058 }
3059 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3060 const GlobalValue *GV = G->getGlobal();
Mehdi Amini44ede332015-07-09 02:09:04 +00003061 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00003062 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3063 const char *Sym = S->getSymbol();
Mehdi Amini44ede332015-07-09 02:09:04 +00003064 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00003065 }
3066
3067 // We don't usually want to end the call-sequence here because we would tidy
3068 // the frame up *after* the call, however in the ABI-changing tail-call case
3069 // we've carefully laid out the parameters so that when sp is reset they'll be
3070 // in the correct location.
3071 if (IsTailCall && !IsSibCall) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003072 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3073 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00003074 InFlag = Chain.getValue(1);
3075 }
3076
3077 std::vector<SDValue> Ops;
3078 Ops.push_back(Chain);
3079 Ops.push_back(Callee);
3080
3081 if (IsTailCall) {
3082 // Each tail call may have to adjust the stack by a different amount, so
3083 // this information must travel along with the operation for eventual
3084 // consumption by emitEpilogue.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003085 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00003086 }
3087
3088 // Add argument registers to the end of the list so that they are known live
3089 // into the call.
3090 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3091 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3092 RegsToPass[i].second.getValueType()));
3093
3094 // Add a register mask operand representing the call-preserved registers.
3095 const uint32_t *Mask;
Eric Christopher905f12d2015-01-29 00:19:42 +00003096 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00003097 if (IsThisReturn) {
3098 // For 'this' returns, use the X0-preserving mask if applicable
Eric Christopher9deb75d2015-03-11 22:42:13 +00003099 Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00003100 if (!Mask) {
3101 IsThisReturn = false;
Eric Christopher9deb75d2015-03-11 22:42:13 +00003102 Mask = TRI->getCallPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00003103 }
3104 } else
Eric Christopher9deb75d2015-03-11 22:42:13 +00003105 Mask = TRI->getCallPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00003106
3107 assert(Mask && "Missing call preserved mask for calling convention");
3108 Ops.push_back(DAG.getRegisterMask(Mask));
3109
3110 if (InFlag.getNode())
3111 Ops.push_back(InFlag);
3112
3113 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3114
3115 // If we're doing a tall call, use a TC_RETURN here rather than an
3116 // actual call instruction.
Arnold Schwaighoferf54b73d2015-05-08 23:52:00 +00003117 if (IsTailCall) {
3118 MF.getFrameInfo()->setHasTailCall();
Tim Northover3b0846e2014-05-24 12:50:23 +00003119 return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
Arnold Schwaighoferf54b73d2015-05-08 23:52:00 +00003120 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003121
3122 // Returns a chain and a flag for retval copy to use.
3123 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
3124 InFlag = Chain.getValue(1);
3125
3126 uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
3127 ? RoundUpToAlignment(NumBytes, 16)
3128 : 0;
3129
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003130 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3131 DAG.getIntPtrConstant(CalleePopBytes, DL, true),
Tim Northover3b0846e2014-05-24 12:50:23 +00003132 InFlag, DL);
3133 if (!Ins.empty())
3134 InFlag = Chain.getValue(1);
3135
3136 // Handle result values, copying them out of physregs into vregs that we
3137 // return.
3138 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3139 InVals, IsThisReturn,
3140 IsThisReturn ? OutVals[0] : SDValue());
3141}
3142
3143bool AArch64TargetLowering::CanLowerReturn(
3144 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
3145 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
3146 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3147 ? RetCC_AArch64_WebKit_JS
3148 : RetCC_AArch64_AAPCS;
3149 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00003150 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
Tim Northover3b0846e2014-05-24 12:50:23 +00003151 return CCInfo.CheckReturn(Outs, RetCC);
3152}
3153
3154SDValue
3155AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3156 bool isVarArg,
3157 const SmallVectorImpl<ISD::OutputArg> &Outs,
3158 const SmallVectorImpl<SDValue> &OutVals,
3159 SDLoc DL, SelectionDAG &DAG) const {
3160 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3161 ? RetCC_AArch64_WebKit_JS
3162 : RetCC_AArch64_AAPCS;
3163 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00003164 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3165 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00003166 CCInfo.AnalyzeReturn(Outs, RetCC);
3167
3168 // Copy the result values into the output registers.
3169 SDValue Flag;
3170 SmallVector<SDValue, 4> RetOps(1, Chain);
3171 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
3172 ++i, ++realRVLocIdx) {
3173 CCValAssign &VA = RVLocs[i];
3174 assert(VA.isRegLoc() && "Can only return in registers!");
3175 SDValue Arg = OutVals[realRVLocIdx];
3176
3177 switch (VA.getLocInfo()) {
3178 default:
3179 llvm_unreachable("Unknown loc info!");
3180 case CCValAssign::Full:
Tim Northover68ae5032014-05-26 17:22:07 +00003181 if (Outs[i].ArgVT == MVT::i1) {
3182 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
3183 // value. This is strictly redundant on Darwin (which uses "zeroext
3184 // i1"), but will be optimised out before ISel.
3185 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3186 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3187 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003188 break;
3189 case CCValAssign::BCvt:
3190 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3191 break;
3192 }
3193
3194 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
3195 Flag = Chain.getValue(1);
3196 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3197 }
3198
3199 RetOps[0] = Chain; // Update chain.
3200
3201 // Add the flag if we have it.
3202 if (Flag.getNode())
3203 RetOps.push_back(Flag);
3204
3205 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
3206}
3207
3208//===----------------------------------------------------------------------===//
3209// Other Lowering Code
3210//===----------------------------------------------------------------------===//
3211
3212SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
3213 SelectionDAG &DAG) const {
Mehdi Amini44ede332015-07-09 02:09:04 +00003214 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003215 SDLoc DL(Op);
Asiri Rathnayake369c0302014-09-10 13:54:38 +00003216 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
3217 const GlobalValue *GV = GN->getGlobal();
Tim Northover3b0846e2014-05-24 12:50:23 +00003218 unsigned char OpFlags =
3219 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
3220
3221 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
3222 "unexpected offset in global node");
3223
3224 // This also catched the large code model case for Darwin.
3225 if ((OpFlags & AArch64II::MO_GOT) != 0) {
3226 SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
3227 // FIXME: Once remat is capable of dealing with instructions with register
3228 // operands, expand this into two nodes instead of using a wrapper node.
3229 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3230 }
3231
Asiri Rathnayake369c0302014-09-10 13:54:38 +00003232 if ((OpFlags & AArch64II::MO_CONSTPOOL) != 0) {
3233 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3234 "use of MO_CONSTPOOL only supported on small model");
3235 SDValue Hi = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, AArch64II::MO_PAGE);
3236 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3237 unsigned char LoFlags = AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
3238 SDValue Lo = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, LoFlags);
3239 SDValue PoolAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3240 SDValue GlobalAddr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), PoolAddr,
3241 MachinePointerInfo::getConstantPool(),
3242 /*isVolatile=*/ false,
3243 /*isNonTemporal=*/ true,
3244 /*isInvariant=*/ true, 8);
3245 if (GN->getOffset() != 0)
3246 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalAddr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003247 DAG.getConstant(GN->getOffset(), DL, PtrVT));
Asiri Rathnayake369c0302014-09-10 13:54:38 +00003248 return GlobalAddr;
3249 }
3250
Tim Northover3b0846e2014-05-24 12:50:23 +00003251 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3252 const unsigned char MO_NC = AArch64II::MO_NC;
3253 return DAG.getNode(
3254 AArch64ISD::WrapperLarge, DL, PtrVT,
3255 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
3256 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3257 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3258 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3259 } else {
3260 // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
3261 // the only correct model on Darwin.
3262 SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3263 OpFlags | AArch64II::MO_PAGE);
3264 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
3265 SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
3266
3267 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3268 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3269 }
3270}
3271
3272/// \brief Convert a TLS address reference into the correct sequence of loads
3273/// and calls to compute the variable's address (for Darwin, currently) and
3274/// return an SDValue containing the final node.
3275
3276/// Darwin only has one TLS scheme which must be capable of dealing with the
3277/// fully general situation, in the worst case. This means:
3278/// + "extern __thread" declaration.
3279/// + Defined in a possibly unknown dynamic library.
3280///
3281/// The general system is that each __thread variable has a [3 x i64] descriptor
3282/// which contains information used by the runtime to calculate the address. The
3283/// only part of this the compiler needs to know about is the first xword, which
3284/// contains a function pointer that must be called with the address of the
3285/// entire descriptor in "x0".
3286///
3287/// Since this descriptor may be in a different unit, in general even the
3288/// descriptor must be accessed via an indirect load. The "ideal" code sequence
3289/// is:
3290/// adrp x0, _var@TLVPPAGE
3291/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
3292/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
3293/// ; the function pointer
3294/// blr x1 ; Uses descriptor address in x0
3295/// ; Address of _var is now in x0.
3296///
3297/// If the address of _var's descriptor *is* known to the linker, then it can
3298/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
3299/// a slight efficiency gain.
3300SDValue
3301AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
3302 SelectionDAG &DAG) const {
3303 assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
3304
3305 SDLoc DL(Op);
Mehdi Amini44ede332015-07-09 02:09:04 +00003306 MVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003307 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3308
3309 SDValue TLVPAddr =
3310 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3311 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
3312
3313 // The first entry in the descriptor is a function pointer that we must call
3314 // to obtain the address of the variable.
3315 SDValue Chain = DAG.getEntryNode();
3316 SDValue FuncTLVGet =
3317 DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(),
3318 false, true, true, 8);
3319 Chain = FuncTLVGet.getValue(1);
3320
3321 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3322 MFI->setAdjustsStack(true);
3323
3324 // TLS calls preserve all registers except those that absolutely must be
3325 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3326 // silly).
Eric Christopher6c901622015-01-28 03:51:33 +00003327 const uint32_t *Mask =
Eric Christopher905f12d2015-01-29 00:19:42 +00003328 Subtarget->getRegisterInfo()->getTLSCallPreservedMask();
Tim Northover3b0846e2014-05-24 12:50:23 +00003329
3330 // Finally, we can make the call. This is just a degenerate version of a
3331 // normal AArch64 call node: x0 takes the address of the descriptor, and
3332 // returns the address of the variable in this thread.
3333 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
3334 Chain =
3335 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3336 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
3337 DAG.getRegisterMask(Mask), Chain.getValue(1));
3338 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
3339}
3340
3341/// When accessing thread-local variables under either the general-dynamic or
3342/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
3343/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
Kristof Beylsaea84612015-03-04 09:12:08 +00003344/// is a function pointer to carry out the resolution.
Tim Northover3b0846e2014-05-24 12:50:23 +00003345///
Kristof Beylsaea84612015-03-04 09:12:08 +00003346/// The sequence is:
3347/// adrp x0, :tlsdesc:var
3348/// ldr x1, [x0, #:tlsdesc_lo12:var]
3349/// add x0, x0, #:tlsdesc_lo12:var
3350/// .tlsdesccall var
3351/// blr x1
3352/// (TPIDR_EL0 offset now in x0)
Tim Northover3b0846e2014-05-24 12:50:23 +00003353///
Kristof Beylsaea84612015-03-04 09:12:08 +00003354/// The above sequence must be produced unscheduled, to enable the linker to
3355/// optimize/relax this sequence.
3356/// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
3357/// above sequence, and expanded really late in the compilation flow, to ensure
3358/// the sequence is produced as per above.
3359SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr, SDLoc DL,
3360 SelectionDAG &DAG) const {
Mehdi Amini44ede332015-07-09 02:09:04 +00003361 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003362
Kristof Beylsaea84612015-03-04 09:12:08 +00003363 SDValue Chain = DAG.getEntryNode();
Tim Northover3b0846e2014-05-24 12:50:23 +00003364 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Kristof Beylsaea84612015-03-04 09:12:08 +00003365
3366 SmallVector<SDValue, 2> Ops;
3367 Ops.push_back(Chain);
3368 Ops.push_back(SymAddr);
3369
3370 Chain = DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, Ops);
3371 SDValue Glue = Chain.getValue(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003372
3373 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
3374}
3375
3376SDValue
3377AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
3378 SelectionDAG &DAG) const {
3379 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
3380 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3381 "ELF TLS only supported in small memory model");
Kristof Beylsaea84612015-03-04 09:12:08 +00003382 // Different choices can be made for the maximum size of the TLS area for a
3383 // module. For the small address model, the default TLS size is 16MiB and the
3384 // maximum TLS size is 4GiB.
3385 // FIXME: add -mtls-size command line option and make it control the 16MiB
3386 // vs. 4GiB code sequence generation.
Tim Northover3b0846e2014-05-24 12:50:23 +00003387 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3388
3389 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
Kristof Beylsaea84612015-03-04 09:12:08 +00003390 if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
3391 if (Model == TLSModel::LocalDynamic)
3392 Model = TLSModel::GeneralDynamic;
3393 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003394
3395 SDValue TPOff;
Mehdi Amini44ede332015-07-09 02:09:04 +00003396 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003397 SDLoc DL(Op);
3398 const GlobalValue *GV = GA->getGlobal();
3399
3400 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
3401
3402 if (Model == TLSModel::LocalExec) {
3403 SDValue HiVar = DAG.getTargetGlobalAddress(
Kristof Beylsaea84612015-03-04 09:12:08 +00003404 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
Tim Northover3b0846e2014-05-24 12:50:23 +00003405 SDValue LoVar = DAG.getTargetGlobalAddress(
3406 GV, DL, PtrVT, 0,
Kristof Beylsaea84612015-03-04 09:12:08 +00003407 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
Tim Northover3b0846e2014-05-24 12:50:23 +00003408
Kristof Beylsaea84612015-03-04 09:12:08 +00003409 SDValue TPWithOff_lo =
3410 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003411 HiVar,
3412 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003413 0);
3414 SDValue TPWithOff =
3415 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003416 LoVar,
3417 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003418 0);
3419 return TPWithOff;
Tim Northover3b0846e2014-05-24 12:50:23 +00003420 } else if (Model == TLSModel::InitialExec) {
3421 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3422 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
3423 } else if (Model == TLSModel::LocalDynamic) {
3424 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
3425 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
3426 // the beginning of the module's TLS region, followed by a DTPREL offset
3427 // calculation.
3428
3429 // These accesses will need deduplicating if there's more than one.
3430 AArch64FunctionInfo *MFI =
3431 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3432 MFI->incNumLocalDynamicTLSAccesses();
3433
Tim Northover3b0846e2014-05-24 12:50:23 +00003434 // The call needs a relocation too for linker relaxation. It doesn't make
3435 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3436 // the address.
3437 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
3438 AArch64II::MO_TLS);
3439
3440 // Now we can calculate the offset from TPIDR_EL0 to this module's
3441 // thread-local area.
Kristof Beylsaea84612015-03-04 09:12:08 +00003442 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00003443
3444 // Now use :dtprel_whatever: operations to calculate this variable's offset
3445 // in its thread-storage area.
3446 SDValue HiVar = DAG.getTargetGlobalAddress(
Kristof Beylsaea84612015-03-04 09:12:08 +00003447 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
Tim Northover3b0846e2014-05-24 12:50:23 +00003448 SDValue LoVar = DAG.getTargetGlobalAddress(
3449 GV, DL, MVT::i64, 0,
Tim Northover3b0846e2014-05-24 12:50:23 +00003450 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3451
Kristof Beylsaea84612015-03-04 09:12:08 +00003452 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003453 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003454 0);
3455 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003456 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003457 0);
3458 } else if (Model == TLSModel::GeneralDynamic) {
Tim Northover3b0846e2014-05-24 12:50:23 +00003459 // The call needs a relocation too for linker relaxation. It doesn't make
3460 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3461 // the address.
3462 SDValue SymAddr =
3463 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3464
3465 // Finally we can make a call to calculate the offset from tpidr_el0.
Kristof Beylsaea84612015-03-04 09:12:08 +00003466 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00003467 } else
3468 llvm_unreachable("Unsupported ELF TLS access model");
3469
3470 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
3471}
3472
3473SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
3474 SelectionDAG &DAG) const {
3475 if (Subtarget->isTargetDarwin())
3476 return LowerDarwinGlobalTLSAddress(Op, DAG);
3477 else if (Subtarget->isTargetELF())
3478 return LowerELFGlobalTLSAddress(Op, DAG);
3479
3480 llvm_unreachable("Unexpected platform trying to use TLS");
3481}
3482SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3483 SDValue Chain = Op.getOperand(0);
3484 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3485 SDValue LHS = Op.getOperand(2);
3486 SDValue RHS = Op.getOperand(3);
3487 SDValue Dest = Op.getOperand(4);
3488 SDLoc dl(Op);
3489
3490 // Handle f128 first, since lowering it will result in comparing the return
3491 // value of a libcall against zero, which is just what the rest of LowerBR_CC
3492 // is expecting to deal with.
3493 if (LHS.getValueType() == MVT::f128) {
3494 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3495
3496 // If softenSetCCOperands returned a scalar, we need to compare the result
3497 // against zero to select between true and false values.
3498 if (!RHS.getNode()) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003499 RHS = DAG.getConstant(0, dl, LHS.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00003500 CC = ISD::SETNE;
3501 }
3502 }
3503
3504 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
3505 // instruction.
3506 unsigned Opc = LHS.getOpcode();
3507 if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) &&
3508 cast<ConstantSDNode>(RHS)->isOne() &&
3509 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3510 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3511 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
3512 "Unexpected condition code.");
3513 // Only lower legal XALUO ops.
3514 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
3515 return SDValue();
3516
3517 // The actual operation with overflow check.
3518 AArch64CC::CondCode OFCC;
3519 SDValue Value, Overflow;
3520 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
3521
3522 if (CC == ISD::SETNE)
3523 OFCC = getInvertedCondCode(OFCC);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003524 SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003525
Ahmed Bougachadf956a22015-02-06 23:15:39 +00003526 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3527 Overflow);
Tim Northover3b0846e2014-05-24 12:50:23 +00003528 }
3529
3530 if (LHS.getValueType().isInteger()) {
3531 assert((LHS.getValueType() == RHS.getValueType()) &&
3532 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3533
3534 // If the RHS of the comparison is zero, we can potentially fold this
3535 // to a specialized branch.
3536 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
3537 if (RHSC && RHSC->getZExtValue() == 0) {
3538 if (CC == ISD::SETEQ) {
3539 // See if we can use a TBZ to fold in an AND as well.
3540 // TBZ has a smaller branch displacement than CBZ. If the offset is
3541 // out of bounds, a late MI-layer pass rewrites branches.
3542 // 403.gcc is an example that hits this case.
3543 if (LHS.getOpcode() == ISD::AND &&
3544 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3545 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3546 SDValue Test = LHS.getOperand(0);
3547 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003548 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003549 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3550 Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003551 }
3552
3553 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
3554 } else if (CC == ISD::SETNE) {
3555 // See if we can use a TBZ to fold in an AND as well.
3556 // TBZ has a smaller branch displacement than CBZ. If the offset is
3557 // out of bounds, a late MI-layer pass rewrites branches.
3558 // 403.gcc is an example that hits this case.
3559 if (LHS.getOpcode() == ISD::AND &&
3560 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3561 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3562 SDValue Test = LHS.getOperand(0);
3563 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003564 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003565 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3566 Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003567 }
3568
3569 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
Chad Rosier579c02c2014-08-01 14:48:56 +00003570 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
3571 // Don't combine AND since emitComparison converts the AND to an ANDS
3572 // (a.k.a. TST) and the test in the test bit and branch instruction
3573 // becomes redundant. This would also increase register pressure.
3574 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3575 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003576 DAG.getConstant(Mask, dl, MVT::i64), Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003577 }
3578 }
Chad Rosier579c02c2014-08-01 14:48:56 +00003579 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
3580 LHS.getOpcode() != ISD::AND) {
3581 // Don't combine AND since emitComparison converts the AND to an ANDS
3582 // (a.k.a. TST) and the test in the test bit and branch instruction
3583 // becomes redundant. This would also increase register pressure.
3584 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3585 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003586 DAG.getConstant(Mask, dl, MVT::i64), Dest);
Chad Rosier579c02c2014-08-01 14:48:56 +00003587 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003588
3589 SDValue CCVal;
3590 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3591 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3592 Cmp);
3593 }
3594
3595 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3596
3597 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3598 // clean. Some of them require two branches to implement.
3599 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3600 AArch64CC::CondCode CC1, CC2;
3601 changeFPCCToAArch64CC(CC, CC1, CC2);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003602 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003603 SDValue BR1 =
3604 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
3605 if (CC2 != AArch64CC::AL) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003606 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003607 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
3608 Cmp);
3609 }
3610
3611 return BR1;
3612}
3613
3614SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
3615 SelectionDAG &DAG) const {
3616 EVT VT = Op.getValueType();
3617 SDLoc DL(Op);
3618
3619 SDValue In1 = Op.getOperand(0);
3620 SDValue In2 = Op.getOperand(1);
3621 EVT SrcVT = In2.getValueType();
3622 if (SrcVT != VT) {
3623 if (SrcVT == MVT::f32 && VT == MVT::f64)
3624 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
3625 else if (SrcVT == MVT::f64 && VT == MVT::f32)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003626 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2,
3627 DAG.getIntPtrConstant(0, DL));
Tim Northover3b0846e2014-05-24 12:50:23 +00003628 else
3629 // FIXME: Src type is different, bail out for now. Can VT really be a
3630 // vector type?
3631 return SDValue();
3632 }
3633
3634 EVT VecVT;
3635 EVT EltVT;
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003636 uint64_t EltMask;
3637 SDValue VecVal1, VecVal2;
Tim Northover3b0846e2014-05-24 12:50:23 +00003638 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
3639 EltVT = MVT::i32;
3640 VecVT = MVT::v4i32;
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003641 EltMask = 0x80000000ULL;
Tim Northover3b0846e2014-05-24 12:50:23 +00003642
3643 if (!VT.isVector()) {
3644 VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3645 DAG.getUNDEF(VecVT), In1);
3646 VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3647 DAG.getUNDEF(VecVT), In2);
3648 } else {
3649 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3650 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3651 }
3652 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
3653 EltVT = MVT::i64;
3654 VecVT = MVT::v2i64;
3655
Eric Christopher572e03a2015-06-19 01:53:21 +00003656 // We want to materialize a mask with the high bit set, but the AdvSIMD
Tim Northover3b0846e2014-05-24 12:50:23 +00003657 // immediate moves cannot materialize that in a single instruction for
3658 // 64-bit elements. Instead, materialize zero and then negate it.
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003659 EltMask = 0;
Tim Northover3b0846e2014-05-24 12:50:23 +00003660
3661 if (!VT.isVector()) {
3662 VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3663 DAG.getUNDEF(VecVT), In1);
3664 VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3665 DAG.getUNDEF(VecVT), In2);
3666 } else {
3667 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3668 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3669 }
3670 } else {
3671 llvm_unreachable("Invalid type for copysign!");
3672 }
3673
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003674 SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00003675
3676 // If we couldn't materialize the mask above, then the mask vector will be
3677 // the zero vector, and we need to negate it here.
3678 if (VT == MVT::f64 || VT == MVT::v2f64) {
3679 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3680 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3681 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3682 }
3683
3684 SDValue Sel =
3685 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3686
3687 if (VT == MVT::f32)
3688 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3689 else if (VT == MVT::f64)
3690 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3691 else
3692 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3693}
3694
3695SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00003696 if (DAG.getMachineFunction().getFunction()->hasFnAttribute(
3697 Attribute::NoImplicitFloat))
Tim Northover3b0846e2014-05-24 12:50:23 +00003698 return SDValue();
3699
Weiming Zhao7a2d1562014-11-19 00:29:14 +00003700 if (!Subtarget->hasNEON())
3701 return SDValue();
3702
Tim Northover3b0846e2014-05-24 12:50:23 +00003703 // While there is no integer popcount instruction, it can
3704 // be more efficiently lowered to the following sequence that uses
3705 // AdvSIMD registers/instructions as long as the copies to/from
3706 // the AdvSIMD registers are cheap.
3707 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
3708 // CNT V0.8B, V0.8B // 8xbyte pop-counts
3709 // ADDV B0, V0.8B // sum 8xbyte pop-counts
3710 // UMOV X0, V0.B[0] // copy byte result back to integer reg
3711 SDValue Val = Op.getOperand(0);
3712 SDLoc DL(Op);
3713 EVT VT = Op.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00003714
Hao Liue0335d72015-01-30 02:13:53 +00003715 if (VT == MVT::i32)
3716 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
3717 Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
Tim Northover3b0846e2014-05-24 12:50:23 +00003718
Hao Liue0335d72015-01-30 02:13:53 +00003719 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
Tim Northover3b0846e2014-05-24 12:50:23 +00003720 SDValue UaddLV = DAG.getNode(
3721 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003722 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
Tim Northover3b0846e2014-05-24 12:50:23 +00003723
3724 if (VT == MVT::i64)
3725 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3726 return UaddLV;
3727}
3728
3729SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3730
3731 if (Op.getValueType().isVector())
3732 return LowerVSETCC(Op, DAG);
3733
3734 SDValue LHS = Op.getOperand(0);
3735 SDValue RHS = Op.getOperand(1);
3736 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3737 SDLoc dl(Op);
3738
3739 // We chose ZeroOrOneBooleanContents, so use zero and one.
3740 EVT VT = Op.getValueType();
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003741 SDValue TVal = DAG.getConstant(1, dl, VT);
3742 SDValue FVal = DAG.getConstant(0, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00003743
3744 // Handle f128 first, since one possible outcome is a normal integer
3745 // comparison which gets picked up by the next if statement.
3746 if (LHS.getValueType() == MVT::f128) {
3747 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3748
3749 // If softenSetCCOperands returned a scalar, use it.
3750 if (!RHS.getNode()) {
3751 assert(LHS.getValueType() == Op.getValueType() &&
3752 "Unexpected setcc expansion!");
3753 return LHS;
3754 }
3755 }
3756
3757 if (LHS.getValueType().isInteger()) {
3758 SDValue CCVal;
3759 SDValue Cmp =
3760 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3761
3762 // Note that we inverted the condition above, so we reverse the order of
3763 // the true and false operands here. This will allow the setcc to be
3764 // matched to a single CSINC instruction.
3765 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3766 }
3767
3768 // Now we know we're dealing with FP values.
3769 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3770
3771 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3772 // and do the comparison.
3773 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3774
3775 AArch64CC::CondCode CC1, CC2;
3776 changeFPCCToAArch64CC(CC, CC1, CC2);
3777 if (CC2 == AArch64CC::AL) {
3778 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003779 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003780
3781 // Note that we inverted the condition above, so we reverse the order of
3782 // the true and false operands here. This will allow the setcc to be
3783 // matched to a single CSINC instruction.
3784 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3785 } else {
3786 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3787 // totally clean. Some of them require two CSELs to implement. As is in
3788 // this case, we emit the first CSEL and then emit a second using the output
3789 // of the first as the RHS. We're effectively OR'ing the two CC's together.
3790
3791 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003792 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003793 SDValue CS1 =
3794 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3795
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003796 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003797 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3798 }
3799}
3800
3801/// A SELECT_CC operation is really some kind of max or min if both values being
3802/// compared are, in some sense, equal to the results in either case. However,
3803/// it is permissible to compare f32 values and produce directly extended f64
3804/// values.
3805///
3806/// Extending the comparison operands would also be allowed, but is less likely
3807/// to happen in practice since their use is right here. Note that truncate
3808/// operations would *not* be semantically equivalent.
3809static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) {
3810 if (Cmp == Result)
Artyom Skrobova70dfe12015-05-14 12:59:46 +00003811 return (Cmp.getValueType() == MVT::f32 ||
3812 Cmp.getValueType() == MVT::f64);
Tim Northover3b0846e2014-05-24 12:50:23 +00003813
3814 ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp);
3815 ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result);
3816 if (CCmp && CResult && Cmp.getValueType() == MVT::f32 &&
3817 Result.getValueType() == MVT::f64) {
3818 bool Lossy;
3819 APFloat CmpVal = CCmp->getValueAPF();
3820 CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy);
3821 return CResult->getValueAPF().bitwiseIsEqual(CmpVal);
3822 }
3823
3824 return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp;
3825}
3826
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003827SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
3828 SDValue RHS, SDValue TVal,
3829 SDValue FVal, SDLoc dl,
Tim Northover3b0846e2014-05-24 12:50:23 +00003830 SelectionDAG &DAG) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00003831 // Handle f128 first, because it will result in a comparison of some RTLIB
3832 // call result against zero.
3833 if (LHS.getValueType() == MVT::f128) {
3834 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3835
3836 // If softenSetCCOperands returned a scalar, we need to compare the result
3837 // against zero to select between true and false values.
3838 if (!RHS.getNode()) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003839 RHS = DAG.getConstant(0, dl, LHS.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00003840 CC = ISD::SETNE;
3841 }
3842 }
3843
3844 // Handle integers first.
3845 if (LHS.getValueType().isInteger()) {
3846 assert((LHS.getValueType() == RHS.getValueType()) &&
3847 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3848
3849 unsigned Opcode = AArch64ISD::CSEL;
3850
3851 // If both the TVal and the FVal are constants, see if we can swap them in
3852 // order to for a CSINV or CSINC out of them.
3853 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3854 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3855
3856 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3857 std::swap(TVal, FVal);
3858 std::swap(CTVal, CFVal);
3859 CC = ISD::getSetCCInverse(CC, true);
3860 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3861 std::swap(TVal, FVal);
3862 std::swap(CTVal, CFVal);
3863 CC = ISD::getSetCCInverse(CC, true);
3864 } else if (TVal.getOpcode() == ISD::XOR) {
3865 // If TVal is a NOT we want to swap TVal and FVal so that we can match
3866 // with a CSINV rather than a CSEL.
3867 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1));
3868
3869 if (CVal && CVal->isAllOnesValue()) {
3870 std::swap(TVal, FVal);
3871 std::swap(CTVal, CFVal);
3872 CC = ISD::getSetCCInverse(CC, true);
3873 }
3874 } else if (TVal.getOpcode() == ISD::SUB) {
3875 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3876 // that we can match with a CSNEG rather than a CSEL.
3877 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0));
3878
3879 if (CVal && CVal->isNullValue()) {
3880 std::swap(TVal, FVal);
3881 std::swap(CTVal, CFVal);
3882 CC = ISD::getSetCCInverse(CC, true);
3883 }
3884 } else if (CTVal && CFVal) {
3885 const int64_t TrueVal = CTVal->getSExtValue();
3886 const int64_t FalseVal = CFVal->getSExtValue();
3887 bool Swap = false;
3888
3889 // If both TVal and FVal are constants, see if FVal is the
3890 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
3891 // instead of a CSEL in that case.
3892 if (TrueVal == ~FalseVal) {
3893 Opcode = AArch64ISD::CSINV;
3894 } else if (TrueVal == -FalseVal) {
3895 Opcode = AArch64ISD::CSNEG;
3896 } else if (TVal.getValueType() == MVT::i32) {
3897 // If our operands are only 32-bit wide, make sure we use 32-bit
3898 // arithmetic for the check whether we can use CSINC. This ensures that
3899 // the addition in the check will wrap around properly in case there is
3900 // an overflow (which would not be the case if we do the check with
3901 // 64-bit arithmetic).
3902 const uint32_t TrueVal32 = CTVal->getZExtValue();
3903 const uint32_t FalseVal32 = CFVal->getZExtValue();
3904
3905 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
3906 Opcode = AArch64ISD::CSINC;
3907
3908 if (TrueVal32 > FalseVal32) {
3909 Swap = true;
3910 }
3911 }
3912 // 64-bit check whether we can use CSINC.
3913 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
3914 Opcode = AArch64ISD::CSINC;
3915
3916 if (TrueVal > FalseVal) {
3917 Swap = true;
3918 }
3919 }
3920
3921 // Swap TVal and FVal if necessary.
3922 if (Swap) {
3923 std::swap(TVal, FVal);
3924 std::swap(CTVal, CFVal);
3925 CC = ISD::getSetCCInverse(CC, true);
3926 }
3927
3928 if (Opcode != AArch64ISD::CSEL) {
3929 // Drop FVal since we can get its value by simply inverting/negating
3930 // TVal.
3931 FVal = TVal;
3932 }
3933 }
3934
3935 SDValue CCVal;
3936 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3937
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003938 EVT VT = TVal.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00003939 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
3940 }
3941
3942 // Now we know we're dealing with FP values.
3943 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3944 assert(LHS.getValueType() == RHS.getValueType());
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003945 EVT VT = TVal.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00003946 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3947
3948 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3949 // clean. Some of them require two CSELs to implement.
3950 AArch64CC::CondCode CC1, CC2;
3951 changeFPCCToAArch64CC(CC, CC1, CC2);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003952 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003953 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3954
3955 // If we need a second CSEL, emit it, using the output of the first as the
3956 // RHS. We're effectively OR'ing the two CC's together.
3957 if (CC2 != AArch64CC::AL) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003958 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003959 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3960 }
3961
3962 // Otherwise, return the output of the first CSEL.
3963 return CS1;
3964}
3965
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003966SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
3967 SelectionDAG &DAG) const {
3968 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3969 SDValue LHS = Op.getOperand(0);
3970 SDValue RHS = Op.getOperand(1);
3971 SDValue TVal = Op.getOperand(2);
3972 SDValue FVal = Op.getOperand(3);
3973 SDLoc DL(Op);
3974 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
3975}
3976
3977SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
3978 SelectionDAG &DAG) const {
3979 SDValue CCVal = Op->getOperand(0);
3980 SDValue TVal = Op->getOperand(1);
3981 SDValue FVal = Op->getOperand(2);
3982 SDLoc DL(Op);
3983
3984 unsigned Opc = CCVal.getOpcode();
3985 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
3986 // instruction.
3987 if (CCVal.getResNo() == 1 &&
3988 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3989 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3990 // Only lower legal XALUO ops.
3991 if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
3992 return SDValue();
3993
3994 AArch64CC::CondCode OFCC;
3995 SDValue Value, Overflow;
3996 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003997 SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003998
3999 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
4000 CCVal, Overflow);
4001 }
4002
4003 // Lower it the same way as we would lower a SELECT_CC node.
4004 ISD::CondCode CC;
4005 SDValue LHS, RHS;
4006 if (CCVal.getOpcode() == ISD::SETCC) {
4007 LHS = CCVal.getOperand(0);
4008 RHS = CCVal.getOperand(1);
4009 CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
4010 } else {
4011 LHS = CCVal;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004012 RHS = DAG.getConstant(0, DL, CCVal.getValueType());
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00004013 CC = ISD::SETNE;
4014 }
4015 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4016}
4017
Tim Northover3b0846e2014-05-24 12:50:23 +00004018SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
4019 SelectionDAG &DAG) const {
4020 // Jump table entries as PC relative offsets. No additional tweaking
4021 // is necessary here. Just get the address of the jump table.
4022 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
Mehdi Amini44ede332015-07-09 02:09:04 +00004023 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004024 SDLoc DL(Op);
4025
4026 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4027 !Subtarget->isTargetMachO()) {
4028 const unsigned char MO_NC = AArch64II::MO_NC;
4029 return DAG.getNode(
4030 AArch64ISD::WrapperLarge, DL, PtrVT,
4031 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
4032 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
4033 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
4034 DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
4035 AArch64II::MO_G0 | MO_NC));
4036 }
4037
4038 SDValue Hi =
4039 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
4040 SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
4041 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4042 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4043 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4044}
4045
4046SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
4047 SelectionDAG &DAG) const {
4048 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
Mehdi Amini44ede332015-07-09 02:09:04 +00004049 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004050 SDLoc DL(Op);
4051
4052 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
4053 // Use the GOT for the large code model on iOS.
4054 if (Subtarget->isTargetMachO()) {
4055 SDValue GotAddr = DAG.getTargetConstantPool(
4056 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
4057 AArch64II::MO_GOT);
4058 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
4059 }
4060
4061 const unsigned char MO_NC = AArch64II::MO_NC;
4062 return DAG.getNode(
4063 AArch64ISD::WrapperLarge, DL, PtrVT,
4064 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4065 CP->getOffset(), AArch64II::MO_G3),
4066 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4067 CP->getOffset(), AArch64II::MO_G2 | MO_NC),
4068 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4069 CP->getOffset(), AArch64II::MO_G1 | MO_NC),
4070 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4071 CP->getOffset(), AArch64II::MO_G0 | MO_NC));
4072 } else {
4073 // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
4074 // ELF, the only valid one on Darwin.
4075 SDValue Hi =
4076 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4077 CP->getOffset(), AArch64II::MO_PAGE);
4078 SDValue Lo = DAG.getTargetConstantPool(
4079 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
4080 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4081
4082 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4083 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4084 }
4085}
4086
4087SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
4088 SelectionDAG &DAG) const {
4089 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
Mehdi Amini44ede332015-07-09 02:09:04 +00004090 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004091 SDLoc DL(Op);
4092 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4093 !Subtarget->isTargetMachO()) {
4094 const unsigned char MO_NC = AArch64II::MO_NC;
4095 return DAG.getNode(
4096 AArch64ISD::WrapperLarge, DL, PtrVT,
4097 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
4098 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
4099 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
4100 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
4101 } else {
4102 SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
4103 SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
4104 AArch64II::MO_NC);
4105 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4106 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4107 }
4108}
4109
4110SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
4111 SelectionDAG &DAG) const {
4112 AArch64FunctionInfo *FuncInfo =
4113 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
4114
4115 SDLoc DL(Op);
Mehdi Amini44ede332015-07-09 02:09:04 +00004116 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
4117 getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004118 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4119 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
4120 MachinePointerInfo(SV), false, false, 0);
4121}
4122
4123SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
4124 SelectionDAG &DAG) const {
4125 // The layout of the va_list struct is specified in the AArch64 Procedure Call
4126 // Standard, section B.3.
4127 MachineFunction &MF = DAG.getMachineFunction();
4128 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
Mehdi Amini44ede332015-07-09 02:09:04 +00004129 auto PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004130 SDLoc DL(Op);
4131
4132 SDValue Chain = Op.getOperand(0);
4133 SDValue VAList = Op.getOperand(1);
4134 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4135 SmallVector<SDValue, 4> MemOps;
4136
4137 // void *__stack at offset 0
Mehdi Amini44ede332015-07-09 02:09:04 +00004138 SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004139 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
4140 MachinePointerInfo(SV), false, false, 8));
4141
4142 // void *__gr_top at offset 8
4143 int GPRSize = FuncInfo->getVarArgsGPRSize();
4144 if (GPRSize > 0) {
4145 SDValue GRTop, GRTopAddr;
4146
Mehdi Amini44ede332015-07-09 02:09:04 +00004147 GRTopAddr =
4148 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004149
Mehdi Amini44ede332015-07-09 02:09:04 +00004150 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
4151 GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
4152 DAG.getConstant(GPRSize, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004153
4154 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
4155 MachinePointerInfo(SV, 8), false, false, 8));
4156 }
4157
4158 // void *__vr_top at offset 16
4159 int FPRSize = FuncInfo->getVarArgsFPRSize();
4160 if (FPRSize > 0) {
4161 SDValue VRTop, VRTopAddr;
Mehdi Amini44ede332015-07-09 02:09:04 +00004162 VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4163 DAG.getConstant(16, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004164
Mehdi Amini44ede332015-07-09 02:09:04 +00004165 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
4166 VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
4167 DAG.getConstant(FPRSize, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004168
4169 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
4170 MachinePointerInfo(SV, 16), false, false, 8));
4171 }
4172
4173 // int __gr_offs at offset 24
Mehdi Amini44ede332015-07-09 02:09:04 +00004174 SDValue GROffsAddr =
4175 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT));
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004176 MemOps.push_back(DAG.getStore(Chain, DL,
4177 DAG.getConstant(-GPRSize, DL, MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00004178 GROffsAddr, MachinePointerInfo(SV, 24), false,
4179 false, 4));
4180
4181 // int __vr_offs at offset 28
Mehdi Amini44ede332015-07-09 02:09:04 +00004182 SDValue VROffsAddr =
4183 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT));
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004184 MemOps.push_back(DAG.getStore(Chain, DL,
4185 DAG.getConstant(-FPRSize, DL, MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00004186 VROffsAddr, MachinePointerInfo(SV, 28), false,
4187 false, 4));
4188
4189 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
4190}
4191
4192SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
4193 SelectionDAG &DAG) const {
4194 return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
4195 : LowerAAPCS_VASTART(Op, DAG);
4196}
4197
4198SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
4199 SelectionDAG &DAG) const {
4200 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
4201 // pointer.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004202 SDLoc DL(Op);
Tim Northover3b0846e2014-05-24 12:50:23 +00004203 unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
4204 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
4205 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
4206
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004207 return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1),
4208 Op.getOperand(2),
4209 DAG.getConstant(VaListSize, DL, MVT::i32),
Krzysztof Parzyszeka46c36b2015-04-13 17:16:45 +00004210 8, false, false, false, MachinePointerInfo(DestSV),
Tim Northover3b0846e2014-05-24 12:50:23 +00004211 MachinePointerInfo(SrcSV));
4212}
4213
4214SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
4215 assert(Subtarget->isTargetDarwin() &&
4216 "automatic va_arg instruction only works on Darwin");
4217
4218 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4219 EVT VT = Op.getValueType();
4220 SDLoc DL(Op);
4221 SDValue Chain = Op.getOperand(0);
4222 SDValue Addr = Op.getOperand(1);
4223 unsigned Align = Op.getConstantOperandVal(3);
Mehdi Amini44ede332015-07-09 02:09:04 +00004224 auto PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004225
Mehdi Amini44ede332015-07-09 02:09:04 +00004226 SDValue VAList = DAG.getLoad(PtrVT, DL, Chain, Addr, MachinePointerInfo(V),
4227 false, false, false, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00004228 Chain = VAList.getValue(1);
4229
4230 if (Align > 8) {
4231 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
Mehdi Amini44ede332015-07-09 02:09:04 +00004232 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4233 DAG.getConstant(Align - 1, DL, PtrVT));
4234 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
4235 DAG.getConstant(-(int64_t)Align, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004236 }
4237
4238 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
Mehdi Amini44ede332015-07-09 02:09:04 +00004239 uint64_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
Tim Northover3b0846e2014-05-24 12:50:23 +00004240
4241 // Scalar integer and FP values smaller than 64 bits are implicitly extended
4242 // up to 64 bits. At the very least, we have to increase the striding of the
4243 // vaargs list to match this, and for FP values we need to introduce
4244 // FP_ROUND nodes as well.
4245 if (VT.isInteger() && !VT.isVector())
4246 ArgSize = 8;
4247 bool NeedFPTrunc = false;
4248 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
4249 ArgSize = 8;
4250 NeedFPTrunc = true;
4251 }
4252
4253 // Increment the pointer, VAList, to the next vaarg
Mehdi Amini44ede332015-07-09 02:09:04 +00004254 SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4255 DAG.getConstant(ArgSize, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004256 // Store the incremented VAList to the legalized pointer
4257 SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
4258 false, false, 0);
4259
4260 // Load the actual argument out of the pointer VAList
4261 if (NeedFPTrunc) {
4262 // Load the value as an f64.
4263 SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
4264 MachinePointerInfo(), false, false, false, 0);
4265 // Round the value down to an f32.
4266 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004267 DAG.getIntPtrConstant(1, DL));
Tim Northover3b0846e2014-05-24 12:50:23 +00004268 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
4269 // Merge the rounded value with the chain output of the load.
4270 return DAG.getMergeValues(Ops, DL);
4271 }
4272
4273 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
4274 false, false, 0);
4275}
4276
4277SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
4278 SelectionDAG &DAG) const {
4279 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4280 MFI->setFrameAddressIsTaken(true);
4281
4282 EVT VT = Op.getValueType();
4283 SDLoc DL(Op);
4284 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4285 SDValue FrameAddr =
4286 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
4287 while (Depth--)
4288 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
4289 MachinePointerInfo(), false, false, false, 0);
4290 return FrameAddr;
4291}
4292
4293// FIXME? Maybe this could be a TableGen attribute on some registers and
4294// this table could be generated automatically from RegInfo.
Pat Gavlina717f252015-07-09 17:40:29 +00004295unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT,
4296 SelectionDAG &DAG) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004297 unsigned Reg = StringSwitch<unsigned>(RegName)
4298 .Case("sp", AArch64::SP)
4299 .Default(0);
4300 if (Reg)
4301 return Reg;
Luke Cheeseman85fd06d2015-06-01 12:02:47 +00004302 report_fatal_error(Twine("Invalid register name \""
4303 + StringRef(RegName) + "\"."));
Tim Northover3b0846e2014-05-24 12:50:23 +00004304}
4305
4306SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
4307 SelectionDAG &DAG) const {
4308 MachineFunction &MF = DAG.getMachineFunction();
4309 MachineFrameInfo *MFI = MF.getFrameInfo();
4310 MFI->setReturnAddressIsTaken(true);
4311
4312 EVT VT = Op.getValueType();
4313 SDLoc DL(Op);
4314 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4315 if (Depth) {
4316 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
Mehdi Amini44ede332015-07-09 02:09:04 +00004317 SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004318 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4319 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4320 MachinePointerInfo(), false, false, false, 0);
4321 }
4322
4323 // Return LR, which contains the return address. Mark it an implicit live-in.
4324 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
4325 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4326}
4327
4328/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4329/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4330SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
4331 SelectionDAG &DAG) const {
4332 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4333 EVT VT = Op.getValueType();
4334 unsigned VTBits = VT.getSizeInBits();
4335 SDLoc dl(Op);
4336 SDValue ShOpLo = Op.getOperand(0);
4337 SDValue ShOpHi = Op.getOperand(1);
4338 SDValue ShAmt = Op.getOperand(2);
4339 SDValue ARMcc;
4340 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4341
4342 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4343
4344 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004345 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
Tim Northover3b0846e2014-05-24 12:50:23 +00004346 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4347 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004348 DAG.getConstant(VTBits, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004349 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4350
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004351 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00004352 ISD::SETGE, dl, DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004353 SDValue CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00004354
4355 SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4356 SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4357 SDValue Lo =
4358 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4359
4360 // AArch64 shifts larger than the register width are wrapped rather than
4361 // clamped, so we can't just emit "hi >> x".
4362 SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4363 SDValue TrueValHi = Opc == ISD::SRA
4364 ? DAG.getNode(Opc, dl, VT, ShOpHi,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004365 DAG.getConstant(VTBits - 1, dl,
4366 MVT::i64))
4367 : DAG.getConstant(0, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004368 SDValue Hi =
4369 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp);
4370
4371 SDValue Ops[2] = { Lo, Hi };
4372 return DAG.getMergeValues(Ops, dl);
4373}
4374
4375/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4376/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4377SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
4378 SelectionDAG &DAG) const {
4379 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4380 EVT VT = Op.getValueType();
4381 unsigned VTBits = VT.getSizeInBits();
4382 SDLoc dl(Op);
4383 SDValue ShOpLo = Op.getOperand(0);
4384 SDValue ShOpHi = Op.getOperand(1);
4385 SDValue ShAmt = Op.getOperand(2);
4386 SDValue ARMcc;
4387
4388 assert(Op.getOpcode() == ISD::SHL_PARTS);
4389 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004390 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
Tim Northover3b0846e2014-05-24 12:50:23 +00004391 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4392 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004393 DAG.getConstant(VTBits, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004394 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4395 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4396
4397 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4398
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004399 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00004400 ISD::SETGE, dl, DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004401 SDValue CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00004402 SDValue Hi =
4403 DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp);
4404
4405 // AArch64 shifts of larger than register sizes are wrapped rather than
4406 // clamped, so we can't just emit "lo << a" if a is too big.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004407 SDValue TrueValLo = DAG.getConstant(0, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004408 SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4409 SDValue Lo =
4410 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4411
4412 SDValue Ops[2] = { Lo, Hi };
4413 return DAG.getMergeValues(Ops, dl);
4414}
4415
4416bool AArch64TargetLowering::isOffsetFoldingLegal(
4417 const GlobalAddressSDNode *GA) const {
4418 // The AArch64 target doesn't support folding offsets into global addresses.
4419 return false;
4420}
4421
4422bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4423 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
4424 // FIXME: We should be able to handle f128 as well with a clever lowering.
4425 if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
4426 return true;
4427
4428 if (VT == MVT::f64)
4429 return AArch64_AM::getFP64Imm(Imm) != -1;
4430 else if (VT == MVT::f32)
4431 return AArch64_AM::getFP32Imm(Imm) != -1;
4432 return false;
4433}
4434
4435//===----------------------------------------------------------------------===//
4436// AArch64 Optimization Hooks
4437//===----------------------------------------------------------------------===//
4438
4439//===----------------------------------------------------------------------===//
4440// AArch64 Inline Assembly Support
4441//===----------------------------------------------------------------------===//
4442
4443// Table of Constraints
4444// TODO: This is the current set of constraints supported by ARM for the
4445// compiler, not all of them may make sense, e.g. S may be difficult to support.
4446//
4447// r - A general register
4448// w - An FP/SIMD register of some size in the range v0-v31
4449// x - An FP/SIMD register of some size in the range v0-v15
4450// I - Constant that can be used with an ADD instruction
4451// J - Constant that can be used with a SUB instruction
4452// K - Constant that can be used with a 32-bit logical instruction
4453// L - Constant that can be used with a 64-bit logical instruction
4454// M - Constant that can be used as a 32-bit MOV immediate
4455// N - Constant that can be used as a 64-bit MOV immediate
4456// Q - A memory reference with base register and no offset
4457// S - A symbolic address
4458// Y - Floating point constant zero
4459// Z - Integer constant zero
4460//
4461// Note that general register operands will be output using their 64-bit x
4462// register name, whatever the size of the variable, unless the asm operand
4463// is prefixed by the %w modifier. Floating-point and SIMD register operands
4464// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
4465// %q modifier.
4466
4467/// getConstraintType - Given a constraint letter, return the type of
4468/// constraint it is for this target.
4469AArch64TargetLowering::ConstraintType
Benjamin Kramer9bfb6272015-07-05 19:29:18 +00004470AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004471 if (Constraint.size() == 1) {
4472 switch (Constraint[0]) {
4473 default:
4474 break;
4475 case 'z':
4476 return C_Other;
4477 case 'x':
4478 case 'w':
4479 return C_RegisterClass;
4480 // An address with a single base register. Due to the way we
4481 // currently handle addresses it is the same as 'r'.
4482 case 'Q':
4483 return C_Memory;
4484 }
4485 }
4486 return TargetLowering::getConstraintType(Constraint);
4487}
4488
4489/// Examine constraint type and operand type and determine a weight value.
4490/// This object must already have been set up with the operand type
4491/// and the current alternative constraint selected.
4492TargetLowering::ConstraintWeight
4493AArch64TargetLowering::getSingleConstraintMatchWeight(
4494 AsmOperandInfo &info, const char *constraint) const {
4495 ConstraintWeight weight = CW_Invalid;
4496 Value *CallOperandVal = info.CallOperandVal;
4497 // If we don't have a value, we can't do a match,
4498 // but allow it at the lowest weight.
4499 if (!CallOperandVal)
4500 return CW_Default;
4501 Type *type = CallOperandVal->getType();
4502 // Look at the constraint type.
4503 switch (*constraint) {
4504 default:
4505 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
4506 break;
4507 case 'x':
4508 case 'w':
4509 if (type->isFloatingPointTy() || type->isVectorTy())
4510 weight = CW_Register;
4511 break;
4512 case 'z':
4513 weight = CW_Constant;
4514 break;
4515 }
4516 return weight;
4517}
4518
4519std::pair<unsigned, const TargetRegisterClass *>
4520AArch64TargetLowering::getRegForInlineAsmConstraint(
Benjamin Kramer9bfb6272015-07-05 19:29:18 +00004521 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004522 if (Constraint.size() == 1) {
4523 switch (Constraint[0]) {
4524 case 'r':
4525 if (VT.getSizeInBits() == 64)
4526 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
4527 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
4528 case 'w':
4529 if (VT == MVT::f32)
4530 return std::make_pair(0U, &AArch64::FPR32RegClass);
4531 if (VT.getSizeInBits() == 64)
4532 return std::make_pair(0U, &AArch64::FPR64RegClass);
4533 if (VT.getSizeInBits() == 128)
4534 return std::make_pair(0U, &AArch64::FPR128RegClass);
4535 break;
4536 // The instructions that this constraint is designed for can
4537 // only take 128-bit registers so just use that regclass.
4538 case 'x':
4539 if (VT.getSizeInBits() == 128)
4540 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
4541 break;
4542 }
4543 }
4544 if (StringRef("{cc}").equals_lower(Constraint))
4545 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
4546
4547 // Use the default implementation in TargetLowering to convert the register
4548 // constraint into a member of a register class.
4549 std::pair<unsigned, const TargetRegisterClass *> Res;
Eric Christopher11e4df72015-02-26 22:38:43 +00004550 Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004551
4552 // Not found as a standard register?
4553 if (!Res.second) {
4554 unsigned Size = Constraint.size();
4555 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
4556 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
Benjamin Kramer9bfb6272015-07-05 19:29:18 +00004557 int RegNo;
4558 bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
4559 if (!Failed && RegNo >= 0 && RegNo <= 31) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004560 // v0 - v31 are aliases of q0 - q31.
4561 // By default we'll emit v0-v31 for this unless there's a modifier where
4562 // we'll emit the correct register as well.
4563 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
4564 Res.second = &AArch64::FPR128RegClass;
4565 }
4566 }
4567 }
4568
4569 return Res;
4570}
4571
4572/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4573/// vector. If it is invalid, don't add anything to Ops.
4574void AArch64TargetLowering::LowerAsmOperandForConstraint(
4575 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
4576 SelectionDAG &DAG) const {
4577 SDValue Result;
4578
4579 // Currently only support length 1 constraints.
4580 if (Constraint.length() != 1)
4581 return;
4582
4583 char ConstraintLetter = Constraint[0];
4584 switch (ConstraintLetter) {
4585 default:
4586 break;
4587
4588 // This set of constraints deal with valid constants for various instructions.
4589 // Validate and return a target constant for them if we can.
4590 case 'z': {
4591 // 'z' maps to xzr or wzr so it needs an input of 0.
4592 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4593 if (!C || C->getZExtValue() != 0)
4594 return;
4595
4596 if (Op.getValueType() == MVT::i64)
4597 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
4598 else
4599 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
4600 break;
4601 }
4602
4603 case 'I':
4604 case 'J':
4605 case 'K':
4606 case 'L':
4607 case 'M':
4608 case 'N':
4609 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4610 if (!C)
4611 return;
4612
4613 // Grab the value and do some validation.
4614 uint64_t CVal = C->getZExtValue();
4615 switch (ConstraintLetter) {
4616 // The I constraint applies only to simple ADD or SUB immediate operands:
4617 // i.e. 0 to 4095 with optional shift by 12
4618 // The J constraint applies only to ADD or SUB immediates that would be
4619 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
4620 // instruction [or vice versa], in other words -1 to -4095 with optional
4621 // left shift by 12.
4622 case 'I':
4623 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
4624 break;
4625 return;
4626 case 'J': {
4627 uint64_t NVal = -C->getSExtValue();
Tim Northover2c46beb2014-07-27 07:10:29 +00004628 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
4629 CVal = C->getSExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004630 break;
Tim Northover2c46beb2014-07-27 07:10:29 +00004631 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004632 return;
4633 }
4634 // The K and L constraints apply *only* to logical immediates, including
4635 // what used to be the MOVI alias for ORR (though the MOVI alias has now
4636 // been removed and MOV should be used). So these constraints have to
4637 // distinguish between bit patterns that are valid 32-bit or 64-bit
4638 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4639 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4640 // versa.
4641 case 'K':
4642 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4643 break;
4644 return;
4645 case 'L':
4646 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4647 break;
4648 return;
4649 // The M and N constraints are a superset of K and L respectively, for use
4650 // with the MOV (immediate) alias. As well as the logical immediates they
4651 // also match 32 or 64-bit immediates that can be loaded either using a
4652 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4653 // (M) or 64-bit 0x1234000000000000 (N) etc.
4654 // As a note some of this code is liberally stolen from the asm parser.
4655 case 'M': {
4656 if (!isUInt<32>(CVal))
4657 return;
4658 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4659 break;
4660 if ((CVal & 0xFFFF) == CVal)
4661 break;
4662 if ((CVal & 0xFFFF0000ULL) == CVal)
4663 break;
4664 uint64_t NCVal = ~(uint32_t)CVal;
4665 if ((NCVal & 0xFFFFULL) == NCVal)
4666 break;
4667 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4668 break;
4669 return;
4670 }
4671 case 'N': {
4672 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4673 break;
4674 if ((CVal & 0xFFFFULL) == CVal)
4675 break;
4676 if ((CVal & 0xFFFF0000ULL) == CVal)
4677 break;
4678 if ((CVal & 0xFFFF00000000ULL) == CVal)
4679 break;
4680 if ((CVal & 0xFFFF000000000000ULL) == CVal)
4681 break;
4682 uint64_t NCVal = ~CVal;
4683 if ((NCVal & 0xFFFFULL) == NCVal)
4684 break;
4685 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4686 break;
4687 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4688 break;
4689 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4690 break;
4691 return;
4692 }
4693 default:
4694 return;
4695 }
4696
4697 // All assembler immediates are 64-bit integers.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004698 Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00004699 break;
4700 }
4701
4702 if (Result.getNode()) {
4703 Ops.push_back(Result);
4704 return;
4705 }
4706
4707 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4708}
4709
4710//===----------------------------------------------------------------------===//
4711// AArch64 Advanced SIMD Support
4712//===----------------------------------------------------------------------===//
4713
4714/// WidenVector - Given a value in the V64 register class, produce the
4715/// equivalent value in the V128 register class.
4716static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4717 EVT VT = V64Reg.getValueType();
4718 unsigned NarrowSize = VT.getVectorNumElements();
4719 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4720 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4721 SDLoc DL(V64Reg);
4722
4723 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004724 V64Reg, DAG.getConstant(0, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00004725}
4726
4727/// getExtFactor - Determine the adjustment factor for the position when
4728/// generating an "extract from vector registers" instruction.
4729static unsigned getExtFactor(SDValue &V) {
4730 EVT EltType = V.getValueType().getVectorElementType();
4731 return EltType.getSizeInBits() / 8;
4732}
4733
4734/// NarrowVector - Given a value in the V128 register class, produce the
4735/// equivalent value in the V64 register class.
4736static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4737 EVT VT = V128Reg.getValueType();
4738 unsigned WideSize = VT.getVectorNumElements();
4739 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4740 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4741 SDLoc DL(V128Reg);
4742
4743 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4744}
4745
4746// Gather data to see if the operation can be modelled as a
4747// shuffle in combination with VEXTs.
4748SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4749 SelectionDAG &DAG) const {
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004750 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00004751 SDLoc dl(Op);
4752 EVT VT = Op.getValueType();
4753 unsigned NumElts = VT.getVectorNumElements();
4754
Tim Northover7324e842014-07-24 15:39:55 +00004755 struct ShuffleSourceInfo {
4756 SDValue Vec;
4757 unsigned MinElt;
4758 unsigned MaxElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004759
Tim Northover7324e842014-07-24 15:39:55 +00004760 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
4761 // be compatible with the shuffle we intend to construct. As a result
4762 // ShuffleVec will be some sliding window into the original Vec.
4763 SDValue ShuffleVec;
4764
4765 // Code should guarantee that element i in Vec starts at element "WindowBase
4766 // + i * WindowScale in ShuffleVec".
4767 int WindowBase;
4768 int WindowScale;
4769
4770 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
4771 ShuffleSourceInfo(SDValue Vec)
4772 : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
4773 WindowScale(1) {}
4774 };
4775
4776 // First gather all vectors used as an immediate source for this BUILD_VECTOR
4777 // node.
4778 SmallVector<ShuffleSourceInfo, 2> Sources;
Tim Northover3b0846e2014-05-24 12:50:23 +00004779 for (unsigned i = 0; i < NumElts; ++i) {
4780 SDValue V = Op.getOperand(i);
4781 if (V.getOpcode() == ISD::UNDEF)
4782 continue;
4783 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4784 // A shuffle can only come from building a vector from various
4785 // elements of other vectors.
4786 return SDValue();
4787 }
4788
Tim Northover7324e842014-07-24 15:39:55 +00004789 // Add this element source to the list if it's not already there.
Tim Northover3b0846e2014-05-24 12:50:23 +00004790 SDValue SourceVec = V.getOperand(0);
Tim Northover7324e842014-07-24 15:39:55 +00004791 auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
4792 if (Source == Sources.end())
James Molloyf497d552014-10-17 17:06:31 +00004793 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
Tim Northover3b0846e2014-05-24 12:50:23 +00004794
Tim Northover7324e842014-07-24 15:39:55 +00004795 // Update the minimum and maximum lane number seen.
4796 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4797 Source->MinElt = std::min(Source->MinElt, EltNo);
4798 Source->MaxElt = std::max(Source->MaxElt, EltNo);
Tim Northover3b0846e2014-05-24 12:50:23 +00004799 }
4800
4801 // Currently only do something sane when at most two source vectors
Tim Northover7324e842014-07-24 15:39:55 +00004802 // are involved.
4803 if (Sources.size() > 2)
Tim Northover3b0846e2014-05-24 12:50:23 +00004804 return SDValue();
4805
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004806 // Find out the smallest element size among result and two sources, and use
4807 // it as element size to build the shuffle_vector.
4808 EVT SmallestEltTy = VT.getVectorElementType();
Tim Northover7324e842014-07-24 15:39:55 +00004809 for (auto &Source : Sources) {
4810 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004811 if (SrcEltTy.bitsLT(SmallestEltTy)) {
4812 SmallestEltTy = SrcEltTy;
4813 }
4814 }
4815 unsigned ResMultiplier =
4816 VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004817 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
4818 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00004819
Tim Northover7324e842014-07-24 15:39:55 +00004820 // If the source vector is too wide or too narrow, we may nevertheless be able
4821 // to construct a compatible shuffle either by concatenating it with UNDEF or
4822 // extracting a suitable range of elements.
4823 for (auto &Src : Sources) {
4824 EVT SrcVT = Src.ShuffleVec.getValueType();
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004825
Tim Northover7324e842014-07-24 15:39:55 +00004826 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
Tim Northover3b0846e2014-05-24 12:50:23 +00004827 continue;
Tim Northover7324e842014-07-24 15:39:55 +00004828
4829 // This stage of the search produces a source with the same element type as
4830 // the original, but with a total width matching the BUILD_VECTOR output.
4831 EVT EltVT = SrcVT.getVectorElementType();
James Molloyf497d552014-10-17 17:06:31 +00004832 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
4833 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
Tim Northover7324e842014-07-24 15:39:55 +00004834
4835 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
4836 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004837 // We can pad out the smaller vector for free, so if it's part of a
4838 // shuffle...
Tim Northover7324e842014-07-24 15:39:55 +00004839 Src.ShuffleVec =
4840 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
4841 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004842 continue;
4843 }
4844
Tim Northover7324e842014-07-24 15:39:55 +00004845 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004846
James Molloyf497d552014-10-17 17:06:31 +00004847 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004848 // Span too large for a VEXT to cope
4849 return SDValue();
4850 }
4851
James Molloyf497d552014-10-17 17:06:31 +00004852 if (Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004853 // The extraction can just take the second half
Tim Northover7324e842014-07-24 15:39:55 +00004854 Src.ShuffleVec =
4855 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004856 DAG.getConstant(NumSrcElts, dl, MVT::i64));
James Molloyf497d552014-10-17 17:06:31 +00004857 Src.WindowBase = -NumSrcElts;
4858 } else if (Src.MaxElt < NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004859 // The extraction can just take the first half
Tim Northover5e84fe32014-12-06 00:33:37 +00004860 Src.ShuffleVec =
4861 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004862 DAG.getConstant(0, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004863 } else {
4864 // An actual VEXT is needed
Tim Northover5e84fe32014-12-06 00:33:37 +00004865 SDValue VEXTSrc1 =
4866 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004867 DAG.getConstant(0, dl, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00004868 SDValue VEXTSrc2 =
4869 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004870 DAG.getConstant(NumSrcElts, dl, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00004871 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
4872
4873 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004874 VEXTSrc2,
4875 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover7324e842014-07-24 15:39:55 +00004876 Src.WindowBase = -Src.MinElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004877 }
4878 }
4879
Tim Northover7324e842014-07-24 15:39:55 +00004880 // Another possible incompatibility occurs from the vector element types. We
4881 // can fix this by bitcasting the source vectors to the same type we intend
4882 // for the shuffle.
4883 for (auto &Src : Sources) {
4884 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
4885 if (SrcEltTy == SmallestEltTy)
4886 continue;
4887 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
4888 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
4889 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
4890 Src.WindowBase *= Src.WindowScale;
4891 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004892
Tim Northover7324e842014-07-24 15:39:55 +00004893 // Final sanity check before we try to actually produce a shuffle.
4894 DEBUG(
4895 for (auto Src : Sources)
4896 assert(Src.ShuffleVec.getValueType() == ShuffleVT);
4897 );
4898
4899 // The stars all align, our next step is to produce the mask for the shuffle.
4900 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
4901 int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004902 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004903 SDValue Entry = Op.getOperand(i);
Tim Northover7324e842014-07-24 15:39:55 +00004904 if (Entry.getOpcode() == ISD::UNDEF)
4905 continue;
Tim Northover3b0846e2014-05-24 12:50:23 +00004906
Tim Northover7324e842014-07-24 15:39:55 +00004907 auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
4908 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
4909
4910 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
4911 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
4912 // segment.
4913 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
4914 int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
4915 VT.getVectorElementType().getSizeInBits());
4916 int LanesDefined = BitsDefined / BitsPerShuffleLane;
4917
4918 // This source is expected to fill ResMultiplier lanes of the final shuffle,
4919 // starting at the appropriate offset.
4920 int *LaneMask = &Mask[i * ResMultiplier];
4921
4922 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
4923 ExtractBase += NumElts * (Src - Sources.begin());
4924 for (int j = 0; j < LanesDefined; ++j)
4925 LaneMask[j] = ExtractBase + j;
Tim Northover3b0846e2014-05-24 12:50:23 +00004926 }
4927
4928 // Final check before we try to produce nonsense...
Tim Northover7324e842014-07-24 15:39:55 +00004929 if (!isShuffleMaskLegal(Mask, ShuffleVT))
4930 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004931
Tim Northover7324e842014-07-24 15:39:55 +00004932 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
4933 for (unsigned i = 0; i < Sources.size(); ++i)
4934 ShuffleOps[i] = Sources[i].ShuffleVec;
4935
4936 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
4937 ShuffleOps[1], &Mask[0]);
4938 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
Tim Northover3b0846e2014-05-24 12:50:23 +00004939}
4940
4941// check if an EXT instruction can handle the shuffle mask when the
4942// vector sources of the shuffle are the same.
4943static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4944 unsigned NumElts = VT.getVectorNumElements();
4945
4946 // Assume that the first shuffle index is not UNDEF. Fail if it is.
4947 if (M[0] < 0)
4948 return false;
4949
4950 Imm = M[0];
4951
4952 // If this is a VEXT shuffle, the immediate value is the index of the first
4953 // element. The other shuffle indices must be the successive elements after
4954 // the first one.
4955 unsigned ExpectedElt = Imm;
4956 for (unsigned i = 1; i < NumElts; ++i) {
4957 // Increment the expected index. If it wraps around, just follow it
4958 // back to index zero and keep going.
4959 ++ExpectedElt;
4960 if (ExpectedElt == NumElts)
4961 ExpectedElt = 0;
4962
4963 if (M[i] < 0)
4964 continue; // ignore UNDEF indices
4965 if (ExpectedElt != static_cast<unsigned>(M[i]))
4966 return false;
4967 }
4968
4969 return true;
4970}
4971
4972// check if an EXT instruction can handle the shuffle mask when the
4973// vector sources of the shuffle are different.
4974static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
4975 unsigned &Imm) {
4976 // Look for the first non-undef element.
4977 const int *FirstRealElt = std::find_if(M.begin(), M.end(),
4978 [](int Elt) {return Elt >= 0;});
4979
4980 // Benefit form APInt to handle overflow when calculating expected element.
4981 unsigned NumElts = VT.getVectorNumElements();
4982 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
4983 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
4984 // The following shuffle indices must be the successive elements after the
4985 // first real element.
4986 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
4987 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
4988 if (FirstWrongElt != M.end())
4989 return false;
4990
4991 // The index of an EXT is the first element if it is not UNDEF.
4992 // Watch out for the beginning UNDEFs. The EXT index should be the expected
4993 // value of the first element. E.g.
4994 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
4995 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
4996 // ExpectedElt is the last mask index plus 1.
4997 Imm = ExpectedElt.getZExtValue();
4998
4999 // There are two difference cases requiring to reverse input vectors.
5000 // For example, for vector <4 x i32> we have the following cases,
5001 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
5002 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
5003 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
5004 // to reverse two input vectors.
5005 if (Imm < NumElts)
5006 ReverseEXT = true;
5007 else
5008 Imm -= NumElts;
5009
5010 return true;
5011}
5012
5013/// isREVMask - Check if a vector shuffle corresponds to a REV
5014/// instruction with the specified blocksize. (The order of the elements
5015/// within each block of the vector is reversed.)
5016static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
5017 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
5018 "Only possible block sizes for REV are: 16, 32, 64");
5019
5020 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5021 if (EltSz == 64)
5022 return false;
5023
5024 unsigned NumElts = VT.getVectorNumElements();
5025 unsigned BlockElts = M[0] + 1;
5026 // If the first shuffle index is UNDEF, be optimistic.
5027 if (M[0] < 0)
5028 BlockElts = BlockSize / EltSz;
5029
5030 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
5031 return false;
5032
5033 for (unsigned i = 0; i < NumElts; ++i) {
5034 if (M[i] < 0)
5035 continue; // ignore UNDEF indices
5036 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
5037 return false;
5038 }
5039
5040 return true;
5041}
5042
5043static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5044 unsigned NumElts = VT.getVectorNumElements();
5045 WhichResult = (M[0] == 0 ? 0 : 1);
5046 unsigned Idx = WhichResult * NumElts / 2;
5047 for (unsigned i = 0; i != NumElts; i += 2) {
5048 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
5049 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
5050 return false;
5051 Idx += 1;
5052 }
5053
5054 return true;
5055}
5056
5057static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5058 unsigned NumElts = VT.getVectorNumElements();
5059 WhichResult = (M[0] == 0 ? 0 : 1);
5060 for (unsigned i = 0; i != NumElts; ++i) {
5061 if (M[i] < 0)
5062 continue; // ignore UNDEF indices
5063 if ((unsigned)M[i] != 2 * i + WhichResult)
5064 return false;
5065 }
5066
5067 return true;
5068}
5069
5070static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5071 unsigned NumElts = VT.getVectorNumElements();
5072 WhichResult = (M[0] == 0 ? 0 : 1);
5073 for (unsigned i = 0; i < NumElts; i += 2) {
5074 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
5075 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
5076 return false;
5077 }
5078 return true;
5079}
5080
5081/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
5082/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5083/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
5084static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5085 unsigned NumElts = VT.getVectorNumElements();
5086 WhichResult = (M[0] == 0 ? 0 : 1);
5087 unsigned Idx = WhichResult * NumElts / 2;
5088 for (unsigned i = 0; i != NumElts; i += 2) {
5089 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
5090 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
5091 return false;
5092 Idx += 1;
5093 }
5094
5095 return true;
5096}
5097
5098/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
5099/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5100/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
5101static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5102 unsigned Half = VT.getVectorNumElements() / 2;
5103 WhichResult = (M[0] == 0 ? 0 : 1);
5104 for (unsigned j = 0; j != 2; ++j) {
5105 unsigned Idx = WhichResult;
5106 for (unsigned i = 0; i != Half; ++i) {
5107 int MIdx = M[i + j * Half];
5108 if (MIdx >= 0 && (unsigned)MIdx != Idx)
5109 return false;
5110 Idx += 2;
5111 }
5112 }
5113
5114 return true;
5115}
5116
5117/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
5118/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5119/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
5120static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5121 unsigned NumElts = VT.getVectorNumElements();
5122 WhichResult = (M[0] == 0 ? 0 : 1);
5123 for (unsigned i = 0; i < NumElts; i += 2) {
5124 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
5125 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
5126 return false;
5127 }
5128 return true;
5129}
5130
5131static bool isINSMask(ArrayRef<int> M, int NumInputElements,
5132 bool &DstIsLeft, int &Anomaly) {
5133 if (M.size() != static_cast<size_t>(NumInputElements))
5134 return false;
5135
5136 int NumLHSMatch = 0, NumRHSMatch = 0;
5137 int LastLHSMismatch = -1, LastRHSMismatch = -1;
5138
5139 for (int i = 0; i < NumInputElements; ++i) {
5140 if (M[i] == -1) {
5141 ++NumLHSMatch;
5142 ++NumRHSMatch;
5143 continue;
5144 }
5145
5146 if (M[i] == i)
5147 ++NumLHSMatch;
5148 else
5149 LastLHSMismatch = i;
5150
5151 if (M[i] == i + NumInputElements)
5152 ++NumRHSMatch;
5153 else
5154 LastRHSMismatch = i;
5155 }
5156
5157 if (NumLHSMatch == NumInputElements - 1) {
5158 DstIsLeft = true;
5159 Anomaly = LastLHSMismatch;
5160 return true;
5161 } else if (NumRHSMatch == NumInputElements - 1) {
5162 DstIsLeft = false;
5163 Anomaly = LastRHSMismatch;
5164 return true;
5165 }
5166
5167 return false;
5168}
5169
5170static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
5171 if (VT.getSizeInBits() != 128)
5172 return false;
5173
5174 unsigned NumElts = VT.getVectorNumElements();
5175
5176 for (int I = 0, E = NumElts / 2; I != E; I++) {
5177 if (Mask[I] != I)
5178 return false;
5179 }
5180
5181 int Offset = NumElts / 2;
5182 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
5183 if (Mask[I] != I + SplitLHS * Offset)
5184 return false;
5185 }
5186
5187 return true;
5188}
5189
5190static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
5191 SDLoc DL(Op);
5192 EVT VT = Op.getValueType();
5193 SDValue V0 = Op.getOperand(0);
5194 SDValue V1 = Op.getOperand(1);
5195 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
5196
5197 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
5198 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
5199 return SDValue();
5200
5201 bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
5202
5203 if (!isConcatMask(Mask, VT, SplitV0))
5204 return SDValue();
5205
5206 EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
5207 VT.getVectorNumElements() / 2);
5208 if (SplitV0) {
5209 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005210 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00005211 }
5212 if (V1.getValueType().getSizeInBits() == 128) {
5213 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005214 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00005215 }
5216 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
5217}
5218
5219/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5220/// the specified operations to build the shuffle.
5221static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5222 SDValue RHS, SelectionDAG &DAG,
5223 SDLoc dl) {
5224 unsigned OpNum = (PFEntry >> 26) & 0x0F;
5225 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
5226 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
5227
5228 enum {
5229 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5230 OP_VREV,
5231 OP_VDUP0,
5232 OP_VDUP1,
5233 OP_VDUP2,
5234 OP_VDUP3,
5235 OP_VEXT1,
5236 OP_VEXT2,
5237 OP_VEXT3,
5238 OP_VUZPL, // VUZP, left result
5239 OP_VUZPR, // VUZP, right result
5240 OP_VZIPL, // VZIP, left result
5241 OP_VZIPR, // VZIP, right result
5242 OP_VTRNL, // VTRN, left result
5243 OP_VTRNR // VTRN, right result
5244 };
5245
5246 if (OpNum == OP_COPY) {
5247 if (LHSID == (1 * 9 + 2) * 9 + 3)
5248 return LHS;
5249 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
5250 return RHS;
5251 }
5252
5253 SDValue OpLHS, OpRHS;
5254 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5255 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5256 EVT VT = OpLHS.getValueType();
5257
5258 switch (OpNum) {
5259 default:
5260 llvm_unreachable("Unknown shuffle opcode!");
5261 case OP_VREV:
5262 // VREV divides the vector in half and swaps within the half.
5263 if (VT.getVectorElementType() == MVT::i32 ||
5264 VT.getVectorElementType() == MVT::f32)
5265 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
5266 // vrev <4 x i16> -> REV32
Oliver Stannard89d15422014-08-27 16:16:04 +00005267 if (VT.getVectorElementType() == MVT::i16 ||
5268 VT.getVectorElementType() == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005269 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
5270 // vrev <4 x i8> -> REV16
5271 assert(VT.getVectorElementType() == MVT::i8);
5272 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
5273 case OP_VDUP0:
5274 case OP_VDUP1:
5275 case OP_VDUP2:
5276 case OP_VDUP3: {
5277 EVT EltTy = VT.getVectorElementType();
5278 unsigned Opcode;
5279 if (EltTy == MVT::i8)
5280 Opcode = AArch64ISD::DUPLANE8;
Ahmed Bougacha941420d2015-04-16 23:57:07 +00005281 else if (EltTy == MVT::i16 || EltTy == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005282 Opcode = AArch64ISD::DUPLANE16;
5283 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
5284 Opcode = AArch64ISD::DUPLANE32;
5285 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
5286 Opcode = AArch64ISD::DUPLANE64;
5287 else
5288 llvm_unreachable("Invalid vector element type?");
5289
5290 if (VT.getSizeInBits() == 64)
5291 OpLHS = WidenVector(OpLHS, DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005292 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005293 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
5294 }
5295 case OP_VEXT1:
5296 case OP_VEXT2:
5297 case OP_VEXT3: {
5298 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
5299 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005300 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005301 }
5302 case OP_VUZPL:
5303 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
5304 OpRHS);
5305 case OP_VUZPR:
5306 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
5307 OpRHS);
5308 case OP_VZIPL:
5309 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
5310 OpRHS);
5311 case OP_VZIPR:
5312 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
5313 OpRHS);
5314 case OP_VTRNL:
5315 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
5316 OpRHS);
5317 case OP_VTRNR:
5318 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
5319 OpRHS);
5320 }
5321}
5322
5323static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
5324 SelectionDAG &DAG) {
5325 // Check to see if we can use the TBL instruction.
5326 SDValue V1 = Op.getOperand(0);
5327 SDValue V2 = Op.getOperand(1);
5328 SDLoc DL(Op);
5329
5330 EVT EltVT = Op.getValueType().getVectorElementType();
5331 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
5332
5333 SmallVector<SDValue, 8> TBLMask;
5334 for (int Val : ShuffleMask) {
5335 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
5336 unsigned Offset = Byte + Val * BytesPerElt;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005337 TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005338 }
5339 }
5340
5341 MVT IndexVT = MVT::v8i8;
5342 unsigned IndexLen = 8;
5343 if (Op.getValueType().getSizeInBits() == 128) {
5344 IndexVT = MVT::v16i8;
5345 IndexLen = 16;
5346 }
5347
5348 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
5349 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
5350
5351 SDValue Shuffle;
5352 if (V2.getNode()->getOpcode() == ISD::UNDEF) {
5353 if (IndexLen == 8)
5354 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
5355 Shuffle = DAG.getNode(
5356 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005357 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
Tim Northover3b0846e2014-05-24 12:50:23 +00005358 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5359 makeArrayRef(TBLMask.data(), IndexLen)));
5360 } else {
5361 if (IndexLen == 8) {
5362 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
5363 Shuffle = DAG.getNode(
5364 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005365 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
Tim Northover3b0846e2014-05-24 12:50:23 +00005366 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5367 makeArrayRef(TBLMask.data(), IndexLen)));
5368 } else {
5369 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
5370 // cannot currently represent the register constraints on the input
5371 // table registers.
5372 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
5373 // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5374 // &TBLMask[0], IndexLen));
5375 Shuffle = DAG.getNode(
5376 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005377 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32),
5378 V1Cst, V2Cst,
Tim Northover3b0846e2014-05-24 12:50:23 +00005379 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5380 makeArrayRef(TBLMask.data(), IndexLen)));
5381 }
5382 }
5383 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
5384}
5385
5386static unsigned getDUPLANEOp(EVT EltType) {
5387 if (EltType == MVT::i8)
5388 return AArch64ISD::DUPLANE8;
Oliver Stannard89d15422014-08-27 16:16:04 +00005389 if (EltType == MVT::i16 || EltType == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005390 return AArch64ISD::DUPLANE16;
5391 if (EltType == MVT::i32 || EltType == MVT::f32)
5392 return AArch64ISD::DUPLANE32;
5393 if (EltType == MVT::i64 || EltType == MVT::f64)
5394 return AArch64ISD::DUPLANE64;
5395
5396 llvm_unreachable("Invalid vector element type?");
5397}
5398
5399SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5400 SelectionDAG &DAG) const {
5401 SDLoc dl(Op);
5402 EVT VT = Op.getValueType();
5403
5404 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5405
5406 // Convert shuffles that are directly supported on NEON to target-specific
5407 // DAG nodes, instead of keeping them as shuffles and matching them again
5408 // during code selection. This is more efficient and avoids the possibility
5409 // of inconsistencies between legalization and selection.
5410 ArrayRef<int> ShuffleMask = SVN->getMask();
5411
5412 SDValue V1 = Op.getOperand(0);
5413 SDValue V2 = Op.getOperand(1);
5414
5415 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
5416 V1.getValueType().getSimpleVT())) {
5417 int Lane = SVN->getSplatIndex();
5418 // If this is undef splat, generate it via "just" vdup, if possible.
5419 if (Lane == -1)
5420 Lane = 0;
5421
5422 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
5423 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
5424 V1.getOperand(0));
5425 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
5426 // constant. If so, we can just reference the lane's definition directly.
5427 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
5428 !isa<ConstantSDNode>(V1.getOperand(Lane)))
5429 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
5430
5431 // Otherwise, duplicate from the lane of the input vector.
5432 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
5433
5434 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
5435 // to make a vector of the same size as this SHUFFLE. We can ignore the
5436 // extract entirely, and canonicalise the concat using WidenVector.
5437 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
5438 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
5439 V1 = V1.getOperand(0);
5440 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
5441 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
5442 Lane -= Idx * VT.getVectorNumElements() / 2;
5443 V1 = WidenVector(V1.getOperand(Idx), DAG);
5444 } else if (VT.getSizeInBits() == 64)
5445 V1 = WidenVector(V1, DAG);
5446
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005447 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00005448 }
5449
5450 if (isREVMask(ShuffleMask, VT, 64))
5451 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
5452 if (isREVMask(ShuffleMask, VT, 32))
5453 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
5454 if (isREVMask(ShuffleMask, VT, 16))
5455 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
5456
5457 bool ReverseEXT = false;
5458 unsigned Imm;
5459 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
5460 if (ReverseEXT)
5461 std::swap(V1, V2);
5462 Imm *= getExtFactor(V1);
5463 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005464 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005465 } else if (V2->getOpcode() == ISD::UNDEF &&
5466 isSingletonEXTMask(ShuffleMask, VT, Imm)) {
5467 Imm *= getExtFactor(V1);
5468 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005469 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005470 }
5471
5472 unsigned WhichResult;
5473 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
5474 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5475 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5476 }
5477 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
5478 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5479 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5480 }
5481 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
5482 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5483 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5484 }
5485
5486 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5487 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5488 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5489 }
5490 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5491 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5492 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5493 }
5494 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5495 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5496 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5497 }
5498
5499 SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
5500 if (Concat.getNode())
5501 return Concat;
5502
5503 bool DstIsLeft;
5504 int Anomaly;
5505 int NumInputElements = V1.getValueType().getVectorNumElements();
5506 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
5507 SDValue DstVec = DstIsLeft ? V1 : V2;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005508 SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005509
5510 SDValue SrcVec = V1;
5511 int SrcLane = ShuffleMask[Anomaly];
5512 if (SrcLane >= NumInputElements) {
5513 SrcVec = V2;
5514 SrcLane -= VT.getVectorNumElements();
5515 }
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005516 SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005517
5518 EVT ScalarVT = VT.getVectorElementType();
Oliver Stannard89d15422014-08-27 16:16:04 +00005519
5520 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00005521 ScalarVT = MVT::i32;
5522
5523 return DAG.getNode(
5524 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5525 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
5526 DstLaneV);
5527 }
5528
5529 // If the shuffle is not directly supported and it has 4 elements, use
5530 // the PerfectShuffle-generated table to synthesize it from other shuffles.
5531 unsigned NumElts = VT.getVectorNumElements();
5532 if (NumElts == 4) {
5533 unsigned PFIndexes[4];
5534 for (unsigned i = 0; i != 4; ++i) {
5535 if (ShuffleMask[i] < 0)
5536 PFIndexes[i] = 8;
5537 else
5538 PFIndexes[i] = ShuffleMask[i];
5539 }
5540
5541 // Compute the index in the perfect shuffle table.
5542 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5543 PFIndexes[2] * 9 + PFIndexes[3];
5544 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5545 unsigned Cost = (PFEntry >> 30);
5546
5547 if (Cost <= 4)
5548 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5549 }
5550
5551 return GenerateTBL(Op, ShuffleMask, DAG);
5552}
5553
5554static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
5555 APInt &UndefBits) {
5556 EVT VT = BVN->getValueType(0);
5557 APInt SplatBits, SplatUndef;
5558 unsigned SplatBitSize;
5559 bool HasAnyUndefs;
5560 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5561 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
5562
5563 for (unsigned i = 0; i < NumSplats; ++i) {
5564 CnstBits <<= SplatBitSize;
5565 UndefBits <<= SplatBitSize;
5566 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
5567 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
5568 }
5569
5570 return true;
5571 }
5572
5573 return false;
5574}
5575
5576SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
5577 SelectionDAG &DAG) const {
5578 BuildVectorSDNode *BVN =
5579 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5580 SDValue LHS = Op.getOperand(0);
5581 SDLoc dl(Op);
5582 EVT VT = Op.getValueType();
5583
5584 if (!BVN)
5585 return Op;
5586
5587 APInt CnstBits(VT.getSizeInBits(), 0);
5588 APInt UndefBits(VT.getSizeInBits(), 0);
5589 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5590 // We only have BIC vector immediate instruction, which is and-not.
5591 CnstBits = ~CnstBits;
5592
5593 // We make use of a little bit of goto ickiness in order to avoid having to
5594 // duplicate the immediate matching logic for the undef toggled case.
5595 bool SecondTry = false;
5596 AttemptModImm:
5597
5598 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5599 CnstBits = CnstBits.zextOrTrunc(64);
5600 uint64_t CnstVal = CnstBits.getZExtValue();
5601
5602 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5603 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5604 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5605 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005606 DAG.getConstant(CnstVal, dl, MVT::i32),
5607 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005608 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005609 }
5610
5611 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5612 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5613 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5614 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005615 DAG.getConstant(CnstVal, dl, MVT::i32),
5616 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005617 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005618 }
5619
5620 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5621 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5622 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5623 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005624 DAG.getConstant(CnstVal, dl, MVT::i32),
5625 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005626 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005627 }
5628
5629 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5630 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5631 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5632 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005633 DAG.getConstant(CnstVal, dl, MVT::i32),
5634 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005635 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005636 }
5637
5638 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5639 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5640 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5641 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005642 DAG.getConstant(CnstVal, dl, MVT::i32),
5643 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005644 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005645 }
5646
5647 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5648 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5649 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5650 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005651 DAG.getConstant(CnstVal, dl, MVT::i32),
5652 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005653 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005654 }
5655 }
5656
5657 if (SecondTry)
5658 goto FailedModImm;
5659 SecondTry = true;
5660 CnstBits = ~UndefBits;
5661 goto AttemptModImm;
5662 }
5663
5664// We can always fall back to a non-immediate AND.
5665FailedModImm:
5666 return Op;
5667}
5668
5669// Specialized code to quickly find if PotentialBVec is a BuildVector that
5670// consists of only the same constant int value, returned in reference arg
5671// ConstVal
5672static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
5673 uint64_t &ConstVal) {
5674 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
5675 if (!Bvec)
5676 return false;
5677 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
5678 if (!FirstElt)
5679 return false;
5680 EVT VT = Bvec->getValueType(0);
5681 unsigned NumElts = VT.getVectorNumElements();
5682 for (unsigned i = 1; i < NumElts; ++i)
5683 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
5684 return false;
5685 ConstVal = FirstElt->getZExtValue();
5686 return true;
5687}
5688
5689static unsigned getIntrinsicID(const SDNode *N) {
5690 unsigned Opcode = N->getOpcode();
5691 switch (Opcode) {
5692 default:
5693 return Intrinsic::not_intrinsic;
5694 case ISD::INTRINSIC_WO_CHAIN: {
5695 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5696 if (IID < Intrinsic::num_intrinsics)
5697 return IID;
5698 return Intrinsic::not_intrinsic;
5699 }
5700 }
5701}
5702
5703// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5704// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5705// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5706// Also, logical shift right -> sri, with the same structure.
5707static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5708 EVT VT = N->getValueType(0);
5709
5710 if (!VT.isVector())
5711 return SDValue();
5712
5713 SDLoc DL(N);
5714
5715 // Is the first op an AND?
5716 const SDValue And = N->getOperand(0);
5717 if (And.getOpcode() != ISD::AND)
5718 return SDValue();
5719
5720 // Is the second op an shl or lshr?
5721 SDValue Shift = N->getOperand(1);
5722 // This will have been turned into: AArch64ISD::VSHL vector, #shift
5723 // or AArch64ISD::VLSHR vector, #shift
5724 unsigned ShiftOpc = Shift.getOpcode();
5725 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5726 return SDValue();
5727 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5728
5729 // Is the shift amount constant?
5730 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5731 if (!C2node)
5732 return SDValue();
5733
5734 // Is the and mask vector all constant?
5735 uint64_t C1;
5736 if (!isAllConstantBuildVector(And.getOperand(1), C1))
5737 return SDValue();
5738
5739 // Is C1 == ~C2, taking into account how much one can shift elements of a
5740 // particular size?
5741 uint64_t C2 = C2node->getZExtValue();
5742 unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5743 if (C2 > ElemSizeInBits)
5744 return SDValue();
5745 unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5746 if ((C1 & ElemMask) != (~C2 & ElemMask))
5747 return SDValue();
5748
5749 SDValue X = And.getOperand(0);
5750 SDValue Y = Shift.getOperand(0);
5751
5752 unsigned Intrin =
5753 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5754 SDValue ResultSLI =
5755 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005756 DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
5757 Shift.getOperand(1));
Tim Northover3b0846e2014-05-24 12:50:23 +00005758
5759 DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5760 DEBUG(N->dump(&DAG));
5761 DEBUG(dbgs() << "into: \n");
5762 DEBUG(ResultSLI->dump(&DAG));
5763
5764 ++NumShiftInserts;
5765 return ResultSLI;
5766}
5767
5768SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5769 SelectionDAG &DAG) const {
5770 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5771 if (EnableAArch64SlrGeneration) {
5772 SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
5773 if (Res.getNode())
5774 return Res;
5775 }
5776
5777 BuildVectorSDNode *BVN =
5778 dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5779 SDValue LHS = Op.getOperand(1);
5780 SDLoc dl(Op);
5781 EVT VT = Op.getValueType();
5782
5783 // OR commutes, so try swapping the operands.
5784 if (!BVN) {
5785 LHS = Op.getOperand(0);
5786 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5787 }
5788 if (!BVN)
5789 return Op;
5790
5791 APInt CnstBits(VT.getSizeInBits(), 0);
5792 APInt UndefBits(VT.getSizeInBits(), 0);
5793 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5794 // We make use of a little bit of goto ickiness in order to avoid having to
5795 // duplicate the immediate matching logic for the undef toggled case.
5796 bool SecondTry = false;
5797 AttemptModImm:
5798
5799 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5800 CnstBits = CnstBits.zextOrTrunc(64);
5801 uint64_t CnstVal = CnstBits.getZExtValue();
5802
5803 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5804 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5805 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5806 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005807 DAG.getConstant(CnstVal, dl, MVT::i32),
5808 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005809 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005810 }
5811
5812 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5813 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5814 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5815 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005816 DAG.getConstant(CnstVal, dl, MVT::i32),
5817 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005818 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005819 }
5820
5821 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5822 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5823 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5824 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005825 DAG.getConstant(CnstVal, dl, MVT::i32),
5826 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005827 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005828 }
5829
5830 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5831 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5832 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5833 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005834 DAG.getConstant(CnstVal, dl, MVT::i32),
5835 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005836 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005837 }
5838
5839 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5840 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5841 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5842 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005843 DAG.getConstant(CnstVal, dl, MVT::i32),
5844 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005845 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005846 }
5847
5848 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5849 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5850 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5851 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005852 DAG.getConstant(CnstVal, dl, MVT::i32),
5853 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005854 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005855 }
5856 }
5857
5858 if (SecondTry)
5859 goto FailedModImm;
5860 SecondTry = true;
5861 CnstBits = UndefBits;
5862 goto AttemptModImm;
5863 }
5864
5865// We can always fall back to a non-immediate OR.
5866FailedModImm:
5867 return Op;
5868}
5869
Kevin Qin4473c192014-07-07 02:45:40 +00005870// Normalize the operands of BUILD_VECTOR. The value of constant operands will
5871// be truncated to fit element width.
5872static SDValue NormalizeBuildVector(SDValue Op,
5873 SelectionDAG &DAG) {
5874 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00005875 SDLoc dl(Op);
5876 EVT VT = Op.getValueType();
Kevin Qin4473c192014-07-07 02:45:40 +00005877 EVT EltTy= VT.getVectorElementType();
5878
5879 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
5880 return Op;
5881
5882 SmallVector<SDValue, 16> Ops;
5883 for (unsigned I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
5884 SDValue Lane = Op.getOperand(I);
5885 if (Lane.getOpcode() == ISD::Constant) {
5886 APInt LowBits(EltTy.getSizeInBits(),
5887 cast<ConstantSDNode>(Lane)->getZExtValue());
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005888 Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
Kevin Qin4473c192014-07-07 02:45:40 +00005889 }
5890 Ops.push_back(Lane);
5891 }
5892 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5893}
5894
5895SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
5896 SelectionDAG &DAG) const {
5897 SDLoc dl(Op);
5898 EVT VT = Op.getValueType();
5899 Op = NormalizeBuildVector(Op, DAG);
5900 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
Tim Northover3b0846e2014-05-24 12:50:23 +00005901
5902 APInt CnstBits(VT.getSizeInBits(), 0);
5903 APInt UndefBits(VT.getSizeInBits(), 0);
5904 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5905 // We make use of a little bit of goto ickiness in order to avoid having to
5906 // duplicate the immediate matching logic for the undef toggled case.
5907 bool SecondTry = false;
5908 AttemptModImm:
5909
5910 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5911 CnstBits = CnstBits.zextOrTrunc(64);
5912 uint64_t CnstVal = CnstBits.getZExtValue();
5913
5914 // Certain magic vector constants (used to express things like NOT
5915 // and NEG) are passed through unmodified. This allows codegen patterns
5916 // for these operations to match. Special-purpose patterns will lower
5917 // these immediates to MOVIs if it proves necessary.
5918 if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
5919 return Op;
5920
5921 // The many faces of MOVI...
5922 if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
5923 CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
5924 if (VT.getSizeInBits() == 128) {
5925 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005926 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005927 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005928 }
5929
5930 // Support the V64 version via subregister insertion.
5931 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005932 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005933 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005934 }
5935
5936 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5937 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5938 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5939 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005940 DAG.getConstant(CnstVal, dl, MVT::i32),
5941 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005942 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005943 }
5944
5945 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5946 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5947 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5948 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005949 DAG.getConstant(CnstVal, dl, MVT::i32),
5950 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005951 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005952 }
5953
5954 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5955 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5956 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5957 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005958 DAG.getConstant(CnstVal, dl, MVT::i32),
5959 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005960 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005961 }
5962
5963 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5964 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5965 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5966 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005967 DAG.getConstant(CnstVal, dl, MVT::i32),
5968 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005969 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005970 }
5971
5972 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5973 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5974 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5975 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005976 DAG.getConstant(CnstVal, dl, MVT::i32),
5977 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005978 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005979 }
5980
5981 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5982 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5983 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5984 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005985 DAG.getConstant(CnstVal, dl, MVT::i32),
5986 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005987 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005988 }
5989
5990 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5991 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5992 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5993 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005994 DAG.getConstant(CnstVal, dl, MVT::i32),
5995 DAG.getConstant(264, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005996 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005997 }
5998
5999 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
6000 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
6001 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6002 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006003 DAG.getConstant(CnstVal, dl, MVT::i32),
6004 DAG.getConstant(272, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006005 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006006 }
6007
6008 if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
6009 CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
6010 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
6011 SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006012 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006013 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006014 }
6015
6016 // The few faces of FMOV...
6017 if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
6018 CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
6019 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
6020 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006021 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006022 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006023 }
6024
6025 if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
6026 VT.getSizeInBits() == 128) {
6027 CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
6028 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006029 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006030 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006031 }
6032
6033 // The many faces of MVNI...
6034 CnstVal = ~CnstVal;
6035 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
6036 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
6037 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6038 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006039 DAG.getConstant(CnstVal, dl, MVT::i32),
6040 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006041 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006042 }
6043
6044 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
6045 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
6046 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6047 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006048 DAG.getConstant(CnstVal, dl, MVT::i32),
6049 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006050 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006051 }
6052
6053 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
6054 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
6055 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6056 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006057 DAG.getConstant(CnstVal, dl, MVT::i32),
6058 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006059 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006060 }
6061
6062 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
6063 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
6064 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6065 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006066 DAG.getConstant(CnstVal, dl, MVT::i32),
6067 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006068 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006069 }
6070
6071 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
6072 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
6073 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6074 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006075 DAG.getConstant(CnstVal, dl, MVT::i32),
6076 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006077 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006078 }
6079
6080 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
6081 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6082 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6083 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006084 DAG.getConstant(CnstVal, dl, MVT::i32),
6085 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006086 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006087 }
6088
6089 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
6090 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
6091 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6092 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006093 DAG.getConstant(CnstVal, dl, MVT::i32),
6094 DAG.getConstant(264, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006095 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006096 }
6097
6098 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
6099 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
6100 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6101 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006102 DAG.getConstant(CnstVal, dl, MVT::i32),
6103 DAG.getConstant(272, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006104 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006105 }
6106 }
6107
6108 if (SecondTry)
6109 goto FailedModImm;
6110 SecondTry = true;
6111 CnstBits = UndefBits;
6112 goto AttemptModImm;
6113 }
6114FailedModImm:
6115
6116 // Scan through the operands to find some interesting properties we can
6117 // exploit:
6118 // 1) If only one value is used, we can use a DUP, or
6119 // 2) if only the low element is not undef, we can just insert that, or
6120 // 3) if only one constant value is used (w/ some non-constant lanes),
6121 // we can splat the constant value into the whole vector then fill
6122 // in the non-constant lanes.
6123 // 4) FIXME: If different constant values are used, but we can intelligently
6124 // select the values we'll be overwriting for the non-constant
6125 // lanes such that we can directly materialize the vector
6126 // some other way (MOVI, e.g.), we can be sneaky.
6127 unsigned NumElts = VT.getVectorNumElements();
6128 bool isOnlyLowElement = true;
6129 bool usesOnlyOneValue = true;
6130 bool usesOnlyOneConstantValue = true;
6131 bool isConstant = true;
6132 unsigned NumConstantLanes = 0;
6133 SDValue Value;
6134 SDValue ConstantValue;
6135 for (unsigned i = 0; i < NumElts; ++i) {
6136 SDValue V = Op.getOperand(i);
6137 if (V.getOpcode() == ISD::UNDEF)
6138 continue;
6139 if (i > 0)
6140 isOnlyLowElement = false;
6141 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
6142 isConstant = false;
6143
6144 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
6145 ++NumConstantLanes;
6146 if (!ConstantValue.getNode())
6147 ConstantValue = V;
6148 else if (ConstantValue != V)
6149 usesOnlyOneConstantValue = false;
6150 }
6151
6152 if (!Value.getNode())
6153 Value = V;
6154 else if (V != Value)
6155 usesOnlyOneValue = false;
6156 }
6157
6158 if (!Value.getNode())
6159 return DAG.getUNDEF(VT);
6160
6161 if (isOnlyLowElement)
6162 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
6163
6164 // Use DUP for non-constant splats. For f32 constant splats, reduce to
6165 // i32 and try again.
6166 if (usesOnlyOneValue) {
6167 if (!isConstant) {
6168 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6169 Value.getValueType() != VT)
6170 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
6171
6172 // This is actually a DUPLANExx operation, which keeps everything vectory.
6173
6174 // DUPLANE works on 128-bit vectors, widen it if necessary.
6175 SDValue Lane = Value.getOperand(1);
6176 Value = Value.getOperand(0);
6177 if (Value.getValueType().getSizeInBits() == 64)
6178 Value = WidenVector(Value, DAG);
6179
6180 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
6181 return DAG.getNode(Opcode, dl, VT, Value, Lane);
6182 }
6183
6184 if (VT.getVectorElementType().isFloatingPoint()) {
6185 SmallVector<SDValue, 8> Ops;
Pirama Arumuga Nainar12aeefc2015-03-17 23:10:29 +00006186 EVT EltTy = VT.getVectorElementType();
6187 assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
6188 "Unsupported floating-point vector type");
6189 MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00006190 for (unsigned i = 0; i < NumElts; ++i)
6191 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
6192 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
6193 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
6194 Val = LowerBUILD_VECTOR(Val, DAG);
6195 if (Val.getNode())
6196 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6197 }
6198 }
6199
6200 // If there was only one constant value used and for more than one lane,
6201 // start by splatting that value, then replace the non-constant lanes. This
6202 // is better than the default, which will perform a separate initialization
6203 // for each lane.
6204 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
6205 SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
6206 // Now insert the non-constant lanes.
6207 for (unsigned i = 0; i < NumElts; ++i) {
6208 SDValue V = Op.getOperand(i);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006209 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00006210 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
6211 // Note that type legalization likely mucked about with the VT of the
6212 // source operand, so we may have to convert it here before inserting.
6213 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
6214 }
6215 }
6216 return Val;
6217 }
6218
6219 // If all elements are constants and the case above didn't get hit, fall back
6220 // to the default expansion, which will generate a load from the constant
6221 // pool.
6222 if (isConstant)
6223 return SDValue();
6224
6225 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
6226 if (NumElts >= 4) {
6227 SDValue shuffle = ReconstructShuffle(Op, DAG);
6228 if (shuffle != SDValue())
6229 return shuffle;
6230 }
6231
6232 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6233 // know the default expansion would otherwise fall back on something even
6234 // worse. For a vector with one or two non-undef values, that's
6235 // scalar_to_vector for the elements followed by a shuffle (provided the
6236 // shuffle is valid for the target) and materialization element by element
6237 // on the stack followed by a load for everything else.
6238 if (!isConstant && !usesOnlyOneValue) {
6239 SDValue Vec = DAG.getUNDEF(VT);
6240 SDValue Op0 = Op.getOperand(0);
6241 unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
6242 unsigned i = 0;
6243 // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
6244 // a) Avoid a RMW dependency on the full vector register, and
6245 // b) Allow the register coalescer to fold away the copy if the
6246 // value is already in an S or D register.
6247 if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) {
6248 unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
6249 MachineSDNode *N =
6250 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006251 DAG.getTargetConstant(SubIdx, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00006252 Vec = SDValue(N, 0);
6253 ++i;
6254 }
6255 for (; i < NumElts; ++i) {
6256 SDValue V = Op.getOperand(i);
6257 if (V.getOpcode() == ISD::UNDEF)
6258 continue;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006259 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00006260 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6261 }
6262 return Vec;
6263 }
6264
6265 // Just use the default expansion. We failed to find a better alternative.
6266 return SDValue();
6267}
6268
6269SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
6270 SelectionDAG &DAG) const {
6271 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
6272
Tim Northovere4b8e132014-07-15 10:00:26 +00006273 // Check for non-constant or out of range lane.
6274 EVT VT = Op.getOperand(0).getValueType();
6275 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
6276 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006277 return SDValue();
6278
Tim Northover3b0846e2014-05-24 12:50:23 +00006279
6280 // Insertion/extraction are legal for V128 types.
6281 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006282 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6283 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006284 return Op;
6285
6286 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006287 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006288 return SDValue();
6289
6290 // For V64 types, we perform insertion by expanding the value
6291 // to a V128 type and perform the insertion on that.
6292 SDLoc DL(Op);
6293 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6294 EVT WideTy = WideVec.getValueType();
6295
6296 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
6297 Op.getOperand(1), Op.getOperand(2));
6298 // Re-narrow the resultant vector.
6299 return NarrowVector(Node, DAG);
6300}
6301
6302SDValue
6303AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6304 SelectionDAG &DAG) const {
6305 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
6306
Tim Northovere4b8e132014-07-15 10:00:26 +00006307 // Check for non-constant or out of range lane.
6308 EVT VT = Op.getOperand(0).getValueType();
6309 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6310 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006311 return SDValue();
6312
Tim Northover3b0846e2014-05-24 12:50:23 +00006313
6314 // Insertion/extraction are legal for V128 types.
6315 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006316 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6317 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006318 return Op;
6319
6320 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006321 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006322 return SDValue();
6323
6324 // For V64 types, we perform extraction by expanding the value
6325 // to a V128 type and perform the extraction on that.
6326 SDLoc DL(Op);
6327 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6328 EVT WideTy = WideVec.getValueType();
6329
6330 EVT ExtrTy = WideTy.getVectorElementType();
6331 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
6332 ExtrTy = MVT::i32;
6333
6334 // For extractions, we just return the result directly.
6335 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
6336 Op.getOperand(1));
6337}
6338
6339SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
6340 SelectionDAG &DAG) const {
6341 EVT VT = Op.getOperand(0).getValueType();
6342 SDLoc dl(Op);
6343 // Just in case...
6344 if (!VT.isVector())
6345 return SDValue();
6346
6347 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6348 if (!Cst)
6349 return SDValue();
6350 unsigned Val = Cst->getZExtValue();
6351
6352 unsigned Size = Op.getValueType().getSizeInBits();
6353 if (Val == 0) {
6354 switch (Size) {
6355 case 8:
6356 return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(),
6357 Op.getOperand(0));
6358 case 16:
6359 return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(),
6360 Op.getOperand(0));
6361 case 32:
6362 return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(),
6363 Op.getOperand(0));
6364 case 64:
6365 return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(),
6366 Op.getOperand(0));
6367 default:
6368 llvm_unreachable("Unexpected vector type in extract_subvector!");
6369 }
6370 }
6371 // If this is extracting the upper 64-bits of a 128-bit vector, we match
6372 // that directly.
6373 if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
6374 return Op;
6375
6376 return SDValue();
6377}
6378
6379bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6380 EVT VT) const {
6381 if (VT.getVectorNumElements() == 4 &&
6382 (VT.is128BitVector() || VT.is64BitVector())) {
6383 unsigned PFIndexes[4];
6384 for (unsigned i = 0; i != 4; ++i) {
6385 if (M[i] < 0)
6386 PFIndexes[i] = 8;
6387 else
6388 PFIndexes[i] = M[i];
6389 }
6390
6391 // Compute the index in the perfect shuffle table.
6392 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6393 PFIndexes[2] * 9 + PFIndexes[3];
6394 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6395 unsigned Cost = (PFEntry >> 30);
6396
6397 if (Cost <= 4)
6398 return true;
6399 }
6400
6401 bool DummyBool;
6402 int DummyInt;
6403 unsigned DummyUnsigned;
6404
6405 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
6406 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
6407 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
6408 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
6409 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
6410 isZIPMask(M, VT, DummyUnsigned) ||
6411 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
6412 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
6413 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
6414 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
6415 isConcatMask(M, VT, VT.getSizeInBits() == 128));
6416}
6417
6418/// getVShiftImm - Check if this is a valid build_vector for the immediate
6419/// operand of a vector shift operation, where all the elements of the
6420/// build_vector must have the same constant integer value.
6421static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6422 // Ignore bit_converts.
6423 while (Op.getOpcode() == ISD::BITCAST)
6424 Op = Op.getOperand(0);
6425 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6426 APInt SplatBits, SplatUndef;
6427 unsigned SplatBitSize;
6428 bool HasAnyUndefs;
6429 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6430 HasAnyUndefs, ElementBits) ||
6431 SplatBitSize > ElementBits)
6432 return false;
6433 Cnt = SplatBits.getSExtValue();
6434 return true;
6435}
6436
6437/// isVShiftLImm - Check if this is a valid build_vector for the immediate
6438/// operand of a vector shift left operation. That value must be in the range:
6439/// 0 <= Value < ElementBits for a left shift; or
6440/// 0 <= Value <= ElementBits for a long left shift.
6441static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6442 assert(VT.isVector() && "vector shift count is not a vector type");
6443 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6444 if (!getVShiftImm(Op, ElementBits, Cnt))
6445 return false;
6446 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6447}
6448
6449/// isVShiftRImm - Check if this is a valid build_vector for the immediate
6450/// operand of a vector shift right operation. For a shift opcode, the value
6451/// is positive, but for an intrinsic the value count must be negative. The
6452/// absolute value must be in the range:
6453/// 1 <= |Value| <= ElementBits for a right shift; or
6454/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
6455static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6456 int64_t &Cnt) {
6457 assert(VT.isVector() && "vector shift count is not a vector type");
6458 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6459 if (!getVShiftImm(Op, ElementBits, Cnt))
6460 return false;
6461 if (isIntrinsic)
6462 Cnt = -Cnt;
6463 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6464}
6465
6466SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
6467 SelectionDAG &DAG) const {
6468 EVT VT = Op.getValueType();
6469 SDLoc DL(Op);
6470 int64_t Cnt;
6471
6472 if (!Op.getOperand(1).getValueType().isVector())
6473 return Op;
6474 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6475
6476 switch (Op.getOpcode()) {
6477 default:
6478 llvm_unreachable("unexpected shift opcode");
6479
6480 case ISD::SHL:
6481 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006482 return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
6483 DAG.getConstant(Cnt, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00006484 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006485 DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
6486 MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00006487 Op.getOperand(0), Op.getOperand(1));
6488 case ISD::SRA:
6489 case ISD::SRL:
6490 // Right shift immediate
6491 if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) &&
6492 Cnt < EltSize) {
6493 unsigned Opc =
6494 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006495 return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
6496 DAG.getConstant(Cnt, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00006497 }
6498
6499 // Right shift register. Note, there is not a shift right register
6500 // instruction, but the shift left register instruction takes a signed
6501 // value, where negative numbers specify a right shift.
6502 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
6503 : Intrinsic::aarch64_neon_ushl;
6504 // negate the shift amount
6505 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
6506 SDValue NegShiftLeft =
6507 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006508 DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
6509 NegShift);
Tim Northover3b0846e2014-05-24 12:50:23 +00006510 return NegShiftLeft;
6511 }
6512
6513 return SDValue();
6514}
6515
6516static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
6517 AArch64CC::CondCode CC, bool NoNans, EVT VT,
6518 SDLoc dl, SelectionDAG &DAG) {
6519 EVT SrcVT = LHS.getValueType();
Tim Northover45aa89c2015-02-08 00:50:47 +00006520 assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
6521 "function only supposed to emit natural comparisons");
Tim Northover3b0846e2014-05-24 12:50:23 +00006522
6523 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
6524 APInt CnstBits(VT.getSizeInBits(), 0);
6525 APInt UndefBits(VT.getSizeInBits(), 0);
6526 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
6527 bool IsZero = IsCnst && (CnstBits == 0);
6528
6529 if (SrcVT.getVectorElementType().isFloatingPoint()) {
6530 switch (CC) {
6531 default:
6532 return SDValue();
6533 case AArch64CC::NE: {
6534 SDValue Fcmeq;
6535 if (IsZero)
6536 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6537 else
6538 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6539 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
6540 }
6541 case AArch64CC::EQ:
6542 if (IsZero)
6543 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6544 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6545 case AArch64CC::GE:
6546 if (IsZero)
6547 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
6548 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
6549 case AArch64CC::GT:
6550 if (IsZero)
6551 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
6552 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
6553 case AArch64CC::LS:
6554 if (IsZero)
6555 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
6556 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
6557 case AArch64CC::LT:
6558 if (!NoNans)
6559 return SDValue();
6560 // If we ignore NaNs then we can use to the MI implementation.
6561 // Fallthrough.
6562 case AArch64CC::MI:
6563 if (IsZero)
6564 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
6565 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
6566 }
6567 }
6568
6569 switch (CC) {
6570 default:
6571 return SDValue();
6572 case AArch64CC::NE: {
6573 SDValue Cmeq;
6574 if (IsZero)
6575 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6576 else
6577 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6578 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
6579 }
6580 case AArch64CC::EQ:
6581 if (IsZero)
6582 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6583 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6584 case AArch64CC::GE:
6585 if (IsZero)
6586 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
6587 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
6588 case AArch64CC::GT:
6589 if (IsZero)
6590 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
6591 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
6592 case AArch64CC::LE:
6593 if (IsZero)
6594 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
6595 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
6596 case AArch64CC::LS:
6597 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
6598 case AArch64CC::LO:
6599 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
6600 case AArch64CC::LT:
6601 if (IsZero)
6602 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
6603 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
6604 case AArch64CC::HI:
6605 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
6606 case AArch64CC::HS:
6607 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
6608 }
6609}
6610
6611SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
6612 SelectionDAG &DAG) const {
6613 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6614 SDValue LHS = Op.getOperand(0);
6615 SDValue RHS = Op.getOperand(1);
Tim Northover45aa89c2015-02-08 00:50:47 +00006616 EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
Tim Northover3b0846e2014-05-24 12:50:23 +00006617 SDLoc dl(Op);
6618
6619 if (LHS.getValueType().getVectorElementType().isInteger()) {
6620 assert(LHS.getValueType() == RHS.getValueType());
6621 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
Tim Northover45aa89c2015-02-08 00:50:47 +00006622 SDValue Cmp =
6623 EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
6624 return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00006625 }
6626
6627 assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
6628 LHS.getValueType().getVectorElementType() == MVT::f64);
6629
6630 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
6631 // clean. Some of them require two branches to implement.
6632 AArch64CC::CondCode CC1, CC2;
6633 bool ShouldInvert;
6634 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
6635
6636 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
6637 SDValue Cmp =
Tim Northover45aa89c2015-02-08 00:50:47 +00006638 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00006639 if (!Cmp.getNode())
6640 return SDValue();
6641
6642 if (CC2 != AArch64CC::AL) {
6643 SDValue Cmp2 =
Tim Northover45aa89c2015-02-08 00:50:47 +00006644 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00006645 if (!Cmp2.getNode())
6646 return SDValue();
6647
Tim Northover45aa89c2015-02-08 00:50:47 +00006648 Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
Tim Northover3b0846e2014-05-24 12:50:23 +00006649 }
6650
Tim Northover45aa89c2015-02-08 00:50:47 +00006651 Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
6652
Tim Northover3b0846e2014-05-24 12:50:23 +00006653 if (ShouldInvert)
6654 return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
6655
6656 return Cmp;
6657}
6658
6659/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6660/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
6661/// specified in the intrinsic calls.
6662bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6663 const CallInst &I,
6664 unsigned Intrinsic) const {
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006665 auto &DL = I.getModule()->getDataLayout();
Tim Northover3b0846e2014-05-24 12:50:23 +00006666 switch (Intrinsic) {
6667 case Intrinsic::aarch64_neon_ld2:
6668 case Intrinsic::aarch64_neon_ld3:
6669 case Intrinsic::aarch64_neon_ld4:
6670 case Intrinsic::aarch64_neon_ld1x2:
6671 case Intrinsic::aarch64_neon_ld1x3:
6672 case Intrinsic::aarch64_neon_ld1x4:
6673 case Intrinsic::aarch64_neon_ld2lane:
6674 case Intrinsic::aarch64_neon_ld3lane:
6675 case Intrinsic::aarch64_neon_ld4lane:
6676 case Intrinsic::aarch64_neon_ld2r:
6677 case Intrinsic::aarch64_neon_ld3r:
6678 case Intrinsic::aarch64_neon_ld4r: {
6679 Info.opc = ISD::INTRINSIC_W_CHAIN;
6680 // Conservatively set memVT to the entire set of vectors loaded.
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006681 uint64_t NumElts = DL.getTypeAllocSize(I.getType()) / 8;
Tim Northover3b0846e2014-05-24 12:50:23 +00006682 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6683 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6684 Info.offset = 0;
6685 Info.align = 0;
6686 Info.vol = false; // volatile loads with NEON intrinsics not supported
6687 Info.readMem = true;
6688 Info.writeMem = false;
6689 return true;
6690 }
6691 case Intrinsic::aarch64_neon_st2:
6692 case Intrinsic::aarch64_neon_st3:
6693 case Intrinsic::aarch64_neon_st4:
6694 case Intrinsic::aarch64_neon_st1x2:
6695 case Intrinsic::aarch64_neon_st1x3:
6696 case Intrinsic::aarch64_neon_st1x4:
6697 case Intrinsic::aarch64_neon_st2lane:
6698 case Intrinsic::aarch64_neon_st3lane:
6699 case Intrinsic::aarch64_neon_st4lane: {
6700 Info.opc = ISD::INTRINSIC_VOID;
6701 // Conservatively set memVT to the entire set of vectors stored.
6702 unsigned NumElts = 0;
6703 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6704 Type *ArgTy = I.getArgOperand(ArgI)->getType();
6705 if (!ArgTy->isVectorTy())
6706 break;
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006707 NumElts += DL.getTypeAllocSize(ArgTy) / 8;
Tim Northover3b0846e2014-05-24 12:50:23 +00006708 }
6709 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6710 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6711 Info.offset = 0;
6712 Info.align = 0;
6713 Info.vol = false; // volatile stores with NEON intrinsics not supported
6714 Info.readMem = false;
6715 Info.writeMem = true;
6716 return true;
6717 }
6718 case Intrinsic::aarch64_ldaxr:
6719 case Intrinsic::aarch64_ldxr: {
6720 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
6721 Info.opc = ISD::INTRINSIC_W_CHAIN;
6722 Info.memVT = MVT::getVT(PtrTy->getElementType());
6723 Info.ptrVal = I.getArgOperand(0);
6724 Info.offset = 0;
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006725 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
Tim Northover3b0846e2014-05-24 12:50:23 +00006726 Info.vol = true;
6727 Info.readMem = true;
6728 Info.writeMem = false;
6729 return true;
6730 }
6731 case Intrinsic::aarch64_stlxr:
6732 case Intrinsic::aarch64_stxr: {
6733 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6734 Info.opc = ISD::INTRINSIC_W_CHAIN;
6735 Info.memVT = MVT::getVT(PtrTy->getElementType());
6736 Info.ptrVal = I.getArgOperand(1);
6737 Info.offset = 0;
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006738 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
Tim Northover3b0846e2014-05-24 12:50:23 +00006739 Info.vol = true;
6740 Info.readMem = false;
6741 Info.writeMem = true;
6742 return true;
6743 }
6744 case Intrinsic::aarch64_ldaxp:
6745 case Intrinsic::aarch64_ldxp: {
6746 Info.opc = ISD::INTRINSIC_W_CHAIN;
6747 Info.memVT = MVT::i128;
6748 Info.ptrVal = I.getArgOperand(0);
6749 Info.offset = 0;
6750 Info.align = 16;
6751 Info.vol = true;
6752 Info.readMem = true;
6753 Info.writeMem = false;
6754 return true;
6755 }
6756 case Intrinsic::aarch64_stlxp:
6757 case Intrinsic::aarch64_stxp: {
6758 Info.opc = ISD::INTRINSIC_W_CHAIN;
6759 Info.memVT = MVT::i128;
6760 Info.ptrVal = I.getArgOperand(2);
6761 Info.offset = 0;
6762 Info.align = 16;
6763 Info.vol = true;
6764 Info.readMem = false;
6765 Info.writeMem = true;
6766 return true;
6767 }
6768 default:
6769 break;
6770 }
6771
6772 return false;
6773}
6774
6775// Truncations from 64-bit GPR to 32-bit GPR is free.
6776bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6777 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6778 return false;
6779 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6780 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006781 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006782}
6783bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006784 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006785 return false;
6786 unsigned NumBits1 = VT1.getSizeInBits();
6787 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006788 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006789}
6790
Chad Rosier54390052015-02-23 19:15:16 +00006791/// Check if it is profitable to hoist instruction in then/else to if.
6792/// Not profitable if I and it's user can form a FMA instruction
6793/// because we prefer FMSUB/FMADD.
6794bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
6795 if (I->getOpcode() != Instruction::FMul)
6796 return true;
6797
6798 if (I->getNumUses() != 1)
6799 return true;
6800
6801 Instruction *User = I->user_back();
6802
6803 if (User &&
6804 !(User->getOpcode() == Instruction::FSub ||
6805 User->getOpcode() == Instruction::FAdd))
6806 return true;
6807
6808 const TargetOptions &Options = getTargetMachine().Options;
Mehdi Amini44ede332015-07-09 02:09:04 +00006809 const DataLayout &DL = I->getModule()->getDataLayout();
6810 EVT VT = getValueType(DL, User->getOperand(0)->getType());
Chad Rosier54390052015-02-23 19:15:16 +00006811
6812 if (isFMAFasterThanFMulAndFAdd(VT) &&
6813 isOperationLegalOrCustom(ISD::FMA, VT) &&
6814 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath))
6815 return false;
6816
6817 return true;
6818}
6819
Tim Northover3b0846e2014-05-24 12:50:23 +00006820// All 32-bit GPR operations implicitly zero the high-half of the corresponding
6821// 64-bit GPR.
6822bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6823 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6824 return false;
6825 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6826 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006827 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006828}
6829bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006830 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006831 return false;
6832 unsigned NumBits1 = VT1.getSizeInBits();
6833 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006834 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006835}
6836
6837bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6838 EVT VT1 = Val.getValueType();
6839 if (isZExtFree(VT1, VT2)) {
6840 return true;
6841 }
6842
6843 if (Val.getOpcode() != ISD::LOAD)
6844 return false;
6845
6846 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
Hao Liu40914502014-05-29 09:19:07 +00006847 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
6848 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
6849 VT1.getSizeInBits() <= 32);
Tim Northover3b0846e2014-05-24 12:50:23 +00006850}
6851
Quentin Colombet6843ac42015-03-31 20:52:32 +00006852bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
6853 if (isa<FPExtInst>(Ext))
6854 return false;
6855
6856 // Vector types are next free.
6857 if (Ext->getType()->isVectorTy())
6858 return false;
6859
6860 for (const Use &U : Ext->uses()) {
6861 // The extension is free if we can fold it with a left shift in an
6862 // addressing mode or an arithmetic operation: add, sub, and cmp.
6863
6864 // Is there a shift?
6865 const Instruction *Instr = cast<Instruction>(U.getUser());
6866
6867 // Is this a constant shift?
6868 switch (Instr->getOpcode()) {
6869 case Instruction::Shl:
6870 if (!isa<ConstantInt>(Instr->getOperand(1)))
6871 return false;
6872 break;
6873 case Instruction::GetElementPtr: {
6874 gep_type_iterator GTI = gep_type_begin(Instr);
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006875 auto &DL = Ext->getModule()->getDataLayout();
Quentin Colombet6843ac42015-03-31 20:52:32 +00006876 std::advance(GTI, U.getOperandNo());
6877 Type *IdxTy = *GTI;
6878 // This extension will end up with a shift because of the scaling factor.
6879 // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
6880 // Get the shift amount based on the scaling factor:
6881 // log2(sizeof(IdxTy)) - log2(8).
6882 uint64_t ShiftAmt =
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006883 countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy)) - 3;
Quentin Colombet6843ac42015-03-31 20:52:32 +00006884 // Is the constant foldable in the shift of the addressing mode?
6885 // I.e., shift amount is between 1 and 4 inclusive.
6886 if (ShiftAmt == 0 || ShiftAmt > 4)
6887 return false;
6888 break;
6889 }
6890 case Instruction::Trunc:
6891 // Check if this is a noop.
6892 // trunc(sext ty1 to ty2) to ty1.
6893 if (Instr->getType() == Ext->getOperand(0)->getType())
6894 continue;
6895 // FALL THROUGH.
6896 default:
6897 return false;
6898 }
6899
6900 // At this point we can use the bfm family, so this extension is free
6901 // for that use.
6902 }
6903 return true;
6904}
6905
Tim Northover3b0846e2014-05-24 12:50:23 +00006906bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
6907 unsigned &RequiredAligment) const {
6908 if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
6909 return false;
6910 // Cyclone supports unaligned accesses.
6911 RequiredAligment = 0;
6912 unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
6913 return NumBits == 32 || NumBits == 64;
6914}
6915
6916bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
6917 unsigned &RequiredAligment) const {
6918 if (!LoadedType.isSimple() ||
6919 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
6920 return false;
6921 // Cyclone supports unaligned accesses.
6922 RequiredAligment = 0;
6923 unsigned NumBits = LoadedType.getSizeInBits();
6924 return NumBits == 32 || NumBits == 64;
6925}
6926
Hao Liu7ec8ee32015-06-26 02:32:07 +00006927/// \brief Lower an interleaved load into a ldN intrinsic.
6928///
6929/// E.g. Lower an interleaved load (Factor = 2):
6930/// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
6931/// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
6932/// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
6933///
6934/// Into:
6935/// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
6936/// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
6937/// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
6938bool AArch64TargetLowering::lowerInterleavedLoad(
6939 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
6940 ArrayRef<unsigned> Indices, unsigned Factor) const {
6941 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
6942 "Invalid interleave factor");
6943 assert(!Shuffles.empty() && "Empty shufflevector input");
6944 assert(Shuffles.size() == Indices.size() &&
6945 "Unmatched number of shufflevectors and indices");
6946
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006947 const DataLayout &DL = LI->getModule()->getDataLayout();
Hao Liu7ec8ee32015-06-26 02:32:07 +00006948
6949 VectorType *VecTy = Shuffles[0]->getType();
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006950 unsigned VecSize = DL.getTypeAllocSizeInBits(VecTy);
Hao Liu7ec8ee32015-06-26 02:32:07 +00006951
6952 // Skip illegal vector types.
6953 if (VecSize != 64 && VecSize != 128)
6954 return false;
6955
6956 // A pointer vector can not be the return type of the ldN intrinsics. Need to
6957 // load integer vectors first and then convert to pointer vectors.
6958 Type *EltTy = VecTy->getVectorElementType();
6959 if (EltTy->isPointerTy())
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006960 VecTy =
6961 VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
Hao Liu7ec8ee32015-06-26 02:32:07 +00006962
6963 Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
6964 Type *Tys[2] = {VecTy, PtrTy};
6965 static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
6966 Intrinsic::aarch64_neon_ld3,
6967 Intrinsic::aarch64_neon_ld4};
6968 Function *LdNFunc =
6969 Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
6970
6971 IRBuilder<> Builder(LI);
6972 Value *Ptr = Builder.CreateBitCast(LI->getPointerOperand(), PtrTy);
6973
6974 CallInst *LdN = Builder.CreateCall(LdNFunc, Ptr, "ldN");
6975
6976 // Replace uses of each shufflevector with the corresponding vector loaded
6977 // by ldN.
6978 for (unsigned i = 0; i < Shuffles.size(); i++) {
6979 ShuffleVectorInst *SVI = Shuffles[i];
6980 unsigned Index = Indices[i];
6981
6982 Value *SubVec = Builder.CreateExtractValue(LdN, Index);
6983
6984 // Convert the integer vector to pointer vector if the element is pointer.
6985 if (EltTy->isPointerTy())
6986 SubVec = Builder.CreateIntToPtr(SubVec, SVI->getType());
6987
6988 SVI->replaceAllUsesWith(SubVec);
6989 }
6990
6991 return true;
6992}
6993
6994/// \brief Get a mask consisting of sequential integers starting from \p Start.
6995///
6996/// I.e. <Start, Start + 1, ..., Start + NumElts - 1>
6997static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start,
6998 unsigned NumElts) {
6999 SmallVector<Constant *, 16> Mask;
7000 for (unsigned i = 0; i < NumElts; i++)
7001 Mask.push_back(Builder.getInt32(Start + i));
7002
7003 return ConstantVector::get(Mask);
7004}
7005
7006/// \brief Lower an interleaved store into a stN intrinsic.
7007///
7008/// E.g. Lower an interleaved store (Factor = 3):
7009/// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
7010/// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
7011/// store <12 x i32> %i.vec, <12 x i32>* %ptr
7012///
7013/// Into:
7014/// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
7015/// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
7016/// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
7017/// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
7018///
7019/// Note that the new shufflevectors will be removed and we'll only generate one
7020/// st3 instruction in CodeGen.
7021bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
7022 ShuffleVectorInst *SVI,
7023 unsigned Factor) const {
7024 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
7025 "Invalid interleave factor");
7026
7027 VectorType *VecTy = SVI->getType();
7028 assert(VecTy->getVectorNumElements() % Factor == 0 &&
7029 "Invalid interleaved store");
7030
7031 unsigned NumSubElts = VecTy->getVectorNumElements() / Factor;
7032 Type *EltTy = VecTy->getVectorElementType();
7033 VectorType *SubVecTy = VectorType::get(EltTy, NumSubElts);
7034
Mehdi Aminia749f2a2015-07-09 02:09:52 +00007035 const DataLayout &DL = SI->getModule()->getDataLayout();
7036 unsigned SubVecSize = DL.getTypeAllocSizeInBits(SubVecTy);
Hao Liu7ec8ee32015-06-26 02:32:07 +00007037
7038 // Skip illegal vector types.
7039 if (SubVecSize != 64 && SubVecSize != 128)
7040 return false;
7041
7042 Value *Op0 = SVI->getOperand(0);
7043 Value *Op1 = SVI->getOperand(1);
7044 IRBuilder<> Builder(SI);
7045
7046 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
7047 // vectors to integer vectors.
7048 if (EltTy->isPointerTy()) {
Mehdi Aminia749f2a2015-07-09 02:09:52 +00007049 Type *IntTy = DL.getIntPtrType(EltTy);
Hao Liu7ec8ee32015-06-26 02:32:07 +00007050 unsigned NumOpElts =
7051 dyn_cast<VectorType>(Op0->getType())->getVectorNumElements();
7052
7053 // Convert to the corresponding integer vector.
7054 Type *IntVecTy = VectorType::get(IntTy, NumOpElts);
7055 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
7056 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
7057
7058 SubVecTy = VectorType::get(IntTy, NumSubElts);
7059 }
7060
7061 Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
7062 Type *Tys[2] = {SubVecTy, PtrTy};
7063 static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
7064 Intrinsic::aarch64_neon_st3,
7065 Intrinsic::aarch64_neon_st4};
7066 Function *StNFunc =
7067 Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
7068
7069 SmallVector<Value *, 5> Ops;
7070
7071 // Split the shufflevector operands into sub vectors for the new stN call.
7072 for (unsigned i = 0; i < Factor; i++)
7073 Ops.push_back(Builder.CreateShuffleVector(
7074 Op0, Op1, getSequentialMask(Builder, NumSubElts * i, NumSubElts)));
7075
7076 Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), PtrTy));
7077 Builder.CreateCall(StNFunc, Ops);
7078 return true;
7079}
7080
Tim Northover3b0846e2014-05-24 12:50:23 +00007081static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
7082 unsigned AlignCheck) {
7083 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
7084 (DstAlign == 0 || DstAlign % AlignCheck == 0));
7085}
7086
7087EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
7088 unsigned SrcAlign, bool IsMemset,
7089 bool ZeroMemset,
7090 bool MemcpyStrSrc,
7091 MachineFunction &MF) const {
7092 // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
7093 // instruction to materialize the v2i64 zero and one store (with restrictive
7094 // addressing mode). Just do two i64 store of zero-registers.
7095 bool Fast;
7096 const Function *F = MF.getFunction();
7097 if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00007098 !F->hasFnAttribute(Attribute::NoImplicitFloat) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00007099 (memOpAlign(SrcAlign, DstAlign, 16) ||
Matt Arsenault6f2a5262014-07-27 17:46:40 +00007100 (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
Tim Northover3b0846e2014-05-24 12:50:23 +00007101 return MVT::f128;
7102
Lang Hames90333852015-04-09 03:40:33 +00007103 if (Size >= 8 &&
7104 (memOpAlign(SrcAlign, DstAlign, 8) ||
7105 (allowsMisalignedMemoryAccesses(MVT::i64, 0, 1, &Fast) && Fast)))
7106 return MVT::i64;
7107
7108 if (Size >= 4 &&
7109 (memOpAlign(SrcAlign, DstAlign, 4) ||
7110 (allowsMisalignedMemoryAccesses(MVT::i32, 0, 1, &Fast) && Fast)))
Lang Hames522bf132015-04-09 05:34:57 +00007111 return MVT::i32;
Lang Hames90333852015-04-09 03:40:33 +00007112
7113 return MVT::Other;
Tim Northover3b0846e2014-05-24 12:50:23 +00007114}
7115
7116// 12-bit optionally shifted immediates are legal for adds.
7117bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
7118 if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
7119 return true;
7120 return false;
7121}
7122
7123// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
7124// immediates is the same as for an add or a sub.
7125bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
7126 if (Immed < 0)
7127 Immed *= -1;
7128 return isLegalAddImmediate(Immed);
7129}
7130
7131/// isLegalAddressingMode - Return true if the addressing mode represented
7132/// by AM is legal for this target, for a load/store of the specified type.
Mehdi Amini0cdec1e2015-07-09 02:09:40 +00007133bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
7134 const AddrMode &AM, Type *Ty,
Matt Arsenaultbd7d80a2015-06-01 05:31:59 +00007135 unsigned AS) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00007136 // AArch64 has five basic addressing modes:
7137 // reg
7138 // reg + 9-bit signed offset
7139 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
7140 // reg1 + reg2
7141 // reg + SIZE_IN_BYTES * reg
7142
7143 // No global is ever allowed as a base.
7144 if (AM.BaseGV)
7145 return false;
7146
7147 // No reg+reg+imm addressing.
7148 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
7149 return false;
7150
7151 // check reg + imm case:
7152 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
7153 uint64_t NumBytes = 0;
7154 if (Ty->isSized()) {
Mehdi Amini0cdec1e2015-07-09 02:09:40 +00007155 uint64_t NumBits = DL.getTypeSizeInBits(Ty);
Tim Northover3b0846e2014-05-24 12:50:23 +00007156 NumBytes = NumBits / 8;
7157 if (!isPowerOf2_64(NumBits))
7158 NumBytes = 0;
7159 }
7160
7161 if (!AM.Scale) {
7162 int64_t Offset = AM.BaseOffs;
7163
7164 // 9-bit signed offset
7165 if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
7166 return true;
7167
7168 // 12-bit unsigned offset
7169 unsigned shift = Log2_64(NumBytes);
7170 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
7171 // Must be a multiple of NumBytes (NumBytes is a power of 2)
7172 (Offset >> shift) << shift == Offset)
7173 return true;
7174 return false;
7175 }
7176
7177 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
7178
7179 if (!AM.Scale || AM.Scale == 1 ||
7180 (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
7181 return true;
7182 return false;
7183}
7184
Mehdi Amini0cdec1e2015-07-09 02:09:40 +00007185int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL,
7186 const AddrMode &AM, Type *Ty,
Matt Arsenaultbd7d80a2015-06-01 05:31:59 +00007187 unsigned AS) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00007188 // Scaling factors are not free at all.
7189 // Operands | Rt Latency
7190 // -------------------------------------------
7191 // Rt, [Xn, Xm] | 4
7192 // -------------------------------------------
7193 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
7194 // Rt, [Xn, Wm, <extend> #imm] |
Mehdi Amini0cdec1e2015-07-09 02:09:40 +00007195 if (isLegalAddressingMode(DL, AM, Ty, AS))
Tim Northover3b0846e2014-05-24 12:50:23 +00007196 // Scale represents reg2 * scale, thus account for 1 if
7197 // it is not equal to 0 or 1.
7198 return AM.Scale != 0 && AM.Scale != 1;
7199 return -1;
7200}
7201
7202bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
7203 VT = VT.getScalarType();
7204
7205 if (!VT.isSimple())
7206 return false;
7207
7208 switch (VT.getSimpleVT().SimpleTy) {
7209 case MVT::f32:
7210 case MVT::f64:
7211 return true;
7212 default:
7213 break;
7214 }
7215
7216 return false;
7217}
7218
7219const MCPhysReg *
7220AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
7221 // LR is a callee-save register, but we must treat it as clobbered by any call
7222 // site. Hence we include LR in the scratch registers, which are in turn added
7223 // as implicit-defs for stackmaps and patchpoints.
7224 static const MCPhysReg ScratchRegs[] = {
7225 AArch64::X16, AArch64::X17, AArch64::LR, 0
7226 };
7227 return ScratchRegs;
7228}
7229
7230bool
7231AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
7232 EVT VT = N->getValueType(0);
7233 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
7234 // it with shift to let it be lowered to UBFX.
7235 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
7236 isa<ConstantSDNode>(N->getOperand(1))) {
7237 uint64_t TruncMask = N->getConstantOperandVal(1);
7238 if (isMask_64(TruncMask) &&
7239 N->getOperand(0).getOpcode() == ISD::SRL &&
7240 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
7241 return false;
7242 }
7243 return true;
7244}
7245
7246bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
7247 Type *Ty) const {
7248 assert(Ty->isIntegerTy());
7249
7250 unsigned BitSize = Ty->getPrimitiveSizeInBits();
7251 if (BitSize == 0)
7252 return false;
7253
7254 int64_t Val = Imm.getSExtValue();
7255 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
7256 return true;
7257
7258 if ((int64_t)Val < 0)
7259 Val = ~Val;
7260 if (BitSize == 32)
7261 Val &= (1LL << 32) - 1;
7262
7263 unsigned LZ = countLeadingZeros((uint64_t)Val);
7264 unsigned Shift = (63 - LZ) / 16;
7265 // MOVZ is free so return true for one or fewer MOVK.
David Blaikie186d2cb2015-03-24 16:24:01 +00007266 return Shift < 3;
Tim Northover3b0846e2014-05-24 12:50:23 +00007267}
7268
7269// Generate SUBS and CSEL for integer abs.
7270static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
7271 EVT VT = N->getValueType(0);
7272
7273 SDValue N0 = N->getOperand(0);
7274 SDValue N1 = N->getOperand(1);
7275 SDLoc DL(N);
7276
7277 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
7278 // and change it to SUB and CSEL.
7279 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
7280 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
7281 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
7282 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
7283 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007284 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
Tim Northover3b0846e2014-05-24 12:50:23 +00007285 N0.getOperand(0));
7286 // Generate SUBS & CSEL.
7287 SDValue Cmp =
7288 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007289 N0.getOperand(0), DAG.getConstant(0, DL, VT));
Tim Northover3b0846e2014-05-24 12:50:23 +00007290 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007291 DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00007292 SDValue(Cmp.getNode(), 1));
7293 }
7294 return SDValue();
7295}
7296
7297// performXorCombine - Attempts to handle integer ABS.
7298static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
7299 TargetLowering::DAGCombinerInfo &DCI,
7300 const AArch64Subtarget *Subtarget) {
7301 if (DCI.isBeforeLegalizeOps())
7302 return SDValue();
7303
7304 return performIntegerAbsCombine(N, DAG);
7305}
7306
Chad Rosier17020f92014-07-23 14:57:52 +00007307SDValue
7308AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
7309 SelectionDAG &DAG,
7310 std::vector<SDNode *> *Created) const {
7311 // fold (sdiv X, pow2)
7312 EVT VT = N->getValueType(0);
7313 if ((VT != MVT::i32 && VT != MVT::i64) ||
7314 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
7315 return SDValue();
7316
7317 SDLoc DL(N);
7318 SDValue N0 = N->getOperand(0);
7319 unsigned Lg2 = Divisor.countTrailingZeros();
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007320 SDValue Zero = DAG.getConstant(0, DL, VT);
7321 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
Chad Rosier17020f92014-07-23 14:57:52 +00007322
7323 // Add (N0 < 0) ? Pow2 - 1 : 0;
7324 SDValue CCVal;
7325 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
7326 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
7327 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
7328
7329 if (Created) {
7330 Created->push_back(Cmp.getNode());
7331 Created->push_back(Add.getNode());
7332 Created->push_back(CSel.getNode());
7333 }
7334
7335 // Divide by pow2.
7336 SDValue SRA =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007337 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
Chad Rosier17020f92014-07-23 14:57:52 +00007338
7339 // If we're dividing by a positive value, we're done. Otherwise, we must
7340 // negate the result.
7341 if (Divisor.isNonNegative())
7342 return SRA;
7343
7344 if (Created)
7345 Created->push_back(SRA.getNode());
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007346 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
Chad Rosier17020f92014-07-23 14:57:52 +00007347}
7348
Tim Northover3b0846e2014-05-24 12:50:23 +00007349static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
7350 TargetLowering::DAGCombinerInfo &DCI,
7351 const AArch64Subtarget *Subtarget) {
7352 if (DCI.isBeforeLegalizeOps())
7353 return SDValue();
7354
7355 // Multiplication of a power of two plus/minus one can be done more
7356 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
7357 // future CPUs have a cheaper MADD instruction, this may need to be
7358 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
7359 // 64-bit is 5 cycles, so this is always a win.
7360 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
7361 APInt Value = C->getAPIntValue();
7362 EVT VT = N->getValueType(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007363 SDLoc DL(N);
Chad Rosiere6b87612014-06-30 14:51:14 +00007364 if (Value.isNonNegative()) {
7365 // (mul x, 2^N + 1) => (add (shl x, N), x)
7366 APInt VM1 = Value - 1;
7367 if (VM1.isPowerOf2()) {
7368 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007369 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7370 DAG.getConstant(VM1.logBase2(), DL, MVT::i64));
7371 return DAG.getNode(ISD::ADD, DL, VT, ShiftedVal,
Chad Rosiere6b87612014-06-30 14:51:14 +00007372 N->getOperand(0));
7373 }
7374 // (mul x, 2^N - 1) => (sub (shl x, N), x)
7375 APInt VP1 = Value + 1;
7376 if (VP1.isPowerOf2()) {
7377 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007378 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7379 DAG.getConstant(VP1.logBase2(), DL, MVT::i64));
7380 return DAG.getNode(ISD::SUB, DL, VT, ShiftedVal,
Chad Rosiere6b87612014-06-30 14:51:14 +00007381 N->getOperand(0));
7382 }
7383 } else {
Chad Rosier8e38f302015-03-03 17:31:01 +00007384 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
7385 APInt VNP1 = -Value + 1;
7386 if (VNP1.isPowerOf2()) {
7387 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007388 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7389 DAG.getConstant(VNP1.logBase2(), DL, MVT::i64));
7390 return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0),
Chad Rosier8e38f302015-03-03 17:31:01 +00007391 ShiftedVal);
7392 }
Chad Rosiere6b87612014-06-30 14:51:14 +00007393 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
7394 APInt VNM1 = -Value - 1;
7395 if (VNM1.isPowerOf2()) {
7396 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007397 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7398 DAG.getConstant(VNM1.logBase2(), DL, MVT::i64));
Chad Rosiere6b87612014-06-30 14:51:14 +00007399 SDValue Add =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007400 DAG.getNode(ISD::ADD, DL, VT, ShiftedVal, N->getOperand(0));
7401 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Add);
Chad Rosiere6b87612014-06-30 14:51:14 +00007402 }
Chad Rosierd96e9f12014-06-09 01:25:51 +00007403 }
Tim Northover3b0846e2014-05-24 12:50:23 +00007404 }
7405 return SDValue();
7406}
7407
Jim Grosbachf7502c42014-07-18 00:40:52 +00007408static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
7409 SelectionDAG &DAG) {
7410 // Take advantage of vector comparisons producing 0 or -1 in each lane to
7411 // optimize away operation when it's from a constant.
7412 //
7413 // The general transformation is:
7414 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
7415 // AND(VECTOR_CMP(x,y), constant2)
7416 // constant2 = UNARYOP(constant)
7417
Jim Grosbach8f6f0852014-07-23 20:41:38 +00007418 // Early exit if this isn't a vector operation, the operand of the
7419 // unary operation isn't a bitwise AND, or if the sizes of the operations
7420 // aren't the same.
Jim Grosbachf7502c42014-07-18 00:40:52 +00007421 EVT VT = N->getValueType(0);
7422 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
Jim Grosbach8f6f0852014-07-23 20:41:38 +00007423 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
7424 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
Jim Grosbachf7502c42014-07-18 00:40:52 +00007425 return SDValue();
7426
Jim Grosbach724e4382014-07-23 20:41:43 +00007427 // Now check that the other operand of the AND is a constant. We could
Jim Grosbachf7502c42014-07-18 00:40:52 +00007428 // make the transformation for non-constant splats as well, but it's unclear
7429 // that would be a benefit as it would not eliminate any operations, just
7430 // perform one more step in scalar code before moving to the vector unit.
7431 if (BuildVectorSDNode *BV =
7432 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
Jim Grosbach724e4382014-07-23 20:41:43 +00007433 // Bail out if the vector isn't a constant.
7434 if (!BV->isConstant())
Jim Grosbachf7502c42014-07-18 00:40:52 +00007435 return SDValue();
7436
7437 // Everything checks out. Build up the new and improved node.
7438 SDLoc DL(N);
7439 EVT IntVT = BV->getValueType(0);
7440 // Create a new constant of the appropriate type for the transformed
7441 // DAG.
7442 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
7443 // The AND node needs bitcasts to/from an integer vector type around it.
7444 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
7445 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
7446 N->getOperand(0)->getOperand(0), MaskConst);
7447 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
7448 return Res;
7449 }
7450
7451 return SDValue();
7452}
7453
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00007454static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
7455 const AArch64Subtarget *Subtarget) {
Jim Grosbachf7502c42014-07-18 00:40:52 +00007456 // First try to optimize away the conversion when it's conditionally from
7457 // a constant. Vectors only.
7458 SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG);
7459 if (Res != SDValue())
7460 return Res;
7461
Tim Northover3b0846e2014-05-24 12:50:23 +00007462 EVT VT = N->getValueType(0);
7463 if (VT != MVT::f32 && VT != MVT::f64)
7464 return SDValue();
Jim Grosbachf7502c42014-07-18 00:40:52 +00007465
Tim Northover3b0846e2014-05-24 12:50:23 +00007466 // Only optimize when the source and destination types have the same width.
7467 if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
7468 return SDValue();
7469
7470 // If the result of an integer load is only used by an integer-to-float
7471 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
7472 // This eliminates an "integer-to-vector-move UOP and improve throughput.
7473 SDValue N0 = N->getOperand(0);
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00007474 if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
Tim Northover3b0846e2014-05-24 12:50:23 +00007475 // Do not change the width of a volatile load.
7476 !cast<LoadSDNode>(N0)->isVolatile()) {
7477 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7478 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
7479 LN0->getPointerInfo(), LN0->isVolatile(),
7480 LN0->isNonTemporal(), LN0->isInvariant(),
7481 LN0->getAlignment());
7482
7483 // Make sure successors of the original load stay after it by updating them
7484 // to use the new Chain.
7485 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
7486
7487 unsigned Opcode =
7488 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
7489 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
7490 }
7491
7492 return SDValue();
7493}
7494
7495/// An EXTR instruction is made up of two shifts, ORed together. This helper
7496/// searches for and classifies those shifts.
7497static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
7498 bool &FromHi) {
7499 if (N.getOpcode() == ISD::SHL)
7500 FromHi = false;
7501 else if (N.getOpcode() == ISD::SRL)
7502 FromHi = true;
7503 else
7504 return false;
7505
7506 if (!isa<ConstantSDNode>(N.getOperand(1)))
7507 return false;
7508
7509 ShiftAmount = N->getConstantOperandVal(1);
7510 Src = N->getOperand(0);
7511 return true;
7512}
7513
7514/// EXTR instruction extracts a contiguous chunk of bits from two existing
7515/// registers viewed as a high/low pair. This function looks for the pattern:
7516/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
7517/// EXTR. Can't quite be done in TableGen because the two immediates aren't
7518/// independent.
7519static SDValue tryCombineToEXTR(SDNode *N,
7520 TargetLowering::DAGCombinerInfo &DCI) {
7521 SelectionDAG &DAG = DCI.DAG;
7522 SDLoc DL(N);
7523 EVT VT = N->getValueType(0);
7524
7525 assert(N->getOpcode() == ISD::OR && "Unexpected root");
7526
7527 if (VT != MVT::i32 && VT != MVT::i64)
7528 return SDValue();
7529
7530 SDValue LHS;
7531 uint32_t ShiftLHS = 0;
7532 bool LHSFromHi = 0;
7533 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
7534 return SDValue();
7535
7536 SDValue RHS;
7537 uint32_t ShiftRHS = 0;
7538 bool RHSFromHi = 0;
7539 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
7540 return SDValue();
7541
7542 // If they're both trying to come from the high part of the register, they're
7543 // not really an EXTR.
7544 if (LHSFromHi == RHSFromHi)
7545 return SDValue();
7546
7547 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
7548 return SDValue();
7549
7550 if (LHSFromHi) {
7551 std::swap(LHS, RHS);
7552 std::swap(ShiftLHS, ShiftRHS);
7553 }
7554
7555 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007556 DAG.getConstant(ShiftRHS, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007557}
7558
7559static SDValue tryCombineToBSL(SDNode *N,
7560 TargetLowering::DAGCombinerInfo &DCI) {
7561 EVT VT = N->getValueType(0);
7562 SelectionDAG &DAG = DCI.DAG;
7563 SDLoc DL(N);
7564
7565 if (!VT.isVector())
7566 return SDValue();
7567
7568 SDValue N0 = N->getOperand(0);
7569 if (N0.getOpcode() != ISD::AND)
7570 return SDValue();
7571
7572 SDValue N1 = N->getOperand(1);
7573 if (N1.getOpcode() != ISD::AND)
7574 return SDValue();
7575
7576 // We only have to look for constant vectors here since the general, variable
7577 // case can be handled in TableGen.
7578 unsigned Bits = VT.getVectorElementType().getSizeInBits();
7579 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
7580 for (int i = 1; i >= 0; --i)
7581 for (int j = 1; j >= 0; --j) {
7582 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
7583 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
7584 if (!BVN0 || !BVN1)
7585 continue;
7586
7587 bool FoundMatch = true;
7588 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
7589 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
7590 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
7591 if (!CN0 || !CN1 ||
7592 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
7593 FoundMatch = false;
7594 break;
7595 }
7596 }
7597
7598 if (FoundMatch)
7599 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
7600 N0->getOperand(1 - i), N1->getOperand(1 - j));
7601 }
7602
7603 return SDValue();
7604}
7605
7606static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
7607 const AArch64Subtarget *Subtarget) {
7608 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
7609 if (!EnableAArch64ExtrGeneration)
7610 return SDValue();
7611 SelectionDAG &DAG = DCI.DAG;
7612 EVT VT = N->getValueType(0);
7613
7614 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7615 return SDValue();
7616
7617 SDValue Res = tryCombineToEXTR(N, DCI);
7618 if (Res.getNode())
7619 return Res;
7620
7621 Res = tryCombineToBSL(N, DCI);
7622 if (Res.getNode())
7623 return Res;
7624
7625 return SDValue();
7626}
7627
7628static SDValue performBitcastCombine(SDNode *N,
7629 TargetLowering::DAGCombinerInfo &DCI,
7630 SelectionDAG &DAG) {
7631 // Wait 'til after everything is legalized to try this. That way we have
7632 // legal vector types and such.
7633 if (DCI.isBeforeLegalizeOps())
7634 return SDValue();
7635
7636 // Remove extraneous bitcasts around an extract_subvector.
7637 // For example,
7638 // (v4i16 (bitconvert
7639 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
7640 // becomes
7641 // (extract_subvector ((v8i16 ...), (i64 4)))
7642
7643 // Only interested in 64-bit vectors as the ultimate result.
7644 EVT VT = N->getValueType(0);
7645 if (!VT.isVector())
7646 return SDValue();
7647 if (VT.getSimpleVT().getSizeInBits() != 64)
7648 return SDValue();
7649 // Is the operand an extract_subvector starting at the beginning or halfway
7650 // point of the vector? A low half may also come through as an
7651 // EXTRACT_SUBREG, so look for that, too.
7652 SDValue Op0 = N->getOperand(0);
7653 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
7654 !(Op0->isMachineOpcode() &&
7655 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
7656 return SDValue();
7657 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
7658 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
7659 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
7660 return SDValue();
7661 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
7662 if (idx != AArch64::dsub)
7663 return SDValue();
7664 // The dsub reference is equivalent to a lane zero subvector reference.
7665 idx = 0;
7666 }
7667 // Look through the bitcast of the input to the extract.
7668 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
7669 return SDValue();
7670 SDValue Source = Op0->getOperand(0)->getOperand(0);
7671 // If the source type has twice the number of elements as our destination
7672 // type, we know this is an extract of the high or low half of the vector.
7673 EVT SVT = Source->getValueType(0);
7674 if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
7675 return SDValue();
7676
7677 DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
7678
7679 // Create the simplified form to just extract the low or high half of the
7680 // vector directly rather than bothering with the bitcasts.
7681 SDLoc dl(N);
7682 unsigned NumElements = VT.getVectorNumElements();
7683 if (idx) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007684 SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00007685 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
7686 } else {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007687 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00007688 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
7689 Source, SubReg),
7690 0);
7691 }
7692}
7693
7694static SDValue performConcatVectorsCombine(SDNode *N,
7695 TargetLowering::DAGCombinerInfo &DCI,
7696 SelectionDAG &DAG) {
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007697 SDLoc dl(N);
7698 EVT VT = N->getValueType(0);
7699 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
7700
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00007701 // Optimize concat_vectors of truncated vectors, where the intermediate
7702 // type is illegal, to avoid said illegality, e.g.,
7703 // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
7704 // (v2i16 (truncate (v2i64)))))
7705 // ->
Ahmed Bougachae6bb09a2015-03-21 01:08:39 +00007706 // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
7707 // (v4i32 (bitcast (v2i64))),
7708 // <0, 2, 4, 6>)))
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00007709 // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
7710 // on both input and result type, so we might generate worse code.
7711 // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
7712 if (N->getNumOperands() == 2 &&
7713 N0->getOpcode() == ISD::TRUNCATE &&
7714 N1->getOpcode() == ISD::TRUNCATE) {
7715 SDValue N00 = N0->getOperand(0);
7716 SDValue N10 = N1->getOperand(0);
7717 EVT N00VT = N00.getValueType();
7718
7719 if (N00VT == N10.getValueType() &&
7720 (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
7721 N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
Ahmed Bougachae6bb09a2015-03-21 01:08:39 +00007722 MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
7723 SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
7724 for (size_t i = 0; i < Mask.size(); ++i)
7725 Mask[i] = i * 2;
7726 return DAG.getNode(ISD::TRUNCATE, dl, VT,
7727 DAG.getVectorShuffle(
7728 MidVT, dl,
7729 DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
7730 DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00007731 }
7732 }
7733
Tim Northover3b0846e2014-05-24 12:50:23 +00007734 // Wait 'til after everything is legalized to try this. That way we have
7735 // legal vector types and such.
7736 if (DCI.isBeforeLegalizeOps())
7737 return SDValue();
7738
Tim Northover3b0846e2014-05-24 12:50:23 +00007739 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
7740 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
7741 // canonicalise to that.
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007742 if (N0 == N1 && VT.getVectorNumElements() == 2) {
Tim Northover3b0846e2014-05-24 12:50:23 +00007743 assert(VT.getVectorElementType().getSizeInBits() == 64);
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007744 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007745 DAG.getConstant(0, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007746 }
7747
7748 // Canonicalise concat_vectors so that the right-hand vector has as few
7749 // bit-casts as possible before its real operation. The primary matching
7750 // destination for these operations will be the narrowing "2" instructions,
7751 // which depend on the operation being performed on this right-hand vector.
7752 // For example,
7753 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
7754 // becomes
7755 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
7756
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007757 if (N1->getOpcode() != ISD::BITCAST)
Tim Northover3b0846e2014-05-24 12:50:23 +00007758 return SDValue();
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007759 SDValue RHS = N1->getOperand(0);
Tim Northover3b0846e2014-05-24 12:50:23 +00007760 MVT RHSTy = RHS.getValueType().getSimpleVT();
7761 // If the RHS is not a vector, this is not the pattern we're looking for.
7762 if (!RHSTy.isVector())
7763 return SDValue();
7764
7765 DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
7766
7767 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
7768 RHSTy.getVectorNumElements() * 2);
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007769 return DAG.getNode(ISD::BITCAST, dl, VT,
7770 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
7771 DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
7772 RHS));
Tim Northover3b0846e2014-05-24 12:50:23 +00007773}
7774
7775static SDValue tryCombineFixedPointConvert(SDNode *N,
7776 TargetLowering::DAGCombinerInfo &DCI,
7777 SelectionDAG &DAG) {
7778 // Wait 'til after everything is legalized to try this. That way we have
7779 // legal vector types and such.
7780 if (DCI.isBeforeLegalizeOps())
7781 return SDValue();
7782 // Transform a scalar conversion of a value from a lane extract into a
7783 // lane extract of a vector conversion. E.g., from foo1 to foo2:
7784 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
7785 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
7786 //
7787 // The second form interacts better with instruction selection and the
7788 // register allocator to avoid cross-class register copies that aren't
7789 // coalescable due to a lane reference.
7790
7791 // Check the operand and see if it originates from a lane extract.
7792 SDValue Op1 = N->getOperand(1);
7793 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7794 // Yep, no additional predication needed. Perform the transform.
7795 SDValue IID = N->getOperand(0);
7796 SDValue Shift = N->getOperand(2);
7797 SDValue Vec = Op1.getOperand(0);
7798 SDValue Lane = Op1.getOperand(1);
7799 EVT ResTy = N->getValueType(0);
7800 EVT VecResTy;
7801 SDLoc DL(N);
7802
7803 // The vector width should be 128 bits by the time we get here, even
7804 // if it started as 64 bits (the extract_vector handling will have
7805 // done so).
7806 assert(Vec.getValueType().getSizeInBits() == 128 &&
7807 "unexpected vector size on extract_vector_elt!");
7808 if (Vec.getValueType() == MVT::v4i32)
7809 VecResTy = MVT::v4f32;
7810 else if (Vec.getValueType() == MVT::v2i64)
7811 VecResTy = MVT::v2f64;
7812 else
Craig Topper2a30d782014-06-18 05:05:13 +00007813 llvm_unreachable("unexpected vector type!");
Tim Northover3b0846e2014-05-24 12:50:23 +00007814
7815 SDValue Convert =
7816 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
7817 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
7818 }
7819 return SDValue();
7820}
7821
7822// AArch64 high-vector "long" operations are formed by performing the non-high
7823// version on an extract_subvector of each operand which gets the high half:
7824//
7825// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
7826//
7827// However, there are cases which don't have an extract_high explicitly, but
7828// have another operation that can be made compatible with one for free. For
7829// example:
7830//
7831// (dupv64 scalar) --> (extract_high (dup128 scalar))
7832//
7833// This routine does the actual conversion of such DUPs, once outer routines
7834// have determined that everything else is in order.
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00007835// It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
7836// similarly here.
Tim Northover3b0846e2014-05-24 12:50:23 +00007837static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
Tim Northover3b0846e2014-05-24 12:50:23 +00007838 switch (N.getOpcode()) {
7839 case AArch64ISD::DUP:
Tim Northover3b0846e2014-05-24 12:50:23 +00007840 case AArch64ISD::DUPLANE8:
7841 case AArch64ISD::DUPLANE16:
7842 case AArch64ISD::DUPLANE32:
7843 case AArch64ISD::DUPLANE64:
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00007844 case AArch64ISD::MOVI:
7845 case AArch64ISD::MOVIshift:
7846 case AArch64ISD::MOVIedit:
7847 case AArch64ISD::MOVImsl:
7848 case AArch64ISD::MVNIshift:
7849 case AArch64ISD::MVNImsl:
Tim Northover3b0846e2014-05-24 12:50:23 +00007850 break;
7851 default:
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00007852 // FMOV could be supported, but isn't very useful, as it would only occur
7853 // if you passed a bitcast' floating point immediate to an eligible long
7854 // integer op (addl, smull, ...).
Tim Northover3b0846e2014-05-24 12:50:23 +00007855 return SDValue();
7856 }
7857
7858 MVT NarrowTy = N.getSimpleValueType();
7859 if (!NarrowTy.is64BitVector())
7860 return SDValue();
7861
7862 MVT ElementTy = NarrowTy.getVectorElementType();
7863 unsigned NumElems = NarrowTy.getVectorNumElements();
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00007864 MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
Tim Northover3b0846e2014-05-24 12:50:23 +00007865
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007866 SDLoc dl(N);
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00007867 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
7868 DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007869 DAG.getConstant(NumElems, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007870}
7871
7872static bool isEssentiallyExtractSubvector(SDValue N) {
7873 if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
7874 return true;
7875
7876 return N.getOpcode() == ISD::BITCAST &&
7877 N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
7878}
7879
7880/// \brief Helper structure to keep track of ISD::SET_CC operands.
7881struct GenericSetCCInfo {
7882 const SDValue *Opnd0;
7883 const SDValue *Opnd1;
7884 ISD::CondCode CC;
7885};
7886
7887/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
7888struct AArch64SetCCInfo {
7889 const SDValue *Cmp;
7890 AArch64CC::CondCode CC;
7891};
7892
7893/// \brief Helper structure to keep track of SetCC information.
7894union SetCCInfo {
7895 GenericSetCCInfo Generic;
7896 AArch64SetCCInfo AArch64;
7897};
7898
7899/// \brief Helper structure to be able to read SetCC information. If set to
7900/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
7901/// GenericSetCCInfo.
7902struct SetCCInfoAndKind {
7903 SetCCInfo Info;
7904 bool IsAArch64;
7905};
7906
7907/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
7908/// an
7909/// AArch64 lowered one.
7910/// \p SetCCInfo is filled accordingly.
7911/// \post SetCCInfo is meanginfull only when this function returns true.
7912/// \return True when Op is a kind of SET_CC operation.
7913static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
7914 // If this is a setcc, this is straight forward.
7915 if (Op.getOpcode() == ISD::SETCC) {
7916 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
7917 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
7918 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7919 SetCCInfo.IsAArch64 = false;
7920 return true;
7921 }
7922 // Otherwise, check if this is a matching csel instruction.
7923 // In other words:
7924 // - csel 1, 0, cc
7925 // - csel 0, 1, !cc
7926 if (Op.getOpcode() != AArch64ISD::CSEL)
7927 return false;
7928 // Set the information about the operands.
7929 // TODO: we want the operands of the Cmp not the csel
7930 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
7931 SetCCInfo.IsAArch64 = true;
7932 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
7933 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
7934
7935 // Check that the operands matches the constraints:
7936 // (1) Both operands must be constants.
7937 // (2) One must be 1 and the other must be 0.
7938 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
7939 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7940
7941 // Check (1).
7942 if (!TValue || !FValue)
7943 return false;
7944
7945 // Check (2).
7946 if (!TValue->isOne()) {
7947 // Update the comparison when we are interested in !cc.
7948 std::swap(TValue, FValue);
7949 SetCCInfo.Info.AArch64.CC =
7950 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
7951 }
7952 return TValue->isOne() && FValue->isNullValue();
7953}
7954
7955// Returns true if Op is setcc or zext of setcc.
7956static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
7957 if (isSetCC(Op, Info))
7958 return true;
7959 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
7960 isSetCC(Op->getOperand(0), Info));
7961}
7962
7963// The folding we want to perform is:
7964// (add x, [zext] (setcc cc ...) )
7965// -->
7966// (csel x, (add x, 1), !cc ...)
7967//
7968// The latter will get matched to a CSINC instruction.
7969static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
7970 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
7971 SDValue LHS = Op->getOperand(0);
7972 SDValue RHS = Op->getOperand(1);
7973 SetCCInfoAndKind InfoAndKind;
7974
7975 // If neither operand is a SET_CC, give up.
7976 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
7977 std::swap(LHS, RHS);
7978 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
7979 return SDValue();
7980 }
7981
7982 // FIXME: This could be generatized to work for FP comparisons.
7983 EVT CmpVT = InfoAndKind.IsAArch64
7984 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
7985 : InfoAndKind.Info.Generic.Opnd0->getValueType();
7986 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
7987 return SDValue();
7988
7989 SDValue CCVal;
7990 SDValue Cmp;
7991 SDLoc dl(Op);
7992 if (InfoAndKind.IsAArch64) {
7993 CCVal = DAG.getConstant(
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007994 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
7995 MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00007996 Cmp = *InfoAndKind.Info.AArch64.Cmp;
7997 } else
7998 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
7999 *InfoAndKind.Info.Generic.Opnd1,
8000 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
8001 CCVal, DAG, dl);
8002
8003 EVT VT = Op->getValueType(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008004 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
Tim Northover3b0846e2014-05-24 12:50:23 +00008005 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
8006}
8007
8008// The basic add/sub long vector instructions have variants with "2" on the end
8009// which act on the high-half of their inputs. They are normally matched by
8010// patterns like:
8011//
8012// (add (zeroext (extract_high LHS)),
8013// (zeroext (extract_high RHS)))
8014// -> uaddl2 vD, vN, vM
8015//
8016// However, if one of the extracts is something like a duplicate, this
8017// instruction can still be used profitably. This function puts the DAG into a
8018// more appropriate form for those patterns to trigger.
8019static SDValue performAddSubLongCombine(SDNode *N,
8020 TargetLowering::DAGCombinerInfo &DCI,
8021 SelectionDAG &DAG) {
8022 if (DCI.isBeforeLegalizeOps())
8023 return SDValue();
8024
8025 MVT VT = N->getSimpleValueType(0);
8026 if (!VT.is128BitVector()) {
8027 if (N->getOpcode() == ISD::ADD)
8028 return performSetccAddFolding(N, DAG);
8029 return SDValue();
8030 }
8031
8032 // Make sure both branches are extended in the same way.
8033 SDValue LHS = N->getOperand(0);
8034 SDValue RHS = N->getOperand(1);
8035 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
8036 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
8037 LHS.getOpcode() != RHS.getOpcode())
8038 return SDValue();
8039
8040 unsigned ExtType = LHS.getOpcode();
8041
8042 // It's not worth doing if at least one of the inputs isn't already an
8043 // extract, but we don't know which it'll be so we have to try both.
8044 if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
8045 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
8046 if (!RHS.getNode())
8047 return SDValue();
8048
8049 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
8050 } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
8051 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
8052 if (!LHS.getNode())
8053 return SDValue();
8054
8055 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
8056 }
8057
8058 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
8059}
8060
8061// Massage DAGs which we can use the high-half "long" operations on into
8062// something isel will recognize better. E.g.
8063//
8064// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
8065// (aarch64_neon_umull (extract_high (v2i64 vec)))
8066// (extract_high (v2i64 (dup128 scalar)))))
8067//
James Molloyfaf4e3c2015-07-17 17:10:45 +00008068static SDValue tryCombineLongOpWithDup(SDNode *N,
Tim Northover3b0846e2014-05-24 12:50:23 +00008069 TargetLowering::DAGCombinerInfo &DCI,
8070 SelectionDAG &DAG) {
8071 if (DCI.isBeforeLegalizeOps())
8072 return SDValue();
8073
James Molloyfaf4e3c2015-07-17 17:10:45 +00008074 bool IsIntrinsic = N->getOpcode() == ISD::INTRINSIC_WO_CHAIN;
8075 SDValue LHS = N->getOperand(IsIntrinsic ? 1 : 0);
8076 SDValue RHS = N->getOperand(IsIntrinsic ? 2 : 1);
Tim Northover3b0846e2014-05-24 12:50:23 +00008077 assert(LHS.getValueType().is64BitVector() &&
8078 RHS.getValueType().is64BitVector() &&
8079 "unexpected shape for long operation");
8080
8081 // Either node could be a DUP, but it's not worth doing both of them (you'd
8082 // just as well use the non-high version) so look for a corresponding extract
8083 // operation on the other "wing".
8084 if (isEssentiallyExtractSubvector(LHS)) {
8085 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
8086 if (!RHS.getNode())
8087 return SDValue();
8088 } else if (isEssentiallyExtractSubvector(RHS)) {
8089 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
8090 if (!LHS.getNode())
8091 return SDValue();
8092 }
8093
James Molloyfaf4e3c2015-07-17 17:10:45 +00008094 // N could either be an intrinsic or a sabsdiff/uabsdiff node.
8095 if (IsIntrinsic)
8096 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
8097 N->getOperand(0), LHS, RHS);
8098 else
8099 return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
8100 LHS, RHS);
Tim Northover3b0846e2014-05-24 12:50:23 +00008101}
8102
8103static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
8104 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
8105 unsigned ElemBits = ElemTy.getSizeInBits();
8106
8107 int64_t ShiftAmount;
8108 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
8109 APInt SplatValue, SplatUndef;
8110 unsigned SplatBitSize;
8111 bool HasAnyUndefs;
8112 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
8113 HasAnyUndefs, ElemBits) ||
8114 SplatBitSize != ElemBits)
8115 return SDValue();
8116
8117 ShiftAmount = SplatValue.getSExtValue();
8118 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
8119 ShiftAmount = CVN->getSExtValue();
8120 } else
8121 return SDValue();
8122
8123 unsigned Opcode;
8124 bool IsRightShift;
8125 switch (IID) {
8126 default:
8127 llvm_unreachable("Unknown shift intrinsic");
8128 case Intrinsic::aarch64_neon_sqshl:
8129 Opcode = AArch64ISD::SQSHL_I;
8130 IsRightShift = false;
8131 break;
8132 case Intrinsic::aarch64_neon_uqshl:
8133 Opcode = AArch64ISD::UQSHL_I;
8134 IsRightShift = false;
8135 break;
8136 case Intrinsic::aarch64_neon_srshl:
8137 Opcode = AArch64ISD::SRSHR_I;
8138 IsRightShift = true;
8139 break;
8140 case Intrinsic::aarch64_neon_urshl:
8141 Opcode = AArch64ISD::URSHR_I;
8142 IsRightShift = true;
8143 break;
8144 case Intrinsic::aarch64_neon_sqshlu:
8145 Opcode = AArch64ISD::SQSHLU_I;
8146 IsRightShift = false;
8147 break;
8148 }
8149
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008150 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
8151 SDLoc dl(N);
8152 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
8153 DAG.getConstant(-ShiftAmount, dl, MVT::i32));
8154 } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
8155 SDLoc dl(N);
8156 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
8157 DAG.getConstant(ShiftAmount, dl, MVT::i32));
8158 }
Tim Northover3b0846e2014-05-24 12:50:23 +00008159
8160 return SDValue();
8161}
8162
8163// The CRC32[BH] instructions ignore the high bits of their data operand. Since
8164// the intrinsics must be legal and take an i32, this means there's almost
8165// certainly going to be a zext in the DAG which we can eliminate.
8166static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
8167 SDValue AndN = N->getOperand(2);
8168 if (AndN.getOpcode() != ISD::AND)
8169 return SDValue();
8170
8171 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
8172 if (!CMask || CMask->getZExtValue() != Mask)
8173 return SDValue();
8174
8175 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
8176 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
8177}
8178
Ahmed Bougachafab58922015-03-10 20:45:38 +00008179static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
8180 SelectionDAG &DAG) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008181 SDLoc dl(N);
8182 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
8183 DAG.getNode(Opc, dl,
Ahmed Bougachafab58922015-03-10 20:45:38 +00008184 N->getOperand(1).getSimpleValueType(),
8185 N->getOperand(1)),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008186 DAG.getConstant(0, dl, MVT::i64));
Ahmed Bougachafab58922015-03-10 20:45:38 +00008187}
8188
Tim Northover3b0846e2014-05-24 12:50:23 +00008189static SDValue performIntrinsicCombine(SDNode *N,
8190 TargetLowering::DAGCombinerInfo &DCI,
8191 const AArch64Subtarget *Subtarget) {
8192 SelectionDAG &DAG = DCI.DAG;
8193 unsigned IID = getIntrinsicID(N);
8194 switch (IID) {
8195 default:
8196 break;
8197 case Intrinsic::aarch64_neon_vcvtfxs2fp:
8198 case Intrinsic::aarch64_neon_vcvtfxu2fp:
8199 return tryCombineFixedPointConvert(N, DCI, DAG);
8200 break;
Ahmed Bougachafab58922015-03-10 20:45:38 +00008201 case Intrinsic::aarch64_neon_saddv:
8202 return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
8203 case Intrinsic::aarch64_neon_uaddv:
8204 return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
8205 case Intrinsic::aarch64_neon_sminv:
8206 return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
8207 case Intrinsic::aarch64_neon_uminv:
8208 return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
8209 case Intrinsic::aarch64_neon_smaxv:
8210 return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
8211 case Intrinsic::aarch64_neon_umaxv:
8212 return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00008213 case Intrinsic::aarch64_neon_fmax:
8214 return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0),
8215 N->getOperand(1), N->getOperand(2));
8216 case Intrinsic::aarch64_neon_fmin:
8217 return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0),
8218 N->getOperand(1), N->getOperand(2));
James Molloyfaf4e3c2015-07-17 17:10:45 +00008219 case Intrinsic::aarch64_neon_sabd:
8220 return DAG.getNode(ISD::SABSDIFF, SDLoc(N), N->getValueType(0),
8221 N->getOperand(1), N->getOperand(2));
8222 case Intrinsic::aarch64_neon_uabd:
8223 return DAG.getNode(ISD::UABSDIFF, SDLoc(N), N->getValueType(0),
8224 N->getOperand(1), N->getOperand(2));
Tim Northover3b0846e2014-05-24 12:50:23 +00008225 case Intrinsic::aarch64_neon_smull:
8226 case Intrinsic::aarch64_neon_umull:
8227 case Intrinsic::aarch64_neon_pmull:
8228 case Intrinsic::aarch64_neon_sqdmull:
James Molloyfaf4e3c2015-07-17 17:10:45 +00008229 return tryCombineLongOpWithDup(N, DCI, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00008230 case Intrinsic::aarch64_neon_sqshl:
8231 case Intrinsic::aarch64_neon_uqshl:
8232 case Intrinsic::aarch64_neon_sqshlu:
8233 case Intrinsic::aarch64_neon_srshl:
8234 case Intrinsic::aarch64_neon_urshl:
8235 return tryCombineShiftImm(IID, N, DAG);
8236 case Intrinsic::aarch64_crc32b:
8237 case Intrinsic::aarch64_crc32cb:
8238 return tryCombineCRC32(0xff, N, DAG);
8239 case Intrinsic::aarch64_crc32h:
8240 case Intrinsic::aarch64_crc32ch:
8241 return tryCombineCRC32(0xffff, N, DAG);
8242 }
8243 return SDValue();
8244}
8245
8246static SDValue performExtendCombine(SDNode *N,
8247 TargetLowering::DAGCombinerInfo &DCI,
8248 SelectionDAG &DAG) {
8249 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
8250 // we can convert that DUP into another extract_high (of a bigger DUP), which
8251 // helps the backend to decide that an sabdl2 would be useful, saving a real
8252 // extract_high operation.
8253 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
James Molloyfaf4e3c2015-07-17 17:10:45 +00008254 (N->getOperand(0).getOpcode() == ISD::SABSDIFF ||
8255 N->getOperand(0).getOpcode() == ISD::UABSDIFF)) {
Tim Northover3b0846e2014-05-24 12:50:23 +00008256 SDNode *ABDNode = N->getOperand(0).getNode();
James Molloyfaf4e3c2015-07-17 17:10:45 +00008257 SDValue NewABD = tryCombineLongOpWithDup(ABDNode, DCI, DAG);
8258 if (!NewABD.getNode())
8259 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00008260
James Molloyfaf4e3c2015-07-17 17:10:45 +00008261 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
8262 NewABD);
Tim Northover3b0846e2014-05-24 12:50:23 +00008263 }
8264
8265 // This is effectively a custom type legalization for AArch64.
8266 //
8267 // Type legalization will split an extend of a small, legal, type to a larger
8268 // illegal type by first splitting the destination type, often creating
8269 // illegal source types, which then get legalized in isel-confusing ways,
8270 // leading to really terrible codegen. E.g.,
8271 // %result = v8i32 sext v8i8 %value
8272 // becomes
8273 // %losrc = extract_subreg %value, ...
8274 // %hisrc = extract_subreg %value, ...
8275 // %lo = v4i32 sext v4i8 %losrc
8276 // %hi = v4i32 sext v4i8 %hisrc
8277 // Things go rapidly downhill from there.
8278 //
8279 // For AArch64, the [sz]ext vector instructions can only go up one element
8280 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
8281 // take two instructions.
8282 //
8283 // This implies that the most efficient way to do the extend from v8i8
8284 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
8285 // the normal splitting to happen for the v8i16->v8i32.
8286
8287 // This is pre-legalization to catch some cases where the default
8288 // type legalization will create ill-tempered code.
8289 if (!DCI.isBeforeLegalizeOps())
8290 return SDValue();
8291
8292 // We're only interested in cleaning things up for non-legal vector types
8293 // here. If both the source and destination are legal, things will just
8294 // work naturally without any fiddling.
8295 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8296 EVT ResVT = N->getValueType(0);
8297 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
8298 return SDValue();
8299 // If the vector type isn't a simple VT, it's beyond the scope of what
8300 // we're worried about here. Let legalization do its thing and hope for
8301 // the best.
Jim Grosbachec2b0d02014-08-28 22:08:28 +00008302 SDValue Src = N->getOperand(0);
8303 EVT SrcVT = Src->getValueType(0);
8304 if (!ResVT.isSimple() || !SrcVT.isSimple())
Tim Northover3b0846e2014-05-24 12:50:23 +00008305 return SDValue();
8306
Tim Northover3b0846e2014-05-24 12:50:23 +00008307 // If the source VT is a 64-bit vector, we can play games and get the
8308 // better results we want.
8309 if (SrcVT.getSizeInBits() != 64)
8310 return SDValue();
8311
8312 unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
8313 unsigned ElementCount = SrcVT.getVectorNumElements();
8314 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
8315 SDLoc DL(N);
8316 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
8317
8318 // Now split the rest of the operation into two halves, each with a 64
8319 // bit source.
8320 EVT LoVT, HiVT;
8321 SDValue Lo, Hi;
8322 unsigned NumElements = ResVT.getVectorNumElements();
8323 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
8324 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
8325 ResVT.getVectorElementType(), NumElements / 2);
8326
8327 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
8328 LoVT.getVectorNumElements());
8329 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008330 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008331 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008332 DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008333 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
8334 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
8335
8336 // Now combine the parts back together so we still have a single result
8337 // like the combiner expects.
8338 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
8339}
8340
8341/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
8342/// value. The load store optimizer pass will merge them to store pair stores.
8343/// This has better performance than a splat of the scalar followed by a split
8344/// vector store. Even if the stores are not merged it is four stores vs a dup,
8345/// followed by an ext.b and two stores.
8346static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
8347 SDValue StVal = St->getValue();
8348 EVT VT = StVal.getValueType();
8349
8350 // Don't replace floating point stores, they possibly won't be transformed to
8351 // stp because of the store pair suppress pass.
8352 if (VT.isFloatingPoint())
8353 return SDValue();
8354
8355 // Check for insert vector elements.
8356 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
8357 return SDValue();
8358
8359 // We can express a splat as store pair(s) for 2 or 4 elements.
8360 unsigned NumVecElts = VT.getVectorNumElements();
8361 if (NumVecElts != 4 && NumVecElts != 2)
8362 return SDValue();
8363 SDValue SplatVal = StVal.getOperand(1);
8364 unsigned RemainInsertElts = NumVecElts - 1;
8365
8366 // Check that this is a splat.
8367 while (--RemainInsertElts) {
8368 SDValue NextInsertElt = StVal.getOperand(0);
8369 if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
8370 return SDValue();
8371 if (NextInsertElt.getOperand(1) != SplatVal)
8372 return SDValue();
8373 StVal = NextInsertElt;
8374 }
8375 unsigned OrigAlignment = St->getAlignment();
8376 unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
8377 unsigned Alignment = std::min(OrigAlignment, EltOffset);
8378
8379 // Create scalar stores. This is at least as good as the code sequence for a
8380 // split unaligned store wich is a dup.s, ext.b, and two stores.
8381 // Most of the time the three stores should be replaced by store pair
8382 // instructions (stp).
8383 SDLoc DL(St);
8384 SDValue BasePtr = St->getBasePtr();
8385 SDValue NewST1 =
8386 DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
8387 St->isVolatile(), St->isNonTemporal(), St->getAlignment());
8388
8389 unsigned Offset = EltOffset;
8390 while (--NumVecElts) {
8391 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008392 DAG.getConstant(Offset, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008393 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
8394 St->getPointerInfo(), St->isVolatile(),
8395 St->isNonTemporal(), Alignment);
8396 Offset += EltOffset;
8397 }
8398 return NewST1;
8399}
8400
8401static SDValue performSTORECombine(SDNode *N,
8402 TargetLowering::DAGCombinerInfo &DCI,
8403 SelectionDAG &DAG,
8404 const AArch64Subtarget *Subtarget) {
8405 if (!DCI.isBeforeLegalize())
8406 return SDValue();
8407
8408 StoreSDNode *S = cast<StoreSDNode>(N);
8409 if (S->isVolatile())
8410 return SDValue();
8411
8412 // Cyclone has bad performance on unaligned 16B stores when crossing line and
Sanjay Patel08efcd92015-01-28 22:37:32 +00008413 // page boundaries. We want to split such stores.
Tim Northover3b0846e2014-05-24 12:50:23 +00008414 if (!Subtarget->isCyclone())
8415 return SDValue();
8416
8417 // Don't split at Oz.
8418 MachineFunction &MF = DAG.getMachineFunction();
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00008419 bool IsMinSize = MF.getFunction()->hasFnAttribute(Attribute::MinSize);
Tim Northover3b0846e2014-05-24 12:50:23 +00008420 if (IsMinSize)
8421 return SDValue();
8422
8423 SDValue StVal = S->getValue();
8424 EVT VT = StVal.getValueType();
8425
8426 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
8427 // those up regresses performance on micro-benchmarks and olden/bh.
8428 if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
8429 return SDValue();
8430
8431 // Split unaligned 16B stores. They are terrible for performance.
8432 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
8433 // extensions can use this to mark that it does not want splitting to happen
8434 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
8435 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
8436 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
8437 S->getAlignment() <= 2)
8438 return SDValue();
8439
8440 // If we get a splat of a scalar convert this vector store to a store of
8441 // scalars. They will be merged into store pairs thereby removing two
8442 // instructions.
8443 SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S);
8444 if (ReplacedSplat != SDValue())
8445 return ReplacedSplat;
8446
8447 SDLoc DL(S);
8448 unsigned NumElts = VT.getVectorNumElements() / 2;
8449 // Split VT into two.
8450 EVT HalfVT =
8451 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
8452 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008453 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008454 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008455 DAG.getConstant(NumElts, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008456 SDValue BasePtr = S->getBasePtr();
8457 SDValue NewST1 =
8458 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
8459 S->isVolatile(), S->isNonTemporal(), S->getAlignment());
8460 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008461 DAG.getConstant(8, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008462 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
8463 S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
8464 S->getAlignment());
8465}
8466
8467/// Target-specific DAG combine function for post-increment LD1 (lane) and
8468/// post-increment LD1R.
8469static SDValue performPostLD1Combine(SDNode *N,
8470 TargetLowering::DAGCombinerInfo &DCI,
8471 bool IsLaneOp) {
8472 if (DCI.isBeforeLegalizeOps())
8473 return SDValue();
8474
8475 SelectionDAG &DAG = DCI.DAG;
8476 EVT VT = N->getValueType(0);
8477
8478 unsigned LoadIdx = IsLaneOp ? 1 : 0;
8479 SDNode *LD = N->getOperand(LoadIdx).getNode();
8480 // If it is not LOAD, can not do such combine.
8481 if (LD->getOpcode() != ISD::LOAD)
8482 return SDValue();
8483
8484 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
8485 EVT MemVT = LoadSDN->getMemoryVT();
8486 // Check if memory operand is the same type as the vector element.
8487 if (MemVT != VT.getVectorElementType())
8488 return SDValue();
8489
8490 // Check if there are other uses. If so, do not combine as it will introduce
8491 // an extra load.
8492 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
8493 ++UI) {
8494 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
8495 continue;
8496 if (*UI != N)
8497 return SDValue();
8498 }
8499
8500 SDValue Addr = LD->getOperand(1);
8501 SDValue Vector = N->getOperand(0);
8502 // Search for a use of the address operand that is an increment.
8503 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
8504 Addr.getNode()->use_end(); UI != UE; ++UI) {
8505 SDNode *User = *UI;
8506 if (User->getOpcode() != ISD::ADD
8507 || UI.getUse().getResNo() != Addr.getResNo())
8508 continue;
8509
8510 // Check that the add is independent of the load. Otherwise, folding it
8511 // would create a cycle.
8512 if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
8513 continue;
8514 // Also check that add is not used in the vector operand. This would also
8515 // create a cycle.
8516 if (User->isPredecessorOf(Vector.getNode()))
8517 continue;
8518
8519 // If the increment is a constant, it must match the memory ref size.
8520 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8521 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8522 uint32_t IncVal = CInc->getZExtValue();
8523 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
8524 if (IncVal != NumBytes)
8525 continue;
8526 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
8527 }
8528
Ahmed Bougacha2448ef52015-04-17 21:02:30 +00008529 // Finally, check that the vector doesn't depend on the load.
8530 // Again, this would create a cycle.
8531 // The load depending on the vector is fine, as that's the case for the
8532 // LD1*post we'll eventually generate anyway.
8533 if (LoadSDN->isPredecessorOf(Vector.getNode()))
8534 continue;
8535
Tim Northover3b0846e2014-05-24 12:50:23 +00008536 SmallVector<SDValue, 8> Ops;
8537 Ops.push_back(LD->getOperand(0)); // Chain
8538 if (IsLaneOp) {
8539 Ops.push_back(Vector); // The vector to be inserted
8540 Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
8541 }
8542 Ops.push_back(Addr);
8543 Ops.push_back(Inc);
8544
8545 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
Craig Toppere1d12942014-08-27 05:25:25 +00008546 SDVTList SDTys = DAG.getVTList(Tys);
Tim Northover3b0846e2014-05-24 12:50:23 +00008547 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
8548 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
8549 MemVT,
8550 LoadSDN->getMemOperand());
8551
8552 // Update the uses.
Ahmed Bougacha4c2b0782015-02-19 23:13:10 +00008553 SmallVector<SDValue, 2> NewResults;
Tim Northover3b0846e2014-05-24 12:50:23 +00008554 NewResults.push_back(SDValue(LD, 0)); // The result of load
8555 NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
8556 DCI.CombineTo(LD, NewResults);
8557 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
8558 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
8559
8560 break;
8561 }
8562 return SDValue();
8563}
8564
8565/// Target-specific DAG combine function for NEON load/store intrinsics
8566/// to merge base address updates.
8567static SDValue performNEONPostLDSTCombine(SDNode *N,
8568 TargetLowering::DAGCombinerInfo &DCI,
8569 SelectionDAG &DAG) {
8570 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8571 return SDValue();
8572
8573 unsigned AddrOpIdx = N->getNumOperands() - 1;
8574 SDValue Addr = N->getOperand(AddrOpIdx);
8575
8576 // Search for a use of the address operand that is an increment.
8577 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
8578 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
8579 SDNode *User = *UI;
8580 if (User->getOpcode() != ISD::ADD ||
8581 UI.getUse().getResNo() != Addr.getResNo())
8582 continue;
8583
8584 // Check that the add is independent of the load/store. Otherwise, folding
8585 // it would create a cycle.
8586 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
8587 continue;
8588
8589 // Find the new opcode for the updating load/store.
8590 bool IsStore = false;
8591 bool IsLaneOp = false;
8592 bool IsDupOp = false;
8593 unsigned NewOpc = 0;
8594 unsigned NumVecs = 0;
8595 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8596 switch (IntNo) {
8597 default: llvm_unreachable("unexpected intrinsic for Neon base update");
8598 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
8599 NumVecs = 2; break;
8600 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
8601 NumVecs = 3; break;
8602 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
8603 NumVecs = 4; break;
8604 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
8605 NumVecs = 2; IsStore = true; break;
8606 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
8607 NumVecs = 3; IsStore = true; break;
8608 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
8609 NumVecs = 4; IsStore = true; break;
8610 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
8611 NumVecs = 2; break;
8612 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
8613 NumVecs = 3; break;
8614 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
8615 NumVecs = 4; break;
8616 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
8617 NumVecs = 2; IsStore = true; break;
8618 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
8619 NumVecs = 3; IsStore = true; break;
8620 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
8621 NumVecs = 4; IsStore = true; break;
8622 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
8623 NumVecs = 2; IsDupOp = true; break;
8624 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
8625 NumVecs = 3; IsDupOp = true; break;
8626 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
8627 NumVecs = 4; IsDupOp = true; break;
8628 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
8629 NumVecs = 2; IsLaneOp = true; break;
8630 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
8631 NumVecs = 3; IsLaneOp = true; break;
8632 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
8633 NumVecs = 4; IsLaneOp = true; break;
8634 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
8635 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
8636 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
8637 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
8638 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
8639 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
8640 }
8641
8642 EVT VecTy;
8643 if (IsStore)
8644 VecTy = N->getOperand(2).getValueType();
8645 else
8646 VecTy = N->getValueType(0);
8647
8648 // If the increment is a constant, it must match the memory ref size.
8649 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8650 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8651 uint32_t IncVal = CInc->getZExtValue();
8652 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
8653 if (IsLaneOp || IsDupOp)
8654 NumBytes /= VecTy.getVectorNumElements();
8655 if (IncVal != NumBytes)
8656 continue;
8657 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
8658 }
8659 SmallVector<SDValue, 8> Ops;
8660 Ops.push_back(N->getOperand(0)); // Incoming chain
8661 // Load lane and store have vector list as input.
8662 if (IsLaneOp || IsStore)
8663 for (unsigned i = 2; i < AddrOpIdx; ++i)
8664 Ops.push_back(N->getOperand(i));
8665 Ops.push_back(Addr); // Base register
8666 Ops.push_back(Inc);
8667
8668 // Return Types.
8669 EVT Tys[6];
8670 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
8671 unsigned n;
8672 for (n = 0; n < NumResultVecs; ++n)
8673 Tys[n] = VecTy;
8674 Tys[n++] = MVT::i64; // Type of write back register
8675 Tys[n] = MVT::Other; // Type of the chain
Craig Toppere1d12942014-08-27 05:25:25 +00008676 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
Tim Northover3b0846e2014-05-24 12:50:23 +00008677
8678 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
8679 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
8680 MemInt->getMemoryVT(),
8681 MemInt->getMemOperand());
8682
8683 // Update the uses.
8684 std::vector<SDValue> NewResults;
8685 for (unsigned i = 0; i < NumResultVecs; ++i) {
8686 NewResults.push_back(SDValue(UpdN.getNode(), i));
8687 }
8688 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
8689 DCI.CombineTo(N, NewResults);
8690 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
8691
8692 break;
8693 }
8694 return SDValue();
8695}
8696
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008697// Checks to see if the value is the prescribed width and returns information
8698// about its extension mode.
8699static
8700bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
8701 ExtType = ISD::NON_EXTLOAD;
8702 switch(V.getNode()->getOpcode()) {
8703 default:
8704 return false;
8705 case ISD::LOAD: {
8706 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
8707 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
8708 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
8709 ExtType = LoadNode->getExtensionType();
8710 return true;
8711 }
8712 return false;
8713 }
8714 case ISD::AssertSext: {
8715 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
8716 if ((TypeNode->getVT() == MVT::i8 && width == 8)
8717 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
8718 ExtType = ISD::SEXTLOAD;
8719 return true;
8720 }
8721 return false;
8722 }
8723 case ISD::AssertZext: {
8724 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
8725 if ((TypeNode->getVT() == MVT::i8 && width == 8)
8726 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
8727 ExtType = ISD::ZEXTLOAD;
8728 return true;
8729 }
8730 return false;
8731 }
8732 case ISD::Constant:
8733 case ISD::TargetConstant: {
Reid Kleckner39ad7c92014-08-29 22:14:26 +00008734 if (std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
Aaron Ballman8ca53882014-09-02 12:19:02 +00008735 1LL << (width - 1))
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008736 return true;
8737 return false;
8738 }
8739 }
8740
8741 return true;
8742}
8743
8744// This function does a whole lot of voodoo to determine if the tests are
8745// equivalent without and with a mask. Essentially what happens is that given a
8746// DAG resembling:
8747//
8748// +-------------+ +-------------+ +-------------+ +-------------+
8749// | Input | | AddConstant | | CompConstant| | CC |
8750// +-------------+ +-------------+ +-------------+ +-------------+
8751// | | | |
8752// V V | +----------+
8753// +-------------+ +----+ | |
8754// | ADD | |0xff| | |
8755// +-------------+ +----+ | |
8756// | | | |
8757// V V | |
8758// +-------------+ | |
8759// | AND | | |
8760// +-------------+ | |
8761// | | |
8762// +-----+ | |
8763// | | |
8764// V V V
8765// +-------------+
8766// | CMP |
8767// +-------------+
8768//
8769// The AND node may be safely removed for some combinations of inputs. In
8770// particular we need to take into account the extension type of the Input,
8771// the exact values of AddConstant, CompConstant, and CC, along with the nominal
8772// width of the input (this can work for any width inputs, the above graph is
8773// specific to 8 bits.
8774//
8775// The specific equations were worked out by generating output tables for each
8776// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
8777// problem was simplified by working with 4 bit inputs, which means we only
8778// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
8779// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
8780// patterns present in both extensions (0,7). For every distinct set of
8781// AddConstant and CompConstants bit patterns we can consider the masked and
8782// unmasked versions to be equivalent if the result of this function is true for
8783// all 16 distinct bit patterns of for the current extension type of Input (w0).
8784//
8785// sub w8, w0, w1
8786// and w10, w8, #0x0f
8787// cmp w8, w2
8788// cset w9, AArch64CC
8789// cmp w10, w2
8790// cset w11, AArch64CC
8791// cmp w9, w11
8792// cset w0, eq
8793// ret
8794//
8795// Since the above function shows when the outputs are equivalent it defines
8796// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
8797// would be expensive to run during compiles. The equations below were written
8798// in a test harness that confirmed they gave equivalent outputs to the above
8799// for all inputs function, so they can be used determine if the removal is
8800// legal instead.
8801//
8802// isEquivalentMaskless() is the code for testing if the AND can be removed
8803// factored out of the DAG recognition as the DAG can take several forms.
8804
8805static
8806bool isEquivalentMaskless(unsigned CC, unsigned width,
8807 ISD::LoadExtType ExtType, signed AddConstant,
8808 signed CompConstant) {
8809 // By being careful about our equations and only writing the in term
8810 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
8811 // make them generally applicable to all bit widths.
8812 signed MaxUInt = (1 << width);
8813
8814 // For the purposes of these comparisons sign extending the type is
8815 // equivalent to zero extending the add and displacing it by half the integer
8816 // width. Provided we are careful and make sure our equations are valid over
8817 // the whole range we can just adjust the input and avoid writing equations
8818 // for sign extended inputs.
8819 if (ExtType == ISD::SEXTLOAD)
8820 AddConstant -= (1 << (width-1));
8821
8822 switch(CC) {
8823 case AArch64CC::LE:
8824 case AArch64CC::GT: {
8825 if ((AddConstant == 0) ||
8826 (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
8827 (AddConstant >= 0 && CompConstant < 0) ||
8828 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
8829 return true;
8830 } break;
8831 case AArch64CC::LT:
8832 case AArch64CC::GE: {
8833 if ((AddConstant == 0) ||
8834 (AddConstant >= 0 && CompConstant <= 0) ||
8835 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
8836 return true;
8837 } break;
8838 case AArch64CC::HI:
8839 case AArch64CC::LS: {
8840 if ((AddConstant >= 0 && CompConstant < 0) ||
8841 (AddConstant <= 0 && CompConstant >= -1 &&
8842 CompConstant < AddConstant + MaxUInt))
8843 return true;
8844 } break;
8845 case AArch64CC::PL:
8846 case AArch64CC::MI: {
8847 if ((AddConstant == 0) ||
8848 (AddConstant > 0 && CompConstant <= 0) ||
8849 (AddConstant < 0 && CompConstant <= AddConstant))
8850 return true;
8851 } break;
8852 case AArch64CC::LO:
8853 case AArch64CC::HS: {
8854 if ((AddConstant >= 0 && CompConstant <= 0) ||
8855 (AddConstant <= 0 && CompConstant >= 0 &&
8856 CompConstant <= AddConstant + MaxUInt))
8857 return true;
8858 } break;
8859 case AArch64CC::EQ:
8860 case AArch64CC::NE: {
8861 if ((AddConstant > 0 && CompConstant < 0) ||
8862 (AddConstant < 0 && CompConstant >= 0 &&
8863 CompConstant < AddConstant + MaxUInt) ||
8864 (AddConstant >= 0 && CompConstant >= 0 &&
8865 CompConstant >= AddConstant) ||
8866 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
8867
8868 return true;
8869 } break;
8870 case AArch64CC::VS:
8871 case AArch64CC::VC:
8872 case AArch64CC::AL:
8873 case AArch64CC::NV:
8874 return true;
8875 case AArch64CC::Invalid:
8876 break;
8877 }
8878
8879 return false;
8880}
8881
8882static
8883SDValue performCONDCombine(SDNode *N,
8884 TargetLowering::DAGCombinerInfo &DCI,
8885 SelectionDAG &DAG, unsigned CCIndex,
8886 unsigned CmpIndex) {
8887 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
8888 SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
8889 unsigned CondOpcode = SubsNode->getOpcode();
8890
8891 if (CondOpcode != AArch64ISD::SUBS)
8892 return SDValue();
8893
8894 // There is a SUBS feeding this condition. Is it fed by a mask we can
8895 // use?
8896
8897 SDNode *AndNode = SubsNode->getOperand(0).getNode();
8898 unsigned MaskBits = 0;
8899
8900 if (AndNode->getOpcode() != ISD::AND)
8901 return SDValue();
8902
8903 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
8904 uint32_t CNV = CN->getZExtValue();
8905 if (CNV == 255)
8906 MaskBits = 8;
8907 else if (CNV == 65535)
8908 MaskBits = 16;
8909 }
8910
8911 if (!MaskBits)
8912 return SDValue();
8913
8914 SDValue AddValue = AndNode->getOperand(0);
8915
8916 if (AddValue.getOpcode() != ISD::ADD)
8917 return SDValue();
8918
8919 // The basic dag structure is correct, grab the inputs and validate them.
8920
8921 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
8922 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
8923 SDValue SubsInputValue = SubsNode->getOperand(1);
8924
8925 // The mask is present and the provenance of all the values is a smaller type,
8926 // lets see if the mask is superfluous.
8927
8928 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
8929 !isa<ConstantSDNode>(SubsInputValue.getNode()))
8930 return SDValue();
8931
8932 ISD::LoadExtType ExtType;
8933
8934 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
8935 !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
8936 !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
8937 return SDValue();
8938
8939 if(!isEquivalentMaskless(CC, MaskBits, ExtType,
8940 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
8941 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
8942 return SDValue();
8943
8944 // The AND is not necessary, remove it.
8945
8946 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
8947 SubsNode->getValueType(1));
8948 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
8949
8950 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
8951 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
8952
8953 return SDValue(N, 0);
8954}
8955
Tim Northover3b0846e2014-05-24 12:50:23 +00008956// Optimize compare with zero and branch.
8957static SDValue performBRCONDCombine(SDNode *N,
8958 TargetLowering::DAGCombinerInfo &DCI,
8959 SelectionDAG &DAG) {
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008960 SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3);
8961 if (NV.getNode())
8962 N = NV.getNode();
Tim Northover3b0846e2014-05-24 12:50:23 +00008963 SDValue Chain = N->getOperand(0);
8964 SDValue Dest = N->getOperand(1);
8965 SDValue CCVal = N->getOperand(2);
8966 SDValue Cmp = N->getOperand(3);
8967
8968 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
8969 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
8970 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
8971 return SDValue();
8972
8973 unsigned CmpOpc = Cmp.getOpcode();
8974 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
8975 return SDValue();
8976
8977 // Only attempt folding if there is only one use of the flag and no use of the
8978 // value.
8979 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
8980 return SDValue();
8981
8982 SDValue LHS = Cmp.getOperand(0);
8983 SDValue RHS = Cmp.getOperand(1);
8984
8985 assert(LHS.getValueType() == RHS.getValueType() &&
8986 "Expected the value type to be the same for both operands!");
8987 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
8988 return SDValue();
8989
8990 if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue())
8991 std::swap(LHS, RHS);
8992
8993 if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue())
8994 return SDValue();
8995
8996 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
8997 LHS.getOpcode() == ISD::SRL)
8998 return SDValue();
8999
9000 // Fold the compare into the branch instruction.
9001 SDValue BR;
9002 if (CC == AArch64CC::EQ)
9003 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
9004 else
9005 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
9006
9007 // Do not add new nodes to DAG combiner worklist.
9008 DCI.CombineTo(N, BR, false);
9009
9010 return SDValue();
9011}
9012
9013// vselect (v1i1 setcc) ->
9014// vselect (v1iXX setcc) (XX is the size of the compared operand type)
9015// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
9016// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
9017// such VSELECT.
9018static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
9019 SDValue N0 = N->getOperand(0);
9020 EVT CCVT = N0.getValueType();
9021
9022 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
9023 CCVT.getVectorElementType() != MVT::i1)
9024 return SDValue();
9025
9026 EVT ResVT = N->getValueType(0);
9027 EVT CmpVT = N0.getOperand(0).getValueType();
9028 // Only combine when the result type is of the same size as the compared
9029 // operands.
9030 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
9031 return SDValue();
9032
9033 SDValue IfTrue = N->getOperand(1);
9034 SDValue IfFalse = N->getOperand(2);
9035 SDValue SetCC =
9036 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
9037 N0.getOperand(0), N0.getOperand(1),
9038 cast<CondCodeSDNode>(N0.getOperand(2))->get());
9039 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
9040 IfTrue, IfFalse);
9041}
9042
9043/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
9044/// the compare-mask instructions rather than going via NZCV, even if LHS and
9045/// RHS are really scalar. This replaces any scalar setcc in the above pattern
9046/// with a vector one followed by a DUP shuffle on the result.
Ahmed Bougachac004c602015-04-27 21:43:12 +00009047static SDValue performSelectCombine(SDNode *N,
9048 TargetLowering::DAGCombinerInfo &DCI) {
9049 SelectionDAG &DAG = DCI.DAG;
Tim Northover3b0846e2014-05-24 12:50:23 +00009050 SDValue N0 = N->getOperand(0);
9051 EVT ResVT = N->getValueType(0);
Tim Northover3c0915e2014-08-29 15:34:58 +00009052
Ahmed Bougachac004c602015-04-27 21:43:12 +00009053 if (N0.getOpcode() != ISD::SETCC)
Tim Northover3c0915e2014-08-29 15:34:58 +00009054 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00009055
Ahmed Bougachac004c602015-04-27 21:43:12 +00009056 // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
9057 // scalar SetCCResultType. We also don't expect vectors, because we assume
9058 // that selects fed by vector SETCCs are canonicalized to VSELECT.
9059 assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
9060 "Scalar-SETCC feeding SELECT has unexpected result type!");
9061
Tim Northoverc1c05ae2014-08-29 13:05:18 +00009062 // If NumMaskElts == 0, the comparison is larger than select result. The
9063 // largest real NEON comparison is 64-bits per lane, which means the result is
9064 // at most 32-bits and an illegal vector. Just bail out for now.
Tim Northover3c0915e2014-08-29 15:34:58 +00009065 EVT SrcVT = N0.getOperand(0).getValueType();
Ahmed Bougachad0ce0582014-12-01 20:59:00 +00009066
9067 // Don't try to do this optimization when the setcc itself has i1 operands.
9068 // There are no legal vectors of i1, so this would be pointless.
9069 if (SrcVT == MVT::i1)
9070 return SDValue();
9071
Tim Northover3c0915e2014-08-29 15:34:58 +00009072 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
Tim Northoverc1c05ae2014-08-29 13:05:18 +00009073 if (!ResVT.isVector() || NumMaskElts == 0)
Tim Northover3b0846e2014-05-24 12:50:23 +00009074 return SDValue();
9075
Tim Northoverc1c05ae2014-08-29 13:05:18 +00009076 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00009077 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
9078
Ahmed Bougacha89bba612015-04-27 21:01:20 +00009079 // Also bail out if the vector CCVT isn't the same size as ResVT.
9080 // This can happen if the SETCC operand size doesn't divide the ResVT size
9081 // (e.g., f64 vs v3f32).
9082 if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
9083 return SDValue();
9084
Ahmed Bougachac004c602015-04-27 21:43:12 +00009085 // Make sure we didn't create illegal types, if we're not supposed to.
9086 assert(DCI.isBeforeLegalize() ||
9087 DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
9088
Tim Northover3b0846e2014-05-24 12:50:23 +00009089 // First perform a vector comparison, where lane 0 is the one we're interested
9090 // in.
Tim Northoverc1c05ae2014-08-29 13:05:18 +00009091 SDLoc DL(N0);
Tim Northover3b0846e2014-05-24 12:50:23 +00009092 SDValue LHS =
9093 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
9094 SDValue RHS =
9095 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
9096 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
9097
9098 // Now duplicate the comparison mask we want across all other lanes.
9099 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
9100 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
Tim Northoverc1c05ae2014-08-29 13:05:18 +00009101 Mask = DAG.getNode(ISD::BITCAST, DL,
9102 ResVT.changeVectorElementTypeToInteger(), Mask);
Tim Northover3b0846e2014-05-24 12:50:23 +00009103
9104 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
9105}
9106
Artyom Skrobova70dfe12015-05-14 12:59:46 +00009107/// performSelectCCCombine - Target-specific DAG combining for ISD::SELECT_CC
9108/// to match FMIN/FMAX patterns.
9109static SDValue performSelectCCCombine(SDNode *N, SelectionDAG &DAG) {
9110 // Try to use FMIN/FMAX instructions for FP selects like "x < y ? x : y".
9111 // Unless the NoNaNsFPMath option is set, be careful about NaNs:
9112 // vmax/vmin return NaN if either operand is a NaN;
9113 // only do the transformation when it matches that behavior.
9114
9115 SDValue CondLHS = N->getOperand(0);
9116 SDValue CondRHS = N->getOperand(1);
9117 SDValue LHS = N->getOperand(2);
9118 SDValue RHS = N->getOperand(3);
9119 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
9120
9121 unsigned Opcode;
9122 bool IsReversed;
9123 if (selectCCOpsAreFMaxCompatible(CondLHS, LHS) &&
9124 selectCCOpsAreFMaxCompatible(CondRHS, RHS)) {
9125 IsReversed = false; // x CC y ? x : y
9126 } else if (selectCCOpsAreFMaxCompatible(CondRHS, LHS) &&
9127 selectCCOpsAreFMaxCompatible(CondLHS, RHS)) {
9128 IsReversed = true ; // x CC y ? y : x
9129 } else {
9130 return SDValue();
9131 }
9132
9133 bool IsUnordered = false, IsOrEqual;
9134 switch (CC) {
9135 default:
9136 return SDValue();
9137 case ISD::SETULT:
9138 case ISD::SETULE:
9139 IsUnordered = true;
9140 case ISD::SETOLT:
9141 case ISD::SETOLE:
9142 case ISD::SETLT:
9143 case ISD::SETLE:
9144 IsOrEqual = (CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE);
9145 Opcode = IsReversed ? AArch64ISD::FMAX : AArch64ISD::FMIN;
9146 break;
9147
9148 case ISD::SETUGT:
9149 case ISD::SETUGE:
9150 IsUnordered = true;
9151 case ISD::SETOGT:
9152 case ISD::SETOGE:
9153 case ISD::SETGT:
9154 case ISD::SETGE:
9155 IsOrEqual = (CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE);
9156 Opcode = IsReversed ? AArch64ISD::FMIN : AArch64ISD::FMAX;
9157 break;
9158 }
9159
9160 // If LHS is NaN, an ordered comparison will be false and the result will be
9161 // the RHS, but FMIN(NaN, RHS) = FMAX(NaN, RHS) = NaN. Avoid this by checking
9162 // that LHS != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
9163 if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
9164 return SDValue();
9165
9166 // For xxx-or-equal comparisons, "+0 <= -0" and "-0 >= +0" will both be true,
9167 // but FMIN will return -0, and FMAX will return +0. So FMIN/FMAX can only be
9168 // used for unsafe math or if one of the operands is known to be nonzero.
9169 if (IsOrEqual && !DAG.getTarget().Options.UnsafeFPMath &&
9170 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9171 return SDValue();
9172
9173 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), LHS, RHS);
9174}
9175
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00009176/// Get rid of unnecessary NVCASTs (that don't change the type).
9177static SDValue performNVCASTCombine(SDNode *N) {
9178 if (N->getValueType(0) == N->getOperand(0).getValueType())
9179 return N->getOperand(0);
9180
9181 return SDValue();
9182}
9183
Tim Northover3b0846e2014-05-24 12:50:23 +00009184SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
9185 DAGCombinerInfo &DCI) const {
9186 SelectionDAG &DAG = DCI.DAG;
9187 switch (N->getOpcode()) {
9188 default:
9189 break;
9190 case ISD::ADD:
9191 case ISD::SUB:
9192 return performAddSubLongCombine(N, DCI, DAG);
9193 case ISD::XOR:
9194 return performXorCombine(N, DAG, DCI, Subtarget);
9195 case ISD::MUL:
9196 return performMulCombine(N, DAG, DCI, Subtarget);
9197 case ISD::SINT_TO_FP:
9198 case ISD::UINT_TO_FP:
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00009199 return performIntToFpCombine(N, DAG, Subtarget);
Tim Northover3b0846e2014-05-24 12:50:23 +00009200 case ISD::OR:
9201 return performORCombine(N, DCI, Subtarget);
9202 case ISD::INTRINSIC_WO_CHAIN:
9203 return performIntrinsicCombine(N, DCI, Subtarget);
9204 case ISD::ANY_EXTEND:
9205 case ISD::ZERO_EXTEND:
9206 case ISD::SIGN_EXTEND:
9207 return performExtendCombine(N, DCI, DAG);
9208 case ISD::BITCAST:
9209 return performBitcastCombine(N, DCI, DAG);
9210 case ISD::CONCAT_VECTORS:
9211 return performConcatVectorsCombine(N, DCI, DAG);
9212 case ISD::SELECT:
Ahmed Bougachac004c602015-04-27 21:43:12 +00009213 return performSelectCombine(N, DCI);
Tim Northover3b0846e2014-05-24 12:50:23 +00009214 case ISD::VSELECT:
9215 return performVSelectCombine(N, DCI.DAG);
Artyom Skrobova70dfe12015-05-14 12:59:46 +00009216 case ISD::SELECT_CC:
9217 return performSelectCCCombine(N, DCI.DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00009218 case ISD::STORE:
9219 return performSTORECombine(N, DCI, DAG, Subtarget);
9220 case AArch64ISD::BRCOND:
9221 return performBRCONDCombine(N, DCI, DAG);
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009222 case AArch64ISD::CSEL:
9223 return performCONDCombine(N, DCI, DAG, 2, 3);
Tim Northover3b0846e2014-05-24 12:50:23 +00009224 case AArch64ISD::DUP:
9225 return performPostLD1Combine(N, DCI, false);
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00009226 case AArch64ISD::NVCAST:
9227 return performNVCASTCombine(N);
Tim Northover3b0846e2014-05-24 12:50:23 +00009228 case ISD::INSERT_VECTOR_ELT:
9229 return performPostLD1Combine(N, DCI, true);
9230 case ISD::INTRINSIC_VOID:
9231 case ISD::INTRINSIC_W_CHAIN:
9232 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9233 case Intrinsic::aarch64_neon_ld2:
9234 case Intrinsic::aarch64_neon_ld3:
9235 case Intrinsic::aarch64_neon_ld4:
9236 case Intrinsic::aarch64_neon_ld1x2:
9237 case Intrinsic::aarch64_neon_ld1x3:
9238 case Intrinsic::aarch64_neon_ld1x4:
9239 case Intrinsic::aarch64_neon_ld2lane:
9240 case Intrinsic::aarch64_neon_ld3lane:
9241 case Intrinsic::aarch64_neon_ld4lane:
9242 case Intrinsic::aarch64_neon_ld2r:
9243 case Intrinsic::aarch64_neon_ld3r:
9244 case Intrinsic::aarch64_neon_ld4r:
9245 case Intrinsic::aarch64_neon_st2:
9246 case Intrinsic::aarch64_neon_st3:
9247 case Intrinsic::aarch64_neon_st4:
9248 case Intrinsic::aarch64_neon_st1x2:
9249 case Intrinsic::aarch64_neon_st1x3:
9250 case Intrinsic::aarch64_neon_st1x4:
9251 case Intrinsic::aarch64_neon_st2lane:
9252 case Intrinsic::aarch64_neon_st3lane:
9253 case Intrinsic::aarch64_neon_st4lane:
9254 return performNEONPostLDSTCombine(N, DCI, DAG);
9255 default:
9256 break;
9257 }
9258 }
9259 return SDValue();
9260}
9261
9262// Check if the return value is used as only a return value, as otherwise
9263// we can't perform a tail-call. In particular, we need to check for
9264// target ISD nodes that are returns and any other "odd" constructs
9265// that the generic analysis code won't necessarily catch.
9266bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
9267 SDValue &Chain) const {
9268 if (N->getNumValues() != 1)
9269 return false;
9270 if (!N->hasNUsesOfValue(1, 0))
9271 return false;
9272
9273 SDValue TCChain = Chain;
9274 SDNode *Copy = *N->use_begin();
9275 if (Copy->getOpcode() == ISD::CopyToReg) {
9276 // If the copy has a glue operand, we conservatively assume it isn't safe to
9277 // perform a tail call.
9278 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
9279 MVT::Glue)
9280 return false;
9281 TCChain = Copy->getOperand(0);
9282 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
9283 return false;
9284
9285 bool HasRet = false;
9286 for (SDNode *Node : Copy->uses()) {
9287 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
9288 return false;
9289 HasRet = true;
9290 }
9291
9292 if (!HasRet)
9293 return false;
9294
9295 Chain = TCChain;
9296 return true;
9297}
9298
9299// Return whether the an instruction can potentially be optimized to a tail
9300// call. This will cause the optimizers to attempt to move, or duplicate,
9301// return instructions to help enable tail call optimizations for this
9302// instruction.
9303bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
9304 if (!CI->isTailCall())
9305 return false;
9306
9307 return true;
9308}
9309
9310bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
9311 SDValue &Offset,
9312 ISD::MemIndexedMode &AM,
9313 bool &IsInc,
9314 SelectionDAG &DAG) const {
9315 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
9316 return false;
9317
9318 Base = Op->getOperand(0);
9319 // All of the indexed addressing mode instructions take a signed
9320 // 9 bit immediate offset.
9321 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
9322 int64_t RHSC = (int64_t)RHS->getZExtValue();
9323 if (RHSC >= 256 || RHSC <= -256)
9324 return false;
9325 IsInc = (Op->getOpcode() == ISD::ADD);
9326 Offset = Op->getOperand(1);
9327 return true;
9328 }
9329 return false;
9330}
9331
9332bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
9333 SDValue &Offset,
9334 ISD::MemIndexedMode &AM,
9335 SelectionDAG &DAG) const {
9336 EVT VT;
9337 SDValue Ptr;
9338 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9339 VT = LD->getMemoryVT();
9340 Ptr = LD->getBasePtr();
9341 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9342 VT = ST->getMemoryVT();
9343 Ptr = ST->getBasePtr();
9344 } else
9345 return false;
9346
9347 bool IsInc;
9348 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
9349 return false;
9350 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
9351 return true;
9352}
9353
9354bool AArch64TargetLowering::getPostIndexedAddressParts(
9355 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
9356 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
9357 EVT VT;
9358 SDValue Ptr;
9359 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9360 VT = LD->getMemoryVT();
9361 Ptr = LD->getBasePtr();
9362 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9363 VT = ST->getMemoryVT();
9364 Ptr = ST->getBasePtr();
9365 } else
9366 return false;
9367
9368 bool IsInc;
9369 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
9370 return false;
9371 // Post-indexing updates the base, so it's not a valid transform
9372 // if that's not the same as the load's pointer.
9373 if (Ptr != Base)
9374 return false;
9375 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
9376 return true;
9377}
9378
Tim Northoverf8bfe212014-07-18 13:07:05 +00009379static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
9380 SelectionDAG &DAG) {
Tim Northoverf8bfe212014-07-18 13:07:05 +00009381 SDLoc DL(N);
9382 SDValue Op = N->getOperand(0);
Ahmed Bougacha87946322014-12-01 20:52:32 +00009383
9384 if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
9385 return;
9386
Tim Northoverf8bfe212014-07-18 13:07:05 +00009387 Op = SDValue(
9388 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
9389 DAG.getUNDEF(MVT::i32), Op,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00009390 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
Tim Northoverf8bfe212014-07-18 13:07:05 +00009391 0);
9392 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
9393 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
9394}
9395
Tim Northover3b0846e2014-05-24 12:50:23 +00009396void AArch64TargetLowering::ReplaceNodeResults(
9397 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
9398 switch (N->getOpcode()) {
9399 default:
9400 llvm_unreachable("Don't know how to custom expand this");
Tim Northoverf8bfe212014-07-18 13:07:05 +00009401 case ISD::BITCAST:
9402 ReplaceBITCASTResults(N, Results, DAG);
9403 return;
Tim Northover3b0846e2014-05-24 12:50:23 +00009404 case ISD::FP_TO_UINT:
9405 case ISD::FP_TO_SINT:
9406 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
9407 // Let normal code take care of it by not adding anything to Results.
9408 return;
9409 }
9410}
9411
Akira Hatanakae5b6e0d2014-07-25 19:31:34 +00009412bool AArch64TargetLowering::useLoadStackGuardNode() const {
9413 return true;
9414}
9415
Hao Liu44e5d7a2014-11-21 06:39:58 +00009416bool AArch64TargetLowering::combineRepeatedFPDivisors(unsigned NumUsers) const {
9417 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
9418 // reciprocal if there are three or more FDIVs.
9419 return NumUsers > 2;
9420}
9421
Chandler Carruth9d010ff2014-07-03 00:23:43 +00009422TargetLoweringBase::LegalizeTypeAction
9423AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
9424 MVT SVT = VT.getSimpleVT();
9425 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
9426 // v4i16, v2i32 instead of to promote.
9427 if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
9428 || SVT == MVT::v1f32)
9429 return TypeWidenVector;
9430
9431 return TargetLoweringBase::getPreferredVectorAction(VT);
9432}
9433
Robin Morisseted3d48f2014-09-03 21:29:59 +00009434// Loads and stores less than 128-bits are already atomic; ones above that
9435// are doomed anyway, so defer to the default libcall and blame the OS when
9436// things go wrong.
9437bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
9438 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
9439 return Size == 128;
9440}
9441
9442// Loads and stores less than 128-bits are already atomic; ones above that
9443// are doomed anyway, so defer to the default libcall and blame the OS when
9444// things go wrong.
9445bool AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
9446 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
9447 return Size == 128;
9448}
9449
9450// For the real atomic operations, we have ldxr/stxr up to 128 bits,
JF Bastienf14889e2015-03-04 15:47:57 +00009451TargetLoweringBase::AtomicRMWExpansionKind
9452AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
Robin Morisseted3d48f2014-09-03 21:29:59 +00009453 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
JF Bastienf14889e2015-03-04 15:47:57 +00009454 return Size <= 128 ? AtomicRMWExpansionKind::LLSC
9455 : AtomicRMWExpansionKind::None;
Robin Morisseted3d48f2014-09-03 21:29:59 +00009456}
9457
Robin Morisset25c8e312014-09-17 00:06:58 +00009458bool AArch64TargetLowering::hasLoadLinkedStoreConditional() const {
9459 return true;
9460}
9461
Tim Northover3b0846e2014-05-24 12:50:23 +00009462Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
9463 AtomicOrdering Ord) const {
9464 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9465 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
Robin Morissetb155f522014-08-18 16:48:58 +00009466 bool IsAcquire = isAtLeastAcquire(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00009467
9468 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
9469 // intrinsic must return {i64, i64} and we have to recombine them into a
9470 // single i128 here.
9471 if (ValTy->getPrimitiveSizeInBits() == 128) {
9472 Intrinsic::ID Int =
9473 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
9474 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
9475
9476 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
9477 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
9478
9479 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
9480 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
9481 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
9482 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
9483 return Builder.CreateOr(
9484 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
9485 }
9486
9487 Type *Tys[] = { Addr->getType() };
9488 Intrinsic::ID Int =
9489 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
9490 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
9491
9492 return Builder.CreateTruncOrBitCast(
9493 Builder.CreateCall(Ldxr, Addr),
9494 cast<PointerType>(Addr->getType())->getElementType());
9495}
9496
9497Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
9498 Value *Val, Value *Addr,
9499 AtomicOrdering Ord) const {
9500 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Robin Morissetb155f522014-08-18 16:48:58 +00009501 bool IsRelease = isAtLeastRelease(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00009502
9503 // Since the intrinsics must have legal type, the i128 intrinsics take two
9504 // parameters: "i64, i64". We must marshal Val into the appropriate form
9505 // before the call.
9506 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
9507 Intrinsic::ID Int =
9508 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
9509 Function *Stxr = Intrinsic::getDeclaration(M, Int);
9510 Type *Int64Ty = Type::getInt64Ty(M->getContext());
9511
9512 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
9513 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
9514 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
David Blaikieff6409d2015-05-18 22:13:54 +00009515 return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
Tim Northover3b0846e2014-05-24 12:50:23 +00009516 }
9517
9518 Intrinsic::ID Int =
9519 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
9520 Type *Tys[] = { Addr->getType() };
9521 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
9522
David Blaikieff6409d2015-05-18 22:13:54 +00009523 return Builder.CreateCall(Stxr,
9524 {Builder.CreateZExtOrBitCast(
9525 Val, Stxr->getFunctionType()->getParamType(0)),
9526 Addr});
Tim Northover3b0846e2014-05-24 12:50:23 +00009527}
Tim Northover3c55cca2014-11-27 21:02:42 +00009528
9529bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
9530 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
9531 return Ty->isArrayTy();
9532}
Matthias Braunaf7d7702015-07-16 20:02:37 +00009533
9534bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
9535 EVT) const {
9536 return false;
9537}