blob: a6fe51cc872297a9f61884effe047cb812078fc4 [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000024#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/PostOrderIterator.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/Statistic.h"
James Molloyefbba722015-09-10 10:22:12 +000029#include "llvm/Analysis/GlobalsModRef.h"
Quentin Colombet6443cce2015-08-06 18:44:34 +000030#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000031#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000032#include "llvm/IR/Constants.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/IRBuilder.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000038#include "llvm/IR/ValueHandle.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000039#include "llvm/Pass.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000040#include "llvm/Support/Debug.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000041#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000042#include "llvm/Transforms/Utils/Local.h"
Chris Lattner1e506502005-05-07 21:59:39 +000043#include <algorithm>
Chris Lattner49525f82004-01-09 06:02:20 +000044using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000045
Chandler Carruth964daaa2014-04-22 02:55:47 +000046#define DEBUG_TYPE "reassociate"
47
Chris Lattner79a42ac2006-12-19 21:40:18 +000048STATISTIC(NumChanged, "Number of insts reassociated");
49STATISTIC(NumAnnihil, "Number of expr tree annihilated");
50STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000051
Chris Lattner79a42ac2006-12-19 21:40:18 +000052namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +000053 struct ValueEntry {
Chris Lattner1e506502005-05-07 21:59:39 +000054 unsigned Rank;
55 Value *Op;
56 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
57 };
58 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
59 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
60 }
Chris Lattner4c065092006-03-04 09:31:13 +000061}
Chris Lattner1e506502005-05-07 21:59:39 +000062
Devang Patel702f45d2008-11-21 21:00:20 +000063#ifndef NDEBUG
Sanjay Patelc96ee082015-04-22 18:04:46 +000064/// Print out the expression identified in the Ops list.
Chris Lattner4c065092006-03-04 09:31:13 +000065///
Chris Lattner38abecb2009-12-31 18:40:32 +000066static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Sanjay Patelaf674fb2015-12-14 17:24:23 +000067 Module *M = I->getModule();
David Greened17c3912010-01-05 01:27:24 +000068 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000069 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000070 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000071 dbgs() << "[ ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +000072 Ops[i].Op->printAsOperand(dbgs(), false, M);
David Greened17c3912010-01-05 01:27:24 +000073 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000074 }
Chris Lattner4c065092006-03-04 09:31:13 +000075}
Devang Patelcb181bb2008-11-21 20:00:59 +000076#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000077
Dan Gohmand78c4002008-05-13 00:00:25 +000078namespace {
Chandler Carruth739ef802012-04-26 05:30:30 +000079 /// \brief Utility class representing a base and exponent pair which form one
80 /// factor of some product.
81 struct Factor {
82 Value *Base;
83 unsigned Power;
84
85 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
86
Chandler Carruth739ef802012-04-26 05:30:30 +000087 /// \brief Sort factors in descending order by their power.
88 struct PowerDescendingSorter {
89 bool operator()(const Factor &LHS, const Factor &RHS) {
90 return LHS.Power > RHS.Power;
91 }
92 };
93
94 /// \brief Compare factors for equal powers.
95 struct PowerEqual {
96 bool operator()(const Factor &LHS, const Factor &RHS) {
97 return LHS.Power == RHS.Power;
98 }
99 };
100 };
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000101
102 /// Utility class representing a non-constant Xor-operand. We classify
103 /// non-constant Xor-Operands into two categories:
104 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
105 /// C2)
106 /// C2.1) The operand is in the form of "X | C", where C is a non-zero
107 /// constant.
108 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
109 /// operand as "E | 0"
110 class XorOpnd {
111 public:
112 XorOpnd(Value *V);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000113
Craig Topperf40110f2014-04-25 05:29:35 +0000114 bool isInvalid() const { return SymbolicPart == nullptr; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000115 bool isOrExpr() const { return isOr; }
116 Value *getValue() const { return OrigVal; }
117 Value *getSymbolicPart() const { return SymbolicPart; }
118 unsigned getSymbolicRank() const { return SymbolicRank; }
119 const APInt &getConstPart() const { return ConstPart; }
120
Craig Topperf40110f2014-04-25 05:29:35 +0000121 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000122 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
123
124 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
125 // The purpose is twofold:
126 // 1) Cluster together the operands sharing the same symbolic-value.
127 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
128 // could potentially shorten crital path, and expose more loop-invariants.
129 // Note that values' rank are basically defined in RPO order (FIXME).
130 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
131 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
132 // "z" in the order of X-Y-Z is better than any other orders.
Shuxin Yang331f01d2013-04-08 22:00:43 +0000133 struct PtrSortFunctor {
134 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
135 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000136 }
137 };
138 private:
139 Value *OrigVal;
140 Value *SymbolicPart;
141 APInt ConstPart;
142 unsigned SymbolicRank;
143 bool isOr;
144 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000145}
Chandler Carruth739ef802012-04-26 05:30:30 +0000146
147namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +0000148 class Reassociate : public FunctionPass {
Chris Lattner17229a72010-01-01 00:01:34 +0000149 DenseMap<BasicBlock*, unsigned> RankMap;
Craig Topper6e80c282012-03-26 06:58:25 +0000150 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
Shuxin Yangc94c3bb2012-11-13 00:08:49 +0000151 SetVector<AssertingVH<Instruction> > RedoInsts;
Chris Lattner1e506502005-05-07 21:59:39 +0000152 bool MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000153 public:
Nick Lewyckye7da2d62007-05-06 13:37:16 +0000154 static char ID; // Pass identification, replacement for typeid
Owen Anderson6c18d1a2010-10-19 17:21:58 +0000155 Reassociate() : FunctionPass(ID) {
156 initializeReassociatePass(*PassRegistry::getPassRegistry());
157 }
Devang Patel09f162c2007-05-01 21:15:47 +0000158
Craig Topper3e4c6972014-03-05 09:10:37 +0000159 bool runOnFunction(Function &F) override;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000160
Craig Topper3e4c6972014-03-05 09:10:37 +0000161 void getAnalysisUsage(AnalysisUsage &AU) const override {
Chris Lattner820d9712002-10-21 20:00:28 +0000162 AU.setPreservesCFG();
James Molloyefbba722015-09-10 10:22:12 +0000163 AU.addPreserved<GlobalsAAWrapperPass>();
Chris Lattnerc0f58002002-05-08 22:19:27 +0000164 }
165 private:
Aditya Nandakumar3d0c46d2016-01-26 18:42:36 +0000166 void BuildRankMap(Function &F, ReversePostOrderTraversal<Function *> &RPOT);
167
Chris Lattnerc0f58002002-05-08 22:19:27 +0000168 unsigned getRank(Value *V);
Chad Rosierf8b55f12014-11-14 17:05:59 +0000169 void canonicalizeOperands(Instruction *I);
Duncan Sands78386032012-06-15 08:37:50 +0000170 void ReassociateExpression(BinaryOperator *I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000171 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner38abecb2009-12-31 18:40:32 +0000172 Value *OptimizeExpression(BinaryOperator *I,
173 SmallVectorImpl<ValueEntry> &Ops);
174 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000175 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
176 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
177 Value *&Res);
178 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
179 APInt &ConstOpnd, Value *&Res);
Chandler Carruth739ef802012-04-26 05:30:30 +0000180 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
181 SmallVectorImpl<Factor> &Factors);
182 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
183 SmallVectorImpl<Factor> &Factors);
184 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner4c065092006-03-04 09:31:13 +0000185 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Duncan Sands3293f462012-06-08 20:15:33 +0000186 void EraseInst(Instruction *I);
Aditya Nandakumar12d06042016-01-04 19:48:14 +0000187 void RecursivelyEraseDeadInsts(Instruction *I,
188 SetVector<AssertingVH<Instruction>> &Insts);
Duncan Sands3293f462012-06-08 20:15:33 +0000189 void OptimizeInst(Instruction *I);
Chad Rosier094ac772014-11-11 22:58:35 +0000190 Instruction *canonicalizeNegConstExpr(Instruction *I);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000191 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000192}
Chris Lattnerc0f58002002-05-08 22:19:27 +0000193
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000194XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000195 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000196 OrigVal = V;
197 Instruction *I = dyn_cast<Instruction>(V);
198 SymbolicRank = 0;
199
200 if (I && (I->getOpcode() == Instruction::Or ||
201 I->getOpcode() == Instruction::And)) {
202 Value *V0 = I->getOperand(0);
203 Value *V1 = I->getOperand(1);
204 if (isa<ConstantInt>(V0))
205 std::swap(V0, V1);
206
207 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
208 ConstPart = C->getValue();
209 SymbolicPart = V0;
210 isOr = (I->getOpcode() == Instruction::Or);
211 return;
212 }
213 }
214
215 // view the operand as "V | 0"
216 SymbolicPart = V;
217 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
218 isOr = true;
219}
220
Dan Gohmand78c4002008-05-13 00:00:25 +0000221char Reassociate::ID = 0;
Owen Andersona57b97e2010-07-21 22:09:45 +0000222INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000223 "Reassociate expressions", false, false)
Dan Gohmand78c4002008-05-13 00:00:25 +0000224
Brian Gaeke960707c2003-11-11 22:41:34 +0000225// Public interface to the Reassociate pass
Chris Lattner49525f82004-01-09 06:02:20 +0000226FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000227
Sanjay Patelc96ee082015-04-22 18:04:46 +0000228/// Return true if V is an instruction of the specified opcode and if it
229/// only has one use.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000230static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
231 if (V->hasOneUse() && isa<Instruction>(V) &&
Chad Rosierac6a2f52014-11-06 16:46:37 +0000232 cast<Instruction>(V)->getOpcode() == Opcode &&
233 (!isa<FPMathOperator>(V) ||
234 cast<Instruction>(V)->hasUnsafeAlgebra()))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000235 return cast<BinaryOperator>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000236 return nullptr;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000237}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000238
Chad Rosier11ab9412014-08-14 15:23:01 +0000239static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
240 unsigned Opcode2) {
241 if (V->hasOneUse() && isa<Instruction>(V) &&
242 (cast<Instruction>(V)->getOpcode() == Opcode1 ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000243 cast<Instruction>(V)->getOpcode() == Opcode2) &&
244 (!isa<FPMathOperator>(V) ||
245 cast<Instruction>(V)->hasUnsafeAlgebra()))
Chad Rosier11ab9412014-08-14 15:23:01 +0000246 return cast<BinaryOperator>(V);
247 return nullptr;
248}
249
Aditya Nandakumar3d0c46d2016-01-26 18:42:36 +0000250void Reassociate::BuildRankMap(Function &F,
251 ReversePostOrderTraversal<Function *> &RPOT) {
Chris Lattner58c7eb62003-08-12 20:14:27 +0000252 unsigned i = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000253
Chad Rosierf59e5482014-11-14 15:01:38 +0000254 // Assign distinct ranks to function arguments.
255 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000256 ValueRankMap[&*I] = ++i;
Chad Rosierf59e5482014-11-14 15:01:38 +0000257 DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
258 }
Chris Lattner8ac196d2003-08-13 16:16:26 +0000259
Chris Lattnerc0f58002002-05-08 22:19:27 +0000260 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9f284e02005-05-08 20:57:04 +0000261 E = RPOT.end(); I != E; ++I) {
262 BasicBlock *BB = *I;
263 unsigned BBRank = RankMap[BB] = ++i << 16;
264
265 // Walk the basic block, adding precomputed ranks for any instructions that
266 // we cannot move. This ensures that the ranks for these instructions are
267 // all different in the block.
268 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
Quentin Colombet6443cce2015-08-06 18:44:34 +0000269 if (mayBeMemoryDependent(*I))
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000270 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000271 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000272}
273
274unsigned Reassociate::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000275 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000276 if (!I) {
Chris Lattner17229a72010-01-01 00:01:34 +0000277 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
278 return 0; // Otherwise it's a global or constant, rank 0.
279 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000280
Chris Lattner17229a72010-01-01 00:01:34 +0000281 if (unsigned Rank = ValueRankMap[I])
282 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000283
Chris Lattnerf43e9742005-05-07 04:08:02 +0000284 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
285 // we can reassociate expressions for code motion! Since we do not recurse
286 // for PHI nodes, we cannot have infinite recursion here, because there
287 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000288 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
289 for (unsigned i = 0, e = I->getNumOperands();
290 i != e && Rank != MaxRank; ++i)
291 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000292
Chris Lattner6e2086d2005-05-08 00:08:33 +0000293 // If this is a not or neg instruction, do not count it for rank. This
294 // assures us that X and ~X will have the same rank.
Robert Lougher1858ba72015-03-13 20:53:01 +0000295 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
296 !BinaryOperator::isFNeg(I))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000297 ++Rank;
298
Chad Rosierf59e5482014-11-14 15:01:38 +0000299 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000300
Chris Lattner17229a72010-01-01 00:01:34 +0000301 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000302}
303
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000304// Canonicalize constants to RHS. Otherwise, sort the operands by rank.
Chad Rosierf8b55f12014-11-14 17:05:59 +0000305void Reassociate::canonicalizeOperands(Instruction *I) {
306 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
307 assert(I->isCommutative() && "Expected commutative operator.");
308
309 Value *LHS = I->getOperand(0);
310 Value *RHS = I->getOperand(1);
311 unsigned LHSRank = getRank(LHS);
312 unsigned RHSRank = getRank(RHS);
313
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000314 if (isa<Constant>(RHS))
315 return;
316
Chad Rosierf8b55f12014-11-14 17:05:59 +0000317 if (isa<Constant>(LHS) || RHSRank < LHSRank)
318 cast<BinaryOperator>(I)->swapOperands();
319}
320
Chad Rosier11ab9412014-08-14 15:23:01 +0000321static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
322 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000323 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000324 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
325 else {
326 BinaryOperator *Res =
327 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
328 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
329 return Res;
330 }
331}
332
333static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
334 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000335 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000336 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
337 else {
338 BinaryOperator *Res =
339 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
340 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
341 return Res;
342 }
343}
344
345static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
346 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000347 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000348 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
349 else {
350 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
351 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
352 return Res;
353 }
354}
355
Sanjay Patelc96ee082015-04-22 18:04:46 +0000356/// Replace 0-X with X*-1.
Duncan Sands3293f462012-06-08 20:15:33 +0000357static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000358 Type *Ty = Neg->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +0000359 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
360 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
Chris Lattner877b1142005-05-08 21:28:52 +0000361
Chad Rosier11ab9412014-08-14 15:23:01 +0000362 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
363 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000364 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000365 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000366 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000367 return Res;
368}
369
Sanjay Patelc96ee082015-04-22 18:04:46 +0000370/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
371/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000372/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
373/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
374/// even x in Bitwidth-bit arithmetic.
375static unsigned CarmichaelShift(unsigned Bitwidth) {
376 if (Bitwidth < 3)
377 return Bitwidth - 1;
378 return Bitwidth - 2;
379}
380
Sanjay Patelc96ee082015-04-22 18:04:46 +0000381/// Add the extra weight 'RHS' to the existing weight 'LHS',
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000382/// reducing the combined weight using any special properties of the operation.
383/// The existing weight LHS represents the computation X op X op ... op X where
384/// X occurs LHS times. The combined weight represents X op X op ... op X with
385/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
386/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
387/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
388static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
389 // If we were working with infinite precision arithmetic then the combined
390 // weight would be LHS + RHS. But we are using finite precision arithmetic,
391 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
392 // for nilpotent operations and addition, but not for idempotent operations
393 // and multiplication), so it is important to correctly reduce the combined
394 // weight back into range if wrapping would be wrong.
395
396 // If RHS is zero then the weight didn't change.
397 if (RHS.isMinValue())
398 return;
399 // If LHS is zero then the combined weight is RHS.
400 if (LHS.isMinValue()) {
401 LHS = RHS;
402 return;
403 }
404 // From this point on we know that neither LHS nor RHS is zero.
405
406 if (Instruction::isIdempotent(Opcode)) {
407 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
408 // weight of 1. Keeping weights at zero or one also means that wrapping is
409 // not a problem.
410 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
411 return; // Return a weight of 1.
412 }
413 if (Instruction::isNilpotent(Opcode)) {
414 // Nilpotent means X op X === 0, so reduce weights modulo 2.
415 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
416 LHS = 0; // 1 + 1 === 0 modulo 2.
417 return;
418 }
Chad Rosier11ab9412014-08-14 15:23:01 +0000419 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000420 // TODO: Reduce the weight by exploiting nsw/nuw?
421 LHS += RHS;
422 return;
423 }
424
Chad Rosier11ab9412014-08-14 15:23:01 +0000425 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
426 "Unknown associative operation!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000427 unsigned Bitwidth = LHS.getBitWidth();
428 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
429 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
430 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
431 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
432 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
433 // which by a happy accident means that they can always be represented using
434 // Bitwidth bits.
435 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
436 // the Carmichael number).
437 if (Bitwidth > 3) {
438 /// CM - The value of Carmichael's lambda function.
439 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
440 // Any weight W >= Threshold can be replaced with W - CM.
441 APInt Threshold = CM + Bitwidth;
442 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
443 // For Bitwidth 4 or more the following sum does not overflow.
444 LHS += RHS;
445 while (LHS.uge(Threshold))
446 LHS -= CM;
447 } else {
448 // To avoid problems with overflow do everything the same as above but using
449 // a larger type.
450 unsigned CM = 1U << CarmichaelShift(Bitwidth);
451 unsigned Threshold = CM + Bitwidth;
452 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
453 "Weights not reduced!");
454 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
455 while (Total >= Threshold)
456 Total -= CM;
457 LHS = Total;
458 }
459}
460
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000461typedef std::pair<Value*, APInt> RepeatedValue;
462
Sanjay Patelc96ee082015-04-22 18:04:46 +0000463/// Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000464/// nodes in Ops along with their weights (how many times the leaf occurs). The
465/// original expression is the same as
466/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000467/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000468/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
469/// op
470/// ...
471/// op
472/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
473///
Duncan Sandsac852c72012-11-15 09:58:38 +0000474/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000475///
476/// This routine may modify the function, in which case it returns 'true'. The
477/// changes it makes may well be destructive, changing the value computed by 'I'
478/// to something completely different. Thus if the routine returns 'true' then
479/// you MUST either replace I with a new expression computed from the Ops array,
480/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000481///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000482/// A leaf node is either not a binary operation of the same kind as the root
483/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
484/// opcode), or is the same kind of binary operator but has a use which either
485/// does not belong to the expression, or does belong to the expression but is
486/// a leaf node. Every leaf node has at least one use that is a non-leaf node
487/// of the expression, while for non-leaf nodes (except for the root 'I') every
488/// use is a non-leaf node of the expression.
489///
490/// For example:
491/// expression graph node names
492///
493/// + | I
494/// / \ |
495/// + + | A, B
496/// / \ / \ |
497/// * + * | C, D, E
498/// / \ / \ / \ |
499/// + * | F, G
500///
501/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000502/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000503///
504/// The expression is maximal: if some instruction is a binary operator of the
505/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
506/// then the instruction also belongs to the expression, is not a leaf node of
507/// it, and its operands also belong to the expression (but may be leaf nodes).
508///
509/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
510/// order to ensure that every non-root node in the expression has *exactly one*
511/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000512/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000513/// RewriteExprTree to put the values back in if the routine indicates that it
514/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000515///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000516/// In the above example either the right operand of A or the left operand of B
517/// will be replaced by undef. If it is B's operand then this gives:
518///
519/// + | I
520/// / \ |
521/// + + | A, B - operand of B replaced with undef
522/// / \ \ |
523/// * + * | C, D, E
524/// / \ / \ / \ |
525/// + * | F, G
526///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000527/// Note that such undef operands can only be reached by passing through 'I'.
528/// For example, if you visit operands recursively starting from a leaf node
529/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000530/// which requires passing through a phi node.
531///
532/// Note that this routine may also mutate binary operators of the wrong type
533/// that have all uses inside the expression (i.e. only used by non-leaf nodes
534/// of the expression) if it can turn them into binary operators of the right
535/// type and thus make the expression bigger.
536
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000537static bool LinearizeExprTree(BinaryOperator *I,
538 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000539 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000540 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
541 unsigned Opcode = I->getOpcode();
Chad Rosier11ab9412014-08-14 15:23:01 +0000542 assert(I->isAssociative() && I->isCommutative() &&
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000543 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000544
545 // Visit all operands of the expression, keeping track of their weight (the
546 // number of paths from the expression root to the operand, or if you like
547 // the number of times that operand occurs in the linearized expression).
548 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
549 // while A has weight two.
550
551 // Worklist of non-leaf nodes (their operands are in the expression too) along
552 // with their weights, representing a certain number of paths to the operator.
553 // If an operator occurs in the worklist multiple times then we found multiple
554 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000555 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
556 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000557 bool Changed = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000558
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000559 // Leaves of the expression are values that either aren't the right kind of
560 // operation (eg: a constant, or a multiply in an add tree), or are, but have
561 // some uses that are not inside the expression. For example, in I = X + X,
562 // X = A + B, the value X has two uses (by I) that are in the expression. If
563 // X has any other uses, for example in a return instruction, then we consider
564 // X to be a leaf, and won't analyze it further. When we first visit a value,
565 // if it has more than one use then at first we conservatively consider it to
566 // be a leaf. Later, as the expression is explored, we may discover some more
567 // uses of the value from inside the expression. If all uses turn out to be
568 // from within the expression (and the value is a binary operator of the right
569 // kind) then the value is no longer considered to be a leaf, and its operands
570 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000571
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000572 // Leaves - Keeps track of the set of putative leaves as well as the number of
573 // paths to each leaf seen so far.
Duncan Sands72aea012012-06-12 20:26:43 +0000574 typedef DenseMap<Value*, APInt> LeafMap;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000575 LeafMap Leaves; // Leaf -> Total weight so far.
576 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
577
578#ifndef NDEBUG
579 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
580#endif
581 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000582 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000583 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000584
585 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
586 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000587 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000588 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
589 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
590
591 // If this is a binary operation of the right kind with only one use then
592 // add its operands to the expression.
593 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
David Blaikie70573dc2014-11-19 07:49:26 +0000594 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000595 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
596 Worklist.push_back(std::make_pair(BO, Weight));
597 continue;
598 }
599
600 // Appears to be a leaf. Is the operand already in the set of leaves?
601 LeafMap::iterator It = Leaves.find(Op);
602 if (It == Leaves.end()) {
603 // Not in the leaf map. Must be the first time we saw this operand.
David Blaikie70573dc2014-11-19 07:49:26 +0000604 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000605 if (!Op->hasOneUse()) {
606 // This value has uses not accounted for by the expression, so it is
607 // not safe to modify. Mark it as being a leaf.
608 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
609 LeafOrder.push_back(Op);
610 Leaves[Op] = Weight;
611 continue;
612 }
613 // No uses outside the expression, try morphing it.
614 } else if (It != Leaves.end()) {
615 // Already in the leaf map.
616 assert(Visited.count(Op) && "In leaf map but not visited!");
617
618 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000619 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000620
Duncan Sands56514522012-07-26 09:26:40 +0000621#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000622 // The leaf already has one use from inside the expression. As we want
623 // exactly one such use, drop this new use of the leaf.
624 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
625 I->setOperand(OpIdx, UndefValue::get(I->getType()));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000626 Changed = true;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000627
628 // If the leaf is a binary operation of the right kind and we now see
629 // that its multiple original uses were in fact all by nodes belonging
630 // to the expression, then no longer consider it to be a leaf and add
631 // its operands to the expression.
632 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
633 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
634 Worklist.push_back(std::make_pair(BO, It->second));
635 Leaves.erase(It);
636 continue;
637 }
Duncan Sands56514522012-07-26 09:26:40 +0000638#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000639
640 // If we still have uses that are not accounted for by the expression
641 // then it is not safe to modify the value.
642 if (!Op->hasOneUse())
643 continue;
644
645 // No uses outside the expression, try morphing it.
646 Weight = It->second;
647 Leaves.erase(It); // Since the value may be morphed below.
648 }
649
650 // At this point we have a value which, first of all, is not a binary
651 // expression of the right kind, and secondly, is only used inside the
652 // expression. This means that it can safely be modified. See if we
653 // can usefully morph it into an expression of the right kind.
654 assert((!isa<Instruction>(Op) ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000655 cast<Instruction>(Op)->getOpcode() != Opcode
656 || (isa<FPMathOperator>(Op) &&
657 !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000658 "Should have been handled above!");
659 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
660
661 // If this is a multiply expression, turn any internal negations into
662 // multiplies by -1 so they can be reassociated.
Chad Rosier11ab9412014-08-14 15:23:01 +0000663 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
664 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
665 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
666 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
667 BO = LowerNegateToMultiply(BO);
668 DEBUG(dbgs() << *BO << '\n');
669 Worklist.push_back(std::make_pair(BO, Weight));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000670 Changed = true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000671 continue;
672 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000673
674 // Failed to morph into an expression of the right type. This really is
675 // a leaf.
676 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
677 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
678 LeafOrder.push_back(Op);
679 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000680 }
681 }
682
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000683 // The leaves, repeated according to their weights, represent the linearized
684 // form of the expression.
685 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
686 Value *V = LeafOrder[i];
687 LeafMap::iterator It = Leaves.find(V);
688 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000689 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000690 continue;
691 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000692 APInt Weight = It->second;
693 if (Weight.isMinValue())
694 // Leaf already output or weight reduction eliminated it.
695 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000696 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000697 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000698 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000699 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000700
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000701 // For nilpotent operations or addition there may be no operands, for example
702 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
703 // in both cases the weight reduces to 0 causing the value to be skipped.
704 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000705 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000706 assert(Identity && "Associative operation without identity!");
Benjamin Kramerf5e2fc42015-05-29 19:43:39 +0000707 Ops.emplace_back(Identity, APInt(Bitwidth, 1));
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000708 }
709
Chad Rosiere53e8c82014-11-18 20:21:54 +0000710 return Changed;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000711}
712
Sanjay Patelc96ee082015-04-22 18:04:46 +0000713/// Now that the operands for this expression tree are
714/// linearized and optimized, emit them in-order.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000715void Reassociate::RewriteExprTree(BinaryOperator *I,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000716 SmallVectorImpl<ValueEntry> &Ops) {
717 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000718
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000719 // Since our optimizations should never increase the number of operations, the
720 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000721 // from the original expression tree, without creating any new instructions,
722 // though the rewritten expression may have a completely different topology.
723 // We take care to not change anything if the new expression will be the same
724 // as the original. If more than trivial changes (like commuting operands)
725 // were made then we are obliged to clear out any optional subclass data like
726 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000727
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000728 /// NodesToRewrite - Nodes from the original expression available for writing
729 /// the new expression into.
730 SmallVector<BinaryOperator*, 8> NodesToRewrite;
731 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000732 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000733
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000734 /// NotRewritable - The operands being written will be the leaves of the new
735 /// expression and must not be used as inner nodes (via NodesToRewrite) by
736 /// mistake. Inner nodes are always reassociable, and usually leaves are not
737 /// (if they were they would have been incorporated into the expression and so
738 /// would not be leaves), so most of the time there is no danger of this. But
739 /// in rare cases a leaf may become reassociable if an optimization kills uses
740 /// of it, or it may momentarily become reassociable during rewriting (below)
741 /// due it being removed as an operand of one of its uses. Ensure that misuse
742 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
743 /// leaves and refusing to reuse any of them as inner nodes.
744 SmallPtrSet<Value*, 8> NotRewritable;
745 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
746 NotRewritable.insert(Ops[i].Op);
747
Duncan Sands3c05cd32012-05-26 16:42:52 +0000748 // ExpressionChanged - Non-null if the rewritten expression differs from the
749 // original in some non-trivial way, requiring the clearing of optional flags.
750 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
Craig Topperf40110f2014-04-25 05:29:35 +0000751 BinaryOperator *ExpressionChanged = nullptr;
Duncan Sands514db112012-06-27 14:19:00 +0000752 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000753 // The last operation (which comes earliest in the IR) is special as both
754 // operands will come from Ops, rather than just one with the other being
755 // a subexpression.
756 if (i+2 == Ops.size()) {
757 Value *NewLHS = Ops[i].Op;
758 Value *NewRHS = Ops[i+1].Op;
759 Value *OldLHS = Op->getOperand(0);
760 Value *OldRHS = Op->getOperand(1);
761
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000762 if (NewLHS == OldLHS && NewRHS == OldRHS)
763 // Nothing changed, leave it alone.
764 break;
765
766 if (NewLHS == OldRHS && NewRHS == OldLHS) {
767 // The order of the operands was reversed. Swap them.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000768 DEBUG(dbgs() << "RA: " << *Op << '\n');
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000769 Op->swapOperands();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000770 DEBUG(dbgs() << "TO: " << *Op << '\n');
771 MadeChange = true;
772 ++NumChanged;
773 break;
774 }
775
776 // The new operation differs non-trivially from the original. Overwrite
777 // the old operands with the new ones.
778 DEBUG(dbgs() << "RA: " << *Op << '\n');
779 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000780 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
781 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000782 NodesToRewrite.push_back(BO);
783 Op->setOperand(0, NewLHS);
784 }
785 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000786 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
787 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000788 NodesToRewrite.push_back(BO);
789 Op->setOperand(1, NewRHS);
790 }
791 DEBUG(dbgs() << "TO: " << *Op << '\n');
792
Duncan Sands3c05cd32012-05-26 16:42:52 +0000793 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000794 MadeChange = true;
795 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000796
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000797 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000798 }
Chris Lattner1e506502005-05-07 21:59:39 +0000799
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000800 // Not the last operation. The left-hand side will be a sub-expression
801 // while the right-hand side will be the current element of Ops.
802 Value *NewRHS = Ops[i].Op;
803 if (NewRHS != Op->getOperand(1)) {
804 DEBUG(dbgs() << "RA: " << *Op << '\n');
805 if (NewRHS == Op->getOperand(0)) {
806 // The new right-hand side was already present as the left operand. If
807 // we are lucky then swapping the operands will sort out both of them.
808 Op->swapOperands();
809 } else {
810 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000811 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
812 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000813 NodesToRewrite.push_back(BO);
814 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000815 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000816 }
817 DEBUG(dbgs() << "TO: " << *Op << '\n');
818 MadeChange = true;
819 ++NumChanged;
820 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000821
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000822 // Now deal with the left-hand side. If this is already an operation node
823 // from the original expression then just rewrite the rest of the expression
824 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000825 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
826 if (BO && !NotRewritable.count(BO)) {
Duncan Sands98382862012-06-29 19:03:05 +0000827 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000828 continue;
829 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000830
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000831 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000832 // the left-hand side. If there are no nodes left then the optimizers made
833 // an expression with more nodes than the original! This usually means that
834 // they did something stupid but it might mean that the problem was just too
835 // hard (finding the mimimal number of multiplications needed to realize a
836 // multiplication expression is NP-complete). Whatever the reason, smart or
837 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000838 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000839 if (NodesToRewrite.empty()) {
840 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000841 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
842 Undef, Undef, "", I);
Robert Lougher1858ba72015-03-13 20:53:01 +0000843 if (NewOp->getType()->isFPOrFPVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000844 NewOp->setFastMathFlags(I->getFastMathFlags());
Duncan Sands98382862012-06-29 19:03:05 +0000845 } else {
846 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000847 }
848
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000849 DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000850 Op->setOperand(0, NewOp);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000851 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000852 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000853 MadeChange = true;
854 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000855 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000856 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000857
Duncan Sands3c05cd32012-05-26 16:42:52 +0000858 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000859 // starting from the operator specified in ExpressionChanged, and compactify
860 // the operators to just before the expression root to guarantee that the
861 // expression tree is dominated by all of Ops.
862 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000863 do {
Chad Rosier11ab9412014-08-14 15:23:01 +0000864 // Preserve FastMathFlags.
865 if (isa<FPMathOperator>(I)) {
866 FastMathFlags Flags = I->getFastMathFlags();
867 ExpressionChanged->clearSubclassOptionalData();
868 ExpressionChanged->setFastMathFlags(Flags);
869 } else
870 ExpressionChanged->clearSubclassOptionalData();
871
Duncan Sands3c05cd32012-05-26 16:42:52 +0000872 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000873 break;
Duncan Sands514db112012-06-27 14:19:00 +0000874 ExpressionChanged->moveBefore(I);
Chandler Carruthcdf47882014-03-09 03:16:01 +0000875 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000876 } while (1);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000877
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000878 // Throw away any left over nodes from the original expression.
879 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000880 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000881}
882
Sanjay Patelc96ee082015-04-22 18:04:46 +0000883/// Insert instructions before the instruction pointed to by BI,
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000884/// that computes the negative version of the value specified. The negative
885/// version of the value is returned, and BI is left pointing at the instruction
886/// that should be processed next by the reassociation pass.
Owen Anderson2de9f542015-11-16 18:07:30 +0000887/// Also add intermediate instructions to the redo list that are modified while
888/// pushing the negates through adds. These will be revisited to see if
889/// additional opportunities have been exposed.
890static Value *NegateValue(Value *V, Instruction *BI,
891 SetVector<AssertingVH<Instruction>> &ToRedo) {
Mehdi Amini590a2702015-01-16 03:00:58 +0000892 if (Constant *C = dyn_cast<Constant>(V)) {
893 if (C->getType()->isFPOrFPVectorTy()) {
894 return ConstantExpr::getFNeg(C);
895 }
Chris Lattnerfed33972009-12-31 20:34:32 +0000896 return ConstantExpr::getNeg(C);
Mehdi Amini590a2702015-01-16 03:00:58 +0000897 }
898
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000899
Chris Lattner7bc532d2002-05-16 04:37:07 +0000900 // We are trying to expose opportunity for reassociation. One of the things
901 // that we want to do to achieve this is to push a negation as deep into an
902 // expression chain as possible, to expose the add instructions. In practice,
903 // this means that we turn this:
904 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
905 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
906 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000907 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000908 //
Chad Rosier11ab9412014-08-14 15:23:01 +0000909 if (BinaryOperator *I =
910 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000911 // Push the negates through the add.
Owen Anderson2de9f542015-11-16 18:07:30 +0000912 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
913 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
David Majnemerf6e500a2015-06-24 21:27:36 +0000914 if (I->getOpcode() == Instruction::Add) {
915 I->setHasNoUnsignedWrap(false);
916 I->setHasNoSignedWrap(false);
917 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000918
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000919 // We must move the add instruction here, because the neg instructions do
920 // not dominate the old add instruction in general. By moving it, we are
921 // assured that the neg instructions we just inserted dominate the
922 // instruction we are about to insert after them.
923 //
924 I->moveBefore(BI);
925 I->setName(I->getName()+".neg");
Owen Anderson2de9f542015-11-16 18:07:30 +0000926
927 // Add the intermediate negates to the redo list as processing them later
928 // could expose more reassociating opportunities.
929 ToRedo.insert(I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000930 return I;
931 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000932
Chris Lattnerfed33972009-12-31 20:34:32 +0000933 // Okay, we need to materialize a negated version of V with an instruction.
934 // Scan the use lists of V to see if we have one already.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000935 for (User *U : V->users()) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000936 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
937 continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000938
939 // We found one! Now we have to make sure that the definition dominates
940 // this use. We do this by moving it to the entry block (if it is a
941 // non-instruction value) or right after the definition. These negates will
942 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000943 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000944
945 // Verify that the negate is in this function, V might be a constant expr.
946 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
947 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000948
Chris Lattnerfed33972009-12-31 20:34:32 +0000949 BasicBlock::iterator InsertPt;
950 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
951 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
952 InsertPt = II->getNormalDest()->begin();
953 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000954 InsertPt = ++InstInput->getIterator();
Chris Lattnerfed33972009-12-31 20:34:32 +0000955 }
956 while (isa<PHINode>(InsertPt)) ++InsertPt;
957 } else {
958 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
959 }
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000960 TheNeg->moveBefore(&*InsertPt);
David Majnemerf6e500a2015-06-24 21:27:36 +0000961 if (TheNeg->getOpcode() == Instruction::Sub) {
962 TheNeg->setHasNoUnsignedWrap(false);
963 TheNeg->setHasNoSignedWrap(false);
964 } else {
965 TheNeg->andIRFlags(BI);
966 }
Owen Anderson2de9f542015-11-16 18:07:30 +0000967 ToRedo.insert(TheNeg);
Chris Lattnerfed33972009-12-31 20:34:32 +0000968 return TheNeg;
969 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000970
971 // Insert a 'neg' instruction that subtracts the value from zero to get the
972 // negation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000973 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
974 ToRedo.insert(NewNeg);
975 return NewNeg;
Chris Lattnerf43e9742005-05-07 04:08:02 +0000976}
977
Sanjay Patelc96ee082015-04-22 18:04:46 +0000978/// Return true if we should break up this subtract of X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000979static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000980 // If this is a negation, we can't split it up!
Chad Rosier11ab9412014-08-14 15:23:01 +0000981 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000982 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000983
Chad Rosierbd64d462014-10-09 20:06:29 +0000984 // Don't breakup X - undef.
985 if (isa<UndefValue>(Sub->getOperand(1)))
986 return false;
987
Chris Lattner902537c2008-02-17 20:44:51 +0000988 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +0000989 // subtract or if this is only used by one.
Chad Rosier11ab9412014-08-14 15:23:01 +0000990 Value *V0 = Sub->getOperand(0);
991 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
992 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000993 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000994 Value *V1 = Sub->getOperand(1);
995 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
996 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000997 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000998 Value *VB = Sub->user_back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000999 if (Sub->hasOneUse() &&
Chad Rosier11ab9412014-08-14 15:23:01 +00001000 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
1001 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
Chris Lattner902537c2008-02-17 20:44:51 +00001002 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001003
Chris Lattner902537c2008-02-17 20:44:51 +00001004 return false;
1005}
1006
Sanjay Patelc96ee082015-04-22 18:04:46 +00001007/// If we have (X-Y), and if either X is an add, or if this is only used by an
1008/// add, transform this into (X+(0-Y)) to promote better reassociation.
Owen Anderson2de9f542015-11-16 18:07:30 +00001009static BinaryOperator *
1010BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) {
Chris Lattnera5526832010-01-01 00:04:26 +00001011 // Convert a subtract into an add and a neg instruction. This allows sub
1012 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +00001013 //
Chris Lattnera5526832010-01-01 00:04:26 +00001014 // Calculate the negative value of Operand 1 of the sub instruction,
1015 // and set it as the RHS of the add instruction we just made.
Chris Lattnerf43e9742005-05-07 04:08:02 +00001016 //
Owen Anderson2de9f542015-11-16 18:07:30 +00001017 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
Chad Rosier11ab9412014-08-14 15:23:01 +00001018 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Duncan Sands3293f462012-06-08 20:15:33 +00001019 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1020 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +00001021 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +00001022
1023 // Everyone now refers to the add instruction.
1024 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +00001025 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00001026
David Greened17c3912010-01-05 01:27:24 +00001027 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +00001028 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +00001029}
1030
Sanjay Patelc96ee082015-04-22 18:04:46 +00001031/// If this is a shift of a reassociable multiply or is used by one, change
1032/// this into a multiply by a constant to assist with further reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +00001033static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1034 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1035 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001036
Duncan Sands3293f462012-06-08 20:15:33 +00001037 BinaryOperator *Mul =
1038 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1039 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
1040 Mul->takeName(Shl);
Chad Rosierb3eb4522014-11-07 22:12:57 +00001041
1042 // Everyone now refers to the mul instruction.
Duncan Sands3293f462012-06-08 20:15:33 +00001043 Shl->replaceAllUsesWith(Mul);
1044 Mul->setDebugLoc(Shl->getDebugLoc());
Chad Rosierb3eb4522014-11-07 22:12:57 +00001045
1046 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
1047 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
1048 // handling.
1049 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1050 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1051 if (NSW && NUW)
1052 Mul->setHasNoSignedWrap(true);
1053 Mul->setHasNoUnsignedWrap(NUW);
Duncan Sands3293f462012-06-08 20:15:33 +00001054 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +00001055}
1056
Sanjay Patelc96ee082015-04-22 18:04:46 +00001057/// Scan backwards and forwards among values with the same rank as element i
1058/// to see if X exists. If X does not exist, return i. This is useful when
1059/// scanning for 'x' when we see '-x' because they both get the same rank.
Chris Lattner38abecb2009-12-31 18:40:32 +00001060static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner5847e5e2005-05-08 18:59:37 +00001061 Value *X) {
1062 unsigned XRank = Ops[i].Rank;
1063 unsigned e = Ops.size();
Owen Anderson8373d332014-10-05 23:41:26 +00001064 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +00001065 if (Ops[j].Op == X)
1066 return j;
Owen Anderson8373d332014-10-05 23:41:26 +00001067 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1068 if (Instruction *I2 = dyn_cast<Instruction>(X))
1069 if (I1->isIdenticalTo(I2))
1070 return j;
1071 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001072 // Scan backwards.
Owen Anderson8373d332014-10-05 23:41:26 +00001073 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +00001074 if (Ops[j].Op == X)
1075 return j;
Owen Anderson8373d332014-10-05 23:41:26 +00001076 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1077 if (Instruction *I2 = dyn_cast<Instruction>(X))
1078 if (I1->isIdenticalTo(I2))
1079 return j;
1080 }
Chris Lattner5847e5e2005-05-08 18:59:37 +00001081 return i;
1082}
1083
Sanjay Patelc96ee082015-04-22 18:04:46 +00001084/// Emit a tree of add instructions, summing Ops together
Chris Lattner4c065092006-03-04 09:31:13 +00001085/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +00001086static Value *EmitAddTreeOfValues(Instruction *I,
1087 SmallVectorImpl<WeakVH> &Ops){
Chris Lattner4c065092006-03-04 09:31:13 +00001088 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001089
Chris Lattner4c065092006-03-04 09:31:13 +00001090 Value *V1 = Ops.back();
1091 Ops.pop_back();
1092 Value *V2 = EmitAddTreeOfValues(I, Ops);
Chad Rosier11ab9412014-08-14 15:23:01 +00001093 return CreateAdd(V2, V1, "tmp", I, I);
Chris Lattner4c065092006-03-04 09:31:13 +00001094}
1095
Sanjay Patelc96ee082015-04-22 18:04:46 +00001096/// If V is an expression tree that is a multiplication sequence,
1097/// and if this sequence contains a multiply by Factor,
Chris Lattner4c065092006-03-04 09:31:13 +00001098/// remove Factor from the tree and return the new tree.
1099Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001100 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1101 if (!BO)
1102 return nullptr;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001103
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001104 SmallVector<RepeatedValue, 8> Tree;
1105 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001106 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001107 Factors.reserve(Tree.size());
1108 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1109 RepeatedValue E = Tree[i];
1110 Factors.append(E.second.getZExtValue(),
1111 ValueEntry(getRank(E.first), E.first));
1112 }
Chris Lattner4c065092006-03-04 09:31:13 +00001113
1114 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001115 bool NeedsNegate = false;
1116 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001117 if (Factors[i].Op == Factor) {
1118 FoundFactor = true;
1119 Factors.erase(Factors.begin()+i);
1120 break;
1121 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001122
Chris Lattner0c59ac32010-01-01 01:13:15 +00001123 // If this is a negative version of this factor, remove it.
Chad Rosier11ab9412014-08-14 15:23:01 +00001124 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001125 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1126 if (FC1->getValue() == -FC2->getValue()) {
1127 FoundFactor = NeedsNegate = true;
1128 Factors.erase(Factors.begin()+i);
1129 break;
1130 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001131 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1132 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1133 APFloat F1(FC1->getValueAPF());
1134 APFloat F2(FC2->getValueAPF());
1135 F2.changeSign();
1136 if (F1.compare(F2) == APFloat::cmpEqual) {
1137 FoundFactor = NeedsNegate = true;
1138 Factors.erase(Factors.begin() + i);
1139 break;
1140 }
1141 }
1142 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001143 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001144
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001145 if (!FoundFactor) {
1146 // Make sure to restore the operands to the expression tree.
1147 RewriteExprTree(BO, Factors);
Craig Topperf40110f2014-04-25 05:29:35 +00001148 return nullptr;
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001149 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001150
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001151 BasicBlock::iterator InsertPt = ++BO->getIterator();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001152
Chris Lattner1d897942009-12-31 19:34:45 +00001153 // If this was just a single multiply, remove the multiply and return the only
1154 // remaining operand.
1155 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001156 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001157 V = Factors[0].Op;
1158 } else {
1159 RewriteExprTree(BO, Factors);
1160 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001161 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001162
Chris Lattner0c59ac32010-01-01 01:13:15 +00001163 if (NeedsNegate)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001164 V = CreateNeg(V, "neg", &*InsertPt, BO);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001165
Chris Lattner0c59ac32010-01-01 01:13:15 +00001166 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001167}
1168
Sanjay Patelc96ee082015-04-22 18:04:46 +00001169/// If V is a single-use multiply, recursively add its operands as factors,
1170/// otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001171///
1172/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001173static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattnerc6c15232010-03-05 07:18:54 +00001174 SmallVectorImpl<Value*> &Factors,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001175 const SmallVectorImpl<ValueEntry> &Ops) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001176 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001177 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001178 Factors.push_back(V);
1179 return;
1180 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001181
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001182 // Otherwise, add the LHS and RHS to the list of factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001183 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1184 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001185}
1186
Sanjay Patelc96ee082015-04-22 18:04:46 +00001187/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1188/// This optimizes based on identities. If it can be reduced to a single Value,
1189/// it is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001190static Value *OptimizeAndOrXor(unsigned Opcode,
1191 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001192 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1193 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1194 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1195 // First, check for X and ~X in the operand list.
1196 assert(i < Ops.size());
1197 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1198 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1199 unsigned FoundX = FindInOperandList(Ops, i, X);
1200 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001201 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001202 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001203
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001204 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001205 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001206 }
1207 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001208
Chris Lattner5f8a0052009-12-31 07:59:34 +00001209 // Next, check for duplicate pairs of values, which we assume are next to
1210 // each other, due to our sorting criteria.
1211 assert(i < Ops.size());
1212 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1213 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001214 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001215 Ops.erase(Ops.begin()+i);
1216 --i; --e;
1217 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001218 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001219 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001220
Chris Lattner60c2ca72009-12-31 19:49:01 +00001221 // Drop pairs of values for Xor.
1222 assert(Opcode == Instruction::Xor);
1223 if (e == 2)
1224 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001225
Chris Lattnera5526832010-01-01 00:04:26 +00001226 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001227 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1228 i -= 1; e -= 2;
1229 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001230 }
1231 }
Craig Topperf40110f2014-04-25 05:29:35 +00001232 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001233}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001234
Eric Christopherbfba5722015-12-16 23:10:53 +00001235/// Helper function of CombineXorOpnd(). It creates a bitwise-and
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001236/// instruction with the given two operands, and return the resulting
1237/// instruction. There are two special cases: 1) if the constant operand is 0,
1238/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1239/// be returned.
1240static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1241 const APInt &ConstOpnd) {
1242 if (ConstOpnd != 0) {
1243 if (!ConstOpnd.isAllOnesValue()) {
1244 LLVMContext &Ctx = Opnd->getType()->getContext();
1245 Instruction *I;
1246 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1247 "and.ra", InsertBefore);
1248 I->setDebugLoc(InsertBefore->getDebugLoc());
1249 return I;
1250 }
1251 return Opnd;
1252 }
Craig Topperf40110f2014-04-25 05:29:35 +00001253 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001254}
1255
1256// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1257// into "R ^ C", where C would be 0, and R is a symbolic value.
1258//
1259// If it was successful, true is returned, and the "R" and "C" is returned
1260// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1261// and both "Res" and "ConstOpnd" remain unchanged.
1262//
1263bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1264 APInt &ConstOpnd, Value *&Res) {
1265 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1266 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1267 // = (x & ~c1) ^ (c1 ^ c2)
1268 // It is useful only when c1 == c2.
1269 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1270 if (!Opnd1->getValue()->hasOneUse())
1271 return false;
1272
1273 const APInt &C1 = Opnd1->getConstPart();
1274 if (C1 != ConstOpnd)
1275 return false;
1276
1277 Value *X = Opnd1->getSymbolicPart();
1278 Res = createAndInstr(I, X, ~C1);
1279 // ConstOpnd was C2, now C1 ^ C2.
1280 ConstOpnd ^= C1;
1281
1282 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1283 RedoInsts.insert(T);
1284 return true;
1285 }
1286 return false;
1287}
1288
1289
1290// Helper function of OptimizeXor(). It tries to simplify
1291// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1292// symbolic value.
1293//
1294// If it was successful, true is returned, and the "R" and "C" is returned
1295// via "Res" and "ConstOpnd", respectively (If the entire expression is
1296// evaluated to a constant, the Res is set to NULL); otherwise, false is
1297// returned, and both "Res" and "ConstOpnd" remain unchanged.
1298bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1299 APInt &ConstOpnd, Value *&Res) {
1300 Value *X = Opnd1->getSymbolicPart();
1301 if (X != Opnd2->getSymbolicPart())
1302 return false;
1303
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001304 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1305 int DeadInstNum = 1;
1306 if (Opnd1->getValue()->hasOneUse())
1307 DeadInstNum++;
1308 if (Opnd2->getValue()->hasOneUse())
1309 DeadInstNum++;
1310
1311 // Xor-Rule 2:
1312 // (x | c1) ^ (x & c2)
1313 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1314 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1315 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1316 //
1317 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1318 if (Opnd2->isOrExpr())
1319 std::swap(Opnd1, Opnd2);
1320
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001321 const APInt &C1 = Opnd1->getConstPart();
1322 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001323 APInt C3((~C1) ^ C2);
1324
1325 // Do not increase code size!
1326 if (C3 != 0 && !C3.isAllOnesValue()) {
1327 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1328 if (NewInstNum > DeadInstNum)
1329 return false;
1330 }
1331
1332 Res = createAndInstr(I, X, C3);
1333 ConstOpnd ^= C1;
1334
1335 } else if (Opnd1->isOrExpr()) {
1336 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1337 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001338 const APInt &C1 = Opnd1->getConstPart();
1339 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001340 APInt C3 = C1 ^ C2;
1341
1342 // Do not increase code size
1343 if (C3 != 0 && !C3.isAllOnesValue()) {
1344 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1345 if (NewInstNum > DeadInstNum)
1346 return false;
1347 }
1348
1349 Res = createAndInstr(I, X, C3);
1350 ConstOpnd ^= C3;
1351 } else {
1352 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1353 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001354 const APInt &C1 = Opnd1->getConstPart();
1355 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001356 APInt C3 = C1 ^ C2;
1357 Res = createAndInstr(I, X, C3);
1358 }
1359
1360 // Put the original operands in the Redo list; hope they will be deleted
1361 // as dead code.
1362 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1363 RedoInsts.insert(T);
1364 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1365 RedoInsts.insert(T);
1366
1367 return true;
1368}
1369
1370/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1371/// to a single Value, it is returned, otherwise the Ops list is mutated as
1372/// necessary.
1373Value *Reassociate::OptimizeXor(Instruction *I,
1374 SmallVectorImpl<ValueEntry> &Ops) {
1375 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1376 return V;
1377
1378 if (Ops.size() == 1)
Craig Topperf40110f2014-04-25 05:29:35 +00001379 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001380
1381 SmallVector<XorOpnd, 8> Opnds;
Shuxin Yang331f01d2013-04-08 22:00:43 +00001382 SmallVector<XorOpnd*, 8> OpndPtrs;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001383 Type *Ty = Ops[0].Op->getType();
1384 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1385
1386 // Step 1: Convert ValueEntry to XorOpnd
1387 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1388 Value *V = Ops[i].Op;
1389 if (!isa<ConstantInt>(V)) {
1390 XorOpnd O(V);
1391 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1392 Opnds.push_back(O);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001393 } else
1394 ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1395 }
1396
Shuxin Yang331f01d2013-04-08 22:00:43 +00001397 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1398 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1399 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1400 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1401 // when new elements are added to the vector.
1402 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1403 OpndPtrs.push_back(&Opnds[i]);
1404
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001405 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1406 // the same symbolic value cluster together. For instance, the input operand
1407 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1408 // ("x | 123", "x & 789", "y & 456").
Chandler Carruth7b8e1122014-02-25 21:54:50 +00001409 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001410
1411 // Step 3: Combine adjacent operands
Craig Topperf40110f2014-04-25 05:29:35 +00001412 XorOpnd *PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001413 bool Changed = false;
1414 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
Shuxin Yang331f01d2013-04-08 22:00:43 +00001415 XorOpnd *CurrOpnd = OpndPtrs[i];
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001416 // The combined value
1417 Value *CV;
1418
1419 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1420 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1421 Changed = true;
1422 if (CV)
1423 *CurrOpnd = XorOpnd(CV);
1424 else {
1425 CurrOpnd->Invalidate();
1426 continue;
1427 }
1428 }
1429
1430 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1431 PrevOpnd = CurrOpnd;
1432 continue;
1433 }
1434
1435 // step 3.2: When previous and current operands share the same symbolic
1436 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1437 //
1438 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1439 // Remove previous operand
1440 PrevOpnd->Invalidate();
1441 if (CV) {
1442 *CurrOpnd = XorOpnd(CV);
1443 PrevOpnd = CurrOpnd;
1444 } else {
1445 CurrOpnd->Invalidate();
Craig Topperf40110f2014-04-25 05:29:35 +00001446 PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001447 }
1448 Changed = true;
1449 }
1450 }
1451
1452 // Step 4: Reassemble the Ops
1453 if (Changed) {
1454 Ops.clear();
1455 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1456 XorOpnd &O = Opnds[i];
1457 if (O.isInvalid())
1458 continue;
1459 ValueEntry VE(getRank(O.getValue()), O.getValue());
1460 Ops.push_back(VE);
1461 }
1462 if (ConstOpnd != 0) {
1463 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1464 ValueEntry VE(getRank(C), C);
1465 Ops.push_back(VE);
1466 }
1467 int Sz = Ops.size();
1468 if (Sz == 1)
1469 return Ops.back().Op;
1470 else if (Sz == 0) {
1471 assert(ConstOpnd == 0);
1472 return ConstantInt::get(Ty->getContext(), ConstOpnd);
1473 }
1474 }
1475
Craig Topperf40110f2014-04-25 05:29:35 +00001476 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001477}
1478
Sanjay Patelc96ee082015-04-22 18:04:46 +00001479/// Optimize a series of operands to an 'add' instruction. This
Chris Lattner5f8a0052009-12-31 07:59:34 +00001480/// optimizes based on identities. If it can be reduced to a single Value, it
1481/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001482Value *Reassociate::OptimizeAdd(Instruction *I,
1483 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001484 // Scan the operand lists looking for X and -X pairs. If we find any, we
Benjamin Kramer49689442014-05-31 15:01:54 +00001485 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1486 // scan for any
Chris Lattner60b71b52009-12-31 19:24:52 +00001487 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Benjamin Kramer49689442014-05-31 15:01:54 +00001488
Chris Lattner5f8a0052009-12-31 07:59:34 +00001489 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001490 Value *TheOp = Ops[i].Op;
1491 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001492 // instances of the operand together. Due to our sorting criteria, we know
1493 // that these need to be next to each other in the vector.
1494 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1495 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001496 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001497 do {
1498 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001499 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001500 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001501
Chad Rosier78943bc2014-12-12 14:44:12 +00001502 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001503 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001504
Chris Lattner60b71b52009-12-31 19:24:52 +00001505 // Insert a new multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001506 Type *Ty = TheOp->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +00001507 Constant *C = Ty->isIntOrIntVectorTy() ?
1508 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
Chad Rosier11ab9412014-08-14 15:23:01 +00001509 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001510
Chris Lattner60b71b52009-12-31 19:24:52 +00001511 // Now that we have inserted a multiply, optimize it. This allows us to
1512 // handle cases that require multiple factoring steps, such as this:
1513 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Chad Rosier11ab9412014-08-14 15:23:01 +00001514 RedoInsts.insert(Mul);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001515
Chris Lattner60b71b52009-12-31 19:24:52 +00001516 // If every add operand was a duplicate, return the multiply.
1517 if (Ops.empty())
1518 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001519
Chris Lattner60b71b52009-12-31 19:24:52 +00001520 // Otherwise, we had some input that didn't have the dupe, such as
1521 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1522 // things being added by this operation.
1523 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001524
Chris Lattner60c2ca72009-12-31 19:49:01 +00001525 --i;
1526 e = Ops.size();
1527 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001528 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001529
Benjamin Kramer49689442014-05-31 15:01:54 +00001530 // Check for X and -X or X and ~X in the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001531 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1532 !BinaryOperator::isNot(TheOp))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001533 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001534
Benjamin Kramer49689442014-05-31 15:01:54 +00001535 Value *X = nullptr;
Chad Rosier11ab9412014-08-14 15:23:01 +00001536 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
Benjamin Kramer49689442014-05-31 15:01:54 +00001537 X = BinaryOperator::getNegArgument(TheOp);
1538 else if (BinaryOperator::isNot(TheOp))
1539 X = BinaryOperator::getNotArgument(TheOp);
1540
Chris Lattner5f8a0052009-12-31 07:59:34 +00001541 unsigned FoundX = FindInOperandList(Ops, i, X);
1542 if (FoundX == i)
1543 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001544
Chris Lattner5f8a0052009-12-31 07:59:34 +00001545 // Remove X and -X from the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001546 if (Ops.size() == 2 &&
1547 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001548 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001549
Benjamin Kramer49689442014-05-31 15:01:54 +00001550 // Remove X and ~X from the operand list.
1551 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1552 return Constant::getAllOnesValue(X->getType());
1553
Chris Lattner5f8a0052009-12-31 07:59:34 +00001554 Ops.erase(Ops.begin()+i);
1555 if (i < FoundX)
1556 --FoundX;
1557 else
1558 --i; // Need to back up an extra one.
1559 Ops.erase(Ops.begin()+FoundX);
1560 ++NumAnnihil;
1561 --i; // Revisit element.
1562 e -= 2; // Removed two elements.
Benjamin Kramer49689442014-05-31 15:01:54 +00001563
1564 // if X and ~X we append -1 to the operand list.
1565 if (BinaryOperator::isNot(TheOp)) {
1566 Value *V = Constant::getAllOnesValue(X->getType());
1567 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1568 e += 1;
1569 }
Chris Lattner5f8a0052009-12-31 07:59:34 +00001570 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001571
Chris Lattner177140a2009-12-31 18:17:13 +00001572 // Scan the operand list, checking to see if there are any common factors
1573 // between operands. Consider something like A*A+A*B*C+D. We would like to
1574 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1575 // To efficiently find this, we count the number of times a factor occurs
1576 // for any ADD operands that are MULs.
1577 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001578
Chris Lattner177140a2009-12-31 18:17:13 +00001579 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1580 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001581 unsigned MaxOcc = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00001582 Value *MaxOccVal = nullptr;
Chris Lattner177140a2009-12-31 18:17:13 +00001583 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001584 BinaryOperator *BOp =
1585 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001586 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001587 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001588
Chris Lattner177140a2009-12-31 18:17:13 +00001589 // Compute all of the factors of this added value.
1590 SmallVector<Value*, 8> Factors;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001591 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
Chris Lattner177140a2009-12-31 18:17:13 +00001592 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001593
Chris Lattner177140a2009-12-31 18:17:13 +00001594 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001595 SmallPtrSet<Value*, 8> Duplicates;
1596 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1597 Value *Factor = Factors[i];
David Blaikie70573dc2014-11-19 07:49:26 +00001598 if (!Duplicates.insert(Factor).second)
Chad Rosier11ab9412014-08-14 15:23:01 +00001599 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001600
Chris Lattner0c59ac32010-01-01 01:13:15 +00001601 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001602 if (Occ > MaxOcc) {
1603 MaxOcc = Occ;
1604 MaxOccVal = Factor;
1605 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001606
Chris Lattner0c59ac32010-01-01 01:13:15 +00001607 // If Factor is a negative constant, add the negated value as a factor
1608 // because we can percolate the negate out. Watch for minint, which
1609 // cannot be positivified.
Chad Rosier11ab9412014-08-14 15:23:01 +00001610 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
Chris Lattnerb1a15122011-07-15 06:08:15 +00001611 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001612 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1613 assert(!Duplicates.count(Factor) &&
1614 "Shouldn't have two constant factors, missed a canonicalize");
Chris Lattner0c59ac32010-01-01 01:13:15 +00001615 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001616 if (Occ > MaxOcc) {
1617 MaxOcc = Occ;
1618 MaxOccVal = Factor;
1619 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001620 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001621 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1622 if (CF->isNegative()) {
1623 APFloat F(CF->getValueAPF());
1624 F.changeSign();
1625 Factor = ConstantFP::get(CF->getContext(), F);
1626 assert(!Duplicates.count(Factor) &&
1627 "Shouldn't have two constant factors, missed a canonicalize");
1628 unsigned Occ = ++FactorOccurrences[Factor];
1629 if (Occ > MaxOcc) {
1630 MaxOcc = Occ;
1631 MaxOccVal = Factor;
1632 }
1633 }
1634 }
Chris Lattner177140a2009-12-31 18:17:13 +00001635 }
1636 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001637
Chris Lattner177140a2009-12-31 18:17:13 +00001638 // If any factor occurred more than one time, we can pull it out.
1639 if (MaxOcc > 1) {
Chad Rosier78943bc2014-12-12 14:44:12 +00001640 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001641 ++NumFactor;
1642
1643 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1644 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001645 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001646 // RemoveFactorFromExpression on successive values to behave differently.
Chad Rosier11ab9412014-08-14 15:23:01 +00001647 Instruction *DummyInst =
Robert Lougher1858ba72015-03-13 20:53:01 +00001648 I->getType()->isIntOrIntVectorTy()
Chad Rosier11ab9412014-08-14 15:23:01 +00001649 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1650 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1651
Bill Wendling274ba892012-05-02 09:59:45 +00001652 SmallVector<WeakVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001653 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001654 // Only try to remove factors from expressions we're allowed to.
Chad Rosier11ab9412014-08-14 15:23:01 +00001655 BinaryOperator *BOp =
1656 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001657 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001658 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001659
Chris Lattner177140a2009-12-31 18:17:13 +00001660 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001661 // The factorized operand may occur several times. Convert them all in
1662 // one fell swoop.
1663 for (unsigned j = Ops.size(); j != i;) {
1664 --j;
1665 if (Ops[j].Op == Ops[i].Op) {
1666 NewMulOps.push_back(V);
1667 Ops.erase(Ops.begin()+j);
1668 }
1669 }
1670 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001671 }
1672 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001673
Chris Lattner177140a2009-12-31 18:17:13 +00001674 // No need for extra uses anymore.
1675 delete DummyInst;
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001676
Chris Lattner177140a2009-12-31 18:17:13 +00001677 unsigned NumAddedValues = NewMulOps.size();
1678 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001679
Chris Lattner60b71b52009-12-31 19:24:52 +00001680 // Now that we have inserted the add tree, optimize it. This allows us to
1681 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001682 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001683 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001684 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001685 if (Instruction *VI = dyn_cast<Instruction>(V))
1686 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001687
1688 // Create the multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001689 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001690
Chris Lattner60c2ca72009-12-31 19:49:01 +00001691 // Rerun associate on the multiply in case the inner expression turned into
1692 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001693 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001694
Chris Lattner177140a2009-12-31 18:17:13 +00001695 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1696 // entire result expression is just the multiply "A*(B+C)".
1697 if (Ops.empty())
1698 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001699
Chris Lattnerac615502009-12-31 18:18:46 +00001700 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001701 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001702 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001703 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1704 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001705
Craig Topperf40110f2014-04-25 05:29:35 +00001706 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001707}
Chris Lattner4c065092006-03-04 09:31:13 +00001708
Chandler Carruth739ef802012-04-26 05:30:30 +00001709/// \brief Build up a vector of value/power pairs factoring a product.
1710///
1711/// Given a series of multiplication operands, build a vector of factors and
1712/// the powers each is raised to when forming the final product. Sort them in
1713/// the order of descending power.
1714///
1715/// (x*x) -> [(x, 2)]
1716/// ((x*x)*x) -> [(x, 3)]
1717/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1718///
1719/// \returns Whether any factors have a power greater than one.
1720bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1721 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001722 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1723 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001724 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001725 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1726 Value *Op = Ops[Idx-1].Op;
1727
1728 // Count the number of occurrences of this value.
1729 unsigned Count = 1;
1730 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1731 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001732 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001733 if (Count > 1)
1734 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001735 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001736
Chandler Carruth739ef802012-04-26 05:30:30 +00001737 // We can only simplify factors if the sum of the powers of our simplifiable
1738 // factors is 4 or higher. When that is the case, we will *always* have
1739 // a simplification. This is an important invariant to prevent cyclicly
1740 // trying to simplify already minimal formations.
1741 if (FactorPowerSum < 4)
1742 return false;
1743
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001744 // Now gather the simplifiable factors, removing them from Ops.
1745 FactorPowerSum = 0;
1746 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1747 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001748
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001749 // Count the number of occurrences of this value.
1750 unsigned Count = 1;
1751 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1752 ++Count;
1753 if (Count == 1)
1754 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001755 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001756 Count &= ~1U;
1757 Idx -= Count;
1758 FactorPowerSum += Count;
1759 Factors.push_back(Factor(Op, Count));
1760 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001761 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001762
Chandler Carruth739ef802012-04-26 05:30:30 +00001763 // None of the adjustments above should have reduced the sum of factor powers
1764 // below our mininum of '4'.
1765 assert(FactorPowerSum >= 4);
1766
Chandler Carruth7b8e1122014-02-25 21:54:50 +00001767 std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
Chandler Carruth739ef802012-04-26 05:30:30 +00001768 return true;
1769}
1770
1771/// \brief Build a tree of multiplies, computing the product of Ops.
1772static Value *buildMultiplyTree(IRBuilder<> &Builder,
1773 SmallVectorImpl<Value*> &Ops) {
1774 if (Ops.size() == 1)
1775 return Ops.back();
1776
1777 Value *LHS = Ops.pop_back_val();
1778 do {
Robert Lougher1858ba72015-03-13 20:53:01 +00001779 if (LHS->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +00001780 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1781 else
1782 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
Chandler Carruth739ef802012-04-26 05:30:30 +00001783 } while (!Ops.empty());
1784
1785 return LHS;
1786}
1787
1788/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1789///
1790/// Given a vector of values raised to various powers, where no two values are
1791/// equal and the powers are sorted in decreasing order, compute the minimal
1792/// DAG of multiplies to compute the final product, and return that product
1793/// value.
1794Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1795 SmallVectorImpl<Factor> &Factors) {
1796 assert(Factors[0].Power);
1797 SmallVector<Value *, 4> OuterProduct;
1798 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1799 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1800 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1801 LastIdx = Idx;
1802 continue;
1803 }
1804
1805 // We want to multiply across all the factors with the same power so that
1806 // we can raise them to that power as a single entity. Build a mini tree
1807 // for that.
1808 SmallVector<Value *, 4> InnerProduct;
1809 InnerProduct.push_back(Factors[LastIdx].Base);
1810 do {
1811 InnerProduct.push_back(Factors[Idx].Base);
1812 ++Idx;
1813 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1814
1815 // Reset the base value of the first factor to the new expression tree.
1816 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001817 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1818 if (Instruction *MI = dyn_cast<Instruction>(M))
1819 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001820
1821 LastIdx = Idx;
1822 }
1823 // Unique factors with equal powers -- we've folded them into the first one's
1824 // base.
1825 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1826 Factor::PowerEqual()),
1827 Factors.end());
1828
1829 // Iteratively collect the base of each factor with an add power into the
1830 // outer product, and halve each power in preparation for squaring the
1831 // expression.
1832 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1833 if (Factors[Idx].Power & 1)
1834 OuterProduct.push_back(Factors[Idx].Base);
1835 Factors[Idx].Power >>= 1;
1836 }
1837 if (Factors[0].Power) {
1838 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1839 OuterProduct.push_back(SquareRoot);
1840 OuterProduct.push_back(SquareRoot);
1841 }
1842 if (OuterProduct.size() == 1)
1843 return OuterProduct.front();
1844
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001845 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001846 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001847}
1848
1849Value *Reassociate::OptimizeMul(BinaryOperator *I,
1850 SmallVectorImpl<ValueEntry> &Ops) {
1851 // We can only optimize the multiplies when there is a chain of more than
1852 // three, such that a balanced tree might require fewer total multiplies.
1853 if (Ops.size() < 4)
Craig Topperf40110f2014-04-25 05:29:35 +00001854 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001855
1856 // Try to turn linear trees of multiplies without other uses of the
1857 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1858 // re-use.
1859 SmallVector<Factor, 4> Factors;
1860 if (!collectMultiplyFactors(Ops, Factors))
Craig Topperf40110f2014-04-25 05:29:35 +00001861 return nullptr; // All distinct factors, so nothing left for us to do.
Chandler Carruth739ef802012-04-26 05:30:30 +00001862
1863 IRBuilder<> Builder(I);
1864 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1865 if (Ops.empty())
1866 return V;
1867
1868 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1869 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
Craig Topperf40110f2014-04-25 05:29:35 +00001870 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001871}
1872
Chris Lattner4c065092006-03-04 09:31:13 +00001873Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner38abecb2009-12-31 18:40:32 +00001874 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001875 // Now that we have the linearized expression tree, try to optimize it.
1876 // Start by folding any constants that we found.
Craig Topperf40110f2014-04-25 05:29:35 +00001877 Constant *Cst = nullptr;
Chris Lattner4c065092006-03-04 09:31:13 +00001878 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001879 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1880 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1881 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1882 }
1883 // If there was nothing but constants then we are done.
1884 if (Ops.empty())
1885 return Cst;
1886
1887 // Put the combined constant back at the end of the operand list, except if
1888 // there is no point. For example, an add of 0 gets dropped here, while a
1889 // multiplication by zero turns the whole expression into zero.
1890 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1891 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1892 return Cst;
1893 Ops.push_back(ValueEntry(0, Cst));
1894 }
1895
1896 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001897
Chris Lattner9039ff82009-12-31 07:33:14 +00001898 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001899 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001900 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001901 switch (Opcode) {
1902 default: break;
1903 case Instruction::And:
1904 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001905 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1906 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001907 break;
1908
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001909 case Instruction::Xor:
1910 if (Value *Result = OptimizeXor(I, Ops))
1911 return Result;
1912 break;
1913
Chandler Carruth739ef802012-04-26 05:30:30 +00001914 case Instruction::Add:
Chad Rosier11ab9412014-08-14 15:23:01 +00001915 case Instruction::FAdd:
Chris Lattner177140a2009-12-31 18:17:13 +00001916 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001917 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001918 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001919
1920 case Instruction::Mul:
Chad Rosier11ab9412014-08-14 15:23:01 +00001921 case Instruction::FMul:
Chandler Carruth739ef802012-04-26 05:30:30 +00001922 if (Value *Result = OptimizeMul(I, Ops))
1923 return Result;
1924 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001925 }
1926
Duncan Sands3293f462012-06-08 20:15:33 +00001927 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001928 return OptimizeExpression(I, Ops);
Craig Topperf40110f2014-04-25 05:29:35 +00001929 return nullptr;
Chris Lattnere1850b82005-05-08 00:19:31 +00001930}
1931
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001932// Remove dead instructions and if any operands are trivially dead add them to
1933// Insts so they will be removed as well.
1934void Reassociate::RecursivelyEraseDeadInsts(
1935 Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) {
1936 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1937 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1938 ValueRankMap.erase(I);
1939 Insts.remove(I);
1940 RedoInsts.remove(I);
1941 I->eraseFromParent();
1942 for (auto Op : Ops)
1943 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1944 if (OpInst->use_empty())
1945 Insts.insert(OpInst);
1946}
1947
Sanjay Patelc96ee082015-04-22 18:04:46 +00001948/// Zap the given instruction, adding interesting operands to the work list.
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001949void Reassociate::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001950 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1951 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1952 // Erase the dead instruction.
1953 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001954 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001955 I->eraseFromParent();
1956 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001957 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001958 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1959 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1960 // If this is a node in an expression tree, climb to the expression root
1961 // and add that since that's where optimization actually happens.
1962 unsigned Opcode = Op->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001963 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
David Blaikie70573dc2014-11-19 07:49:26 +00001964 Visited.insert(Op).second)
Chandler Carruthcdf47882014-03-09 03:16:01 +00001965 Op = Op->user_back();
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001966 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001967 }
1968}
1969
Chad Rosier094ac772014-11-11 22:58:35 +00001970// Canonicalize expressions of the following form:
1971// x + (-Constant * y) -> x - (Constant * y)
1972// x - (-Constant * y) -> x + (Constant * y)
1973Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) {
1974 if (!I->hasOneUse() || I->getType()->isVectorTy())
1975 return nullptr;
1976
David Majnemer587336d2015-05-28 06:16:39 +00001977 // Must be a fmul or fdiv instruction.
Chad Rosier094ac772014-11-11 22:58:35 +00001978 unsigned Opcode = I->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001979 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
Chad Rosier094ac772014-11-11 22:58:35 +00001980 return nullptr;
1981
David Majnemer587336d2015-05-28 06:16:39 +00001982 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1983 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1984
1985 // Both operands are constant, let it get constant folded away.
1986 if (C0 && C1)
Chad Rosier094ac772014-11-11 22:58:35 +00001987 return nullptr;
1988
David Majnemer587336d2015-05-28 06:16:39 +00001989 ConstantFP *CF = C0 ? C0 : C1;
1990
1991 // Must have one constant operand.
1992 if (!CF)
1993 return nullptr;
1994
1995 // Must be a negative ConstantFP.
1996 if (!CF->isNegative())
Chad Rosier094ac772014-11-11 22:58:35 +00001997 return nullptr;
1998
1999 // User must be a binary operator with one or more uses.
2000 Instruction *User = I->user_back();
David Majnemer587336d2015-05-28 06:16:39 +00002001 if (!isa<BinaryOperator>(User) || !User->hasNUsesOrMore(1))
Chad Rosier094ac772014-11-11 22:58:35 +00002002 return nullptr;
2003
2004 unsigned UserOpcode = User->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00002005 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
Chad Rosier094ac772014-11-11 22:58:35 +00002006 return nullptr;
2007
2008 // Subtraction is not commutative. Explicitly, the following transform is
2009 // not valid: (-Constant * y) - x -> x + (Constant * y)
2010 if (!User->isCommutative() && User->getOperand(1) != I)
2011 return nullptr;
2012
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002013 // Change the sign of the constant.
David Majnemer587336d2015-05-28 06:16:39 +00002014 APFloat Val = CF->getValueAPF();
2015 Val.changeSign();
2016 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002017
Chad Rosier094ac772014-11-11 22:58:35 +00002018 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
2019 // ((-Const*y) + x) -> (x + (-Const*y)).
2020 if (User->getOperand(0) == I && User->isCommutative())
2021 cast<BinaryOperator>(User)->swapOperands();
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002022
Chad Rosier094ac772014-11-11 22:58:35 +00002023 Value *Op0 = User->getOperand(0);
2024 Value *Op1 = User->getOperand(1);
2025 BinaryOperator *NI;
David Majnemer587336d2015-05-28 06:16:39 +00002026 switch (UserOpcode) {
Chad Rosier094ac772014-11-11 22:58:35 +00002027 default:
2028 llvm_unreachable("Unexpected Opcode!");
Chad Rosier094ac772014-11-11 22:58:35 +00002029 case Instruction::FAdd:
2030 NI = BinaryOperator::CreateFSub(Op0, Op1);
2031 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2032 break;
2033 case Instruction::FSub:
2034 NI = BinaryOperator::CreateFAdd(Op0, Op1);
2035 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2036 break;
2037 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002038
Chad Rosier094ac772014-11-11 22:58:35 +00002039 NI->insertBefore(User);
2040 NI->setName(User->getName());
2041 User->replaceAllUsesWith(NI);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002042 NI->setDebugLoc(I->getDebugLoc());
Chad Rosier094ac772014-11-11 22:58:35 +00002043 RedoInsts.insert(I);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002044 MadeChange = true;
Chad Rosier094ac772014-11-11 22:58:35 +00002045 return NI;
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002046}
2047
Sanjay Patelc96ee082015-04-22 18:04:46 +00002048/// Inspect and optimize the given instruction. Note that erasing
Duncan Sands3293f462012-06-08 20:15:33 +00002049/// instructions is not allowed.
2050void Reassociate::OptimizeInst(Instruction *I) {
2051 // Only consider operations that we understand.
2052 if (!isa<BinaryOperator>(I))
2053 return;
2054
Chad Rosier11ab9412014-08-14 15:23:01 +00002055 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
Duncan Sands3293f462012-06-08 20:15:33 +00002056 // If an operand of this shift is a reassociable multiply, or if the shift
2057 // is used by a reassociable multiply or add, turn into a multiply.
2058 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2059 (I->hasOneUse() &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002060 (isReassociableOp(I->user_back(), Instruction::Mul) ||
2061 isReassociableOp(I->user_back(), Instruction::Add)))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002062 Instruction *NI = ConvertShiftToMul(I);
2063 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002064 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002065 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00002066 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00002067
Chad Rosier094ac772014-11-11 22:58:35 +00002068 // Canonicalize negative constants out of expressions.
2069 if (Instruction *Res = canonicalizeNegConstExpr(I))
2070 I = Res;
2071
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002072 // Commute binary operators, to canonicalize the order of their operands.
2073 // This can potentially expose more CSE opportunities, and makes writing other
2074 // transformations simpler.
2075 if (I->isCommutative())
2076 canonicalizeOperands(I);
Chad Rosier11ab9412014-08-14 15:23:01 +00002077
Robert Lougher1858ba72015-03-13 20:53:01 +00002078 // TODO: We should optimize vector Xor instructions, but they are
2079 // currently unsupported.
2080 if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor)
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002081 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002082
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002083 // Don't optimize floating point instructions that don't have unsafe algebra.
Owen Anderson630077e2015-11-20 08:16:13 +00002084 if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra())
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002085 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002086
Dan Gohman1c6c3482011-04-12 00:11:56 +00002087 // Do not reassociate boolean (i1) expressions. We want to preserve the
2088 // original order of evaluation for short-circuited comparisons that
2089 // SimplifyCFG has folded to AND/OR expressions. If the expression
2090 // is not further optimized, it is likely to be transformed back to a
2091 // short-circuited form for code gen, and the source order may have been
2092 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00002093 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00002094 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00002095
Dan Gohman1c6c3482011-04-12 00:11:56 +00002096 // If this is a subtract instruction which is not already in negate form,
2097 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00002098 if (I->getOpcode() == Instruction::Sub) {
2099 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002100 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Duncan Sands3293f462012-06-08 20:15:33 +00002101 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002102 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002103 I = NI;
2104 } else if (BinaryOperator::isNeg(I)) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00002105 // Otherwise, this is a negation. See if the operand is a multiply tree
2106 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00002107 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2108 (!I->hasOneUse() ||
Chandler Carruthcdf47882014-03-09 03:16:01 +00002109 !isReassociableOp(I->user_back(), Instruction::Mul))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002110 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002111 // If the negate was simplified, revisit the users to see if we can
2112 // reassociate further.
2113 for (User *U : NI->users()) {
2114 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2115 RedoInsts.insert(Tmp);
2116 }
Duncan Sands3293f462012-06-08 20:15:33 +00002117 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002118 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002119 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002120 }
2121 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002122 } else if (I->getOpcode() == Instruction::FSub) {
2123 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002124 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Chad Rosier11ab9412014-08-14 15:23:01 +00002125 RedoInsts.insert(I);
2126 MadeChange = true;
2127 I = NI;
2128 } else if (BinaryOperator::isFNeg(I)) {
2129 // Otherwise, this is a negation. See if the operand is a multiply tree
2130 // and if this is not an inner node of a multiply tree.
2131 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2132 (!I->hasOneUse() ||
2133 !isReassociableOp(I->user_back(), Instruction::FMul))) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002134 // If the negate was simplified, revisit the users to see if we can
2135 // reassociate further.
Chad Rosier11ab9412014-08-14 15:23:01 +00002136 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002137 for (User *U : NI->users()) {
2138 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2139 RedoInsts.insert(Tmp);
2140 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002141 RedoInsts.insert(I);
2142 MadeChange = true;
2143 I = NI;
2144 }
2145 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002146 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002147
Duncan Sands3293f462012-06-08 20:15:33 +00002148 // If this instruction is an associative binary operator, process it.
2149 if (!I->isAssociative()) return;
2150 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002151
2152 // If this is an interior node of a reassociable tree, ignore it until we
2153 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00002154 unsigned Opcode = BO->getOpcode();
Owen Anderson2de9f542015-11-16 18:07:30 +00002155 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2156 // During the initial run we will get to the root of the tree.
2157 // But if we get here while we are redoing instructions, there is no
2158 // guarantee that the root will be visited. So Redo later
Aditya Nandakumarf94c1492016-01-07 23:22:55 +00002159 if (BO->user_back() != BO &&
2160 BO->getParent() == BO->user_back()->getParent())
Owen Anderson2de9f542015-11-16 18:07:30 +00002161 RedoInsts.insert(BO->user_back());
Dan Gohman1c6c3482011-04-12 00:11:56 +00002162 return;
Owen Anderson2de9f542015-11-16 18:07:30 +00002163 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002164
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002165 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00002166 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00002167 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002168 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002169 return;
Chad Rosier11ab9412014-08-14 15:23:01 +00002170 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2171 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2172 return;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002173
Duncan Sands3293f462012-06-08 20:15:33 +00002174 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00002175}
Chris Lattner1e506502005-05-07 21:59:39 +00002176
Duncan Sands78386032012-06-15 08:37:50 +00002177void Reassociate::ReassociateExpression(BinaryOperator *I) {
Chris Lattner60b71b52009-12-31 19:24:52 +00002178 // First, walk the expression tree, linearizing the tree, collecting the
2179 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002180 SmallVector<RepeatedValue, 8> Tree;
2181 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00002182 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002183 Ops.reserve(Tree.size());
2184 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2185 RepeatedValue E = Tree[i];
2186 Ops.append(E.second.getZExtValue(),
2187 ValueEntry(getRank(E.first), E.first));
2188 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002189
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00002190 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2191
Chris Lattner2fc319d2006-03-14 07:11:11 +00002192 // Now that we have linearized the tree to a list and have gathered all of
2193 // the operands and their ranks, sort the operands by their rank. Use a
2194 // stable_sort so that values with equal ranks will have their relative
2195 // positions maintained (and so the compiler is deterministic). Note that
2196 // this sorts so that the highest ranking values end up at the beginning of
2197 // the vector.
2198 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002199
Sanjay Patelc96ee082015-04-22 18:04:46 +00002200 // Now that we have the expression tree in a convenient
Chris Lattner2fc319d2006-03-14 07:11:11 +00002201 // sorted form, optimize it globally if possible.
2202 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00002203 if (V == I)
2204 // Self-referential expression in unreachable code.
2205 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002206 // This expression tree simplified to something that isn't a tree,
2207 // eliminate it.
David Greened17c3912010-01-05 01:27:24 +00002208 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00002209 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002210 if (Instruction *VI = dyn_cast<Instruction>(V))
2211 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002212 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00002213 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00002214 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002215 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002216
Chris Lattner2fc319d2006-03-14 07:11:11 +00002217 // We want to sink immediates as deeply as possible except in the case where
2218 // this is a multiply tree used only by an add, and the immediate is a -1.
2219 // In this case we reassociate to put the negation on the outside so that we
2220 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
Chad Rosier11ab9412014-08-14 15:23:01 +00002221 if (I->hasOneUse()) {
2222 if (I->getOpcode() == Instruction::Mul &&
2223 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2224 isa<ConstantInt>(Ops.back().Op) &&
2225 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
2226 ValueEntry Tmp = Ops.pop_back_val();
2227 Ops.insert(Ops.begin(), Tmp);
2228 } else if (I->getOpcode() == Instruction::FMul &&
2229 cast<Instruction>(I->user_back())->getOpcode() ==
2230 Instruction::FAdd &&
2231 isa<ConstantFP>(Ops.back().Op) &&
2232 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2233 ValueEntry Tmp = Ops.pop_back_val();
2234 Ops.insert(Ops.begin(), Tmp);
2235 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002236 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002237
David Greened17c3912010-01-05 01:27:24 +00002238 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002239
Chris Lattner2fc319d2006-03-14 07:11:11 +00002240 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00002241 if (Ops[0].Op == I)
2242 // Self-referential expression in unreachable code.
2243 return;
2244
Chris Lattner2fc319d2006-03-14 07:11:11 +00002245 // This expression tree simplified to something that isn't a tree,
2246 // eliminate it.
2247 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002248 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2249 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002250 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00002251 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002252 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002253
Chris Lattner60b71b52009-12-31 19:24:52 +00002254 // Now that we ordered and optimized the expressions, splat them back into
2255 // the expression tree, removing any unneeded nodes.
2256 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002257}
2258
Chris Lattner113f4f42002-06-25 16:13:24 +00002259bool Reassociate::runOnFunction(Function &F) {
Paul Robinsonaf4e64d2014-02-06 00:07:05 +00002260 if (skipOptnoneFunction(F))
2261 return false;
2262
Aditya Nandakumar3d0c46d2016-01-26 18:42:36 +00002263 // Reassociate needs for each instruction to have its operands already
2264 // processed, so we first perform a RPOT of the basic blocks so that
2265 // when we process a basic block, all its dominators have been processed
2266 // before.
2267 ReversePostOrderTraversal<Function *> RPOT(&F);
2268 BuildRankMap(F, RPOT);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002269
Chris Lattner1e506502005-05-07 21:59:39 +00002270 MadeChange = false;
Aditya Nandakumar3d0c46d2016-01-26 18:42:36 +00002271 for (BasicBlock *BI : RPOT) {
2272 // Use a worklist to keep track of which instructions have been processed
2273 // (and which insts won't be optimized again) so when redoing insts,
2274 // optimize insts rightaway which won't be processed later.
2275 SmallSet<Instruction *, 8> Worklist;
2276
2277 // Insert all instructions in the BB
2278 for (Instruction &I : *BI)
2279 Worklist.insert(&I);
2280
Duncan Sands3293f462012-06-08 20:15:33 +00002281 // Optimize every instruction in the basic block.
Aditya Nandakumar3d0c46d2016-01-26 18:42:36 +00002282 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) {
2283 // This instruction has been processed.
2284 Worklist.erase(&*II);
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002285 if (isInstructionTriviallyDead(&*II)) {
2286 EraseInst(&*II++);
Duncan Sands3293f462012-06-08 20:15:33 +00002287 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002288 OptimizeInst(&*II);
Duncan Sands3293f462012-06-08 20:15:33 +00002289 assert(II->getParent() == BI && "Moved to a different block!");
2290 ++II;
2291 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00002292
Aditya Nandakumar3d0c46d2016-01-26 18:42:36 +00002293 // If the above optimizations produced new instructions to optimize or
2294 // made modifications which need to be redone, do them now if they won't
2295 // be handled later.
2296 while (!RedoInsts.empty()) {
2297 Instruction *I = RedoInsts.pop_back_val();
2298 // Process instructions that won't be processed later, either
2299 // inside the block itself or in another basic block (based on rank),
2300 // since these will be processed later.
2301 if ((I->getParent() != BI || !Worklist.count(I)) &&
2302 RankMap[I->getParent()] <= RankMap[BI]) {
2303 if (isInstructionTriviallyDead(I))
2304 EraseInst(I);
2305 else
2306 OptimizeInst(I);
2307 }
2308 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002309 }
Duncan Sands3293f462012-06-08 20:15:33 +00002310 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00002311
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002312 // We are done with the rank map.
2313 RankMap.clear();
2314 ValueRankMap.clear();
2315
Chris Lattner1e506502005-05-07 21:59:39 +00002316 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002317}