blob: 644aa3d11bd0d042608c824dc4dc7b86460f34ba [file] [log] [blame]
Tim Northover3b0846e2014-05-24 12:50:23 +00001//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AArch64TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AArch64ISelLowering.h"
Tim Northover3c55cca2014-11-27 21:02:42 +000015#include "AArch64CallingConvention.h"
Benjamin Kramer1f8930e2014-07-25 11:42:14 +000016#include "AArch64MachineFunctionInfo.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000017#include "AArch64PerfectShuffle.h"
18#include "AArch64Subtarget.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000019#include "AArch64TargetMachine.h"
20#include "AArch64TargetObjectFile.h"
21#include "MCTargetDesc/AArch64AddressingModes.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/IR/Function.h"
David Blaikie457343d2015-05-21 21:12:43 +000028#include "llvm/IR/GetElementPtrTypeIterator.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000029#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/Type.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetOptions.h"
36using namespace llvm;
37
38#define DEBUG_TYPE "aarch64-lower"
39
40STATISTIC(NumTailCalls, "Number of tail calls");
41STATISTIC(NumShiftInserts, "Number of vector shift inserts");
42
Tim Northover3b0846e2014-05-24 12:50:23 +000043// Place holder until extr generation is tested fully.
44static cl::opt<bool>
45EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
46 cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
47 cl::init(true));
48
49static cl::opt<bool>
50EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
Kristof Beylsaea84612015-03-04 09:12:08 +000051 cl::desc("Allow AArch64 SLI/SRI formation"),
52 cl::init(false));
53
54// FIXME: The necessary dtprel relocations don't seem to be supported
55// well in the GNU bfd and gold linkers at the moment. Therefore, by
56// default, for now, fall back to GeneralDynamic code generation.
57cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
58 "aarch64-elf-ldtls-generation", cl::Hidden,
59 cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
60 cl::init(false));
Tim Northover3b0846e2014-05-24 12:50:23 +000061
Matthias Braunaf7d7702015-07-16 20:02:37 +000062/// Value type used for condition codes.
63static const MVT MVT_CC = MVT::i32;
64
Eric Christopher905f12d2015-01-29 00:19:42 +000065AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
66 const AArch64Subtarget &STI)
67 : TargetLowering(TM), Subtarget(&STI) {
Tim Northover3b0846e2014-05-24 12:50:23 +000068
69 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
70 // we have to make something up. Arbitrarily, choose ZeroOrOne.
71 setBooleanContents(ZeroOrOneBooleanContent);
72 // When comparing vectors the result sets the different elements in the
73 // vector to all-one or all-zero.
74 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
75
76 // Set up the register classes.
77 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
78 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
79
80 if (Subtarget->hasFPARMv8()) {
81 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
82 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
83 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
84 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
85 }
86
87 if (Subtarget->hasNEON()) {
88 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
89 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
90 // Someone set us up the NEON.
91 addDRTypeForNEON(MVT::v2f32);
92 addDRTypeForNEON(MVT::v8i8);
93 addDRTypeForNEON(MVT::v4i16);
94 addDRTypeForNEON(MVT::v2i32);
95 addDRTypeForNEON(MVT::v1i64);
96 addDRTypeForNEON(MVT::v1f64);
Oliver Stannard89d15422014-08-27 16:16:04 +000097 addDRTypeForNEON(MVT::v4f16);
Tim Northover3b0846e2014-05-24 12:50:23 +000098
99 addQRTypeForNEON(MVT::v4f32);
100 addQRTypeForNEON(MVT::v2f64);
101 addQRTypeForNEON(MVT::v16i8);
102 addQRTypeForNEON(MVT::v8i16);
103 addQRTypeForNEON(MVT::v4i32);
104 addQRTypeForNEON(MVT::v2i64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000105 addQRTypeForNEON(MVT::v8f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000106 }
107
108 // Compute derived properties from the register classes
Eric Christopher23a3a7c2015-02-26 00:00:24 +0000109 computeRegisterProperties(Subtarget->getRegisterInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +0000110
111 // Provide all sorts of operation actions
112 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
113 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
114 setOperationAction(ISD::SETCC, MVT::i32, Custom);
115 setOperationAction(ISD::SETCC, MVT::i64, Custom);
116 setOperationAction(ISD::SETCC, MVT::f32, Custom);
117 setOperationAction(ISD::SETCC, MVT::f64, Custom);
118 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
119 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
120 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
121 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
122 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
123 setOperationAction(ISD::SELECT, MVT::i32, Custom);
124 setOperationAction(ISD::SELECT, MVT::i64, Custom);
125 setOperationAction(ISD::SELECT, MVT::f32, Custom);
126 setOperationAction(ISD::SELECT, MVT::f64, Custom);
127 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
128 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
129 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
130 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
131 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
132 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
133
134 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
135 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
136 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
137
138 setOperationAction(ISD::FREM, MVT::f32, Expand);
139 setOperationAction(ISD::FREM, MVT::f64, Expand);
140 setOperationAction(ISD::FREM, MVT::f80, Expand);
141
142 // Custom lowering hooks are needed for XOR
143 // to fold it into CSINC/CSINV.
144 setOperationAction(ISD::XOR, MVT::i32, Custom);
145 setOperationAction(ISD::XOR, MVT::i64, Custom);
146
147 // Virtually no operation on f128 is legal, but LLVM can't expand them when
148 // there's a valid register class, so we need custom operations in most cases.
149 setOperationAction(ISD::FABS, MVT::f128, Expand);
150 setOperationAction(ISD::FADD, MVT::f128, Custom);
151 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
152 setOperationAction(ISD::FCOS, MVT::f128, Expand);
153 setOperationAction(ISD::FDIV, MVT::f128, Custom);
154 setOperationAction(ISD::FMA, MVT::f128, Expand);
155 setOperationAction(ISD::FMUL, MVT::f128, Custom);
156 setOperationAction(ISD::FNEG, MVT::f128, Expand);
157 setOperationAction(ISD::FPOW, MVT::f128, Expand);
158 setOperationAction(ISD::FREM, MVT::f128, Expand);
159 setOperationAction(ISD::FRINT, MVT::f128, Expand);
160 setOperationAction(ISD::FSIN, MVT::f128, Expand);
161 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
162 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
163 setOperationAction(ISD::FSUB, MVT::f128, Custom);
164 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
165 setOperationAction(ISD::SETCC, MVT::f128, Custom);
166 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
167 setOperationAction(ISD::SELECT, MVT::f128, Custom);
168 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
169 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
170
171 // Lowering for many of the conversions is actually specified by the non-f128
172 // type. The LowerXXX function will be trivial when f128 isn't involved.
173 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
174 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
175 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
176 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
177 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
178 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
179 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
180 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
181 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
182 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
183 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
184 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
185 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
186 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
187
188 // Variable arguments.
189 setOperationAction(ISD::VASTART, MVT::Other, Custom);
190 setOperationAction(ISD::VAARG, MVT::Other, Custom);
191 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
192 setOperationAction(ISD::VAEND, MVT::Other, Expand);
193
194 // Variable-sized objects.
195 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
196 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
197 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
198
Tim Northover3b0846e2014-05-24 12:50:23 +0000199 // Constant pool entries
200 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
201
202 // BlockAddress
203 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
204
205 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
206 setOperationAction(ISD::ADDC, MVT::i32, Custom);
207 setOperationAction(ISD::ADDE, MVT::i32, Custom);
208 setOperationAction(ISD::SUBC, MVT::i32, Custom);
209 setOperationAction(ISD::SUBE, MVT::i32, Custom);
210 setOperationAction(ISD::ADDC, MVT::i64, Custom);
211 setOperationAction(ISD::ADDE, MVT::i64, Custom);
212 setOperationAction(ISD::SUBC, MVT::i64, Custom);
213 setOperationAction(ISD::SUBE, MVT::i64, Custom);
214
215 // AArch64 lacks both left-rotate and popcount instructions.
216 setOperationAction(ISD::ROTL, MVT::i32, Expand);
217 setOperationAction(ISD::ROTL, MVT::i64, Expand);
Charlie Turner458e79b2015-10-27 10:25:20 +0000218 for (MVT VT : MVT::vector_valuetypes()) {
219 setOperationAction(ISD::ROTL, VT, Expand);
220 setOperationAction(ISD::ROTR, VT, Expand);
221 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000222
223 // AArch64 doesn't have {U|S}MUL_LOHI.
224 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
225 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
226
227
228 // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
229 // counterparts, which AArch64 supports directly.
230 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
231 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
232 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
233 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
234
235 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
236 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
237
238 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
239 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
Chad Rosierf3491492015-12-04 21:38:44 +0000240 for (MVT VT : MVT::vector_valuetypes()) {
241 setOperationAction(ISD::SDIVREM, VT, Expand);
242 setOperationAction(ISD::UDIVREM, VT, Expand);
243 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000244 setOperationAction(ISD::SREM, MVT::i32, Expand);
245 setOperationAction(ISD::SREM, MVT::i64, Expand);
246 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
247 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
248 setOperationAction(ISD::UREM, MVT::i32, Expand);
249 setOperationAction(ISD::UREM, MVT::i64, Expand);
250
251 // Custom lower Add/Sub/Mul with overflow.
252 setOperationAction(ISD::SADDO, MVT::i32, Custom);
253 setOperationAction(ISD::SADDO, MVT::i64, Custom);
254 setOperationAction(ISD::UADDO, MVT::i32, Custom);
255 setOperationAction(ISD::UADDO, MVT::i64, Custom);
256 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
257 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
258 setOperationAction(ISD::USUBO, MVT::i32, Custom);
259 setOperationAction(ISD::USUBO, MVT::i64, Custom);
260 setOperationAction(ISD::SMULO, MVT::i32, Custom);
261 setOperationAction(ISD::SMULO, MVT::i64, Custom);
262 setOperationAction(ISD::UMULO, MVT::i32, Custom);
263 setOperationAction(ISD::UMULO, MVT::i64, Custom);
264
265 setOperationAction(ISD::FSIN, MVT::f32, Expand);
266 setOperationAction(ISD::FSIN, MVT::f64, Expand);
267 setOperationAction(ISD::FCOS, MVT::f32, Expand);
268 setOperationAction(ISD::FCOS, MVT::f64, Expand);
269 setOperationAction(ISD::FPOW, MVT::f32, Expand);
270 setOperationAction(ISD::FPOW, MVT::f64, Expand);
271 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
272 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
273
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +0000274 // f16 is a storage-only type, always promote it to f32.
275 setOperationAction(ISD::SETCC, MVT::f16, Promote);
276 setOperationAction(ISD::BR_CC, MVT::f16, Promote);
277 setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
278 setOperationAction(ISD::SELECT, MVT::f16, Promote);
279 setOperationAction(ISD::FADD, MVT::f16, Promote);
280 setOperationAction(ISD::FSUB, MVT::f16, Promote);
281 setOperationAction(ISD::FMUL, MVT::f16, Promote);
282 setOperationAction(ISD::FDIV, MVT::f16, Promote);
283 setOperationAction(ISD::FREM, MVT::f16, Promote);
284 setOperationAction(ISD::FMA, MVT::f16, Promote);
285 setOperationAction(ISD::FNEG, MVT::f16, Promote);
286 setOperationAction(ISD::FABS, MVT::f16, Promote);
287 setOperationAction(ISD::FCEIL, MVT::f16, Promote);
288 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
289 setOperationAction(ISD::FCOS, MVT::f16, Promote);
290 setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
291 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
292 setOperationAction(ISD::FPOW, MVT::f16, Promote);
293 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
294 setOperationAction(ISD::FRINT, MVT::f16, Promote);
295 setOperationAction(ISD::FSIN, MVT::f16, Promote);
296 setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
297 setOperationAction(ISD::FSQRT, MVT::f16, Promote);
298 setOperationAction(ISD::FEXP, MVT::f16, Promote);
299 setOperationAction(ISD::FEXP2, MVT::f16, Promote);
300 setOperationAction(ISD::FLOG, MVT::f16, Promote);
301 setOperationAction(ISD::FLOG2, MVT::f16, Promote);
302 setOperationAction(ISD::FLOG10, MVT::f16, Promote);
303 setOperationAction(ISD::FROUND, MVT::f16, Promote);
304 setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
305 setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
306 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
James Molloy63be1982015-08-14 09:08:50 +0000307 setOperationAction(ISD::FMINNAN, MVT::f16, Promote);
308 setOperationAction(ISD::FMAXNAN, MVT::f16, Promote);
Oliver Stannardf5469be2014-08-18 14:22:39 +0000309
Oliver Stannard89d15422014-08-27 16:16:04 +0000310 // v4f16 is also a storage-only type, so promote it to v4f32 when that is
311 // known to be safe.
312 setOperationAction(ISD::FADD, MVT::v4f16, Promote);
313 setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
314 setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
315 setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
316 setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
317 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
318 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
319 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
320 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
321 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
322 AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
323 AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
324
325 // Expand all other v4f16 operations.
326 // FIXME: We could generate better code by promoting some operations to
327 // a pair of v4f32s
328 setOperationAction(ISD::FABS, MVT::v4f16, Expand);
329 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
330 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
331 setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
332 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
333 setOperationAction(ISD::FMA, MVT::v4f16, Expand);
334 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
335 setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
336 setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
337 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
338 setOperationAction(ISD::FREM, MVT::v4f16, Expand);
339 setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
340 setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
341 setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
342 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
343 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
344 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
345 setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
346 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
347 setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
348 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
349 setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
350 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
351 setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
352 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
353 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
354
355
356 // v8f16 is also a storage-only type, so expand it.
357 setOperationAction(ISD::FABS, MVT::v8f16, Expand);
358 setOperationAction(ISD::FADD, MVT::v8f16, Expand);
359 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
360 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
361 setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
362 setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
363 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
364 setOperationAction(ISD::FMA, MVT::v8f16, Expand);
365 setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
366 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
367 setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
368 setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
369 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
370 setOperationAction(ISD::FREM, MVT::v8f16, Expand);
371 setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
372 setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
373 setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
374 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
375 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
376 setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
377 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
378 setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
379 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
380 setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
381 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
382 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
383 setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
384 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
385 setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
386 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
387 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
388
Tim Northover3b0846e2014-05-24 12:50:23 +0000389 // AArch64 has implementations of a lot of rounding-like FP operations.
Benjamin Kramer57a3d082015-03-08 16:07:39 +0000390 for (MVT Ty : {MVT::f32, MVT::f64}) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000391 setOperationAction(ISD::FFLOOR, Ty, Legal);
392 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
393 setOperationAction(ISD::FCEIL, Ty, Legal);
394 setOperationAction(ISD::FRINT, Ty, Legal);
395 setOperationAction(ISD::FTRUNC, Ty, Legal);
396 setOperationAction(ISD::FROUND, Ty, Legal);
James Molloyb7b2a1e2015-08-11 12:06:37 +0000397 setOperationAction(ISD::FMINNUM, Ty, Legal);
398 setOperationAction(ISD::FMAXNUM, Ty, Legal);
James Molloy88edc822015-08-17 07:13:20 +0000399 setOperationAction(ISD::FMINNAN, Ty, Legal);
400 setOperationAction(ISD::FMAXNAN, Ty, Legal);
Tim Northover3b0846e2014-05-24 12:50:23 +0000401 }
402
403 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
404
Ahmed Bougachab0ff6432015-09-01 16:23:45 +0000405 // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
406 // This requires the Performance Monitors extension.
407 if (Subtarget->hasPerfMon())
408 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
409
Tim Northover3b0846e2014-05-24 12:50:23 +0000410 if (Subtarget->isTargetMachO()) {
411 // For iOS, we don't want to the normal expansion of a libcall to
412 // sincos. We want to issue a libcall to __sincos_stret to avoid memory
413 // traffic.
414 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
415 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
416 } else {
417 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
418 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
419 }
420
Juergen Ributzka23266502014-12-10 19:43:32 +0000421 // Make floating-point constants legal for the large code model, so they don't
422 // become loads from the constant pool.
423 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
424 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
425 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
426 }
427
Tim Northover3b0846e2014-05-24 12:50:23 +0000428 // AArch64 does not have floating-point extending loads, i1 sign-extending
429 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000430 for (MVT VT : MVT::fp_valuetypes()) {
431 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
432 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
433 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
434 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
435 }
436 for (MVT VT : MVT::integer_valuetypes())
437 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
438
Tim Northover3b0846e2014-05-24 12:50:23 +0000439 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
440 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
441 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
442 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
443 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
444 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
445 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
Tim Northoverf8bfe212014-07-18 13:07:05 +0000446
447 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
448 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
449
Tim Northover3b0846e2014-05-24 12:50:23 +0000450 // Indexed loads and stores are supported.
451 for (unsigned im = (unsigned)ISD::PRE_INC;
452 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
453 setIndexedLoadAction(im, MVT::i8, Legal);
454 setIndexedLoadAction(im, MVT::i16, Legal);
455 setIndexedLoadAction(im, MVT::i32, Legal);
456 setIndexedLoadAction(im, MVT::i64, Legal);
457 setIndexedLoadAction(im, MVT::f64, Legal);
458 setIndexedLoadAction(im, MVT::f32, Legal);
Ahmed Bougachae0e12db2015-08-04 01:29:38 +0000459 setIndexedLoadAction(im, MVT::f16, Legal);
Tim Northover3b0846e2014-05-24 12:50:23 +0000460 setIndexedStoreAction(im, MVT::i8, Legal);
461 setIndexedStoreAction(im, MVT::i16, Legal);
462 setIndexedStoreAction(im, MVT::i32, Legal);
463 setIndexedStoreAction(im, MVT::i64, Legal);
464 setIndexedStoreAction(im, MVT::f64, Legal);
465 setIndexedStoreAction(im, MVT::f32, Legal);
Ahmed Bougachae0e12db2015-08-04 01:29:38 +0000466 setIndexedStoreAction(im, MVT::f16, Legal);
Tim Northover3b0846e2014-05-24 12:50:23 +0000467 }
468
469 // Trap.
470 setOperationAction(ISD::TRAP, MVT::Other, Legal);
471
472 // We combine OR nodes for bitfield operations.
473 setTargetDAGCombine(ISD::OR);
474
475 // Vector add and sub nodes may conceal a high-half opportunity.
476 // Also, try to fold ADD into CSINC/CSINV..
477 setTargetDAGCombine(ISD::ADD);
478 setTargetDAGCombine(ISD::SUB);
479
480 setTargetDAGCombine(ISD::XOR);
481 setTargetDAGCombine(ISD::SINT_TO_FP);
482 setTargetDAGCombine(ISD::UINT_TO_FP);
483
Chad Rosierfa30c9b2015-10-07 17:39:18 +0000484 setTargetDAGCombine(ISD::FP_TO_SINT);
485 setTargetDAGCombine(ISD::FP_TO_UINT);
Chad Rosier7c6ac2b2015-10-07 17:51:37 +0000486 setTargetDAGCombine(ISD::FDIV);
Chad Rosierfa30c9b2015-10-07 17:39:18 +0000487
Tim Northover3b0846e2014-05-24 12:50:23 +0000488 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
489
490 setTargetDAGCombine(ISD::ANY_EXTEND);
491 setTargetDAGCombine(ISD::ZERO_EXTEND);
492 setTargetDAGCombine(ISD::SIGN_EXTEND);
493 setTargetDAGCombine(ISD::BITCAST);
494 setTargetDAGCombine(ISD::CONCAT_VECTORS);
495 setTargetDAGCombine(ISD::STORE);
Tim Northover339c83e2015-11-10 00:44:23 +0000496 if (Subtarget->supportsAddressTopByteIgnored())
497 setTargetDAGCombine(ISD::LOAD);
Tim Northover3b0846e2014-05-24 12:50:23 +0000498
499 setTargetDAGCombine(ISD::MUL);
500
501 setTargetDAGCombine(ISD::SELECT);
502 setTargetDAGCombine(ISD::VSELECT);
503
504 setTargetDAGCombine(ISD::INTRINSIC_VOID);
505 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
506 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
Chad Rosier6c36eff2015-09-03 18:13:57 +0000507 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
Tim Northover3b0846e2014-05-24 12:50:23 +0000508
509 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
510 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
511 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
512
513 setStackPointerRegisterToSaveRestore(AArch64::SP);
514
515 setSchedulingPreference(Sched::Hybrid);
516
517 // Enable TBZ/TBNZ
518 MaskAndBranchFoldingIsLegal = true;
Quentin Colombet6843ac42015-03-31 20:52:32 +0000519 EnableExtLdPromotion = true;
Tim Northover3b0846e2014-05-24 12:50:23 +0000520
521 setMinFunctionAlignment(2);
522
Tim Northover3b0846e2014-05-24 12:50:23 +0000523 setHasExtractBitsInsn(true);
524
Adhemerval Zanella7bc33192015-07-28 13:03:31 +0000525 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
526
Tim Northover3b0846e2014-05-24 12:50:23 +0000527 if (Subtarget->hasNEON()) {
528 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
529 // silliness like this:
530 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
531 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
532 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
533 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
534 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
535 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
536 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
537 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
538 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
539 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
540 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
541 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
542 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
543 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
544 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
545 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
546 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
547 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
548 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
549 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
550 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
551 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
552 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
553 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
554 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
555
556 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
557 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
558 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
559 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
560 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
561
562 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
563
564 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
565 // elements smaller than i32, so promote the input to i32 first.
566 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
567 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
568 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
569 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
Pirama Arumuga Nainarb1881532015-04-23 17:16:27 +0000570 // i8 and i16 vector elements also need promotion to i32 for v8i8 or v8i16
571 // -> v8f16 conversions.
572 setOperationAction(ISD::SINT_TO_FP, MVT::v8i8, Promote);
573 setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Promote);
574 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote);
575 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Promote);
Tim Northover3b0846e2014-05-24 12:50:23 +0000576 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
577 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
578 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
579 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
580 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
Pirama Arumuga Nainarb1881532015-04-23 17:16:27 +0000581 // Or, direct i32 -> f16 vector conversion. Set it so custom, so the
582 // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
583 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
584 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
Tim Northover3b0846e2014-05-24 12:50:23 +0000585
586 // AArch64 doesn't have MUL.2d:
587 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
Chad Rosierd9d0f862014-10-08 02:31:24 +0000588 // Custom handling for some quad-vector types to detect MULL.
589 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
590 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
591 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
592
Tim Northover3b0846e2014-05-24 12:50:23 +0000593 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
594 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
595 // Likewise, narrowing and extending vector loads/stores aren't handled
596 // directly.
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000597 for (MVT VT : MVT::vector_valuetypes()) {
598 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000599
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000600 setOperationAction(ISD::MULHS, VT, Expand);
601 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
602 setOperationAction(ISD::MULHU, VT, Expand);
603 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000604
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000605 setOperationAction(ISD::BSWAP, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000606
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000607 for (MVT InnerVT : MVT::vector_valuetypes()) {
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000608 setTruncStoreAction(VT, InnerVT, Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000609 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
610 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
611 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
612 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000613 }
614
615 // AArch64 has implementations of a lot of rounding-like FP operations.
Benjamin Kramer57a3d082015-03-08 16:07:39 +0000616 for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000617 setOperationAction(ISD::FFLOOR, Ty, Legal);
618 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
619 setOperationAction(ISD::FCEIL, Ty, Legal);
620 setOperationAction(ISD::FRINT, Ty, Legal);
621 setOperationAction(ISD::FTRUNC, Ty, Legal);
622 setOperationAction(ISD::FROUND, Ty, Legal);
623 }
624 }
James Molloyf089ab72014-08-06 10:42:18 +0000625
626 // Prefer likely predicted branches to selects on out-of-order cores.
627 if (Subtarget->isCortexA57())
628 PredictableSelectIsExpensive = true;
Tim Northover3b0846e2014-05-24 12:50:23 +0000629}
630
631void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000632 if (VT == MVT::v2f32 || VT == MVT::v4f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000633 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
634 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
635
636 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
637 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000638 } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000639 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
640 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
641
642 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
643 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
644 }
645
646 // Mark vector float intrinsics as expand.
647 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
648 setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
649 setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
650 setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
651 setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
652 setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
653 setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
654 setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
655 setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
656 setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
Ahmed Bougachab0ae36f2015-08-04 00:42:34 +0000657
658 // But we do support custom-lowering for FCOPYSIGN.
659 setOperationAction(ISD::FCOPYSIGN, VT.getSimpleVT(), Custom);
Tim Northover3b0846e2014-05-24 12:50:23 +0000660 }
661
662 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
663 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
664 setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
665 setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
666 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
667 setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
668 setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
669 setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
670 setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
671 setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
672 setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
673 setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
674
675 setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
676 setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
677 setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000678 for (MVT InnerVT : MVT::all_valuetypes())
679 setLoadExtAction(ISD::EXTLOAD, InnerVT, VT.getSimpleVT(), Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000680
681 // CNT supports only B element sizes.
682 if (VT != MVT::v8i8 && VT != MVT::v16i8)
683 setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
684
685 setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
686 setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
687 setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
688 setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
689 setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
690
691 setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
692 setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
693
Hal Finkelcd8664c2015-12-11 23:11:52 +0000694 // [SU][MIN|MAX] are available for all NEON types apart from i64.
James Molloycfb04432015-05-15 16:15:57 +0000695 if (!VT.isFloatingPoint() &&
696 VT.getSimpleVT() != MVT::v2i64 && VT.getSimpleVT() != MVT::v1i64)
Hal Finkelcd8664c2015-12-11 23:11:52 +0000697 for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
James Molloycfb04432015-05-15 16:15:57 +0000698 setOperationAction(Opcode, VT.getSimpleVT(), Legal);
699
James Molloy63be1982015-08-14 09:08:50 +0000700 // F[MIN|MAX][NUM|NAN] are available for all FP NEON types (not f16 though!).
701 if (VT.isFloatingPoint() && VT.getVectorElementType() != MVT::f16)
James Molloyb7b2a1e2015-08-11 12:06:37 +0000702 for (unsigned Opcode : {ISD::FMINNAN, ISD::FMAXNAN,
703 ISD::FMINNUM, ISD::FMAXNUM})
James Molloyedf38f02015-08-11 12:06:33 +0000704 setOperationAction(Opcode, VT.getSimpleVT(), Legal);
705
Tim Northover3b0846e2014-05-24 12:50:23 +0000706 if (Subtarget->isLittleEndian()) {
707 for (unsigned im = (unsigned)ISD::PRE_INC;
708 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
709 setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
710 setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
711 }
712 }
713}
714
715void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
716 addRegisterClass(VT, &AArch64::FPR64RegClass);
717 addTypeForNEON(VT, MVT::v2i32);
718}
719
720void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
721 addRegisterClass(VT, &AArch64::FPR128RegClass);
722 addTypeForNEON(VT, MVT::v4i32);
723}
724
Mehdi Amini44ede332015-07-09 02:09:04 +0000725EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
726 EVT VT) const {
Tim Northover3b0846e2014-05-24 12:50:23 +0000727 if (!VT.isVector())
728 return MVT::i32;
729 return VT.changeVectorElementTypeToInteger();
730}
731
732/// computeKnownBitsForTargetNode - Determine which of the bits specified in
733/// Mask are known to be either zero or one and return them in the
734/// KnownZero/KnownOne bitsets.
735void AArch64TargetLowering::computeKnownBitsForTargetNode(
736 const SDValue Op, APInt &KnownZero, APInt &KnownOne,
737 const SelectionDAG &DAG, unsigned Depth) const {
738 switch (Op.getOpcode()) {
739 default:
740 break;
741 case AArch64ISD::CSEL: {
742 APInt KnownZero2, KnownOne2;
743 DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
744 DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
745 KnownZero &= KnownZero2;
746 KnownOne &= KnownOne2;
747 break;
748 }
749 case ISD::INTRINSIC_W_CHAIN: {
Jun Bum Lim4d3c5982015-09-08 16:11:22 +0000750 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
Tim Northover3b0846e2014-05-24 12:50:23 +0000751 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
752 switch (IntID) {
753 default: return;
754 case Intrinsic::aarch64_ldaxr:
755 case Intrinsic::aarch64_ldxr: {
756 unsigned BitWidth = KnownOne.getBitWidth();
757 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
758 unsigned MemBits = VT.getScalarType().getSizeInBits();
759 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
760 return;
761 }
762 }
763 break;
764 }
765 case ISD::INTRINSIC_WO_CHAIN:
766 case ISD::INTRINSIC_VOID: {
767 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
768 switch (IntNo) {
769 default:
770 break;
771 case Intrinsic::aarch64_neon_umaxv:
772 case Intrinsic::aarch64_neon_uminv: {
773 // Figure out the datatype of the vector operand. The UMINV instruction
774 // will zero extend the result, so we can mark as known zero all the
775 // bits larger than the element datatype. 32-bit or larget doesn't need
776 // this as those are legal types and will be handled by isel directly.
777 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
778 unsigned BitWidth = KnownZero.getBitWidth();
779 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
780 assert(BitWidth >= 8 && "Unexpected width!");
781 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
782 KnownZero |= Mask;
783 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
784 assert(BitWidth >= 16 && "Unexpected width!");
785 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
786 KnownZero |= Mask;
787 }
788 break;
789 } break;
790 }
791 }
792 }
793}
794
Mehdi Aminieaabc512015-07-09 15:12:23 +0000795MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
796 EVT) const {
Tim Northover3b0846e2014-05-24 12:50:23 +0000797 return MVT::i64;
798}
799
Akira Hatanakaf53b0402015-07-29 14:17:26 +0000800bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
801 unsigned AddrSpace,
802 unsigned Align,
803 bool *Fast) const {
804 if (Subtarget->requiresStrictAlign())
805 return false;
Sanjay Patelbbbf9a12015-09-25 21:49:48 +0000806
807 // FIXME: This is mostly true for Cyclone, but not necessarily others.
808 if (Fast) {
809 // FIXME: Define an attribute for slow unaligned accesses instead of
810 // relying on the CPU type as a proxy.
811 // On Cyclone, unaligned 128-bit stores are slow.
812 *Fast = !Subtarget->isCyclone() || VT.getStoreSize() != 16 ||
813 // See comments in performSTORECombine() for more details about
814 // these conditions.
815
816 // Code that uses clang vector extensions can mark that it
817 // wants unaligned accesses to be treated as fast by
818 // underspecifying alignment to be 1 or 2.
819 Align <= 2 ||
820
821 // Disregard v2i64. Memcpy lowering produces those and splitting
822 // them regresses performance on micro-benchmarks and olden/bh.
823 VT == MVT::v2i64;
824 }
Akira Hatanakaf53b0402015-07-29 14:17:26 +0000825 return true;
826}
827
Tim Northover3b0846e2014-05-24 12:50:23 +0000828FastISel *
829AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
830 const TargetLibraryInfo *libInfo) const {
831 return AArch64::createFastISel(funcInfo, libInfo);
832}
833
834const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
Matthias Braund04893f2015-05-07 21:33:59 +0000835 switch ((AArch64ISD::NodeType)Opcode) {
836 case AArch64ISD::FIRST_NUMBER: break;
Tim Northover3b0846e2014-05-24 12:50:23 +0000837 case AArch64ISD::CALL: return "AArch64ISD::CALL";
838 case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
839 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
840 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
841 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
842 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
843 case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
844 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
845 case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
846 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
847 case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
848 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
Kristof Beylsaea84612015-03-04 09:12:08 +0000849 case AArch64ISD::TLSDESC_CALLSEQ: return "AArch64ISD::TLSDESC_CALLSEQ";
Tim Northover3b0846e2014-05-24 12:50:23 +0000850 case AArch64ISD::ADC: return "AArch64ISD::ADC";
851 case AArch64ISD::SBC: return "AArch64ISD::SBC";
852 case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
853 case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
854 case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
855 case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
856 case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
Matthias Braunaf7d7702015-07-16 20:02:37 +0000857 case AArch64ISD::CCMP: return "AArch64ISD::CCMP";
858 case AArch64ISD::CCMN: return "AArch64ISD::CCMN";
859 case AArch64ISD::FCCMP: return "AArch64ISD::FCCMP";
Tim Northover3b0846e2014-05-24 12:50:23 +0000860 case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
Tim Northover3b0846e2014-05-24 12:50:23 +0000861 case AArch64ISD::DUP: return "AArch64ISD::DUP";
862 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
863 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
864 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
865 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
866 case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
867 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
868 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
869 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
870 case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
871 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
872 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
873 case AArch64ISD::BICi: return "AArch64ISD::BICi";
874 case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
875 case AArch64ISD::BSL: return "AArch64ISD::BSL";
876 case AArch64ISD::NEG: return "AArch64ISD::NEG";
877 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
878 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
879 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
880 case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
881 case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
882 case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
883 case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
884 case AArch64ISD::REV16: return "AArch64ISD::REV16";
885 case AArch64ISD::REV32: return "AArch64ISD::REV32";
886 case AArch64ISD::REV64: return "AArch64ISD::REV64";
887 case AArch64ISD::EXT: return "AArch64ISD::EXT";
888 case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
889 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
890 case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
891 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
892 case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
893 case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
894 case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
895 case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
896 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
897 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
898 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
899 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
900 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
901 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
902 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
903 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
904 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
905 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
906 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
907 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
908 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
Ahmed Bougachafab58922015-03-10 20:45:38 +0000909 case AArch64ISD::SADDV: return "AArch64ISD::SADDV";
910 case AArch64ISD::UADDV: return "AArch64ISD::UADDV";
911 case AArch64ISD::SMINV: return "AArch64ISD::SMINV";
912 case AArch64ISD::UMINV: return "AArch64ISD::UMINV";
913 case AArch64ISD::SMAXV: return "AArch64ISD::SMAXV";
914 case AArch64ISD::UMAXV: return "AArch64ISD::UMAXV";
Tim Northover3b0846e2014-05-24 12:50:23 +0000915 case AArch64ISD::NOT: return "AArch64ISD::NOT";
916 case AArch64ISD::BIT: return "AArch64ISD::BIT";
917 case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
918 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
919 case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
920 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
921 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
Matthias Braund04893f2015-05-07 21:33:59 +0000922 case AArch64ISD::PREFETCH: return "AArch64ISD::PREFETCH";
Tim Northover3b0846e2014-05-24 12:50:23 +0000923 case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
924 case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
Asiri Rathnayake530b3ed2014-10-01 09:59:45 +0000925 case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
Tim Northover3b0846e2014-05-24 12:50:23 +0000926 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
927 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
928 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
929 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
930 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
931 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
932 case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
933 case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
934 case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
935 case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
936 case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
937 case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
938 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
939 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
940 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
941 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
942 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
943 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
944 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
945 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
946 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
947 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
948 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
949 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
950 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
951 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
952 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
953 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
954 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
Chad Rosierd9d0f862014-10-08 02:31:24 +0000955 case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
956 case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
Tim Northover3b0846e2014-05-24 12:50:23 +0000957 }
Matthias Braund04893f2015-05-07 21:33:59 +0000958 return nullptr;
Tim Northover3b0846e2014-05-24 12:50:23 +0000959}
960
961MachineBasicBlock *
962AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
963 MachineBasicBlock *MBB) const {
964 // We materialise the F128CSEL pseudo-instruction as some control flow and a
965 // phi node:
966
967 // OrigBB:
968 // [... previous instrs leading to comparison ...]
969 // b.ne TrueBB
970 // b EndBB
971 // TrueBB:
972 // ; Fallthrough
973 // EndBB:
974 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
975
Tim Northover3b0846e2014-05-24 12:50:23 +0000976 MachineFunction *MF = MBB->getParent();
Eric Christopher905f12d2015-01-29 00:19:42 +0000977 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +0000978 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
979 DebugLoc DL = MI->getDebugLoc();
Duncan P. N. Exon Smithd3b9df02015-10-13 20:02:15 +0000980 MachineFunction::iterator It = ++MBB->getIterator();
Tim Northover3b0846e2014-05-24 12:50:23 +0000981
982 unsigned DestReg = MI->getOperand(0).getReg();
983 unsigned IfTrueReg = MI->getOperand(1).getReg();
984 unsigned IfFalseReg = MI->getOperand(2).getReg();
985 unsigned CondCode = MI->getOperand(3).getImm();
986 bool NZCVKilled = MI->getOperand(4).isKill();
987
988 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
989 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
990 MF->insert(It, TrueBB);
991 MF->insert(It, EndBB);
992
993 // Transfer rest of current basic-block to EndBB
994 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
995 MBB->end());
996 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
997
998 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
999 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
1000 MBB->addSuccessor(TrueBB);
1001 MBB->addSuccessor(EndBB);
1002
1003 // TrueBB falls through to the end.
1004 TrueBB->addSuccessor(EndBB);
1005
1006 if (!NZCVKilled) {
1007 TrueBB->addLiveIn(AArch64::NZCV);
1008 EndBB->addLiveIn(AArch64::NZCV);
1009 }
1010
1011 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
1012 .addReg(IfTrueReg)
1013 .addMBB(TrueBB)
1014 .addReg(IfFalseReg)
1015 .addMBB(MBB);
1016
1017 MI->eraseFromParent();
1018 return EndBB;
1019}
1020
1021MachineBasicBlock *
1022AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1023 MachineBasicBlock *BB) const {
1024 switch (MI->getOpcode()) {
1025 default:
1026#ifndef NDEBUG
1027 MI->dump();
1028#endif
Craig Topper35b2f752014-06-19 06:10:58 +00001029 llvm_unreachable("Unexpected instruction for custom inserter!");
Tim Northover3b0846e2014-05-24 12:50:23 +00001030
1031 case AArch64::F128CSEL:
1032 return EmitF128CSEL(MI, BB);
1033
1034 case TargetOpcode::STACKMAP:
1035 case TargetOpcode::PATCHPOINT:
1036 return emitPatchPoint(MI, BB);
1037 }
Tim Northover3b0846e2014-05-24 12:50:23 +00001038}
1039
1040//===----------------------------------------------------------------------===//
1041// AArch64 Lowering private implementation.
1042//===----------------------------------------------------------------------===//
1043
1044//===----------------------------------------------------------------------===//
1045// Lowering Code
1046//===----------------------------------------------------------------------===//
1047
1048/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
1049/// CC
1050static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
1051 switch (CC) {
1052 default:
1053 llvm_unreachable("Unknown condition code!");
1054 case ISD::SETNE:
1055 return AArch64CC::NE;
1056 case ISD::SETEQ:
1057 return AArch64CC::EQ;
1058 case ISD::SETGT:
1059 return AArch64CC::GT;
1060 case ISD::SETGE:
1061 return AArch64CC::GE;
1062 case ISD::SETLT:
1063 return AArch64CC::LT;
1064 case ISD::SETLE:
1065 return AArch64CC::LE;
1066 case ISD::SETUGT:
1067 return AArch64CC::HI;
1068 case ISD::SETUGE:
1069 return AArch64CC::HS;
1070 case ISD::SETULT:
1071 return AArch64CC::LO;
1072 case ISD::SETULE:
1073 return AArch64CC::LS;
1074 }
1075}
1076
1077/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
1078static void changeFPCCToAArch64CC(ISD::CondCode CC,
1079 AArch64CC::CondCode &CondCode,
1080 AArch64CC::CondCode &CondCode2) {
1081 CondCode2 = AArch64CC::AL;
1082 switch (CC) {
1083 default:
1084 llvm_unreachable("Unknown FP condition!");
1085 case ISD::SETEQ:
1086 case ISD::SETOEQ:
1087 CondCode = AArch64CC::EQ;
1088 break;
1089 case ISD::SETGT:
1090 case ISD::SETOGT:
1091 CondCode = AArch64CC::GT;
1092 break;
1093 case ISD::SETGE:
1094 case ISD::SETOGE:
1095 CondCode = AArch64CC::GE;
1096 break;
1097 case ISD::SETOLT:
1098 CondCode = AArch64CC::MI;
1099 break;
1100 case ISD::SETOLE:
1101 CondCode = AArch64CC::LS;
1102 break;
1103 case ISD::SETONE:
1104 CondCode = AArch64CC::MI;
1105 CondCode2 = AArch64CC::GT;
1106 break;
1107 case ISD::SETO:
1108 CondCode = AArch64CC::VC;
1109 break;
1110 case ISD::SETUO:
1111 CondCode = AArch64CC::VS;
1112 break;
1113 case ISD::SETUEQ:
1114 CondCode = AArch64CC::EQ;
1115 CondCode2 = AArch64CC::VS;
1116 break;
1117 case ISD::SETUGT:
1118 CondCode = AArch64CC::HI;
1119 break;
1120 case ISD::SETUGE:
1121 CondCode = AArch64CC::PL;
1122 break;
1123 case ISD::SETLT:
1124 case ISD::SETULT:
1125 CondCode = AArch64CC::LT;
1126 break;
1127 case ISD::SETLE:
1128 case ISD::SETULE:
1129 CondCode = AArch64CC::LE;
1130 break;
1131 case ISD::SETNE:
1132 case ISD::SETUNE:
1133 CondCode = AArch64CC::NE;
1134 break;
1135 }
1136}
1137
Ahmed Bougacha99209b92016-01-22 19:43:54 +00001138/// Convert a DAG fp condition code to an AArch64 CC.
1139/// This differs from changeFPCCToAArch64CC in that it returns cond codes that
1140/// should be AND'ed instead of OR'ed.
1141static void changeFPCCToANDAArch64CC(ISD::CondCode CC,
1142 AArch64CC::CondCode &CondCode,
1143 AArch64CC::CondCode &CondCode2) {
1144 CondCode2 = AArch64CC::AL;
1145 switch (CC) {
1146 default:
1147 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1148 assert(CondCode2 == AArch64CC::AL);
1149 break;
1150 case ISD::SETONE:
1151 // (a one b)
1152 // == ((a olt b) || (a ogt b))
1153 // == ((a ord b) && (a une b))
1154 CondCode = AArch64CC::VC;
1155 CondCode2 = AArch64CC::NE;
1156 break;
1157 case ISD::SETUEQ:
1158 // (a ueq b)
1159 // == ((a uno b) || (a oeq b))
1160 // == ((a ule b) && (a uge b))
1161 CondCode = AArch64CC::PL;
1162 CondCode2 = AArch64CC::LE;
1163 break;
1164 }
1165}
1166
Tim Northover3b0846e2014-05-24 12:50:23 +00001167/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1168/// CC usable with the vector instructions. Fewer operations are available
1169/// without a real NZCV register, so we have to use less efficient combinations
1170/// to get the same effect.
1171static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1172 AArch64CC::CondCode &CondCode,
1173 AArch64CC::CondCode &CondCode2,
1174 bool &Invert) {
1175 Invert = false;
1176 switch (CC) {
1177 default:
1178 // Mostly the scalar mappings work fine.
1179 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1180 break;
1181 case ISD::SETUO:
1182 Invert = true; // Fallthrough
1183 case ISD::SETO:
1184 CondCode = AArch64CC::MI;
1185 CondCode2 = AArch64CC::GE;
1186 break;
1187 case ISD::SETUEQ:
1188 case ISD::SETULT:
1189 case ISD::SETULE:
1190 case ISD::SETUGT:
1191 case ISD::SETUGE:
1192 // All of the compare-mask comparisons are ordered, but we can switch
1193 // between the two by a double inversion. E.g. ULE == !OGT.
1194 Invert = true;
1195 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1196 break;
1197 }
1198}
1199
1200static bool isLegalArithImmed(uint64_t C) {
1201 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1202 return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1203}
1204
1205static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1206 SDLoc dl, SelectionDAG &DAG) {
1207 EVT VT = LHS.getValueType();
1208
1209 if (VT.isFloatingPoint())
1210 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1211
1212 // The CMP instruction is just an alias for SUBS, and representing it as
1213 // SUBS means that it's possible to get CSE with subtract operations.
1214 // A later phase can perform the optimization of setting the destination
1215 // register to WZR/XZR if it ends up being unused.
1216 unsigned Opcode = AArch64ISD::SUBS;
1217
Artyom Skrobov314ee042015-11-25 19:41:11 +00001218 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001219 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1220 // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1221 // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1222 // can be set differently by this operation. It comes down to whether
1223 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1224 // everything is fine. If not then the optimization is wrong. Thus general
1225 // comparisons are only valid if op2 != 0.
1226
1227 // So, finally, the only LLVM-native comparisons that don't mention C and V
1228 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1229 // the absence of information about op2.
1230 Opcode = AArch64ISD::ADDS;
1231 RHS = RHS.getOperand(1);
Artyom Skrobov314ee042015-11-25 19:41:11 +00001232 } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001233 !isUnsignedIntSetCC(CC)) {
1234 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1235 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1236 // of the signed comparisons.
1237 Opcode = AArch64ISD::ANDS;
1238 RHS = LHS.getOperand(1);
1239 LHS = LHS.getOperand(0);
1240 }
1241
Matthias Braunaf7d7702015-07-16 20:02:37 +00001242 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
Tim Northover3b0846e2014-05-24 12:50:23 +00001243 .getValue(1);
1244}
1245
Matthias Braunaf7d7702015-07-16 20:02:37 +00001246/// \defgroup AArch64CCMP CMP;CCMP matching
1247///
1248/// These functions deal with the formation of CMP;CCMP;... sequences.
1249/// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
1250/// a comparison. They set the NZCV flags to a predefined value if their
1251/// predicate is false. This allows to express arbitrary conjunctions, for
1252/// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B))))"
1253/// expressed as:
1254/// cmp A
1255/// ccmp B, inv(CB), CA
1256/// check for CB flags
1257///
1258/// In general we can create code for arbitrary "... (and (and A B) C)"
1259/// sequences. We can also implement some "or" expressions, because "(or A B)"
1260/// is equivalent to "not (and (not A) (not B))" and we can implement some
1261/// negation operations:
1262/// We can negate the results of a single comparison by inverting the flags
1263/// used when the predicate fails and inverting the flags tested in the next
1264/// instruction; We can also negate the results of the whole previous
1265/// conditional compare sequence by inverting the flags tested in the next
1266/// instruction. However there is no way to negate the result of a partial
1267/// sequence.
1268///
1269/// Therefore on encountering an "or" expression we can negate the subtree on
1270/// one side and have to be able to push the negate to the leafs of the subtree
1271/// on the other side (see also the comments in code). As complete example:
1272/// "or (or (setCA (cmp A)) (setCB (cmp B)))
1273/// (and (setCC (cmp C)) (setCD (cmp D)))"
1274/// is transformed to
1275/// "not (and (not (and (setCC (cmp C)) (setCC (cmp D))))
1276/// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
1277/// and implemented as:
1278/// cmp C
1279/// ccmp D, inv(CD), CC
1280/// ccmp A, CA, inv(CD)
1281/// ccmp B, CB, inv(CA)
1282/// check for CB flags
1283/// A counterexample is "or (and A B) (and C D)" which cannot be implemented
1284/// by conditional compare sequences.
1285/// @{
1286
Geoff Berrye41c2df2015-07-20 22:03:52 +00001287/// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
Matthias Braunaf7d7702015-07-16 20:02:37 +00001288static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
1289 ISD::CondCode CC, SDValue CCOp,
Ahmed Bougacha78d6efd2016-01-22 19:43:57 +00001290 AArch64CC::CondCode Predicate,
1291 AArch64CC::CondCode OutCC,
Matthias Braunaf7d7702015-07-16 20:02:37 +00001292 SDLoc DL, SelectionDAG &DAG) {
1293 unsigned Opcode = 0;
1294 if (LHS.getValueType().isFloatingPoint())
1295 Opcode = AArch64ISD::FCCMP;
1296 else if (RHS.getOpcode() == ISD::SUB) {
1297 SDValue SubOp0 = RHS.getOperand(0);
Artyom Skrobov314ee042015-11-25 19:41:11 +00001298 if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
Matthias Braunfd13c142016-01-23 04:05:16 +00001299 // See emitComparison() on why we can only do this for SETEQ and SETNE.
1300 Opcode = AArch64ISD::CCMN;
1301 RHS = RHS.getOperand(1);
1302 }
Matthias Braunaf7d7702015-07-16 20:02:37 +00001303 }
1304 if (Opcode == 0)
1305 Opcode = AArch64ISD::CCMP;
1306
Ahmed Bougacha78d6efd2016-01-22 19:43:57 +00001307 SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC);
1308 AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
1309 unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
Matthias Braunaf7d7702015-07-16 20:02:37 +00001310 SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
1311 return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
1312}
1313
1314/// Returns true if @p Val is a tree of AND/OR/SETCC operations.
1315/// CanPushNegate is set to true if we can push a negate operation through
1316/// the tree in a was that we are left with AND operations and negate operations
1317/// at the leafs only. i.e. "not (or (or x y) z)" can be changed to
1318/// "and (and (not x) (not y)) (not z)"; "not (or (and x y) z)" cannot be
1319/// brought into such a form.
Matthias Braunfdef49b2016-01-23 04:05:22 +00001320static bool isConjunctionDisjunctionTree(const SDValue Val, bool &CanNegate,
Matthias Braunaf7d7702015-07-16 20:02:37 +00001321 unsigned Depth = 0) {
1322 if (!Val.hasOneUse())
1323 return false;
1324 unsigned Opcode = Val->getOpcode();
1325 if (Opcode == ISD::SETCC) {
Matthias Braunfdef49b2016-01-23 04:05:22 +00001326 CanNegate = true;
Matthias Braunaf7d7702015-07-16 20:02:37 +00001327 return true;
1328 }
Matthias Braun985bdf92016-01-23 04:05:18 +00001329 // Protect against exponential runtime and stack overflow.
1330 if (Depth > 6)
Matthias Braunaf7d7702015-07-16 20:02:37 +00001331 return false;
1332 if (Opcode == ISD::AND || Opcode == ISD::OR) {
1333 SDValue O0 = Val->getOperand(0);
1334 SDValue O1 = Val->getOperand(1);
Matthias Braunfdef49b2016-01-23 04:05:22 +00001335 bool CanNegateL;
1336 if (!isConjunctionDisjunctionTree(O0, CanNegateL, Depth+1))
Matthias Braunaf7d7702015-07-16 20:02:37 +00001337 return false;
Matthias Braunfdef49b2016-01-23 04:05:22 +00001338 bool CanNegateR;
1339 if (!isConjunctionDisjunctionTree(O1, CanNegateR, Depth+1))
Matthias Braunaf7d7702015-07-16 20:02:37 +00001340 return false;
Matthias Braunfdef49b2016-01-23 04:05:22 +00001341
1342 if (Opcode == ISD::OR) {
1343 // For an OR expression we need to be able to negate at least one side or
1344 // we cannot do the transformation at all.
1345 if (!CanNegateL && !CanNegateR)
1346 return false;
1347 // We can however change a (not (or x y)) to (and (not x) (not y)) if we
1348 // can negate the x and y subtrees.
1349 CanNegate = CanNegateL && CanNegateR;
1350 } else {
1351 // If the operands are OR expressions then we finally need to negate their
1352 // outputs, we can only do that for the operand with emitted last by
1353 // negating OutCC, not for both operands.
1354 bool NeedsNegOutL = O0->getOpcode() == ISD::OR;
1355 bool NeedsNegOutR = O1->getOpcode() == ISD::OR;
1356 if (NeedsNegOutL && NeedsNegOutR)
1357 return false;
1358 // We cannot negate an AND operation (it would become an OR),
1359 CanNegate = false;
1360 }
Matthias Braunaf7d7702015-07-16 20:02:37 +00001361 return true;
1362 }
1363 return false;
1364}
1365
1366/// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1367/// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1368/// Tries to transform the given i1 producing node @p Val to a series compare
1369/// and conditional compare operations. @returns an NZCV flags producing node
1370/// and sets @p OutCC to the flags that should be tested or returns SDValue() if
1371/// transformation was not possible.
1372/// On recursive invocations @p PushNegate may be set to true to have negation
1373/// effects pushed to the tree leafs; @p Predicate is an NZCV flag predicate
1374/// for the comparisons in the current subtree; @p Depth limits the search
1375/// depth to avoid stack overflow.
Matthias Braunfdef49b2016-01-23 04:05:22 +00001376static SDValue emitConjunctionDisjunctionTreeRec(SelectionDAG &DAG, SDValue Val,
1377 AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp,
1378 AArch64CC::CondCode Predicate) {
Matthias Braunaf7d7702015-07-16 20:02:37 +00001379 // We're at a tree leaf, produce a conditional comparison operation.
1380 unsigned Opcode = Val->getOpcode();
1381 if (Opcode == ISD::SETCC) {
1382 SDValue LHS = Val->getOperand(0);
1383 SDValue RHS = Val->getOperand(1);
1384 ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
1385 bool isInteger = LHS.getValueType().isInteger();
Matthias Braunfdef49b2016-01-23 04:05:22 +00001386 if (Negate)
Matthias Braunaf7d7702015-07-16 20:02:37 +00001387 CC = getSetCCInverse(CC, isInteger);
1388 SDLoc DL(Val);
1389 // Determine OutCC and handle FP special case.
1390 if (isInteger) {
1391 OutCC = changeIntCCToAArch64CC(CC);
1392 } else {
1393 assert(LHS.getValueType().isFloatingPoint());
1394 AArch64CC::CondCode ExtraCC;
Ahmed Bougacha99209b92016-01-22 19:43:54 +00001395 changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
1396 // Some floating point conditions can't be tested with a single condition
1397 // code. Construct an additional comparison in this case.
Matthias Braunaf7d7702015-07-16 20:02:37 +00001398 if (ExtraCC != AArch64CC::AL) {
1399 SDValue ExtraCmp;
1400 if (!CCOp.getNode())
1401 ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
Ahmed Bougacha78d6efd2016-01-22 19:43:57 +00001402 else
1403 ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate,
1404 ExtraCC, DL, DAG);
Matthias Braunaf7d7702015-07-16 20:02:37 +00001405 CCOp = ExtraCmp;
Ahmed Bougacha99209b92016-01-22 19:43:54 +00001406 Predicate = ExtraCC;
Matthias Braunaf7d7702015-07-16 20:02:37 +00001407 }
1408 }
1409
1410 // Produce a normal comparison if we are first in the chain
Matthias Braunfdef49b2016-01-23 04:05:22 +00001411 if (!CCOp)
Matthias Braunaf7d7702015-07-16 20:02:37 +00001412 return emitComparison(LHS, RHS, CC, DL, DAG);
1413 // Otherwise produce a ccmp.
Ahmed Bougacha78d6efd2016-01-22 19:43:57 +00001414 return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL,
Matthias Braunaf7d7702015-07-16 20:02:37 +00001415 DAG);
Matthias Braunfdef49b2016-01-23 04:05:22 +00001416 }
Junmo Park3ca3e192016-01-25 10:17:17 +00001417 assert((Opcode == ISD::AND || (Opcode == ISD::OR && Val->hasOneUse())) &&
1418 "Valid conjunction/disjunction tree");
Matthias Braunaf7d7702015-07-16 20:02:37 +00001419
1420 // Check if both sides can be transformed.
1421 SDValue LHS = Val->getOperand(0);
1422 SDValue RHS = Val->getOperand(1);
Matthias Braunaf7d7702015-07-16 20:02:37 +00001423
Matthias Braunfdef49b2016-01-23 04:05:22 +00001424 // In case of an OR we need to negate our operands and the result.
1425 // (A v B) <=> not(not(A) ^ not(B))
1426 bool NegateOpsAndResult = Opcode == ISD::OR;
Matthias Braunaf7d7702015-07-16 20:02:37 +00001427 // We can negate the results of all previous operations by inverting the
Matthias Braunfdef49b2016-01-23 04:05:22 +00001428 // predicate flags giving us a free negation for one side. The other side
1429 // must be negatable by itself.
1430 if (NegateOpsAndResult) {
1431 // See which side we can negate.
1432 bool CanNegateL;
1433 bool isValidL = isConjunctionDisjunctionTree(LHS, CanNegateL);
1434 assert(isValidL && "Valid conjunction/disjunction tree");
1435 (void)isValidL;
1436
1437#ifndef NDEBUG
1438 bool CanNegateR;
1439 bool isValidR = isConjunctionDisjunctionTree(RHS, CanNegateR);
1440 assert(isValidR && "Valid conjunction/disjunction tree");
1441 assert((CanNegateL || CanNegateR) && "Valid conjunction/disjunction tree");
1442#endif
1443
1444 // Order the side which we cannot negate to RHS so we can emit it first.
1445 if (!CanNegateL)
Matthias Braunaf7d7702015-07-16 20:02:37 +00001446 std::swap(LHS, RHS);
Matthias Braun46e56392015-08-20 23:33:34 +00001447 } else {
1448 bool NeedsNegOutL = LHS->getOpcode() == ISD::OR;
Matthias Braun327bca72016-01-23 06:49:29 +00001449 assert((!NeedsNegOutL || RHS->getOpcode() != ISD::OR) &&
Matthias Braunfdef49b2016-01-23 04:05:22 +00001450 "Valid conjunction/disjunction tree");
Matthias Braun46e56392015-08-20 23:33:34 +00001451 // Order the side where we need to negate the output flags to RHS so it
1452 // gets emitted first.
1453 if (NeedsNegOutL)
1454 std::swap(LHS, RHS);
Matthias Braunaf7d7702015-07-16 20:02:37 +00001455 }
1456
1457 // Emit RHS. If we want to negate the tree we only need to push a negate
1458 // through if we are already in a PushNegate case, otherwise we can negate
1459 // the "flags to test" afterwards.
1460 AArch64CC::CondCode RHSCC;
Matthias Braunfdef49b2016-01-23 04:05:22 +00001461 SDValue CmpR = emitConjunctionDisjunctionTreeRec(DAG, RHS, RHSCC, Negate,
1462 CCOp, Predicate);
1463 if (NegateOpsAndResult && !Negate)
Matthias Braunaf7d7702015-07-16 20:02:37 +00001464 RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
Matthias Braunfdef49b2016-01-23 04:05:22 +00001465 // Emit LHS. We may need to negate it.
1466 SDValue CmpL = emitConjunctionDisjunctionTreeRec(DAG, LHS, OutCC,
1467 NegateOpsAndResult, CmpR,
1468 RHSCC);
Matthias Braunaf7d7702015-07-16 20:02:37 +00001469 // If we transformed an OR to and AND then we have to negate the result
Matthias Braunfdef49b2016-01-23 04:05:22 +00001470 // (or absorb the Negate parameter).
1471 if (NegateOpsAndResult && !Negate)
Matthias Braunaf7d7702015-07-16 20:02:37 +00001472 OutCC = AArch64CC::getInvertedCondCode(OutCC);
1473 return CmpL;
1474}
1475
Matthias Braunfdef49b2016-01-23 04:05:22 +00001476/// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1477/// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1478/// \see emitConjunctionDisjunctionTreeRec().
1479static SDValue emitConjunctionDisjunctionTree(SelectionDAG &DAG, SDValue Val,
1480 AArch64CC::CondCode &OutCC) {
1481 bool CanNegate;
1482 if (!isConjunctionDisjunctionTree(Val, CanNegate))
1483 return SDValue();
1484
1485 return emitConjunctionDisjunctionTreeRec(DAG, Val, OutCC, false, SDValue(),
1486 AArch64CC::AL);
1487}
1488
Matthias Braunaf7d7702015-07-16 20:02:37 +00001489/// @}
1490
Tim Northover3b0846e2014-05-24 12:50:23 +00001491static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1492 SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
1493 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1494 EVT VT = RHS.getValueType();
1495 uint64_t C = RHSC->getZExtValue();
1496 if (!isLegalArithImmed(C)) {
1497 // Constant does not fit, try adjusting it by one?
1498 switch (CC) {
1499 default:
1500 break;
1501 case ISD::SETLT:
1502 case ISD::SETGE:
1503 if ((VT == MVT::i32 && C != 0x80000000 &&
1504 isLegalArithImmed((uint32_t)(C - 1))) ||
1505 (VT == MVT::i64 && C != 0x80000000ULL &&
1506 isLegalArithImmed(C - 1ULL))) {
1507 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1508 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001509 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001510 }
1511 break;
1512 case ISD::SETULT:
1513 case ISD::SETUGE:
1514 if ((VT == MVT::i32 && C != 0 &&
1515 isLegalArithImmed((uint32_t)(C - 1))) ||
1516 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1517 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1518 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001519 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001520 }
1521 break;
1522 case ISD::SETLE:
1523 case ISD::SETGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001524 if ((VT == MVT::i32 && C != INT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001525 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001526 (VT == MVT::i64 && C != INT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001527 isLegalArithImmed(C + 1ULL))) {
1528 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1529 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001530 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001531 }
1532 break;
1533 case ISD::SETULE:
1534 case ISD::SETUGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001535 if ((VT == MVT::i32 && C != UINT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001536 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001537 (VT == MVT::i64 && C != UINT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001538 isLegalArithImmed(C + 1ULL))) {
1539 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1540 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001541 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001542 }
1543 break;
1544 }
1545 }
1546 }
Matthias Braunaf7d7702015-07-16 20:02:37 +00001547 SDValue Cmp;
1548 AArch64CC::CondCode AArch64CC;
David Xuee978202014-08-28 04:59:53 +00001549 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
Matthias Braunaf7d7702015-07-16 20:02:37 +00001550 const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
1551
1552 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1553 // For the i8 operand, the largest immediate is 255, so this can be easily
1554 // encoded in the compare instruction. For the i16 operand, however, the
1555 // largest immediate cannot be encoded in the compare.
1556 // Therefore, use a sign extending load and cmn to avoid materializing the
1557 // -1 constant. For example,
1558 // movz w1, #65535
1559 // ldrh w0, [x0, #0]
1560 // cmp w0, w1
1561 // >
1562 // ldrsh w0, [x0, #0]
1563 // cmn w0, #1
1564 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1565 // if and only if (sext LHS) == (sext RHS). The checks are in place to
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001566 // ensure both the LHS and RHS are truly zero extended and to make sure the
Matthias Braunaf7d7702015-07-16 20:02:37 +00001567 // transformation is profitable.
1568 if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
1569 cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1570 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1571 LHS.getNode()->hasNUsesOfValue(1, 0)) {
1572 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1573 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1574 SDValue SExt =
1575 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1576 DAG.getValueType(MVT::i16));
1577 Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
1578 RHS.getValueType()),
1579 CC, dl, DAG);
1580 AArch64CC = changeIntCCToAArch64CC(CC);
1581 }
1582 }
1583
1584 if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
1585 if ((Cmp = emitConjunctionDisjunctionTree(DAG, LHS, AArch64CC))) {
1586 if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
1587 AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
David Xuee978202014-08-28 04:59:53 +00001588 }
1589 }
1590 }
Matthias Braunaf7d7702015-07-16 20:02:37 +00001591
1592 if (!Cmp) {
1593 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1594 AArch64CC = changeIntCCToAArch64CC(CC);
1595 }
1596 AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
Tim Northover3b0846e2014-05-24 12:50:23 +00001597 return Cmp;
1598}
1599
1600static std::pair<SDValue, SDValue>
1601getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1602 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1603 "Unsupported value type");
1604 SDValue Value, Overflow;
1605 SDLoc DL(Op);
1606 SDValue LHS = Op.getOperand(0);
1607 SDValue RHS = Op.getOperand(1);
1608 unsigned Opc = 0;
1609 switch (Op.getOpcode()) {
1610 default:
1611 llvm_unreachable("Unknown overflow instruction!");
1612 case ISD::SADDO:
1613 Opc = AArch64ISD::ADDS;
1614 CC = AArch64CC::VS;
1615 break;
1616 case ISD::UADDO:
1617 Opc = AArch64ISD::ADDS;
1618 CC = AArch64CC::HS;
1619 break;
1620 case ISD::SSUBO:
1621 Opc = AArch64ISD::SUBS;
1622 CC = AArch64CC::VS;
1623 break;
1624 case ISD::USUBO:
1625 Opc = AArch64ISD::SUBS;
1626 CC = AArch64CC::LO;
1627 break;
1628 // Multiply needs a little bit extra work.
1629 case ISD::SMULO:
1630 case ISD::UMULO: {
1631 CC = AArch64CC::NE;
David Blaikie186d2cb2015-03-24 16:24:01 +00001632 bool IsSigned = Op.getOpcode() == ISD::SMULO;
Tim Northover3b0846e2014-05-24 12:50:23 +00001633 if (Op.getValueType() == MVT::i32) {
1634 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1635 // For a 32 bit multiply with overflow check we want the instruction
1636 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1637 // need to generate the following pattern:
1638 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1639 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1640 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1641 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1642 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001643 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001644 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1645 // operation. We need to clear out the upper 32 bits, because we used a
1646 // widening multiply that wrote all 64 bits. In the end this should be a
1647 // noop.
1648 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1649 if (IsSigned) {
1650 // The signed overflow check requires more than just a simple check for
1651 // any bit set in the upper 32 bits of the result. These bits could be
1652 // just the sign bits of a negative number. To perform the overflow
1653 // check we have to arithmetic shift right the 32nd bit of the result by
1654 // 31 bits. Then we compare the result to the upper 32 bits.
1655 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001656 DAG.getConstant(32, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001657 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1658 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001659 DAG.getConstant(31, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001660 // It is important that LowerBits is last, otherwise the arithmetic
1661 // shift will not be folded into the compare (SUBS).
1662 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1663 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1664 .getValue(1);
1665 } else {
1666 // The overflow check for unsigned multiply is easy. We only need to
1667 // check if any of the upper 32 bits are set. This can be done with a
1668 // CMP (shifted register). For that we need to generate the following
1669 // pattern:
1670 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1671 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001672 DAG.getConstant(32, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001673 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1674 Overflow =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001675 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1676 DAG.getConstant(0, DL, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00001677 UpperBits).getValue(1);
1678 }
1679 break;
1680 }
1681 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1682 // For the 64 bit multiply
1683 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1684 if (IsSigned) {
1685 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1686 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001687 DAG.getConstant(63, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001688 // It is important that LowerBits is last, otherwise the arithmetic
1689 // shift will not be folded into the compare (SUBS).
1690 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1691 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1692 .getValue(1);
1693 } else {
1694 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1695 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1696 Overflow =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001697 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1698 DAG.getConstant(0, DL, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00001699 UpperBits).getValue(1);
1700 }
1701 break;
1702 }
1703 } // switch (...)
1704
1705 if (Opc) {
1706 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1707
1708 // Emit the AArch64 operation with overflow check.
1709 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1710 Overflow = Value.getValue(1);
1711 }
1712 return std::make_pair(Value, Overflow);
1713}
1714
1715SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1716 RTLIB::Libcall Call) const {
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00001717 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
Craig Topper8fe40e02015-10-22 17:05:00 +00001718 return makeLibCall(DAG, Call, MVT::f128, Ops, false, SDLoc(Op)).first;
Tim Northover3b0846e2014-05-24 12:50:23 +00001719}
1720
1721static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1722 SDValue Sel = Op.getOperand(0);
1723 SDValue Other = Op.getOperand(1);
1724
1725 // If neither operand is a SELECT_CC, give up.
1726 if (Sel.getOpcode() != ISD::SELECT_CC)
1727 std::swap(Sel, Other);
1728 if (Sel.getOpcode() != ISD::SELECT_CC)
1729 return Op;
1730
1731 // The folding we want to perform is:
1732 // (xor x, (select_cc a, b, cc, 0, -1) )
1733 // -->
1734 // (csel x, (xor x, -1), cc ...)
1735 //
1736 // The latter will get matched to a CSINV instruction.
1737
1738 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1739 SDValue LHS = Sel.getOperand(0);
1740 SDValue RHS = Sel.getOperand(1);
1741 SDValue TVal = Sel.getOperand(2);
1742 SDValue FVal = Sel.getOperand(3);
1743 SDLoc dl(Sel);
1744
1745 // FIXME: This could be generalized to non-integer comparisons.
1746 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1747 return Op;
1748
1749 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1750 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1751
Eric Christopher572e03a2015-06-19 01:53:21 +00001752 // The values aren't constants, this isn't the pattern we're looking for.
Tim Northover3b0846e2014-05-24 12:50:23 +00001753 if (!CFVal || !CTVal)
1754 return Op;
1755
1756 // We can commute the SELECT_CC by inverting the condition. This
1757 // might be needed to make this fit into a CSINV pattern.
1758 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1759 std::swap(TVal, FVal);
1760 std::swap(CTVal, CFVal);
1761 CC = ISD::getSetCCInverse(CC, true);
1762 }
1763
1764 // If the constants line up, perform the transform!
1765 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1766 SDValue CCVal;
1767 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1768
1769 FVal = Other;
1770 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001771 DAG.getConstant(-1ULL, dl, Other.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00001772
1773 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1774 CCVal, Cmp);
1775 }
1776
1777 return Op;
1778}
1779
1780static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1781 EVT VT = Op.getValueType();
1782
1783 // Let legalize expand this if it isn't a legal type yet.
1784 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1785 return SDValue();
1786
1787 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1788
1789 unsigned Opc;
1790 bool ExtraOp = false;
1791 switch (Op.getOpcode()) {
1792 default:
Craig Topper2a30d782014-06-18 05:05:13 +00001793 llvm_unreachable("Invalid code");
Tim Northover3b0846e2014-05-24 12:50:23 +00001794 case ISD::ADDC:
1795 Opc = AArch64ISD::ADDS;
1796 break;
1797 case ISD::SUBC:
1798 Opc = AArch64ISD::SUBS;
1799 break;
1800 case ISD::ADDE:
1801 Opc = AArch64ISD::ADCS;
1802 ExtraOp = true;
1803 break;
1804 case ISD::SUBE:
1805 Opc = AArch64ISD::SBCS;
1806 ExtraOp = true;
1807 break;
1808 }
1809
1810 if (!ExtraOp)
1811 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1812 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1813 Op.getOperand(2));
1814}
1815
1816static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1817 // Let legalize expand this if it isn't a legal type yet.
1818 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1819 return SDValue();
1820
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001821 SDLoc dl(Op);
Tim Northover3b0846e2014-05-24 12:50:23 +00001822 AArch64CC::CondCode CC;
1823 // The actual operation that sets the overflow or carry flag.
1824 SDValue Value, Overflow;
1825 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1826
1827 // We use 0 and 1 as false and true values.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001828 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
1829 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00001830
1831 // We use an inverted condition, because the conditional select is inverted
1832 // too. This will allow it to be selected to a single instruction:
1833 // CSINC Wd, WZR, WZR, invert(cond).
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001834 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
1835 Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
Tim Northover3b0846e2014-05-24 12:50:23 +00001836 CCVal, Overflow);
1837
1838 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001839 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
Tim Northover3b0846e2014-05-24 12:50:23 +00001840}
1841
1842// Prefetch operands are:
1843// 1: Address to prefetch
1844// 2: bool isWrite
1845// 3: int locality (0 = no locality ... 3 = extreme locality)
1846// 4: bool isDataCache
1847static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1848 SDLoc DL(Op);
1849 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1850 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
Yi Konge56de692014-08-05 12:46:47 +00001851 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00001852
1853 bool IsStream = !Locality;
1854 // When the locality number is set
1855 if (Locality) {
1856 // The front-end should have filtered out the out-of-range values
1857 assert(Locality <= 3 && "Prefetch locality out-of-range");
1858 // The locality degree is the opposite of the cache speed.
1859 // Put the number the other way around.
1860 // The encoding starts at 0 for level 1
1861 Locality = 3 - Locality;
1862 }
1863
1864 // built the mask value encoding the expected behavior.
1865 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
Yi Konge56de692014-08-05 12:46:47 +00001866 (!IsData << 3) | // IsDataCache bit
Tim Northover3b0846e2014-05-24 12:50:23 +00001867 (Locality << 1) | // Cache level bits
1868 (unsigned)IsStream; // Stream bit
1869 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001870 DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
Tim Northover3b0846e2014-05-24 12:50:23 +00001871}
1872
1873SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1874 SelectionDAG &DAG) const {
1875 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1876
1877 RTLIB::Libcall LC;
1878 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1879
1880 return LowerF128Call(Op, DAG, LC);
1881}
1882
1883SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1884 SelectionDAG &DAG) const {
1885 if (Op.getOperand(0).getValueType() != MVT::f128) {
1886 // It's legal except when f128 is involved
1887 return Op;
1888 }
1889
1890 RTLIB::Libcall LC;
1891 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1892
1893 // FP_ROUND node has a second operand indicating whether it is known to be
1894 // precise. That doesn't take part in the LibCall so we can't directly use
1895 // LowerF128Call.
1896 SDValue SrcVal = Op.getOperand(0);
Craig Topper8fe40e02015-10-22 17:05:00 +00001897 return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
1898 SDLoc(Op)).first;
Tim Northover3b0846e2014-05-24 12:50:23 +00001899}
1900
1901static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1902 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1903 // Any additional optimization in this function should be recorded
1904 // in the cost tables.
1905 EVT InVT = Op.getOperand(0).getValueType();
1906 EVT VT = Op.getValueType();
Pirama Arumuga Nainar1317d5f2015-12-10 17:16:49 +00001907 unsigned NumElts = InVT.getVectorNumElements();
1908
1909 // f16 vectors are promoted to f32 before a conversion.
1910 if (InVT.getVectorElementType() == MVT::f16) {
1911 MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
1912 SDLoc dl(Op);
1913 return DAG.getNode(
1914 Op.getOpcode(), dl, Op.getValueType(),
1915 DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
1916 }
Tim Northover3b0846e2014-05-24 12:50:23 +00001917
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001918 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001919 SDLoc dl(Op);
1920 SDValue Cv =
1921 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1922 Op.getOperand(0));
1923 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001924 }
1925
1926 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001927 SDLoc dl(Op);
Oliver Stannard89d15422014-08-27 16:16:04 +00001928 MVT ExtVT =
1929 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
1930 VT.getVectorNumElements());
1931 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00001932 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1933 }
1934
1935 // Type changing conversions are illegal.
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001936 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001937}
1938
1939SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1940 SelectionDAG &DAG) const {
1941 if (Op.getOperand(0).getValueType().isVector())
1942 return LowerVectorFP_TO_INT(Op, DAG);
1943
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +00001944 // f16 conversions are promoted to f32.
1945 if (Op.getOperand(0).getValueType() == MVT::f16) {
1946 SDLoc dl(Op);
1947 return DAG.getNode(
1948 Op.getOpcode(), dl, Op.getValueType(),
1949 DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0)));
1950 }
1951
Tim Northover3b0846e2014-05-24 12:50:23 +00001952 if (Op.getOperand(0).getValueType() != MVT::f128) {
1953 // It's legal except when f128 is involved
1954 return Op;
1955 }
1956
1957 RTLIB::Libcall LC;
1958 if (Op.getOpcode() == ISD::FP_TO_SINT)
1959 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1960 else
1961 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1962
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00001963 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
Craig Topper8fe40e02015-10-22 17:05:00 +00001964 return makeLibCall(DAG, LC, Op.getValueType(), Ops, false, SDLoc(Op)).first;
Tim Northover3b0846e2014-05-24 12:50:23 +00001965}
1966
1967static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1968 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1969 // Any additional optimization in this function should be recorded
1970 // in the cost tables.
1971 EVT VT = Op.getValueType();
1972 SDLoc dl(Op);
1973 SDValue In = Op.getOperand(0);
1974 EVT InVT = In.getValueType();
1975
Tim Northoveref0d7602014-06-15 09:27:06 +00001976 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1977 MVT CastVT =
1978 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
1979 InVT.getVectorNumElements());
1980 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001981 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
Tim Northover3b0846e2014-05-24 12:50:23 +00001982 }
1983
Tim Northoveref0d7602014-06-15 09:27:06 +00001984 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1985 unsigned CastOpc =
1986 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1987 EVT CastVT = VT.changeVectorElementTypeToInteger();
1988 In = DAG.getNode(CastOpc, dl, CastVT, In);
1989 return DAG.getNode(Op.getOpcode(), dl, VT, In);
Tim Northover3b0846e2014-05-24 12:50:23 +00001990 }
1991
Tim Northoveref0d7602014-06-15 09:27:06 +00001992 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001993}
1994
1995SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
1996 SelectionDAG &DAG) const {
1997 if (Op.getValueType().isVector())
1998 return LowerVectorINT_TO_FP(Op, DAG);
1999
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +00002000 // f16 conversions are promoted to f32.
2001 if (Op.getValueType() == MVT::f16) {
2002 SDLoc dl(Op);
2003 return DAG.getNode(
2004 ISD::FP_ROUND, dl, MVT::f16,
2005 DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002006 DAG.getIntPtrConstant(0, dl));
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +00002007 }
2008
Tim Northover3b0846e2014-05-24 12:50:23 +00002009 // i128 conversions are libcalls.
2010 if (Op.getOperand(0).getValueType() == MVT::i128)
2011 return SDValue();
2012
2013 // Other conversions are legal, unless it's to the completely software-based
2014 // fp128.
2015 if (Op.getValueType() != MVT::f128)
2016 return Op;
2017
2018 RTLIB::Libcall LC;
2019 if (Op.getOpcode() == ISD::SINT_TO_FP)
2020 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2021 else
2022 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2023
2024 return LowerF128Call(Op, DAG, LC);
2025}
2026
2027SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
2028 SelectionDAG &DAG) const {
2029 // For iOS, we want to call an alternative entry point: __sincos_stret,
2030 // which returns the values in two S / D registers.
2031 SDLoc dl(Op);
2032 SDValue Arg = Op.getOperand(0);
2033 EVT ArgVT = Arg.getValueType();
2034 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2035
2036 ArgListTy Args;
2037 ArgListEntry Entry;
2038
2039 Entry.Node = Arg;
2040 Entry.Ty = ArgTy;
2041 Entry.isSExt = false;
2042 Entry.isZExt = false;
2043 Args.push_back(Entry);
2044
2045 const char *LibcallName =
2046 (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
Mehdi Amini44ede332015-07-09 02:09:04 +00002047 SDValue Callee =
2048 DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00002049
Reid Kleckner343c3952014-11-20 23:51:47 +00002050 StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
Tim Northover3b0846e2014-05-24 12:50:23 +00002051 TargetLowering::CallLoweringInfo CLI(DAG);
2052 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
Juergen Ributzka3bd03c72014-07-01 22:01:54 +00002053 .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00002054
2055 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2056 return CallResult.first;
2057}
2058
Tim Northoverf8bfe212014-07-18 13:07:05 +00002059static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
2060 if (Op.getValueType() != MVT::f16)
2061 return SDValue();
2062
2063 assert(Op.getOperand(0).getValueType() == MVT::i16);
2064 SDLoc DL(Op);
2065
2066 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
2067 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
2068 return SDValue(
2069 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002070 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
Tim Northoverf8bfe212014-07-18 13:07:05 +00002071 0);
2072}
2073
Chad Rosierd9d0f862014-10-08 02:31:24 +00002074static EVT getExtensionTo64Bits(const EVT &OrigVT) {
2075 if (OrigVT.getSizeInBits() >= 64)
2076 return OrigVT;
2077
2078 assert(OrigVT.isSimple() && "Expecting a simple value type");
2079
2080 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
2081 switch (OrigSimpleTy) {
2082 default: llvm_unreachable("Unexpected Vector Type");
2083 case MVT::v2i8:
2084 case MVT::v2i16:
2085 return MVT::v2i32;
2086 case MVT::v4i8:
2087 return MVT::v4i16;
2088 }
2089}
2090
2091static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
2092 const EVT &OrigTy,
2093 const EVT &ExtTy,
2094 unsigned ExtOpcode) {
2095 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
2096 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
2097 // 64-bits we need to insert a new extension so that it will be 64-bits.
2098 assert(ExtTy.is128BitVector() && "Unexpected extension size");
2099 if (OrigTy.getSizeInBits() >= 64)
2100 return N;
2101
2102 // Must extend size to at least 64 bits to be used as an operand for VMULL.
2103 EVT NewVT = getExtensionTo64Bits(OrigTy);
2104
2105 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
2106}
2107
2108static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
2109 bool isSigned) {
2110 EVT VT = N->getValueType(0);
2111
2112 if (N->getOpcode() != ISD::BUILD_VECTOR)
2113 return false;
2114
Pete Cooper3af9a252015-06-26 18:17:36 +00002115 for (const SDValue &Elt : N->op_values()) {
Chad Rosierd9d0f862014-10-08 02:31:24 +00002116 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
2117 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
2118 unsigned HalfSize = EltSize / 2;
2119 if (isSigned) {
2120 if (!isIntN(HalfSize, C->getSExtValue()))
2121 return false;
2122 } else {
2123 if (!isUIntN(HalfSize, C->getZExtValue()))
2124 return false;
2125 }
2126 continue;
2127 }
2128 return false;
2129 }
2130
2131 return true;
2132}
2133
2134static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
2135 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
2136 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
2137 N->getOperand(0)->getValueType(0),
2138 N->getValueType(0),
2139 N->getOpcode());
2140
2141 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
2142 EVT VT = N->getValueType(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002143 SDLoc dl(N);
Chad Rosierd9d0f862014-10-08 02:31:24 +00002144 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
2145 unsigned NumElts = VT.getVectorNumElements();
2146 MVT TruncVT = MVT::getIntegerVT(EltSize);
2147 SmallVector<SDValue, 8> Ops;
2148 for (unsigned i = 0; i != NumElts; ++i) {
2149 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
2150 const APInt &CInt = C->getAPIntValue();
2151 // Element types smaller than 32 bits are not legal, so use i32 elements.
2152 // The values are implicitly truncated so sext vs. zext doesn't matter.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002153 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
Chad Rosierd9d0f862014-10-08 02:31:24 +00002154 }
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002155 return DAG.getNode(ISD::BUILD_VECTOR, dl,
Chad Rosierd9d0f862014-10-08 02:31:24 +00002156 MVT::getVectorVT(TruncVT, NumElts), Ops);
2157}
2158
2159static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
2160 if (N->getOpcode() == ISD::SIGN_EXTEND)
2161 return true;
2162 if (isExtendedBUILD_VECTOR(N, DAG, true))
2163 return true;
2164 return false;
2165}
2166
2167static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
2168 if (N->getOpcode() == ISD::ZERO_EXTEND)
2169 return true;
2170 if (isExtendedBUILD_VECTOR(N, DAG, false))
2171 return true;
2172 return false;
2173}
2174
2175static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
2176 unsigned Opcode = N->getOpcode();
2177 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2178 SDNode *N0 = N->getOperand(0).getNode();
2179 SDNode *N1 = N->getOperand(1).getNode();
2180 return N0->hasOneUse() && N1->hasOneUse() &&
2181 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
2182 }
2183 return false;
2184}
2185
2186static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
2187 unsigned Opcode = N->getOpcode();
2188 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2189 SDNode *N0 = N->getOperand(0).getNode();
2190 SDNode *N1 = N->getOperand(1).getNode();
2191 return N0->hasOneUse() && N1->hasOneUse() &&
2192 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
2193 }
2194 return false;
2195}
2196
2197static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
2198 // Multiplications are only custom-lowered for 128-bit vectors so that
2199 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
2200 EVT VT = Op.getValueType();
2201 assert(VT.is128BitVector() && VT.isInteger() &&
2202 "unexpected type for custom-lowering ISD::MUL");
2203 SDNode *N0 = Op.getOperand(0).getNode();
2204 SDNode *N1 = Op.getOperand(1).getNode();
2205 unsigned NewOpc = 0;
2206 bool isMLA = false;
2207 bool isN0SExt = isSignExtended(N0, DAG);
2208 bool isN1SExt = isSignExtended(N1, DAG);
2209 if (isN0SExt && isN1SExt)
2210 NewOpc = AArch64ISD::SMULL;
2211 else {
2212 bool isN0ZExt = isZeroExtended(N0, DAG);
2213 bool isN1ZExt = isZeroExtended(N1, DAG);
2214 if (isN0ZExt && isN1ZExt)
2215 NewOpc = AArch64ISD::UMULL;
2216 else if (isN1SExt || isN1ZExt) {
2217 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
2218 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
2219 if (isN1SExt && isAddSubSExt(N0, DAG)) {
2220 NewOpc = AArch64ISD::SMULL;
2221 isMLA = true;
2222 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
2223 NewOpc = AArch64ISD::UMULL;
2224 isMLA = true;
2225 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
2226 std::swap(N0, N1);
2227 NewOpc = AArch64ISD::UMULL;
2228 isMLA = true;
2229 }
2230 }
2231
2232 if (!NewOpc) {
2233 if (VT == MVT::v2i64)
2234 // Fall through to expand this. It is not legal.
2235 return SDValue();
2236 else
2237 // Other vector multiplications are legal.
2238 return Op;
2239 }
2240 }
2241
2242 // Legalize to a S/UMULL instruction
2243 SDLoc DL(Op);
2244 SDValue Op0;
2245 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
2246 if (!isMLA) {
2247 Op0 = skipExtensionForVectorMULL(N0, DAG);
2248 assert(Op0.getValueType().is64BitVector() &&
2249 Op1.getValueType().is64BitVector() &&
2250 "unexpected types for extended operands to VMULL");
2251 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
2252 }
2253 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
2254 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
2255 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
2256 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
2257 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
2258 EVT Op1VT = Op1.getValueType();
2259 return DAG.getNode(N0->getOpcode(), DL, VT,
2260 DAG.getNode(NewOpc, DL, VT,
2261 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
2262 DAG.getNode(NewOpc, DL, VT,
2263 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
2264}
Tim Northoverf8bfe212014-07-18 13:07:05 +00002265
Adhemerval Zanella7bc33192015-07-28 13:03:31 +00002266SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2267 SelectionDAG &DAG) const {
2268 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2269 SDLoc dl(Op);
2270 switch (IntNo) {
2271 default: return SDValue(); // Don't custom lower most intrinsics.
2272 case Intrinsic::aarch64_thread_pointer: {
2273 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2274 return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
2275 }
Silviu Barangadb1ddb32015-08-26 11:11:14 +00002276 case Intrinsic::aarch64_neon_smax:
2277 return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
2278 Op.getOperand(1), Op.getOperand(2));
2279 case Intrinsic::aarch64_neon_umax:
2280 return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
2281 Op.getOperand(1), Op.getOperand(2));
2282 case Intrinsic::aarch64_neon_smin:
2283 return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
2284 Op.getOperand(1), Op.getOperand(2));
2285 case Intrinsic::aarch64_neon_umin:
2286 return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
2287 Op.getOperand(1), Op.getOperand(2));
Adhemerval Zanella7bc33192015-07-28 13:03:31 +00002288 }
2289}
2290
Tim Northover3b0846e2014-05-24 12:50:23 +00002291SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
2292 SelectionDAG &DAG) const {
2293 switch (Op.getOpcode()) {
2294 default:
2295 llvm_unreachable("unimplemented operand");
2296 return SDValue();
Tim Northoverf8bfe212014-07-18 13:07:05 +00002297 case ISD::BITCAST:
2298 return LowerBITCAST(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00002299 case ISD::GlobalAddress:
2300 return LowerGlobalAddress(Op, DAG);
2301 case ISD::GlobalTLSAddress:
2302 return LowerGlobalTLSAddress(Op, DAG);
2303 case ISD::SETCC:
2304 return LowerSETCC(Op, DAG);
2305 case ISD::BR_CC:
2306 return LowerBR_CC(Op, DAG);
2307 case ISD::SELECT:
2308 return LowerSELECT(Op, DAG);
2309 case ISD::SELECT_CC:
2310 return LowerSELECT_CC(Op, DAG);
2311 case ISD::JumpTable:
2312 return LowerJumpTable(Op, DAG);
2313 case ISD::ConstantPool:
2314 return LowerConstantPool(Op, DAG);
2315 case ISD::BlockAddress:
2316 return LowerBlockAddress(Op, DAG);
2317 case ISD::VASTART:
2318 return LowerVASTART(Op, DAG);
2319 case ISD::VACOPY:
2320 return LowerVACOPY(Op, DAG);
2321 case ISD::VAARG:
2322 return LowerVAARG(Op, DAG);
2323 case ISD::ADDC:
2324 case ISD::ADDE:
2325 case ISD::SUBC:
2326 case ISD::SUBE:
2327 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
2328 case ISD::SADDO:
2329 case ISD::UADDO:
2330 case ISD::SSUBO:
2331 case ISD::USUBO:
2332 case ISD::SMULO:
2333 case ISD::UMULO:
2334 return LowerXALUO(Op, DAG);
2335 case ISD::FADD:
2336 return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
2337 case ISD::FSUB:
2338 return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
2339 case ISD::FMUL:
2340 return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
2341 case ISD::FDIV:
2342 return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
2343 case ISD::FP_ROUND:
2344 return LowerFP_ROUND(Op, DAG);
2345 case ISD::FP_EXTEND:
2346 return LowerFP_EXTEND(Op, DAG);
2347 case ISD::FRAMEADDR:
2348 return LowerFRAMEADDR(Op, DAG);
2349 case ISD::RETURNADDR:
2350 return LowerRETURNADDR(Op, DAG);
2351 case ISD::INSERT_VECTOR_ELT:
2352 return LowerINSERT_VECTOR_ELT(Op, DAG);
2353 case ISD::EXTRACT_VECTOR_ELT:
2354 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2355 case ISD::BUILD_VECTOR:
2356 return LowerBUILD_VECTOR(Op, DAG);
2357 case ISD::VECTOR_SHUFFLE:
2358 return LowerVECTOR_SHUFFLE(Op, DAG);
2359 case ISD::EXTRACT_SUBVECTOR:
2360 return LowerEXTRACT_SUBVECTOR(Op, DAG);
2361 case ISD::SRA:
2362 case ISD::SRL:
2363 case ISD::SHL:
2364 return LowerVectorSRA_SRL_SHL(Op, DAG);
2365 case ISD::SHL_PARTS:
2366 return LowerShiftLeftParts(Op, DAG);
2367 case ISD::SRL_PARTS:
2368 case ISD::SRA_PARTS:
2369 return LowerShiftRightParts(Op, DAG);
2370 case ISD::CTPOP:
2371 return LowerCTPOP(Op, DAG);
2372 case ISD::FCOPYSIGN:
2373 return LowerFCOPYSIGN(Op, DAG);
2374 case ISD::AND:
2375 return LowerVectorAND(Op, DAG);
2376 case ISD::OR:
2377 return LowerVectorOR(Op, DAG);
2378 case ISD::XOR:
2379 return LowerXOR(Op, DAG);
2380 case ISD::PREFETCH:
2381 return LowerPREFETCH(Op, DAG);
2382 case ISD::SINT_TO_FP:
2383 case ISD::UINT_TO_FP:
2384 return LowerINT_TO_FP(Op, DAG);
2385 case ISD::FP_TO_SINT:
2386 case ISD::FP_TO_UINT:
2387 return LowerFP_TO_INT(Op, DAG);
2388 case ISD::FSINCOS:
2389 return LowerFSINCOS(Op, DAG);
Chad Rosierd9d0f862014-10-08 02:31:24 +00002390 case ISD::MUL:
2391 return LowerMUL(Op, DAG);
Adhemerval Zanella7bc33192015-07-28 13:03:31 +00002392 case ISD::INTRINSIC_WO_CHAIN:
2393 return LowerINTRINSIC_WO_CHAIN(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00002394 }
2395}
2396
Tim Northover3b0846e2014-05-24 12:50:23 +00002397//===----------------------------------------------------------------------===//
2398// Calling Convention Implementation
2399//===----------------------------------------------------------------------===//
2400
2401#include "AArch64GenCallingConv.inc"
2402
Robin Morisset039781e2014-08-29 21:53:01 +00002403/// Selects the correct CCAssignFn for a given CallingConvention value.
Tim Northover3b0846e2014-05-24 12:50:23 +00002404CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2405 bool IsVarArg) const {
2406 switch (CC) {
2407 default:
2408 llvm_unreachable("Unsupported calling convention.");
2409 case CallingConv::WebKit_JS:
2410 return CC_AArch64_WebKit_JS;
Greg Fitzgeraldfa78d082015-01-19 17:40:05 +00002411 case CallingConv::GHC:
2412 return CC_AArch64_GHC;
Tim Northover3b0846e2014-05-24 12:50:23 +00002413 case CallingConv::C:
2414 case CallingConv::Fast:
2415 if (!Subtarget->isTargetDarwin())
2416 return CC_AArch64_AAPCS;
2417 return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
2418 }
2419}
2420
2421SDValue AArch64TargetLowering::LowerFormalArguments(
2422 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2423 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2424 SmallVectorImpl<SDValue> &InVals) const {
2425 MachineFunction &MF = DAG.getMachineFunction();
2426 MachineFrameInfo *MFI = MF.getFrameInfo();
2427
2428 // Assign locations to all of the incoming arguments.
2429 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002430 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2431 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002432
2433 // At this point, Ins[].VT may already be promoted to i32. To correctly
2434 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2435 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2436 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
2437 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
2438 // LocVT.
2439 unsigned NumArgs = Ins.size();
2440 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2441 unsigned CurArgIdx = 0;
2442 for (unsigned i = 0; i != NumArgs; ++i) {
2443 MVT ValVT = Ins[i].VT;
Andrew Trick05938a52015-02-16 18:10:47 +00002444 if (Ins[i].isOrigArg()) {
2445 std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
2446 CurArgIdx = Ins[i].getOrigArgIndex();
Tim Northover3b0846e2014-05-24 12:50:23 +00002447
Andrew Trick05938a52015-02-16 18:10:47 +00002448 // Get type of the original argument.
Mehdi Amini44ede332015-07-09 02:09:04 +00002449 EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
2450 /*AllowUnknown*/ true);
Andrew Trick05938a52015-02-16 18:10:47 +00002451 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
2452 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2453 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2454 ValVT = MVT::i8;
2455 else if (ActualMVT == MVT::i16)
2456 ValVT = MVT::i16;
2457 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002458 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2459 bool Res =
Tim Northover47e003c2014-05-26 17:21:53 +00002460 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002461 assert(!Res && "Call operand has unhandled type");
2462 (void)Res;
2463 }
2464 assert(ArgLocs.size() == Ins.size());
2465 SmallVector<SDValue, 16> ArgValues;
2466 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2467 CCValAssign &VA = ArgLocs[i];
2468
2469 if (Ins[i].Flags.isByVal()) {
2470 // Byval is used for HFAs in the PCS, but the system should work in a
2471 // non-compliant manner for larger structs.
Mehdi Amini44ede332015-07-09 02:09:04 +00002472 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00002473 int Size = Ins[i].Flags.getByValSize();
2474 unsigned NumRegs = (Size + 7) / 8;
2475
2476 // FIXME: This works on big-endian for composite byvals, which are the common
2477 // case. It should also work for fundamental types too.
2478 unsigned FrameIdx =
2479 MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
Mehdi Amini44ede332015-07-09 02:09:04 +00002480 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00002481 InVals.push_back(FrameIdxN);
2482
2483 continue;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002484 }
Junmo Park3b8c7152016-01-05 09:36:47 +00002485
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002486 if (VA.isRegLoc()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00002487 // Arguments stored in registers.
2488 EVT RegVT = VA.getLocVT();
2489
2490 SDValue ArgValue;
2491 const TargetRegisterClass *RC;
2492
2493 if (RegVT == MVT::i32)
2494 RC = &AArch64::GPR32RegClass;
2495 else if (RegVT == MVT::i64)
2496 RC = &AArch64::GPR64RegClass;
Oliver Stannard6eda6ff2014-07-11 13:33:46 +00002497 else if (RegVT == MVT::f16)
2498 RC = &AArch64::FPR16RegClass;
Tim Northover3b0846e2014-05-24 12:50:23 +00002499 else if (RegVT == MVT::f32)
2500 RC = &AArch64::FPR32RegClass;
2501 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
2502 RC = &AArch64::FPR64RegClass;
2503 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
2504 RC = &AArch64::FPR128RegClass;
2505 else
2506 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2507
2508 // Transform the arguments in physical registers into virtual ones.
2509 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2510 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2511
2512 // If this is an 8, 16 or 32-bit value, it is really passed promoted
2513 // to 64 bits. Insert an assert[sz]ext to capture this, then
2514 // truncate to the right size.
2515 switch (VA.getLocInfo()) {
2516 default:
2517 llvm_unreachable("Unknown loc info!");
2518 case CCValAssign::Full:
2519 break;
2520 case CCValAssign::BCvt:
2521 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
2522 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002523 case CCValAssign::AExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002524 case CCValAssign::SExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002525 case CCValAssign::ZExt:
Tim Northover47e003c2014-05-26 17:21:53 +00002526 // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
2527 // nodes after our lowering.
2528 assert(RegVT == Ins[i].VT && "incorrect register location selected");
Tim Northover3b0846e2014-05-24 12:50:23 +00002529 break;
2530 }
2531
2532 InVals.push_back(ArgValue);
2533
2534 } else { // VA.isRegLoc()
2535 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
2536 unsigned ArgOffset = VA.getLocMemOffset();
Amara Emerson82da7d02014-08-15 14:29:57 +00002537 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002538
2539 uint32_t BEAlign = 0;
Tim Northover293d4142014-12-03 17:49:26 +00002540 if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
2541 !Ins[i].Flags.isInConsecutiveRegs())
Tim Northover3b0846e2014-05-24 12:50:23 +00002542 BEAlign = 8 - ArgSize;
2543
2544 int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
2545
2546 // Create load nodes to retrieve arguments from the stack.
Mehdi Amini44ede332015-07-09 02:09:04 +00002547 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00002548 SDValue ArgValue;
2549
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002550 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
Tim Northover47e003c2014-05-26 17:21:53 +00002551 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002552 MVT MemVT = VA.getValVT();
2553
Tim Northover47e003c2014-05-26 17:21:53 +00002554 switch (VA.getLocInfo()) {
2555 default:
2556 break;
Tim Northover6890add2014-06-03 13:54:53 +00002557 case CCValAssign::BCvt:
2558 MemVT = VA.getLocVT();
2559 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002560 case CCValAssign::SExt:
2561 ExtType = ISD::SEXTLOAD;
2562 break;
2563 case CCValAssign::ZExt:
2564 ExtType = ISD::ZEXTLOAD;
2565 break;
2566 case CCValAssign::AExt:
2567 ExtType = ISD::EXTLOAD;
2568 break;
Tim Northover3b0846e2014-05-24 12:50:23 +00002569 }
2570
Alex Lorenze40c8a22015-08-11 23:09:45 +00002571 ArgValue = DAG.getExtLoad(
2572 ExtType, DL, VA.getLocVT(), Chain, FIN,
2573 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
2574 MemVT, false, false, false, 0);
Tim Northover47e003c2014-05-26 17:21:53 +00002575
Tim Northover3b0846e2014-05-24 12:50:23 +00002576 InVals.push_back(ArgValue);
2577 }
2578 }
2579
2580 // varargs
2581 if (isVarArg) {
2582 if (!Subtarget->isTargetDarwin()) {
2583 // The AAPCS variadic function ABI is identical to the non-variadic
2584 // one. As a result there may be more arguments in registers and we should
2585 // save them for future reference.
2586 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
2587 }
2588
2589 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2590 // This will point to the next argument passed via stack.
2591 unsigned StackOffset = CCInfo.getNextStackOffset();
2592 // We currently pass all varargs at 8-byte alignment.
2593 StackOffset = ((StackOffset + 7) & ~7);
2594 AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
2595 }
2596
2597 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2598 unsigned StackArgSize = CCInfo.getNextStackOffset();
2599 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2600 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
2601 // This is a non-standard ABI so by fiat I say we're allowed to make full
2602 // use of the stack area to be popped, which must be aligned to 16 bytes in
2603 // any case:
Rui Ueyamada00f2f2016-01-14 21:06:47 +00002604 StackArgSize = alignTo(StackArgSize, 16);
Tim Northover3b0846e2014-05-24 12:50:23 +00002605
2606 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
2607 // a multiple of 16.
2608 FuncInfo->setArgumentStackToRestore(StackArgSize);
2609
2610 // This realignment carries over to the available bytes below. Our own
2611 // callers will guarantee the space is free by giving an aligned value to
2612 // CALLSEQ_START.
2613 }
2614 // Even if we're not expected to free up the space, it's useful to know how
2615 // much is there while considering tail calls (because we can reuse it).
2616 FuncInfo->setBytesInStackArgArea(StackArgSize);
2617
2618 return Chain;
2619}
2620
2621void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
2622 SelectionDAG &DAG, SDLoc DL,
2623 SDValue &Chain) const {
2624 MachineFunction &MF = DAG.getMachineFunction();
2625 MachineFrameInfo *MFI = MF.getFrameInfo();
2626 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
Mehdi Amini44ede332015-07-09 02:09:04 +00002627 auto PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00002628
2629 SmallVector<SDValue, 8> MemOps;
2630
2631 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
2632 AArch64::X3, AArch64::X4, AArch64::X5,
2633 AArch64::X6, AArch64::X7 };
2634 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
Tim Northover3b6b7ca2015-02-21 02:11:17 +00002635 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
Tim Northover3b0846e2014-05-24 12:50:23 +00002636
2637 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
2638 int GPRIdx = 0;
2639 if (GPRSaveSize != 0) {
2640 GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
2641
Mehdi Amini44ede332015-07-09 02:09:04 +00002642 SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00002643
2644 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
2645 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
2646 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
Alex Lorenze40c8a22015-08-11 23:09:45 +00002647 SDValue Store = DAG.getStore(
2648 Val.getValue(1), DL, Val, FIN,
2649 MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8), false,
2650 false, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00002651 MemOps.push_back(Store);
Mehdi Amini44ede332015-07-09 02:09:04 +00002652 FIN =
2653 DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00002654 }
2655 }
2656 FuncInfo->setVarArgsGPRIndex(GPRIdx);
2657 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
2658
2659 if (Subtarget->hasFPARMv8()) {
2660 static const MCPhysReg FPRArgRegs[] = {
2661 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
2662 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
2663 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
Tim Northover3b6b7ca2015-02-21 02:11:17 +00002664 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
Tim Northover3b0846e2014-05-24 12:50:23 +00002665
2666 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
2667 int FPRIdx = 0;
2668 if (FPRSaveSize != 0) {
2669 FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
2670
Mehdi Amini44ede332015-07-09 02:09:04 +00002671 SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00002672
2673 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
2674 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
2675 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
2676
Alex Lorenze40c8a22015-08-11 23:09:45 +00002677 SDValue Store = DAG.getStore(
2678 Val.getValue(1), DL, Val, FIN,
2679 MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16),
2680 false, false, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00002681 MemOps.push_back(Store);
Mehdi Amini44ede332015-07-09 02:09:04 +00002682 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
2683 DAG.getConstant(16, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00002684 }
2685 }
2686 FuncInfo->setVarArgsFPRIndex(FPRIdx);
2687 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
2688 }
2689
2690 if (!MemOps.empty()) {
2691 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2692 }
2693}
2694
2695/// LowerCallResult - Lower the result values of a call into the
2696/// appropriate copies out of appropriate physical registers.
2697SDValue AArch64TargetLowering::LowerCallResult(
2698 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2699 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2700 SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2701 SDValue ThisVal) const {
2702 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2703 ? RetCC_AArch64_WebKit_JS
2704 : RetCC_AArch64_AAPCS;
2705 // Assign locations to each value returned by this call.
2706 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002707 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2708 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002709 CCInfo.AnalyzeCallResult(Ins, RetCC);
2710
2711 // Copy all of the result registers out of their specified physreg.
2712 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2713 CCValAssign VA = RVLocs[i];
2714
2715 // Pass 'this' value directly from the argument to return value, to avoid
2716 // reg unit interference
2717 if (i == 0 && isThisReturn) {
2718 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
2719 "unexpected return calling convention register assignment");
2720 InVals.push_back(ThisVal);
2721 continue;
2722 }
2723
2724 SDValue Val =
2725 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2726 Chain = Val.getValue(1);
2727 InFlag = Val.getValue(2);
2728
2729 switch (VA.getLocInfo()) {
2730 default:
2731 llvm_unreachable("Unknown loc info!");
2732 case CCValAssign::Full:
2733 break;
2734 case CCValAssign::BCvt:
2735 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2736 break;
2737 }
2738
2739 InVals.push_back(Val);
2740 }
2741
2742 return Chain;
2743}
2744
2745bool AArch64TargetLowering::isEligibleForTailCallOptimization(
2746 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2747 bool isCalleeStructRet, bool isCallerStructRet,
2748 const SmallVectorImpl<ISD::OutputArg> &Outs,
2749 const SmallVectorImpl<SDValue> &OutVals,
2750 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2751 // For CallingConv::C this function knows whether the ABI needs
2752 // changing. That's not true for other conventions so they will have to opt in
2753 // manually.
2754 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
2755 return false;
2756
2757 const MachineFunction &MF = DAG.getMachineFunction();
2758 const Function *CallerF = MF.getFunction();
2759 CallingConv::ID CallerCC = CallerF->getCallingConv();
2760 bool CCMatch = CallerCC == CalleeCC;
2761
2762 // Byval parameters hand the function a pointer directly into the stack area
2763 // we want to reuse during a tail call. Working around this *is* possible (see
2764 // X86) but less efficient and uglier in LowerCall.
2765 for (Function::const_arg_iterator i = CallerF->arg_begin(),
2766 e = CallerF->arg_end();
2767 i != e; ++i)
2768 if (i->hasByValAttr())
2769 return false;
2770
2771 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2772 if (IsTailCallConvention(CalleeCC) && CCMatch)
2773 return true;
2774 return false;
2775 }
2776
Oliver Stannard12993dd2014-08-18 12:42:15 +00002777 // Externally-defined functions with weak linkage should not be
2778 // tail-called on AArch64 when the OS does not support dynamic
2779 // pre-emption of symbols, as the AAELF spec requires normal calls
2780 // to undefined weak functions to be replaced with a NOP or jump to the
2781 // next instruction. The behaviour of branch instructions in this
2782 // situation (as used for tail calls) is implementation-defined, so we
2783 // cannot rely on the linker replacing the tail call with a return.
2784 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2785 const GlobalValue *GV = G->getGlobal();
Daniel Sandersc81f4502015-06-16 15:44:21 +00002786 const Triple &TT = getTargetMachine().getTargetTriple();
Saleem Abdulrasool67f72992015-01-03 21:35:00 +00002787 if (GV->hasExternalWeakLinkage() &&
2788 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
Oliver Stannard12993dd2014-08-18 12:42:15 +00002789 return false;
2790 }
2791
Tim Northover3b0846e2014-05-24 12:50:23 +00002792 // Now we search for cases where we can use a tail call without changing the
2793 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
2794 // concept.
2795
2796 // I want anyone implementing a new calling convention to think long and hard
2797 // about this assert.
2798 assert((!isVarArg || CalleeCC == CallingConv::C) &&
2799 "Unexpected variadic calling convention");
2800
2801 if (isVarArg && !Outs.empty()) {
2802 // At least two cases here: if caller is fastcc then we can't have any
2803 // memory arguments (we'd be expected to clean up the stack afterwards). If
2804 // caller is C then we could potentially use its argument area.
2805
2806 // FIXME: for now we take the most conservative of these in both cases:
2807 // disallow all variadic memory operands.
2808 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002809 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2810 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002811
2812 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
Pete Cooper7be8f8f2015-08-03 19:04:32 +00002813 for (const CCValAssign &ArgLoc : ArgLocs)
2814 if (!ArgLoc.isRegLoc())
Tim Northover3b0846e2014-05-24 12:50:23 +00002815 return false;
2816 }
2817
2818 // If the calling conventions do not match, then we'd better make sure the
2819 // results are returned in the same way as what the caller expects.
2820 if (!CCMatch) {
2821 SmallVector<CCValAssign, 16> RVLocs1;
Eric Christopherb5217502014-08-06 18:45:26 +00002822 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
2823 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002824 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
2825
2826 SmallVector<CCValAssign, 16> RVLocs2;
Eric Christopherb5217502014-08-06 18:45:26 +00002827 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
2828 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002829 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
2830
2831 if (RVLocs1.size() != RVLocs2.size())
2832 return false;
2833 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2834 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2835 return false;
2836 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2837 return false;
2838 if (RVLocs1[i].isRegLoc()) {
2839 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2840 return false;
2841 } else {
2842 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2843 return false;
2844 }
2845 }
2846 }
2847
2848 // Nothing more to check if the callee is taking no arguments
2849 if (Outs.empty())
2850 return true;
2851
2852 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002853 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2854 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002855
2856 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2857
2858 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2859
2860 // If the stack arguments for this call would fit into our own save area then
2861 // the call can be made tail.
2862 return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
2863}
2864
2865SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2866 SelectionDAG &DAG,
2867 MachineFrameInfo *MFI,
2868 int ClobberedFI) const {
2869 SmallVector<SDValue, 8> ArgChains;
2870 int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2871 int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2872
2873 // Include the original chain at the beginning of the list. When this is
2874 // used by target LowerCall hooks, this helps legalize find the
2875 // CALLSEQ_BEGIN node.
2876 ArgChains.push_back(Chain);
2877
2878 // Add a chain value for each stack argument corresponding
2879 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2880 UE = DAG.getEntryNode().getNode()->use_end();
2881 U != UE; ++U)
2882 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2883 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2884 if (FI->getIndex() < 0) {
2885 int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2886 int64_t InLastByte = InFirstByte;
2887 InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2888
2889 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2890 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2891 ArgChains.push_back(SDValue(L, 1));
2892 }
2893
2894 // Build a tokenfactor for all the chains.
2895 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2896}
2897
2898bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2899 bool TailCallOpt) const {
2900 return CallCC == CallingConv::Fast && TailCallOpt;
2901}
2902
2903bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2904 return CallCC == CallingConv::Fast;
2905}
2906
2907/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2908/// and add input and output parameter nodes.
2909SDValue
2910AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2911 SmallVectorImpl<SDValue> &InVals) const {
2912 SelectionDAG &DAG = CLI.DAG;
2913 SDLoc &DL = CLI.DL;
2914 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2915 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2916 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2917 SDValue Chain = CLI.Chain;
2918 SDValue Callee = CLI.Callee;
2919 bool &IsTailCall = CLI.IsTailCall;
2920 CallingConv::ID CallConv = CLI.CallConv;
2921 bool IsVarArg = CLI.IsVarArg;
2922
2923 MachineFunction &MF = DAG.getMachineFunction();
2924 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2925 bool IsThisReturn = false;
2926
2927 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2928 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2929 bool IsSibCall = false;
2930
2931 if (IsTailCall) {
2932 // Check if it's really possible to do a tail call.
2933 IsTailCall = isEligibleForTailCallOptimization(
2934 Callee, CallConv, IsVarArg, IsStructRet,
2935 MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
2936 if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2937 report_fatal_error("failed to perform tail call elimination on a call "
2938 "site marked musttail");
2939
2940 // A sibling call is one where we're under the usual C ABI and not planning
2941 // to change that but can still do a tail call:
2942 if (!TailCallOpt && IsTailCall)
2943 IsSibCall = true;
2944
2945 if (IsTailCall)
2946 ++NumTailCalls;
2947 }
2948
2949 // Analyze operands of the call, assigning locations to each operand.
2950 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002951 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
2952 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002953
2954 if (IsVarArg) {
2955 // Handle fixed and variable vector arguments differently.
2956 // Variable vector arguments always go into memory.
2957 unsigned NumArgs = Outs.size();
2958
2959 for (unsigned i = 0; i != NumArgs; ++i) {
2960 MVT ArgVT = Outs[i].VT;
2961 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2962 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2963 /*IsVarArg=*/ !Outs[i].IsFixed);
2964 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2965 assert(!Res && "Call operand has unhandled type");
2966 (void)Res;
2967 }
2968 } else {
2969 // At this point, Outs[].VT may already be promoted to i32. To correctly
2970 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2971 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2972 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2973 // we use a special version of AnalyzeCallOperands to pass in ValVT and
2974 // LocVT.
2975 unsigned NumArgs = Outs.size();
2976 for (unsigned i = 0; i != NumArgs; ++i) {
2977 MVT ValVT = Outs[i].VT;
2978 // Get type of the original argument.
Mehdi Amini44ede332015-07-09 02:09:04 +00002979 EVT ActualVT = getValueType(DAG.getDataLayout(),
2980 CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
Tim Northover3b0846e2014-05-24 12:50:23 +00002981 /*AllowUnknown*/ true);
2982 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2983 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2984 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
Tim Northover3b0846e2014-05-24 12:50:23 +00002985 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
Tim Northover47e003c2014-05-26 17:21:53 +00002986 ValVT = MVT::i8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002987 else if (ActualMVT == MVT::i16)
Tim Northover47e003c2014-05-26 17:21:53 +00002988 ValVT = MVT::i16;
Tim Northover3b0846e2014-05-24 12:50:23 +00002989
2990 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
Tim Northover47e003c2014-05-26 17:21:53 +00002991 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002992 assert(!Res && "Call operand has unhandled type");
2993 (void)Res;
2994 }
2995 }
2996
2997 // Get a count of how many bytes are to be pushed on the stack.
2998 unsigned NumBytes = CCInfo.getNextStackOffset();
2999
3000 if (IsSibCall) {
3001 // Since we're not changing the ABI to make this a tail call, the memory
3002 // operands are already available in the caller's incoming argument space.
3003 NumBytes = 0;
3004 }
3005
3006 // FPDiff is the byte offset of the call's argument area from the callee's.
3007 // Stores to callee stack arguments will be placed in FixedStackSlots offset
3008 // by this amount for a tail call. In a sibling call it must be 0 because the
3009 // caller will deallocate the entire stack and the callee still expects its
3010 // arguments to begin at SP+0. Completely unused for non-tail calls.
3011 int FPDiff = 0;
3012
3013 if (IsTailCall && !IsSibCall) {
3014 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
3015
3016 // Since callee will pop argument stack as a tail call, we must keep the
3017 // popped size 16-byte aligned.
Rui Ueyamada00f2f2016-01-14 21:06:47 +00003018 NumBytes = alignTo(NumBytes, 16);
Tim Northover3b0846e2014-05-24 12:50:23 +00003019
3020 // FPDiff will be negative if this tail call requires more space than we
3021 // would automatically have in our incoming argument space. Positive if we
3022 // can actually shrink the stack.
3023 FPDiff = NumReusableBytes - NumBytes;
3024
3025 // The stack pointer must be 16-byte aligned at all times it's used for a
3026 // memory operation, which in practice means at *all* times and in
3027 // particular across call boundaries. Therefore our own arguments started at
3028 // a 16-byte aligned SP and the delta applied for the tail call should
3029 // satisfy the same constraint.
3030 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
3031 }
3032
3033 // Adjust the stack pointer for the new arguments...
3034 // These operations are automatically eliminated by the prolog/epilog pass
3035 if (!IsSibCall)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003036 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, DL,
3037 true),
3038 DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00003039
Mehdi Amini44ede332015-07-09 02:09:04 +00003040 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
3041 getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00003042
3043 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3044 SmallVector<SDValue, 8> MemOpChains;
Mehdi Amini44ede332015-07-09 02:09:04 +00003045 auto PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003046
3047 // Walk the register/memloc assignments, inserting copies/loads.
3048 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
3049 ++i, ++realArgIdx) {
3050 CCValAssign &VA = ArgLocs[i];
3051 SDValue Arg = OutVals[realArgIdx];
3052 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
3053
3054 // Promote the value if needed.
3055 switch (VA.getLocInfo()) {
3056 default:
3057 llvm_unreachable("Unknown loc info!");
3058 case CCValAssign::Full:
3059 break;
3060 case CCValAssign::SExt:
3061 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3062 break;
3063 case CCValAssign::ZExt:
3064 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3065 break;
3066 case CCValAssign::AExt:
Tim Northover68ae5032014-05-26 17:22:07 +00003067 if (Outs[realArgIdx].ArgVT == MVT::i1) {
3068 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
3069 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3070 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
3071 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003072 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3073 break;
3074 case CCValAssign::BCvt:
3075 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3076 break;
3077 case CCValAssign::FPExt:
3078 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3079 break;
3080 }
3081
3082 if (VA.isRegLoc()) {
3083 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
3084 assert(VA.getLocVT() == MVT::i64 &&
3085 "unexpected calling convention register assignment");
3086 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
3087 "unexpected use of 'returned'");
3088 IsThisReturn = true;
3089 }
3090 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3091 } else {
3092 assert(VA.isMemLoc());
3093
3094 SDValue DstAddr;
3095 MachinePointerInfo DstInfo;
3096
3097 // FIXME: This works on big-endian for composite byvals, which are the
3098 // common case. It should also work for fundamental types too.
3099 uint32_t BEAlign = 0;
3100 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
Amara Emerson82da7d02014-08-15 14:29:57 +00003101 : VA.getValVT().getSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00003102 OpSize = (OpSize + 7) / 8;
Tim Northover293d4142014-12-03 17:49:26 +00003103 if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
3104 !Flags.isInConsecutiveRegs()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00003105 if (OpSize < 8)
3106 BEAlign = 8 - OpSize;
3107 }
3108 unsigned LocMemOffset = VA.getLocMemOffset();
3109 int32_t Offset = LocMemOffset + BEAlign;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003110 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
Mehdi Amini44ede332015-07-09 02:09:04 +00003111 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
Tim Northover3b0846e2014-05-24 12:50:23 +00003112
3113 if (IsTailCall) {
3114 Offset = Offset + FPDiff;
3115 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3116
Mehdi Amini44ede332015-07-09 02:09:04 +00003117 DstAddr = DAG.getFrameIndex(FI, PtrVT);
Alex Lorenze40c8a22015-08-11 23:09:45 +00003118 DstInfo =
3119 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
Tim Northover3b0846e2014-05-24 12:50:23 +00003120
3121 // Make sure any stack arguments overlapping with where we're storing
3122 // are loaded before this eventual operation. Otherwise they'll be
3123 // clobbered.
3124 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
3125 } else {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003126 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00003127
Mehdi Amini44ede332015-07-09 02:09:04 +00003128 DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
Alex Lorenze40c8a22015-08-11 23:09:45 +00003129 DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(),
3130 LocMemOffset);
Tim Northover3b0846e2014-05-24 12:50:23 +00003131 }
3132
3133 if (Outs[i].Flags.isByVal()) {
3134 SDValue SizeNode =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003135 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00003136 SDValue Cpy = DAG.getMemcpy(
3137 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
Krzysztof Parzyszeka46c36b2015-04-13 17:16:45 +00003138 /*isVol = */ false, /*AlwaysInline = */ false,
3139 /*isTailCall = */ false,
3140 DstInfo, MachinePointerInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +00003141
3142 MemOpChains.push_back(Cpy);
3143 } else {
3144 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
3145 // promoted to a legal register type i32, we should truncate Arg back to
3146 // i1/i8/i16.
Tim Northover6890add2014-06-03 13:54:53 +00003147 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
3148 VA.getValVT() == MVT::i16)
3149 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
Tim Northover3b0846e2014-05-24 12:50:23 +00003150
3151 SDValue Store =
3152 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
3153 MemOpChains.push_back(Store);
3154 }
3155 }
3156 }
3157
3158 if (!MemOpChains.empty())
3159 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3160
3161 // Build a sequence of copy-to-reg nodes chained together with token chain
3162 // and flag operands which copy the outgoing args into the appropriate regs.
3163 SDValue InFlag;
Pete Cooper7be8f8f2015-08-03 19:04:32 +00003164 for (auto &RegToPass : RegsToPass) {
3165 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3166 RegToPass.second, InFlag);
Tim Northover3b0846e2014-05-24 12:50:23 +00003167 InFlag = Chain.getValue(1);
3168 }
3169
3170 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3171 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3172 // node so that legalize doesn't hack it.
3173 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3174 Subtarget->isTargetMachO()) {
3175 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3176 const GlobalValue *GV = G->getGlobal();
3177 bool InternalLinkage = GV->hasInternalLinkage();
3178 if (InternalLinkage)
Mehdi Amini44ede332015-07-09 02:09:04 +00003179 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00003180 else {
Mehdi Amini44ede332015-07-09 02:09:04 +00003181 Callee =
3182 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOT);
3183 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
Tim Northover3b0846e2014-05-24 12:50:23 +00003184 }
3185 } else if (ExternalSymbolSDNode *S =
3186 dyn_cast<ExternalSymbolSDNode>(Callee)) {
3187 const char *Sym = S->getSymbol();
Mehdi Amini44ede332015-07-09 02:09:04 +00003188 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
3189 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
Tim Northover3b0846e2014-05-24 12:50:23 +00003190 }
3191 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3192 const GlobalValue *GV = G->getGlobal();
Mehdi Amini44ede332015-07-09 02:09:04 +00003193 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00003194 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3195 const char *Sym = S->getSymbol();
Mehdi Amini44ede332015-07-09 02:09:04 +00003196 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00003197 }
3198
3199 // We don't usually want to end the call-sequence here because we would tidy
3200 // the frame up *after* the call, however in the ABI-changing tail-call case
3201 // we've carefully laid out the parameters so that when sp is reset they'll be
3202 // in the correct location.
3203 if (IsTailCall && !IsSibCall) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003204 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3205 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00003206 InFlag = Chain.getValue(1);
3207 }
3208
3209 std::vector<SDValue> Ops;
3210 Ops.push_back(Chain);
3211 Ops.push_back(Callee);
3212
3213 if (IsTailCall) {
3214 // Each tail call may have to adjust the stack by a different amount, so
3215 // this information must travel along with the operation for eventual
3216 // consumption by emitEpilogue.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003217 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00003218 }
3219
3220 // Add argument registers to the end of the list so that they are known live
3221 // into the call.
Pete Cooper7be8f8f2015-08-03 19:04:32 +00003222 for (auto &RegToPass : RegsToPass)
3223 Ops.push_back(DAG.getRegister(RegToPass.first,
3224 RegToPass.second.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00003225
3226 // Add a register mask operand representing the call-preserved registers.
3227 const uint32_t *Mask;
Eric Christopher905f12d2015-01-29 00:19:42 +00003228 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00003229 if (IsThisReturn) {
3230 // For 'this' returns, use the X0-preserving mask if applicable
Eric Christopher9deb75d2015-03-11 22:42:13 +00003231 Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00003232 if (!Mask) {
3233 IsThisReturn = false;
Eric Christopher9deb75d2015-03-11 22:42:13 +00003234 Mask = TRI->getCallPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00003235 }
3236 } else
Eric Christopher9deb75d2015-03-11 22:42:13 +00003237 Mask = TRI->getCallPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00003238
3239 assert(Mask && "Missing call preserved mask for calling convention");
3240 Ops.push_back(DAG.getRegisterMask(Mask));
3241
3242 if (InFlag.getNode())
3243 Ops.push_back(InFlag);
3244
3245 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3246
3247 // If we're doing a tall call, use a TC_RETURN here rather than an
3248 // actual call instruction.
Arnold Schwaighoferf54b73d2015-05-08 23:52:00 +00003249 if (IsTailCall) {
3250 MF.getFrameInfo()->setHasTailCall();
Tim Northover3b0846e2014-05-24 12:50:23 +00003251 return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
Arnold Schwaighoferf54b73d2015-05-08 23:52:00 +00003252 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003253
3254 // Returns a chain and a flag for retval copy to use.
3255 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
3256 InFlag = Chain.getValue(1);
3257
Rui Ueyamada00f2f2016-01-14 21:06:47 +00003258 uint64_t CalleePopBytes =
3259 DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0;
Tim Northover3b0846e2014-05-24 12:50:23 +00003260
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003261 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3262 DAG.getIntPtrConstant(CalleePopBytes, DL, true),
Tim Northover3b0846e2014-05-24 12:50:23 +00003263 InFlag, DL);
3264 if (!Ins.empty())
3265 InFlag = Chain.getValue(1);
3266
3267 // Handle result values, copying them out of physregs into vregs that we
3268 // return.
3269 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3270 InVals, IsThisReturn,
3271 IsThisReturn ? OutVals[0] : SDValue());
3272}
3273
3274bool AArch64TargetLowering::CanLowerReturn(
3275 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
3276 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
3277 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3278 ? RetCC_AArch64_WebKit_JS
3279 : RetCC_AArch64_AAPCS;
3280 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00003281 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
Tim Northover3b0846e2014-05-24 12:50:23 +00003282 return CCInfo.CheckReturn(Outs, RetCC);
3283}
3284
3285SDValue
3286AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3287 bool isVarArg,
3288 const SmallVectorImpl<ISD::OutputArg> &Outs,
3289 const SmallVectorImpl<SDValue> &OutVals,
3290 SDLoc DL, SelectionDAG &DAG) const {
3291 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3292 ? RetCC_AArch64_WebKit_JS
3293 : RetCC_AArch64_AAPCS;
3294 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00003295 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3296 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00003297 CCInfo.AnalyzeReturn(Outs, RetCC);
3298
3299 // Copy the result values into the output registers.
3300 SDValue Flag;
3301 SmallVector<SDValue, 4> RetOps(1, Chain);
3302 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
3303 ++i, ++realRVLocIdx) {
3304 CCValAssign &VA = RVLocs[i];
3305 assert(VA.isRegLoc() && "Can only return in registers!");
3306 SDValue Arg = OutVals[realRVLocIdx];
3307
3308 switch (VA.getLocInfo()) {
3309 default:
3310 llvm_unreachable("Unknown loc info!");
3311 case CCValAssign::Full:
Tim Northover68ae5032014-05-26 17:22:07 +00003312 if (Outs[i].ArgVT == MVT::i1) {
3313 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
3314 // value. This is strictly redundant on Darwin (which uses "zeroext
3315 // i1"), but will be optimised out before ISel.
3316 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3317 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3318 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003319 break;
3320 case CCValAssign::BCvt:
3321 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3322 break;
3323 }
3324
3325 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
3326 Flag = Chain.getValue(1);
3327 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3328 }
Manman Rencbe4f942015-12-16 21:04:19 +00003329 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3330 const MCPhysReg *I =
3331 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
3332 if (I) {
3333 for (; *I; ++I) {
3334 if (AArch64::GPR64RegClass.contains(*I))
3335 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
3336 else if (AArch64::FPR64RegClass.contains(*I))
3337 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
3338 else
3339 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3340 }
3341 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003342
3343 RetOps[0] = Chain; // Update chain.
3344
3345 // Add the flag if we have it.
3346 if (Flag.getNode())
3347 RetOps.push_back(Flag);
3348
3349 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
3350}
3351
3352//===----------------------------------------------------------------------===//
3353// Other Lowering Code
3354//===----------------------------------------------------------------------===//
3355
3356SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
3357 SelectionDAG &DAG) const {
Mehdi Amini44ede332015-07-09 02:09:04 +00003358 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003359 SDLoc DL(Op);
Asiri Rathnayake369c0302014-09-10 13:54:38 +00003360 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
3361 const GlobalValue *GV = GN->getGlobal();
Tim Northover3b0846e2014-05-24 12:50:23 +00003362 unsigned char OpFlags =
3363 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
3364
3365 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
3366 "unexpected offset in global node");
3367
3368 // This also catched the large code model case for Darwin.
3369 if ((OpFlags & AArch64II::MO_GOT) != 0) {
3370 SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
3371 // FIXME: Once remat is capable of dealing with instructions with register
3372 // operands, expand this into two nodes instead of using a wrapper node.
3373 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3374 }
3375
Asiri Rathnayake369c0302014-09-10 13:54:38 +00003376 if ((OpFlags & AArch64II::MO_CONSTPOOL) != 0) {
3377 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3378 "use of MO_CONSTPOOL only supported on small model");
3379 SDValue Hi = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, AArch64II::MO_PAGE);
3380 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3381 unsigned char LoFlags = AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
3382 SDValue Lo = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, LoFlags);
3383 SDValue PoolAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
Alex Lorenze40c8a22015-08-11 23:09:45 +00003384 SDValue GlobalAddr = DAG.getLoad(
3385 PtrVT, DL, DAG.getEntryNode(), PoolAddr,
3386 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
3387 /*isVolatile=*/false,
3388 /*isNonTemporal=*/true,
3389 /*isInvariant=*/true, 8);
Asiri Rathnayake369c0302014-09-10 13:54:38 +00003390 if (GN->getOffset() != 0)
3391 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalAddr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003392 DAG.getConstant(GN->getOffset(), DL, PtrVT));
Asiri Rathnayake369c0302014-09-10 13:54:38 +00003393 return GlobalAddr;
3394 }
3395
Tim Northover3b0846e2014-05-24 12:50:23 +00003396 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3397 const unsigned char MO_NC = AArch64II::MO_NC;
3398 return DAG.getNode(
3399 AArch64ISD::WrapperLarge, DL, PtrVT,
3400 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
3401 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3402 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3403 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3404 } else {
3405 // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
3406 // the only correct model on Darwin.
3407 SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3408 OpFlags | AArch64II::MO_PAGE);
3409 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
3410 SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
3411
3412 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3413 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3414 }
3415}
3416
3417/// \brief Convert a TLS address reference into the correct sequence of loads
3418/// and calls to compute the variable's address (for Darwin, currently) and
3419/// return an SDValue containing the final node.
3420
3421/// Darwin only has one TLS scheme which must be capable of dealing with the
3422/// fully general situation, in the worst case. This means:
3423/// + "extern __thread" declaration.
3424/// + Defined in a possibly unknown dynamic library.
3425///
3426/// The general system is that each __thread variable has a [3 x i64] descriptor
3427/// which contains information used by the runtime to calculate the address. The
3428/// only part of this the compiler needs to know about is the first xword, which
3429/// contains a function pointer that must be called with the address of the
3430/// entire descriptor in "x0".
3431///
3432/// Since this descriptor may be in a different unit, in general even the
3433/// descriptor must be accessed via an indirect load. The "ideal" code sequence
3434/// is:
3435/// adrp x0, _var@TLVPPAGE
3436/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
3437/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
3438/// ; the function pointer
3439/// blr x1 ; Uses descriptor address in x0
3440/// ; Address of _var is now in x0.
3441///
3442/// If the address of _var's descriptor *is* known to the linker, then it can
3443/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
3444/// a slight efficiency gain.
3445SDValue
3446AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
3447 SelectionDAG &DAG) const {
3448 assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
3449
3450 SDLoc DL(Op);
Mehdi Amini44ede332015-07-09 02:09:04 +00003451 MVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003452 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3453
3454 SDValue TLVPAddr =
3455 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3456 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
3457
3458 // The first entry in the descriptor is a function pointer that we must call
3459 // to obtain the address of the variable.
3460 SDValue Chain = DAG.getEntryNode();
3461 SDValue FuncTLVGet =
Alex Lorenze40c8a22015-08-11 23:09:45 +00003462 DAG.getLoad(MVT::i64, DL, Chain, DescAddr,
3463 MachinePointerInfo::getGOT(DAG.getMachineFunction()), false,
3464 true, true, 8);
Tim Northover3b0846e2014-05-24 12:50:23 +00003465 Chain = FuncTLVGet.getValue(1);
3466
3467 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3468 MFI->setAdjustsStack(true);
3469
3470 // TLS calls preserve all registers except those that absolutely must be
3471 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3472 // silly).
Eric Christopher6c901622015-01-28 03:51:33 +00003473 const uint32_t *Mask =
Eric Christopher905f12d2015-01-29 00:19:42 +00003474 Subtarget->getRegisterInfo()->getTLSCallPreservedMask();
Tim Northover3b0846e2014-05-24 12:50:23 +00003475
3476 // Finally, we can make the call. This is just a degenerate version of a
3477 // normal AArch64 call node: x0 takes the address of the descriptor, and
3478 // returns the address of the variable in this thread.
3479 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
3480 Chain =
3481 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3482 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
3483 DAG.getRegisterMask(Mask), Chain.getValue(1));
3484 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
3485}
3486
3487/// When accessing thread-local variables under either the general-dynamic or
3488/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
3489/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
Kristof Beylsaea84612015-03-04 09:12:08 +00003490/// is a function pointer to carry out the resolution.
Tim Northover3b0846e2014-05-24 12:50:23 +00003491///
Kristof Beylsaea84612015-03-04 09:12:08 +00003492/// The sequence is:
3493/// adrp x0, :tlsdesc:var
3494/// ldr x1, [x0, #:tlsdesc_lo12:var]
3495/// add x0, x0, #:tlsdesc_lo12:var
3496/// .tlsdesccall var
3497/// blr x1
3498/// (TPIDR_EL0 offset now in x0)
Tim Northover3b0846e2014-05-24 12:50:23 +00003499///
Kristof Beylsaea84612015-03-04 09:12:08 +00003500/// The above sequence must be produced unscheduled, to enable the linker to
3501/// optimize/relax this sequence.
3502/// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
3503/// above sequence, and expanded really late in the compilation flow, to ensure
3504/// the sequence is produced as per above.
3505SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr, SDLoc DL,
3506 SelectionDAG &DAG) const {
Mehdi Amini44ede332015-07-09 02:09:04 +00003507 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003508
Kristof Beylsaea84612015-03-04 09:12:08 +00003509 SDValue Chain = DAG.getEntryNode();
Tim Northover3b0846e2014-05-24 12:50:23 +00003510 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Kristof Beylsaea84612015-03-04 09:12:08 +00003511
3512 SmallVector<SDValue, 2> Ops;
3513 Ops.push_back(Chain);
3514 Ops.push_back(SymAddr);
3515
3516 Chain = DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, Ops);
3517 SDValue Glue = Chain.getValue(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003518
3519 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
3520}
3521
3522SDValue
3523AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
3524 SelectionDAG &DAG) const {
3525 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
3526 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3527 "ELF TLS only supported in small memory model");
Kristof Beylsaea84612015-03-04 09:12:08 +00003528 // Different choices can be made for the maximum size of the TLS area for a
3529 // module. For the small address model, the default TLS size is 16MiB and the
3530 // maximum TLS size is 4GiB.
3531 // FIXME: add -mtls-size command line option and make it control the 16MiB
3532 // vs. 4GiB code sequence generation.
Tim Northover3b0846e2014-05-24 12:50:23 +00003533 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3534
3535 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +00003536
3537 if (DAG.getTarget().Options.EmulatedTLS)
3538 return LowerToTLSEmulatedModel(GA, DAG);
3539
Kristof Beylsaea84612015-03-04 09:12:08 +00003540 if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
3541 if (Model == TLSModel::LocalDynamic)
3542 Model = TLSModel::GeneralDynamic;
3543 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003544
3545 SDValue TPOff;
Mehdi Amini44ede332015-07-09 02:09:04 +00003546 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003547 SDLoc DL(Op);
3548 const GlobalValue *GV = GA->getGlobal();
3549
3550 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
3551
3552 if (Model == TLSModel::LocalExec) {
3553 SDValue HiVar = DAG.getTargetGlobalAddress(
Kristof Beylsaea84612015-03-04 09:12:08 +00003554 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
Tim Northover3b0846e2014-05-24 12:50:23 +00003555 SDValue LoVar = DAG.getTargetGlobalAddress(
3556 GV, DL, PtrVT, 0,
Kristof Beylsaea84612015-03-04 09:12:08 +00003557 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
Tim Northover3b0846e2014-05-24 12:50:23 +00003558
Kristof Beylsaea84612015-03-04 09:12:08 +00003559 SDValue TPWithOff_lo =
3560 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003561 HiVar,
3562 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003563 0);
3564 SDValue TPWithOff =
3565 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003566 LoVar,
3567 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003568 0);
3569 return TPWithOff;
Tim Northover3b0846e2014-05-24 12:50:23 +00003570 } else if (Model == TLSModel::InitialExec) {
3571 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3572 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
3573 } else if (Model == TLSModel::LocalDynamic) {
3574 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
3575 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
3576 // the beginning of the module's TLS region, followed by a DTPREL offset
3577 // calculation.
3578
3579 // These accesses will need deduplicating if there's more than one.
3580 AArch64FunctionInfo *MFI =
3581 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3582 MFI->incNumLocalDynamicTLSAccesses();
3583
Tim Northover3b0846e2014-05-24 12:50:23 +00003584 // The call needs a relocation too for linker relaxation. It doesn't make
3585 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3586 // the address.
3587 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
3588 AArch64II::MO_TLS);
3589
3590 // Now we can calculate the offset from TPIDR_EL0 to this module's
3591 // thread-local area.
Kristof Beylsaea84612015-03-04 09:12:08 +00003592 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00003593
3594 // Now use :dtprel_whatever: operations to calculate this variable's offset
3595 // in its thread-storage area.
3596 SDValue HiVar = DAG.getTargetGlobalAddress(
Kristof Beylsaea84612015-03-04 09:12:08 +00003597 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
Tim Northover3b0846e2014-05-24 12:50:23 +00003598 SDValue LoVar = DAG.getTargetGlobalAddress(
3599 GV, DL, MVT::i64, 0,
Tim Northover3b0846e2014-05-24 12:50:23 +00003600 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3601
Kristof Beylsaea84612015-03-04 09:12:08 +00003602 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003603 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003604 0);
3605 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003606 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003607 0);
3608 } else if (Model == TLSModel::GeneralDynamic) {
Tim Northover3b0846e2014-05-24 12:50:23 +00003609 // The call needs a relocation too for linker relaxation. It doesn't make
3610 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3611 // the address.
3612 SDValue SymAddr =
3613 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3614
3615 // Finally we can make a call to calculate the offset from tpidr_el0.
Kristof Beylsaea84612015-03-04 09:12:08 +00003616 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00003617 } else
3618 llvm_unreachable("Unsupported ELF TLS access model");
3619
3620 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
3621}
3622
3623SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
3624 SelectionDAG &DAG) const {
3625 if (Subtarget->isTargetDarwin())
3626 return LowerDarwinGlobalTLSAddress(Op, DAG);
3627 else if (Subtarget->isTargetELF())
3628 return LowerELFGlobalTLSAddress(Op, DAG);
3629
3630 llvm_unreachable("Unexpected platform trying to use TLS");
3631}
3632SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3633 SDValue Chain = Op.getOperand(0);
3634 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3635 SDValue LHS = Op.getOperand(2);
3636 SDValue RHS = Op.getOperand(3);
3637 SDValue Dest = Op.getOperand(4);
3638 SDLoc dl(Op);
3639
3640 // Handle f128 first, since lowering it will result in comparing the return
3641 // value of a libcall against zero, which is just what the rest of LowerBR_CC
3642 // is expecting to deal with.
3643 if (LHS.getValueType() == MVT::f128) {
3644 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3645
3646 // If softenSetCCOperands returned a scalar, we need to compare the result
3647 // against zero to select between true and false values.
3648 if (!RHS.getNode()) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003649 RHS = DAG.getConstant(0, dl, LHS.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00003650 CC = ISD::SETNE;
3651 }
3652 }
3653
3654 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
3655 // instruction.
3656 unsigned Opc = LHS.getOpcode();
Artyom Skrobov314ee042015-11-25 19:41:11 +00003657 if (LHS.getResNo() == 1 && isOneConstant(RHS) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00003658 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3659 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3660 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
3661 "Unexpected condition code.");
3662 // Only lower legal XALUO ops.
3663 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
3664 return SDValue();
3665
3666 // The actual operation with overflow check.
3667 AArch64CC::CondCode OFCC;
3668 SDValue Value, Overflow;
3669 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
3670
3671 if (CC == ISD::SETNE)
3672 OFCC = getInvertedCondCode(OFCC);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003673 SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003674
Ahmed Bougachadf956a22015-02-06 23:15:39 +00003675 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3676 Overflow);
Tim Northover3b0846e2014-05-24 12:50:23 +00003677 }
3678
3679 if (LHS.getValueType().isInteger()) {
3680 assert((LHS.getValueType() == RHS.getValueType()) &&
3681 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3682
3683 // If the RHS of the comparison is zero, we can potentially fold this
3684 // to a specialized branch.
3685 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
3686 if (RHSC && RHSC->getZExtValue() == 0) {
3687 if (CC == ISD::SETEQ) {
3688 // See if we can use a TBZ to fold in an AND as well.
3689 // TBZ has a smaller branch displacement than CBZ. If the offset is
3690 // out of bounds, a late MI-layer pass rewrites branches.
3691 // 403.gcc is an example that hits this case.
3692 if (LHS.getOpcode() == ISD::AND &&
3693 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3694 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3695 SDValue Test = LHS.getOperand(0);
3696 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003697 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003698 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3699 Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003700 }
3701
3702 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
3703 } else if (CC == ISD::SETNE) {
3704 // See if we can use a TBZ to fold in an AND as well.
3705 // TBZ has a smaller branch displacement than CBZ. If the offset is
3706 // out of bounds, a late MI-layer pass rewrites branches.
3707 // 403.gcc is an example that hits this case.
3708 if (LHS.getOpcode() == ISD::AND &&
3709 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3710 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3711 SDValue Test = LHS.getOperand(0);
3712 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003713 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003714 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3715 Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003716 }
3717
3718 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
Chad Rosier579c02c2014-08-01 14:48:56 +00003719 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
3720 // Don't combine AND since emitComparison converts the AND to an ANDS
3721 // (a.k.a. TST) and the test in the test bit and branch instruction
3722 // becomes redundant. This would also increase register pressure.
3723 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3724 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003725 DAG.getConstant(Mask, dl, MVT::i64), Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003726 }
3727 }
Chad Rosier579c02c2014-08-01 14:48:56 +00003728 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
3729 LHS.getOpcode() != ISD::AND) {
3730 // Don't combine AND since emitComparison converts the AND to an ANDS
3731 // (a.k.a. TST) and the test in the test bit and branch instruction
3732 // becomes redundant. This would also increase register pressure.
3733 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3734 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003735 DAG.getConstant(Mask, dl, MVT::i64), Dest);
Chad Rosier579c02c2014-08-01 14:48:56 +00003736 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003737
3738 SDValue CCVal;
3739 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3740 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3741 Cmp);
3742 }
3743
3744 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3745
3746 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3747 // clean. Some of them require two branches to implement.
3748 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3749 AArch64CC::CondCode CC1, CC2;
3750 changeFPCCToAArch64CC(CC, CC1, CC2);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003751 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003752 SDValue BR1 =
3753 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
3754 if (CC2 != AArch64CC::AL) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003755 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003756 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
3757 Cmp);
3758 }
3759
3760 return BR1;
3761}
3762
3763SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
3764 SelectionDAG &DAG) const {
3765 EVT VT = Op.getValueType();
3766 SDLoc DL(Op);
3767
3768 SDValue In1 = Op.getOperand(0);
3769 SDValue In2 = Op.getOperand(1);
3770 EVT SrcVT = In2.getValueType();
Ahmed Bougacha2a97b1b2015-08-13 01:13:56 +00003771
3772 if (SrcVT.bitsLT(VT))
3773 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
3774 else if (SrcVT.bitsGT(VT))
3775 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));
Tim Northover3b0846e2014-05-24 12:50:23 +00003776
3777 EVT VecVT;
3778 EVT EltVT;
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003779 uint64_t EltMask;
3780 SDValue VecVal1, VecVal2;
Tim Northover3b0846e2014-05-24 12:50:23 +00003781 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
3782 EltVT = MVT::i32;
Ahmed Bougachab0ae36f2015-08-04 00:42:34 +00003783 VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32);
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003784 EltMask = 0x80000000ULL;
Tim Northover3b0846e2014-05-24 12:50:23 +00003785
3786 if (!VT.isVector()) {
3787 VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3788 DAG.getUNDEF(VecVT), In1);
3789 VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3790 DAG.getUNDEF(VecVT), In2);
3791 } else {
3792 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3793 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3794 }
3795 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
3796 EltVT = MVT::i64;
3797 VecVT = MVT::v2i64;
3798
Eric Christopher572e03a2015-06-19 01:53:21 +00003799 // We want to materialize a mask with the high bit set, but the AdvSIMD
Tim Northover3b0846e2014-05-24 12:50:23 +00003800 // immediate moves cannot materialize that in a single instruction for
3801 // 64-bit elements. Instead, materialize zero and then negate it.
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003802 EltMask = 0;
Tim Northover3b0846e2014-05-24 12:50:23 +00003803
3804 if (!VT.isVector()) {
3805 VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3806 DAG.getUNDEF(VecVT), In1);
3807 VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3808 DAG.getUNDEF(VecVT), In2);
3809 } else {
3810 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3811 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3812 }
3813 } else {
3814 llvm_unreachable("Invalid type for copysign!");
3815 }
3816
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003817 SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00003818
3819 // If we couldn't materialize the mask above, then the mask vector will be
3820 // the zero vector, and we need to negate it here.
3821 if (VT == MVT::f64 || VT == MVT::v2f64) {
3822 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3823 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3824 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3825 }
3826
3827 SDValue Sel =
3828 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3829
3830 if (VT == MVT::f32)
3831 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3832 else if (VT == MVT::f64)
3833 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3834 else
3835 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3836}
3837
3838SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00003839 if (DAG.getMachineFunction().getFunction()->hasFnAttribute(
3840 Attribute::NoImplicitFloat))
Tim Northover3b0846e2014-05-24 12:50:23 +00003841 return SDValue();
3842
Weiming Zhao7a2d1562014-11-19 00:29:14 +00003843 if (!Subtarget->hasNEON())
3844 return SDValue();
3845
Tim Northover3b0846e2014-05-24 12:50:23 +00003846 // While there is no integer popcount instruction, it can
3847 // be more efficiently lowered to the following sequence that uses
3848 // AdvSIMD registers/instructions as long as the copies to/from
3849 // the AdvSIMD registers are cheap.
3850 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
3851 // CNT V0.8B, V0.8B // 8xbyte pop-counts
3852 // ADDV B0, V0.8B // sum 8xbyte pop-counts
3853 // UMOV X0, V0.B[0] // copy byte result back to integer reg
3854 SDValue Val = Op.getOperand(0);
3855 SDLoc DL(Op);
3856 EVT VT = Op.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00003857
Hao Liue0335d72015-01-30 02:13:53 +00003858 if (VT == MVT::i32)
3859 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
3860 Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
Tim Northover3b0846e2014-05-24 12:50:23 +00003861
Hao Liue0335d72015-01-30 02:13:53 +00003862 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
Tim Northover3b0846e2014-05-24 12:50:23 +00003863 SDValue UaddLV = DAG.getNode(
3864 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003865 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
Tim Northover3b0846e2014-05-24 12:50:23 +00003866
3867 if (VT == MVT::i64)
3868 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3869 return UaddLV;
3870}
3871
3872SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3873
3874 if (Op.getValueType().isVector())
3875 return LowerVSETCC(Op, DAG);
3876
3877 SDValue LHS = Op.getOperand(0);
3878 SDValue RHS = Op.getOperand(1);
3879 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3880 SDLoc dl(Op);
3881
3882 // We chose ZeroOrOneBooleanContents, so use zero and one.
3883 EVT VT = Op.getValueType();
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003884 SDValue TVal = DAG.getConstant(1, dl, VT);
3885 SDValue FVal = DAG.getConstant(0, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00003886
3887 // Handle f128 first, since one possible outcome is a normal integer
3888 // comparison which gets picked up by the next if statement.
3889 if (LHS.getValueType() == MVT::f128) {
3890 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3891
3892 // If softenSetCCOperands returned a scalar, use it.
3893 if (!RHS.getNode()) {
3894 assert(LHS.getValueType() == Op.getValueType() &&
3895 "Unexpected setcc expansion!");
3896 return LHS;
3897 }
3898 }
3899
3900 if (LHS.getValueType().isInteger()) {
3901 SDValue CCVal;
3902 SDValue Cmp =
3903 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3904
3905 // Note that we inverted the condition above, so we reverse the order of
3906 // the true and false operands here. This will allow the setcc to be
3907 // matched to a single CSINC instruction.
3908 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3909 }
3910
3911 // Now we know we're dealing with FP values.
3912 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3913
3914 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3915 // and do the comparison.
3916 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3917
3918 AArch64CC::CondCode CC1, CC2;
3919 changeFPCCToAArch64CC(CC, CC1, CC2);
3920 if (CC2 == AArch64CC::AL) {
3921 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003922 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003923
3924 // Note that we inverted the condition above, so we reverse the order of
3925 // the true and false operands here. This will allow the setcc to be
3926 // matched to a single CSINC instruction.
3927 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3928 } else {
3929 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3930 // totally clean. Some of them require two CSELs to implement. As is in
3931 // this case, we emit the first CSEL and then emit a second using the output
3932 // of the first as the RHS. We're effectively OR'ing the two CC's together.
3933
3934 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003935 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003936 SDValue CS1 =
3937 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3938
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003939 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003940 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3941 }
3942}
3943
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003944SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
3945 SDValue RHS, SDValue TVal,
3946 SDValue FVal, SDLoc dl,
Tim Northover3b0846e2014-05-24 12:50:23 +00003947 SelectionDAG &DAG) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00003948 // Handle f128 first, because it will result in a comparison of some RTLIB
3949 // call result against zero.
3950 if (LHS.getValueType() == MVT::f128) {
3951 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3952
3953 // If softenSetCCOperands returned a scalar, we need to compare the result
3954 // against zero to select between true and false values.
3955 if (!RHS.getNode()) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003956 RHS = DAG.getConstant(0, dl, LHS.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00003957 CC = ISD::SETNE;
3958 }
3959 }
3960
Ahmed Bougacha88ddeae2015-11-17 16:45:40 +00003961 // Also handle f16, for which we need to do a f32 comparison.
3962 if (LHS.getValueType() == MVT::f16) {
3963 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
3964 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
3965 }
3966
3967 // Next, handle integers.
Tim Northover3b0846e2014-05-24 12:50:23 +00003968 if (LHS.getValueType().isInteger()) {
3969 assert((LHS.getValueType() == RHS.getValueType()) &&
3970 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3971
3972 unsigned Opcode = AArch64ISD::CSEL;
3973
3974 // If both the TVal and the FVal are constants, see if we can swap them in
3975 // order to for a CSINV or CSINC out of them.
3976 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3977 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3978
3979 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3980 std::swap(TVal, FVal);
3981 std::swap(CTVal, CFVal);
3982 CC = ISD::getSetCCInverse(CC, true);
3983 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3984 std::swap(TVal, FVal);
3985 std::swap(CTVal, CFVal);
3986 CC = ISD::getSetCCInverse(CC, true);
3987 } else if (TVal.getOpcode() == ISD::XOR) {
3988 // If TVal is a NOT we want to swap TVal and FVal so that we can match
3989 // with a CSINV rather than a CSEL.
Artyom Skrobov314ee042015-11-25 19:41:11 +00003990 if (isAllOnesConstant(TVal.getOperand(1))) {
Tim Northover3b0846e2014-05-24 12:50:23 +00003991 std::swap(TVal, FVal);
3992 std::swap(CTVal, CFVal);
3993 CC = ISD::getSetCCInverse(CC, true);
3994 }
3995 } else if (TVal.getOpcode() == ISD::SUB) {
3996 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3997 // that we can match with a CSNEG rather than a CSEL.
Artyom Skrobov314ee042015-11-25 19:41:11 +00003998 if (isNullConstant(TVal.getOperand(0))) {
Tim Northover3b0846e2014-05-24 12:50:23 +00003999 std::swap(TVal, FVal);
4000 std::swap(CTVal, CFVal);
4001 CC = ISD::getSetCCInverse(CC, true);
4002 }
4003 } else if (CTVal && CFVal) {
4004 const int64_t TrueVal = CTVal->getSExtValue();
4005 const int64_t FalseVal = CFVal->getSExtValue();
4006 bool Swap = false;
4007
4008 // If both TVal and FVal are constants, see if FVal is the
4009 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
4010 // instead of a CSEL in that case.
4011 if (TrueVal == ~FalseVal) {
4012 Opcode = AArch64ISD::CSINV;
4013 } else if (TrueVal == -FalseVal) {
4014 Opcode = AArch64ISD::CSNEG;
4015 } else if (TVal.getValueType() == MVT::i32) {
4016 // If our operands are only 32-bit wide, make sure we use 32-bit
4017 // arithmetic for the check whether we can use CSINC. This ensures that
4018 // the addition in the check will wrap around properly in case there is
4019 // an overflow (which would not be the case if we do the check with
4020 // 64-bit arithmetic).
4021 const uint32_t TrueVal32 = CTVal->getZExtValue();
4022 const uint32_t FalseVal32 = CFVal->getZExtValue();
4023
4024 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
4025 Opcode = AArch64ISD::CSINC;
4026
4027 if (TrueVal32 > FalseVal32) {
4028 Swap = true;
4029 }
4030 }
4031 // 64-bit check whether we can use CSINC.
4032 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
4033 Opcode = AArch64ISD::CSINC;
4034
4035 if (TrueVal > FalseVal) {
4036 Swap = true;
4037 }
4038 }
4039
4040 // Swap TVal and FVal if necessary.
4041 if (Swap) {
4042 std::swap(TVal, FVal);
4043 std::swap(CTVal, CFVal);
4044 CC = ISD::getSetCCInverse(CC, true);
4045 }
4046
4047 if (Opcode != AArch64ISD::CSEL) {
4048 // Drop FVal since we can get its value by simply inverting/negating
4049 // TVal.
4050 FVal = TVal;
4051 }
4052 }
4053
4054 SDValue CCVal;
4055 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
4056
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00004057 EVT VT = TVal.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00004058 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
4059 }
4060
4061 // Now we know we're dealing with FP values.
4062 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
4063 assert(LHS.getValueType() == RHS.getValueType());
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00004064 EVT VT = TVal.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00004065 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4066
4067 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
4068 // clean. Some of them require two CSELs to implement.
4069 AArch64CC::CondCode CC1, CC2;
4070 changeFPCCToAArch64CC(CC, CC1, CC2);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004071 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00004072 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
4073
4074 // If we need a second CSEL, emit it, using the output of the first as the
4075 // RHS. We're effectively OR'ing the two CC's together.
4076 if (CC2 != AArch64CC::AL) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004077 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00004078 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
4079 }
4080
4081 // Otherwise, return the output of the first CSEL.
4082 return CS1;
4083}
4084
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00004085SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
4086 SelectionDAG &DAG) const {
4087 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4088 SDValue LHS = Op.getOperand(0);
4089 SDValue RHS = Op.getOperand(1);
4090 SDValue TVal = Op.getOperand(2);
4091 SDValue FVal = Op.getOperand(3);
4092 SDLoc DL(Op);
4093 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4094}
4095
4096SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
4097 SelectionDAG &DAG) const {
4098 SDValue CCVal = Op->getOperand(0);
4099 SDValue TVal = Op->getOperand(1);
4100 SDValue FVal = Op->getOperand(2);
4101 SDLoc DL(Op);
4102
4103 unsigned Opc = CCVal.getOpcode();
4104 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
4105 // instruction.
4106 if (CCVal.getResNo() == 1 &&
4107 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4108 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
4109 // Only lower legal XALUO ops.
4110 if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
4111 return SDValue();
4112
4113 AArch64CC::CondCode OFCC;
4114 SDValue Value, Overflow;
4115 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004116 SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00004117
4118 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
4119 CCVal, Overflow);
4120 }
4121
4122 // Lower it the same way as we would lower a SELECT_CC node.
4123 ISD::CondCode CC;
4124 SDValue LHS, RHS;
4125 if (CCVal.getOpcode() == ISD::SETCC) {
4126 LHS = CCVal.getOperand(0);
4127 RHS = CCVal.getOperand(1);
4128 CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
4129 } else {
4130 LHS = CCVal;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004131 RHS = DAG.getConstant(0, DL, CCVal.getValueType());
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00004132 CC = ISD::SETNE;
4133 }
4134 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4135}
4136
Tim Northover3b0846e2014-05-24 12:50:23 +00004137SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
4138 SelectionDAG &DAG) const {
4139 // Jump table entries as PC relative offsets. No additional tweaking
4140 // is necessary here. Just get the address of the jump table.
4141 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
Mehdi Amini44ede332015-07-09 02:09:04 +00004142 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004143 SDLoc DL(Op);
4144
4145 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4146 !Subtarget->isTargetMachO()) {
4147 const unsigned char MO_NC = AArch64II::MO_NC;
4148 return DAG.getNode(
4149 AArch64ISD::WrapperLarge, DL, PtrVT,
4150 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
4151 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
4152 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
4153 DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
4154 AArch64II::MO_G0 | MO_NC));
4155 }
4156
4157 SDValue Hi =
4158 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
4159 SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
4160 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4161 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4162 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4163}
4164
4165SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
4166 SelectionDAG &DAG) const {
4167 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
Mehdi Amini44ede332015-07-09 02:09:04 +00004168 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004169 SDLoc DL(Op);
4170
4171 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
4172 // Use the GOT for the large code model on iOS.
4173 if (Subtarget->isTargetMachO()) {
4174 SDValue GotAddr = DAG.getTargetConstantPool(
4175 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
4176 AArch64II::MO_GOT);
4177 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
4178 }
4179
4180 const unsigned char MO_NC = AArch64II::MO_NC;
4181 return DAG.getNode(
4182 AArch64ISD::WrapperLarge, DL, PtrVT,
4183 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4184 CP->getOffset(), AArch64II::MO_G3),
4185 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4186 CP->getOffset(), AArch64II::MO_G2 | MO_NC),
4187 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4188 CP->getOffset(), AArch64II::MO_G1 | MO_NC),
4189 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4190 CP->getOffset(), AArch64II::MO_G0 | MO_NC));
4191 } else {
4192 // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
4193 // ELF, the only valid one on Darwin.
4194 SDValue Hi =
4195 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4196 CP->getOffset(), AArch64II::MO_PAGE);
4197 SDValue Lo = DAG.getTargetConstantPool(
4198 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
4199 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4200
4201 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4202 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4203 }
4204}
4205
4206SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
4207 SelectionDAG &DAG) const {
4208 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
Mehdi Amini44ede332015-07-09 02:09:04 +00004209 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004210 SDLoc DL(Op);
4211 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4212 !Subtarget->isTargetMachO()) {
4213 const unsigned char MO_NC = AArch64II::MO_NC;
4214 return DAG.getNode(
4215 AArch64ISD::WrapperLarge, DL, PtrVT,
4216 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
4217 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
4218 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
4219 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
4220 } else {
4221 SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
4222 SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
4223 AArch64II::MO_NC);
4224 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4225 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4226 }
4227}
4228
4229SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
4230 SelectionDAG &DAG) const {
4231 AArch64FunctionInfo *FuncInfo =
4232 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
4233
4234 SDLoc DL(Op);
Mehdi Amini44ede332015-07-09 02:09:04 +00004235 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
4236 getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004237 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4238 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
4239 MachinePointerInfo(SV), false, false, 0);
4240}
4241
4242SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
4243 SelectionDAG &DAG) const {
4244 // The layout of the va_list struct is specified in the AArch64 Procedure Call
4245 // Standard, section B.3.
4246 MachineFunction &MF = DAG.getMachineFunction();
4247 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
Mehdi Amini44ede332015-07-09 02:09:04 +00004248 auto PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004249 SDLoc DL(Op);
4250
4251 SDValue Chain = Op.getOperand(0);
4252 SDValue VAList = Op.getOperand(1);
4253 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4254 SmallVector<SDValue, 4> MemOps;
4255
4256 // void *__stack at offset 0
Mehdi Amini44ede332015-07-09 02:09:04 +00004257 SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004258 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
4259 MachinePointerInfo(SV), false, false, 8));
4260
4261 // void *__gr_top at offset 8
4262 int GPRSize = FuncInfo->getVarArgsGPRSize();
4263 if (GPRSize > 0) {
4264 SDValue GRTop, GRTopAddr;
4265
Mehdi Amini44ede332015-07-09 02:09:04 +00004266 GRTopAddr =
4267 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004268
Mehdi Amini44ede332015-07-09 02:09:04 +00004269 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
4270 GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
4271 DAG.getConstant(GPRSize, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004272
4273 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
4274 MachinePointerInfo(SV, 8), false, false, 8));
4275 }
4276
4277 // void *__vr_top at offset 16
4278 int FPRSize = FuncInfo->getVarArgsFPRSize();
4279 if (FPRSize > 0) {
4280 SDValue VRTop, VRTopAddr;
Mehdi Amini44ede332015-07-09 02:09:04 +00004281 VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4282 DAG.getConstant(16, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004283
Mehdi Amini44ede332015-07-09 02:09:04 +00004284 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
4285 VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
4286 DAG.getConstant(FPRSize, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004287
4288 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
4289 MachinePointerInfo(SV, 16), false, false, 8));
4290 }
4291
4292 // int __gr_offs at offset 24
Mehdi Amini44ede332015-07-09 02:09:04 +00004293 SDValue GROffsAddr =
4294 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT));
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004295 MemOps.push_back(DAG.getStore(Chain, DL,
4296 DAG.getConstant(-GPRSize, DL, MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00004297 GROffsAddr, MachinePointerInfo(SV, 24), false,
4298 false, 4));
4299
4300 // int __vr_offs at offset 28
Mehdi Amini44ede332015-07-09 02:09:04 +00004301 SDValue VROffsAddr =
4302 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT));
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004303 MemOps.push_back(DAG.getStore(Chain, DL,
4304 DAG.getConstant(-FPRSize, DL, MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00004305 VROffsAddr, MachinePointerInfo(SV, 28), false,
4306 false, 4));
4307
4308 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
4309}
4310
4311SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
4312 SelectionDAG &DAG) const {
4313 return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
4314 : LowerAAPCS_VASTART(Op, DAG);
4315}
4316
4317SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
4318 SelectionDAG &DAG) const {
4319 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
4320 // pointer.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004321 SDLoc DL(Op);
Tim Northover3b0846e2014-05-24 12:50:23 +00004322 unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
4323 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
4324 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
4325
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004326 return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1),
4327 Op.getOperand(2),
4328 DAG.getConstant(VaListSize, DL, MVT::i32),
Krzysztof Parzyszeka46c36b2015-04-13 17:16:45 +00004329 8, false, false, false, MachinePointerInfo(DestSV),
Tim Northover3b0846e2014-05-24 12:50:23 +00004330 MachinePointerInfo(SrcSV));
4331}
4332
4333SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
4334 assert(Subtarget->isTargetDarwin() &&
4335 "automatic va_arg instruction only works on Darwin");
4336
4337 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4338 EVT VT = Op.getValueType();
4339 SDLoc DL(Op);
4340 SDValue Chain = Op.getOperand(0);
4341 SDValue Addr = Op.getOperand(1);
4342 unsigned Align = Op.getConstantOperandVal(3);
Mehdi Amini44ede332015-07-09 02:09:04 +00004343 auto PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004344
Mehdi Amini44ede332015-07-09 02:09:04 +00004345 SDValue VAList = DAG.getLoad(PtrVT, DL, Chain, Addr, MachinePointerInfo(V),
4346 false, false, false, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00004347 Chain = VAList.getValue(1);
4348
4349 if (Align > 8) {
4350 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
Mehdi Amini44ede332015-07-09 02:09:04 +00004351 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4352 DAG.getConstant(Align - 1, DL, PtrVT));
4353 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
4354 DAG.getConstant(-(int64_t)Align, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004355 }
4356
4357 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
Mehdi Amini44ede332015-07-09 02:09:04 +00004358 uint64_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
Tim Northover3b0846e2014-05-24 12:50:23 +00004359
4360 // Scalar integer and FP values smaller than 64 bits are implicitly extended
4361 // up to 64 bits. At the very least, we have to increase the striding of the
4362 // vaargs list to match this, and for FP values we need to introduce
4363 // FP_ROUND nodes as well.
4364 if (VT.isInteger() && !VT.isVector())
4365 ArgSize = 8;
4366 bool NeedFPTrunc = false;
4367 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
4368 ArgSize = 8;
4369 NeedFPTrunc = true;
4370 }
4371
4372 // Increment the pointer, VAList, to the next vaarg
Mehdi Amini44ede332015-07-09 02:09:04 +00004373 SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4374 DAG.getConstant(ArgSize, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004375 // Store the incremented VAList to the legalized pointer
4376 SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
4377 false, false, 0);
4378
4379 // Load the actual argument out of the pointer VAList
4380 if (NeedFPTrunc) {
4381 // Load the value as an f64.
4382 SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
4383 MachinePointerInfo(), false, false, false, 0);
4384 // Round the value down to an f32.
4385 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004386 DAG.getIntPtrConstant(1, DL));
Tim Northover3b0846e2014-05-24 12:50:23 +00004387 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
4388 // Merge the rounded value with the chain output of the load.
4389 return DAG.getMergeValues(Ops, DL);
4390 }
4391
4392 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
4393 false, false, 0);
4394}
4395
4396SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
4397 SelectionDAG &DAG) const {
4398 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4399 MFI->setFrameAddressIsTaken(true);
4400
4401 EVT VT = Op.getValueType();
4402 SDLoc DL(Op);
4403 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4404 SDValue FrameAddr =
4405 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
4406 while (Depth--)
4407 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
4408 MachinePointerInfo(), false, false, false, 0);
4409 return FrameAddr;
4410}
4411
4412// FIXME? Maybe this could be a TableGen attribute on some registers and
4413// this table could be generated automatically from RegInfo.
Pat Gavlina717f252015-07-09 17:40:29 +00004414unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT,
4415 SelectionDAG &DAG) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004416 unsigned Reg = StringSwitch<unsigned>(RegName)
4417 .Case("sp", AArch64::SP)
4418 .Default(0);
4419 if (Reg)
4420 return Reg;
Luke Cheeseman85fd06d2015-06-01 12:02:47 +00004421 report_fatal_error(Twine("Invalid register name \""
4422 + StringRef(RegName) + "\"."));
Tim Northover3b0846e2014-05-24 12:50:23 +00004423}
4424
4425SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
4426 SelectionDAG &DAG) const {
4427 MachineFunction &MF = DAG.getMachineFunction();
4428 MachineFrameInfo *MFI = MF.getFrameInfo();
4429 MFI->setReturnAddressIsTaken(true);
4430
4431 EVT VT = Op.getValueType();
4432 SDLoc DL(Op);
4433 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4434 if (Depth) {
4435 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
Mehdi Amini44ede332015-07-09 02:09:04 +00004436 SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004437 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4438 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4439 MachinePointerInfo(), false, false, false, 0);
4440 }
4441
4442 // Return LR, which contains the return address. Mark it an implicit live-in.
4443 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
4444 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4445}
4446
4447/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4448/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4449SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
4450 SelectionDAG &DAG) const {
4451 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4452 EVT VT = Op.getValueType();
4453 unsigned VTBits = VT.getSizeInBits();
4454 SDLoc dl(Op);
4455 SDValue ShOpLo = Op.getOperand(0);
4456 SDValue ShOpHi = Op.getOperand(1);
4457 SDValue ShAmt = Op.getOperand(2);
Tim Northover3b0846e2014-05-24 12:50:23 +00004458 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4459
4460 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4461
4462 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004463 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
Tim Northoverf3be9d52015-12-02 00:33:54 +00004464 SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4465
4466 // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
4467 // is "undef". We wanted 0, so CSEL it directly.
4468 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
4469 ISD::SETEQ, dl, DAG);
4470 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
4471 HiBitsForLo =
4472 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
4473 HiBitsForLo, CCVal, Cmp);
4474
Tim Northover3b0846e2014-05-24 12:50:23 +00004475 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004476 DAG.getConstant(VTBits, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004477
Tim Northoverf3be9d52015-12-02 00:33:54 +00004478 SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4479 SDValue LoForNormalShift =
4480 DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo);
Tim Northover3b0846e2014-05-24 12:50:23 +00004481
Tim Northoverf3be9d52015-12-02 00:33:54 +00004482 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
4483 dl, DAG);
4484 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
4485 SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4486 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
4487 LoForNormalShift, CCVal, Cmp);
Tim Northover3b0846e2014-05-24 12:50:23 +00004488
4489 // AArch64 shifts larger than the register width are wrapped rather than
4490 // clamped, so we can't just emit "hi >> x".
Tim Northoverf3be9d52015-12-02 00:33:54 +00004491 SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4492 SDValue HiForBigShift =
4493 Opc == ISD::SRA
4494 ? DAG.getNode(Opc, dl, VT, ShOpHi,
4495 DAG.getConstant(VTBits - 1, dl, MVT::i64))
4496 : DAG.getConstant(0, dl, VT);
4497 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
4498 HiForNormalShift, CCVal, Cmp);
Tim Northover3b0846e2014-05-24 12:50:23 +00004499
4500 SDValue Ops[2] = { Lo, Hi };
4501 return DAG.getMergeValues(Ops, dl);
4502}
4503
Tim Northoverf3be9d52015-12-02 00:33:54 +00004504
Tim Northover3b0846e2014-05-24 12:50:23 +00004505/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4506/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4507SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
Tim Northoverf3be9d52015-12-02 00:33:54 +00004508 SelectionDAG &DAG) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004509 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4510 EVT VT = Op.getValueType();
4511 unsigned VTBits = VT.getSizeInBits();
4512 SDLoc dl(Op);
4513 SDValue ShOpLo = Op.getOperand(0);
4514 SDValue ShOpHi = Op.getOperand(1);
4515 SDValue ShAmt = Op.getOperand(2);
Tim Northover3b0846e2014-05-24 12:50:23 +00004516
4517 assert(Op.getOpcode() == ISD::SHL_PARTS);
4518 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004519 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
Tim Northoverf3be9d52015-12-02 00:33:54 +00004520 SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4521
4522 // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
4523 // is "undef". We wanted 0, so CSEL it directly.
4524 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
4525 ISD::SETEQ, dl, DAG);
4526 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
4527 LoBitsForHi =
4528 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
4529 LoBitsForHi, CCVal, Cmp);
4530
Tim Northover3b0846e2014-05-24 12:50:23 +00004531 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004532 DAG.getConstant(VTBits, dl, MVT::i64));
Tim Northoverf3be9d52015-12-02 00:33:54 +00004533 SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4534 SDValue HiForNormalShift =
4535 DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
Tim Northover3b0846e2014-05-24 12:50:23 +00004536
Tim Northoverf3be9d52015-12-02 00:33:54 +00004537 SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
Tim Northover3b0846e2014-05-24 12:50:23 +00004538
Tim Northoverf3be9d52015-12-02 00:33:54 +00004539 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
4540 dl, DAG);
4541 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
4542 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
4543 HiForNormalShift, CCVal, Cmp);
Tim Northover3b0846e2014-05-24 12:50:23 +00004544
4545 // AArch64 shifts of larger than register sizes are wrapped rather than
4546 // clamped, so we can't just emit "lo << a" if a is too big.
Tim Northoverf3be9d52015-12-02 00:33:54 +00004547 SDValue LoForBigShift = DAG.getConstant(0, dl, VT);
4548 SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4549 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
4550 LoForNormalShift, CCVal, Cmp);
Tim Northover3b0846e2014-05-24 12:50:23 +00004551
4552 SDValue Ops[2] = { Lo, Hi };
4553 return DAG.getMergeValues(Ops, dl);
4554}
4555
4556bool AArch64TargetLowering::isOffsetFoldingLegal(
4557 const GlobalAddressSDNode *GA) const {
4558 // The AArch64 target doesn't support folding offsets into global addresses.
4559 return false;
4560}
4561
4562bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4563 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
4564 // FIXME: We should be able to handle f128 as well with a clever lowering.
4565 if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
4566 return true;
4567
4568 if (VT == MVT::f64)
4569 return AArch64_AM::getFP64Imm(Imm) != -1;
4570 else if (VT == MVT::f32)
4571 return AArch64_AM::getFP32Imm(Imm) != -1;
4572 return false;
4573}
4574
4575//===----------------------------------------------------------------------===//
4576// AArch64 Optimization Hooks
4577//===----------------------------------------------------------------------===//
4578
4579//===----------------------------------------------------------------------===//
4580// AArch64 Inline Assembly Support
4581//===----------------------------------------------------------------------===//
4582
4583// Table of Constraints
4584// TODO: This is the current set of constraints supported by ARM for the
4585// compiler, not all of them may make sense, e.g. S may be difficult to support.
4586//
4587// r - A general register
4588// w - An FP/SIMD register of some size in the range v0-v31
4589// x - An FP/SIMD register of some size in the range v0-v15
4590// I - Constant that can be used with an ADD instruction
4591// J - Constant that can be used with a SUB instruction
4592// K - Constant that can be used with a 32-bit logical instruction
4593// L - Constant that can be used with a 64-bit logical instruction
4594// M - Constant that can be used as a 32-bit MOV immediate
4595// N - Constant that can be used as a 64-bit MOV immediate
4596// Q - A memory reference with base register and no offset
4597// S - A symbolic address
4598// Y - Floating point constant zero
4599// Z - Integer constant zero
4600//
4601// Note that general register operands will be output using their 64-bit x
4602// register name, whatever the size of the variable, unless the asm operand
4603// is prefixed by the %w modifier. Floating-point and SIMD register operands
4604// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
4605// %q modifier.
4606
4607/// getConstraintType - Given a constraint letter, return the type of
4608/// constraint it is for this target.
4609AArch64TargetLowering::ConstraintType
Benjamin Kramer9bfb6272015-07-05 19:29:18 +00004610AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004611 if (Constraint.size() == 1) {
4612 switch (Constraint[0]) {
4613 default:
4614 break;
4615 case 'z':
4616 return C_Other;
4617 case 'x':
4618 case 'w':
4619 return C_RegisterClass;
4620 // An address with a single base register. Due to the way we
4621 // currently handle addresses it is the same as 'r'.
4622 case 'Q':
4623 return C_Memory;
4624 }
4625 }
4626 return TargetLowering::getConstraintType(Constraint);
4627}
4628
4629/// Examine constraint type and operand type and determine a weight value.
4630/// This object must already have been set up with the operand type
4631/// and the current alternative constraint selected.
4632TargetLowering::ConstraintWeight
4633AArch64TargetLowering::getSingleConstraintMatchWeight(
4634 AsmOperandInfo &info, const char *constraint) const {
4635 ConstraintWeight weight = CW_Invalid;
4636 Value *CallOperandVal = info.CallOperandVal;
4637 // If we don't have a value, we can't do a match,
4638 // but allow it at the lowest weight.
4639 if (!CallOperandVal)
4640 return CW_Default;
4641 Type *type = CallOperandVal->getType();
4642 // Look at the constraint type.
4643 switch (*constraint) {
4644 default:
4645 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
4646 break;
4647 case 'x':
4648 case 'w':
4649 if (type->isFloatingPointTy() || type->isVectorTy())
4650 weight = CW_Register;
4651 break;
4652 case 'z':
4653 weight = CW_Constant;
4654 break;
4655 }
4656 return weight;
4657}
4658
4659std::pair<unsigned, const TargetRegisterClass *>
4660AArch64TargetLowering::getRegForInlineAsmConstraint(
Benjamin Kramer9bfb6272015-07-05 19:29:18 +00004661 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004662 if (Constraint.size() == 1) {
4663 switch (Constraint[0]) {
4664 case 'r':
4665 if (VT.getSizeInBits() == 64)
4666 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
4667 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
4668 case 'w':
4669 if (VT == MVT::f32)
4670 return std::make_pair(0U, &AArch64::FPR32RegClass);
4671 if (VT.getSizeInBits() == 64)
4672 return std::make_pair(0U, &AArch64::FPR64RegClass);
4673 if (VT.getSizeInBits() == 128)
4674 return std::make_pair(0U, &AArch64::FPR128RegClass);
4675 break;
4676 // The instructions that this constraint is designed for can
4677 // only take 128-bit registers so just use that regclass.
4678 case 'x':
4679 if (VT.getSizeInBits() == 128)
4680 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
4681 break;
4682 }
4683 }
4684 if (StringRef("{cc}").equals_lower(Constraint))
4685 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
4686
4687 // Use the default implementation in TargetLowering to convert the register
4688 // constraint into a member of a register class.
4689 std::pair<unsigned, const TargetRegisterClass *> Res;
Eric Christopher11e4df72015-02-26 22:38:43 +00004690 Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004691
4692 // Not found as a standard register?
4693 if (!Res.second) {
4694 unsigned Size = Constraint.size();
4695 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
4696 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
Benjamin Kramer9bfb6272015-07-05 19:29:18 +00004697 int RegNo;
4698 bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
4699 if (!Failed && RegNo >= 0 && RegNo <= 31) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004700 // v0 - v31 are aliases of q0 - q31.
4701 // By default we'll emit v0-v31 for this unless there's a modifier where
4702 // we'll emit the correct register as well.
4703 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
4704 Res.second = &AArch64::FPR128RegClass;
4705 }
4706 }
4707 }
4708
4709 return Res;
4710}
4711
4712/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4713/// vector. If it is invalid, don't add anything to Ops.
4714void AArch64TargetLowering::LowerAsmOperandForConstraint(
4715 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
4716 SelectionDAG &DAG) const {
4717 SDValue Result;
4718
4719 // Currently only support length 1 constraints.
4720 if (Constraint.length() != 1)
4721 return;
4722
4723 char ConstraintLetter = Constraint[0];
4724 switch (ConstraintLetter) {
4725 default:
4726 break;
4727
4728 // This set of constraints deal with valid constants for various instructions.
4729 // Validate and return a target constant for them if we can.
4730 case 'z': {
4731 // 'z' maps to xzr or wzr so it needs an input of 0.
Artyom Skrobov314ee042015-11-25 19:41:11 +00004732 if (!isNullConstant(Op))
Tim Northover3b0846e2014-05-24 12:50:23 +00004733 return;
4734
4735 if (Op.getValueType() == MVT::i64)
4736 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
4737 else
4738 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
4739 break;
4740 }
4741
4742 case 'I':
4743 case 'J':
4744 case 'K':
4745 case 'L':
4746 case 'M':
4747 case 'N':
4748 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4749 if (!C)
4750 return;
4751
4752 // Grab the value and do some validation.
4753 uint64_t CVal = C->getZExtValue();
4754 switch (ConstraintLetter) {
4755 // The I constraint applies only to simple ADD or SUB immediate operands:
4756 // i.e. 0 to 4095 with optional shift by 12
4757 // The J constraint applies only to ADD or SUB immediates that would be
4758 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
4759 // instruction [or vice versa], in other words -1 to -4095 with optional
4760 // left shift by 12.
4761 case 'I':
4762 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
4763 break;
4764 return;
4765 case 'J': {
4766 uint64_t NVal = -C->getSExtValue();
Tim Northover2c46beb2014-07-27 07:10:29 +00004767 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
4768 CVal = C->getSExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004769 break;
Tim Northover2c46beb2014-07-27 07:10:29 +00004770 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004771 return;
4772 }
4773 // The K and L constraints apply *only* to logical immediates, including
4774 // what used to be the MOVI alias for ORR (though the MOVI alias has now
4775 // been removed and MOV should be used). So these constraints have to
4776 // distinguish between bit patterns that are valid 32-bit or 64-bit
4777 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4778 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4779 // versa.
4780 case 'K':
4781 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4782 break;
4783 return;
4784 case 'L':
4785 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4786 break;
4787 return;
4788 // The M and N constraints are a superset of K and L respectively, for use
4789 // with the MOV (immediate) alias. As well as the logical immediates they
4790 // also match 32 or 64-bit immediates that can be loaded either using a
4791 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4792 // (M) or 64-bit 0x1234000000000000 (N) etc.
4793 // As a note some of this code is liberally stolen from the asm parser.
4794 case 'M': {
4795 if (!isUInt<32>(CVal))
4796 return;
4797 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4798 break;
4799 if ((CVal & 0xFFFF) == CVal)
4800 break;
4801 if ((CVal & 0xFFFF0000ULL) == CVal)
4802 break;
4803 uint64_t NCVal = ~(uint32_t)CVal;
4804 if ((NCVal & 0xFFFFULL) == NCVal)
4805 break;
4806 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4807 break;
4808 return;
4809 }
4810 case 'N': {
4811 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4812 break;
4813 if ((CVal & 0xFFFFULL) == CVal)
4814 break;
4815 if ((CVal & 0xFFFF0000ULL) == CVal)
4816 break;
4817 if ((CVal & 0xFFFF00000000ULL) == CVal)
4818 break;
4819 if ((CVal & 0xFFFF000000000000ULL) == CVal)
4820 break;
4821 uint64_t NCVal = ~CVal;
4822 if ((NCVal & 0xFFFFULL) == NCVal)
4823 break;
4824 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4825 break;
4826 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4827 break;
4828 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4829 break;
4830 return;
4831 }
4832 default:
4833 return;
4834 }
4835
4836 // All assembler immediates are 64-bit integers.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004837 Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00004838 break;
4839 }
4840
4841 if (Result.getNode()) {
4842 Ops.push_back(Result);
4843 return;
4844 }
4845
4846 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4847}
4848
4849//===----------------------------------------------------------------------===//
4850// AArch64 Advanced SIMD Support
4851//===----------------------------------------------------------------------===//
4852
4853/// WidenVector - Given a value in the V64 register class, produce the
4854/// equivalent value in the V128 register class.
4855static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4856 EVT VT = V64Reg.getValueType();
4857 unsigned NarrowSize = VT.getVectorNumElements();
4858 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4859 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4860 SDLoc DL(V64Reg);
4861
4862 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004863 V64Reg, DAG.getConstant(0, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00004864}
4865
4866/// getExtFactor - Determine the adjustment factor for the position when
4867/// generating an "extract from vector registers" instruction.
4868static unsigned getExtFactor(SDValue &V) {
4869 EVT EltType = V.getValueType().getVectorElementType();
4870 return EltType.getSizeInBits() / 8;
4871}
4872
4873/// NarrowVector - Given a value in the V128 register class, produce the
4874/// equivalent value in the V64 register class.
4875static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4876 EVT VT = V128Reg.getValueType();
4877 unsigned WideSize = VT.getVectorNumElements();
4878 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4879 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4880 SDLoc DL(V128Reg);
4881
4882 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4883}
4884
4885// Gather data to see if the operation can be modelled as a
4886// shuffle in combination with VEXTs.
4887SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4888 SelectionDAG &DAG) const {
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004889 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00004890 SDLoc dl(Op);
4891 EVT VT = Op.getValueType();
4892 unsigned NumElts = VT.getVectorNumElements();
4893
Tim Northover7324e842014-07-24 15:39:55 +00004894 struct ShuffleSourceInfo {
4895 SDValue Vec;
4896 unsigned MinElt;
4897 unsigned MaxElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004898
Tim Northover7324e842014-07-24 15:39:55 +00004899 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
4900 // be compatible with the shuffle we intend to construct. As a result
4901 // ShuffleVec will be some sliding window into the original Vec.
4902 SDValue ShuffleVec;
4903
4904 // Code should guarantee that element i in Vec starts at element "WindowBase
4905 // + i * WindowScale in ShuffleVec".
4906 int WindowBase;
4907 int WindowScale;
4908
4909 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
4910 ShuffleSourceInfo(SDValue Vec)
4911 : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
4912 WindowScale(1) {}
4913 };
4914
4915 // First gather all vectors used as an immediate source for this BUILD_VECTOR
4916 // node.
4917 SmallVector<ShuffleSourceInfo, 2> Sources;
Tim Northover3b0846e2014-05-24 12:50:23 +00004918 for (unsigned i = 0; i < NumElts; ++i) {
4919 SDValue V = Op.getOperand(i);
4920 if (V.getOpcode() == ISD::UNDEF)
4921 continue;
Ahmed Bougachadfc77352016-01-14 02:12:30 +00004922 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4923 !isa<ConstantSDNode>(V.getOperand(1))) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004924 // A shuffle can only come from building a vector from various
Ahmed Bougachadfc77352016-01-14 02:12:30 +00004925 // elements of other vectors, provided their indices are constant.
Tim Northover3b0846e2014-05-24 12:50:23 +00004926 return SDValue();
4927 }
4928
Tim Northover7324e842014-07-24 15:39:55 +00004929 // Add this element source to the list if it's not already there.
Tim Northover3b0846e2014-05-24 12:50:23 +00004930 SDValue SourceVec = V.getOperand(0);
Tim Northover7324e842014-07-24 15:39:55 +00004931 auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
4932 if (Source == Sources.end())
James Molloyf497d552014-10-17 17:06:31 +00004933 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
Tim Northover3b0846e2014-05-24 12:50:23 +00004934
Tim Northover7324e842014-07-24 15:39:55 +00004935 // Update the minimum and maximum lane number seen.
4936 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4937 Source->MinElt = std::min(Source->MinElt, EltNo);
4938 Source->MaxElt = std::max(Source->MaxElt, EltNo);
Tim Northover3b0846e2014-05-24 12:50:23 +00004939 }
4940
4941 // Currently only do something sane when at most two source vectors
Tim Northover7324e842014-07-24 15:39:55 +00004942 // are involved.
4943 if (Sources.size() > 2)
Tim Northover3b0846e2014-05-24 12:50:23 +00004944 return SDValue();
4945
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004946 // Find out the smallest element size among result and two sources, and use
4947 // it as element size to build the shuffle_vector.
4948 EVT SmallestEltTy = VT.getVectorElementType();
Tim Northover7324e842014-07-24 15:39:55 +00004949 for (auto &Source : Sources) {
4950 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004951 if (SrcEltTy.bitsLT(SmallestEltTy)) {
4952 SmallestEltTy = SrcEltTy;
4953 }
4954 }
4955 unsigned ResMultiplier =
4956 VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004957 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
4958 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00004959
Tim Northover7324e842014-07-24 15:39:55 +00004960 // If the source vector is too wide or too narrow, we may nevertheless be able
4961 // to construct a compatible shuffle either by concatenating it with UNDEF or
4962 // extracting a suitable range of elements.
4963 for (auto &Src : Sources) {
4964 EVT SrcVT = Src.ShuffleVec.getValueType();
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004965
Tim Northover7324e842014-07-24 15:39:55 +00004966 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
Tim Northover3b0846e2014-05-24 12:50:23 +00004967 continue;
Tim Northover7324e842014-07-24 15:39:55 +00004968
4969 // This stage of the search produces a source with the same element type as
4970 // the original, but with a total width matching the BUILD_VECTOR output.
4971 EVT EltVT = SrcVT.getVectorElementType();
James Molloyf497d552014-10-17 17:06:31 +00004972 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
4973 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
Tim Northover7324e842014-07-24 15:39:55 +00004974
4975 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
4976 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004977 // We can pad out the smaller vector for free, so if it's part of a
4978 // shuffle...
Tim Northover7324e842014-07-24 15:39:55 +00004979 Src.ShuffleVec =
4980 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
4981 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004982 continue;
4983 }
4984
Tim Northover7324e842014-07-24 15:39:55 +00004985 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004986
James Molloyf497d552014-10-17 17:06:31 +00004987 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004988 // Span too large for a VEXT to cope
4989 return SDValue();
4990 }
4991
James Molloyf497d552014-10-17 17:06:31 +00004992 if (Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004993 // The extraction can just take the second half
Tim Northover7324e842014-07-24 15:39:55 +00004994 Src.ShuffleVec =
4995 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004996 DAG.getConstant(NumSrcElts, dl, MVT::i64));
James Molloyf497d552014-10-17 17:06:31 +00004997 Src.WindowBase = -NumSrcElts;
4998 } else if (Src.MaxElt < NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004999 // The extraction can just take the first half
Tim Northover5e84fe32014-12-06 00:33:37 +00005000 Src.ShuffleVec =
5001 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005002 DAG.getConstant(0, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00005003 } else {
5004 // An actual VEXT is needed
Tim Northover5e84fe32014-12-06 00:33:37 +00005005 SDValue VEXTSrc1 =
5006 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005007 DAG.getConstant(0, dl, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00005008 SDValue VEXTSrc2 =
5009 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005010 DAG.getConstant(NumSrcElts, dl, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00005011 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
5012
5013 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005014 VEXTSrc2,
5015 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover7324e842014-07-24 15:39:55 +00005016 Src.WindowBase = -Src.MinElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00005017 }
5018 }
5019
Tim Northover7324e842014-07-24 15:39:55 +00005020 // Another possible incompatibility occurs from the vector element types. We
5021 // can fix this by bitcasting the source vectors to the same type we intend
5022 // for the shuffle.
5023 for (auto &Src : Sources) {
5024 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
5025 if (SrcEltTy == SmallestEltTy)
5026 continue;
5027 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
5028 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
5029 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
5030 Src.WindowBase *= Src.WindowScale;
5031 }
Tim Northover3b0846e2014-05-24 12:50:23 +00005032
Tim Northover7324e842014-07-24 15:39:55 +00005033 // Final sanity check before we try to actually produce a shuffle.
5034 DEBUG(
5035 for (auto Src : Sources)
5036 assert(Src.ShuffleVec.getValueType() == ShuffleVT);
5037 );
5038
5039 // The stars all align, our next step is to produce the mask for the shuffle.
5040 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
5041 int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00005042 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
Tim Northover3b0846e2014-05-24 12:50:23 +00005043 SDValue Entry = Op.getOperand(i);
Tim Northover7324e842014-07-24 15:39:55 +00005044 if (Entry.getOpcode() == ISD::UNDEF)
5045 continue;
Tim Northover3b0846e2014-05-24 12:50:23 +00005046
Tim Northover7324e842014-07-24 15:39:55 +00005047 auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
5048 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
5049
5050 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
5051 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
5052 // segment.
5053 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
5054 int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
5055 VT.getVectorElementType().getSizeInBits());
5056 int LanesDefined = BitsDefined / BitsPerShuffleLane;
5057
5058 // This source is expected to fill ResMultiplier lanes of the final shuffle,
5059 // starting at the appropriate offset.
5060 int *LaneMask = &Mask[i * ResMultiplier];
5061
5062 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
5063 ExtractBase += NumElts * (Src - Sources.begin());
5064 for (int j = 0; j < LanesDefined; ++j)
5065 LaneMask[j] = ExtractBase + j;
Tim Northover3b0846e2014-05-24 12:50:23 +00005066 }
5067
5068 // Final check before we try to produce nonsense...
Tim Northover7324e842014-07-24 15:39:55 +00005069 if (!isShuffleMaskLegal(Mask, ShuffleVT))
5070 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00005071
Tim Northover7324e842014-07-24 15:39:55 +00005072 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
5073 for (unsigned i = 0; i < Sources.size(); ++i)
5074 ShuffleOps[i] = Sources[i].ShuffleVec;
5075
5076 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
5077 ShuffleOps[1], &Mask[0]);
5078 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
Tim Northover3b0846e2014-05-24 12:50:23 +00005079}
5080
5081// check if an EXT instruction can handle the shuffle mask when the
5082// vector sources of the shuffle are the same.
5083static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
5084 unsigned NumElts = VT.getVectorNumElements();
5085
5086 // Assume that the first shuffle index is not UNDEF. Fail if it is.
5087 if (M[0] < 0)
5088 return false;
5089
5090 Imm = M[0];
5091
5092 // If this is a VEXT shuffle, the immediate value is the index of the first
5093 // element. The other shuffle indices must be the successive elements after
5094 // the first one.
5095 unsigned ExpectedElt = Imm;
5096 for (unsigned i = 1; i < NumElts; ++i) {
5097 // Increment the expected index. If it wraps around, just follow it
5098 // back to index zero and keep going.
5099 ++ExpectedElt;
5100 if (ExpectedElt == NumElts)
5101 ExpectedElt = 0;
5102
5103 if (M[i] < 0)
5104 continue; // ignore UNDEF indices
5105 if (ExpectedElt != static_cast<unsigned>(M[i]))
5106 return false;
5107 }
5108
5109 return true;
5110}
5111
5112// check if an EXT instruction can handle the shuffle mask when the
5113// vector sources of the shuffle are different.
5114static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
5115 unsigned &Imm) {
5116 // Look for the first non-undef element.
5117 const int *FirstRealElt = std::find_if(M.begin(), M.end(),
5118 [](int Elt) {return Elt >= 0;});
5119
5120 // Benefit form APInt to handle overflow when calculating expected element.
5121 unsigned NumElts = VT.getVectorNumElements();
5122 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
5123 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
5124 // The following shuffle indices must be the successive elements after the
5125 // first real element.
5126 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
5127 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
5128 if (FirstWrongElt != M.end())
5129 return false;
5130
5131 // The index of an EXT is the first element if it is not UNDEF.
5132 // Watch out for the beginning UNDEFs. The EXT index should be the expected
Junmo Park3b8c7152016-01-05 09:36:47 +00005133 // value of the first element. E.g.
Tim Northover3b0846e2014-05-24 12:50:23 +00005134 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
5135 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
5136 // ExpectedElt is the last mask index plus 1.
5137 Imm = ExpectedElt.getZExtValue();
5138
5139 // There are two difference cases requiring to reverse input vectors.
5140 // For example, for vector <4 x i32> we have the following cases,
5141 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
5142 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
5143 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
5144 // to reverse two input vectors.
5145 if (Imm < NumElts)
5146 ReverseEXT = true;
5147 else
5148 Imm -= NumElts;
5149
5150 return true;
5151}
5152
5153/// isREVMask - Check if a vector shuffle corresponds to a REV
5154/// instruction with the specified blocksize. (The order of the elements
5155/// within each block of the vector is reversed.)
5156static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
5157 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
5158 "Only possible block sizes for REV are: 16, 32, 64");
5159
5160 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5161 if (EltSz == 64)
5162 return false;
5163
5164 unsigned NumElts = VT.getVectorNumElements();
5165 unsigned BlockElts = M[0] + 1;
5166 // If the first shuffle index is UNDEF, be optimistic.
5167 if (M[0] < 0)
5168 BlockElts = BlockSize / EltSz;
5169
5170 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
5171 return false;
5172
5173 for (unsigned i = 0; i < NumElts; ++i) {
5174 if (M[i] < 0)
5175 continue; // ignore UNDEF indices
5176 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
5177 return false;
5178 }
5179
5180 return true;
5181}
5182
5183static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5184 unsigned NumElts = VT.getVectorNumElements();
5185 WhichResult = (M[0] == 0 ? 0 : 1);
5186 unsigned Idx = WhichResult * NumElts / 2;
5187 for (unsigned i = 0; i != NumElts; i += 2) {
5188 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
5189 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
5190 return false;
5191 Idx += 1;
5192 }
5193
5194 return true;
5195}
5196
5197static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5198 unsigned NumElts = VT.getVectorNumElements();
5199 WhichResult = (M[0] == 0 ? 0 : 1);
5200 for (unsigned i = 0; i != NumElts; ++i) {
5201 if (M[i] < 0)
5202 continue; // ignore UNDEF indices
5203 if ((unsigned)M[i] != 2 * i + WhichResult)
5204 return false;
5205 }
5206
5207 return true;
5208}
5209
5210static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5211 unsigned NumElts = VT.getVectorNumElements();
5212 WhichResult = (M[0] == 0 ? 0 : 1);
5213 for (unsigned i = 0; i < NumElts; i += 2) {
5214 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
5215 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
5216 return false;
5217 }
5218 return true;
5219}
5220
5221/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
5222/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5223/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
5224static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5225 unsigned NumElts = VT.getVectorNumElements();
5226 WhichResult = (M[0] == 0 ? 0 : 1);
5227 unsigned Idx = WhichResult * NumElts / 2;
5228 for (unsigned i = 0; i != NumElts; i += 2) {
5229 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
5230 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
5231 return false;
5232 Idx += 1;
5233 }
5234
5235 return true;
5236}
5237
5238/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
5239/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5240/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
5241static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5242 unsigned Half = VT.getVectorNumElements() / 2;
5243 WhichResult = (M[0] == 0 ? 0 : 1);
5244 for (unsigned j = 0; j != 2; ++j) {
5245 unsigned Idx = WhichResult;
5246 for (unsigned i = 0; i != Half; ++i) {
5247 int MIdx = M[i + j * Half];
5248 if (MIdx >= 0 && (unsigned)MIdx != Idx)
5249 return false;
5250 Idx += 2;
5251 }
5252 }
5253
5254 return true;
5255}
5256
5257/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
5258/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5259/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
5260static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5261 unsigned NumElts = VT.getVectorNumElements();
5262 WhichResult = (M[0] == 0 ? 0 : 1);
5263 for (unsigned i = 0; i < NumElts; i += 2) {
5264 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
5265 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
5266 return false;
5267 }
5268 return true;
5269}
5270
5271static bool isINSMask(ArrayRef<int> M, int NumInputElements,
5272 bool &DstIsLeft, int &Anomaly) {
5273 if (M.size() != static_cast<size_t>(NumInputElements))
5274 return false;
5275
5276 int NumLHSMatch = 0, NumRHSMatch = 0;
5277 int LastLHSMismatch = -1, LastRHSMismatch = -1;
5278
5279 for (int i = 0; i < NumInputElements; ++i) {
5280 if (M[i] == -1) {
5281 ++NumLHSMatch;
5282 ++NumRHSMatch;
5283 continue;
5284 }
5285
5286 if (M[i] == i)
5287 ++NumLHSMatch;
5288 else
5289 LastLHSMismatch = i;
5290
5291 if (M[i] == i + NumInputElements)
5292 ++NumRHSMatch;
5293 else
5294 LastRHSMismatch = i;
5295 }
5296
5297 if (NumLHSMatch == NumInputElements - 1) {
5298 DstIsLeft = true;
5299 Anomaly = LastLHSMismatch;
5300 return true;
5301 } else if (NumRHSMatch == NumInputElements - 1) {
5302 DstIsLeft = false;
5303 Anomaly = LastRHSMismatch;
5304 return true;
5305 }
5306
5307 return false;
5308}
5309
5310static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
5311 if (VT.getSizeInBits() != 128)
5312 return false;
5313
5314 unsigned NumElts = VT.getVectorNumElements();
5315
5316 for (int I = 0, E = NumElts / 2; I != E; I++) {
5317 if (Mask[I] != I)
5318 return false;
5319 }
5320
5321 int Offset = NumElts / 2;
5322 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
5323 if (Mask[I] != I + SplitLHS * Offset)
5324 return false;
5325 }
5326
5327 return true;
5328}
5329
5330static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
5331 SDLoc DL(Op);
5332 EVT VT = Op.getValueType();
5333 SDValue V0 = Op.getOperand(0);
5334 SDValue V1 = Op.getOperand(1);
5335 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
5336
5337 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
5338 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
5339 return SDValue();
5340
5341 bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
5342
5343 if (!isConcatMask(Mask, VT, SplitV0))
5344 return SDValue();
5345
5346 EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
5347 VT.getVectorNumElements() / 2);
5348 if (SplitV0) {
5349 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005350 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00005351 }
5352 if (V1.getValueType().getSizeInBits() == 128) {
5353 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005354 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00005355 }
5356 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
5357}
5358
5359/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5360/// the specified operations to build the shuffle.
5361static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5362 SDValue RHS, SelectionDAG &DAG,
5363 SDLoc dl) {
5364 unsigned OpNum = (PFEntry >> 26) & 0x0F;
5365 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
5366 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
5367
5368 enum {
5369 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5370 OP_VREV,
5371 OP_VDUP0,
5372 OP_VDUP1,
5373 OP_VDUP2,
5374 OP_VDUP3,
5375 OP_VEXT1,
5376 OP_VEXT2,
5377 OP_VEXT3,
5378 OP_VUZPL, // VUZP, left result
5379 OP_VUZPR, // VUZP, right result
5380 OP_VZIPL, // VZIP, left result
5381 OP_VZIPR, // VZIP, right result
5382 OP_VTRNL, // VTRN, left result
5383 OP_VTRNR // VTRN, right result
5384 };
5385
5386 if (OpNum == OP_COPY) {
5387 if (LHSID == (1 * 9 + 2) * 9 + 3)
5388 return LHS;
5389 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
5390 return RHS;
5391 }
5392
5393 SDValue OpLHS, OpRHS;
5394 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5395 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5396 EVT VT = OpLHS.getValueType();
5397
5398 switch (OpNum) {
5399 default:
5400 llvm_unreachable("Unknown shuffle opcode!");
5401 case OP_VREV:
5402 // VREV divides the vector in half and swaps within the half.
5403 if (VT.getVectorElementType() == MVT::i32 ||
5404 VT.getVectorElementType() == MVT::f32)
5405 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
5406 // vrev <4 x i16> -> REV32
Oliver Stannard89d15422014-08-27 16:16:04 +00005407 if (VT.getVectorElementType() == MVT::i16 ||
5408 VT.getVectorElementType() == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005409 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
5410 // vrev <4 x i8> -> REV16
5411 assert(VT.getVectorElementType() == MVT::i8);
5412 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
5413 case OP_VDUP0:
5414 case OP_VDUP1:
5415 case OP_VDUP2:
5416 case OP_VDUP3: {
5417 EVT EltTy = VT.getVectorElementType();
5418 unsigned Opcode;
5419 if (EltTy == MVT::i8)
5420 Opcode = AArch64ISD::DUPLANE8;
Ahmed Bougacha941420d2015-04-16 23:57:07 +00005421 else if (EltTy == MVT::i16 || EltTy == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005422 Opcode = AArch64ISD::DUPLANE16;
5423 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
5424 Opcode = AArch64ISD::DUPLANE32;
5425 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
5426 Opcode = AArch64ISD::DUPLANE64;
5427 else
5428 llvm_unreachable("Invalid vector element type?");
5429
5430 if (VT.getSizeInBits() == 64)
5431 OpLHS = WidenVector(OpLHS, DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005432 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005433 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
5434 }
5435 case OP_VEXT1:
5436 case OP_VEXT2:
5437 case OP_VEXT3: {
5438 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
5439 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005440 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005441 }
5442 case OP_VUZPL:
5443 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
5444 OpRHS);
5445 case OP_VUZPR:
5446 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
5447 OpRHS);
5448 case OP_VZIPL:
5449 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
5450 OpRHS);
5451 case OP_VZIPR:
5452 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
5453 OpRHS);
5454 case OP_VTRNL:
5455 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
5456 OpRHS);
5457 case OP_VTRNR:
5458 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
5459 OpRHS);
5460 }
5461}
5462
5463static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
5464 SelectionDAG &DAG) {
5465 // Check to see if we can use the TBL instruction.
5466 SDValue V1 = Op.getOperand(0);
5467 SDValue V2 = Op.getOperand(1);
5468 SDLoc DL(Op);
5469
5470 EVT EltVT = Op.getValueType().getVectorElementType();
5471 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
5472
5473 SmallVector<SDValue, 8> TBLMask;
5474 for (int Val : ShuffleMask) {
5475 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
5476 unsigned Offset = Byte + Val * BytesPerElt;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005477 TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005478 }
5479 }
5480
5481 MVT IndexVT = MVT::v8i8;
5482 unsigned IndexLen = 8;
5483 if (Op.getValueType().getSizeInBits() == 128) {
5484 IndexVT = MVT::v16i8;
5485 IndexLen = 16;
5486 }
5487
5488 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
5489 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
5490
5491 SDValue Shuffle;
5492 if (V2.getNode()->getOpcode() == ISD::UNDEF) {
5493 if (IndexLen == 8)
5494 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
5495 Shuffle = DAG.getNode(
5496 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005497 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
Tim Northover3b0846e2014-05-24 12:50:23 +00005498 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5499 makeArrayRef(TBLMask.data(), IndexLen)));
5500 } else {
5501 if (IndexLen == 8) {
5502 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
5503 Shuffle = DAG.getNode(
5504 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005505 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
Tim Northover3b0846e2014-05-24 12:50:23 +00005506 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5507 makeArrayRef(TBLMask.data(), IndexLen)));
5508 } else {
5509 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
5510 // cannot currently represent the register constraints on the input
5511 // table registers.
5512 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
5513 // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5514 // &TBLMask[0], IndexLen));
5515 Shuffle = DAG.getNode(
5516 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005517 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32),
5518 V1Cst, V2Cst,
Tim Northover3b0846e2014-05-24 12:50:23 +00005519 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5520 makeArrayRef(TBLMask.data(), IndexLen)));
5521 }
5522 }
5523 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
5524}
5525
5526static unsigned getDUPLANEOp(EVT EltType) {
5527 if (EltType == MVT::i8)
5528 return AArch64ISD::DUPLANE8;
Oliver Stannard89d15422014-08-27 16:16:04 +00005529 if (EltType == MVT::i16 || EltType == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005530 return AArch64ISD::DUPLANE16;
5531 if (EltType == MVT::i32 || EltType == MVT::f32)
5532 return AArch64ISD::DUPLANE32;
5533 if (EltType == MVT::i64 || EltType == MVT::f64)
5534 return AArch64ISD::DUPLANE64;
5535
5536 llvm_unreachable("Invalid vector element type?");
5537}
5538
5539SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5540 SelectionDAG &DAG) const {
5541 SDLoc dl(Op);
5542 EVT VT = Op.getValueType();
5543
5544 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5545
5546 // Convert shuffles that are directly supported on NEON to target-specific
5547 // DAG nodes, instead of keeping them as shuffles and matching them again
5548 // during code selection. This is more efficient and avoids the possibility
5549 // of inconsistencies between legalization and selection.
5550 ArrayRef<int> ShuffleMask = SVN->getMask();
5551
5552 SDValue V1 = Op.getOperand(0);
5553 SDValue V2 = Op.getOperand(1);
5554
5555 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
5556 V1.getValueType().getSimpleVT())) {
5557 int Lane = SVN->getSplatIndex();
5558 // If this is undef splat, generate it via "just" vdup, if possible.
5559 if (Lane == -1)
5560 Lane = 0;
5561
5562 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
5563 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
5564 V1.getOperand(0));
5565 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
5566 // constant. If so, we can just reference the lane's definition directly.
5567 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
5568 !isa<ConstantSDNode>(V1.getOperand(Lane)))
5569 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
5570
5571 // Otherwise, duplicate from the lane of the input vector.
5572 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
5573
5574 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
5575 // to make a vector of the same size as this SHUFFLE. We can ignore the
5576 // extract entirely, and canonicalise the concat using WidenVector.
5577 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
5578 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
5579 V1 = V1.getOperand(0);
5580 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
5581 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
5582 Lane -= Idx * VT.getVectorNumElements() / 2;
5583 V1 = WidenVector(V1.getOperand(Idx), DAG);
5584 } else if (VT.getSizeInBits() == 64)
5585 V1 = WidenVector(V1, DAG);
5586
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005587 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00005588 }
5589
5590 if (isREVMask(ShuffleMask, VT, 64))
5591 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
5592 if (isREVMask(ShuffleMask, VT, 32))
5593 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
5594 if (isREVMask(ShuffleMask, VT, 16))
5595 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
5596
5597 bool ReverseEXT = false;
5598 unsigned Imm;
5599 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
5600 if (ReverseEXT)
5601 std::swap(V1, V2);
5602 Imm *= getExtFactor(V1);
5603 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005604 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005605 } else if (V2->getOpcode() == ISD::UNDEF &&
5606 isSingletonEXTMask(ShuffleMask, VT, Imm)) {
5607 Imm *= getExtFactor(V1);
5608 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005609 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005610 }
5611
5612 unsigned WhichResult;
5613 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
5614 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5615 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5616 }
5617 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
5618 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5619 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5620 }
5621 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
5622 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5623 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5624 }
5625
5626 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5627 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5628 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5629 }
5630 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5631 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5632 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5633 }
5634 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5635 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5636 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5637 }
5638
5639 SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
5640 if (Concat.getNode())
5641 return Concat;
5642
5643 bool DstIsLeft;
5644 int Anomaly;
5645 int NumInputElements = V1.getValueType().getVectorNumElements();
5646 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
5647 SDValue DstVec = DstIsLeft ? V1 : V2;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005648 SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005649
5650 SDValue SrcVec = V1;
5651 int SrcLane = ShuffleMask[Anomaly];
5652 if (SrcLane >= NumInputElements) {
5653 SrcVec = V2;
5654 SrcLane -= VT.getVectorNumElements();
5655 }
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005656 SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005657
5658 EVT ScalarVT = VT.getVectorElementType();
Oliver Stannard89d15422014-08-27 16:16:04 +00005659
5660 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00005661 ScalarVT = MVT::i32;
5662
5663 return DAG.getNode(
5664 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5665 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
5666 DstLaneV);
5667 }
5668
5669 // If the shuffle is not directly supported and it has 4 elements, use
5670 // the PerfectShuffle-generated table to synthesize it from other shuffles.
5671 unsigned NumElts = VT.getVectorNumElements();
5672 if (NumElts == 4) {
5673 unsigned PFIndexes[4];
5674 for (unsigned i = 0; i != 4; ++i) {
5675 if (ShuffleMask[i] < 0)
5676 PFIndexes[i] = 8;
5677 else
5678 PFIndexes[i] = ShuffleMask[i];
5679 }
5680
5681 // Compute the index in the perfect shuffle table.
5682 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5683 PFIndexes[2] * 9 + PFIndexes[3];
5684 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5685 unsigned Cost = (PFEntry >> 30);
5686
5687 if (Cost <= 4)
5688 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5689 }
5690
5691 return GenerateTBL(Op, ShuffleMask, DAG);
5692}
5693
5694static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
5695 APInt &UndefBits) {
5696 EVT VT = BVN->getValueType(0);
5697 APInt SplatBits, SplatUndef;
5698 unsigned SplatBitSize;
5699 bool HasAnyUndefs;
5700 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5701 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
5702
5703 for (unsigned i = 0; i < NumSplats; ++i) {
5704 CnstBits <<= SplatBitSize;
5705 UndefBits <<= SplatBitSize;
5706 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
5707 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
5708 }
5709
5710 return true;
5711 }
5712
5713 return false;
5714}
5715
5716SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
5717 SelectionDAG &DAG) const {
5718 BuildVectorSDNode *BVN =
5719 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5720 SDValue LHS = Op.getOperand(0);
5721 SDLoc dl(Op);
5722 EVT VT = Op.getValueType();
5723
5724 if (!BVN)
5725 return Op;
5726
5727 APInt CnstBits(VT.getSizeInBits(), 0);
5728 APInt UndefBits(VT.getSizeInBits(), 0);
5729 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5730 // We only have BIC vector immediate instruction, which is and-not.
5731 CnstBits = ~CnstBits;
5732
5733 // We make use of a little bit of goto ickiness in order to avoid having to
5734 // duplicate the immediate matching logic for the undef toggled case.
5735 bool SecondTry = false;
5736 AttemptModImm:
5737
5738 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5739 CnstBits = CnstBits.zextOrTrunc(64);
5740 uint64_t CnstVal = CnstBits.getZExtValue();
5741
5742 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5743 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5744 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5745 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005746 DAG.getConstant(CnstVal, dl, MVT::i32),
5747 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005748 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005749 }
5750
5751 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5752 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5753 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5754 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005755 DAG.getConstant(CnstVal, dl, MVT::i32),
5756 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005757 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005758 }
5759
5760 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5761 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5762 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5763 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005764 DAG.getConstant(CnstVal, dl, MVT::i32),
5765 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005766 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005767 }
5768
5769 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5770 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5771 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5772 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005773 DAG.getConstant(CnstVal, dl, MVT::i32),
5774 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005775 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005776 }
5777
5778 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5779 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5780 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5781 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005782 DAG.getConstant(CnstVal, dl, MVT::i32),
5783 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005784 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005785 }
5786
5787 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5788 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5789 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5790 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005791 DAG.getConstant(CnstVal, dl, MVT::i32),
5792 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005793 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005794 }
5795 }
5796
5797 if (SecondTry)
5798 goto FailedModImm;
5799 SecondTry = true;
5800 CnstBits = ~UndefBits;
5801 goto AttemptModImm;
5802 }
5803
5804// We can always fall back to a non-immediate AND.
5805FailedModImm:
5806 return Op;
5807}
5808
5809// Specialized code to quickly find if PotentialBVec is a BuildVector that
5810// consists of only the same constant int value, returned in reference arg
5811// ConstVal
5812static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
5813 uint64_t &ConstVal) {
5814 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
5815 if (!Bvec)
5816 return false;
5817 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
5818 if (!FirstElt)
5819 return false;
5820 EVT VT = Bvec->getValueType(0);
5821 unsigned NumElts = VT.getVectorNumElements();
5822 for (unsigned i = 1; i < NumElts; ++i)
5823 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
5824 return false;
5825 ConstVal = FirstElt->getZExtValue();
5826 return true;
5827}
5828
5829static unsigned getIntrinsicID(const SDNode *N) {
5830 unsigned Opcode = N->getOpcode();
5831 switch (Opcode) {
5832 default:
5833 return Intrinsic::not_intrinsic;
5834 case ISD::INTRINSIC_WO_CHAIN: {
5835 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5836 if (IID < Intrinsic::num_intrinsics)
5837 return IID;
5838 return Intrinsic::not_intrinsic;
5839 }
5840 }
5841}
5842
5843// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5844// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5845// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5846// Also, logical shift right -> sri, with the same structure.
5847static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5848 EVT VT = N->getValueType(0);
5849
5850 if (!VT.isVector())
5851 return SDValue();
5852
5853 SDLoc DL(N);
5854
5855 // Is the first op an AND?
5856 const SDValue And = N->getOperand(0);
5857 if (And.getOpcode() != ISD::AND)
5858 return SDValue();
5859
5860 // Is the second op an shl or lshr?
5861 SDValue Shift = N->getOperand(1);
5862 // This will have been turned into: AArch64ISD::VSHL vector, #shift
5863 // or AArch64ISD::VLSHR vector, #shift
5864 unsigned ShiftOpc = Shift.getOpcode();
5865 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5866 return SDValue();
5867 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5868
5869 // Is the shift amount constant?
5870 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5871 if (!C2node)
5872 return SDValue();
5873
5874 // Is the and mask vector all constant?
5875 uint64_t C1;
5876 if (!isAllConstantBuildVector(And.getOperand(1), C1))
5877 return SDValue();
5878
5879 // Is C1 == ~C2, taking into account how much one can shift elements of a
5880 // particular size?
5881 uint64_t C2 = C2node->getZExtValue();
5882 unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5883 if (C2 > ElemSizeInBits)
5884 return SDValue();
5885 unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5886 if ((C1 & ElemMask) != (~C2 & ElemMask))
5887 return SDValue();
5888
5889 SDValue X = And.getOperand(0);
5890 SDValue Y = Shift.getOperand(0);
5891
5892 unsigned Intrin =
5893 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5894 SDValue ResultSLI =
5895 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005896 DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
5897 Shift.getOperand(1));
Tim Northover3b0846e2014-05-24 12:50:23 +00005898
5899 DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5900 DEBUG(N->dump(&DAG));
5901 DEBUG(dbgs() << "into: \n");
5902 DEBUG(ResultSLI->dump(&DAG));
5903
5904 ++NumShiftInserts;
5905 return ResultSLI;
5906}
5907
5908SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5909 SelectionDAG &DAG) const {
5910 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5911 if (EnableAArch64SlrGeneration) {
5912 SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
5913 if (Res.getNode())
5914 return Res;
5915 }
5916
5917 BuildVectorSDNode *BVN =
5918 dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5919 SDValue LHS = Op.getOperand(1);
5920 SDLoc dl(Op);
5921 EVT VT = Op.getValueType();
5922
5923 // OR commutes, so try swapping the operands.
5924 if (!BVN) {
5925 LHS = Op.getOperand(0);
5926 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5927 }
5928 if (!BVN)
5929 return Op;
5930
5931 APInt CnstBits(VT.getSizeInBits(), 0);
5932 APInt UndefBits(VT.getSizeInBits(), 0);
5933 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5934 // We make use of a little bit of goto ickiness in order to avoid having to
5935 // duplicate the immediate matching logic for the undef toggled case.
5936 bool SecondTry = false;
5937 AttemptModImm:
5938
5939 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5940 CnstBits = CnstBits.zextOrTrunc(64);
5941 uint64_t CnstVal = CnstBits.getZExtValue();
5942
5943 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5944 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5945 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5946 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005947 DAG.getConstant(CnstVal, dl, MVT::i32),
5948 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005949 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005950 }
5951
5952 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5953 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5954 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5955 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005956 DAG.getConstant(CnstVal, dl, MVT::i32),
5957 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005958 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005959 }
5960
5961 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5962 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5963 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5964 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005965 DAG.getConstant(CnstVal, dl, MVT::i32),
5966 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005967 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005968 }
5969
5970 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5971 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5972 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5973 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005974 DAG.getConstant(CnstVal, dl, MVT::i32),
5975 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005976 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005977 }
5978
5979 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5980 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5981 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5982 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005983 DAG.getConstant(CnstVal, dl, MVT::i32),
5984 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005985 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005986 }
5987
5988 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5989 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5990 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5991 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005992 DAG.getConstant(CnstVal, dl, MVT::i32),
5993 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005994 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005995 }
5996 }
5997
5998 if (SecondTry)
5999 goto FailedModImm;
6000 SecondTry = true;
6001 CnstBits = UndefBits;
6002 goto AttemptModImm;
6003 }
6004
6005// We can always fall back to a non-immediate OR.
6006FailedModImm:
6007 return Op;
6008}
6009
Kevin Qin4473c192014-07-07 02:45:40 +00006010// Normalize the operands of BUILD_VECTOR. The value of constant operands will
6011// be truncated to fit element width.
6012static SDValue NormalizeBuildVector(SDValue Op,
6013 SelectionDAG &DAG) {
6014 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00006015 SDLoc dl(Op);
6016 EVT VT = Op.getValueType();
Kevin Qin4473c192014-07-07 02:45:40 +00006017 EVT EltTy= VT.getVectorElementType();
6018
6019 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
6020 return Op;
6021
6022 SmallVector<SDValue, 16> Ops;
Pete Cooper7be8f8f2015-08-03 19:04:32 +00006023 for (SDValue Lane : Op->ops()) {
6024 if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
Kevin Qin4473c192014-07-07 02:45:40 +00006025 APInt LowBits(EltTy.getSizeInBits(),
Pete Cooper7be8f8f2015-08-03 19:04:32 +00006026 CstLane->getZExtValue());
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006027 Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
Kevin Qin4473c192014-07-07 02:45:40 +00006028 }
6029 Ops.push_back(Lane);
6030 }
6031 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
6032}
6033
6034SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
6035 SelectionDAG &DAG) const {
6036 SDLoc dl(Op);
6037 EVT VT = Op.getValueType();
6038 Op = NormalizeBuildVector(Op, DAG);
6039 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
Tim Northover3b0846e2014-05-24 12:50:23 +00006040
6041 APInt CnstBits(VT.getSizeInBits(), 0);
6042 APInt UndefBits(VT.getSizeInBits(), 0);
6043 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
6044 // We make use of a little bit of goto ickiness in order to avoid having to
6045 // duplicate the immediate matching logic for the undef toggled case.
6046 bool SecondTry = false;
6047 AttemptModImm:
6048
6049 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
6050 CnstBits = CnstBits.zextOrTrunc(64);
6051 uint64_t CnstVal = CnstBits.getZExtValue();
6052
6053 // Certain magic vector constants (used to express things like NOT
6054 // and NEG) are passed through unmodified. This allows codegen patterns
6055 // for these operations to match. Special-purpose patterns will lower
6056 // these immediates to MOVIs if it proves necessary.
6057 if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
6058 return Op;
6059
6060 // The many faces of MOVI...
6061 if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
6062 CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
6063 if (VT.getSizeInBits() == 128) {
6064 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006065 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006066 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006067 }
6068
6069 // Support the V64 version via subregister insertion.
6070 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006071 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006072 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006073 }
6074
6075 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
6076 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
6077 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6078 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006079 DAG.getConstant(CnstVal, dl, MVT::i32),
6080 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006081 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006082 }
6083
6084 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
6085 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
6086 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6087 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006088 DAG.getConstant(CnstVal, dl, MVT::i32),
6089 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006090 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006091 }
6092
6093 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
6094 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
6095 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6096 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006097 DAG.getConstant(CnstVal, dl, MVT::i32),
6098 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006099 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006100 }
6101
6102 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
6103 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
6104 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6105 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006106 DAG.getConstant(CnstVal, dl, MVT::i32),
6107 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006108 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006109 }
6110
6111 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
6112 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
6113 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6114 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006115 DAG.getConstant(CnstVal, dl, MVT::i32),
6116 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006117 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006118 }
6119
6120 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
6121 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6122 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6123 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006124 DAG.getConstant(CnstVal, dl, MVT::i32),
6125 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006126 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006127 }
6128
6129 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
6130 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
6131 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6132 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006133 DAG.getConstant(CnstVal, dl, MVT::i32),
6134 DAG.getConstant(264, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006135 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006136 }
6137
6138 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
6139 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
6140 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6141 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006142 DAG.getConstant(CnstVal, dl, MVT::i32),
6143 DAG.getConstant(272, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006144 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006145 }
6146
6147 if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
6148 CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
6149 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
6150 SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006151 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006152 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006153 }
6154
6155 // The few faces of FMOV...
6156 if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
6157 CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
6158 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
6159 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006160 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006161 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006162 }
6163
6164 if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
6165 VT.getSizeInBits() == 128) {
6166 CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
6167 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006168 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006169 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006170 }
6171
6172 // The many faces of MVNI...
6173 CnstVal = ~CnstVal;
6174 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
6175 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
6176 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6177 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006178 DAG.getConstant(CnstVal, dl, MVT::i32),
6179 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006180 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006181 }
6182
6183 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
6184 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
6185 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6186 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006187 DAG.getConstant(CnstVal, dl, MVT::i32),
6188 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006189 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006190 }
6191
6192 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
6193 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
6194 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6195 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006196 DAG.getConstant(CnstVal, dl, MVT::i32),
6197 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006198 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006199 }
6200
6201 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
6202 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
6203 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6204 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006205 DAG.getConstant(CnstVal, dl, MVT::i32),
6206 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006207 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006208 }
6209
6210 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
6211 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
6212 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6213 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006214 DAG.getConstant(CnstVal, dl, MVT::i32),
6215 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006216 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006217 }
6218
6219 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
6220 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6221 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6222 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006223 DAG.getConstant(CnstVal, dl, MVT::i32),
6224 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006225 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006226 }
6227
6228 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
6229 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
6230 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6231 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006232 DAG.getConstant(CnstVal, dl, MVT::i32),
6233 DAG.getConstant(264, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006234 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006235 }
6236
6237 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
6238 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
6239 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6240 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006241 DAG.getConstant(CnstVal, dl, MVT::i32),
6242 DAG.getConstant(272, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006243 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006244 }
6245 }
6246
6247 if (SecondTry)
6248 goto FailedModImm;
6249 SecondTry = true;
6250 CnstBits = UndefBits;
6251 goto AttemptModImm;
6252 }
6253FailedModImm:
6254
6255 // Scan through the operands to find some interesting properties we can
6256 // exploit:
6257 // 1) If only one value is used, we can use a DUP, or
6258 // 2) if only the low element is not undef, we can just insert that, or
6259 // 3) if only one constant value is used (w/ some non-constant lanes),
6260 // we can splat the constant value into the whole vector then fill
6261 // in the non-constant lanes.
6262 // 4) FIXME: If different constant values are used, but we can intelligently
6263 // select the values we'll be overwriting for the non-constant
6264 // lanes such that we can directly materialize the vector
6265 // some other way (MOVI, e.g.), we can be sneaky.
6266 unsigned NumElts = VT.getVectorNumElements();
6267 bool isOnlyLowElement = true;
6268 bool usesOnlyOneValue = true;
6269 bool usesOnlyOneConstantValue = true;
6270 bool isConstant = true;
6271 unsigned NumConstantLanes = 0;
6272 SDValue Value;
6273 SDValue ConstantValue;
6274 for (unsigned i = 0; i < NumElts; ++i) {
6275 SDValue V = Op.getOperand(i);
6276 if (V.getOpcode() == ISD::UNDEF)
6277 continue;
6278 if (i > 0)
6279 isOnlyLowElement = false;
6280 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
6281 isConstant = false;
6282
6283 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
6284 ++NumConstantLanes;
6285 if (!ConstantValue.getNode())
6286 ConstantValue = V;
6287 else if (ConstantValue != V)
6288 usesOnlyOneConstantValue = false;
6289 }
6290
6291 if (!Value.getNode())
6292 Value = V;
6293 else if (V != Value)
6294 usesOnlyOneValue = false;
6295 }
6296
6297 if (!Value.getNode())
6298 return DAG.getUNDEF(VT);
6299
6300 if (isOnlyLowElement)
6301 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
6302
6303 // Use DUP for non-constant splats. For f32 constant splats, reduce to
6304 // i32 and try again.
6305 if (usesOnlyOneValue) {
6306 if (!isConstant) {
6307 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6308 Value.getValueType() != VT)
6309 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
6310
6311 // This is actually a DUPLANExx operation, which keeps everything vectory.
6312
6313 // DUPLANE works on 128-bit vectors, widen it if necessary.
6314 SDValue Lane = Value.getOperand(1);
6315 Value = Value.getOperand(0);
6316 if (Value.getValueType().getSizeInBits() == 64)
6317 Value = WidenVector(Value, DAG);
6318
6319 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
6320 return DAG.getNode(Opcode, dl, VT, Value, Lane);
6321 }
6322
6323 if (VT.getVectorElementType().isFloatingPoint()) {
6324 SmallVector<SDValue, 8> Ops;
Pirama Arumuga Nainar12aeefc2015-03-17 23:10:29 +00006325 EVT EltTy = VT.getVectorElementType();
6326 assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
6327 "Unsupported floating-point vector type");
6328 MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00006329 for (unsigned i = 0; i < NumElts; ++i)
6330 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
6331 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
6332 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
6333 Val = LowerBUILD_VECTOR(Val, DAG);
6334 if (Val.getNode())
6335 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6336 }
6337 }
6338
6339 // If there was only one constant value used and for more than one lane,
6340 // start by splatting that value, then replace the non-constant lanes. This
6341 // is better than the default, which will perform a separate initialization
6342 // for each lane.
6343 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
6344 SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
6345 // Now insert the non-constant lanes.
6346 for (unsigned i = 0; i < NumElts; ++i) {
6347 SDValue V = Op.getOperand(i);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006348 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00006349 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
6350 // Note that type legalization likely mucked about with the VT of the
6351 // source operand, so we may have to convert it here before inserting.
6352 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
6353 }
6354 }
6355 return Val;
6356 }
6357
6358 // If all elements are constants and the case above didn't get hit, fall back
6359 // to the default expansion, which will generate a load from the constant
6360 // pool.
6361 if (isConstant)
6362 return SDValue();
6363
6364 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
6365 if (NumElts >= 4) {
Ahmed Bougacha239d6352015-08-04 00:48:02 +00006366 if (SDValue shuffle = ReconstructShuffle(Op, DAG))
Tim Northover3b0846e2014-05-24 12:50:23 +00006367 return shuffle;
6368 }
6369
6370 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6371 // know the default expansion would otherwise fall back on something even
6372 // worse. For a vector with one or two non-undef values, that's
6373 // scalar_to_vector for the elements followed by a shuffle (provided the
6374 // shuffle is valid for the target) and materialization element by element
6375 // on the stack followed by a load for everything else.
6376 if (!isConstant && !usesOnlyOneValue) {
6377 SDValue Vec = DAG.getUNDEF(VT);
6378 SDValue Op0 = Op.getOperand(0);
6379 unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
6380 unsigned i = 0;
6381 // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
6382 // a) Avoid a RMW dependency on the full vector register, and
6383 // b) Allow the register coalescer to fold away the copy if the
6384 // value is already in an S or D register.
Matthias Braun0acbd082015-08-31 18:25:15 +00006385 // Do not do this for UNDEF/LOAD nodes because we have better patterns
6386 // for those avoiding the SCALAR_TO_VECTOR/BUILD_VECTOR.
6387 if (Op0.getOpcode() != ISD::UNDEF && Op0.getOpcode() != ISD::LOAD &&
6388 (ElemSize == 32 || ElemSize == 64)) {
Tim Northover3b0846e2014-05-24 12:50:23 +00006389 unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
6390 MachineSDNode *N =
6391 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006392 DAG.getTargetConstant(SubIdx, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00006393 Vec = SDValue(N, 0);
6394 ++i;
6395 }
6396 for (; i < NumElts; ++i) {
6397 SDValue V = Op.getOperand(i);
6398 if (V.getOpcode() == ISD::UNDEF)
6399 continue;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006400 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00006401 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6402 }
6403 return Vec;
6404 }
6405
6406 // Just use the default expansion. We failed to find a better alternative.
6407 return SDValue();
6408}
6409
6410SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
6411 SelectionDAG &DAG) const {
6412 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
6413
Tim Northovere4b8e132014-07-15 10:00:26 +00006414 // Check for non-constant or out of range lane.
6415 EVT VT = Op.getOperand(0).getValueType();
6416 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
6417 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006418 return SDValue();
6419
Tim Northover3b0846e2014-05-24 12:50:23 +00006420
6421 // Insertion/extraction are legal for V128 types.
6422 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006423 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6424 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006425 return Op;
6426
6427 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006428 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006429 return SDValue();
6430
6431 // For V64 types, we perform insertion by expanding the value
6432 // to a V128 type and perform the insertion on that.
6433 SDLoc DL(Op);
6434 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6435 EVT WideTy = WideVec.getValueType();
6436
6437 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
6438 Op.getOperand(1), Op.getOperand(2));
6439 // Re-narrow the resultant vector.
6440 return NarrowVector(Node, DAG);
6441}
6442
6443SDValue
6444AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6445 SelectionDAG &DAG) const {
6446 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
6447
Tim Northovere4b8e132014-07-15 10:00:26 +00006448 // Check for non-constant or out of range lane.
6449 EVT VT = Op.getOperand(0).getValueType();
6450 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6451 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006452 return SDValue();
6453
Tim Northover3b0846e2014-05-24 12:50:23 +00006454
6455 // Insertion/extraction are legal for V128 types.
6456 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006457 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6458 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006459 return Op;
6460
6461 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006462 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006463 return SDValue();
6464
6465 // For V64 types, we perform extraction by expanding the value
6466 // to a V128 type and perform the extraction on that.
6467 SDLoc DL(Op);
6468 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6469 EVT WideTy = WideVec.getValueType();
6470
6471 EVT ExtrTy = WideTy.getVectorElementType();
6472 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
6473 ExtrTy = MVT::i32;
6474
6475 // For extractions, we just return the result directly.
6476 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
6477 Op.getOperand(1));
6478}
6479
6480SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
6481 SelectionDAG &DAG) const {
6482 EVT VT = Op.getOperand(0).getValueType();
6483 SDLoc dl(Op);
6484 // Just in case...
6485 if (!VT.isVector())
6486 return SDValue();
6487
6488 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6489 if (!Cst)
6490 return SDValue();
6491 unsigned Val = Cst->getZExtValue();
6492
6493 unsigned Size = Op.getValueType().getSizeInBits();
Charlie Turner7b7b06f2015-11-09 12:45:11 +00006494
6495 // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
6496 if (Val == 0)
6497 return Op;
6498
Tim Northover3b0846e2014-05-24 12:50:23 +00006499 // If this is extracting the upper 64-bits of a 128-bit vector, we match
6500 // that directly.
6501 if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
6502 return Op;
6503
6504 return SDValue();
6505}
6506
6507bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6508 EVT VT) const {
6509 if (VT.getVectorNumElements() == 4 &&
6510 (VT.is128BitVector() || VT.is64BitVector())) {
6511 unsigned PFIndexes[4];
6512 for (unsigned i = 0; i != 4; ++i) {
6513 if (M[i] < 0)
6514 PFIndexes[i] = 8;
6515 else
6516 PFIndexes[i] = M[i];
6517 }
6518
6519 // Compute the index in the perfect shuffle table.
6520 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6521 PFIndexes[2] * 9 + PFIndexes[3];
6522 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6523 unsigned Cost = (PFEntry >> 30);
6524
6525 if (Cost <= 4)
6526 return true;
6527 }
6528
6529 bool DummyBool;
6530 int DummyInt;
6531 unsigned DummyUnsigned;
6532
6533 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
6534 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
6535 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
6536 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
6537 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
6538 isZIPMask(M, VT, DummyUnsigned) ||
6539 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
6540 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
6541 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
6542 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
6543 isConcatMask(M, VT, VT.getSizeInBits() == 128));
6544}
6545
6546/// getVShiftImm - Check if this is a valid build_vector for the immediate
6547/// operand of a vector shift operation, where all the elements of the
6548/// build_vector must have the same constant integer value.
6549static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6550 // Ignore bit_converts.
6551 while (Op.getOpcode() == ISD::BITCAST)
6552 Op = Op.getOperand(0);
6553 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6554 APInt SplatBits, SplatUndef;
6555 unsigned SplatBitSize;
6556 bool HasAnyUndefs;
6557 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6558 HasAnyUndefs, ElementBits) ||
6559 SplatBitSize > ElementBits)
6560 return false;
6561 Cnt = SplatBits.getSExtValue();
6562 return true;
6563}
6564
6565/// isVShiftLImm - Check if this is a valid build_vector for the immediate
6566/// operand of a vector shift left operation. That value must be in the range:
6567/// 0 <= Value < ElementBits for a left shift; or
6568/// 0 <= Value <= ElementBits for a long left shift.
6569static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6570 assert(VT.isVector() && "vector shift count is not a vector type");
Luke Cheesemanb5c627a2015-07-24 09:31:48 +00006571 int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00006572 if (!getVShiftImm(Op, ElementBits, Cnt))
6573 return false;
6574 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6575}
6576
6577/// isVShiftRImm - Check if this is a valid build_vector for the immediate
Luke Cheesemanb5c627a2015-07-24 09:31:48 +00006578/// operand of a vector shift right operation. The value must be in the range:
6579/// 1 <= Value <= ElementBits for a right shift; or
6580static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
Tim Northover3b0846e2014-05-24 12:50:23 +00006581 assert(VT.isVector() && "vector shift count is not a vector type");
Luke Cheesemanb5c627a2015-07-24 09:31:48 +00006582 int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00006583 if (!getVShiftImm(Op, ElementBits, Cnt))
6584 return false;
Tim Northover3b0846e2014-05-24 12:50:23 +00006585 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6586}
6587
6588SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
6589 SelectionDAG &DAG) const {
6590 EVT VT = Op.getValueType();
6591 SDLoc DL(Op);
6592 int64_t Cnt;
6593
6594 if (!Op.getOperand(1).getValueType().isVector())
6595 return Op;
6596 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6597
6598 switch (Op.getOpcode()) {
6599 default:
6600 llvm_unreachable("unexpected shift opcode");
6601
6602 case ISD::SHL:
6603 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006604 return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
6605 DAG.getConstant(Cnt, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00006606 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006607 DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
6608 MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00006609 Op.getOperand(0), Op.getOperand(1));
6610 case ISD::SRA:
6611 case ISD::SRL:
6612 // Right shift immediate
Luke Cheesemanb5c627a2015-07-24 09:31:48 +00006613 if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
Tim Northover3b0846e2014-05-24 12:50:23 +00006614 unsigned Opc =
6615 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006616 return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
6617 DAG.getConstant(Cnt, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00006618 }
6619
6620 // Right shift register. Note, there is not a shift right register
6621 // instruction, but the shift left register instruction takes a signed
6622 // value, where negative numbers specify a right shift.
6623 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
6624 : Intrinsic::aarch64_neon_ushl;
6625 // negate the shift amount
6626 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
6627 SDValue NegShiftLeft =
6628 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006629 DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
6630 NegShift);
Tim Northover3b0846e2014-05-24 12:50:23 +00006631 return NegShiftLeft;
6632 }
6633
6634 return SDValue();
6635}
6636
6637static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
6638 AArch64CC::CondCode CC, bool NoNans, EVT VT,
6639 SDLoc dl, SelectionDAG &DAG) {
6640 EVT SrcVT = LHS.getValueType();
Tim Northover45aa89c2015-02-08 00:50:47 +00006641 assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
6642 "function only supposed to emit natural comparisons");
Tim Northover3b0846e2014-05-24 12:50:23 +00006643
6644 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
6645 APInt CnstBits(VT.getSizeInBits(), 0);
6646 APInt UndefBits(VT.getSizeInBits(), 0);
6647 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
6648 bool IsZero = IsCnst && (CnstBits == 0);
6649
6650 if (SrcVT.getVectorElementType().isFloatingPoint()) {
6651 switch (CC) {
6652 default:
6653 return SDValue();
6654 case AArch64CC::NE: {
6655 SDValue Fcmeq;
6656 if (IsZero)
6657 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6658 else
6659 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6660 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
6661 }
6662 case AArch64CC::EQ:
6663 if (IsZero)
6664 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6665 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6666 case AArch64CC::GE:
6667 if (IsZero)
6668 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
6669 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
6670 case AArch64CC::GT:
6671 if (IsZero)
6672 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
6673 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
6674 case AArch64CC::LS:
6675 if (IsZero)
6676 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
6677 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
6678 case AArch64CC::LT:
6679 if (!NoNans)
6680 return SDValue();
6681 // If we ignore NaNs then we can use to the MI implementation.
6682 // Fallthrough.
6683 case AArch64CC::MI:
6684 if (IsZero)
6685 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
6686 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
6687 }
6688 }
6689
6690 switch (CC) {
6691 default:
6692 return SDValue();
6693 case AArch64CC::NE: {
6694 SDValue Cmeq;
6695 if (IsZero)
6696 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6697 else
6698 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6699 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
6700 }
6701 case AArch64CC::EQ:
6702 if (IsZero)
6703 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6704 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6705 case AArch64CC::GE:
6706 if (IsZero)
6707 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
6708 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
6709 case AArch64CC::GT:
6710 if (IsZero)
6711 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
6712 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
6713 case AArch64CC::LE:
6714 if (IsZero)
6715 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
6716 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
6717 case AArch64CC::LS:
6718 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
6719 case AArch64CC::LO:
6720 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
6721 case AArch64CC::LT:
6722 if (IsZero)
6723 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
6724 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
6725 case AArch64CC::HI:
6726 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
6727 case AArch64CC::HS:
6728 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
6729 }
6730}
6731
6732SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
6733 SelectionDAG &DAG) const {
6734 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6735 SDValue LHS = Op.getOperand(0);
6736 SDValue RHS = Op.getOperand(1);
Tim Northover45aa89c2015-02-08 00:50:47 +00006737 EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
Tim Northover3b0846e2014-05-24 12:50:23 +00006738 SDLoc dl(Op);
6739
6740 if (LHS.getValueType().getVectorElementType().isInteger()) {
6741 assert(LHS.getValueType() == RHS.getValueType());
6742 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
Tim Northover45aa89c2015-02-08 00:50:47 +00006743 SDValue Cmp =
6744 EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
6745 return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00006746 }
6747
Pirama Arumuga Nainar71e9a2a2016-01-22 01:16:57 +00006748 if (LHS.getValueType().getVectorElementType() == MVT::f16)
6749 return SDValue();
6750
Tim Northover3b0846e2014-05-24 12:50:23 +00006751 assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
6752 LHS.getValueType().getVectorElementType() == MVT::f64);
6753
6754 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
6755 // clean. Some of them require two branches to implement.
6756 AArch64CC::CondCode CC1, CC2;
6757 bool ShouldInvert;
6758 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
6759
6760 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
6761 SDValue Cmp =
Tim Northover45aa89c2015-02-08 00:50:47 +00006762 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00006763 if (!Cmp.getNode())
6764 return SDValue();
6765
6766 if (CC2 != AArch64CC::AL) {
6767 SDValue Cmp2 =
Tim Northover45aa89c2015-02-08 00:50:47 +00006768 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00006769 if (!Cmp2.getNode())
6770 return SDValue();
6771
Tim Northover45aa89c2015-02-08 00:50:47 +00006772 Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
Tim Northover3b0846e2014-05-24 12:50:23 +00006773 }
6774
Tim Northover45aa89c2015-02-08 00:50:47 +00006775 Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
6776
Tim Northover3b0846e2014-05-24 12:50:23 +00006777 if (ShouldInvert)
6778 return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
6779
6780 return Cmp;
6781}
6782
6783/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6784/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
6785/// specified in the intrinsic calls.
6786bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6787 const CallInst &I,
6788 unsigned Intrinsic) const {
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006789 auto &DL = I.getModule()->getDataLayout();
Tim Northover3b0846e2014-05-24 12:50:23 +00006790 switch (Intrinsic) {
6791 case Intrinsic::aarch64_neon_ld2:
6792 case Intrinsic::aarch64_neon_ld3:
6793 case Intrinsic::aarch64_neon_ld4:
6794 case Intrinsic::aarch64_neon_ld1x2:
6795 case Intrinsic::aarch64_neon_ld1x3:
6796 case Intrinsic::aarch64_neon_ld1x4:
6797 case Intrinsic::aarch64_neon_ld2lane:
6798 case Intrinsic::aarch64_neon_ld3lane:
6799 case Intrinsic::aarch64_neon_ld4lane:
6800 case Intrinsic::aarch64_neon_ld2r:
6801 case Intrinsic::aarch64_neon_ld3r:
6802 case Intrinsic::aarch64_neon_ld4r: {
6803 Info.opc = ISD::INTRINSIC_W_CHAIN;
6804 // Conservatively set memVT to the entire set of vectors loaded.
Ahmed Bougacha97564c32015-12-09 01:19:50 +00006805 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006806 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6807 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6808 Info.offset = 0;
6809 Info.align = 0;
6810 Info.vol = false; // volatile loads with NEON intrinsics not supported
6811 Info.readMem = true;
6812 Info.writeMem = false;
6813 return true;
6814 }
6815 case Intrinsic::aarch64_neon_st2:
6816 case Intrinsic::aarch64_neon_st3:
6817 case Intrinsic::aarch64_neon_st4:
6818 case Intrinsic::aarch64_neon_st1x2:
6819 case Intrinsic::aarch64_neon_st1x3:
6820 case Intrinsic::aarch64_neon_st1x4:
6821 case Intrinsic::aarch64_neon_st2lane:
6822 case Intrinsic::aarch64_neon_st3lane:
6823 case Intrinsic::aarch64_neon_st4lane: {
6824 Info.opc = ISD::INTRINSIC_VOID;
6825 // Conservatively set memVT to the entire set of vectors stored.
6826 unsigned NumElts = 0;
6827 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6828 Type *ArgTy = I.getArgOperand(ArgI)->getType();
6829 if (!ArgTy->isVectorTy())
6830 break;
Ahmed Bougacha97564c32015-12-09 01:19:50 +00006831 NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006832 }
6833 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6834 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6835 Info.offset = 0;
6836 Info.align = 0;
6837 Info.vol = false; // volatile stores with NEON intrinsics not supported
6838 Info.readMem = false;
6839 Info.writeMem = true;
6840 return true;
6841 }
6842 case Intrinsic::aarch64_ldaxr:
6843 case Intrinsic::aarch64_ldxr: {
6844 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
6845 Info.opc = ISD::INTRINSIC_W_CHAIN;
6846 Info.memVT = MVT::getVT(PtrTy->getElementType());
6847 Info.ptrVal = I.getArgOperand(0);
6848 Info.offset = 0;
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006849 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
Tim Northover3b0846e2014-05-24 12:50:23 +00006850 Info.vol = true;
6851 Info.readMem = true;
6852 Info.writeMem = false;
6853 return true;
6854 }
6855 case Intrinsic::aarch64_stlxr:
6856 case Intrinsic::aarch64_stxr: {
6857 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6858 Info.opc = ISD::INTRINSIC_W_CHAIN;
6859 Info.memVT = MVT::getVT(PtrTy->getElementType());
6860 Info.ptrVal = I.getArgOperand(1);
6861 Info.offset = 0;
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006862 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
Tim Northover3b0846e2014-05-24 12:50:23 +00006863 Info.vol = true;
6864 Info.readMem = false;
6865 Info.writeMem = true;
6866 return true;
6867 }
6868 case Intrinsic::aarch64_ldaxp:
6869 case Intrinsic::aarch64_ldxp: {
6870 Info.opc = ISD::INTRINSIC_W_CHAIN;
6871 Info.memVT = MVT::i128;
6872 Info.ptrVal = I.getArgOperand(0);
6873 Info.offset = 0;
6874 Info.align = 16;
6875 Info.vol = true;
6876 Info.readMem = true;
6877 Info.writeMem = false;
6878 return true;
6879 }
6880 case Intrinsic::aarch64_stlxp:
6881 case Intrinsic::aarch64_stxp: {
6882 Info.opc = ISD::INTRINSIC_W_CHAIN;
6883 Info.memVT = MVT::i128;
6884 Info.ptrVal = I.getArgOperand(2);
6885 Info.offset = 0;
6886 Info.align = 16;
6887 Info.vol = true;
6888 Info.readMem = false;
6889 Info.writeMem = true;
6890 return true;
6891 }
6892 default:
6893 break;
6894 }
6895
6896 return false;
6897}
6898
6899// Truncations from 64-bit GPR to 32-bit GPR is free.
6900bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6901 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6902 return false;
6903 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6904 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006905 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006906}
6907bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006908 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006909 return false;
6910 unsigned NumBits1 = VT1.getSizeInBits();
6911 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006912 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006913}
6914
Chad Rosier54390052015-02-23 19:15:16 +00006915/// Check if it is profitable to hoist instruction in then/else to if.
6916/// Not profitable if I and it's user can form a FMA instruction
6917/// because we prefer FMSUB/FMADD.
6918bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
6919 if (I->getOpcode() != Instruction::FMul)
6920 return true;
6921
6922 if (I->getNumUses() != 1)
6923 return true;
6924
6925 Instruction *User = I->user_back();
6926
6927 if (User &&
6928 !(User->getOpcode() == Instruction::FSub ||
6929 User->getOpcode() == Instruction::FAdd))
6930 return true;
6931
6932 const TargetOptions &Options = getTargetMachine().Options;
Mehdi Amini44ede332015-07-09 02:09:04 +00006933 const DataLayout &DL = I->getModule()->getDataLayout();
6934 EVT VT = getValueType(DL, User->getOperand(0)->getType());
Chad Rosier54390052015-02-23 19:15:16 +00006935
6936 if (isFMAFasterThanFMulAndFAdd(VT) &&
6937 isOperationLegalOrCustom(ISD::FMA, VT) &&
6938 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath))
6939 return false;
6940
6941 return true;
6942}
6943
Tim Northover3b0846e2014-05-24 12:50:23 +00006944// All 32-bit GPR operations implicitly zero the high-half of the corresponding
6945// 64-bit GPR.
6946bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6947 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6948 return false;
6949 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6950 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006951 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006952}
6953bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006954 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006955 return false;
6956 unsigned NumBits1 = VT1.getSizeInBits();
6957 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006958 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006959}
6960
6961bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6962 EVT VT1 = Val.getValueType();
6963 if (isZExtFree(VT1, VT2)) {
6964 return true;
6965 }
6966
6967 if (Val.getOpcode() != ISD::LOAD)
6968 return false;
6969
6970 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
Hao Liu40914502014-05-29 09:19:07 +00006971 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
6972 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
6973 VT1.getSizeInBits() <= 32);
Tim Northover3b0846e2014-05-24 12:50:23 +00006974}
6975
Quentin Colombet6843ac42015-03-31 20:52:32 +00006976bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
6977 if (isa<FPExtInst>(Ext))
6978 return false;
6979
6980 // Vector types are next free.
6981 if (Ext->getType()->isVectorTy())
6982 return false;
6983
6984 for (const Use &U : Ext->uses()) {
6985 // The extension is free if we can fold it with a left shift in an
6986 // addressing mode or an arithmetic operation: add, sub, and cmp.
6987
6988 // Is there a shift?
6989 const Instruction *Instr = cast<Instruction>(U.getUser());
6990
6991 // Is this a constant shift?
6992 switch (Instr->getOpcode()) {
6993 case Instruction::Shl:
6994 if (!isa<ConstantInt>(Instr->getOperand(1)))
6995 return false;
6996 break;
6997 case Instruction::GetElementPtr: {
6998 gep_type_iterator GTI = gep_type_begin(Instr);
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006999 auto &DL = Ext->getModule()->getDataLayout();
Quentin Colombet6843ac42015-03-31 20:52:32 +00007000 std::advance(GTI, U.getOperandNo());
7001 Type *IdxTy = *GTI;
7002 // This extension will end up with a shift because of the scaling factor.
7003 // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
7004 // Get the shift amount based on the scaling factor:
7005 // log2(sizeof(IdxTy)) - log2(8).
7006 uint64_t ShiftAmt =
Mehdi Aminia749f2a2015-07-09 02:09:52 +00007007 countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy)) - 3;
Quentin Colombet6843ac42015-03-31 20:52:32 +00007008 // Is the constant foldable in the shift of the addressing mode?
7009 // I.e., shift amount is between 1 and 4 inclusive.
7010 if (ShiftAmt == 0 || ShiftAmt > 4)
7011 return false;
7012 break;
7013 }
7014 case Instruction::Trunc:
7015 // Check if this is a noop.
7016 // trunc(sext ty1 to ty2) to ty1.
7017 if (Instr->getType() == Ext->getOperand(0)->getType())
7018 continue;
7019 // FALL THROUGH.
7020 default:
7021 return false;
7022 }
7023
7024 // At this point we can use the bfm family, so this extension is free
7025 // for that use.
7026 }
7027 return true;
7028}
7029
Tim Northover3b0846e2014-05-24 12:50:23 +00007030bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
7031 unsigned &RequiredAligment) const {
7032 if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
7033 return false;
7034 // Cyclone supports unaligned accesses.
7035 RequiredAligment = 0;
7036 unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
7037 return NumBits == 32 || NumBits == 64;
7038}
7039
7040bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
7041 unsigned &RequiredAligment) const {
7042 if (!LoadedType.isSimple() ||
7043 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
7044 return false;
7045 // Cyclone supports unaligned accesses.
7046 RequiredAligment = 0;
7047 unsigned NumBits = LoadedType.getSizeInBits();
7048 return NumBits == 32 || NumBits == 64;
7049}
7050
Hao Liu7ec8ee32015-06-26 02:32:07 +00007051/// \brief Lower an interleaved load into a ldN intrinsic.
7052///
7053/// E.g. Lower an interleaved load (Factor = 2):
7054/// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
7055/// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
7056/// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
7057///
7058/// Into:
7059/// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
7060/// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
7061/// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
7062bool AArch64TargetLowering::lowerInterleavedLoad(
7063 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
7064 ArrayRef<unsigned> Indices, unsigned Factor) const {
7065 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
7066 "Invalid interleave factor");
7067 assert(!Shuffles.empty() && "Empty shufflevector input");
7068 assert(Shuffles.size() == Indices.size() &&
7069 "Unmatched number of shufflevectors and indices");
7070
Mehdi Aminia749f2a2015-07-09 02:09:52 +00007071 const DataLayout &DL = LI->getModule()->getDataLayout();
Hao Liu7ec8ee32015-06-26 02:32:07 +00007072
7073 VectorType *VecTy = Shuffles[0]->getType();
Ahmed Bougacha97564c32015-12-09 01:19:50 +00007074 unsigned VecSize = DL.getTypeSizeInBits(VecTy);
Hao Liu7ec8ee32015-06-26 02:32:07 +00007075
Jeroen Ketemaaebca092015-10-07 14:53:29 +00007076 // Skip if we do not have NEON and skip illegal vector types.
7077 if (!Subtarget->hasNEON() || (VecSize != 64 && VecSize != 128))
Hao Liu7ec8ee32015-06-26 02:32:07 +00007078 return false;
7079
7080 // A pointer vector can not be the return type of the ldN intrinsics. Need to
7081 // load integer vectors first and then convert to pointer vectors.
7082 Type *EltTy = VecTy->getVectorElementType();
7083 if (EltTy->isPointerTy())
Mehdi Aminia749f2a2015-07-09 02:09:52 +00007084 VecTy =
7085 VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
Hao Liu7ec8ee32015-06-26 02:32:07 +00007086
7087 Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
7088 Type *Tys[2] = {VecTy, PtrTy};
7089 static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
7090 Intrinsic::aarch64_neon_ld3,
7091 Intrinsic::aarch64_neon_ld4};
7092 Function *LdNFunc =
7093 Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
7094
7095 IRBuilder<> Builder(LI);
7096 Value *Ptr = Builder.CreateBitCast(LI->getPointerOperand(), PtrTy);
7097
7098 CallInst *LdN = Builder.CreateCall(LdNFunc, Ptr, "ldN");
7099
7100 // Replace uses of each shufflevector with the corresponding vector loaded
7101 // by ldN.
7102 for (unsigned i = 0; i < Shuffles.size(); i++) {
7103 ShuffleVectorInst *SVI = Shuffles[i];
7104 unsigned Index = Indices[i];
7105
7106 Value *SubVec = Builder.CreateExtractValue(LdN, Index);
7107
7108 // Convert the integer vector to pointer vector if the element is pointer.
7109 if (EltTy->isPointerTy())
7110 SubVec = Builder.CreateIntToPtr(SubVec, SVI->getType());
7111
7112 SVI->replaceAllUsesWith(SubVec);
7113 }
7114
7115 return true;
7116}
7117
7118/// \brief Get a mask consisting of sequential integers starting from \p Start.
7119///
7120/// I.e. <Start, Start + 1, ..., Start + NumElts - 1>
7121static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start,
7122 unsigned NumElts) {
7123 SmallVector<Constant *, 16> Mask;
7124 for (unsigned i = 0; i < NumElts; i++)
7125 Mask.push_back(Builder.getInt32(Start + i));
7126
7127 return ConstantVector::get(Mask);
7128}
7129
7130/// \brief Lower an interleaved store into a stN intrinsic.
7131///
7132/// E.g. Lower an interleaved store (Factor = 3):
7133/// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
7134/// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
7135/// store <12 x i32> %i.vec, <12 x i32>* %ptr
7136///
7137/// Into:
7138/// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
7139/// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
7140/// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
7141/// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
7142///
7143/// Note that the new shufflevectors will be removed and we'll only generate one
7144/// st3 instruction in CodeGen.
7145bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
7146 ShuffleVectorInst *SVI,
7147 unsigned Factor) const {
7148 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
7149 "Invalid interleave factor");
7150
7151 VectorType *VecTy = SVI->getType();
7152 assert(VecTy->getVectorNumElements() % Factor == 0 &&
7153 "Invalid interleaved store");
7154
7155 unsigned NumSubElts = VecTy->getVectorNumElements() / Factor;
7156 Type *EltTy = VecTy->getVectorElementType();
7157 VectorType *SubVecTy = VectorType::get(EltTy, NumSubElts);
7158
Mehdi Aminia749f2a2015-07-09 02:09:52 +00007159 const DataLayout &DL = SI->getModule()->getDataLayout();
Ahmed Bougacha97564c32015-12-09 01:19:50 +00007160 unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
Hao Liu7ec8ee32015-06-26 02:32:07 +00007161
Jeroen Ketemaaebca092015-10-07 14:53:29 +00007162 // Skip if we do not have NEON and skip illegal vector types.
7163 if (!Subtarget->hasNEON() || (SubVecSize != 64 && SubVecSize != 128))
Hao Liu7ec8ee32015-06-26 02:32:07 +00007164 return false;
7165
7166 Value *Op0 = SVI->getOperand(0);
7167 Value *Op1 = SVI->getOperand(1);
7168 IRBuilder<> Builder(SI);
7169
7170 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
7171 // vectors to integer vectors.
7172 if (EltTy->isPointerTy()) {
Mehdi Aminia749f2a2015-07-09 02:09:52 +00007173 Type *IntTy = DL.getIntPtrType(EltTy);
Hao Liu7ec8ee32015-06-26 02:32:07 +00007174 unsigned NumOpElts =
7175 dyn_cast<VectorType>(Op0->getType())->getVectorNumElements();
7176
7177 // Convert to the corresponding integer vector.
7178 Type *IntVecTy = VectorType::get(IntTy, NumOpElts);
7179 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
7180 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
7181
7182 SubVecTy = VectorType::get(IntTy, NumSubElts);
7183 }
7184
7185 Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
7186 Type *Tys[2] = {SubVecTy, PtrTy};
7187 static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
7188 Intrinsic::aarch64_neon_st3,
7189 Intrinsic::aarch64_neon_st4};
7190 Function *StNFunc =
7191 Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
7192
7193 SmallVector<Value *, 5> Ops;
7194
7195 // Split the shufflevector operands into sub vectors for the new stN call.
7196 for (unsigned i = 0; i < Factor; i++)
7197 Ops.push_back(Builder.CreateShuffleVector(
7198 Op0, Op1, getSequentialMask(Builder, NumSubElts * i, NumSubElts)));
7199
7200 Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), PtrTy));
7201 Builder.CreateCall(StNFunc, Ops);
7202 return true;
7203}
7204
Tim Northover3b0846e2014-05-24 12:50:23 +00007205static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
7206 unsigned AlignCheck) {
7207 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
7208 (DstAlign == 0 || DstAlign % AlignCheck == 0));
7209}
7210
7211EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
7212 unsigned SrcAlign, bool IsMemset,
7213 bool ZeroMemset,
7214 bool MemcpyStrSrc,
7215 MachineFunction &MF) const {
7216 // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
7217 // instruction to materialize the v2i64 zero and one store (with restrictive
7218 // addressing mode). Just do two i64 store of zero-registers.
7219 bool Fast;
7220 const Function *F = MF.getFunction();
7221 if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00007222 !F->hasFnAttribute(Attribute::NoImplicitFloat) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00007223 (memOpAlign(SrcAlign, DstAlign, 16) ||
Matt Arsenault6f2a5262014-07-27 17:46:40 +00007224 (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
Tim Northover3b0846e2014-05-24 12:50:23 +00007225 return MVT::f128;
7226
Lang Hames90333852015-04-09 03:40:33 +00007227 if (Size >= 8 &&
7228 (memOpAlign(SrcAlign, DstAlign, 8) ||
7229 (allowsMisalignedMemoryAccesses(MVT::i64, 0, 1, &Fast) && Fast)))
7230 return MVT::i64;
7231
7232 if (Size >= 4 &&
7233 (memOpAlign(SrcAlign, DstAlign, 4) ||
7234 (allowsMisalignedMemoryAccesses(MVT::i32, 0, 1, &Fast) && Fast)))
Lang Hames522bf132015-04-09 05:34:57 +00007235 return MVT::i32;
Lang Hames90333852015-04-09 03:40:33 +00007236
7237 return MVT::Other;
Tim Northover3b0846e2014-05-24 12:50:23 +00007238}
7239
7240// 12-bit optionally shifted immediates are legal for adds.
7241bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
7242 if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
7243 return true;
7244 return false;
7245}
7246
7247// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
7248// immediates is the same as for an add or a sub.
7249bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
7250 if (Immed < 0)
7251 Immed *= -1;
7252 return isLegalAddImmediate(Immed);
7253}
7254
7255/// isLegalAddressingMode - Return true if the addressing mode represented
7256/// by AM is legal for this target, for a load/store of the specified type.
Mehdi Amini0cdec1e2015-07-09 02:09:40 +00007257bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
7258 const AddrMode &AM, Type *Ty,
Matt Arsenaultbd7d80a2015-06-01 05:31:59 +00007259 unsigned AS) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00007260 // AArch64 has five basic addressing modes:
7261 // reg
7262 // reg + 9-bit signed offset
7263 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
7264 // reg1 + reg2
7265 // reg + SIZE_IN_BYTES * reg
7266
7267 // No global is ever allowed as a base.
7268 if (AM.BaseGV)
7269 return false;
7270
7271 // No reg+reg+imm addressing.
7272 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
7273 return false;
7274
7275 // check reg + imm case:
7276 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
7277 uint64_t NumBytes = 0;
7278 if (Ty->isSized()) {
Mehdi Amini0cdec1e2015-07-09 02:09:40 +00007279 uint64_t NumBits = DL.getTypeSizeInBits(Ty);
Tim Northover3b0846e2014-05-24 12:50:23 +00007280 NumBytes = NumBits / 8;
7281 if (!isPowerOf2_64(NumBits))
7282 NumBytes = 0;
7283 }
7284
7285 if (!AM.Scale) {
7286 int64_t Offset = AM.BaseOffs;
7287
7288 // 9-bit signed offset
7289 if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
7290 return true;
7291
7292 // 12-bit unsigned offset
7293 unsigned shift = Log2_64(NumBytes);
7294 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
7295 // Must be a multiple of NumBytes (NumBytes is a power of 2)
7296 (Offset >> shift) << shift == Offset)
7297 return true;
7298 return false;
7299 }
7300
7301 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
7302
7303 if (!AM.Scale || AM.Scale == 1 ||
7304 (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
7305 return true;
7306 return false;
7307}
7308
Mehdi Amini0cdec1e2015-07-09 02:09:40 +00007309int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL,
7310 const AddrMode &AM, Type *Ty,
Matt Arsenaultbd7d80a2015-06-01 05:31:59 +00007311 unsigned AS) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00007312 // Scaling factors are not free at all.
7313 // Operands | Rt Latency
7314 // -------------------------------------------
7315 // Rt, [Xn, Xm] | 4
7316 // -------------------------------------------
7317 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
7318 // Rt, [Xn, Wm, <extend> #imm] |
Mehdi Amini0cdec1e2015-07-09 02:09:40 +00007319 if (isLegalAddressingMode(DL, AM, Ty, AS))
Tim Northover3b0846e2014-05-24 12:50:23 +00007320 // Scale represents reg2 * scale, thus account for 1 if
7321 // it is not equal to 0 or 1.
7322 return AM.Scale != 0 && AM.Scale != 1;
7323 return -1;
7324}
7325
7326bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
7327 VT = VT.getScalarType();
7328
7329 if (!VT.isSimple())
7330 return false;
7331
7332 switch (VT.getSimpleVT().SimpleTy) {
7333 case MVT::f32:
7334 case MVT::f64:
7335 return true;
7336 default:
7337 break;
7338 }
7339
7340 return false;
7341}
7342
7343const MCPhysReg *
7344AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
7345 // LR is a callee-save register, but we must treat it as clobbered by any call
7346 // site. Hence we include LR in the scratch registers, which are in turn added
7347 // as implicit-defs for stackmaps and patchpoints.
7348 static const MCPhysReg ScratchRegs[] = {
7349 AArch64::X16, AArch64::X17, AArch64::LR, 0
7350 };
7351 return ScratchRegs;
7352}
7353
7354bool
7355AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
7356 EVT VT = N->getValueType(0);
7357 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
7358 // it with shift to let it be lowered to UBFX.
7359 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
7360 isa<ConstantSDNode>(N->getOperand(1))) {
7361 uint64_t TruncMask = N->getConstantOperandVal(1);
7362 if (isMask_64(TruncMask) &&
7363 N->getOperand(0).getOpcode() == ISD::SRL &&
7364 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
7365 return false;
7366 }
7367 return true;
7368}
7369
7370bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
7371 Type *Ty) const {
7372 assert(Ty->isIntegerTy());
7373
7374 unsigned BitSize = Ty->getPrimitiveSizeInBits();
7375 if (BitSize == 0)
7376 return false;
7377
7378 int64_t Val = Imm.getSExtValue();
7379 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
7380 return true;
7381
7382 if ((int64_t)Val < 0)
7383 Val = ~Val;
7384 if (BitSize == 32)
7385 Val &= (1LL << 32) - 1;
7386
7387 unsigned LZ = countLeadingZeros((uint64_t)Val);
7388 unsigned Shift = (63 - LZ) / 16;
7389 // MOVZ is free so return true for one or fewer MOVK.
David Blaikie186d2cb2015-03-24 16:24:01 +00007390 return Shift < 3;
Tim Northover3b0846e2014-05-24 12:50:23 +00007391}
7392
7393// Generate SUBS and CSEL for integer abs.
7394static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
7395 EVT VT = N->getValueType(0);
7396
7397 SDValue N0 = N->getOperand(0);
7398 SDValue N1 = N->getOperand(1);
7399 SDLoc DL(N);
7400
7401 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
7402 // and change it to SUB and CSEL.
7403 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
7404 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
7405 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
7406 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
7407 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007408 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
Tim Northover3b0846e2014-05-24 12:50:23 +00007409 N0.getOperand(0));
7410 // Generate SUBS & CSEL.
7411 SDValue Cmp =
7412 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007413 N0.getOperand(0), DAG.getConstant(0, DL, VT));
Tim Northover3b0846e2014-05-24 12:50:23 +00007414 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007415 DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00007416 SDValue(Cmp.getNode(), 1));
7417 }
7418 return SDValue();
7419}
7420
7421// performXorCombine - Attempts to handle integer ABS.
7422static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
7423 TargetLowering::DAGCombinerInfo &DCI,
7424 const AArch64Subtarget *Subtarget) {
7425 if (DCI.isBeforeLegalizeOps())
7426 return SDValue();
7427
7428 return performIntegerAbsCombine(N, DAG);
7429}
7430
Chad Rosier17020f92014-07-23 14:57:52 +00007431SDValue
7432AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
7433 SelectionDAG &DAG,
7434 std::vector<SDNode *> *Created) const {
7435 // fold (sdiv X, pow2)
7436 EVT VT = N->getValueType(0);
7437 if ((VT != MVT::i32 && VT != MVT::i64) ||
7438 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
7439 return SDValue();
7440
7441 SDLoc DL(N);
7442 SDValue N0 = N->getOperand(0);
7443 unsigned Lg2 = Divisor.countTrailingZeros();
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007444 SDValue Zero = DAG.getConstant(0, DL, VT);
7445 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
Chad Rosier17020f92014-07-23 14:57:52 +00007446
7447 // Add (N0 < 0) ? Pow2 - 1 : 0;
7448 SDValue CCVal;
7449 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
7450 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
7451 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
7452
7453 if (Created) {
7454 Created->push_back(Cmp.getNode());
7455 Created->push_back(Add.getNode());
7456 Created->push_back(CSel.getNode());
7457 }
7458
7459 // Divide by pow2.
7460 SDValue SRA =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007461 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
Chad Rosier17020f92014-07-23 14:57:52 +00007462
7463 // If we're dividing by a positive value, we're done. Otherwise, we must
7464 // negate the result.
7465 if (Divisor.isNonNegative())
7466 return SRA;
7467
7468 if (Created)
7469 Created->push_back(SRA.getNode());
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007470 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
Chad Rosier17020f92014-07-23 14:57:52 +00007471}
7472
Tim Northover3b0846e2014-05-24 12:50:23 +00007473static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
7474 TargetLowering::DAGCombinerInfo &DCI,
7475 const AArch64Subtarget *Subtarget) {
7476 if (DCI.isBeforeLegalizeOps())
7477 return SDValue();
7478
7479 // Multiplication of a power of two plus/minus one can be done more
7480 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
7481 // future CPUs have a cheaper MADD instruction, this may need to be
7482 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
7483 // 64-bit is 5 cycles, so this is always a win.
7484 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
7485 APInt Value = C->getAPIntValue();
7486 EVT VT = N->getValueType(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007487 SDLoc DL(N);
Chad Rosiere6b87612014-06-30 14:51:14 +00007488 if (Value.isNonNegative()) {
7489 // (mul x, 2^N + 1) => (add (shl x, N), x)
7490 APInt VM1 = Value - 1;
7491 if (VM1.isPowerOf2()) {
7492 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007493 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7494 DAG.getConstant(VM1.logBase2(), DL, MVT::i64));
7495 return DAG.getNode(ISD::ADD, DL, VT, ShiftedVal,
Chad Rosiere6b87612014-06-30 14:51:14 +00007496 N->getOperand(0));
7497 }
7498 // (mul x, 2^N - 1) => (sub (shl x, N), x)
7499 APInt VP1 = Value + 1;
7500 if (VP1.isPowerOf2()) {
7501 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007502 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7503 DAG.getConstant(VP1.logBase2(), DL, MVT::i64));
7504 return DAG.getNode(ISD::SUB, DL, VT, ShiftedVal,
Chad Rosiere6b87612014-06-30 14:51:14 +00007505 N->getOperand(0));
7506 }
7507 } else {
Chad Rosier8e38f302015-03-03 17:31:01 +00007508 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
7509 APInt VNP1 = -Value + 1;
7510 if (VNP1.isPowerOf2()) {
7511 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007512 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7513 DAG.getConstant(VNP1.logBase2(), DL, MVT::i64));
7514 return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0),
Chad Rosier8e38f302015-03-03 17:31:01 +00007515 ShiftedVal);
7516 }
Chad Rosiere6b87612014-06-30 14:51:14 +00007517 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
7518 APInt VNM1 = -Value - 1;
7519 if (VNM1.isPowerOf2()) {
7520 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007521 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7522 DAG.getConstant(VNM1.logBase2(), DL, MVT::i64));
Chad Rosiere6b87612014-06-30 14:51:14 +00007523 SDValue Add =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007524 DAG.getNode(ISD::ADD, DL, VT, ShiftedVal, N->getOperand(0));
7525 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Add);
Chad Rosiere6b87612014-06-30 14:51:14 +00007526 }
Chad Rosierd96e9f12014-06-09 01:25:51 +00007527 }
Tim Northover3b0846e2014-05-24 12:50:23 +00007528 }
7529 return SDValue();
7530}
7531
Jim Grosbachf7502c42014-07-18 00:40:52 +00007532static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
7533 SelectionDAG &DAG) {
7534 // Take advantage of vector comparisons producing 0 or -1 in each lane to
7535 // optimize away operation when it's from a constant.
7536 //
7537 // The general transformation is:
7538 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
7539 // AND(VECTOR_CMP(x,y), constant2)
7540 // constant2 = UNARYOP(constant)
7541
Jim Grosbach8f6f0852014-07-23 20:41:38 +00007542 // Early exit if this isn't a vector operation, the operand of the
7543 // unary operation isn't a bitwise AND, or if the sizes of the operations
7544 // aren't the same.
Jim Grosbachf7502c42014-07-18 00:40:52 +00007545 EVT VT = N->getValueType(0);
7546 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
Jim Grosbach8f6f0852014-07-23 20:41:38 +00007547 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
7548 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
Jim Grosbachf7502c42014-07-18 00:40:52 +00007549 return SDValue();
7550
Jim Grosbach724e4382014-07-23 20:41:43 +00007551 // Now check that the other operand of the AND is a constant. We could
Jim Grosbachf7502c42014-07-18 00:40:52 +00007552 // make the transformation for non-constant splats as well, but it's unclear
7553 // that would be a benefit as it would not eliminate any operations, just
7554 // perform one more step in scalar code before moving to the vector unit.
7555 if (BuildVectorSDNode *BV =
7556 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
Jim Grosbach724e4382014-07-23 20:41:43 +00007557 // Bail out if the vector isn't a constant.
7558 if (!BV->isConstant())
Jim Grosbachf7502c42014-07-18 00:40:52 +00007559 return SDValue();
7560
7561 // Everything checks out. Build up the new and improved node.
7562 SDLoc DL(N);
7563 EVT IntVT = BV->getValueType(0);
7564 // Create a new constant of the appropriate type for the transformed
7565 // DAG.
7566 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
7567 // The AND node needs bitcasts to/from an integer vector type around it.
7568 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
7569 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
7570 N->getOperand(0)->getOperand(0), MaskConst);
7571 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
7572 return Res;
7573 }
7574
7575 return SDValue();
7576}
7577
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00007578static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
7579 const AArch64Subtarget *Subtarget) {
Jim Grosbachf7502c42014-07-18 00:40:52 +00007580 // First try to optimize away the conversion when it's conditionally from
7581 // a constant. Vectors only.
Ahmed Bougacha239d6352015-08-04 00:48:02 +00007582 if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
Jim Grosbachf7502c42014-07-18 00:40:52 +00007583 return Res;
7584
Tim Northover3b0846e2014-05-24 12:50:23 +00007585 EVT VT = N->getValueType(0);
7586 if (VT != MVT::f32 && VT != MVT::f64)
7587 return SDValue();
Jim Grosbachf7502c42014-07-18 00:40:52 +00007588
Tim Northover3b0846e2014-05-24 12:50:23 +00007589 // Only optimize when the source and destination types have the same width.
7590 if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
7591 return SDValue();
7592
7593 // If the result of an integer load is only used by an integer-to-float
7594 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
Chad Rosier1f385612015-10-02 16:42:59 +00007595 // This eliminates an "integer-to-vector-move" UOP and improves throughput.
Tim Northover3b0846e2014-05-24 12:50:23 +00007596 SDValue N0 = N->getOperand(0);
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00007597 if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
Tim Northover3b0846e2014-05-24 12:50:23 +00007598 // Do not change the width of a volatile load.
7599 !cast<LoadSDNode>(N0)->isVolatile()) {
7600 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7601 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
7602 LN0->getPointerInfo(), LN0->isVolatile(),
7603 LN0->isNonTemporal(), LN0->isInvariant(),
7604 LN0->getAlignment());
7605
7606 // Make sure successors of the original load stay after it by updating them
7607 // to use the new Chain.
7608 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
7609
7610 unsigned Opcode =
7611 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
7612 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
7613 }
7614
7615 return SDValue();
7616}
7617
Chad Rosierfa30c9b2015-10-07 17:39:18 +00007618/// Fold a floating-point multiply by power of two into floating-point to
7619/// fixed-point conversion.
7620static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
7621 const AArch64Subtarget *Subtarget) {
7622 if (!Subtarget->hasNEON())
7623 return SDValue();
7624
7625 SDValue Op = N->getOperand(0);
7626 if (!Op.getValueType().isVector() || Op.getOpcode() != ISD::FMUL)
7627 return SDValue();
7628
7629 SDValue ConstVec = Op->getOperand(1);
7630 if (!isa<BuildVectorSDNode>(ConstVec))
7631 return SDValue();
7632
7633 MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
7634 uint32_t FloatBits = FloatTy.getSizeInBits();
7635 if (FloatBits != 32 && FloatBits != 64)
7636 return SDValue();
7637
7638 MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
7639 uint32_t IntBits = IntTy.getSizeInBits();
7640 if (IntBits != 16 && IntBits != 32 && IntBits != 64)
7641 return SDValue();
7642
7643 // Avoid conversions where iN is larger than the float (e.g., float -> i64).
7644 if (IntBits > FloatBits)
7645 return SDValue();
7646
7647 BitVector UndefElements;
7648 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
7649 int32_t Bits = IntBits == 64 ? 64 : 32;
7650 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
7651 if (C == -1 || C == 0 || C > Bits)
7652 return SDValue();
7653
7654 MVT ResTy;
7655 unsigned NumLanes = Op.getValueType().getVectorNumElements();
7656 switch (NumLanes) {
7657 default:
7658 return SDValue();
7659 case 2:
7660 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
7661 break;
7662 case 4:
7663 ResTy = MVT::v4i32;
7664 break;
7665 }
7666
7667 SDLoc DL(N);
7668 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
7669 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
7670 : Intrinsic::aarch64_neon_vcvtfp2fxu;
7671 SDValue FixConv =
7672 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
7673 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
7674 Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
7675 // We can handle smaller integers by generating an extra trunc.
7676 if (IntBits < FloatBits)
7677 FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);
7678
7679 return FixConv;
7680}
7681
Chad Rosier7c6ac2b2015-10-07 17:51:37 +00007682/// Fold a floating-point divide by power of two into fixed-point to
7683/// floating-point conversion.
7684static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
7685 const AArch64Subtarget *Subtarget) {
7686 if (!Subtarget->hasNEON())
7687 return SDValue();
7688
7689 SDValue Op = N->getOperand(0);
7690 unsigned Opc = Op->getOpcode();
7691 if (!Op.getValueType().isVector() ||
7692 (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
7693 return SDValue();
7694
7695 SDValue ConstVec = N->getOperand(1);
7696 if (!isa<BuildVectorSDNode>(ConstVec))
7697 return SDValue();
7698
7699 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
7700 int32_t IntBits = IntTy.getSizeInBits();
7701 if (IntBits != 16 && IntBits != 32 && IntBits != 64)
7702 return SDValue();
7703
7704 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
7705 int32_t FloatBits = FloatTy.getSizeInBits();
7706 if (FloatBits != 32 && FloatBits != 64)
7707 return SDValue();
7708
7709 // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
7710 if (IntBits > FloatBits)
7711 return SDValue();
7712
7713 BitVector UndefElements;
7714 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
7715 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
7716 if (C == -1 || C == 0 || C > FloatBits)
7717 return SDValue();
7718
7719 MVT ResTy;
7720 unsigned NumLanes = Op.getValueType().getVectorNumElements();
7721 switch (NumLanes) {
7722 default:
7723 return SDValue();
7724 case 2:
7725 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
7726 break;
7727 case 4:
7728 ResTy = MVT::v4i32;
7729 break;
7730 }
7731
7732 SDLoc DL(N);
7733 SDValue ConvInput = Op.getOperand(0);
7734 bool IsSigned = Opc == ISD::SINT_TO_FP;
7735 if (IntBits < FloatBits)
7736 ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
7737 ResTy, ConvInput);
7738
7739 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
7740 : Intrinsic::aarch64_neon_vcvtfxu2fp;
7741 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
7742 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
7743 DAG.getConstant(C, DL, MVT::i32));
7744}
7745
Tim Northover3b0846e2014-05-24 12:50:23 +00007746/// An EXTR instruction is made up of two shifts, ORed together. This helper
7747/// searches for and classifies those shifts.
7748static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
7749 bool &FromHi) {
7750 if (N.getOpcode() == ISD::SHL)
7751 FromHi = false;
7752 else if (N.getOpcode() == ISD::SRL)
7753 FromHi = true;
7754 else
7755 return false;
7756
7757 if (!isa<ConstantSDNode>(N.getOperand(1)))
7758 return false;
7759
7760 ShiftAmount = N->getConstantOperandVal(1);
7761 Src = N->getOperand(0);
7762 return true;
7763}
7764
7765/// EXTR instruction extracts a contiguous chunk of bits from two existing
7766/// registers viewed as a high/low pair. This function looks for the pattern:
7767/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
7768/// EXTR. Can't quite be done in TableGen because the two immediates aren't
7769/// independent.
7770static SDValue tryCombineToEXTR(SDNode *N,
7771 TargetLowering::DAGCombinerInfo &DCI) {
7772 SelectionDAG &DAG = DCI.DAG;
7773 SDLoc DL(N);
7774 EVT VT = N->getValueType(0);
7775
7776 assert(N->getOpcode() == ISD::OR && "Unexpected root");
7777
7778 if (VT != MVT::i32 && VT != MVT::i64)
7779 return SDValue();
7780
7781 SDValue LHS;
7782 uint32_t ShiftLHS = 0;
7783 bool LHSFromHi = 0;
7784 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
7785 return SDValue();
7786
7787 SDValue RHS;
7788 uint32_t ShiftRHS = 0;
7789 bool RHSFromHi = 0;
7790 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
7791 return SDValue();
7792
7793 // If they're both trying to come from the high part of the register, they're
7794 // not really an EXTR.
7795 if (LHSFromHi == RHSFromHi)
7796 return SDValue();
7797
7798 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
7799 return SDValue();
7800
7801 if (LHSFromHi) {
7802 std::swap(LHS, RHS);
7803 std::swap(ShiftLHS, ShiftRHS);
7804 }
7805
7806 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007807 DAG.getConstant(ShiftRHS, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007808}
7809
7810static SDValue tryCombineToBSL(SDNode *N,
7811 TargetLowering::DAGCombinerInfo &DCI) {
7812 EVT VT = N->getValueType(0);
7813 SelectionDAG &DAG = DCI.DAG;
7814 SDLoc DL(N);
7815
7816 if (!VT.isVector())
7817 return SDValue();
7818
7819 SDValue N0 = N->getOperand(0);
7820 if (N0.getOpcode() != ISD::AND)
7821 return SDValue();
7822
7823 SDValue N1 = N->getOperand(1);
7824 if (N1.getOpcode() != ISD::AND)
7825 return SDValue();
7826
7827 // We only have to look for constant vectors here since the general, variable
7828 // case can be handled in TableGen.
7829 unsigned Bits = VT.getVectorElementType().getSizeInBits();
7830 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
7831 for (int i = 1; i >= 0; --i)
7832 for (int j = 1; j >= 0; --j) {
7833 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
7834 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
7835 if (!BVN0 || !BVN1)
7836 continue;
7837
7838 bool FoundMatch = true;
7839 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
7840 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
7841 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
7842 if (!CN0 || !CN1 ||
7843 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
7844 FoundMatch = false;
7845 break;
7846 }
7847 }
7848
7849 if (FoundMatch)
7850 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
7851 N0->getOperand(1 - i), N1->getOperand(1 - j));
7852 }
7853
7854 return SDValue();
7855}
7856
7857static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
7858 const AArch64Subtarget *Subtarget) {
7859 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
7860 if (!EnableAArch64ExtrGeneration)
7861 return SDValue();
7862 SelectionDAG &DAG = DCI.DAG;
7863 EVT VT = N->getValueType(0);
7864
7865 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7866 return SDValue();
7867
7868 SDValue Res = tryCombineToEXTR(N, DCI);
7869 if (Res.getNode())
7870 return Res;
7871
7872 Res = tryCombineToBSL(N, DCI);
7873 if (Res.getNode())
7874 return Res;
7875
7876 return SDValue();
7877}
7878
7879static SDValue performBitcastCombine(SDNode *N,
7880 TargetLowering::DAGCombinerInfo &DCI,
7881 SelectionDAG &DAG) {
7882 // Wait 'til after everything is legalized to try this. That way we have
7883 // legal vector types and such.
7884 if (DCI.isBeforeLegalizeOps())
7885 return SDValue();
7886
7887 // Remove extraneous bitcasts around an extract_subvector.
7888 // For example,
7889 // (v4i16 (bitconvert
7890 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
7891 // becomes
7892 // (extract_subvector ((v8i16 ...), (i64 4)))
7893
7894 // Only interested in 64-bit vectors as the ultimate result.
7895 EVT VT = N->getValueType(0);
7896 if (!VT.isVector())
7897 return SDValue();
7898 if (VT.getSimpleVT().getSizeInBits() != 64)
7899 return SDValue();
7900 // Is the operand an extract_subvector starting at the beginning or halfway
7901 // point of the vector? A low half may also come through as an
7902 // EXTRACT_SUBREG, so look for that, too.
7903 SDValue Op0 = N->getOperand(0);
7904 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
7905 !(Op0->isMachineOpcode() &&
7906 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
7907 return SDValue();
7908 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
7909 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
7910 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
7911 return SDValue();
7912 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
7913 if (idx != AArch64::dsub)
7914 return SDValue();
7915 // The dsub reference is equivalent to a lane zero subvector reference.
7916 idx = 0;
7917 }
7918 // Look through the bitcast of the input to the extract.
7919 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
7920 return SDValue();
7921 SDValue Source = Op0->getOperand(0)->getOperand(0);
7922 // If the source type has twice the number of elements as our destination
7923 // type, we know this is an extract of the high or low half of the vector.
7924 EVT SVT = Source->getValueType(0);
7925 if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
7926 return SDValue();
7927
7928 DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
7929
7930 // Create the simplified form to just extract the low or high half of the
7931 // vector directly rather than bothering with the bitcasts.
7932 SDLoc dl(N);
7933 unsigned NumElements = VT.getVectorNumElements();
7934 if (idx) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007935 SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00007936 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
7937 } else {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007938 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00007939 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
7940 Source, SubReg),
7941 0);
7942 }
7943}
7944
7945static SDValue performConcatVectorsCombine(SDNode *N,
7946 TargetLowering::DAGCombinerInfo &DCI,
7947 SelectionDAG &DAG) {
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007948 SDLoc dl(N);
7949 EVT VT = N->getValueType(0);
7950 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
7951
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00007952 // Optimize concat_vectors of truncated vectors, where the intermediate
7953 // type is illegal, to avoid said illegality, e.g.,
7954 // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
7955 // (v2i16 (truncate (v2i64)))))
7956 // ->
Ahmed Bougachae6bb09a2015-03-21 01:08:39 +00007957 // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
7958 // (v4i32 (bitcast (v2i64))),
7959 // <0, 2, 4, 6>)))
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00007960 // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
7961 // on both input and result type, so we might generate worse code.
7962 // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
7963 if (N->getNumOperands() == 2 &&
7964 N0->getOpcode() == ISD::TRUNCATE &&
7965 N1->getOpcode() == ISD::TRUNCATE) {
7966 SDValue N00 = N0->getOperand(0);
7967 SDValue N10 = N1->getOperand(0);
7968 EVT N00VT = N00.getValueType();
7969
7970 if (N00VT == N10.getValueType() &&
7971 (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
7972 N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
Ahmed Bougachae6bb09a2015-03-21 01:08:39 +00007973 MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
7974 SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
7975 for (size_t i = 0; i < Mask.size(); ++i)
7976 Mask[i] = i * 2;
7977 return DAG.getNode(ISD::TRUNCATE, dl, VT,
7978 DAG.getVectorShuffle(
7979 MidVT, dl,
7980 DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
7981 DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00007982 }
7983 }
7984
Tim Northover3b0846e2014-05-24 12:50:23 +00007985 // Wait 'til after everything is legalized to try this. That way we have
7986 // legal vector types and such.
7987 if (DCI.isBeforeLegalizeOps())
7988 return SDValue();
7989
Tim Northover3b0846e2014-05-24 12:50:23 +00007990 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
7991 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
7992 // canonicalise to that.
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007993 if (N0 == N1 && VT.getVectorNumElements() == 2) {
Tim Northover3b0846e2014-05-24 12:50:23 +00007994 assert(VT.getVectorElementType().getSizeInBits() == 64);
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007995 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007996 DAG.getConstant(0, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007997 }
7998
7999 // Canonicalise concat_vectors so that the right-hand vector has as few
8000 // bit-casts as possible before its real operation. The primary matching
8001 // destination for these operations will be the narrowing "2" instructions,
8002 // which depend on the operation being performed on this right-hand vector.
8003 // For example,
8004 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
8005 // becomes
8006 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
8007
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00008008 if (N1->getOpcode() != ISD::BITCAST)
Tim Northover3b0846e2014-05-24 12:50:23 +00008009 return SDValue();
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00008010 SDValue RHS = N1->getOperand(0);
Tim Northover3b0846e2014-05-24 12:50:23 +00008011 MVT RHSTy = RHS.getValueType().getSimpleVT();
8012 // If the RHS is not a vector, this is not the pattern we're looking for.
8013 if (!RHSTy.isVector())
8014 return SDValue();
8015
8016 DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
8017
8018 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
8019 RHSTy.getVectorNumElements() * 2);
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00008020 return DAG.getNode(ISD::BITCAST, dl, VT,
8021 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
8022 DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
8023 RHS));
Tim Northover3b0846e2014-05-24 12:50:23 +00008024}
8025
8026static SDValue tryCombineFixedPointConvert(SDNode *N,
8027 TargetLowering::DAGCombinerInfo &DCI,
8028 SelectionDAG &DAG) {
8029 // Wait 'til after everything is legalized to try this. That way we have
8030 // legal vector types and such.
8031 if (DCI.isBeforeLegalizeOps())
8032 return SDValue();
8033 // Transform a scalar conversion of a value from a lane extract into a
8034 // lane extract of a vector conversion. E.g., from foo1 to foo2:
8035 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
8036 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
8037 //
8038 // The second form interacts better with instruction selection and the
8039 // register allocator to avoid cross-class register copies that aren't
8040 // coalescable due to a lane reference.
8041
8042 // Check the operand and see if it originates from a lane extract.
8043 SDValue Op1 = N->getOperand(1);
8044 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
8045 // Yep, no additional predication needed. Perform the transform.
8046 SDValue IID = N->getOperand(0);
8047 SDValue Shift = N->getOperand(2);
8048 SDValue Vec = Op1.getOperand(0);
8049 SDValue Lane = Op1.getOperand(1);
8050 EVT ResTy = N->getValueType(0);
8051 EVT VecResTy;
8052 SDLoc DL(N);
8053
8054 // The vector width should be 128 bits by the time we get here, even
8055 // if it started as 64 bits (the extract_vector handling will have
8056 // done so).
8057 assert(Vec.getValueType().getSizeInBits() == 128 &&
8058 "unexpected vector size on extract_vector_elt!");
8059 if (Vec.getValueType() == MVT::v4i32)
8060 VecResTy = MVT::v4f32;
8061 else if (Vec.getValueType() == MVT::v2i64)
8062 VecResTy = MVT::v2f64;
8063 else
Craig Topper2a30d782014-06-18 05:05:13 +00008064 llvm_unreachable("unexpected vector type!");
Tim Northover3b0846e2014-05-24 12:50:23 +00008065
8066 SDValue Convert =
8067 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
8068 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
8069 }
8070 return SDValue();
8071}
8072
8073// AArch64 high-vector "long" operations are formed by performing the non-high
8074// version on an extract_subvector of each operand which gets the high half:
8075//
8076// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
8077//
8078// However, there are cases which don't have an extract_high explicitly, but
8079// have another operation that can be made compatible with one for free. For
8080// example:
8081//
8082// (dupv64 scalar) --> (extract_high (dup128 scalar))
8083//
8084// This routine does the actual conversion of such DUPs, once outer routines
8085// have determined that everything else is in order.
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00008086// It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
8087// similarly here.
Tim Northover3b0846e2014-05-24 12:50:23 +00008088static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
Tim Northover3b0846e2014-05-24 12:50:23 +00008089 switch (N.getOpcode()) {
8090 case AArch64ISD::DUP:
Tim Northover3b0846e2014-05-24 12:50:23 +00008091 case AArch64ISD::DUPLANE8:
8092 case AArch64ISD::DUPLANE16:
8093 case AArch64ISD::DUPLANE32:
8094 case AArch64ISD::DUPLANE64:
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00008095 case AArch64ISD::MOVI:
8096 case AArch64ISD::MOVIshift:
8097 case AArch64ISD::MOVIedit:
8098 case AArch64ISD::MOVImsl:
8099 case AArch64ISD::MVNIshift:
8100 case AArch64ISD::MVNImsl:
Tim Northover3b0846e2014-05-24 12:50:23 +00008101 break;
8102 default:
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00008103 // FMOV could be supported, but isn't very useful, as it would only occur
8104 // if you passed a bitcast' floating point immediate to an eligible long
8105 // integer op (addl, smull, ...).
Tim Northover3b0846e2014-05-24 12:50:23 +00008106 return SDValue();
8107 }
8108
8109 MVT NarrowTy = N.getSimpleValueType();
8110 if (!NarrowTy.is64BitVector())
8111 return SDValue();
8112
8113 MVT ElementTy = NarrowTy.getVectorElementType();
8114 unsigned NumElems = NarrowTy.getVectorNumElements();
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00008115 MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
Tim Northover3b0846e2014-05-24 12:50:23 +00008116
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008117 SDLoc dl(N);
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00008118 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
8119 DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008120 DAG.getConstant(NumElems, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008121}
8122
8123static bool isEssentiallyExtractSubvector(SDValue N) {
8124 if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8125 return true;
8126
8127 return N.getOpcode() == ISD::BITCAST &&
8128 N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
8129}
8130
8131/// \brief Helper structure to keep track of ISD::SET_CC operands.
8132struct GenericSetCCInfo {
8133 const SDValue *Opnd0;
8134 const SDValue *Opnd1;
8135 ISD::CondCode CC;
8136};
8137
8138/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
8139struct AArch64SetCCInfo {
8140 const SDValue *Cmp;
8141 AArch64CC::CondCode CC;
8142};
8143
8144/// \brief Helper structure to keep track of SetCC information.
8145union SetCCInfo {
8146 GenericSetCCInfo Generic;
8147 AArch64SetCCInfo AArch64;
8148};
8149
8150/// \brief Helper structure to be able to read SetCC information. If set to
8151/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
8152/// GenericSetCCInfo.
8153struct SetCCInfoAndKind {
8154 SetCCInfo Info;
8155 bool IsAArch64;
8156};
8157
8158/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
8159/// an
8160/// AArch64 lowered one.
8161/// \p SetCCInfo is filled accordingly.
8162/// \post SetCCInfo is meanginfull only when this function returns true.
8163/// \return True when Op is a kind of SET_CC operation.
8164static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
8165 // If this is a setcc, this is straight forward.
8166 if (Op.getOpcode() == ISD::SETCC) {
8167 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
8168 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
8169 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8170 SetCCInfo.IsAArch64 = false;
8171 return true;
8172 }
8173 // Otherwise, check if this is a matching csel instruction.
8174 // In other words:
8175 // - csel 1, 0, cc
8176 // - csel 0, 1, !cc
8177 if (Op.getOpcode() != AArch64ISD::CSEL)
8178 return false;
8179 // Set the information about the operands.
8180 // TODO: we want the operands of the Cmp not the csel
8181 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
8182 SetCCInfo.IsAArch64 = true;
8183 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
8184 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
8185
8186 // Check that the operands matches the constraints:
8187 // (1) Both operands must be constants.
8188 // (2) One must be 1 and the other must be 0.
8189 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
8190 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8191
8192 // Check (1).
8193 if (!TValue || !FValue)
8194 return false;
8195
8196 // Check (2).
8197 if (!TValue->isOne()) {
8198 // Update the comparison when we are interested in !cc.
8199 std::swap(TValue, FValue);
8200 SetCCInfo.Info.AArch64.CC =
8201 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
8202 }
8203 return TValue->isOne() && FValue->isNullValue();
8204}
8205
8206// Returns true if Op is setcc or zext of setcc.
8207static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
8208 if (isSetCC(Op, Info))
8209 return true;
8210 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
8211 isSetCC(Op->getOperand(0), Info));
8212}
8213
8214// The folding we want to perform is:
8215// (add x, [zext] (setcc cc ...) )
8216// -->
8217// (csel x, (add x, 1), !cc ...)
8218//
8219// The latter will get matched to a CSINC instruction.
8220static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
8221 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
8222 SDValue LHS = Op->getOperand(0);
8223 SDValue RHS = Op->getOperand(1);
8224 SetCCInfoAndKind InfoAndKind;
8225
8226 // If neither operand is a SET_CC, give up.
8227 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
8228 std::swap(LHS, RHS);
8229 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
8230 return SDValue();
8231 }
8232
8233 // FIXME: This could be generatized to work for FP comparisons.
8234 EVT CmpVT = InfoAndKind.IsAArch64
8235 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
8236 : InfoAndKind.Info.Generic.Opnd0->getValueType();
8237 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
8238 return SDValue();
8239
8240 SDValue CCVal;
8241 SDValue Cmp;
8242 SDLoc dl(Op);
8243 if (InfoAndKind.IsAArch64) {
8244 CCVal = DAG.getConstant(
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008245 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
8246 MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00008247 Cmp = *InfoAndKind.Info.AArch64.Cmp;
8248 } else
8249 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
8250 *InfoAndKind.Info.Generic.Opnd1,
8251 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
8252 CCVal, DAG, dl);
8253
8254 EVT VT = Op->getValueType(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008255 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
Tim Northover3b0846e2014-05-24 12:50:23 +00008256 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
8257}
8258
8259// The basic add/sub long vector instructions have variants with "2" on the end
8260// which act on the high-half of their inputs. They are normally matched by
8261// patterns like:
8262//
8263// (add (zeroext (extract_high LHS)),
8264// (zeroext (extract_high RHS)))
8265// -> uaddl2 vD, vN, vM
8266//
8267// However, if one of the extracts is something like a duplicate, this
8268// instruction can still be used profitably. This function puts the DAG into a
8269// more appropriate form for those patterns to trigger.
8270static SDValue performAddSubLongCombine(SDNode *N,
8271 TargetLowering::DAGCombinerInfo &DCI,
8272 SelectionDAG &DAG) {
8273 if (DCI.isBeforeLegalizeOps())
8274 return SDValue();
8275
8276 MVT VT = N->getSimpleValueType(0);
8277 if (!VT.is128BitVector()) {
8278 if (N->getOpcode() == ISD::ADD)
8279 return performSetccAddFolding(N, DAG);
8280 return SDValue();
8281 }
8282
8283 // Make sure both branches are extended in the same way.
8284 SDValue LHS = N->getOperand(0);
8285 SDValue RHS = N->getOperand(1);
8286 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
8287 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
8288 LHS.getOpcode() != RHS.getOpcode())
8289 return SDValue();
8290
8291 unsigned ExtType = LHS.getOpcode();
8292
8293 // It's not worth doing if at least one of the inputs isn't already an
8294 // extract, but we don't know which it'll be so we have to try both.
8295 if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
8296 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
8297 if (!RHS.getNode())
8298 return SDValue();
8299
8300 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
8301 } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
8302 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
8303 if (!LHS.getNode())
8304 return SDValue();
8305
8306 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
8307 }
8308
8309 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
8310}
8311
8312// Massage DAGs which we can use the high-half "long" operations on into
8313// something isel will recognize better. E.g.
8314//
8315// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
8316// (aarch64_neon_umull (extract_high (v2i64 vec)))
8317// (extract_high (v2i64 (dup128 scalar)))))
8318//
Hal Finkelcd8664c2015-12-11 23:11:52 +00008319static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
Tim Northover3b0846e2014-05-24 12:50:23 +00008320 TargetLowering::DAGCombinerInfo &DCI,
8321 SelectionDAG &DAG) {
8322 if (DCI.isBeforeLegalizeOps())
8323 return SDValue();
8324
Hal Finkelcd8664c2015-12-11 23:11:52 +00008325 SDValue LHS = N->getOperand(1);
8326 SDValue RHS = N->getOperand(2);
Tim Northover3b0846e2014-05-24 12:50:23 +00008327 assert(LHS.getValueType().is64BitVector() &&
8328 RHS.getValueType().is64BitVector() &&
8329 "unexpected shape for long operation");
8330
8331 // Either node could be a DUP, but it's not worth doing both of them (you'd
8332 // just as well use the non-high version) so look for a corresponding extract
8333 // operation on the other "wing".
8334 if (isEssentiallyExtractSubvector(LHS)) {
8335 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
8336 if (!RHS.getNode())
8337 return SDValue();
8338 } else if (isEssentiallyExtractSubvector(RHS)) {
8339 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
8340 if (!LHS.getNode())
8341 return SDValue();
8342 }
8343
Hal Finkelcd8664c2015-12-11 23:11:52 +00008344 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
8345 N->getOperand(0), LHS, RHS);
Tim Northover3b0846e2014-05-24 12:50:23 +00008346}
8347
8348static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
8349 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
8350 unsigned ElemBits = ElemTy.getSizeInBits();
8351
8352 int64_t ShiftAmount;
8353 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
8354 APInt SplatValue, SplatUndef;
8355 unsigned SplatBitSize;
8356 bool HasAnyUndefs;
8357 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
8358 HasAnyUndefs, ElemBits) ||
8359 SplatBitSize != ElemBits)
8360 return SDValue();
8361
8362 ShiftAmount = SplatValue.getSExtValue();
8363 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
8364 ShiftAmount = CVN->getSExtValue();
8365 } else
8366 return SDValue();
8367
8368 unsigned Opcode;
8369 bool IsRightShift;
8370 switch (IID) {
8371 default:
8372 llvm_unreachable("Unknown shift intrinsic");
8373 case Intrinsic::aarch64_neon_sqshl:
8374 Opcode = AArch64ISD::SQSHL_I;
8375 IsRightShift = false;
8376 break;
8377 case Intrinsic::aarch64_neon_uqshl:
8378 Opcode = AArch64ISD::UQSHL_I;
8379 IsRightShift = false;
8380 break;
8381 case Intrinsic::aarch64_neon_srshl:
8382 Opcode = AArch64ISD::SRSHR_I;
8383 IsRightShift = true;
8384 break;
8385 case Intrinsic::aarch64_neon_urshl:
8386 Opcode = AArch64ISD::URSHR_I;
8387 IsRightShift = true;
8388 break;
8389 case Intrinsic::aarch64_neon_sqshlu:
8390 Opcode = AArch64ISD::SQSHLU_I;
8391 IsRightShift = false;
8392 break;
8393 }
8394
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008395 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
8396 SDLoc dl(N);
8397 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
8398 DAG.getConstant(-ShiftAmount, dl, MVT::i32));
8399 } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
8400 SDLoc dl(N);
8401 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
8402 DAG.getConstant(ShiftAmount, dl, MVT::i32));
8403 }
Tim Northover3b0846e2014-05-24 12:50:23 +00008404
8405 return SDValue();
8406}
8407
8408// The CRC32[BH] instructions ignore the high bits of their data operand. Since
8409// the intrinsics must be legal and take an i32, this means there's almost
8410// certainly going to be a zext in the DAG which we can eliminate.
8411static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
8412 SDValue AndN = N->getOperand(2);
8413 if (AndN.getOpcode() != ISD::AND)
8414 return SDValue();
8415
8416 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
8417 if (!CMask || CMask->getZExtValue() != Mask)
8418 return SDValue();
8419
8420 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
8421 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
8422}
8423
Ahmed Bougachafab58922015-03-10 20:45:38 +00008424static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
8425 SelectionDAG &DAG) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008426 SDLoc dl(N);
8427 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
8428 DAG.getNode(Opc, dl,
Ahmed Bougachafab58922015-03-10 20:45:38 +00008429 N->getOperand(1).getSimpleValueType(),
8430 N->getOperand(1)),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008431 DAG.getConstant(0, dl, MVT::i64));
Ahmed Bougachafab58922015-03-10 20:45:38 +00008432}
8433
Tim Northover3b0846e2014-05-24 12:50:23 +00008434static SDValue performIntrinsicCombine(SDNode *N,
8435 TargetLowering::DAGCombinerInfo &DCI,
8436 const AArch64Subtarget *Subtarget) {
8437 SelectionDAG &DAG = DCI.DAG;
8438 unsigned IID = getIntrinsicID(N);
8439 switch (IID) {
8440 default:
8441 break;
8442 case Intrinsic::aarch64_neon_vcvtfxs2fp:
8443 case Intrinsic::aarch64_neon_vcvtfxu2fp:
8444 return tryCombineFixedPointConvert(N, DCI, DAG);
Ahmed Bougachafab58922015-03-10 20:45:38 +00008445 case Intrinsic::aarch64_neon_saddv:
8446 return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
8447 case Intrinsic::aarch64_neon_uaddv:
8448 return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
8449 case Intrinsic::aarch64_neon_sminv:
8450 return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
8451 case Intrinsic::aarch64_neon_uminv:
8452 return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
8453 case Intrinsic::aarch64_neon_smaxv:
8454 return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
8455 case Intrinsic::aarch64_neon_umaxv:
8456 return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00008457 case Intrinsic::aarch64_neon_fmax:
James Molloyedf38f02015-08-11 12:06:33 +00008458 return DAG.getNode(ISD::FMAXNAN, SDLoc(N), N->getValueType(0),
Tim Northover3b0846e2014-05-24 12:50:23 +00008459 N->getOperand(1), N->getOperand(2));
8460 case Intrinsic::aarch64_neon_fmin:
James Molloyedf38f02015-08-11 12:06:33 +00008461 return DAG.getNode(ISD::FMINNAN, SDLoc(N), N->getValueType(0),
Tim Northover3b0846e2014-05-24 12:50:23 +00008462 N->getOperand(1), N->getOperand(2));
James Molloyb7b2a1e2015-08-11 12:06:37 +00008463 case Intrinsic::aarch64_neon_fmaxnm:
8464 return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
8465 N->getOperand(1), N->getOperand(2));
8466 case Intrinsic::aarch64_neon_fminnm:
8467 return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
8468 N->getOperand(1), N->getOperand(2));
Tim Northover3b0846e2014-05-24 12:50:23 +00008469 case Intrinsic::aarch64_neon_smull:
8470 case Intrinsic::aarch64_neon_umull:
8471 case Intrinsic::aarch64_neon_pmull:
8472 case Intrinsic::aarch64_neon_sqdmull:
Hal Finkelcd8664c2015-12-11 23:11:52 +00008473 return tryCombineLongOpWithDup(IID, N, DCI, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00008474 case Intrinsic::aarch64_neon_sqshl:
8475 case Intrinsic::aarch64_neon_uqshl:
8476 case Intrinsic::aarch64_neon_sqshlu:
8477 case Intrinsic::aarch64_neon_srshl:
8478 case Intrinsic::aarch64_neon_urshl:
8479 return tryCombineShiftImm(IID, N, DAG);
8480 case Intrinsic::aarch64_crc32b:
8481 case Intrinsic::aarch64_crc32cb:
8482 return tryCombineCRC32(0xff, N, DAG);
8483 case Intrinsic::aarch64_crc32h:
8484 case Intrinsic::aarch64_crc32ch:
8485 return tryCombineCRC32(0xffff, N, DAG);
8486 }
8487 return SDValue();
8488}
8489
8490static SDValue performExtendCombine(SDNode *N,
8491 TargetLowering::DAGCombinerInfo &DCI,
8492 SelectionDAG &DAG) {
8493 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
8494 // we can convert that DUP into another extract_high (of a bigger DUP), which
8495 // helps the backend to decide that an sabdl2 would be useful, saving a real
8496 // extract_high operation.
8497 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
Hal Finkelcd8664c2015-12-11 23:11:52 +00008498 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
Tim Northover3b0846e2014-05-24 12:50:23 +00008499 SDNode *ABDNode = N->getOperand(0).getNode();
Hal Finkelcd8664c2015-12-11 23:11:52 +00008500 unsigned IID = getIntrinsicID(ABDNode);
8501 if (IID == Intrinsic::aarch64_neon_sabd ||
8502 IID == Intrinsic::aarch64_neon_uabd) {
8503 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
8504 if (!NewABD.getNode())
8505 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00008506
Hal Finkelcd8664c2015-12-11 23:11:52 +00008507 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
8508 NewABD);
8509 }
Tim Northover3b0846e2014-05-24 12:50:23 +00008510 }
8511
8512 // This is effectively a custom type legalization for AArch64.
8513 //
8514 // Type legalization will split an extend of a small, legal, type to a larger
8515 // illegal type by first splitting the destination type, often creating
8516 // illegal source types, which then get legalized in isel-confusing ways,
8517 // leading to really terrible codegen. E.g.,
8518 // %result = v8i32 sext v8i8 %value
8519 // becomes
8520 // %losrc = extract_subreg %value, ...
8521 // %hisrc = extract_subreg %value, ...
8522 // %lo = v4i32 sext v4i8 %losrc
8523 // %hi = v4i32 sext v4i8 %hisrc
8524 // Things go rapidly downhill from there.
8525 //
8526 // For AArch64, the [sz]ext vector instructions can only go up one element
8527 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
8528 // take two instructions.
8529 //
8530 // This implies that the most efficient way to do the extend from v8i8
8531 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
8532 // the normal splitting to happen for the v8i16->v8i32.
8533
8534 // This is pre-legalization to catch some cases where the default
8535 // type legalization will create ill-tempered code.
8536 if (!DCI.isBeforeLegalizeOps())
8537 return SDValue();
8538
8539 // We're only interested in cleaning things up for non-legal vector types
8540 // here. If both the source and destination are legal, things will just
8541 // work naturally without any fiddling.
Matthew Simpson13dddb02015-12-17 21:29:47 +00008542 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00008543 EVT ResVT = N->getValueType(0);
8544 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
8545 return SDValue();
8546 // If the vector type isn't a simple VT, it's beyond the scope of what
8547 // we're worried about here. Let legalization do its thing and hope for
8548 // the best.
Jim Grosbachec2b0d02014-08-28 22:08:28 +00008549 SDValue Src = N->getOperand(0);
8550 EVT SrcVT = Src->getValueType(0);
8551 if (!ResVT.isSimple() || !SrcVT.isSimple())
Tim Northover3b0846e2014-05-24 12:50:23 +00008552 return SDValue();
8553
Tim Northover3b0846e2014-05-24 12:50:23 +00008554 // If the source VT is a 64-bit vector, we can play games and get the
8555 // better results we want.
8556 if (SrcVT.getSizeInBits() != 64)
8557 return SDValue();
8558
8559 unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
8560 unsigned ElementCount = SrcVT.getVectorNumElements();
8561 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
8562 SDLoc DL(N);
8563 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
8564
8565 // Now split the rest of the operation into two halves, each with a 64
8566 // bit source.
8567 EVT LoVT, HiVT;
8568 SDValue Lo, Hi;
8569 unsigned NumElements = ResVT.getVectorNumElements();
8570 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
8571 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
8572 ResVT.getVectorElementType(), NumElements / 2);
8573
8574 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
8575 LoVT.getVectorNumElements());
8576 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008577 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008578 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008579 DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008580 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
8581 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
8582
8583 // Now combine the parts back together so we still have a single result
8584 // like the combiner expects.
8585 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
8586}
8587
8588/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
8589/// value. The load store optimizer pass will merge them to store pair stores.
8590/// This has better performance than a splat of the scalar followed by a split
8591/// vector store. Even if the stores are not merged it is four stores vs a dup,
8592/// followed by an ext.b and two stores.
8593static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
8594 SDValue StVal = St->getValue();
8595 EVT VT = StVal.getValueType();
8596
8597 // Don't replace floating point stores, they possibly won't be transformed to
8598 // stp because of the store pair suppress pass.
8599 if (VT.isFloatingPoint())
8600 return SDValue();
8601
8602 // Check for insert vector elements.
8603 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
8604 return SDValue();
8605
8606 // We can express a splat as store pair(s) for 2 or 4 elements.
8607 unsigned NumVecElts = VT.getVectorNumElements();
8608 if (NumVecElts != 4 && NumVecElts != 2)
8609 return SDValue();
8610 SDValue SplatVal = StVal.getOperand(1);
8611 unsigned RemainInsertElts = NumVecElts - 1;
8612
8613 // Check that this is a splat.
8614 while (--RemainInsertElts) {
8615 SDValue NextInsertElt = StVal.getOperand(0);
8616 if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
8617 return SDValue();
8618 if (NextInsertElt.getOperand(1) != SplatVal)
8619 return SDValue();
8620 StVal = NextInsertElt;
8621 }
8622 unsigned OrigAlignment = St->getAlignment();
8623 unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
8624 unsigned Alignment = std::min(OrigAlignment, EltOffset);
8625
8626 // Create scalar stores. This is at least as good as the code sequence for a
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00008627 // split unaligned store which is a dup.s, ext.b, and two stores.
Tim Northover3b0846e2014-05-24 12:50:23 +00008628 // Most of the time the three stores should be replaced by store pair
8629 // instructions (stp).
8630 SDLoc DL(St);
8631 SDValue BasePtr = St->getBasePtr();
8632 SDValue NewST1 =
8633 DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
8634 St->isVolatile(), St->isNonTemporal(), St->getAlignment());
8635
8636 unsigned Offset = EltOffset;
8637 while (--NumVecElts) {
8638 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008639 DAG.getConstant(Offset, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008640 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
8641 St->getPointerInfo(), St->isVolatile(),
8642 St->isNonTemporal(), Alignment);
8643 Offset += EltOffset;
8644 }
8645 return NewST1;
8646}
8647
Tim Northover339c83e2015-11-10 00:44:23 +00008648static SDValue split16BStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
8649 SelectionDAG &DAG,
8650 const AArch64Subtarget *Subtarget) {
Tim Northover3b0846e2014-05-24 12:50:23 +00008651 if (!DCI.isBeforeLegalize())
8652 return SDValue();
8653
8654 StoreSDNode *S = cast<StoreSDNode>(N);
8655 if (S->isVolatile())
8656 return SDValue();
8657
Sanjay Patelbbbf9a12015-09-25 21:49:48 +00008658 // FIXME: The logic for deciding if an unaligned store should be split should
8659 // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
8660 // a call to that function here.
8661
Tim Northover3b0846e2014-05-24 12:50:23 +00008662 // Cyclone has bad performance on unaligned 16B stores when crossing line and
Sanjay Patel08efcd92015-01-28 22:37:32 +00008663 // page boundaries. We want to split such stores.
Tim Northover3b0846e2014-05-24 12:50:23 +00008664 if (!Subtarget->isCyclone())
8665 return SDValue();
8666
Sanjay Patel924879a2015-08-04 15:49:57 +00008667 // Don't split at -Oz.
8668 if (DAG.getMachineFunction().getFunction()->optForMinSize())
Tim Northover3b0846e2014-05-24 12:50:23 +00008669 return SDValue();
8670
8671 SDValue StVal = S->getValue();
8672 EVT VT = StVal.getValueType();
8673
8674 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
8675 // those up regresses performance on micro-benchmarks and olden/bh.
8676 if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
8677 return SDValue();
8678
8679 // Split unaligned 16B stores. They are terrible for performance.
8680 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
8681 // extensions can use this to mark that it does not want splitting to happen
8682 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
8683 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
8684 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
8685 S->getAlignment() <= 2)
8686 return SDValue();
8687
8688 // If we get a splat of a scalar convert this vector store to a store of
8689 // scalars. They will be merged into store pairs thereby removing two
8690 // instructions.
Ahmed Bougacha239d6352015-08-04 00:48:02 +00008691 if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S))
Tim Northover3b0846e2014-05-24 12:50:23 +00008692 return ReplacedSplat;
8693
8694 SDLoc DL(S);
8695 unsigned NumElts = VT.getVectorNumElements() / 2;
8696 // Split VT into two.
8697 EVT HalfVT =
8698 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
8699 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008700 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008701 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008702 DAG.getConstant(NumElts, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008703 SDValue BasePtr = S->getBasePtr();
8704 SDValue NewST1 =
8705 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
8706 S->isVolatile(), S->isNonTemporal(), S->getAlignment());
8707 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008708 DAG.getConstant(8, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008709 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
8710 S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
8711 S->getAlignment());
8712}
8713
8714/// Target-specific DAG combine function for post-increment LD1 (lane) and
8715/// post-increment LD1R.
8716static SDValue performPostLD1Combine(SDNode *N,
8717 TargetLowering::DAGCombinerInfo &DCI,
8718 bool IsLaneOp) {
8719 if (DCI.isBeforeLegalizeOps())
8720 return SDValue();
8721
8722 SelectionDAG &DAG = DCI.DAG;
8723 EVT VT = N->getValueType(0);
8724
8725 unsigned LoadIdx = IsLaneOp ? 1 : 0;
8726 SDNode *LD = N->getOperand(LoadIdx).getNode();
8727 // If it is not LOAD, can not do such combine.
8728 if (LD->getOpcode() != ISD::LOAD)
8729 return SDValue();
8730
8731 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
8732 EVT MemVT = LoadSDN->getMemoryVT();
8733 // Check if memory operand is the same type as the vector element.
8734 if (MemVT != VT.getVectorElementType())
8735 return SDValue();
8736
8737 // Check if there are other uses. If so, do not combine as it will introduce
8738 // an extra load.
8739 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
8740 ++UI) {
8741 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
8742 continue;
8743 if (*UI != N)
8744 return SDValue();
8745 }
8746
8747 SDValue Addr = LD->getOperand(1);
8748 SDValue Vector = N->getOperand(0);
8749 // Search for a use of the address operand that is an increment.
8750 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
8751 Addr.getNode()->use_end(); UI != UE; ++UI) {
8752 SDNode *User = *UI;
8753 if (User->getOpcode() != ISD::ADD
8754 || UI.getUse().getResNo() != Addr.getResNo())
8755 continue;
8756
8757 // Check that the add is independent of the load. Otherwise, folding it
8758 // would create a cycle.
8759 if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
8760 continue;
8761 // Also check that add is not used in the vector operand. This would also
8762 // create a cycle.
8763 if (User->isPredecessorOf(Vector.getNode()))
8764 continue;
8765
8766 // If the increment is a constant, it must match the memory ref size.
8767 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8768 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8769 uint32_t IncVal = CInc->getZExtValue();
8770 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
8771 if (IncVal != NumBytes)
8772 continue;
8773 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
8774 }
8775
Ahmed Bougacha2448ef52015-04-17 21:02:30 +00008776 // Finally, check that the vector doesn't depend on the load.
8777 // Again, this would create a cycle.
8778 // The load depending on the vector is fine, as that's the case for the
8779 // LD1*post we'll eventually generate anyway.
8780 if (LoadSDN->isPredecessorOf(Vector.getNode()))
8781 continue;
8782
Tim Northover3b0846e2014-05-24 12:50:23 +00008783 SmallVector<SDValue, 8> Ops;
8784 Ops.push_back(LD->getOperand(0)); // Chain
8785 if (IsLaneOp) {
8786 Ops.push_back(Vector); // The vector to be inserted
8787 Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
8788 }
8789 Ops.push_back(Addr);
8790 Ops.push_back(Inc);
8791
8792 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
Craig Toppere1d12942014-08-27 05:25:25 +00008793 SDVTList SDTys = DAG.getVTList(Tys);
Tim Northover3b0846e2014-05-24 12:50:23 +00008794 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
8795 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
8796 MemVT,
8797 LoadSDN->getMemOperand());
8798
8799 // Update the uses.
Ahmed Bougacha4c2b0782015-02-19 23:13:10 +00008800 SmallVector<SDValue, 2> NewResults;
Tim Northover3b0846e2014-05-24 12:50:23 +00008801 NewResults.push_back(SDValue(LD, 0)); // The result of load
8802 NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
8803 DCI.CombineTo(LD, NewResults);
8804 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
8805 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
8806
8807 break;
8808 }
8809 return SDValue();
8810}
8811
Tim Northover339c83e2015-11-10 00:44:23 +00008812/// Simplify \Addr given that the top byte of it is ignored by HW during
8813/// address translation.
8814static bool performTBISimplification(SDValue Addr,
8815 TargetLowering::DAGCombinerInfo &DCI,
8816 SelectionDAG &DAG) {
8817 APInt DemandedMask = APInt::getLowBitsSet(64, 56);
8818 APInt KnownZero, KnownOne;
8819 TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
8820 DCI.isBeforeLegalizeOps());
8821 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8822 if (TLI.SimplifyDemandedBits(Addr, DemandedMask, KnownZero, KnownOne, TLO)) {
8823 DCI.CommitTargetLoweringOpt(TLO);
8824 return true;
8825 }
8826 return false;
8827}
8828
8829static SDValue performSTORECombine(SDNode *N,
8830 TargetLowering::DAGCombinerInfo &DCI,
8831 SelectionDAG &DAG,
8832 const AArch64Subtarget *Subtarget) {
8833 SDValue Split = split16BStores(N, DCI, DAG, Subtarget);
8834 if (Split.getNode())
8835 return Split;
8836
8837 if (Subtarget->supportsAddressTopByteIgnored() &&
8838 performTBISimplification(N->getOperand(2), DCI, DAG))
8839 return SDValue(N, 0);
8840
8841 return SDValue();
8842}
8843
8844 /// This function handles the log2-shuffle pattern produced by the
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008845/// LoopVectorizer for the across vector reduction. It consists of
8846/// log2(NumVectorElements) steps and, in each step, 2^(s) elements
8847/// are reduced, where s is an induction variable from 0 to
8848/// log2(NumVectorElements).
8849static SDValue tryMatchAcrossLaneShuffleForReduction(SDNode *N, SDValue OpV,
8850 unsigned Op,
8851 SelectionDAG &DAG) {
8852 EVT VTy = OpV->getOperand(0).getValueType();
8853 if (!VTy.isVector())
Chad Rosier6c36eff2015-09-03 18:13:57 +00008854 return SDValue();
8855
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008856 int NumVecElts = VTy.getVectorNumElements();
Jun Bum Lim0aace132015-10-09 14:11:25 +00008857 if (Op == ISD::FMAXNUM || Op == ISD::FMINNUM) {
8858 if (NumVecElts != 4)
8859 return SDValue();
8860 } else {
8861 if (NumVecElts != 4 && NumVecElts != 8 && NumVecElts != 16)
8862 return SDValue();
8863 }
Chad Rosier6c36eff2015-09-03 18:13:57 +00008864
8865 int NumExpectedSteps = APInt(8, NumVecElts).logBase2();
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008866 SDValue PreOp = OpV;
Chad Rosier6c36eff2015-09-03 18:13:57 +00008867 // Iterate over each step of the across vector reduction.
8868 for (int CurStep = 0; CurStep != NumExpectedSteps; ++CurStep) {
Chad Rosier6c36eff2015-09-03 18:13:57 +00008869 SDValue CurOp = PreOp.getOperand(0);
8870 SDValue Shuffle = PreOp.getOperand(1);
8871 if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE) {
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008872 // Try to swap the 1st and 2nd operand as add and min/max instructions
8873 // are commutative.
Chad Rosier6c36eff2015-09-03 18:13:57 +00008874 CurOp = PreOp.getOperand(1);
8875 Shuffle = PreOp.getOperand(0);
8876 if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE)
8877 return SDValue();
8878 }
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008879
8880 // Check if the input vector is fed by the operator we want to handle,
8881 // except the last step; the very first input vector is not necessarily
8882 // the same operator we are handling.
8883 if (CurOp.getOpcode() != Op && (CurStep != (NumExpectedSteps - 1)))
8884 return SDValue();
8885
Chad Rosier6c36eff2015-09-03 18:13:57 +00008886 // Check if it forms one step of the across vector reduction.
8887 // E.g.,
8888 // %cur = add %1, %0
8889 // %shuffle = vector_shuffle %cur, <2, 3, u, u>
8890 // %pre = add %cur, %shuffle
8891 if (Shuffle.getOperand(0) != CurOp)
8892 return SDValue();
8893
8894 int NumMaskElts = 1 << CurStep;
8895 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Shuffle)->getMask();
8896 // Check mask values in each step.
8897 // We expect the shuffle mask in each step follows a specific pattern
8898 // denoted here by the <M, U> form, where M is a sequence of integers
8899 // starting from NumMaskElts, increasing by 1, and the number integers
8900 // in M should be NumMaskElts. U is a sequence of UNDEFs and the number
8901 // of undef in U should be NumVecElts - NumMaskElts.
8902 // E.g., for <8 x i16>, mask values in each step should be :
8903 // step 0 : <1,u,u,u,u,u,u,u>
8904 // step 1 : <2,3,u,u,u,u,u,u>
8905 // step 2 : <4,5,6,7,u,u,u,u>
8906 for (int i = 0; i < NumVecElts; ++i)
8907 if ((i < NumMaskElts && Mask[i] != (NumMaskElts + i)) ||
8908 (i >= NumMaskElts && !(Mask[i] < 0)))
8909 return SDValue();
8910
8911 PreOp = CurOp;
8912 }
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008913 unsigned Opcode;
Jun Bum Lim0aace132015-10-09 14:11:25 +00008914 bool IsIntrinsic = false;
8915
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008916 switch (Op) {
8917 default:
8918 llvm_unreachable("Unexpected operator for across vector reduction");
8919 case ISD::ADD:
8920 Opcode = AArch64ISD::UADDV;
8921 break;
8922 case ISD::SMAX:
8923 Opcode = AArch64ISD::SMAXV;
8924 break;
8925 case ISD::UMAX:
8926 Opcode = AArch64ISD::UMAXV;
8927 break;
8928 case ISD::SMIN:
8929 Opcode = AArch64ISD::SMINV;
8930 break;
8931 case ISD::UMIN:
8932 Opcode = AArch64ISD::UMINV;
8933 break;
Jun Bum Lim0aace132015-10-09 14:11:25 +00008934 case ISD::FMAXNUM:
8935 Opcode = Intrinsic::aarch64_neon_fmaxnmv;
8936 IsIntrinsic = true;
8937 break;
8938 case ISD::FMINNUM:
8939 Opcode = Intrinsic::aarch64_neon_fminnmv;
8940 IsIntrinsic = true;
8941 break;
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008942 }
Chad Rosier6c36eff2015-09-03 18:13:57 +00008943 SDLoc DL(N);
Jun Bum Lim0aace132015-10-09 14:11:25 +00008944
8945 return IsIntrinsic
8946 ? DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, N->getValueType(0),
8947 DAG.getConstant(Opcode, DL, MVT::i32), PreOp)
8948 : DAG.getNode(
8949 ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0),
8950 DAG.getNode(Opcode, DL, PreOp.getSimpleValueType(), PreOp),
8951 DAG.getConstant(0, DL, MVT::i64));
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008952}
8953
8954/// Target-specific DAG combine for the across vector min/max reductions.
8955/// This function specifically handles the final clean-up step of the vector
8956/// min/max reductions produced by the LoopVectorizer. It is the log2-shuffle
8957/// pattern, which narrows down and finds the final min/max value from all
8958/// elements of the vector.
8959/// For example, for a <16 x i8> vector :
8960/// svn0 = vector_shuffle %0, undef<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u>
8961/// %smax0 = smax %arr, svn0
8962/// %svn1 = vector_shuffle %smax0, undef<4,5,6,7,u,u,u,u,u,u,u,u,u,u,u,u>
8963/// %smax1 = smax %smax0, %svn1
8964/// %svn2 = vector_shuffle %smax1, undef<2,3,u,u,u,u,u,u,u,u,u,u,u,u,u,u>
8965/// %smax2 = smax %smax1, svn2
8966/// %svn3 = vector_shuffle %smax2, undef<1,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u>
8967/// %sc = setcc %smax2, %svn3, gt
8968/// %n0 = extract_vector_elt %sc, #0
8969/// %n1 = extract_vector_elt %smax2, #0
8970/// %n2 = extract_vector_elt $smax2, #1
8971/// %result = select %n0, %n1, n2
8972/// becomes :
8973/// %1 = smaxv %0
8974/// %result = extract_vector_elt %1, 0
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008975static SDValue
8976performAcrossLaneMinMaxReductionCombine(SDNode *N, SelectionDAG &DAG,
8977 const AArch64Subtarget *Subtarget) {
8978 if (!Subtarget->hasNEON())
8979 return SDValue();
8980
8981 SDValue N0 = N->getOperand(0);
8982 SDValue IfTrue = N->getOperand(1);
8983 SDValue IfFalse = N->getOperand(2);
8984
8985 // Check if the SELECT merges up the final result of the min/max
8986 // from a vector.
8987 if (N0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8988 IfTrue.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8989 IfFalse.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8990 return SDValue();
8991
8992 // Expect N0 is fed by SETCC.
8993 SDValue SetCC = N0.getOperand(0);
8994 EVT SetCCVT = SetCC.getValueType();
8995 if (SetCC.getOpcode() != ISD::SETCC || !SetCCVT.isVector() ||
8996 SetCCVT.getVectorElementType() != MVT::i1)
8997 return SDValue();
8998
8999 SDValue VectorOp = SetCC.getOperand(0);
9000 unsigned Op = VectorOp->getOpcode();
9001 // Check if the input vector is fed by the operator we want to handle.
Jun Bum Lim0aace132015-10-09 14:11:25 +00009002 if (Op != ISD::SMAX && Op != ISD::UMAX && Op != ISD::SMIN &&
9003 Op != ISD::UMIN && Op != ISD::FMAXNUM && Op != ISD::FMINNUM)
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009004 return SDValue();
9005
9006 EVT VTy = VectorOp.getValueType();
9007 if (!VTy.isVector())
9008 return SDValue();
9009
Jun Bum Lim0aace132015-10-09 14:11:25 +00009010 if (VTy.getSizeInBits() < 64)
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009011 return SDValue();
9012
Jun Bum Lim0aace132015-10-09 14:11:25 +00009013 EVT EltTy = VTy.getVectorElementType();
9014 if (Op == ISD::FMAXNUM || Op == ISD::FMINNUM) {
9015 if (EltTy != MVT::f32)
9016 return SDValue();
9017 } else {
9018 if (EltTy != MVT::i32 && EltTy != MVT::i16 && EltTy != MVT::i8)
9019 return SDValue();
9020 }
9021
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009022 // Check if extracting from the same vector.
9023 // For example,
9024 // %sc = setcc %vector, %svn1, gt
9025 // %n0 = extract_vector_elt %sc, #0
9026 // %n1 = extract_vector_elt %vector, #0
9027 // %n2 = extract_vector_elt $vector, #1
9028 if (!(VectorOp == IfTrue->getOperand(0) &&
9029 VectorOp == IfFalse->getOperand(0)))
9030 return SDValue();
9031
9032 // Check if the condition code is matched with the operator type.
9033 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
9034 if ((Op == ISD::SMAX && CC != ISD::SETGT && CC != ISD::SETGE) ||
9035 (Op == ISD::UMAX && CC != ISD::SETUGT && CC != ISD::SETUGE) ||
9036 (Op == ISD::SMIN && CC != ISD::SETLT && CC != ISD::SETLE) ||
Jun Bum Lim0aace132015-10-09 14:11:25 +00009037 (Op == ISD::UMIN && CC != ISD::SETULT && CC != ISD::SETULE) ||
9038 (Op == ISD::FMAXNUM && CC != ISD::SETOGT && CC != ISD::SETOGE &&
9039 CC != ISD::SETUGT && CC != ISD::SETUGE && CC != ISD::SETGT &&
9040 CC != ISD::SETGE) ||
9041 (Op == ISD::FMINNUM && CC != ISD::SETOLT && CC != ISD::SETOLE &&
9042 CC != ISD::SETULT && CC != ISD::SETULE && CC != ISD::SETLT &&
9043 CC != ISD::SETLE))
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009044 return SDValue();
9045
9046 // Expect to check only lane 0 from the vector SETCC.
Artyom Skrobov314ee042015-11-25 19:41:11 +00009047 if (!isNullConstant(N0.getOperand(1)))
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009048 return SDValue();
9049
9050 // Expect to extract the true value from lane 0.
Artyom Skrobov314ee042015-11-25 19:41:11 +00009051 if (!isNullConstant(IfTrue.getOperand(1)))
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009052 return SDValue();
9053
9054 // Expect to extract the false value from lane 1.
Artyom Skrobov314ee042015-11-25 19:41:11 +00009055 if (!isOneConstant(IfFalse.getOperand(1)))
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009056 return SDValue();
9057
9058 return tryMatchAcrossLaneShuffleForReduction(N, SetCC, Op, DAG);
9059}
9060
9061/// Target-specific DAG combine for the across vector add reduction.
9062/// This function specifically handles the final clean-up step of the vector
9063/// add reduction produced by the LoopVectorizer. It is the log2-shuffle
9064/// pattern, which adds all elements of a vector together.
9065/// For example, for a <4 x i32> vector :
9066/// %1 = vector_shuffle %0, <2,3,u,u>
9067/// %2 = add %0, %1
9068/// %3 = vector_shuffle %2, <1,u,u,u>
9069/// %4 = add %2, %3
9070/// %result = extract_vector_elt %4, 0
9071/// becomes :
9072/// %0 = uaddv %0
9073/// %result = extract_vector_elt %0, 0
9074static SDValue
9075performAcrossLaneAddReductionCombine(SDNode *N, SelectionDAG &DAG,
9076 const AArch64Subtarget *Subtarget) {
9077 if (!Subtarget->hasNEON())
9078 return SDValue();
9079 SDValue N0 = N->getOperand(0);
9080 SDValue N1 = N->getOperand(1);
9081
9082 // Check if the input vector is fed by the ADD.
9083 if (N0->getOpcode() != ISD::ADD)
9084 return SDValue();
9085
9086 // The vector extract idx must constant zero because we only expect the final
9087 // result of the reduction is placed in lane 0.
Artyom Skrobov314ee042015-11-25 19:41:11 +00009088 if (!isNullConstant(N1))
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009089 return SDValue();
9090
9091 EVT VTy = N0.getValueType();
9092 if (!VTy.isVector())
9093 return SDValue();
9094
9095 EVT EltTy = VTy.getVectorElementType();
9096 if (EltTy != MVT::i32 && EltTy != MVT::i16 && EltTy != MVT::i8)
9097 return SDValue();
9098
Jun Bum Lim0aace132015-10-09 14:11:25 +00009099 if (VTy.getSizeInBits() < 64)
9100 return SDValue();
9101
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009102 return tryMatchAcrossLaneShuffleForReduction(N, N0, ISD::ADD, DAG);
Chad Rosier6c36eff2015-09-03 18:13:57 +00009103}
9104
Tim Northover3b0846e2014-05-24 12:50:23 +00009105/// Target-specific DAG combine function for NEON load/store intrinsics
9106/// to merge base address updates.
9107static SDValue performNEONPostLDSTCombine(SDNode *N,
9108 TargetLowering::DAGCombinerInfo &DCI,
9109 SelectionDAG &DAG) {
9110 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9111 return SDValue();
9112
9113 unsigned AddrOpIdx = N->getNumOperands() - 1;
9114 SDValue Addr = N->getOperand(AddrOpIdx);
9115
9116 // Search for a use of the address operand that is an increment.
9117 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
9118 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
9119 SDNode *User = *UI;
9120 if (User->getOpcode() != ISD::ADD ||
9121 UI.getUse().getResNo() != Addr.getResNo())
9122 continue;
9123
9124 // Check that the add is independent of the load/store. Otherwise, folding
9125 // it would create a cycle.
9126 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
9127 continue;
9128
9129 // Find the new opcode for the updating load/store.
9130 bool IsStore = false;
9131 bool IsLaneOp = false;
9132 bool IsDupOp = false;
9133 unsigned NewOpc = 0;
9134 unsigned NumVecs = 0;
9135 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9136 switch (IntNo) {
9137 default: llvm_unreachable("unexpected intrinsic for Neon base update");
9138 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
9139 NumVecs = 2; break;
9140 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
9141 NumVecs = 3; break;
9142 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
9143 NumVecs = 4; break;
9144 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
9145 NumVecs = 2; IsStore = true; break;
9146 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
9147 NumVecs = 3; IsStore = true; break;
9148 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
9149 NumVecs = 4; IsStore = true; break;
9150 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
9151 NumVecs = 2; break;
9152 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
9153 NumVecs = 3; break;
9154 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
9155 NumVecs = 4; break;
9156 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
9157 NumVecs = 2; IsStore = true; break;
9158 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
9159 NumVecs = 3; IsStore = true; break;
9160 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
9161 NumVecs = 4; IsStore = true; break;
9162 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
9163 NumVecs = 2; IsDupOp = true; break;
9164 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
9165 NumVecs = 3; IsDupOp = true; break;
9166 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
9167 NumVecs = 4; IsDupOp = true; break;
9168 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
9169 NumVecs = 2; IsLaneOp = true; break;
9170 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
9171 NumVecs = 3; IsLaneOp = true; break;
9172 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
9173 NumVecs = 4; IsLaneOp = true; break;
9174 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
9175 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
9176 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
9177 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
9178 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
9179 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
9180 }
9181
9182 EVT VecTy;
9183 if (IsStore)
9184 VecTy = N->getOperand(2).getValueType();
9185 else
9186 VecTy = N->getValueType(0);
9187
9188 // If the increment is a constant, it must match the memory ref size.
9189 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
9190 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
9191 uint32_t IncVal = CInc->getZExtValue();
9192 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
9193 if (IsLaneOp || IsDupOp)
9194 NumBytes /= VecTy.getVectorNumElements();
9195 if (IncVal != NumBytes)
9196 continue;
9197 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
9198 }
9199 SmallVector<SDValue, 8> Ops;
9200 Ops.push_back(N->getOperand(0)); // Incoming chain
9201 // Load lane and store have vector list as input.
9202 if (IsLaneOp || IsStore)
9203 for (unsigned i = 2; i < AddrOpIdx; ++i)
9204 Ops.push_back(N->getOperand(i));
9205 Ops.push_back(Addr); // Base register
9206 Ops.push_back(Inc);
9207
9208 // Return Types.
9209 EVT Tys[6];
9210 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
9211 unsigned n;
9212 for (n = 0; n < NumResultVecs; ++n)
9213 Tys[n] = VecTy;
9214 Tys[n++] = MVT::i64; // Type of write back register
9215 Tys[n] = MVT::Other; // Type of the chain
Craig Toppere1d12942014-08-27 05:25:25 +00009216 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
Tim Northover3b0846e2014-05-24 12:50:23 +00009217
9218 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
9219 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
9220 MemInt->getMemoryVT(),
9221 MemInt->getMemOperand());
9222
9223 // Update the uses.
9224 std::vector<SDValue> NewResults;
9225 for (unsigned i = 0; i < NumResultVecs; ++i) {
9226 NewResults.push_back(SDValue(UpdN.getNode(), i));
9227 }
9228 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
9229 DCI.CombineTo(N, NewResults);
9230 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
9231
9232 break;
9233 }
9234 return SDValue();
9235}
9236
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009237// Checks to see if the value is the prescribed width and returns information
9238// about its extension mode.
9239static
9240bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
9241 ExtType = ISD::NON_EXTLOAD;
9242 switch(V.getNode()->getOpcode()) {
9243 default:
9244 return false;
9245 case ISD::LOAD: {
9246 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
9247 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
9248 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
9249 ExtType = LoadNode->getExtensionType();
9250 return true;
9251 }
9252 return false;
9253 }
9254 case ISD::AssertSext: {
9255 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
9256 if ((TypeNode->getVT() == MVT::i8 && width == 8)
9257 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
9258 ExtType = ISD::SEXTLOAD;
9259 return true;
9260 }
9261 return false;
9262 }
9263 case ISD::AssertZext: {
9264 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
9265 if ((TypeNode->getVT() == MVT::i8 && width == 8)
9266 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
9267 ExtType = ISD::ZEXTLOAD;
9268 return true;
9269 }
9270 return false;
9271 }
9272 case ISD::Constant:
9273 case ISD::TargetConstant: {
Reid Kleckner39ad7c92014-08-29 22:14:26 +00009274 if (std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
Aaron Ballman8ca53882014-09-02 12:19:02 +00009275 1LL << (width - 1))
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009276 return true;
9277 return false;
9278 }
9279 }
9280
9281 return true;
9282}
9283
9284// This function does a whole lot of voodoo to determine if the tests are
9285// equivalent without and with a mask. Essentially what happens is that given a
9286// DAG resembling:
9287//
9288// +-------------+ +-------------+ +-------------+ +-------------+
9289// | Input | | AddConstant | | CompConstant| | CC |
9290// +-------------+ +-------------+ +-------------+ +-------------+
9291// | | | |
9292// V V | +----------+
9293// +-------------+ +----+ | |
9294// | ADD | |0xff| | |
9295// +-------------+ +----+ | |
9296// | | | |
9297// V V | |
9298// +-------------+ | |
9299// | AND | | |
9300// +-------------+ | |
9301// | | |
9302// +-----+ | |
9303// | | |
9304// V V V
9305// +-------------+
9306// | CMP |
9307// +-------------+
9308//
9309// The AND node may be safely removed for some combinations of inputs. In
9310// particular we need to take into account the extension type of the Input,
9311// the exact values of AddConstant, CompConstant, and CC, along with the nominal
9312// width of the input (this can work for any width inputs, the above graph is
9313// specific to 8 bits.
9314//
9315// The specific equations were worked out by generating output tables for each
9316// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
9317// problem was simplified by working with 4 bit inputs, which means we only
9318// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
9319// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
9320// patterns present in both extensions (0,7). For every distinct set of
9321// AddConstant and CompConstants bit patterns we can consider the masked and
9322// unmasked versions to be equivalent if the result of this function is true for
9323// all 16 distinct bit patterns of for the current extension type of Input (w0).
9324//
9325// sub w8, w0, w1
9326// and w10, w8, #0x0f
9327// cmp w8, w2
9328// cset w9, AArch64CC
9329// cmp w10, w2
9330// cset w11, AArch64CC
9331// cmp w9, w11
9332// cset w0, eq
9333// ret
9334//
9335// Since the above function shows when the outputs are equivalent it defines
9336// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
9337// would be expensive to run during compiles. The equations below were written
9338// in a test harness that confirmed they gave equivalent outputs to the above
9339// for all inputs function, so they can be used determine if the removal is
9340// legal instead.
9341//
9342// isEquivalentMaskless() is the code for testing if the AND can be removed
9343// factored out of the DAG recognition as the DAG can take several forms.
9344
9345static
9346bool isEquivalentMaskless(unsigned CC, unsigned width,
9347 ISD::LoadExtType ExtType, signed AddConstant,
9348 signed CompConstant) {
9349 // By being careful about our equations and only writing the in term
9350 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
9351 // make them generally applicable to all bit widths.
9352 signed MaxUInt = (1 << width);
9353
9354 // For the purposes of these comparisons sign extending the type is
9355 // equivalent to zero extending the add and displacing it by half the integer
9356 // width. Provided we are careful and make sure our equations are valid over
9357 // the whole range we can just adjust the input and avoid writing equations
9358 // for sign extended inputs.
9359 if (ExtType == ISD::SEXTLOAD)
9360 AddConstant -= (1 << (width-1));
9361
9362 switch(CC) {
9363 case AArch64CC::LE:
9364 case AArch64CC::GT: {
9365 if ((AddConstant == 0) ||
9366 (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
9367 (AddConstant >= 0 && CompConstant < 0) ||
9368 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
9369 return true;
9370 } break;
9371 case AArch64CC::LT:
9372 case AArch64CC::GE: {
9373 if ((AddConstant == 0) ||
9374 (AddConstant >= 0 && CompConstant <= 0) ||
9375 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
9376 return true;
9377 } break;
9378 case AArch64CC::HI:
9379 case AArch64CC::LS: {
9380 if ((AddConstant >= 0 && CompConstant < 0) ||
9381 (AddConstant <= 0 && CompConstant >= -1 &&
9382 CompConstant < AddConstant + MaxUInt))
9383 return true;
9384 } break;
9385 case AArch64CC::PL:
9386 case AArch64CC::MI: {
9387 if ((AddConstant == 0) ||
9388 (AddConstant > 0 && CompConstant <= 0) ||
9389 (AddConstant < 0 && CompConstant <= AddConstant))
9390 return true;
9391 } break;
9392 case AArch64CC::LO:
9393 case AArch64CC::HS: {
9394 if ((AddConstant >= 0 && CompConstant <= 0) ||
9395 (AddConstant <= 0 && CompConstant >= 0 &&
9396 CompConstant <= AddConstant + MaxUInt))
9397 return true;
9398 } break;
9399 case AArch64CC::EQ:
9400 case AArch64CC::NE: {
9401 if ((AddConstant > 0 && CompConstant < 0) ||
9402 (AddConstant < 0 && CompConstant >= 0 &&
9403 CompConstant < AddConstant + MaxUInt) ||
9404 (AddConstant >= 0 && CompConstant >= 0 &&
9405 CompConstant >= AddConstant) ||
9406 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
9407
9408 return true;
9409 } break;
9410 case AArch64CC::VS:
9411 case AArch64CC::VC:
9412 case AArch64CC::AL:
9413 case AArch64CC::NV:
9414 return true;
9415 case AArch64CC::Invalid:
9416 break;
9417 }
9418
9419 return false;
9420}
9421
9422static
9423SDValue performCONDCombine(SDNode *N,
9424 TargetLowering::DAGCombinerInfo &DCI,
9425 SelectionDAG &DAG, unsigned CCIndex,
9426 unsigned CmpIndex) {
9427 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
9428 SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
9429 unsigned CondOpcode = SubsNode->getOpcode();
9430
9431 if (CondOpcode != AArch64ISD::SUBS)
9432 return SDValue();
9433
9434 // There is a SUBS feeding this condition. Is it fed by a mask we can
9435 // use?
9436
9437 SDNode *AndNode = SubsNode->getOperand(0).getNode();
9438 unsigned MaskBits = 0;
9439
9440 if (AndNode->getOpcode() != ISD::AND)
9441 return SDValue();
9442
9443 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
9444 uint32_t CNV = CN->getZExtValue();
9445 if (CNV == 255)
9446 MaskBits = 8;
9447 else if (CNV == 65535)
9448 MaskBits = 16;
9449 }
9450
9451 if (!MaskBits)
9452 return SDValue();
9453
9454 SDValue AddValue = AndNode->getOperand(0);
9455
9456 if (AddValue.getOpcode() != ISD::ADD)
9457 return SDValue();
9458
9459 // The basic dag structure is correct, grab the inputs and validate them.
9460
9461 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
9462 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
9463 SDValue SubsInputValue = SubsNode->getOperand(1);
9464
9465 // The mask is present and the provenance of all the values is a smaller type,
9466 // lets see if the mask is superfluous.
9467
9468 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
9469 !isa<ConstantSDNode>(SubsInputValue.getNode()))
9470 return SDValue();
9471
9472 ISD::LoadExtType ExtType;
9473
9474 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
9475 !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
9476 !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
9477 return SDValue();
9478
9479 if(!isEquivalentMaskless(CC, MaskBits, ExtType,
9480 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
9481 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
9482 return SDValue();
9483
9484 // The AND is not necessary, remove it.
9485
9486 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
9487 SubsNode->getValueType(1));
9488 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
9489
9490 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
9491 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
9492
9493 return SDValue(N, 0);
9494}
9495
Tim Northover3b0846e2014-05-24 12:50:23 +00009496// Optimize compare with zero and branch.
9497static SDValue performBRCONDCombine(SDNode *N,
9498 TargetLowering::DAGCombinerInfo &DCI,
9499 SelectionDAG &DAG) {
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009500 SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3);
9501 if (NV.getNode())
9502 N = NV.getNode();
Tim Northover3b0846e2014-05-24 12:50:23 +00009503 SDValue Chain = N->getOperand(0);
9504 SDValue Dest = N->getOperand(1);
9505 SDValue CCVal = N->getOperand(2);
9506 SDValue Cmp = N->getOperand(3);
9507
9508 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
9509 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
9510 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
9511 return SDValue();
9512
9513 unsigned CmpOpc = Cmp.getOpcode();
9514 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
9515 return SDValue();
9516
9517 // Only attempt folding if there is only one use of the flag and no use of the
9518 // value.
9519 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
9520 return SDValue();
9521
9522 SDValue LHS = Cmp.getOperand(0);
9523 SDValue RHS = Cmp.getOperand(1);
9524
9525 assert(LHS.getValueType() == RHS.getValueType() &&
9526 "Expected the value type to be the same for both operands!");
9527 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
9528 return SDValue();
9529
Artyom Skrobov314ee042015-11-25 19:41:11 +00009530 if (isNullConstant(LHS))
Tim Northover3b0846e2014-05-24 12:50:23 +00009531 std::swap(LHS, RHS);
9532
Artyom Skrobov314ee042015-11-25 19:41:11 +00009533 if (!isNullConstant(RHS))
Tim Northover3b0846e2014-05-24 12:50:23 +00009534 return SDValue();
9535
9536 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
9537 LHS.getOpcode() == ISD::SRL)
9538 return SDValue();
9539
9540 // Fold the compare into the branch instruction.
9541 SDValue BR;
9542 if (CC == AArch64CC::EQ)
9543 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
9544 else
9545 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
9546
9547 // Do not add new nodes to DAG combiner worklist.
9548 DCI.CombineTo(N, BR, false);
9549
9550 return SDValue();
9551}
9552
Geoff Berry9e934b02016-01-04 18:55:47 +00009553// Optimize some simple tbz/tbnz cases. Returns the new operand and bit to test
9554// as well as whether the test should be inverted. This code is required to
9555// catch these cases (as opposed to standard dag combines) because
9556// AArch64ISD::TBZ is matched during legalization.
9557static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert,
9558 SelectionDAG &DAG) {
9559
9560 if (!Op->hasOneUse())
9561 return Op;
9562
9563 // We don't handle undef/constant-fold cases below, as they should have
9564 // already been taken care of (e.g. and of 0, test of undefined shifted bits,
9565 // etc.)
9566
9567 // (tbz (trunc x), b) -> (tbz x, b)
9568 // This case is just here to enable more of the below cases to be caught.
9569 if (Op->getOpcode() == ISD::TRUNCATE &&
9570 Bit < Op->getValueType(0).getSizeInBits()) {
9571 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9572 }
9573
9574 if (Op->getNumOperands() != 2)
9575 return Op;
9576
9577 auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
9578 if (!C)
9579 return Op;
9580
9581 switch (Op->getOpcode()) {
9582 default:
9583 return Op;
9584
9585 // (tbz (and x, m), b) -> (tbz x, b)
9586 case ISD::AND:
9587 if ((C->getZExtValue() >> Bit) & 1)
9588 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9589 return Op;
9590
9591 // (tbz (shl x, c), b) -> (tbz x, b-c)
9592 case ISD::SHL:
9593 if (C->getZExtValue() <= Bit &&
9594 (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
9595 Bit = Bit - C->getZExtValue();
9596 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9597 }
9598 return Op;
9599
9600 // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
9601 case ISD::SRA:
9602 Bit = Bit + C->getZExtValue();
9603 if (Bit >= Op->getValueType(0).getSizeInBits())
9604 Bit = Op->getValueType(0).getSizeInBits() - 1;
9605 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9606
9607 // (tbz (srl x, c), b) -> (tbz x, b+c)
9608 case ISD::SRL:
9609 if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
9610 Bit = Bit + C->getZExtValue();
9611 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9612 }
9613 return Op;
9614
9615 // (tbz (xor x, -1), b) -> (tbnz x, b)
9616 case ISD::XOR:
9617 if ((C->getZExtValue() >> Bit) & 1)
9618 Invert = !Invert;
9619 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9620 }
9621}
9622
9623// Optimize test single bit zero/non-zero and branch.
9624static SDValue performTBZCombine(SDNode *N,
9625 TargetLowering::DAGCombinerInfo &DCI,
9626 SelectionDAG &DAG) {
9627 unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
9628 bool Invert = false;
9629 SDValue TestSrc = N->getOperand(1);
9630 SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG);
9631
9632 if (TestSrc == NewTestSrc)
9633 return SDValue();
9634
9635 unsigned NewOpc = N->getOpcode();
9636 if (Invert) {
9637 if (NewOpc == AArch64ISD::TBZ)
9638 NewOpc = AArch64ISD::TBNZ;
9639 else {
9640 assert(NewOpc == AArch64ISD::TBNZ);
9641 NewOpc = AArch64ISD::TBZ;
9642 }
9643 }
9644
9645 SDLoc DL(N);
9646 return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc,
9647 DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3));
9648}
9649
Tim Northover3b0846e2014-05-24 12:50:23 +00009650// vselect (v1i1 setcc) ->
9651// vselect (v1iXX setcc) (XX is the size of the compared operand type)
9652// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
9653// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
9654// such VSELECT.
9655static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
9656 SDValue N0 = N->getOperand(0);
9657 EVT CCVT = N0.getValueType();
9658
9659 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
9660 CCVT.getVectorElementType() != MVT::i1)
9661 return SDValue();
9662
9663 EVT ResVT = N->getValueType(0);
9664 EVT CmpVT = N0.getOperand(0).getValueType();
9665 // Only combine when the result type is of the same size as the compared
9666 // operands.
9667 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
9668 return SDValue();
9669
9670 SDValue IfTrue = N->getOperand(1);
9671 SDValue IfFalse = N->getOperand(2);
9672 SDValue SetCC =
9673 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
9674 N0.getOperand(0), N0.getOperand(1),
9675 cast<CondCodeSDNode>(N0.getOperand(2))->get());
9676 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
9677 IfTrue, IfFalse);
9678}
9679
9680/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
9681/// the compare-mask instructions rather than going via NZCV, even if LHS and
9682/// RHS are really scalar. This replaces any scalar setcc in the above pattern
9683/// with a vector one followed by a DUP shuffle on the result.
Ahmed Bougachac004c602015-04-27 21:43:12 +00009684static SDValue performSelectCombine(SDNode *N,
9685 TargetLowering::DAGCombinerInfo &DCI) {
9686 SelectionDAG &DAG = DCI.DAG;
Tim Northover3b0846e2014-05-24 12:50:23 +00009687 SDValue N0 = N->getOperand(0);
9688 EVT ResVT = N->getValueType(0);
Tim Northover3c0915e2014-08-29 15:34:58 +00009689
Ahmed Bougachac004c602015-04-27 21:43:12 +00009690 if (N0.getOpcode() != ISD::SETCC)
Tim Northover3c0915e2014-08-29 15:34:58 +00009691 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00009692
Ahmed Bougachac004c602015-04-27 21:43:12 +00009693 // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
9694 // scalar SetCCResultType. We also don't expect vectors, because we assume
9695 // that selects fed by vector SETCCs are canonicalized to VSELECT.
9696 assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
9697 "Scalar-SETCC feeding SELECT has unexpected result type!");
9698
Tim Northoverc1c05ae2014-08-29 13:05:18 +00009699 // If NumMaskElts == 0, the comparison is larger than select result. The
9700 // largest real NEON comparison is 64-bits per lane, which means the result is
9701 // at most 32-bits and an illegal vector. Just bail out for now.
Tim Northover3c0915e2014-08-29 15:34:58 +00009702 EVT SrcVT = N0.getOperand(0).getValueType();
Ahmed Bougachad0ce0582014-12-01 20:59:00 +00009703
9704 // Don't try to do this optimization when the setcc itself has i1 operands.
9705 // There are no legal vectors of i1, so this would be pointless.
9706 if (SrcVT == MVT::i1)
9707 return SDValue();
9708
Tim Northover3c0915e2014-08-29 15:34:58 +00009709 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
Tim Northoverc1c05ae2014-08-29 13:05:18 +00009710 if (!ResVT.isVector() || NumMaskElts == 0)
Tim Northover3b0846e2014-05-24 12:50:23 +00009711 return SDValue();
9712
Tim Northoverc1c05ae2014-08-29 13:05:18 +00009713 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00009714 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
9715
Ahmed Bougacha89bba612015-04-27 21:01:20 +00009716 // Also bail out if the vector CCVT isn't the same size as ResVT.
9717 // This can happen if the SETCC operand size doesn't divide the ResVT size
9718 // (e.g., f64 vs v3f32).
9719 if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
9720 return SDValue();
9721
Ahmed Bougachac004c602015-04-27 21:43:12 +00009722 // Make sure we didn't create illegal types, if we're not supposed to.
9723 assert(DCI.isBeforeLegalize() ||
9724 DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
9725
Tim Northover3b0846e2014-05-24 12:50:23 +00009726 // First perform a vector comparison, where lane 0 is the one we're interested
9727 // in.
Tim Northoverc1c05ae2014-08-29 13:05:18 +00009728 SDLoc DL(N0);
Tim Northover3b0846e2014-05-24 12:50:23 +00009729 SDValue LHS =
9730 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
9731 SDValue RHS =
9732 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
9733 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
9734
9735 // Now duplicate the comparison mask we want across all other lanes.
9736 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
9737 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
Tim Northoverc1c05ae2014-08-29 13:05:18 +00009738 Mask = DAG.getNode(ISD::BITCAST, DL,
9739 ResVT.changeVectorElementTypeToInteger(), Mask);
Tim Northover3b0846e2014-05-24 12:50:23 +00009740
9741 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
9742}
9743
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00009744/// Get rid of unnecessary NVCASTs (that don't change the type).
9745static SDValue performNVCASTCombine(SDNode *N) {
9746 if (N->getValueType(0) == N->getOperand(0).getValueType())
9747 return N->getOperand(0);
9748
9749 return SDValue();
9750}
9751
Tim Northover3b0846e2014-05-24 12:50:23 +00009752SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
9753 DAGCombinerInfo &DCI) const {
9754 SelectionDAG &DAG = DCI.DAG;
9755 switch (N->getOpcode()) {
9756 default:
9757 break;
9758 case ISD::ADD:
9759 case ISD::SUB:
9760 return performAddSubLongCombine(N, DCI, DAG);
9761 case ISD::XOR:
9762 return performXorCombine(N, DAG, DCI, Subtarget);
9763 case ISD::MUL:
9764 return performMulCombine(N, DAG, DCI, Subtarget);
9765 case ISD::SINT_TO_FP:
9766 case ISD::UINT_TO_FP:
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00009767 return performIntToFpCombine(N, DAG, Subtarget);
Chad Rosierfa30c9b2015-10-07 17:39:18 +00009768 case ISD::FP_TO_SINT:
9769 case ISD::FP_TO_UINT:
9770 return performFpToIntCombine(N, DAG, Subtarget);
Chad Rosier7c6ac2b2015-10-07 17:51:37 +00009771 case ISD::FDIV:
9772 return performFDivCombine(N, DAG, Subtarget);
Tim Northover3b0846e2014-05-24 12:50:23 +00009773 case ISD::OR:
9774 return performORCombine(N, DCI, Subtarget);
9775 case ISD::INTRINSIC_WO_CHAIN:
9776 return performIntrinsicCombine(N, DCI, Subtarget);
9777 case ISD::ANY_EXTEND:
9778 case ISD::ZERO_EXTEND:
9779 case ISD::SIGN_EXTEND:
9780 return performExtendCombine(N, DCI, DAG);
9781 case ISD::BITCAST:
9782 return performBitcastCombine(N, DCI, DAG);
9783 case ISD::CONCAT_VECTORS:
9784 return performConcatVectorsCombine(N, DCI, DAG);
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009785 case ISD::SELECT: {
9786 SDValue RV = performSelectCombine(N, DCI);
9787 if (!RV.getNode())
9788 RV = performAcrossLaneMinMaxReductionCombine(N, DAG, Subtarget);
9789 return RV;
9790 }
Tim Northover3b0846e2014-05-24 12:50:23 +00009791 case ISD::VSELECT:
9792 return performVSelectCombine(N, DCI.DAG);
Tim Northover339c83e2015-11-10 00:44:23 +00009793 case ISD::LOAD:
9794 if (performTBISimplification(N->getOperand(1), DCI, DAG))
9795 return SDValue(N, 0);
9796 break;
Tim Northover3b0846e2014-05-24 12:50:23 +00009797 case ISD::STORE:
9798 return performSTORECombine(N, DCI, DAG, Subtarget);
9799 case AArch64ISD::BRCOND:
9800 return performBRCONDCombine(N, DCI, DAG);
Geoff Berry9e934b02016-01-04 18:55:47 +00009801 case AArch64ISD::TBNZ:
9802 case AArch64ISD::TBZ:
9803 return performTBZCombine(N, DCI, DAG);
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009804 case AArch64ISD::CSEL:
9805 return performCONDCombine(N, DCI, DAG, 2, 3);
Tim Northover3b0846e2014-05-24 12:50:23 +00009806 case AArch64ISD::DUP:
9807 return performPostLD1Combine(N, DCI, false);
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00009808 case AArch64ISD::NVCAST:
9809 return performNVCASTCombine(N);
Tim Northover3b0846e2014-05-24 12:50:23 +00009810 case ISD::INSERT_VECTOR_ELT:
9811 return performPostLD1Combine(N, DCI, true);
Chad Rosier6c36eff2015-09-03 18:13:57 +00009812 case ISD::EXTRACT_VECTOR_ELT:
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009813 return performAcrossLaneAddReductionCombine(N, DAG, Subtarget);
Tim Northover3b0846e2014-05-24 12:50:23 +00009814 case ISD::INTRINSIC_VOID:
9815 case ISD::INTRINSIC_W_CHAIN:
9816 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9817 case Intrinsic::aarch64_neon_ld2:
9818 case Intrinsic::aarch64_neon_ld3:
9819 case Intrinsic::aarch64_neon_ld4:
9820 case Intrinsic::aarch64_neon_ld1x2:
9821 case Intrinsic::aarch64_neon_ld1x3:
9822 case Intrinsic::aarch64_neon_ld1x4:
9823 case Intrinsic::aarch64_neon_ld2lane:
9824 case Intrinsic::aarch64_neon_ld3lane:
9825 case Intrinsic::aarch64_neon_ld4lane:
9826 case Intrinsic::aarch64_neon_ld2r:
9827 case Intrinsic::aarch64_neon_ld3r:
9828 case Intrinsic::aarch64_neon_ld4r:
9829 case Intrinsic::aarch64_neon_st2:
9830 case Intrinsic::aarch64_neon_st3:
9831 case Intrinsic::aarch64_neon_st4:
9832 case Intrinsic::aarch64_neon_st1x2:
9833 case Intrinsic::aarch64_neon_st1x3:
9834 case Intrinsic::aarch64_neon_st1x4:
9835 case Intrinsic::aarch64_neon_st2lane:
9836 case Intrinsic::aarch64_neon_st3lane:
9837 case Intrinsic::aarch64_neon_st4lane:
9838 return performNEONPostLDSTCombine(N, DCI, DAG);
9839 default:
9840 break;
9841 }
9842 }
9843 return SDValue();
9844}
9845
9846// Check if the return value is used as only a return value, as otherwise
9847// we can't perform a tail-call. In particular, we need to check for
9848// target ISD nodes that are returns and any other "odd" constructs
9849// that the generic analysis code won't necessarily catch.
9850bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
9851 SDValue &Chain) const {
9852 if (N->getNumValues() != 1)
9853 return false;
9854 if (!N->hasNUsesOfValue(1, 0))
9855 return false;
9856
9857 SDValue TCChain = Chain;
9858 SDNode *Copy = *N->use_begin();
9859 if (Copy->getOpcode() == ISD::CopyToReg) {
9860 // If the copy has a glue operand, we conservatively assume it isn't safe to
9861 // perform a tail call.
9862 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
9863 MVT::Glue)
9864 return false;
9865 TCChain = Copy->getOperand(0);
9866 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
9867 return false;
9868
9869 bool HasRet = false;
9870 for (SDNode *Node : Copy->uses()) {
9871 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
9872 return false;
9873 HasRet = true;
9874 }
9875
9876 if (!HasRet)
9877 return false;
9878
9879 Chain = TCChain;
9880 return true;
9881}
9882
9883// Return whether the an instruction can potentially be optimized to a tail
9884// call. This will cause the optimizers to attempt to move, or duplicate,
9885// return instructions to help enable tail call optimizations for this
9886// instruction.
9887bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
9888 if (!CI->isTailCall())
9889 return false;
9890
9891 return true;
9892}
9893
9894bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
9895 SDValue &Offset,
9896 ISD::MemIndexedMode &AM,
9897 bool &IsInc,
9898 SelectionDAG &DAG) const {
9899 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
9900 return false;
9901
9902 Base = Op->getOperand(0);
9903 // All of the indexed addressing mode instructions take a signed
9904 // 9 bit immediate offset.
9905 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
9906 int64_t RHSC = (int64_t)RHS->getZExtValue();
9907 if (RHSC >= 256 || RHSC <= -256)
9908 return false;
9909 IsInc = (Op->getOpcode() == ISD::ADD);
9910 Offset = Op->getOperand(1);
9911 return true;
9912 }
9913 return false;
9914}
9915
9916bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
9917 SDValue &Offset,
9918 ISD::MemIndexedMode &AM,
9919 SelectionDAG &DAG) const {
9920 EVT VT;
9921 SDValue Ptr;
9922 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9923 VT = LD->getMemoryVT();
9924 Ptr = LD->getBasePtr();
9925 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9926 VT = ST->getMemoryVT();
9927 Ptr = ST->getBasePtr();
9928 } else
9929 return false;
9930
9931 bool IsInc;
9932 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
9933 return false;
9934 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
9935 return true;
9936}
9937
9938bool AArch64TargetLowering::getPostIndexedAddressParts(
9939 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
9940 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
9941 EVT VT;
9942 SDValue Ptr;
9943 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9944 VT = LD->getMemoryVT();
9945 Ptr = LD->getBasePtr();
9946 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9947 VT = ST->getMemoryVT();
9948 Ptr = ST->getBasePtr();
9949 } else
9950 return false;
9951
9952 bool IsInc;
9953 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
9954 return false;
9955 // Post-indexing updates the base, so it's not a valid transform
9956 // if that's not the same as the load's pointer.
9957 if (Ptr != Base)
9958 return false;
9959 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
9960 return true;
9961}
9962
Tim Northoverf8bfe212014-07-18 13:07:05 +00009963static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
9964 SelectionDAG &DAG) {
Tim Northoverf8bfe212014-07-18 13:07:05 +00009965 SDLoc DL(N);
9966 SDValue Op = N->getOperand(0);
Ahmed Bougacha87946322014-12-01 20:52:32 +00009967
9968 if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
9969 return;
9970
Tim Northoverf8bfe212014-07-18 13:07:05 +00009971 Op = SDValue(
9972 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
9973 DAG.getUNDEF(MVT::i32), Op,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00009974 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
Tim Northoverf8bfe212014-07-18 13:07:05 +00009975 0);
9976 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
9977 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
9978}
9979
Charlie Turner434d4592015-10-16 15:38:25 +00009980static void ReplaceReductionResults(SDNode *N,
9981 SmallVectorImpl<SDValue> &Results,
9982 SelectionDAG &DAG, unsigned InterOp,
9983 unsigned AcrossOp) {
9984 EVT LoVT, HiVT;
9985 SDValue Lo, Hi;
9986 SDLoc dl(N);
9987 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
9988 std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
9989 SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
9990 SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
9991 Results.push_back(SplitVal);
9992}
9993
Tim Northover3b0846e2014-05-24 12:50:23 +00009994void AArch64TargetLowering::ReplaceNodeResults(
9995 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
9996 switch (N->getOpcode()) {
9997 default:
9998 llvm_unreachable("Don't know how to custom expand this");
Tim Northoverf8bfe212014-07-18 13:07:05 +00009999 case ISD::BITCAST:
10000 ReplaceBITCASTResults(N, Results, DAG);
10001 return;
Charlie Turner434d4592015-10-16 15:38:25 +000010002 case AArch64ISD::SADDV:
10003 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
10004 return;
10005 case AArch64ISD::UADDV:
10006 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
10007 return;
10008 case AArch64ISD::SMINV:
10009 ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
10010 return;
10011 case AArch64ISD::UMINV:
10012 ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
10013 return;
10014 case AArch64ISD::SMAXV:
10015 ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
10016 return;
10017 case AArch64ISD::UMAXV:
10018 ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
10019 return;
Tim Northover3b0846e2014-05-24 12:50:23 +000010020 case ISD::FP_TO_UINT:
10021 case ISD::FP_TO_SINT:
10022 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
10023 // Let normal code take care of it by not adding anything to Results.
10024 return;
10025 }
10026}
10027
Akira Hatanakae5b6e0d2014-07-25 19:31:34 +000010028bool AArch64TargetLowering::useLoadStackGuardNode() const {
10029 return true;
10030}
10031
Sanjay Patel1dd15592015-07-28 23:05:48 +000010032unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
Hao Liu44e5d7a2014-11-21 06:39:58 +000010033 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
10034 // reciprocal if there are three or more FDIVs.
Sanjay Patel1dd15592015-07-28 23:05:48 +000010035 return 3;
Hao Liu44e5d7a2014-11-21 06:39:58 +000010036}
10037
Chandler Carruth9d010ff2014-07-03 00:23:43 +000010038TargetLoweringBase::LegalizeTypeAction
10039AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
10040 MVT SVT = VT.getSimpleVT();
10041 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
10042 // v4i16, v2i32 instead of to promote.
10043 if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
10044 || SVT == MVT::v1f32)
10045 return TypeWidenVector;
10046
10047 return TargetLoweringBase::getPreferredVectorAction(VT);
10048}
10049
Robin Morisseted3d48f2014-09-03 21:29:59 +000010050// Loads and stores less than 128-bits are already atomic; ones above that
10051// are doomed anyway, so defer to the default libcall and blame the OS when
10052// things go wrong.
10053bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
10054 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
10055 return Size == 128;
10056}
10057
10058// Loads and stores less than 128-bits are already atomic; ones above that
10059// are doomed anyway, so defer to the default libcall and blame the OS when
10060// things go wrong.
Ahmed Bougacha52468672015-09-11 17:08:28 +000010061TargetLowering::AtomicExpansionKind
10062AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
Robin Morisseted3d48f2014-09-03 21:29:59 +000010063 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
Ahmed Bougacha52468672015-09-11 17:08:28 +000010064 return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
Robin Morisseted3d48f2014-09-03 21:29:59 +000010065}
10066
10067// For the real atomic operations, we have ldxr/stxr up to 128 bits,
Ahmed Bougacha52468672015-09-11 17:08:28 +000010068TargetLowering::AtomicExpansionKind
JF Bastienf14889e2015-03-04 15:47:57 +000010069AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
Robin Morisseted3d48f2014-09-03 21:29:59 +000010070 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
Ahmed Bougacha9d677132015-09-11 17:08:17 +000010071 return Size <= 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
Robin Morisseted3d48f2014-09-03 21:29:59 +000010072}
10073
Ahmed Bougacha52468672015-09-11 17:08:28 +000010074bool AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
10075 AtomicCmpXchgInst *AI) const {
Robin Morisset25c8e312014-09-17 00:06:58 +000010076 return true;
10077}
10078
Tim Northover3b0846e2014-05-24 12:50:23 +000010079Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
10080 AtomicOrdering Ord) const {
10081 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10082 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
Robin Morissetb155f522014-08-18 16:48:58 +000010083 bool IsAcquire = isAtLeastAcquire(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +000010084
10085 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
10086 // intrinsic must return {i64, i64} and we have to recombine them into a
10087 // single i128 here.
10088 if (ValTy->getPrimitiveSizeInBits() == 128) {
10089 Intrinsic::ID Int =
10090 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
10091 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
10092
10093 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
10094 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
10095
10096 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
10097 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
10098 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
10099 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
10100 return Builder.CreateOr(
10101 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
10102 }
10103
10104 Type *Tys[] = { Addr->getType() };
10105 Intrinsic::ID Int =
10106 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
10107 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
10108
10109 return Builder.CreateTruncOrBitCast(
10110 Builder.CreateCall(Ldxr, Addr),
10111 cast<PointerType>(Addr->getType())->getElementType());
10112}
10113
Ahmed Bougacha07a844d2015-09-22 17:21:44 +000010114void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
10115 IRBuilder<> &Builder) const {
10116 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10117 Builder.CreateCall(
10118 llvm::Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
10119}
10120
Tim Northover3b0846e2014-05-24 12:50:23 +000010121Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
10122 Value *Val, Value *Addr,
10123 AtomicOrdering Ord) const {
10124 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Robin Morissetb155f522014-08-18 16:48:58 +000010125 bool IsRelease = isAtLeastRelease(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +000010126
10127 // Since the intrinsics must have legal type, the i128 intrinsics take two
10128 // parameters: "i64, i64". We must marshal Val into the appropriate form
10129 // before the call.
10130 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
10131 Intrinsic::ID Int =
10132 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
10133 Function *Stxr = Intrinsic::getDeclaration(M, Int);
10134 Type *Int64Ty = Type::getInt64Ty(M->getContext());
10135
10136 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
10137 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
10138 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
David Blaikieff6409d2015-05-18 22:13:54 +000010139 return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
Tim Northover3b0846e2014-05-24 12:50:23 +000010140 }
10141
10142 Intrinsic::ID Int =
10143 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
10144 Type *Tys[] = { Addr->getType() };
10145 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
10146
David Blaikieff6409d2015-05-18 22:13:54 +000010147 return Builder.CreateCall(Stxr,
10148 {Builder.CreateZExtOrBitCast(
10149 Val, Stxr->getFunctionType()->getParamType(0)),
10150 Addr});
Tim Northover3b0846e2014-05-24 12:50:23 +000010151}
Tim Northover3c55cca2014-11-27 21:02:42 +000010152
10153bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
10154 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
10155 return Ty->isArrayTy();
10156}
Matthias Braunaf7d7702015-07-16 20:02:37 +000010157
10158bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
10159 EVT) const {
10160 return false;
10161}
Evgeniy Stepanovd1aad262015-10-26 18:28:25 +000010162
10163Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
10164 if (!Subtarget->isTargetAndroid())
10165 return TargetLowering::getSafeStackPointerLocation(IRB);
10166
10167 // Android provides a fixed TLS slot for the SafeStack pointer. See the
10168 // definition of TLS_SLOT_SAFESTACK in
10169 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
10170 const unsigned TlsOffset = 0x48;
10171 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
10172 Function *ThreadPointerFunc =
10173 Intrinsic::getDeclaration(M, Intrinsic::aarch64_thread_pointer);
10174 return IRB.CreatePointerCast(
10175 IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), TlsOffset),
10176 Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0));
10177}
Manman Rencbe4f942015-12-16 21:04:19 +000010178
10179void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
10180 // Update IsSplitCSR in AArch64unctionInfo.
10181 AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>();
10182 AFI->setIsSplitCSR(true);
10183}
10184
10185void AArch64TargetLowering::insertCopiesSplitCSR(
10186 MachineBasicBlock *Entry,
10187 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
10188 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
10189 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
10190 if (!IStart)
10191 return;
10192
10193 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10194 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
Manman Ren4632e8e2016-01-15 20:13:28 +000010195 MachineBasicBlock::iterator MBBI = Entry->begin();
Manman Rencbe4f942015-12-16 21:04:19 +000010196 for (const MCPhysReg *I = IStart; *I; ++I) {
10197 const TargetRegisterClass *RC = nullptr;
10198 if (AArch64::GPR64RegClass.contains(*I))
10199 RC = &AArch64::GPR64RegClass;
10200 else if (AArch64::FPR64RegClass.contains(*I))
10201 RC = &AArch64::FPR64RegClass;
10202 else
10203 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
10204
10205 unsigned NewVR = MRI->createVirtualRegister(RC);
10206 // Create copy from CSR to a virtual register.
10207 // FIXME: this currently does not emit CFI pseudo-instructions, it works
10208 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
10209 // nounwind. If we want to generalize this later, we may need to emit
10210 // CFI pseudo-instructions.
10211 assert(Entry->getParent()->getFunction()->hasFnAttribute(
10212 Attribute::NoUnwind) &&
10213 "Function should be nounwind in insertCopiesSplitCSR!");
10214 Entry->addLiveIn(*I);
Manman Ren4632e8e2016-01-15 20:13:28 +000010215 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
Manman Rencbe4f942015-12-16 21:04:19 +000010216 .addReg(*I);
10217
Manman Ren4632e8e2016-01-15 20:13:28 +000010218 // Insert the copy-back instructions right before the terminator.
Manman Rencbe4f942015-12-16 21:04:19 +000010219 for (auto *Exit : Exits)
Manman Ren4632e8e2016-01-15 20:13:28 +000010220 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
10221 TII->get(TargetOpcode::COPY), *I)
Manman Rencbe4f942015-12-16 21:04:19 +000010222 .addReg(NewVR);
10223 }
10224}