blob: fc581f1322dee9d2b9a95aecf20d33ebb2989c90 [file] [log] [blame]
Misha Brukmanc501f552004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman76307852003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencercb84e432004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
Eric Christopher455c5772009-12-05 02:46:03 +00008 <meta name="description"
Reid Spencercb84e432004-08-26 20:44:00 +00009 content="LLVM Assembly Language Reference Manual.">
Misha Brukman76307852003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattner757528b0b2004-05-23 21:06:01 +000012
Misha Brukman76307852003-11-08 01:05:38 +000013<body>
Chris Lattner757528b0b2004-05-23 21:06:01 +000014
Chris Lattner48b383b02003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +000016<ol>
Misha Brukman76307852003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendling8693ef82009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
Bill Wendling03bcd6e2010-07-01 21:55:59 +000027 <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
Bill Wendling578ee402010-08-20 22:05:50 +000028 <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000029 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
30 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
31 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
32 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
33 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
34 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
35 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
Chris Lattner80d73c72009-10-10 18:26:06 +000036 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000037 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
38 <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
39 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
40 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000041 </ol>
42 </li>
Chris Lattner0132aff2005-05-06 22:57:40 +000043 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerbc088212009-01-11 20:53:49 +000044 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000045 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000046 <li><a href="#functionstructure">Functions</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000047 <li><a href="#aliasstructure">Aliases</a></li>
Devang Pateld1a89692010-01-11 19:35:55 +000048 <li><a href="#namedmetadatastructure">Named Metadata</a></li>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +000049 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel9eb525d2008-09-26 23:51:19 +000050 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen71183b62007-12-10 03:18:06 +000051 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000052 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencer50c723a2007-02-19 23:54:10 +000053 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman6154a012009-07-27 18:07:55 +000054 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +000055 <li><a href="#volatile">Volatile Memory Accesses</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000056 </ol>
57 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000058 <li><a href="#typesystem">Type System</a>
59 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000060 <li><a href="#t_classifications">Type Classifications</a></li>
Eric Christopher455c5772009-12-05 02:46:03 +000061 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner48b383b02003-11-25 01:02:51 +000062 <ol>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +000063 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000064 <li><a href="#t_floating">Floating Point Types</a></li>
Dale Johannesen33e5c352010-10-01 00:48:59 +000065 <li><a href="#t_x86mmx">X86mmx Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000066 <li><a href="#t_void">Void Type</a></li>
67 <li><a href="#t_label">Label Type</a></li>
Nick Lewyckyadbc2842009-05-30 05:06:04 +000068 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000069 </ol>
70 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000071 <li><a href="#t_derived">Derived Types</a>
72 <ol>
Chris Lattner392be582010-02-12 20:49:41 +000073 <li><a href="#t_aggregate">Aggregate Types</a>
74 <ol>
75 <li><a href="#t_array">Array Type</a></li>
76 <li><a href="#t_struct">Structure Type</a></li>
77 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Chris Lattner392be582010-02-12 20:49:41 +000078 <li><a href="#t_vector">Vector Type</a></li>
79 </ol>
80 </li>
Misha Brukman76307852003-11-08 01:05:38 +000081 <li><a href="#t_function">Function Type</a></li>
82 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner37b6b092005-04-25 17:34:15 +000083 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000084 </ol>
85 </li>
Chris Lattnercf7a5842009-02-02 07:32:36 +000086 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000087 </ol>
88 </li>
Chris Lattner6af02f32004-12-09 16:11:40 +000089 <li><a href="#constants">Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +000090 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000091 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner361bfcd2009-02-28 18:32:25 +000092 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000093 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
94 <li><a href="#undefvalues">Undefined Values</a></li>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +000095 <li><a href="#trapvalues">Trap Values</a></li>
Chris Lattner2bfd3202009-10-27 21:19:13 +000096 <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000097 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattner74d3f822004-12-09 17:30:23 +000098 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000099 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +0000100 <li><a href="#othervalues">Other Values</a>
101 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000102 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Devang Pateld1a89692010-01-11 19:35:55 +0000103 <li><a href="#metadata">Metadata Nodes and Metadata Strings</a></li>
Chris Lattner98f013c2006-01-25 23:47:57 +0000104 </ol>
105 </li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000106 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
107 <ol>
108 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner58f9bb22009-07-20 06:14:25 +0000109 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
110 Global Variable</a></li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000111 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
112 Global Variable</a></li>
113 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
114 Global Variable</a></li>
115 </ol>
116 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000117 <li><a href="#instref">Instruction Reference</a>
118 <ol>
119 <li><a href="#terminators">Terminator Instructions</a>
120 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000121 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
122 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000123 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +0000124 <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000125 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000126 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner08b7d5b2004-10-16 18:04:13 +0000127 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000128 </ol>
129 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000130 <li><a href="#binaryops">Binary Operations</a>
131 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000132 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000133 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000134 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000135 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000136 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000137 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer7e80b0b2006-10-26 06:15:43 +0000138 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
139 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
140 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer7eb55b32006-11-02 01:53:59 +0000141 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
142 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
143 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000144 </ol>
145 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000146 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
147 <ol>
Reid Spencer2ab01932007-02-02 13:57:07 +0000148 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
149 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
150 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000151 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000152 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000153 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000154 </ol>
155 </li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000156 <li><a href="#vectorops">Vector Operations</a>
157 <ol>
158 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
159 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
160 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000161 </ol>
162 </li>
Dan Gohmanb9d66602008-05-12 23:51:09 +0000163 <li><a href="#aggregateops">Aggregate Operations</a>
164 <ol>
165 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
166 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
167 </ol>
168 </li>
Chris Lattner6ab66722006-08-15 00:45:58 +0000169 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000170 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000171 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +0000172 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
173 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
174 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000175 </ol>
176 </li>
Reid Spencer97c5fa42006-11-08 01:18:52 +0000177 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000178 <ol>
179 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
180 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
181 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
182 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
183 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencer51b07252006-11-09 23:03:26 +0000184 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
185 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
186 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
187 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencerb7344ff2006-11-11 21:00:47 +0000188 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
189 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5b950642006-11-11 23:08:07 +0000190 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000191 </ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000192 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000193 <li><a href="#otherops">Other Operations</a>
194 <ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +0000195 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
196 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000197 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnerb53c28d2004-03-12 05:50:16 +0000198 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000199 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattner33337472006-01-13 23:26:01 +0000200 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000201 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000202 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000203 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000204 </li>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000205 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000206 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000207 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
208 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000209 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
210 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
211 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000212 </ol>
213 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000214 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
215 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000216 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
217 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
218 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000219 </ol>
220 </li>
Chris Lattner3649c3a2004-02-14 04:08:35 +0000221 <li><a href="#int_codegen">Code Generator Intrinsics</a>
222 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000223 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
224 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
225 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
226 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
227 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
228 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
Dan Gohmane58f7b32010-05-26 21:56:15 +0000229 <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswellaa1c3c12004-04-09 16:43:20 +0000230 </ol>
231 </li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000232 <li><a href="#int_libc">Standard C Library Intrinsics</a>
233 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000234 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
235 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
236 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
237 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
238 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohmanb6324c12007-10-15 20:30:11 +0000239 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
240 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
241 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000242 </ol>
243 </li>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000244 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000245 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000246 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattnerb748c672006-01-16 22:34:14 +0000247 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
248 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
249 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000250 </ol>
251 </li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000252 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
253 <ol>
Bill Wendlingfd2bd722009-02-08 04:04:40 +0000254 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
255 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
256 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
257 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
258 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingb9a73272009-02-08 23:00:09 +0000259 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000260 </ol>
261 </li>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +0000262 <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
263 <ol>
Chris Lattnerbbd8bd32010-03-14 23:03:31 +0000264 <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
265 <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +0000266 </ol>
267 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000268 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskey2211f492007-03-14 19:31:19 +0000269 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands86e01192007-09-11 14:10:23 +0000270 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +0000271 <ol>
272 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands644f9172007-07-27 12:58:54 +0000273 </ol>
274 </li>
Bill Wendlingf85850f2008-11-18 22:10:53 +0000275 <li><a href="#int_atomics">Atomic intrinsics</a>
276 <ol>
277 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
278 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
279 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
280 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
281 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
282 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
283 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
284 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
285 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
286 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
287 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
288 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
289 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
290 </ol>
291 </li>
Nick Lewycky6f7d8342009-10-13 07:03:23 +0000292 <li><a href="#int_memorymarkers">Memory Use Markers</a>
293 <ol>
294 <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
295 <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
296 <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
297 <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
298 </ol>
299 </li>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000300 <li><a href="#int_general">General intrinsics</a>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000301 <ol>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000302 <li><a href="#int_var_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000303 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000304 <li><a href="#int_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000305 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +0000306 <li><a href="#int_trap">
Bill Wendling14313312008-11-19 05:56:17 +0000307 '<tt>llvm.trap</tt>' Intrinsic</a></li>
308 <li><a href="#int_stackprotector">
309 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Eric Christopher73484322009-11-30 08:03:53 +0000310 <li><a href="#int_objectsize">
311 '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000312 </ol>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000313 </li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000314 </ol>
315 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000316</ol>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000317
318<div class="doc_author">
319 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
320 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman76307852003-11-08 01:05:38 +0000321</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000322
Chris Lattner2f7c9632001-06-06 20:29:01 +0000323<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000324<div class="doc_section"> <a name="abstract">Abstract </a></div>
325<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000326
Misha Brukman76307852003-11-08 01:05:38 +0000327<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000328
329<p>This document is a reference manual for the LLVM assembly language. LLVM is
330 a Static Single Assignment (SSA) based representation that provides type
331 safety, low-level operations, flexibility, and the capability of representing
332 'all' high-level languages cleanly. It is the common code representation
333 used throughout all phases of the LLVM compilation strategy.</p>
334
Misha Brukman76307852003-11-08 01:05:38 +0000335</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000336
Chris Lattner2f7c9632001-06-06 20:29:01 +0000337<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000338<div class="doc_section"> <a name="introduction">Introduction</a> </div>
339<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000340
Misha Brukman76307852003-11-08 01:05:38 +0000341<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000342
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000343<p>The LLVM code representation is designed to be used in three different forms:
344 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
345 for fast loading by a Just-In-Time compiler), and as a human readable
346 assembly language representation. This allows LLVM to provide a powerful
347 intermediate representation for efficient compiler transformations and
348 analysis, while providing a natural means to debug and visualize the
349 transformations. The three different forms of LLVM are all equivalent. This
350 document describes the human readable representation and notation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000351
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000352<p>The LLVM representation aims to be light-weight and low-level while being
353 expressive, typed, and extensible at the same time. It aims to be a
354 "universal IR" of sorts, by being at a low enough level that high-level ideas
355 may be cleanly mapped to it (similar to how microprocessors are "universal
356 IR's", allowing many source languages to be mapped to them). By providing
357 type information, LLVM can be used as the target of optimizations: for
358 example, through pointer analysis, it can be proven that a C automatic
Bill Wendling7f4a3362009-11-02 00:24:16 +0000359 variable is never accessed outside of the current function, allowing it to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000360 be promoted to a simple SSA value instead of a memory location.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000361
Misha Brukman76307852003-11-08 01:05:38 +0000362</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000363
Chris Lattner2f7c9632001-06-06 20:29:01 +0000364<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000365<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000366
Misha Brukman76307852003-11-08 01:05:38 +0000367<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000368
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000369<p>It is important to note that this document describes 'well formed' LLVM
370 assembly language. There is a difference between what the parser accepts and
371 what is considered 'well formed'. For example, the following instruction is
372 syntactically okay, but not well formed:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000373
Benjamin Kramer79698be2010-07-13 12:26:09 +0000374<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000375%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattner757528b0b2004-05-23 21:06:01 +0000376</pre>
377
Bill Wendling7f4a3362009-11-02 00:24:16 +0000378<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
379 LLVM infrastructure provides a verification pass that may be used to verify
380 that an LLVM module is well formed. This pass is automatically run by the
381 parser after parsing input assembly and by the optimizer before it outputs
382 bitcode. The violations pointed out by the verifier pass indicate bugs in
383 transformation passes or input to the parser.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000384
Bill Wendling3716c5d2007-05-29 09:04:49 +0000385</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000386
Chris Lattner87a3dbe2007-10-03 17:34:29 +0000387<!-- Describe the typesetting conventions here. -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000388
Chris Lattner2f7c9632001-06-06 20:29:01 +0000389<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000390<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000391<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000392
Misha Brukman76307852003-11-08 01:05:38 +0000393<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000394
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000395<p>LLVM identifiers come in two basic types: global and local. Global
396 identifiers (functions, global variables) begin with the <tt>'@'</tt>
397 character. Local identifiers (register names, types) begin with
398 the <tt>'%'</tt> character. Additionally, there are three different formats
399 for identifiers, for different purposes:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000400
Chris Lattner2f7c9632001-06-06 20:29:01 +0000401<ol>
Reid Spencerb23b65f2007-08-07 14:34:28 +0000402 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000403 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
404 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
405 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
406 other characters in their names can be surrounded with quotes. Special
407 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
408 ASCII code for the character in hexadecimal. In this way, any character
409 can be used in a name value, even quotes themselves.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000410
Reid Spencerb23b65f2007-08-07 14:34:28 +0000411 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000412 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000413
Reid Spencer8f08d802004-12-09 18:02:53 +0000414 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000415 constants</a>, below.</li>
Misha Brukman76307852003-11-08 01:05:38 +0000416</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000417
Reid Spencerb23b65f2007-08-07 14:34:28 +0000418<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000419 don't need to worry about name clashes with reserved words, and the set of
420 reserved words may be expanded in the future without penalty. Additionally,
421 unnamed identifiers allow a compiler to quickly come up with a temporary
422 variable without having to avoid symbol table conflicts.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000423
Chris Lattner48b383b02003-11-25 01:02:51 +0000424<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000425 languages. There are keywords for different opcodes
426 ('<tt><a href="#i_add">add</a></tt>',
427 '<tt><a href="#i_bitcast">bitcast</a></tt>',
428 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
429 ('<tt><a href="#t_void">void</a></tt>',
430 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
431 reserved words cannot conflict with variable names, because none of them
432 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000433
434<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000435 '<tt>%X</tt>' by 8:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000436
Misha Brukman76307852003-11-08 01:05:38 +0000437<p>The easy way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000438
Benjamin Kramer79698be2010-07-13 12:26:09 +0000439<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000440%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnerd79749a2004-12-09 16:36:40 +0000441</pre>
442
Misha Brukman76307852003-11-08 01:05:38 +0000443<p>After strength reduction:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000444
Benjamin Kramer79698be2010-07-13 12:26:09 +0000445<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000446%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnerd79749a2004-12-09 16:36:40 +0000447</pre>
448
Misha Brukman76307852003-11-08 01:05:38 +0000449<p>And the hard way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000450
Benjamin Kramer79698be2010-07-13 12:26:09 +0000451<pre class="doc_code">
Gabor Greifbd0328f2009-10-28 13:05:07 +0000452%0 = <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
453%1 = <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000454%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnerd79749a2004-12-09 16:36:40 +0000455</pre>
456
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000457<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
458 lexical features of LLVM:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000459
Chris Lattner2f7c9632001-06-06 20:29:01 +0000460<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000461 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000462 line.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000463
464 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000465 assigned to a named value.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000466
Misha Brukman76307852003-11-08 01:05:38 +0000467 <li>Unnamed temporaries are numbered sequentially</li>
468</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000469
Bill Wendling7f4a3362009-11-02 00:24:16 +0000470<p>It also shows a convention that we follow in this document. When
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000471 demonstrating instructions, we will follow an instruction with a comment that
472 defines the type and name of value produced. Comments are shown in italic
473 text.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000474
Misha Brukman76307852003-11-08 01:05:38 +0000475</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000476
477<!-- *********************************************************************** -->
478<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
479<!-- *********************************************************************** -->
480
481<!-- ======================================================================= -->
482<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
483</div>
484
485<div class="doc_text">
486
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000487<p>LLVM programs are composed of "Module"s, each of which is a translation unit
488 of the input programs. Each module consists of functions, global variables,
489 and symbol table entries. Modules may be combined together with the LLVM
490 linker, which merges function (and global variable) definitions, resolves
491 forward declarations, and merges symbol table entries. Here is an example of
492 the "hello world" module:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000493
Benjamin Kramer79698be2010-07-13 12:26:09 +0000494<pre class="doc_code">
Chris Lattner54a7be72010-08-17 17:13:42 +0000495<i>; Declare the string constant as a global constant.</i>&nbsp;
Nick Lewyckyfea7ddc2011-01-29 01:09:53 +0000496<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a>&nbsp;<a href="#globalvars">constant</a>&nbsp;<a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000497
Chris Lattner54a7be72010-08-17 17:13:42 +0000498<i>; External declaration of the puts function</i>&nbsp;
499<a href="#functionstructure">declare</a> i32 @puts(i8*) <i>; i32 (i8*)* </i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000500
501<i>; Definition of main function</i>
Chris Lattner54a7be72010-08-17 17:13:42 +0000502define i32 @main() { <i>; i32()* </i>&nbsp;
503 <i>; Convert [13 x i8]* to i8 *...</i>&nbsp;
504 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8*</i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000505
Chris Lattner54a7be72010-08-17 17:13:42 +0000506 <i>; Call puts function to write out the string to stdout.</i>&nbsp;
507 <a href="#i_call">call</a> i32 @puts(i8* %cast210) <i>; i32</i>&nbsp;
508 <a href="#i_ret">ret</a> i32 0&nbsp;
509}
Devang Pateld1a89692010-01-11 19:35:55 +0000510
511<i>; Named metadata</i>
512!1 = metadata !{i32 41}
513!foo = !{!1, null}
Bill Wendling3716c5d2007-05-29 09:04:49 +0000514</pre>
Chris Lattner6af02f32004-12-09 16:11:40 +0000515
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000516<p>This example is made up of a <a href="#globalvars">global variable</a> named
Devang Pateld1a89692010-01-11 19:35:55 +0000517 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000518 a <a href="#functionstructure">function definition</a> for
Devang Pateld1a89692010-01-11 19:35:55 +0000519 "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a>
520 "<tt>foo"</tt>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000521
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000522<p>In general, a module is made up of a list of global values, where both
523 functions and global variables are global values. Global values are
524 represented by a pointer to a memory location (in this case, a pointer to an
525 array of char, and a pointer to a function), and have one of the
526 following <a href="#linkage">linkage types</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000527
Chris Lattnerd79749a2004-12-09 16:36:40 +0000528</div>
529
530<!-- ======================================================================= -->
531<div class="doc_subsection">
532 <a name="linkage">Linkage Types</a>
533</div>
534
535<div class="doc_text">
536
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000537<p>All Global Variables and Functions have one of the following types of
538 linkage:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000539
540<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000541 <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000542 <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
543 by objects in the current module. In particular, linking code into a
544 module with an private global value may cause the private to be renamed as
545 necessary to avoid collisions. Because the symbol is private to the
546 module, all references can be updated. This doesn't show up in any symbol
547 table in the object file.</dd>
Rafael Espindola6de96a12009-01-15 20:18:42 +0000548
Bill Wendling7f4a3362009-11-02 00:24:16 +0000549 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000550 <dd>Similar to <tt>private</tt>, but the symbol is passed through the
551 assembler and evaluated by the linker. Unlike normal strong symbols, they
552 are removed by the linker from the final linked image (executable or
553 dynamic library).</dd>
554
555 <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
556 <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
557 <tt>linker_private_weak</tt> symbols are subject to coalescing by the
558 linker. The symbols are removed by the linker from the final linked image
559 (executable or dynamic library).</dd>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +0000560
Bill Wendling578ee402010-08-20 22:05:50 +0000561 <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt>
562 <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address
563 of the object is not taken. For instance, functions that had an inline
564 definition, but the compiler decided not to inline it. Note,
565 unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>,
566 <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt>
567 visibility. The symbols are removed by the linker from the final linked
568 image (executable or dynamic library).</dd>
569
Bill Wendling7f4a3362009-11-02 00:24:16 +0000570 <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
Bill Wendling36321712010-06-29 22:34:52 +0000571 <dd>Similar to private, but the value shows as a local symbol
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000572 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
573 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000574
Bill Wendling7f4a3362009-11-02 00:24:16 +0000575 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
Chris Lattner184f1be2009-04-13 05:44:34 +0000576 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000577 into the object file corresponding to the LLVM module. They exist to
578 allow inlining and other optimizations to take place given knowledge of
579 the definition of the global, which is known to be somewhere outside the
580 module. Globals with <tt>available_externally</tt> linkage are allowed to
581 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
582 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner184f1be2009-04-13 05:44:34 +0000583
Bill Wendling7f4a3362009-11-02 00:24:16 +0000584 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
Chris Lattnere20b4702007-01-14 06:51:48 +0000585 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Chris Lattner0de4caa2010-01-09 19:15:14 +0000586 the same name when linkage occurs. This can be used to implement
587 some forms of inline functions, templates, or other code which must be
588 generated in each translation unit that uses it, but where the body may
589 be overridden with a more definitive definition later. Unreferenced
590 <tt>linkonce</tt> globals are allowed to be discarded. Note that
591 <tt>linkonce</tt> linkage does not actually allow the optimizer to
592 inline the body of this function into callers because it doesn't know if
593 this definition of the function is the definitive definition within the
594 program or whether it will be overridden by a stronger definition.
595 To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
596 linkage.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000597
Bill Wendling7f4a3362009-11-02 00:24:16 +0000598 <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000599 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
600 <tt>linkonce</tt> linkage, except that unreferenced globals with
601 <tt>weak</tt> linkage may not be discarded. This is used for globals that
602 are declared "weak" in C source code.</dd>
603
Bill Wendling7f4a3362009-11-02 00:24:16 +0000604 <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000605 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
606 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
607 global scope.
608 Symbols with "<tt>common</tt>" linkage are merged in the same way as
609 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
Chris Lattner0aff0b22009-08-05 05:41:44 +0000610 <tt>common</tt> symbols may not have an explicit section,
Eric Christopher455c5772009-12-05 02:46:03 +0000611 must have a zero initializer, and may not be marked '<a
Chris Lattner0aff0b22009-08-05 05:41:44 +0000612 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
613 have common linkage.</dd>
Chris Lattnerd0554882009-08-05 05:21:07 +0000614
Chris Lattnerd79749a2004-12-09 16:36:40 +0000615
Bill Wendling7f4a3362009-11-02 00:24:16 +0000616 <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000617 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000618 pointer to array type. When two global variables with appending linkage
619 are linked together, the two global arrays are appended together. This is
620 the LLVM, typesafe, equivalent of having the system linker append together
621 "sections" with identical names when .o files are linked.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000622
Bill Wendling7f4a3362009-11-02 00:24:16 +0000623 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000624 <dd>The semantics of this linkage follow the ELF object file model: the symbol
625 is weak until linked, if not linked, the symbol becomes null instead of
626 being an undefined reference.</dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000627
Bill Wendling7f4a3362009-11-02 00:24:16 +0000628 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
629 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000630 <dd>Some languages allow differing globals to be merged, such as two functions
631 with different semantics. Other languages, such as <tt>C++</tt>, ensure
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000632 that only equivalent globals are ever merged (the "one definition rule"
633 &mdash; "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000634 and <tt>weak_odr</tt> linkage types to indicate that the global will only
635 be merged with equivalent globals. These linkage types are otherwise the
636 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000637
Chris Lattner6af02f32004-12-09 16:11:40 +0000638 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000639 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000640 visible, meaning that it participates in linkage and can be used to
641 resolve external symbol references.</dd>
Reid Spencer7972c472007-04-11 23:49:50 +0000642</dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000643
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000644<p>The next two types of linkage are targeted for Microsoft Windows platform
645 only. They are designed to support importing (exporting) symbols from (to)
646 DLLs (Dynamic Link Libraries).</p>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000647
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000648<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000649 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000650 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000651 or variable via a global pointer to a pointer that is set up by the DLL
652 exporting the symbol. On Microsoft Windows targets, the pointer name is
653 formed by combining <code>__imp_</code> and the function or variable
654 name.</dd>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000655
Bill Wendling7f4a3362009-11-02 00:24:16 +0000656 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000657 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000658 pointer to a pointer in a DLL, so that it can be referenced with the
659 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
660 name is formed by combining <code>__imp_</code> and the function or
661 variable name.</dd>
Chris Lattner6af02f32004-12-09 16:11:40 +0000662</dl>
663
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000664<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
665 another module defined a "<tt>.LC0</tt>" variable and was linked with this
666 one, one of the two would be renamed, preventing a collision. Since
667 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
668 declarations), they are accessible outside of the current module.</p>
669
670<p>It is illegal for a function <i>declaration</i> to have any linkage type
671 other than "externally visible", <tt>dllimport</tt>
672 or <tt>extern_weak</tt>.</p>
673
Duncan Sands12da8ce2009-03-07 15:45:40 +0000674<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000675 or <tt>weak_odr</tt> linkages.</p>
676
Chris Lattner6af02f32004-12-09 16:11:40 +0000677</div>
678
679<!-- ======================================================================= -->
680<div class="doc_subsection">
Chris Lattner0132aff2005-05-06 22:57:40 +0000681 <a name="callingconv">Calling Conventions</a>
682</div>
683
684<div class="doc_text">
685
686<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000687 and <a href="#i_invoke">invokes</a> can all have an optional calling
688 convention specified for the call. The calling convention of any pair of
689 dynamic caller/callee must match, or the behavior of the program is
690 undefined. The following calling conventions are supported by LLVM, and more
691 may be added in the future:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000692
693<dl>
694 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000695 <dd>This calling convention (the default if no other calling convention is
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000696 specified) matches the target C calling conventions. This calling
697 convention supports varargs function calls and tolerates some mismatch in
698 the declared prototype and implemented declaration of the function (as
699 does normal C).</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000700
701 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000702 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000703 (e.g. by passing things in registers). This calling convention allows the
704 target to use whatever tricks it wants to produce fast code for the
705 target, without having to conform to an externally specified ABI
Jeffrey Yasskinb8677462010-01-09 19:44:16 +0000706 (Application Binary Interface).
707 <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
Chris Lattnera179e4d2010-03-11 00:22:57 +0000708 when this or the GHC convention is used.</a> This calling convention
709 does not support varargs and requires the prototype of all callees to
710 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000711
712 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000713 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000714 as possible under the assumption that the call is not commonly executed.
715 As such, these calls often preserve all registers so that the call does
716 not break any live ranges in the caller side. This calling convention
717 does not support varargs and requires the prototype of all callees to
718 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000719
Chris Lattnera179e4d2010-03-11 00:22:57 +0000720 <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
721 <dd>This calling convention has been implemented specifically for use by the
722 <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
723 It passes everything in registers, going to extremes to achieve this by
724 disabling callee save registers. This calling convention should not be
725 used lightly but only for specific situations such as an alternative to
726 the <em>register pinning</em> performance technique often used when
727 implementing functional programming languages.At the moment only X86
728 supports this convention and it has the following limitations:
729 <ul>
730 <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
731 floating point types are supported.</li>
732 <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
733 6 floating point parameters.</li>
734 </ul>
735 This calling convention supports
736 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
737 requires both the caller and callee are using it.
738 </dd>
739
Chris Lattner573f64e2005-05-07 01:46:40 +0000740 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000741 <dd>Any calling convention may be specified by number, allowing
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000742 target-specific calling conventions to be used. Target specific calling
743 conventions start at 64.</dd>
Chris Lattner573f64e2005-05-07 01:46:40 +0000744</dl>
Chris Lattner0132aff2005-05-06 22:57:40 +0000745
746<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000747 support Pascal conventions or any other well-known target-independent
748 convention.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000749
750</div>
751
752<!-- ======================================================================= -->
753<div class="doc_subsection">
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000754 <a name="visibility">Visibility Styles</a>
755</div>
756
757<div class="doc_text">
758
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000759<p>All Global Variables and Functions have one of the following visibility
760 styles:</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000761
762<dl>
763 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattner67c37d12008-08-05 18:29:16 +0000764 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000765 that the declaration is visible to other modules and, in shared libraries,
766 means that the declared entity may be overridden. On Darwin, default
767 visibility means that the declaration is visible to other modules. Default
768 visibility corresponds to "external linkage" in the language.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000769
770 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000771 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000772 object if they are in the same shared object. Usually, hidden visibility
773 indicates that the symbol will not be placed into the dynamic symbol
774 table, so no other module (executable or shared library) can reference it
775 directly.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000776
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000777 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000778 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000779 the dynamic symbol table, but that references within the defining module
780 will bind to the local symbol. That is, the symbol cannot be overridden by
781 another module.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000782</dl>
783
784</div>
785
786<!-- ======================================================================= -->
787<div class="doc_subsection">
Chris Lattnerbc088212009-01-11 20:53:49 +0000788 <a name="namedtypes">Named Types</a>
789</div>
790
791<div class="doc_text">
792
793<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000794 it easier to read the IR and make the IR more condensed (particularly when
795 recursive types are involved). An example of a name specification is:</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000796
Benjamin Kramer79698be2010-07-13 12:26:09 +0000797<pre class="doc_code">
Chris Lattnerbc088212009-01-11 20:53:49 +0000798%mytype = type { %mytype*, i32 }
799</pre>
Chris Lattnerbc088212009-01-11 20:53:49 +0000800
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000801<p>You may give a name to any <a href="#typesystem">type</a> except
Chris Lattner249b9762010-08-17 23:26:04 +0000802 "<a href="#t_void">void</a>". Type name aliases may be used anywhere a type
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000803 is expected with the syntax "%mytype".</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000804
805<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000806 and that you can therefore specify multiple names for the same type. This
807 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
808 uses structural typing, the name is not part of the type. When printing out
809 LLVM IR, the printer will pick <em>one name</em> to render all types of a
810 particular shape. This means that if you have code where two different
811 source types end up having the same LLVM type, that the dumper will sometimes
812 print the "wrong" or unexpected type. This is an important design point and
813 isn't going to change.</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000814
815</div>
816
Chris Lattnerbc088212009-01-11 20:53:49 +0000817<!-- ======================================================================= -->
818<div class="doc_subsection">
Chris Lattner6af02f32004-12-09 16:11:40 +0000819 <a name="globalvars">Global Variables</a>
820</div>
821
822<div class="doc_text">
823
Chris Lattner5d5aede2005-02-12 19:30:21 +0000824<p>Global variables define regions of memory allocated at compilation time
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000825 instead of run-time. Global variables may optionally be initialized, may
826 have an explicit section to be placed in, and may have an optional explicit
827 alignment specified. A variable may be defined as "thread_local", which
828 means that it will not be shared by threads (each thread will have a
829 separated copy of the variable). A variable may be defined as a global
830 "constant," which indicates that the contents of the variable
831 will <b>never</b> be modified (enabling better optimization, allowing the
832 global data to be placed in the read-only section of an executable, etc).
833 Note that variables that need runtime initialization cannot be marked
834 "constant" as there is a store to the variable.</p>
Chris Lattner5d5aede2005-02-12 19:30:21 +0000835
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000836<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
837 constant, even if the final definition of the global is not. This capability
838 can be used to enable slightly better optimization of the program, but
839 requires the language definition to guarantee that optimizations based on the
840 'constantness' are valid for the translation units that do not include the
841 definition.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000842
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000843<p>As SSA values, global variables define pointer values that are in scope
844 (i.e. they dominate) all basic blocks in the program. Global variables
845 always define a pointer to their "content" type because they describe a
846 region of memory, and all memory objects in LLVM are accessed through
847 pointers.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000848
Rafael Espindola45e6c192011-01-08 16:42:36 +0000849<p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
850 that the address is not significant, only the content. Constants marked
Rafael Espindolaf1ed7812011-01-15 08:20:57 +0000851 like this can be merged with other constants if they have the same
852 initializer. Note that a constant with significant address <em>can</em>
853 be merged with a <tt>unnamed_addr</tt> constant, the result being a
854 constant whose address is significant.</p>
Rafael Espindola45e6c192011-01-08 16:42:36 +0000855
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000856<p>A global variable may be declared to reside in a target-specific numbered
857 address space. For targets that support them, address spaces may affect how
858 optimizations are performed and/or what target instructions are used to
859 access the variable. The default address space is zero. The address space
860 qualifier must precede any other attributes.</p>
Christopher Lamb308121c2007-12-11 09:31:00 +0000861
Chris Lattner662c8722005-11-12 00:45:07 +0000862<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000863 supports it, it will emit globals to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000864
Chris Lattner78e00bc2010-04-28 00:13:42 +0000865<p>An explicit alignment may be specified for a global, which must be a power
866 of 2. If not present, or if the alignment is set to zero, the alignment of
867 the global is set by the target to whatever it feels convenient. If an
868 explicit alignment is specified, the global is forced to have exactly that
Chris Lattner4bd85e42010-04-28 00:31:12 +0000869 alignment. Targets and optimizers are not allowed to over-align the global
870 if the global has an assigned section. In this case, the extra alignment
871 could be observable: for example, code could assume that the globals are
872 densely packed in their section and try to iterate over them as an array,
873 alignment padding would break this iteration.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000874
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000875<p>For example, the following defines a global in a numbered address space with
876 an initializer, section, and alignment:</p>
Chris Lattner5760c502007-01-14 00:27:09 +0000877
Benjamin Kramer79698be2010-07-13 12:26:09 +0000878<pre class="doc_code">
Dan Gohmanaaa679b2009-01-11 00:40:00 +0000879@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner5760c502007-01-14 00:27:09 +0000880</pre>
881
Chris Lattner6af02f32004-12-09 16:11:40 +0000882</div>
883
884
885<!-- ======================================================================= -->
886<div class="doc_subsection">
887 <a name="functionstructure">Functions</a>
888</div>
889
890<div class="doc_text">
891
Dan Gohmana269a0a2010-03-01 17:41:39 +0000892<p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000893 optional <a href="#linkage">linkage type</a>, an optional
894 <a href="#visibility">visibility style</a>, an optional
Rafael Espindola45e6c192011-01-08 16:42:36 +0000895 <a href="#callingconv">calling convention</a>,
896 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000897 <a href="#paramattrs">parameter attribute</a> for the return type, a function
898 name, a (possibly empty) argument list (each with optional
899 <a href="#paramattrs">parameter attributes</a>), optional
900 <a href="#fnattrs">function attributes</a>, an optional section, an optional
901 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
902 curly brace, a list of basic blocks, and a closing curly brace.</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000903
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000904<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
905 optional <a href="#linkage">linkage type</a>, an optional
Eric Christopher455c5772009-12-05 02:46:03 +0000906 <a href="#visibility">visibility style</a>, an optional
Rafael Espindola45e6c192011-01-08 16:42:36 +0000907 <a href="#callingconv">calling convention</a>,
908 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000909 <a href="#paramattrs">parameter attribute</a> for the return type, a function
910 name, a possibly empty list of arguments, an optional alignment, and an
911 optional <a href="#gc">garbage collector name</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000912
Chris Lattner67c37d12008-08-05 18:29:16 +0000913<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000914 (Control Flow Graph) for the function. Each basic block may optionally start
915 with a label (giving the basic block a symbol table entry), contains a list
916 of instructions, and ends with a <a href="#terminators">terminator</a>
917 instruction (such as a branch or function return).</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000918
Chris Lattnera59fb102007-06-08 16:52:14 +0000919<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000920 executed on entrance to the function, and it is not allowed to have
921 predecessor basic blocks (i.e. there can not be any branches to the entry
922 block of a function). Because the block can have no predecessors, it also
923 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000924
Chris Lattner662c8722005-11-12 00:45:07 +0000925<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000926 supports it, it will emit functions to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000927
Chris Lattner54611b42005-11-06 08:02:57 +0000928<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000929 the alignment is set to zero, the alignment of the function is set by the
930 target to whatever it feels convenient. If an explicit alignment is
931 specified, the function is forced to have at least that much alignment. All
932 alignments must be a power of 2.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000933
Rafael Espindola45e6c192011-01-08 16:42:36 +0000934<p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
935 be significant and two identical functions can be merged</p>.
936
Bill Wendling30235112009-07-20 02:39:26 +0000937<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000938<pre class="doc_code">
Chris Lattner0ae02092008-10-13 16:55:18 +0000939define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000940 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
941 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
942 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
943 [<a href="#gc">gc</a>] { ... }
944</pre>
Devang Patel02256232008-10-07 17:48:33 +0000945
Chris Lattner6af02f32004-12-09 16:11:40 +0000946</div>
947
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000948<!-- ======================================================================= -->
949<div class="doc_subsection">
950 <a name="aliasstructure">Aliases</a>
951</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000952
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000953<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000954
955<p>Aliases act as "second name" for the aliasee value (which can be either
956 function, global variable, another alias or bitcast of global value). Aliases
957 may have an optional <a href="#linkage">linkage type</a>, and an
958 optional <a href="#visibility">visibility style</a>.</p>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000959
Bill Wendling30235112009-07-20 02:39:26 +0000960<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000961<pre class="doc_code">
Duncan Sands7e99a942008-09-12 20:48:21 +0000962@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000963</pre>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000964
965</div>
966
Chris Lattner91c15c42006-01-23 23:23:47 +0000967<!-- ======================================================================= -->
Devang Pateld1a89692010-01-11 19:35:55 +0000968<div class="doc_subsection">
969 <a name="namedmetadatastructure">Named Metadata</a>
970</div>
971
972<div class="doc_text">
973
Chris Lattnerc2f8f162010-01-15 21:50:19 +0000974<p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
Dan Gohman093cb792010-07-21 18:54:18 +0000975 nodes</a> (but not metadata strings) are the only valid operands for
Chris Lattnerc2f8f162010-01-15 21:50:19 +0000976 a named metadata.</p>
Devang Pateld1a89692010-01-11 19:35:55 +0000977
978<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000979<pre class="doc_code">
Dan Gohman093cb792010-07-21 18:54:18 +0000980; Some unnamed metadata nodes, which are referenced by the named metadata.
981!0 = metadata !{metadata !"zero"}
Devang Pateld1a89692010-01-11 19:35:55 +0000982!1 = metadata !{metadata !"one"}
Dan Gohman093cb792010-07-21 18:54:18 +0000983!2 = metadata !{metadata !"two"}
Dan Gohman58cd65f2010-07-13 19:48:13 +0000984; A named metadata.
Dan Gohman093cb792010-07-21 18:54:18 +0000985!name = !{!0, !1, !2}
Devang Pateld1a89692010-01-11 19:35:55 +0000986</pre>
Devang Pateld1a89692010-01-11 19:35:55 +0000987
988</div>
989
990<!-- ======================================================================= -->
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000991<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000992
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000993<div class="doc_text">
994
995<p>The return type and each parameter of a function type may have a set of
996 <i>parameter attributes</i> associated with them. Parameter attributes are
997 used to communicate additional information about the result or parameters of
998 a function. Parameter attributes are considered to be part of the function,
999 not of the function type, so functions with different parameter attributes
1000 can have the same function type.</p>
1001
1002<p>Parameter attributes are simple keywords that follow the type specified. If
1003 multiple parameter attributes are needed, they are space separated. For
1004 example:</p>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001005
Benjamin Kramer79698be2010-07-13 12:26:09 +00001006<pre class="doc_code">
Nick Lewyckydac78d82009-02-15 23:06:14 +00001007declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattnerd2597d72008-10-04 18:33:34 +00001008declare i32 @atoi(i8 zeroext)
1009declare signext i8 @returns_signed_char()
Bill Wendling3716c5d2007-05-29 09:04:49 +00001010</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001011
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001012<p>Note that any attributes for the function result (<tt>nounwind</tt>,
1013 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001014
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001015<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001016
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001017<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +00001018 <dt><tt><b>zeroext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001019 <dd>This indicates to the code generator that the parameter or return value
1020 should be zero-extended to a 32-bit value by the caller (for a parameter)
1021 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001022
Bill Wendling7f4a3362009-11-02 00:24:16 +00001023 <dt><tt><b>signext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001024 <dd>This indicates to the code generator that the parameter or return value
1025 should be sign-extended to a 32-bit value by the caller (for a parameter)
1026 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001027
Bill Wendling7f4a3362009-11-02 00:24:16 +00001028 <dt><tt><b>inreg</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001029 <dd>This indicates that this parameter or return value should be treated in a
1030 special target-dependent fashion during while emitting code for a function
1031 call or return (usually, by putting it in a register as opposed to memory,
1032 though some targets use it to distinguish between two different kinds of
1033 registers). Use of this attribute is target-specific.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001034
Bill Wendling7f4a3362009-11-02 00:24:16 +00001035 <dt><tt><b><a name="byval">byval</a></b></tt></dt>
Chris Lattnerd78dbee2010-11-20 23:49:06 +00001036 <dd><p>This indicates that the pointer parameter should really be passed by
1037 value to the function. The attribute implies that a hidden copy of the
1038 pointee
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001039 is made between the caller and the callee, so the callee is unable to
1040 modify the value in the callee. This attribute is only valid on LLVM
1041 pointer arguments. It is generally used to pass structs and arrays by
1042 value, but is also valid on pointers to scalars. The copy is considered
1043 to belong to the caller not the callee (for example,
1044 <tt><a href="#readonly">readonly</a></tt> functions should not write to
1045 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnerd78dbee2010-11-20 23:49:06 +00001046 values.</p>
1047
1048 <p>The byval attribute also supports specifying an alignment with
1049 the align attribute. It indicates the alignment of the stack slot to
1050 form and the known alignment of the pointer specified to the call site. If
1051 the alignment is not specified, then the code generator makes a
1052 target-specific assumption.</p></dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001053
Dan Gohman3770af52010-07-02 23:18:08 +00001054 <dt><tt><b><a name="sret">sret</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001055 <dd>This indicates that the pointer parameter specifies the address of a
1056 structure that is the return value of the function in the source program.
1057 This pointer must be guaranteed by the caller to be valid: loads and
1058 stores to the structure may be assumed by the callee to not to trap. This
1059 may only be applied to the first parameter. This is not a valid attribute
1060 for return values. </dd>
1061
Dan Gohman3770af52010-07-02 23:18:08 +00001062 <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
Dan Gohmandf12d082010-07-02 18:41:32 +00001063 <dd>This indicates that pointer values
1064 <a href="#pointeraliasing"><i>based</i></a> on the argument or return
Dan Gohmande256292010-07-02 23:46:54 +00001065 value do not alias pointer values which are not <i>based</i> on it,
1066 ignoring certain "irrelevant" dependencies.
1067 For a call to the parent function, dependencies between memory
1068 references from before or after the call and from those during the call
1069 are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
1070 return value used in that call.
Dan Gohmandf12d082010-07-02 18:41:32 +00001071 The caller shares the responsibility with the callee for ensuring that
1072 these requirements are met.
1073 For further details, please see the discussion of the NoAlias response in
Dan Gohman6c858db2010-07-06 15:26:33 +00001074 <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
1075<br>
John McCall72ed8902010-07-06 21:07:14 +00001076 Note that this definition of <tt>noalias</tt> is intentionally
1077 similar to the definition of <tt>restrict</tt> in C99 for function
Chris Lattner5eff9ca2010-07-06 20:51:35 +00001078 arguments, though it is slightly weaker.
Dan Gohman6c858db2010-07-06 15:26:33 +00001079<br>
1080 For function return values, C99's <tt>restrict</tt> is not meaningful,
1081 while LLVM's <tt>noalias</tt> is.
1082 </dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001083
Dan Gohman3770af52010-07-02 23:18:08 +00001084 <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001085 <dd>This indicates that the callee does not make any copies of the pointer
1086 that outlive the callee itself. This is not a valid attribute for return
1087 values.</dd>
1088
Dan Gohman3770af52010-07-02 23:18:08 +00001089 <dt><tt><b><a name="nest">nest</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001090 <dd>This indicates that the pointer parameter can be excised using the
1091 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1092 attribute for return values.</dd>
1093</dl>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001094
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001095</div>
1096
1097<!-- ======================================================================= -->
Chris Lattner91c15c42006-01-23 23:23:47 +00001098<div class="doc_subsection">
Gordon Henriksen71183b62007-12-10 03:18:06 +00001099 <a name="gc">Garbage Collector Names</a>
1100</div>
1101
1102<div class="doc_text">
Gordon Henriksen71183b62007-12-10 03:18:06 +00001103
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001104<p>Each function may specify a garbage collector name, which is simply a
1105 string:</p>
1106
Benjamin Kramer79698be2010-07-13 12:26:09 +00001107<pre class="doc_code">
Bill Wendling7f4a3362009-11-02 00:24:16 +00001108define void @f() gc "name" { ... }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001109</pre>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001110
1111<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001112 collector which will cause the compiler to alter its output in order to
1113 support the named garbage collection algorithm.</p>
1114
Gordon Henriksen71183b62007-12-10 03:18:06 +00001115</div>
1116
1117<!-- ======================================================================= -->
1118<div class="doc_subsection">
Devang Patel9eb525d2008-09-26 23:51:19 +00001119 <a name="fnattrs">Function Attributes</a>
Devang Patelcaacdba2008-09-04 23:05:13 +00001120</div>
1121
1122<div class="doc_text">
Devang Patel9eb525d2008-09-26 23:51:19 +00001123
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001124<p>Function attributes are set to communicate additional information about a
1125 function. Function attributes are considered to be part of the function, not
1126 of the function type, so functions with different parameter attributes can
1127 have the same function type.</p>
Devang Patel9eb525d2008-09-26 23:51:19 +00001128
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001129<p>Function attributes are simple keywords that follow the type specified. If
1130 multiple attributes are needed, they are space separated. For example:</p>
Devang Patelcaacdba2008-09-04 23:05:13 +00001131
Benjamin Kramer79698be2010-07-13 12:26:09 +00001132<pre class="doc_code">
Devang Patel9eb525d2008-09-26 23:51:19 +00001133define void @f() noinline { ... }
1134define void @f() alwaysinline { ... }
1135define void @f() alwaysinline optsize { ... }
Bill Wendling7f4a3362009-11-02 00:24:16 +00001136define void @f() optsize { ... }
Bill Wendlingb175fa42008-09-07 10:26:33 +00001137</pre>
Devang Patelcaacdba2008-09-04 23:05:13 +00001138
Bill Wendlingb175fa42008-09-07 10:26:33 +00001139<dl>
Charles Davisbe5557e2010-02-12 00:31:15 +00001140 <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1141 <dd>This attribute indicates that, when emitting the prologue and epilogue,
1142 the backend should forcibly align the stack pointer. Specify the
1143 desired alignment, which must be a power of two, in parentheses.
1144
Bill Wendling7f4a3362009-11-02 00:24:16 +00001145 <dt><tt><b>alwaysinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001146 <dd>This attribute indicates that the inliner should attempt to inline this
1147 function into callers whenever possible, ignoring any active inlining size
1148 threshold for this caller.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001149
Charles Davis22fe1862010-10-25 15:37:09 +00001150 <dt><tt><b>hotpatch</b></tt></dt>
Charles Davis1b2d3722010-10-25 16:29:03 +00001151 <dd>This attribute indicates that the function should be 'hotpatchable',
Charles Davis74205252010-10-25 19:07:39 +00001152 meaning the function can be patched and/or hooked even while it is
1153 loaded into memory. On x86, the function prologue will be preceded
1154 by six bytes of padding and will begin with a two-byte instruction.
1155 Most of the functions in the Windows system DLLs in Windows XP SP2 or
1156 higher were compiled in this fashion.</dd>
Charles Davis22fe1862010-10-25 15:37:09 +00001157
Jakob Stoklund Olesen74bb06c2010-02-06 01:16:28 +00001158 <dt><tt><b>inlinehint</b></tt></dt>
1159 <dd>This attribute indicates that the source code contained a hint that inlining
1160 this function is desirable (such as the "inline" keyword in C/C++). It
1161 is just a hint; it imposes no requirements on the inliner.</dd>
1162
Nick Lewycky14b58da2010-07-06 18:24:09 +00001163 <dt><tt><b>naked</b></tt></dt>
1164 <dd>This attribute disables prologue / epilogue emission for the function.
1165 This can have very system-specific consequences.</dd>
1166
1167 <dt><tt><b>noimplicitfloat</b></tt></dt>
1168 <dd>This attributes disables implicit floating point instructions.</dd>
1169
Bill Wendling7f4a3362009-11-02 00:24:16 +00001170 <dt><tt><b>noinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001171 <dd>This attribute indicates that the inliner should never inline this
1172 function in any situation. This attribute may not be used together with
1173 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001174
Nick Lewycky14b58da2010-07-06 18:24:09 +00001175 <dt><tt><b>noredzone</b></tt></dt>
1176 <dd>This attribute indicates that the code generator should not use a red
1177 zone, even if the target-specific ABI normally permits it.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001178
Bill Wendling7f4a3362009-11-02 00:24:16 +00001179 <dt><tt><b>noreturn</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001180 <dd>This function attribute indicates that the function never returns
1181 normally. This produces undefined behavior at runtime if the function
1182 ever does dynamically return.</dd>
Bill Wendlinga8130172008-11-13 01:02:51 +00001183
Bill Wendling7f4a3362009-11-02 00:24:16 +00001184 <dt><tt><b>nounwind</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001185 <dd>This function attribute indicates that the function never returns with an
1186 unwind or exceptional control flow. If the function does unwind, its
1187 runtime behavior is undefined.</dd>
Bill Wendling0f5541e2008-11-26 19:07:40 +00001188
Nick Lewycky14b58da2010-07-06 18:24:09 +00001189 <dt><tt><b>optsize</b></tt></dt>
1190 <dd>This attribute suggests that optimization passes and code generator passes
1191 make choices that keep the code size of this function low, and otherwise
1192 do optimizations specifically to reduce code size.</dd>
1193
Bill Wendling7f4a3362009-11-02 00:24:16 +00001194 <dt><tt><b>readnone</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001195 <dd>This attribute indicates that the function computes its result (or decides
1196 to unwind an exception) based strictly on its arguments, without
1197 dereferencing any pointer arguments or otherwise accessing any mutable
1198 state (e.g. memory, control registers, etc) visible to caller functions.
1199 It does not write through any pointer arguments
1200 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1201 changes any state visible to callers. This means that it cannot unwind
1202 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1203 could use the <tt>unwind</tt> instruction.</dd>
Devang Patel310fd4a2009-06-12 19:45:19 +00001204
Bill Wendling7f4a3362009-11-02 00:24:16 +00001205 <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001206 <dd>This attribute indicates that the function does not write through any
1207 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1208 arguments) or otherwise modify any state (e.g. memory, control registers,
1209 etc) visible to caller functions. It may dereference pointer arguments
1210 and read state that may be set in the caller. A readonly function always
1211 returns the same value (or unwinds an exception identically) when called
1212 with the same set of arguments and global state. It cannot unwind an
1213 exception by calling the <tt>C++</tt> exception throwing methods, but may
1214 use the <tt>unwind</tt> instruction.</dd>
Anton Korobeynikovc8ce7b082009-07-17 18:07:26 +00001215
Bill Wendling7f4a3362009-11-02 00:24:16 +00001216 <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001217 <dd>This attribute indicates that the function should emit a stack smashing
1218 protector. It is in the form of a "canary"&mdash;a random value placed on
1219 the stack before the local variables that's checked upon return from the
1220 function to see if it has been overwritten. A heuristic is used to
1221 determine if a function needs stack protectors or not.<br>
1222<br>
1223 If a function that has an <tt>ssp</tt> attribute is inlined into a
1224 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1225 function will have an <tt>ssp</tt> attribute.</dd>
1226
Bill Wendling7f4a3362009-11-02 00:24:16 +00001227 <dt><tt><b>sspreq</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001228 <dd>This attribute indicates that the function should <em>always</em> emit a
1229 stack smashing protector. This overrides
Bill Wendling30235112009-07-20 02:39:26 +00001230 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1231<br>
1232 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1233 function that doesn't have an <tt>sspreq</tt> attribute or which has
1234 an <tt>ssp</tt> attribute, then the resulting function will have
1235 an <tt>sspreq</tt> attribute.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001236</dl>
1237
Devang Patelcaacdba2008-09-04 23:05:13 +00001238</div>
1239
1240<!-- ======================================================================= -->
1241<div class="doc_subsection">
Chris Lattner93564892006-04-08 04:40:53 +00001242 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner91c15c42006-01-23 23:23:47 +00001243</div>
1244
1245<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001246
1247<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1248 the GCC "file scope inline asm" blocks. These blocks are internally
1249 concatenated by LLVM and treated as a single unit, but may be separated in
1250 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001251
Benjamin Kramer79698be2010-07-13 12:26:09 +00001252<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00001253module asm "inline asm code goes here"
1254module asm "more can go here"
1255</pre>
Chris Lattner91c15c42006-01-23 23:23:47 +00001256
1257<p>The strings can contain any character by escaping non-printable characters.
1258 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001259 for the number.</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001260
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001261<p>The inline asm code is simply printed to the machine code .s file when
1262 assembly code is generated.</p>
1263
Chris Lattner91c15c42006-01-23 23:23:47 +00001264</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001265
Reid Spencer50c723a2007-02-19 23:54:10 +00001266<!-- ======================================================================= -->
1267<div class="doc_subsection">
1268 <a name="datalayout">Data Layout</a>
1269</div>
1270
1271<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001272
Reid Spencer50c723a2007-02-19 23:54:10 +00001273<p>A module may specify a target specific data layout string that specifies how
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001274 data is to be laid out in memory. The syntax for the data layout is
1275 simply:</p>
1276
Benjamin Kramer79698be2010-07-13 12:26:09 +00001277<pre class="doc_code">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001278target datalayout = "<i>layout specification</i>"
1279</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001280
1281<p>The <i>layout specification</i> consists of a list of specifications
1282 separated by the minus sign character ('-'). Each specification starts with
1283 a letter and may include other information after the letter to define some
1284 aspect of the data layout. The specifications accepted are as follows:</p>
1285
Reid Spencer50c723a2007-02-19 23:54:10 +00001286<dl>
1287 <dt><tt>E</tt></dt>
1288 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001289 bits with the most significance have the lowest address location.</dd>
1290
Reid Spencer50c723a2007-02-19 23:54:10 +00001291 <dt><tt>e</tt></dt>
Chris Lattner67c37d12008-08-05 18:29:16 +00001292 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001293 the bits with the least significance have the lowest address
1294 location.</dd>
1295
Reid Spencer50c723a2007-02-19 23:54:10 +00001296 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001297 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001298 <i>preferred</i> alignments. All sizes are in bits. Specifying
1299 the <i>pref</i> alignment is optional. If omitted, the
1300 preceding <tt>:</tt> should be omitted too.</dd>
1301
Reid Spencer50c723a2007-02-19 23:54:10 +00001302 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1303 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001304 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1305
Reid Spencer50c723a2007-02-19 23:54:10 +00001306 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001307 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001308 <i>size</i>.</dd>
1309
Reid Spencer50c723a2007-02-19 23:54:10 +00001310 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001311 <dd>This specifies the alignment for a floating point type of a given bit
Dale Johannesence522852010-05-28 18:54:47 +00001312 <i>size</i>. Only values of <i>size</i> that are supported by the target
1313 will work. 32 (float) and 64 (double) are supported on all targets;
1314 80 or 128 (different flavors of long double) are also supported on some
1315 targets.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001316
Reid Spencer50c723a2007-02-19 23:54:10 +00001317 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1318 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001319 <i>size</i>.</dd>
1320
Daniel Dunbar7921a592009-06-08 22:17:53 +00001321 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1322 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001323 <i>size</i>.</dd>
Chris Lattnera381eff2009-11-07 09:35:34 +00001324
1325 <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1326 <dd>This specifies a set of native integer widths for the target CPU
1327 in bits. For example, it might contain "n32" for 32-bit PowerPC,
1328 "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64. Elements of
Eric Christopher455c5772009-12-05 02:46:03 +00001329 this set are considered to support most general arithmetic
Chris Lattnera381eff2009-11-07 09:35:34 +00001330 operations efficiently.</dd>
Reid Spencer50c723a2007-02-19 23:54:10 +00001331</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001332
Reid Spencer50c723a2007-02-19 23:54:10 +00001333<p>When constructing the data layout for a given target, LLVM starts with a
Dan Gohman61110ae2010-04-28 00:36:01 +00001334 default set of specifications which are then (possibly) overridden by the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001335 specifications in the <tt>datalayout</tt> keyword. The default specifications
1336 are given in this list:</p>
1337
Reid Spencer50c723a2007-02-19 23:54:10 +00001338<ul>
1339 <li><tt>E</tt> - big endian</li>
Dan Gohman8ad777d2010-02-23 02:44:03 +00001340 <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001341 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1342 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1343 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1344 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner67c37d12008-08-05 18:29:16 +00001345 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencer50c723a2007-02-19 23:54:10 +00001346 alignment of 64-bits</li>
1347 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1348 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1349 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1350 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1351 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar7921a592009-06-08 22:17:53 +00001352 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001353</ul>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001354
1355<p>When LLVM is determining the alignment for a given type, it uses the
1356 following rules:</p>
1357
Reid Spencer50c723a2007-02-19 23:54:10 +00001358<ol>
1359 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001360 specification is used.</li>
1361
Reid Spencer50c723a2007-02-19 23:54:10 +00001362 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001363 smallest integer type that is larger than the bitwidth of the sought type
1364 is used. If none of the specifications are larger than the bitwidth then
1365 the the largest integer type is used. For example, given the default
1366 specifications above, the i7 type will use the alignment of i8 (next
1367 largest) while both i65 and i256 will use the alignment of i64 (largest
1368 specified).</li>
1369
Reid Spencer50c723a2007-02-19 23:54:10 +00001370 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001371 largest vector type that is smaller than the sought vector type will be
1372 used as a fall back. This happens because &lt;128 x double&gt; can be
1373 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001374</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001375
Reid Spencer50c723a2007-02-19 23:54:10 +00001376</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001377
Dan Gohman6154a012009-07-27 18:07:55 +00001378<!-- ======================================================================= -->
1379<div class="doc_subsection">
1380 <a name="pointeraliasing">Pointer Aliasing Rules</a>
1381</div>
1382
1383<div class="doc_text">
1384
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001385<p>Any memory access must be done through a pointer value associated
Andreas Bolkae39f0332009-07-27 20:37:10 +00001386with an address range of the memory access, otherwise the behavior
Dan Gohman6154a012009-07-27 18:07:55 +00001387is undefined. Pointer values are associated with address ranges
1388according to the following rules:</p>
1389
1390<ul>
Dan Gohmandf12d082010-07-02 18:41:32 +00001391 <li>A pointer value is associated with the addresses associated with
1392 any value it is <i>based</i> on.
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001393 <li>An address of a global variable is associated with the address
Dan Gohman6154a012009-07-27 18:07:55 +00001394 range of the variable's storage.</li>
1395 <li>The result value of an allocation instruction is associated with
1396 the address range of the allocated storage.</li>
1397 <li>A null pointer in the default address-space is associated with
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001398 no address.</li>
Dan Gohman6154a012009-07-27 18:07:55 +00001399 <li>An integer constant other than zero or a pointer value returned
1400 from a function not defined within LLVM may be associated with address
1401 ranges allocated through mechanisms other than those provided by
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001402 LLVM. Such ranges shall not overlap with any ranges of addresses
Dan Gohman6154a012009-07-27 18:07:55 +00001403 allocated by mechanisms provided by LLVM.</li>
Dan Gohmandf12d082010-07-02 18:41:32 +00001404</ul>
1405
1406<p>A pointer value is <i>based</i> on another pointer value according
1407 to the following rules:</p>
1408
1409<ul>
1410 <li>A pointer value formed from a
1411 <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
1412 is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
1413 <li>The result value of a
1414 <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
1415 of the <tt>bitcast</tt>.</li>
1416 <li>A pointer value formed by an
1417 <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
1418 pointer values that contribute (directly or indirectly) to the
1419 computation of the pointer's value.</li>
1420 <li>The "<i>based</i> on" relationship is transitive.</li>
1421</ul>
1422
1423<p>Note that this definition of <i>"based"</i> is intentionally
1424 similar to the definition of <i>"based"</i> in C99, though it is
1425 slightly weaker.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001426
1427<p>LLVM IR does not associate types with memory. The result type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001428<tt><a href="#i_load">load</a></tt> merely indicates the size and
1429alignment of the memory from which to load, as well as the
Dan Gohman4eb47192010-06-17 19:23:50 +00001430interpretation of the value. The first operand type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001431<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1432and alignment of the store.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001433
1434<p>Consequently, type-based alias analysis, aka TBAA, aka
1435<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1436LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1437additional information which specialized optimization passes may use
1438to implement type-based alias analysis.</p>
1439
1440</div>
1441
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001442<!-- ======================================================================= -->
1443<div class="doc_subsection">
1444 <a name="volatile">Volatile Memory Accesses</a>
1445</div>
1446
1447<div class="doc_text">
1448
1449<p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
1450href="#i_store"><tt>store</tt></a>s, and <a
1451href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
1452The optimizers must not change the number of volatile operations or change their
1453order of execution relative to other volatile operations. The optimizers
1454<i>may</i> change the order of volatile operations relative to non-volatile
1455operations. This is not Java's "volatile" and has no cross-thread
1456synchronization behavior.</p>
1457
1458</div>
1459
Chris Lattner2f7c9632001-06-06 20:29:01 +00001460<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001461<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1462<!-- *********************************************************************** -->
Chris Lattner6af02f32004-12-09 16:11:40 +00001463
Misha Brukman76307852003-11-08 01:05:38 +00001464<div class="doc_text">
Chris Lattner6af02f32004-12-09 16:11:40 +00001465
Misha Brukman76307852003-11-08 01:05:38 +00001466<p>The LLVM type system is one of the most important features of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001467 intermediate representation. Being typed enables a number of optimizations
1468 to be performed on the intermediate representation directly, without having
1469 to do extra analyses on the side before the transformation. A strong type
1470 system makes it easier to read the generated code and enables novel analyses
1471 and transformations that are not feasible to perform on normal three address
1472 code representations.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +00001473
1474</div>
1475
Chris Lattner2f7c9632001-06-06 20:29:01 +00001476<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001477<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner48b383b02003-11-25 01:02:51 +00001478Classifications</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001479
Misha Brukman76307852003-11-08 01:05:38 +00001480<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001481
1482<p>The types fall into a few useful classifications:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +00001483
1484<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00001485 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001486 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001487 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001488 <td><a href="#t_integer">integer</a></td>
Reid Spencer138249b2007-05-16 18:44:01 +00001489 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001490 </tr>
1491 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001492 <td><a href="#t_floating">floating point</a></td>
1493 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001494 </tr>
1495 <tr>
1496 <td><a name="t_firstclass">first class</a></td>
Chris Lattner7824d182008-01-04 04:32:38 +00001497 <td><a href="#t_integer">integer</a>,
1498 <a href="#t_floating">floating point</a>,
1499 <a href="#t_pointer">pointer</a>,
Dan Gohman08783a882008-06-18 18:42:13 +00001500 <a href="#t_vector">vector</a>,
Dan Gohmanb9d66602008-05-12 23:51:09 +00001501 <a href="#t_struct">structure</a>,
1502 <a href="#t_array">array</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001503 <a href="#t_label">label</a>,
1504 <a href="#t_metadata">metadata</a>.
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001505 </td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001506 </tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001507 <tr>
1508 <td><a href="#t_primitive">primitive</a></td>
1509 <td><a href="#t_label">label</a>,
1510 <a href="#t_void">void</a>,
Tobias Grosser4c8c95b2010-12-28 20:29:31 +00001511 <a href="#t_integer">integer</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001512 <a href="#t_floating">floating point</a>,
Dale Johannesen33e5c352010-10-01 00:48:59 +00001513 <a href="#t_x86mmx">x86mmx</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001514 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner7824d182008-01-04 04:32:38 +00001515 </tr>
1516 <tr>
1517 <td><a href="#t_derived">derived</a></td>
Chris Lattner392be582010-02-12 20:49:41 +00001518 <td><a href="#t_array">array</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001519 <a href="#t_function">function</a>,
1520 <a href="#t_pointer">pointer</a>,
1521 <a href="#t_struct">structure</a>,
1522 <a href="#t_pstruct">packed structure</a>,
1523 <a href="#t_vector">vector</a>,
1524 <a href="#t_opaque">opaque</a>.
Dan Gohman93bf60d2008-10-14 16:32:04 +00001525 </td>
Chris Lattner7824d182008-01-04 04:32:38 +00001526 </tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001527 </tbody>
Misha Brukman76307852003-11-08 01:05:38 +00001528</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001529
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001530<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1531 important. Values of these types are the only ones which can be produced by
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001532 instructions.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001533
Misha Brukman76307852003-11-08 01:05:38 +00001534</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001535
Chris Lattner2f7c9632001-06-06 20:29:01 +00001536<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001537<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner43542b32008-01-04 04:34:14 +00001538
Chris Lattner7824d182008-01-04 04:32:38 +00001539<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001540
Chris Lattner7824d182008-01-04 04:32:38 +00001541<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001542 system.</p>
Chris Lattner7824d182008-01-04 04:32:38 +00001543
Chris Lattner43542b32008-01-04 04:34:14 +00001544</div>
1545
Chris Lattner7824d182008-01-04 04:32:38 +00001546<!-- _______________________________________________________________________ -->
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001547<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1548
1549<div class="doc_text">
1550
1551<h5>Overview:</h5>
1552<p>The integer type is a very simple type that simply specifies an arbitrary
1553 bit width for the integer type desired. Any bit width from 1 bit to
1554 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1555
1556<h5>Syntax:</h5>
1557<pre>
1558 iN
1559</pre>
1560
1561<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1562 value.</p>
1563
1564<h5>Examples:</h5>
1565<table class="layout">
1566 <tr class="layout">
1567 <td class="left"><tt>i1</tt></td>
1568 <td class="left">a single-bit integer.</td>
1569 </tr>
1570 <tr class="layout">
1571 <td class="left"><tt>i32</tt></td>
1572 <td class="left">a 32-bit integer.</td>
1573 </tr>
1574 <tr class="layout">
1575 <td class="left"><tt>i1942652</tt></td>
1576 <td class="left">a really big integer of over 1 million bits.</td>
1577 </tr>
1578</table>
1579
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001580</div>
1581
1582<!-- _______________________________________________________________________ -->
Chris Lattner7824d182008-01-04 04:32:38 +00001583<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1584
1585<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001586
1587<table>
1588 <tbody>
1589 <tr><th>Type</th><th>Description</th></tr>
1590 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1591 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1592 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1593 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1594 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1595 </tbody>
1596</table>
1597
Chris Lattner7824d182008-01-04 04:32:38 +00001598</div>
1599
1600<!-- _______________________________________________________________________ -->
Dale Johannesen33e5c352010-10-01 00:48:59 +00001601<div class="doc_subsubsection"> <a name="t_x86mmx">X86mmx Type</a> </div>
1602
1603<div class="doc_text">
1604
1605<h5>Overview:</h5>
1606<p>The x86mmx type represents a value held in an MMX register on an x86 machine. The operations allowed on it are quite limited: parameters and return values, load and store, and bitcast. User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type. There are no arrays, vectors or constants of this type.</p>
1607
1608<h5>Syntax:</h5>
1609<pre>
Dale Johannesenb1f0ff12010-10-01 01:07:02 +00001610 x86mmx
Dale Johannesen33e5c352010-10-01 00:48:59 +00001611</pre>
1612
1613</div>
1614
1615<!-- _______________________________________________________________________ -->
Chris Lattner7824d182008-01-04 04:32:38 +00001616<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1617
1618<div class="doc_text">
Bill Wendling30235112009-07-20 02:39:26 +00001619
Chris Lattner7824d182008-01-04 04:32:38 +00001620<h5>Overview:</h5>
1621<p>The void type does not represent any value and has no size.</p>
1622
1623<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001624<pre>
1625 void
1626</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001627
Chris Lattner7824d182008-01-04 04:32:38 +00001628</div>
1629
1630<!-- _______________________________________________________________________ -->
1631<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1632
1633<div class="doc_text">
Bill Wendling30235112009-07-20 02:39:26 +00001634
Chris Lattner7824d182008-01-04 04:32:38 +00001635<h5>Overview:</h5>
1636<p>The label type represents code labels.</p>
1637
1638<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001639<pre>
1640 label
1641</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001642
Chris Lattner7824d182008-01-04 04:32:38 +00001643</div>
1644
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001645<!-- _______________________________________________________________________ -->
1646<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1647
1648<div class="doc_text">
Bill Wendling30235112009-07-20 02:39:26 +00001649
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001650<h5>Overview:</h5>
Nick Lewycky93e06a52009-09-27 23:27:42 +00001651<p>The metadata type represents embedded metadata. No derived types may be
1652 created from metadata except for <a href="#t_function">function</a>
1653 arguments.
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001654
1655<h5>Syntax:</h5>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001656<pre>
1657 metadata
1658</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001659
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001660</div>
1661
Chris Lattner7824d182008-01-04 04:32:38 +00001662
1663<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001664<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001665
Misha Brukman76307852003-11-08 01:05:38 +00001666<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001667
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001668<p>The real power in LLVM comes from the derived types in the system. This is
1669 what allows a programmer to represent arrays, functions, pointers, and other
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001670 useful types. Each of these types contain one or more element types which
1671 may be a primitive type, or another derived type. For example, it is
1672 possible to have a two dimensional array, using an array as the element type
1673 of another array.</p>
Dan Gohman142ccc02009-01-24 15:58:40 +00001674
Chris Lattner392be582010-02-12 20:49:41 +00001675
1676</div>
1677
1678<!-- _______________________________________________________________________ -->
1679<div class="doc_subsubsection"> <a name="t_aggregate">Aggregate Types</a> </div>
1680
1681<div class="doc_text">
1682
1683<p>Aggregate Types are a subset of derived types that can contain multiple
1684 member types. <a href="#t_array">Arrays</a>,
Chris Lattner13ee7952010-08-28 04:09:24 +00001685 <a href="#t_struct">structs</a>, and <a href="#t_vector">vectors</a> are
1686 aggregate types.</p>
Chris Lattner392be582010-02-12 20:49:41 +00001687
1688</div>
1689
Reid Spencer138249b2007-05-16 18:44:01 +00001690<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001691<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001692
Misha Brukman76307852003-11-08 01:05:38 +00001693<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001694
Chris Lattner2f7c9632001-06-06 20:29:01 +00001695<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001696<p>The array type is a very simple derived type that arranges elements
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001697 sequentially in memory. The array type requires a size (number of elements)
1698 and an underlying data type.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001699
Chris Lattner590645f2002-04-14 06:13:44 +00001700<h5>Syntax:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001701<pre>
1702 [&lt;# elements&gt; x &lt;elementtype&gt;]
1703</pre>
1704
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001705<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1706 be any type with a size.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001707
Chris Lattner590645f2002-04-14 06:13:44 +00001708<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001709<table class="layout">
1710 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001711 <td class="left"><tt>[40 x i32]</tt></td>
1712 <td class="left">Array of 40 32-bit integer values.</td>
1713 </tr>
1714 <tr class="layout">
1715 <td class="left"><tt>[41 x i32]</tt></td>
1716 <td class="left">Array of 41 32-bit integer values.</td>
1717 </tr>
1718 <tr class="layout">
1719 <td class="left"><tt>[4 x i8]</tt></td>
1720 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001721 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001722</table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001723<p>Here are some examples of multidimensional arrays:</p>
1724<table class="layout">
1725 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001726 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1727 <td class="left">3x4 array of 32-bit integer values.</td>
1728 </tr>
1729 <tr class="layout">
1730 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1731 <td class="left">12x10 array of single precision floating point values.</td>
1732 </tr>
1733 <tr class="layout">
1734 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1735 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001736 </tr>
1737</table>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001738
Dan Gohmanc74bc282009-11-09 19:01:53 +00001739<p>There is no restriction on indexing beyond the end of the array implied by
1740 a static type (though there are restrictions on indexing beyond the bounds
1741 of an allocated object in some cases). This means that single-dimension
1742 'variable sized array' addressing can be implemented in LLVM with a zero
1743 length array type. An implementation of 'pascal style arrays' in LLVM could
1744 use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001745
Misha Brukman76307852003-11-08 01:05:38 +00001746</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001747
Chris Lattner2f7c9632001-06-06 20:29:01 +00001748<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001749<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001750
Misha Brukman76307852003-11-08 01:05:38 +00001751<div class="doc_text">
Chris Lattnerda508ac2008-04-23 04:59:35 +00001752
Chris Lattner2f7c9632001-06-06 20:29:01 +00001753<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001754<p>The function type can be thought of as a function signature. It consists of
1755 a return type and a list of formal parameter types. The return type of a
Chris Lattner13ee7952010-08-28 04:09:24 +00001756 function type is a first class type or a void type.</p>
Devang Pateld6cff512008-03-10 20:49:15 +00001757
Chris Lattner2f7c9632001-06-06 20:29:01 +00001758<h5>Syntax:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001759<pre>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00001760 &lt;returntype&gt; (&lt;parameter list&gt;)
Chris Lattnerda508ac2008-04-23 04:59:35 +00001761</pre>
1762
John Criswell4c0cf7f2005-10-24 16:17:18 +00001763<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001764 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1765 which indicates that the function takes a variable number of arguments.
1766 Variable argument functions can access their arguments with
1767 the <a href="#int_varargs">variable argument handling intrinsic</a>
Chris Lattner47f2a832010-03-02 06:36:51 +00001768 functions. '<tt>&lt;returntype&gt;</tt>' is any type except
Nick Lewycky93e06a52009-09-27 23:27:42 +00001769 <a href="#t_label">label</a>.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001770
Chris Lattner2f7c9632001-06-06 20:29:01 +00001771<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001772<table class="layout">
1773 <tr class="layout">
Reid Spencer58c08712006-12-31 07:18:34 +00001774 <td class="left"><tt>i32 (i32)</tt></td>
1775 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001776 </td>
Reid Spencer58c08712006-12-31 07:18:34 +00001777 </tr><tr class="layout">
Chris Lattner47f2a832010-03-02 06:36:51 +00001778 <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencer655dcc62006-12-31 07:20:23 +00001779 </tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00001780 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
Chris Lattner47f2a832010-03-02 06:36:51 +00001781 an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
1782 returning <tt>float</tt>.
Reid Spencer58c08712006-12-31 07:18:34 +00001783 </td>
1784 </tr><tr class="layout">
1785 <td class="left"><tt>i32 (i8*, ...)</tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00001786 <td class="left">A vararg function that takes at least one
1787 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1788 which returns an integer. This is the signature for <tt>printf</tt> in
Reid Spencer58c08712006-12-31 07:18:34 +00001789 LLVM.
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001790 </td>
Devang Patele3dfc1c2008-03-24 05:35:41 +00001791 </tr><tr class="layout">
1792 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00001793 <td class="left">A function taking an <tt>i32</tt>, returning a
1794 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
Devang Patele3dfc1c2008-03-24 05:35:41 +00001795 </td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001796 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001797</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001798
Misha Brukman76307852003-11-08 01:05:38 +00001799</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001800
Chris Lattner2f7c9632001-06-06 20:29:01 +00001801<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001802<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001803
Misha Brukman76307852003-11-08 01:05:38 +00001804<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001805
Chris Lattner2f7c9632001-06-06 20:29:01 +00001806<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001807<p>The structure type is used to represent a collection of data members together
1808 in memory. The packing of the field types is defined to match the ABI of the
1809 underlying processor. The elements of a structure may be any type that has a
1810 size.</p>
1811
Jeffrey Yasskinf991bbb2010-01-11 19:19:26 +00001812<p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
1813 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
1814 with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
1815 Structures in registers are accessed using the
1816 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
1817 '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001818<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00001819<pre>
1820 { &lt;type list&gt; }
1821</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001822
Chris Lattner2f7c9632001-06-06 20:29:01 +00001823<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001824<table class="layout">
1825 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001826 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1827 <td class="left">A triple of three <tt>i32</tt> values</td>
1828 </tr><tr class="layout">
1829 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1830 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1831 second element is a <a href="#t_pointer">pointer</a> to a
1832 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1833 an <tt>i32</tt>.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001834 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001835</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001836
Misha Brukman76307852003-11-08 01:05:38 +00001837</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001838
Chris Lattner2f7c9632001-06-06 20:29:01 +00001839<!-- _______________________________________________________________________ -->
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001840<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1841</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001842
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001843<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001844
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001845<h5>Overview:</h5>
1846<p>The packed structure type is used to represent a collection of data members
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001847 together in memory. There is no padding between fields. Further, the
1848 alignment of a packed structure is 1 byte. The elements of a packed
1849 structure may be any type that has a size.</p>
1850
1851<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1852 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1853 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1854
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001855<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00001856<pre>
1857 &lt; { &lt;type list&gt; } &gt;
1858</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001859
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001860<h5>Examples:</h5>
1861<table class="layout">
1862 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001863 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1864 <td class="left">A triple of three <tt>i32</tt> values</td>
1865 </tr><tr class="layout">
Bill Wendlingb175fa42008-09-07 10:26:33 +00001866 <td class="left">
1867<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen5819f182007-04-22 01:17:39 +00001868 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1869 second element is a <a href="#t_pointer">pointer</a> to a
1870 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1871 an <tt>i32</tt>.</td>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001872 </tr>
1873</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001874
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001875</div>
1876
1877<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001878<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Chris Lattner4a67c912009-02-08 19:53:29 +00001879
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001880<div class="doc_text">
1881
1882<h5>Overview:</h5>
Dan Gohman88481112010-02-25 16:50:07 +00001883<p>The pointer type is used to specify memory locations.
1884 Pointers are commonly used to reference objects in memory.</p>
1885
1886<p>Pointer types may have an optional address space attribute defining the
1887 numbered address space where the pointed-to object resides. The default
1888 address space is number zero. The semantics of non-zero address
1889 spaces are target-specific.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001890
1891<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
1892 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00001893
Chris Lattner590645f2002-04-14 06:13:44 +00001894<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00001895<pre>
1896 &lt;type&gt; *
1897</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001898
Chris Lattner590645f2002-04-14 06:13:44 +00001899<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001900<table class="layout">
1901 <tr class="layout">
Dan Gohman623806e2009-01-04 23:44:43 +00001902 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00001903 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1904 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1905 </tr>
1906 <tr class="layout">
Dan Gohmanaabfdb32010-05-28 17:13:49 +00001907 <td class="left"><tt>i32 (i32*) *</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00001908 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001909 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner747359f2007-12-19 05:04:11 +00001910 <tt>i32</tt>.</td>
1911 </tr>
1912 <tr class="layout">
1913 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1914 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1915 that resides in address space #5.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001916 </tr>
Misha Brukman76307852003-11-08 01:05:38 +00001917</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001918
Misha Brukman76307852003-11-08 01:05:38 +00001919</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001920
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001921<!-- _______________________________________________________________________ -->
Reid Spencer404a3252007-02-15 03:07:05 +00001922<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001923
Misha Brukman76307852003-11-08 01:05:38 +00001924<div class="doc_text">
Chris Lattner37b6b092005-04-25 17:34:15 +00001925
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001926<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001927<p>A vector type is a simple derived type that represents a vector of elements.
1928 Vector types are used when multiple primitive data are operated in parallel
1929 using a single instruction (SIMD). A vector type requires a size (number of
Duncan Sands31c0e0e2009-11-27 13:38:03 +00001930 elements) and an underlying primitive data type. Vector types are considered
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001931 <a href="#t_firstclass">first class</a>.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001932
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001933<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001934<pre>
1935 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1936</pre>
1937
Chris Lattnerf11031a2010-10-10 18:20:35 +00001938<p>The number of elements is a constant integer value larger than 0; elementtype
1939 may be any integer or floating point type. Vectors of size zero are not
1940 allowed, and pointers are not allowed as the element type.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001941
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001942<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001943<table class="layout">
1944 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001945 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1946 <td class="left">Vector of 4 32-bit integer values.</td>
1947 </tr>
1948 <tr class="layout">
1949 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1950 <td class="left">Vector of 8 32-bit floating-point values.</td>
1951 </tr>
1952 <tr class="layout">
1953 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1954 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001955 </tr>
1956</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001957
Misha Brukman76307852003-11-08 01:05:38 +00001958</div>
1959
Chris Lattner37b6b092005-04-25 17:34:15 +00001960<!-- _______________________________________________________________________ -->
1961<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1962<div class="doc_text">
1963
1964<h5>Overview:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001965<p>Opaque types are used to represent unknown types in the system. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001966 corresponds (for example) to the C notion of a forward declared structure
1967 type. In LLVM, opaque types can eventually be resolved to any type (not just
1968 a structure type).</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001969
1970<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001971<pre>
1972 opaque
1973</pre>
1974
1975<h5>Examples:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001976<table class="layout">
1977 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001978 <td class="left"><tt>opaque</tt></td>
1979 <td class="left">An opaque type.</td>
Chris Lattner37b6b092005-04-25 17:34:15 +00001980 </tr>
1981</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001982
Chris Lattner37b6b092005-04-25 17:34:15 +00001983</div>
1984
Chris Lattnercf7a5842009-02-02 07:32:36 +00001985<!-- ======================================================================= -->
1986<div class="doc_subsection">
1987 <a name="t_uprefs">Type Up-references</a>
1988</div>
1989
1990<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001991
Chris Lattnercf7a5842009-02-02 07:32:36 +00001992<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001993<p>An "up reference" allows you to refer to a lexically enclosing type without
1994 requiring it to have a name. For instance, a structure declaration may
1995 contain a pointer to any of the types it is lexically a member of. Example
1996 of up references (with their equivalent as named type declarations)
1997 include:</p>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001998
1999<pre>
Chris Lattnerbf1d5452009-02-09 10:00:56 +00002000 { \2 * } %x = type { %x* }
Chris Lattnercf7a5842009-02-02 07:32:36 +00002001 { \2 }* %y = type { %y }*
2002 \1* %z = type %z*
2003</pre>
2004
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002005<p>An up reference is needed by the asmprinter for printing out cyclic types
2006 when there is no declared name for a type in the cycle. Because the
2007 asmprinter does not want to print out an infinite type string, it needs a
2008 syntax to handle recursive types that have no names (all names are optional
2009 in llvm IR).</p>
Chris Lattnercf7a5842009-02-02 07:32:36 +00002010
2011<h5>Syntax:</h5>
2012<pre>
2013 \&lt;level&gt;
2014</pre>
2015
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002016<p>The level is the count of the lexical type that is being referred to.</p>
Chris Lattnercf7a5842009-02-02 07:32:36 +00002017
2018<h5>Examples:</h5>
Chris Lattnercf7a5842009-02-02 07:32:36 +00002019<table class="layout">
2020 <tr class="layout">
2021 <td class="left"><tt>\1*</tt></td>
2022 <td class="left">Self-referential pointer.</td>
2023 </tr>
2024 <tr class="layout">
2025 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
2026 <td class="left">Recursive structure where the upref refers to the out-most
2027 structure.</td>
2028 </tr>
2029</table>
Chris Lattnercf7a5842009-02-02 07:32:36 +00002030
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002031</div>
Chris Lattner37b6b092005-04-25 17:34:15 +00002032
Chris Lattner74d3f822004-12-09 17:30:23 +00002033<!-- *********************************************************************** -->
2034<div class="doc_section"> <a name="constants">Constants</a> </div>
2035<!-- *********************************************************************** -->
2036
2037<div class="doc_text">
2038
2039<p>LLVM has several different basic types of constants. This section describes
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002040 them all and their syntax.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002041
2042</div>
2043
2044<!-- ======================================================================= -->
Reid Spencer8f08d802004-12-09 18:02:53 +00002045<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002046
2047<div class="doc_text">
2048
2049<dl>
2050 <dt><b>Boolean constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002051 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00002052 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002053
2054 <dt><b>Integer constants</b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002055 <dd>Standard integers (such as '4') are constants of
2056 the <a href="#t_integer">integer</a> type. Negative numbers may be used
2057 with integer types.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002058
2059 <dt><b>Floating point constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002060 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002061 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2062 notation (see below). The assembler requires the exact decimal value of a
2063 floating-point constant. For example, the assembler accepts 1.25 but
2064 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
2065 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002066
2067 <dt><b>Null pointer constants</b></dt>
John Criswelldfe6a862004-12-10 15:51:16 +00002068 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002069 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002070</dl>
2071
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002072<p>The one non-intuitive notation for constants is the hexadecimal form of
2073 floating point constants. For example, the form '<tt>double
2074 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2075 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
2076 constants are required (and the only time that they are generated by the
2077 disassembler) is when a floating point constant must be emitted but it cannot
2078 be represented as a decimal floating point number in a reasonable number of
2079 digits. For example, NaN's, infinities, and other special values are
2080 represented in their IEEE hexadecimal format so that assembly and disassembly
2081 do not cause any bits to change in the constants.</p>
2082
Dale Johannesencd4a3012009-02-11 22:14:51 +00002083<p>When using the hexadecimal form, constants of types float and double are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002084 represented using the 16-digit form shown above (which matches the IEEE754
2085 representation for double); float values must, however, be exactly
2086 representable as IEE754 single precision. Hexadecimal format is always used
2087 for long double, and there are three forms of long double. The 80-bit format
2088 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2089 The 128-bit format used by PowerPC (two adjacent doubles) is represented
2090 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
2091 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2092 currently supported target uses this format. Long doubles will only work if
2093 they match the long double format on your target. All hexadecimal formats
2094 are big-endian (sign bit at the left).</p>
2095
Dale Johannesen33e5c352010-10-01 00:48:59 +00002096<p>There are no constants of type x86mmx.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002097</div>
2098
2099<!-- ======================================================================= -->
Chris Lattner361bfcd2009-02-28 18:32:25 +00002100<div class="doc_subsection">
Bill Wendling972b7202009-07-20 02:32:41 +00002101<a name="aggregateconstants"></a> <!-- old anchor -->
2102<a name="complexconstants">Complex Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +00002103</div>
2104
2105<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002106
Chris Lattner361bfcd2009-02-28 18:32:25 +00002107<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002108 constants and smaller complex constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002109
2110<dl>
2111 <dt><b>Structure constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002112 <dd>Structure constants are represented with notation similar to structure
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002113 type definitions (a comma separated list of elements, surrounded by braces
2114 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2115 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2116 Structure constants must have <a href="#t_struct">structure type</a>, and
2117 the number and types of elements must match those specified by the
2118 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002119
2120 <dt><b>Array constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002121 <dd>Array constants are represented with notation similar to array type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002122 definitions (a comma separated list of elements, surrounded by square
2123 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
2124 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
2125 the number and types of elements must match those specified by the
2126 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002127
Reid Spencer404a3252007-02-15 03:07:05 +00002128 <dt><b>Vector constants</b></dt>
Reid Spencer404a3252007-02-15 03:07:05 +00002129 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002130 definitions (a comma separated list of elements, surrounded by
2131 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
2132 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
2133 have <a href="#t_vector">vector type</a>, and the number and types of
2134 elements must match those specified by the type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002135
2136 <dt><b>Zero initialization</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002137 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Chris Lattner392be582010-02-12 20:49:41 +00002138 value to zero of <em>any</em> type, including scalar and
2139 <a href="#t_aggregate">aggregate</a> types.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002140 This is often used to avoid having to print large zero initializers
2141 (e.g. for large arrays) and is always exactly equivalent to using explicit
2142 zero initializers.</dd>
Nick Lewycky49f89192009-04-04 07:22:01 +00002143
2144 <dt><b>Metadata node</b></dt>
Nick Lewycky8e2c4f42009-05-30 16:08:30 +00002145 <dd>A metadata node is a structure-like constant with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002146 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
2147 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
2148 be interpreted as part of the instruction stream, metadata is a place to
2149 attach additional information such as debug info.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002150</dl>
2151
2152</div>
2153
2154<!-- ======================================================================= -->
2155<div class="doc_subsection">
2156 <a name="globalconstants">Global Variable and Function Addresses</a>
2157</div>
2158
2159<div class="doc_text">
2160
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002161<p>The addresses of <a href="#globalvars">global variables</a>
2162 and <a href="#functionstructure">functions</a> are always implicitly valid
2163 (link-time) constants. These constants are explicitly referenced when
2164 the <a href="#identifiers">identifier for the global</a> is used and always
2165 have <a href="#t_pointer">pointer</a> type. For example, the following is a
2166 legal LLVM file:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002167
Benjamin Kramer79698be2010-07-13 12:26:09 +00002168<pre class="doc_code">
Chris Lattner00538a12007-06-06 18:28:13 +00002169@X = global i32 17
2170@Y = global i32 42
2171@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattner74d3f822004-12-09 17:30:23 +00002172</pre>
2173
2174</div>
2175
2176<!-- ======================================================================= -->
Reid Spencer641f5c92004-12-09 18:13:12 +00002177<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002178<div class="doc_text">
2179
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002180<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
Benjamin Kramer0f420382009-10-12 14:46:08 +00002181 indicates that the user of the value may receive an unspecified bit-pattern.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002182 Undefined values may be of any type (other than '<tt>label</tt>'
2183 or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002184
Chris Lattner92ada5d2009-09-11 01:49:31 +00002185<p>Undefined values are useful because they indicate to the compiler that the
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002186 program is well defined no matter what value is used. This gives the
2187 compiler more freedom to optimize. Here are some examples of (potentially
2188 surprising) transformations that are valid (in pseudo IR):</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002189
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002190
Benjamin Kramer79698be2010-07-13 12:26:09 +00002191<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002192 %A = add %X, undef
2193 %B = sub %X, undef
2194 %C = xor %X, undef
2195Safe:
2196 %A = undef
2197 %B = undef
2198 %C = undef
2199</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002200
2201<p>This is safe because all of the output bits are affected by the undef bits.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002202 Any output bit can have a zero or one depending on the input bits.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002203
Benjamin Kramer79698be2010-07-13 12:26:09 +00002204<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002205 %A = or %X, undef
2206 %B = and %X, undef
2207Safe:
2208 %A = -1
2209 %B = 0
2210Unsafe:
2211 %A = undef
2212 %B = undef
2213</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002214
2215<p>These logical operations have bits that are not always affected by the input.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002216 For example, if <tt>%X</tt> has a zero bit, then the output of the
2217 '<tt>and</tt>' operation will always be a zero for that bit, no matter what
2218 the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
2219 optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
2220 However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
2221 0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
2222 all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
2223 set, allowing the '<tt>or</tt>' to be folded to -1.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002224
Benjamin Kramer79698be2010-07-13 12:26:09 +00002225<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002226 %A = select undef, %X, %Y
2227 %B = select undef, 42, %Y
2228 %C = select %X, %Y, undef
2229Safe:
2230 %A = %X (or %Y)
2231 %B = 42 (or %Y)
2232 %C = %Y
2233Unsafe:
2234 %A = undef
2235 %B = undef
2236 %C = undef
2237</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002238
Bill Wendling6bbe0912010-10-27 01:07:41 +00002239<p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
2240 branch) conditions can go <em>either way</em>, but they have to come from one
2241 of the two operands. In the <tt>%A</tt> example, if <tt>%X</tt> and
2242 <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
2243 have to have a cleared low bit. However, in the <tt>%C</tt> example, the
2244 optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
2245 same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
2246 eliminated.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002247
Benjamin Kramer79698be2010-07-13 12:26:09 +00002248<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002249 %A = xor undef, undef
Eric Christopher455c5772009-12-05 02:46:03 +00002250
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002251 %B = undef
2252 %C = xor %B, %B
2253
2254 %D = undef
2255 %E = icmp lt %D, 4
2256 %F = icmp gte %D, 4
2257
2258Safe:
2259 %A = undef
2260 %B = undef
2261 %C = undef
2262 %D = undef
2263 %E = undef
2264 %F = undef
2265</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002266
Bill Wendling6bbe0912010-10-27 01:07:41 +00002267<p>This example points out that two '<tt>undef</tt>' operands are not
2268 necessarily the same. This can be surprising to people (and also matches C
2269 semantics) where they assume that "<tt>X^X</tt>" is always zero, even
2270 if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
2271 short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
2272 its value over its "live range". This is true because the variable doesn't
2273 actually <em>have a live range</em>. Instead, the value is logically read
2274 from arbitrary registers that happen to be around when needed, so the value
2275 is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
2276 need to have the same semantics or the core LLVM "replace all uses with"
2277 concept would not hold.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002278
Benjamin Kramer79698be2010-07-13 12:26:09 +00002279<pre class="doc_code">
Chris Lattnera34a7182009-09-07 23:33:52 +00002280 %A = fdiv undef, %X
2281 %B = fdiv %X, undef
2282Safe:
2283 %A = undef
2284b: unreachable
2285</pre>
Chris Lattnera34a7182009-09-07 23:33:52 +00002286
2287<p>These examples show the crucial difference between an <em>undefined
Bill Wendling6bbe0912010-10-27 01:07:41 +00002288 value</em> and <em>undefined behavior</em>. An undefined value (like
2289 '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
2290 the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
2291 the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
2292 defined on SNaN's. However, in the second example, we can make a more
2293 aggressive assumption: because the <tt>undef</tt> is allowed to be an
2294 arbitrary value, we are allowed to assume that it could be zero. Since a
2295 divide by zero has <em>undefined behavior</em>, we are allowed to assume that
2296 the operation does not execute at all. This allows us to delete the divide and
2297 all code after it. Because the undefined operation "can't happen", the
2298 optimizer can assume that it occurs in dead code.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002299
Benjamin Kramer79698be2010-07-13 12:26:09 +00002300<pre class="doc_code">
Chris Lattnera34a7182009-09-07 23:33:52 +00002301a: store undef -> %X
2302b: store %X -> undef
2303Safe:
2304a: &lt;deleted&gt;
2305b: unreachable
2306</pre>
Chris Lattnera34a7182009-09-07 23:33:52 +00002307
Bill Wendling6bbe0912010-10-27 01:07:41 +00002308<p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
2309 undefined value can be assumed to not have any effect; we can assume that the
2310 value is overwritten with bits that happen to match what was already there.
2311 However, a store <em>to</em> an undefined location could clobber arbitrary
2312 memory, therefore, it has undefined behavior.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002313
Chris Lattner74d3f822004-12-09 17:30:23 +00002314</div>
2315
2316<!-- ======================================================================= -->
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002317<div class="doc_subsection"><a name="trapvalues">Trap Values</a></div>
2318<div class="doc_text">
2319
Dan Gohmanb2a709b2010-04-26 20:21:21 +00002320<p>Trap values are similar to <a href="#undefvalues">undef values</a>, however
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002321 instead of representing an unspecified bit pattern, they represent the
2322 fact that an instruction or constant expression which cannot evoke side
2323 effects has nevertheless detected a condition which results in undefined
Dan Gohmanb2a709b2010-04-26 20:21:21 +00002324 behavior.</p>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002325
Dan Gohman2f1ae062010-04-28 00:49:41 +00002326<p>There is currently no way of representing a trap value in the IR; they
Dan Gohmanac355aa2010-05-03 14:51:43 +00002327 only exist when produced by operations such as
Dan Gohman2f1ae062010-04-28 00:49:41 +00002328 <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002329
Dan Gohman2f1ae062010-04-28 00:49:41 +00002330<p>Trap value behavior is defined in terms of value <i>dependence</i>:</p>
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002331
Dan Gohman2f1ae062010-04-28 00:49:41 +00002332<ul>
2333<li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
2334 their operands.</li>
2335
2336<li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
2337 to their dynamic predecessor basic block.</li>
2338
2339<li>Function arguments depend on the corresponding actual argument values in
2340 the dynamic callers of their functions.</li>
2341
2342<li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
2343 <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
2344 control back to them.</li>
2345
Dan Gohman7292a752010-05-03 14:55:22 +00002346<li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
2347 <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_unwind"><tt>unwind</tt></a>,
2348 or exception-throwing call instructions that dynamically transfer control
2349 back to them.</li>
2350
Dan Gohman2f1ae062010-04-28 00:49:41 +00002351<li>Non-volatile loads and stores depend on the most recent stores to all of the
2352 referenced memory addresses, following the order in the IR
2353 (including loads and stores implied by intrinsics such as
2354 <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
2355
Dan Gohman3513ea52010-05-03 14:59:34 +00002356<!-- TODO: In the case of multiple threads, this only applies if the store
2357 "happens-before" the load or store. -->
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002358
Dan Gohman2f1ae062010-04-28 00:49:41 +00002359<!-- TODO: floating-point exception state -->
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002360
Dan Gohman2f1ae062010-04-28 00:49:41 +00002361<li>An instruction with externally visible side effects depends on the most
2362 recent preceding instruction with externally visible side effects, following
Dan Gohman6c858db2010-07-06 15:26:33 +00002363 the order in the IR. (This includes
2364 <a href="#volatile">volatile operations</a>.)</li>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002365
Dan Gohman7292a752010-05-03 14:55:22 +00002366<li>An instruction <i>control-depends</i> on a
2367 <a href="#terminators">terminator instruction</a>
2368 if the terminator instruction has multiple successors and the instruction
2369 is always executed when control transfers to one of the successors, and
2370 may not be executed when control is transfered to another.</li>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002371
2372<li>Dependence is transitive.</li>
2373
2374</ul>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002375
2376<p>Whenever a trap value is generated, all values which depend on it evaluate
2377 to trap. If they have side effects, the evoke their side effects as if each
2378 operand with a trap value were undef. If they have externally-visible side
2379 effects, the behavior is undefined.</p>
2380
2381<p>Here are some examples:</p>
Dan Gohman48a25882010-04-26 20:54:53 +00002382
Benjamin Kramer79698be2010-07-13 12:26:09 +00002383<pre class="doc_code">
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002384entry:
2385 %trap = sub nuw i32 0, 1 ; Results in a trap value.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002386 %still_trap = and i32 %trap, 0 ; Whereas (and i32 undef, 0) would return 0.
2387 %trap_yet_again = getelementptr i32* @h, i32 %still_trap
2388 store i32 0, i32* %trap_yet_again ; undefined behavior
2389
2390 store i32 %trap, i32* @g ; Trap value conceptually stored to memory.
2391 %trap2 = load i32* @g ; Returns a trap value, not just undef.
2392
2393 volatile store i32 %trap, i32* @g ; External observation; undefined behavior.
2394
2395 %narrowaddr = bitcast i32* @g to i16*
2396 %wideaddr = bitcast i32* @g to i64*
2397 %trap3 = load 16* %narrowaddr ; Returns a trap value.
2398 %trap4 = load i64* %widaddr ; Returns a trap value.
2399
2400 %cmp = icmp i32 slt %trap, 0 ; Returns a trap value.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002401 %br i1 %cmp, %true, %end ; Branch to either destination.
2402
2403true:
Dan Gohman2f1ae062010-04-28 00:49:41 +00002404 volatile store i32 0, i32* @g ; This is control-dependent on %cmp, so
2405 ; it has undefined behavior.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002406 br label %end
2407
2408end:
2409 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2410 ; Both edges into this PHI are
2411 ; control-dependent on %cmp, so this
Dan Gohman2f1ae062010-04-28 00:49:41 +00002412 ; always results in a trap value.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002413
2414 volatile store i32 0, i32* @g ; %end is control-equivalent to %entry
2415 ; so this is defined (ignoring earlier
2416 ; undefined behavior in this example).
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002417</pre>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002418
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002419</div>
2420
2421<!-- ======================================================================= -->
Chris Lattner2bfd3202009-10-27 21:19:13 +00002422<div class="doc_subsection"><a name="blockaddress">Addresses of Basic
2423 Blocks</a></div>
Chris Lattnere4801f72009-10-27 21:01:34 +00002424<div class="doc_text">
2425
Chris Lattneraa99c942009-11-01 01:27:45 +00002426<p><b><tt>blockaddress(@function, %block)</tt></b></p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002427
2428<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
Chris Lattner5c5f0ac2009-10-27 21:49:40 +00002429 basic block in the specified function, and always has an i8* type. Taking
Chris Lattneraa99c942009-11-01 01:27:45 +00002430 the address of the entry block is illegal.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002431
Chris Lattnere4801f72009-10-27 21:01:34 +00002432<p>This value only has defined behavior when used as an operand to the
Bill Wendling6bbe0912010-10-27 01:07:41 +00002433 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
2434 comparisons against null. Pointer equality tests between labels addresses
2435 results in undefined behavior &mdash; though, again, comparison against null
2436 is ok, and no label is equal to the null pointer. This may be passed around
2437 as an opaque pointer sized value as long as the bits are not inspected. This
2438 allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
2439 long as the original value is reconstituted before the <tt>indirectbr</tt>
2440 instruction.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002441
Bill Wendling6bbe0912010-10-27 01:07:41 +00002442<p>Finally, some targets may provide defined semantics when using the value as
2443 the operand to an inline assembly, but that is target specific.</p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002444
2445</div>
2446
2447
2448<!-- ======================================================================= -->
Chris Lattner74d3f822004-12-09 17:30:23 +00002449<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
2450</div>
2451
2452<div class="doc_text">
2453
2454<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002455 to be used as constants. Constant expressions may be of
2456 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2457 operation that does not have side effects (e.g. load and call are not
Bill Wendling6bbe0912010-10-27 01:07:41 +00002458 supported). The following is the syntax for constant expressions:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002459
2460<dl>
Dan Gohmand6a6f612010-05-28 17:07:41 +00002461 <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002462 <dd>Truncate a constant to another type. The bit size of CST must be larger
2463 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002464
Dan Gohmand6a6f612010-05-28 17:07:41 +00002465 <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002466 <dd>Zero extend a constant to another type. The bit size of CST must be
Duncan Sandsa522e562010-07-13 12:06:14 +00002467 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002468
Dan Gohmand6a6f612010-05-28 17:07:41 +00002469 <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002470 <dd>Sign extend a constant to another type. The bit size of CST must be
Duncan Sandsa522e562010-07-13 12:06:14 +00002471 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002472
Dan Gohmand6a6f612010-05-28 17:07:41 +00002473 <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002474 <dd>Truncate a floating point constant to another floating point type. The
2475 size of CST must be larger than the size of TYPE. Both types must be
2476 floating point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002477
Dan Gohmand6a6f612010-05-28 17:07:41 +00002478 <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002479 <dd>Floating point extend a constant to another type. The size of CST must be
2480 smaller or equal to the size of TYPE. Both types must be floating
2481 point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002482
Dan Gohmand6a6f612010-05-28 17:07:41 +00002483 <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002484 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002485 constant. TYPE must be a scalar or vector integer type. CST must be of
2486 scalar or vector floating point type. Both CST and TYPE must be scalars,
2487 or vectors of the same number of elements. If the value won't fit in the
2488 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002489
Dan Gohmand6a6f612010-05-28 17:07:41 +00002490 <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002491 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002492 constant. TYPE must be a scalar or vector integer type. CST must be of
2493 scalar or vector floating point type. Both CST and TYPE must be scalars,
2494 or vectors of the same number of elements. If the value won't fit in the
2495 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002496
Dan Gohmand6a6f612010-05-28 17:07:41 +00002497 <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002498 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002499 constant. TYPE must be a scalar or vector floating point type. CST must be
2500 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2501 vectors of the same number of elements. If the value won't fit in the
2502 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002503
Dan Gohmand6a6f612010-05-28 17:07:41 +00002504 <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002505 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002506 constant. TYPE must be a scalar or vector floating point type. CST must be
2507 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2508 vectors of the same number of elements. If the value won't fit in the
2509 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002510
Dan Gohmand6a6f612010-05-28 17:07:41 +00002511 <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
Reid Spencer5b950642006-11-11 23:08:07 +00002512 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002513 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2514 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2515 make it fit in <tt>TYPE</tt>.</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002516
Dan Gohmand6a6f612010-05-28 17:07:41 +00002517 <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002518 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2519 type. CST must be of integer type. The CST value is zero extended,
2520 truncated, or unchanged to make it fit in a pointer size. This one is
2521 <i>really</i> dangerous!</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002522
Dan Gohmand6a6f612010-05-28 17:07:41 +00002523 <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
Chris Lattner789dee32009-02-28 18:27:03 +00002524 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2525 are the same as those for the <a href="#i_bitcast">bitcast
2526 instruction</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002527
Dan Gohmand6a6f612010-05-28 17:07:41 +00002528 <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2529 <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002530 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002531 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2532 instruction, the index list may have zero or more indexes, which are
2533 required to make sense for the type of "CSTPTR".</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002534
Dan Gohmand6a6f612010-05-28 17:07:41 +00002535 <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002536 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Reid Spencer9965ee72006-12-04 19:23:19 +00002537
Dan Gohmand6a6f612010-05-28 17:07:41 +00002538 <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer9965ee72006-12-04 19:23:19 +00002539 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2540
Dan Gohmand6a6f612010-05-28 17:07:41 +00002541 <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer9965ee72006-12-04 19:23:19 +00002542 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002543
Dan Gohmand6a6f612010-05-28 17:07:41 +00002544 <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002545 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2546 constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002547
Dan Gohmand6a6f612010-05-28 17:07:41 +00002548 <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002549 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2550 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002551
Dan Gohmand6a6f612010-05-28 17:07:41 +00002552 <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002553 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2554 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002555
Nick Lewycky9ab9a7f2010-05-29 06:44:15 +00002556 <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
2557 <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
2558 constants. The index list is interpreted in a similar manner as indices in
2559 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2560 index value must be specified.</dd>
2561
2562 <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
2563 <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
2564 constants. The index list is interpreted in a similar manner as indices in
2565 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2566 index value must be specified.</dd>
2567
Dan Gohmand6a6f612010-05-28 17:07:41 +00002568 <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002569 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2570 be any of the <a href="#binaryops">binary</a>
2571 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2572 on operands are the same as those for the corresponding instruction
2573 (e.g. no bitwise operations on floating point values are allowed).</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002574</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002575
Chris Lattner74d3f822004-12-09 17:30:23 +00002576</div>
Chris Lattnerb1652612004-03-08 16:49:10 +00002577
Chris Lattner2f7c9632001-06-06 20:29:01 +00002578<!-- *********************************************************************** -->
Chris Lattner98f013c2006-01-25 23:47:57 +00002579<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2580<!-- *********************************************************************** -->
2581
2582<!-- ======================================================================= -->
2583<div class="doc_subsection">
2584<a name="inlineasm">Inline Assembler Expressions</a>
2585</div>
2586
2587<div class="doc_text">
2588
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002589<p>LLVM supports inline assembler expressions (as opposed
2590 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2591 a special value. This value represents the inline assembler as a string
2592 (containing the instructions to emit), a list of operand constraints (stored
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002593 as a string), a flag that indicates whether or not the inline asm
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002594 expression has side effects, and a flag indicating whether the function
2595 containing the asm needs to align its stack conservatively. An example
2596 inline assembler expression is:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002597
Benjamin Kramer79698be2010-07-13 12:26:09 +00002598<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002599i32 (i32) asm "bswap $0", "=r,r"
Chris Lattner98f013c2006-01-25 23:47:57 +00002600</pre>
2601
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002602<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2603 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2604 have:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002605
Benjamin Kramer79698be2010-07-13 12:26:09 +00002606<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002607%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattner98f013c2006-01-25 23:47:57 +00002608</pre>
2609
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002610<p>Inline asms with side effects not visible in the constraint list must be
2611 marked as having side effects. This is done through the use of the
2612 '<tt>sideeffect</tt>' keyword, like so:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002613
Benjamin Kramer79698be2010-07-13 12:26:09 +00002614<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002615call void asm sideeffect "eieio", ""()
Chris Lattner98f013c2006-01-25 23:47:57 +00002616</pre>
2617
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002618<p>In some cases inline asms will contain code that will not work unless the
2619 stack is aligned in some way, such as calls or SSE instructions on x86,
2620 yet will not contain code that does that alignment within the asm.
2621 The compiler should make conservative assumptions about what the asm might
2622 contain and should generate its usual stack alignment code in the prologue
2623 if the '<tt>alignstack</tt>' keyword is present:</p>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002624
Benjamin Kramer79698be2010-07-13 12:26:09 +00002625<pre class="doc_code">
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002626call void asm alignstack "eieio", ""()
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002627</pre>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002628
2629<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2630 first.</p>
2631
Chris Lattner98f013c2006-01-25 23:47:57 +00002632<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002633 documented here. Constraints on what can be done (e.g. duplication, moving,
2634 etc need to be documented). This is probably best done by reference to
2635 another document that covers inline asm from a holistic perspective.</p>
Chris Lattner51065562010-04-07 05:38:05 +00002636</div>
2637
2638<div class="doc_subsubsection">
2639<a name="inlineasm_md">Inline Asm Metadata</a>
2640</div>
2641
2642<div class="doc_text">
2643
2644<p>The call instructions that wrap inline asm nodes may have a "!srcloc" MDNode
Chris Lattner79ffdc72010-11-17 08:20:42 +00002645 attached to it that contains a list of constant integers. If present, the
2646 code generator will use the integer as the location cookie value when report
Chris Lattner51065562010-04-07 05:38:05 +00002647 errors through the LLVMContext error reporting mechanisms. This allows a
Dan Gohman61110ae2010-04-28 00:36:01 +00002648 front-end to correlate backend errors that occur with inline asm back to the
Chris Lattner51065562010-04-07 05:38:05 +00002649 source code that produced it. For example:</p>
2650
Benjamin Kramer79698be2010-07-13 12:26:09 +00002651<pre class="doc_code">
Chris Lattner51065562010-04-07 05:38:05 +00002652call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
2653...
2654!42 = !{ i32 1234567 }
2655</pre>
Chris Lattner51065562010-04-07 05:38:05 +00002656
2657<p>It is up to the front-end to make sense of the magic numbers it places in the
Chris Lattner79ffdc72010-11-17 08:20:42 +00002658 IR. If the MDNode contains multiple constants, the code generator will use
2659 the one that corresponds to the line of the asm that the error occurs on.</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002660
2661</div>
2662
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002663<!-- ======================================================================= -->
2664<div class="doc_subsection"><a name="metadata">Metadata Nodes and Metadata
2665 Strings</a>
2666</div>
2667
2668<div class="doc_text">
2669
2670<p>LLVM IR allows metadata to be attached to instructions in the program that
2671 can convey extra information about the code to the optimizers and code
2672 generator. One example application of metadata is source-level debug
2673 information. There are two metadata primitives: strings and nodes. All
2674 metadata has the <tt>metadata</tt> type and is identified in syntax by a
2675 preceding exclamation point ('<tt>!</tt>').</p>
2676
2677<p>A metadata string is a string surrounded by double quotes. It can contain
2678 any character by escaping non-printable characters with "\xx" where "xx" is
2679 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
2680
2681<p>Metadata nodes are represented with notation similar to structure constants
2682 (a comma separated list of elements, surrounded by braces and preceded by an
2683 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2684 10}</tt>". Metadata nodes can have any values as their operand.</p>
2685
2686<p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of
2687 metadata nodes, which can be looked up in the module symbol table. For
2688 example: "<tt>!foo = metadata !{!4, !3}</tt>".
2689
Devang Patel9984bd62010-03-04 23:44:48 +00002690<p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt>
Benjamin Kramer79698be2010-07-13 12:26:09 +00002691 function is using two metadata arguments.</p>
Devang Patel9984bd62010-03-04 23:44:48 +00002692
Benjamin Kramer79698be2010-07-13 12:26:09 +00002693 <pre class="doc_code">
Devang Patel9984bd62010-03-04 23:44:48 +00002694 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2695 </pre>
Devang Patel9984bd62010-03-04 23:44:48 +00002696
2697<p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
Benjamin Kramer79698be2010-07-13 12:26:09 +00002698 attached with <tt>add</tt> instruction using <tt>!dbg</tt> identifier.</p>
Devang Patel9984bd62010-03-04 23:44:48 +00002699
Benjamin Kramer79698be2010-07-13 12:26:09 +00002700 <pre class="doc_code">
Devang Patel9984bd62010-03-04 23:44:48 +00002701 %indvar.next = add i64 %indvar, 1, !dbg !21
2702 </pre>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002703</div>
2704
Chris Lattnerae76db52009-07-20 05:55:19 +00002705
2706<!-- *********************************************************************** -->
2707<div class="doc_section">
2708 <a name="intrinsic_globals">Intrinsic Global Variables</a>
2709</div>
2710<!-- *********************************************************************** -->
2711
2712<p>LLVM has a number of "magic" global variables that contain data that affect
2713code generation or other IR semantics. These are documented here. All globals
Chris Lattner58f9bb22009-07-20 06:14:25 +00002714of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
2715section and all globals that start with "<tt>llvm.</tt>" are reserved for use
2716by LLVM.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00002717
2718<!-- ======================================================================= -->
2719<div class="doc_subsection">
2720<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
2721</div>
2722
2723<div class="doc_text">
2724
2725<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
2726href="#linkage_appending">appending linkage</a>. This array contains a list of
2727pointers to global variables and functions which may optionally have a pointer
2728cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
2729
2730<pre>
2731 @X = global i8 4
2732 @Y = global i32 123
2733
2734 @llvm.used = appending global [2 x i8*] [
2735 i8* @X,
2736 i8* bitcast (i32* @Y to i8*)
2737 ], section "llvm.metadata"
2738</pre>
2739
2740<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
2741compiler, assembler, and linker are required to treat the symbol as if there is
2742a reference to the global that it cannot see. For example, if a variable has
2743internal linkage and no references other than that from the <tt>@llvm.used</tt>
2744list, it cannot be deleted. This is commonly used to represent references from
2745inline asms and other things the compiler cannot "see", and corresponds to
2746"attribute((used))" in GNU C.</p>
2747
2748<p>On some targets, the code generator must emit a directive to the assembler or
2749object file to prevent the assembler and linker from molesting the symbol.</p>
2750
2751</div>
2752
2753<!-- ======================================================================= -->
2754<div class="doc_subsection">
Chris Lattner58f9bb22009-07-20 06:14:25 +00002755<a name="intg_compiler_used">The '<tt>llvm.compiler.used</tt>' Global Variable</a>
2756</div>
2757
2758<div class="doc_text">
2759
2760<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
2761<tt>@llvm.used</tt> directive, except that it only prevents the compiler from
2762touching the symbol. On targets that support it, this allows an intelligent
2763linker to optimize references to the symbol without being impeded as it would be
2764by <tt>@llvm.used</tt>.</p>
2765
2766<p>This is a rare construct that should only be used in rare circumstances, and
2767should not be exposed to source languages.</p>
2768
2769</div>
2770
2771<!-- ======================================================================= -->
2772<div class="doc_subsection">
Chris Lattnerae76db52009-07-20 05:55:19 +00002773<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
2774</div>
2775
2776<div class="doc_text">
David Chisnalla9d4a6f2010-04-30 19:23:49 +00002777<pre>
2778%0 = type { i32, void ()* }
David Chisnallb492b812010-04-30 19:27:35 +00002779@llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
David Chisnalla9d4a6f2010-04-30 19:23:49 +00002780</pre>
2781<p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor functions and associated priorities. The functions referenced by this array will be called in ascending order of priority (i.e. lowest first) when the module is loaded. The order of functions with the same priority is not defined.
2782</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00002783
2784</div>
2785
2786<!-- ======================================================================= -->
2787<div class="doc_subsection">
2788<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
2789</div>
2790
2791<div class="doc_text">
David Chisnalla9d4a6f2010-04-30 19:23:49 +00002792<pre>
2793%0 = type { i32, void ()* }
David Chisnallb492b812010-04-30 19:27:35 +00002794@llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
David Chisnalla9d4a6f2010-04-30 19:23:49 +00002795</pre>
Chris Lattnerae76db52009-07-20 05:55:19 +00002796
David Chisnalla9d4a6f2010-04-30 19:23:49 +00002797<p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions and associated priorities. The functions referenced by this array will be called in descending order of priority (i.e. highest first) when the module is loaded. The order of functions with the same priority is not defined.
2798</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00002799
2800</div>
2801
2802
Chris Lattner98f013c2006-01-25 23:47:57 +00002803<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002804<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2805<!-- *********************************************************************** -->
Chris Lattner74d3f822004-12-09 17:30:23 +00002806
Misha Brukman76307852003-11-08 01:05:38 +00002807<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00002808
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002809<p>The LLVM instruction set consists of several different classifications of
2810 instructions: <a href="#terminators">terminator
2811 instructions</a>, <a href="#binaryops">binary instructions</a>,
2812 <a href="#bitwiseops">bitwise binary instructions</a>,
2813 <a href="#memoryops">memory instructions</a>, and
2814 <a href="#otherops">other instructions</a>.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002815
Misha Brukman76307852003-11-08 01:05:38 +00002816</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002817
Chris Lattner2f7c9632001-06-06 20:29:01 +00002818<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002819<div class="doc_subsection"> <a name="terminators">Terminator
2820Instructions</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002821
Misha Brukman76307852003-11-08 01:05:38 +00002822<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00002823
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002824<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
2825 in a program ends with a "Terminator" instruction, which indicates which
2826 block should be executed after the current block is finished. These
2827 terminator instructions typically yield a '<tt>void</tt>' value: they produce
2828 control flow, not values (the one exception being the
2829 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
2830
Duncan Sands626b0242010-04-15 20:35:54 +00002831<p>There are seven different terminator instructions: the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002832 '<a href="#i_ret"><tt>ret</tt></a>' instruction, the
2833 '<a href="#i_br"><tt>br</tt></a>' instruction, the
2834 '<a href="#i_switch"><tt>switch</tt></a>' instruction, the
Bill Wendling33fef7e2009-11-02 00:25:26 +00002835 '<a href="#i_indirectbr">'<tt>indirectbr</tt></a>' Instruction, the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002836 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
2837 '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
2838 '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002839
Misha Brukman76307852003-11-08 01:05:38 +00002840</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002841
Chris Lattner2f7c9632001-06-06 20:29:01 +00002842<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002843<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2844Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002845
Misha Brukman76307852003-11-08 01:05:38 +00002846<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002847
Chris Lattner2f7c9632001-06-06 20:29:01 +00002848<h5>Syntax:</h5>
Dan Gohmancc3132e2008-10-04 19:00:07 +00002849<pre>
2850 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002851 ret void <i>; Return from void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002852</pre>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002853
Chris Lattner2f7c9632001-06-06 20:29:01 +00002854<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002855<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
2856 a value) from a function back to the caller.</p>
2857
2858<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
2859 value and then causes control flow, and one that just causes control flow to
2860 occur.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002861
Chris Lattner2f7c9632001-06-06 20:29:01 +00002862<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002863<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
2864 return value. The type of the return value must be a
2865 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohmancc3132e2008-10-04 19:00:07 +00002866
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002867<p>A function is not <a href="#wellformed">well formed</a> if it it has a
2868 non-void return type and contains a '<tt>ret</tt>' instruction with no return
2869 value or a return value with a type that does not match its type, or if it
2870 has a void return type and contains a '<tt>ret</tt>' instruction with a
2871 return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002872
Chris Lattner2f7c9632001-06-06 20:29:01 +00002873<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002874<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
2875 the calling function's context. If the caller is a
2876 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
2877 instruction after the call. If the caller was an
2878 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
2879 the beginning of the "normal" destination block. If the instruction returns
2880 a value, that value shall set the call or invoke instruction's return
2881 value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002882
Chris Lattner2f7c9632001-06-06 20:29:01 +00002883<h5>Example:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002884<pre>
2885 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002886 ret void <i>; Return from a void function</i>
Bill Wendling050ee8f2009-02-28 22:12:54 +00002887 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002888</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00002889
Misha Brukman76307852003-11-08 01:05:38 +00002890</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002891<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002892<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002893
Misha Brukman76307852003-11-08 01:05:38 +00002894<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002895
Chris Lattner2f7c9632001-06-06 20:29:01 +00002896<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002897<pre>
2898 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002899</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002900
Chris Lattner2f7c9632001-06-06 20:29:01 +00002901<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002902<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
2903 different basic block in the current function. There are two forms of this
2904 instruction, corresponding to a conditional branch and an unconditional
2905 branch.</p>
2906
Chris Lattner2f7c9632001-06-06 20:29:01 +00002907<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002908<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
2909 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
2910 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
2911 target.</p>
2912
Chris Lattner2f7c9632001-06-06 20:29:01 +00002913<h5>Semantics:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00002914<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002915 argument is evaluated. If the value is <tt>true</tt>, control flows to the
2916 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2917 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
2918
Chris Lattner2f7c9632001-06-06 20:29:01 +00002919<h5>Example:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002920<pre>
2921Test:
2922 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
2923 br i1 %cond, label %IfEqual, label %IfUnequal
2924IfEqual:
2925 <a href="#i_ret">ret</a> i32 1
2926IfUnequal:
2927 <a href="#i_ret">ret</a> i32 0
2928</pre>
2929
Misha Brukman76307852003-11-08 01:05:38 +00002930</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002931
Chris Lattner2f7c9632001-06-06 20:29:01 +00002932<!-- _______________________________________________________________________ -->
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002933<div class="doc_subsubsection">
2934 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2935</div>
2936
Misha Brukman76307852003-11-08 01:05:38 +00002937<div class="doc_text">
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002938
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002939<h5>Syntax:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002940<pre>
2941 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2942</pre>
2943
Chris Lattner2f7c9632001-06-06 20:29:01 +00002944<h5>Overview:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002945<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002946 several different places. It is a generalization of the '<tt>br</tt>'
2947 instruction, allowing a branch to occur to one of many possible
2948 destinations.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002949
Chris Lattner2f7c9632001-06-06 20:29:01 +00002950<h5>Arguments:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002951<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002952 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
2953 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
2954 The table is not allowed to contain duplicate constant entries.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002955
Chris Lattner2f7c9632001-06-06 20:29:01 +00002956<h5>Semantics:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002957<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002958 destinations. When the '<tt>switch</tt>' instruction is executed, this table
2959 is searched for the given value. If the value is found, control flow is
Benjamin Kramer0f420382009-10-12 14:46:08 +00002960 transferred to the corresponding destination; otherwise, control flow is
2961 transferred to the default destination.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002962
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002963<h5>Implementation:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002964<p>Depending on properties of the target machine and the particular
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002965 <tt>switch</tt> instruction, this instruction may be code generated in
2966 different ways. For example, it could be generated as a series of chained
2967 conditional branches or with a lookup table.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002968
2969<h5>Example:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002970<pre>
2971 <i>; Emulate a conditional br instruction</i>
Reid Spencer36a15422007-01-12 03:35:51 +00002972 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman623806e2009-01-04 23:44:43 +00002973 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002974
2975 <i>; Emulate an unconditional br instruction</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002976 switch i32 0, label %dest [ ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002977
2978 <i>; Implement a jump table:</i>
Dan Gohman623806e2009-01-04 23:44:43 +00002979 switch i32 %val, label %otherwise [ i32 0, label %onzero
2980 i32 1, label %onone
2981 i32 2, label %ontwo ]
Chris Lattner2f7c9632001-06-06 20:29:01 +00002982</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002983
Misha Brukman76307852003-11-08 01:05:38 +00002984</div>
Chris Lattner0132aff2005-05-06 22:57:40 +00002985
Chris Lattner3ed871f2009-10-27 19:13:16 +00002986
2987<!-- _______________________________________________________________________ -->
2988<div class="doc_subsubsection">
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00002989 <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
Chris Lattner3ed871f2009-10-27 19:13:16 +00002990</div>
2991
2992<div class="doc_text">
2993
2994<h5>Syntax:</h5>
2995<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00002996 indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00002997</pre>
2998
2999<h5>Overview:</h5>
3000
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003001<p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
Chris Lattner3ed871f2009-10-27 19:13:16 +00003002 within the current function, whose address is specified by
Chris Lattnere4801f72009-10-27 21:01:34 +00003003 "<tt>address</tt>". Address must be derived from a <a
3004 href="#blockaddress">blockaddress</a> constant.</p>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003005
3006<h5>Arguments:</h5>
3007
3008<p>The '<tt>address</tt>' argument is the address of the label to jump to. The
3009 rest of the arguments indicate the full set of possible destinations that the
3010 address may point to. Blocks are allowed to occur multiple times in the
3011 destination list, though this isn't particularly useful.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003012
Chris Lattner3ed871f2009-10-27 19:13:16 +00003013<p>This destination list is required so that dataflow analysis has an accurate
3014 understanding of the CFG.</p>
3015
3016<h5>Semantics:</h5>
3017
3018<p>Control transfers to the block specified in the address argument. All
3019 possible destination blocks must be listed in the label list, otherwise this
3020 instruction has undefined behavior. This implies that jumps to labels
3021 defined in other functions have undefined behavior as well.</p>
3022
3023<h5>Implementation:</h5>
3024
3025<p>This is typically implemented with a jump through a register.</p>
3026
3027<h5>Example:</h5>
3028<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003029 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00003030</pre>
3031
3032</div>
3033
3034
Chris Lattner2f7c9632001-06-06 20:29:01 +00003035<!-- _______________________________________________________________________ -->
Chris Lattner0132aff2005-05-06 22:57:40 +00003036<div class="doc_subsubsection">
3037 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
3038</div>
3039
Misha Brukman76307852003-11-08 01:05:38 +00003040<div class="doc_text">
Chris Lattner0132aff2005-05-06 22:57:40 +00003041
Chris Lattner2f7c9632001-06-06 20:29:01 +00003042<h5>Syntax:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003043<pre>
Devang Patel02256232008-10-07 17:48:33 +00003044 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner6b7a0082006-05-14 18:23:06 +00003045 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattner0132aff2005-05-06 22:57:40 +00003046</pre>
3047
Chris Lattnera8292f32002-05-06 22:08:29 +00003048<h5>Overview:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003049<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003050 function, with the possibility of control flow transfer to either the
3051 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
3052 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
3053 control flow will return to the "normal" label. If the callee (or any
3054 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
3055 instruction, control is interrupted and continued at the dynamically nearest
3056 "exception" label.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003057
Chris Lattner2f7c9632001-06-06 20:29:01 +00003058<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003059<p>This instruction requires several arguments:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003060
Chris Lattner2f7c9632001-06-06 20:29:01 +00003061<ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003062 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
3063 convention</a> the call should use. If none is specified, the call
3064 defaults to using C calling conventions.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00003065
3066 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003067 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
3068 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00003069
Chris Lattner0132aff2005-05-06 22:57:40 +00003070 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003071 function value being invoked. In most cases, this is a direct function
3072 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
3073 off an arbitrary pointer to function value.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003074
3075 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003076 function to be invoked. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003077
3078 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner47f2a832010-03-02 06:36:51 +00003079 signature argument types and parameter attributes. All arguments must be
3080 of <a href="#t_firstclass">first class</a> type. If the function
3081 signature indicates the function accepts a variable number of arguments,
3082 the extra arguments can be specified.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003083
3084 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003085 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003086
3087 <li>'<tt>exception label</tt>': the label reached when a callee returns with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003088 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003089
Devang Patel02256232008-10-07 17:48:33 +00003090 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003091 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
3092 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003093</ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00003094
Chris Lattner2f7c9632001-06-06 20:29:01 +00003095<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003096<p>This instruction is designed to operate as a standard
3097 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
3098 primary difference is that it establishes an association with a label, which
3099 is used by the runtime library to unwind the stack.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003100
3101<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003102 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
3103 exception. Additionally, this is important for implementation of
3104 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003105
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003106<p>For the purposes of the SSA form, the definition of the value returned by the
3107 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
3108 block to the "normal" label. If the callee unwinds then no return value is
3109 available.</p>
Dan Gohman9069d892009-05-22 21:47:08 +00003110
Chris Lattner97257f82010-01-15 18:08:37 +00003111<p>Note that the code generator does not yet completely support unwind, and
3112that the invoke/unwind semantics are likely to change in future versions.</p>
3113
Chris Lattner2f7c9632001-06-06 20:29:01 +00003114<h5>Example:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003115<pre>
Nick Lewycky084ab472008-03-16 07:18:12 +00003116 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00003117 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewycky084ab472008-03-16 07:18:12 +00003118 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00003119 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003120</pre>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003121
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003122</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003123
Chris Lattner5ed60612003-09-03 00:41:47 +00003124<!-- _______________________________________________________________________ -->
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003125
Chris Lattner48b383b02003-11-25 01:02:51 +00003126<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
3127Instruction</a> </div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003128
Misha Brukman76307852003-11-08 01:05:38 +00003129<div class="doc_text">
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003130
Chris Lattner5ed60612003-09-03 00:41:47 +00003131<h5>Syntax:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003132<pre>
3133 unwind
3134</pre>
3135
Chris Lattner5ed60612003-09-03 00:41:47 +00003136<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003137<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003138 at the first callee in the dynamic call stack which used
3139 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
3140 This is primarily used to implement exception handling.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003141
Chris Lattner5ed60612003-09-03 00:41:47 +00003142<h5>Semantics:</h5>
Chris Lattnerfe8519c2008-04-19 21:01:16 +00003143<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003144 immediately halt. The dynamic call stack is then searched for the
3145 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
3146 Once found, execution continues at the "exceptional" destination block
3147 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
3148 instruction in the dynamic call chain, undefined behavior results.</p>
3149
Chris Lattner97257f82010-01-15 18:08:37 +00003150<p>Note that the code generator does not yet completely support unwind, and
3151that the invoke/unwind semantics are likely to change in future versions.</p>
3152
Misha Brukman76307852003-11-08 01:05:38 +00003153</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003154
3155<!-- _______________________________________________________________________ -->
3156
3157<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
3158Instruction</a> </div>
3159
3160<div class="doc_text">
3161
3162<h5>Syntax:</h5>
3163<pre>
3164 unreachable
3165</pre>
3166
3167<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003168<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003169 instruction is used to inform the optimizer that a particular portion of the
3170 code is not reachable. This can be used to indicate that the code after a
3171 no-return function cannot be reached, and other facts.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003172
3173<h5>Semantics:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003174<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003175
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003176</div>
3177
Chris Lattner2f7c9632001-06-06 20:29:01 +00003178<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003179<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003180
Misha Brukman76307852003-11-08 01:05:38 +00003181<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003182
3183<p>Binary operators are used to do most of the computation in a program. They
3184 require two operands of the same type, execute an operation on them, and
3185 produce a single value. The operands might represent multiple data, as is
3186 the case with the <a href="#t_vector">vector</a> data type. The result value
3187 has the same type as its operands.</p>
3188
Misha Brukman76307852003-11-08 01:05:38 +00003189<p>There are several different binary operators:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003190
Misha Brukman76307852003-11-08 01:05:38 +00003191</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003192
Chris Lattner2f7c9632001-06-06 20:29:01 +00003193<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003194<div class="doc_subsubsection">
3195 <a name="i_add">'<tt>add</tt>' Instruction</a>
3196</div>
3197
Misha Brukman76307852003-11-08 01:05:38 +00003198<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003199
Chris Lattner2f7c9632001-06-06 20:29:01 +00003200<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003201<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003202 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003203 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3204 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3205 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003206</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003207
Chris Lattner2f7c9632001-06-06 20:29:01 +00003208<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003209<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003210
Chris Lattner2f7c9632001-06-06 20:29:01 +00003211<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003212<p>The two arguments to the '<tt>add</tt>' instruction must
3213 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3214 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003215
Chris Lattner2f7c9632001-06-06 20:29:01 +00003216<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003217<p>The value produced is the integer sum of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003218
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003219<p>If the sum has unsigned overflow, the result returned is the mathematical
3220 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003221
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003222<p>Because LLVM integers use a two's complement representation, this instruction
3223 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003224
Dan Gohman902dfff2009-07-22 22:44:56 +00003225<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3226 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3227 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003228 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3229 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003230
Chris Lattner2f7c9632001-06-06 20:29:01 +00003231<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003232<pre>
3233 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003234</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003235
Misha Brukman76307852003-11-08 01:05:38 +00003236</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003237
Chris Lattner2f7c9632001-06-06 20:29:01 +00003238<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003239<div class="doc_subsubsection">
Dan Gohmana5b96452009-06-04 22:49:04 +00003240 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
3241</div>
3242
3243<div class="doc_text">
3244
3245<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003246<pre>
3247 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3248</pre>
3249
3250<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003251<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3252
3253<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003254<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003255 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3256 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003257
3258<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003259<p>The value produced is the floating point sum of the two operands.</p>
3260
3261<h5>Example:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003262<pre>
3263 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
3264</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003265
Dan Gohmana5b96452009-06-04 22:49:04 +00003266</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003267
Dan Gohmana5b96452009-06-04 22:49:04 +00003268<!-- _______________________________________________________________________ -->
3269<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003270 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
3271</div>
3272
Misha Brukman76307852003-11-08 01:05:38 +00003273<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003274
Chris Lattner2f7c9632001-06-06 20:29:01 +00003275<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003276<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003277 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003278 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3279 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3280 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003281</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003282
Chris Lattner2f7c9632001-06-06 20:29:01 +00003283<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003284<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003285 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003286
3287<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003288 '<tt>neg</tt>' instruction present in most other intermediate
3289 representations.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003290
Chris Lattner2f7c9632001-06-06 20:29:01 +00003291<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003292<p>The two arguments to the '<tt>sub</tt>' instruction must
3293 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3294 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003295
Chris Lattner2f7c9632001-06-06 20:29:01 +00003296<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003297<p>The value produced is the integer difference of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003298
Dan Gohmana5b96452009-06-04 22:49:04 +00003299<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003300 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3301 result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003302
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003303<p>Because LLVM integers use a two's complement representation, this instruction
3304 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003305
Dan Gohman902dfff2009-07-22 22:44:56 +00003306<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3307 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3308 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003309 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3310 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003311
Chris Lattner2f7c9632001-06-06 20:29:01 +00003312<h5>Example:</h5>
Bill Wendling2d8b9a82007-05-29 09:42:13 +00003313<pre>
3314 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003315 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003316</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003317
Misha Brukman76307852003-11-08 01:05:38 +00003318</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003319
Chris Lattner2f7c9632001-06-06 20:29:01 +00003320<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003321<div class="doc_subsubsection">
Dan Gohmana5b96452009-06-04 22:49:04 +00003322 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
3323</div>
3324
3325<div class="doc_text">
3326
3327<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003328<pre>
3329 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3330</pre>
3331
3332<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003333<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003334 operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003335
3336<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003337 '<tt>fneg</tt>' instruction present in most other intermediate
3338 representations.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003339
3340<h5>Arguments:</h5>
Bill Wendling972b7202009-07-20 02:32:41 +00003341<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003342 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3343 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003344
3345<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003346<p>The value produced is the floating point difference of the two operands.</p>
3347
3348<h5>Example:</h5>
3349<pre>
3350 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
3351 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
3352</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003353
Dan Gohmana5b96452009-06-04 22:49:04 +00003354</div>
3355
3356<!-- _______________________________________________________________________ -->
3357<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003358 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
3359</div>
3360
Misha Brukman76307852003-11-08 01:05:38 +00003361<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003362
Chris Lattner2f7c9632001-06-06 20:29:01 +00003363<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003364<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003365 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003366 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3367 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3368 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003369</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003370
Chris Lattner2f7c9632001-06-06 20:29:01 +00003371<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003372<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003373
Chris Lattner2f7c9632001-06-06 20:29:01 +00003374<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003375<p>The two arguments to the '<tt>mul</tt>' instruction must
3376 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3377 integer values. Both arguments must have identical types.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003378
Chris Lattner2f7c9632001-06-06 20:29:01 +00003379<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003380<p>The value produced is the integer product of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003381
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003382<p>If the result of the multiplication has unsigned overflow, the result
3383 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3384 width of the result.</p>
3385
3386<p>Because LLVM integers use a two's complement representation, and the result
3387 is the same width as the operands, this instruction returns the correct
3388 result for both signed and unsigned integers. If a full product
3389 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3390 be sign-extended or zero-extended as appropriate to the width of the full
3391 product.</p>
3392
Dan Gohman902dfff2009-07-22 22:44:56 +00003393<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3394 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3395 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003396 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3397 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003398
Chris Lattner2f7c9632001-06-06 20:29:01 +00003399<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003400<pre>
3401 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003402</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003403
Misha Brukman76307852003-11-08 01:05:38 +00003404</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003405
Chris Lattner2f7c9632001-06-06 20:29:01 +00003406<!-- _______________________________________________________________________ -->
Dan Gohmana5b96452009-06-04 22:49:04 +00003407<div class="doc_subsubsection">
3408 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
3409</div>
3410
3411<div class="doc_text">
3412
3413<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003414<pre>
3415 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003416</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003417
Dan Gohmana5b96452009-06-04 22:49:04 +00003418<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003419<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003420
3421<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003422<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003423 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3424 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003425
3426<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003427<p>The value produced is the floating point product of the two operands.</p>
3428
3429<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003430<pre>
3431 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003432</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003433
Dan Gohmana5b96452009-06-04 22:49:04 +00003434</div>
3435
3436<!-- _______________________________________________________________________ -->
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003437<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
3438</a></div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003439
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003440<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003441
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003442<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003443<pre>
Chris Lattner35315d02011-02-06 21:44:57 +00003444 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3445 &lt;result&gt; = udiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003446</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003447
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003448<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003449<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003450
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003451<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003452<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003453 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3454 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003455
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003456<h5>Semantics:</h5>
Chris Lattner2f2427e2008-01-28 00:36:27 +00003457<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003458
Chris Lattner2f2427e2008-01-28 00:36:27 +00003459<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003460 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
3461
Chris Lattner2f2427e2008-01-28 00:36:27 +00003462<p>Division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003463
Chris Lattner35315d02011-02-06 21:44:57 +00003464<p>If the <tt>exact</tt> keyword is present, the result value of the
3465 <tt>udiv</tt> is a <a href="#trapvalues">trap value</a> if %op1 is not a
3466 multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
3467
3468
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003469<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003470<pre>
3471 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003472</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003473
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003474</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003475
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003476<!-- _______________________________________________________________________ -->
3477<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
3478</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003479
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003480<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003481
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003482<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003483<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003484 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003485 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003486</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003487
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003488<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003489<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003490
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003491<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003492<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003493 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3494 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003495
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003496<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003497<p>The value produced is the signed integer quotient of the two operands rounded
3498 towards zero.</p>
3499
Chris Lattner2f2427e2008-01-28 00:36:27 +00003500<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003501 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
3502
Chris Lattner2f2427e2008-01-28 00:36:27 +00003503<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003504 undefined behavior; this is a rare case, but can occur, for example, by doing
3505 a 32-bit division of -2147483648 by -1.</p>
3506
Dan Gohman71dfd782009-07-22 00:04:19 +00003507<p>If the <tt>exact</tt> keyword is present, the result value of the
Dan Gohman57255802010-04-23 15:23:32 +00003508 <tt>sdiv</tt> is a <a href="#trapvalues">trap value</a> if the result would
Dan Gohmane501ff72010-07-11 00:08:34 +00003509 be rounded.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003510
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003511<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003512<pre>
3513 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003514</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003515
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003516</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003517
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003518<!-- _______________________________________________________________________ -->
3519<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00003520Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003521
Misha Brukman76307852003-11-08 01:05:38 +00003522<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003523
Chris Lattner2f7c9632001-06-06 20:29:01 +00003524<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003525<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003526 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003527</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003528
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003529<h5>Overview:</h5>
3530<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003531
Chris Lattner48b383b02003-11-25 01:02:51 +00003532<h5>Arguments:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00003533<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003534 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3535 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003536
Chris Lattner48b383b02003-11-25 01:02:51 +00003537<h5>Semantics:</h5>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003538<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003539
Chris Lattner48b383b02003-11-25 01:02:51 +00003540<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003541<pre>
3542 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003543</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003544
Chris Lattner48b383b02003-11-25 01:02:51 +00003545</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003546
Chris Lattner48b383b02003-11-25 01:02:51 +00003547<!-- _______________________________________________________________________ -->
Reid Spencer7eb55b32006-11-02 01:53:59 +00003548<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
3549</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003550
Reid Spencer7eb55b32006-11-02 01:53:59 +00003551<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003552
Reid Spencer7eb55b32006-11-02 01:53:59 +00003553<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003554<pre>
3555 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003556</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003557
Reid Spencer7eb55b32006-11-02 01:53:59 +00003558<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003559<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3560 division of its two arguments.</p>
3561
Reid Spencer7eb55b32006-11-02 01:53:59 +00003562<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003563<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003564 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3565 values. Both arguments must have identical types.</p>
3566
Reid Spencer7eb55b32006-11-02 01:53:59 +00003567<h5>Semantics:</h5>
3568<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003569 This instruction always performs an unsigned division to get the
3570 remainder.</p>
3571
Chris Lattner2f2427e2008-01-28 00:36:27 +00003572<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003573 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3574
Chris Lattner2f2427e2008-01-28 00:36:27 +00003575<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003576
Reid Spencer7eb55b32006-11-02 01:53:59 +00003577<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003578<pre>
3579 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003580</pre>
3581
3582</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003583
Reid Spencer7eb55b32006-11-02 01:53:59 +00003584<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003585<div class="doc_subsubsection">
3586 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
3587</div>
3588
Chris Lattner48b383b02003-11-25 01:02:51 +00003589<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003590
Chris Lattner48b383b02003-11-25 01:02:51 +00003591<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003592<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003593 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003594</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003595
Chris Lattner48b383b02003-11-25 01:02:51 +00003596<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003597<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3598 division of its two operands. This instruction can also take
3599 <a href="#t_vector">vector</a> versions of the values in which case the
3600 elements must be integers.</p>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00003601
Chris Lattner48b383b02003-11-25 01:02:51 +00003602<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003603<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003604 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3605 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003606
Chris Lattner48b383b02003-11-25 01:02:51 +00003607<h5>Semantics:</h5>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003608<p>This instruction returns the <i>remainder</i> of a division (where the result
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003609 has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
3610 operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
3611 a value. For more information about the difference,
3612 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3613 Math Forum</a>. For a table of how this is implemented in various languages,
3614 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3615 Wikipedia: modulo operation</a>.</p>
3616
Chris Lattner2f2427e2008-01-28 00:36:27 +00003617<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003618 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3619
Chris Lattner2f2427e2008-01-28 00:36:27 +00003620<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003621 Overflow also leads to undefined behavior; this is a rare case, but can
3622 occur, for example, by taking the remainder of a 32-bit division of
3623 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3624 lets srem be implemented using instructions that return both the result of
3625 the division and the remainder.)</p>
3626
Chris Lattner48b383b02003-11-25 01:02:51 +00003627<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003628<pre>
3629 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003630</pre>
3631
3632</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003633
Reid Spencer7eb55b32006-11-02 01:53:59 +00003634<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003635<div class="doc_subsubsection">
3636 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
3637
Reid Spencer7eb55b32006-11-02 01:53:59 +00003638<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003639
Reid Spencer7eb55b32006-11-02 01:53:59 +00003640<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003641<pre>
3642 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003643</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003644
Reid Spencer7eb55b32006-11-02 01:53:59 +00003645<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003646<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
3647 its two operands.</p>
3648
Reid Spencer7eb55b32006-11-02 01:53:59 +00003649<h5>Arguments:</h5>
3650<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003651 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3652 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003653
Reid Spencer7eb55b32006-11-02 01:53:59 +00003654<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003655<p>This instruction returns the <i>remainder</i> of a division. The remainder
3656 has the same sign as the dividend.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003657
Reid Spencer7eb55b32006-11-02 01:53:59 +00003658<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003659<pre>
3660 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003661</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003662
Misha Brukman76307852003-11-08 01:05:38 +00003663</div>
Robert Bocchino820bc75b2006-02-17 21:18:08 +00003664
Reid Spencer2ab01932007-02-02 13:57:07 +00003665<!-- ======================================================================= -->
3666<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
3667Operations</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003668
Reid Spencer2ab01932007-02-02 13:57:07 +00003669<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003670
3671<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3672 program. They are generally very efficient instructions and can commonly be
3673 strength reduced from other instructions. They require two operands of the
3674 same type, execute an operation on them, and produce a single value. The
3675 resulting value is the same type as its operands.</p>
3676
Reid Spencer2ab01932007-02-02 13:57:07 +00003677</div>
3678
Reid Spencer04e259b2007-01-31 21:39:12 +00003679<!-- _______________________________________________________________________ -->
3680<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
3681Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003682
Reid Spencer04e259b2007-01-31 21:39:12 +00003683<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003684
Reid Spencer04e259b2007-01-31 21:39:12 +00003685<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003686<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00003687 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3688 &lt;result&gt; = shl nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3689 &lt;result&gt; = shl nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3690 &lt;result&gt; = shl nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003691</pre>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003692
Reid Spencer04e259b2007-01-31 21:39:12 +00003693<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003694<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
3695 a specified number of bits.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003696
Reid Spencer04e259b2007-01-31 21:39:12 +00003697<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003698<p>Both arguments to the '<tt>shl</tt>' instruction must be the
3699 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3700 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003701
Reid Spencer04e259b2007-01-31 21:39:12 +00003702<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003703<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
3704 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
3705 is (statically or dynamically) negative or equal to or larger than the number
3706 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3707 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3708 shift amount in <tt>op2</tt>.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003709
Chris Lattnera676c0f2011-02-07 16:40:21 +00003710<p>If the <tt>nuw</tt> keyword is present, then the shift produces a
3711 <a href="#trapvalues">trap value</a> if it shifts out any non-zero bits. If
Chris Lattnerf10dfdc2011-02-09 16:44:44 +00003712 the <tt>nsw</tt> keyword is present, then the shift produces a
Chris Lattnera676c0f2011-02-07 16:40:21 +00003713 <a href="#trapvalues">trap value</a> if it shifts out any bits that disagree
3714 with the resultant sign bit. As such, NUW/NSW have the same semantics as
3715 they would if the shift were expressed as a mul instruction with the same
3716 nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
3717
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003718<h5>Example:</h5>
3719<pre>
Reid Spencer04e259b2007-01-31 21:39:12 +00003720 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
3721 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
3722 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003723 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003724 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003725</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003726
Reid Spencer04e259b2007-01-31 21:39:12 +00003727</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003728
Reid Spencer04e259b2007-01-31 21:39:12 +00003729<!-- _______________________________________________________________________ -->
3730<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
3731Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003732
Reid Spencer04e259b2007-01-31 21:39:12 +00003733<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003734
Reid Spencer04e259b2007-01-31 21:39:12 +00003735<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003736<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00003737 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3738 &lt;result&gt; = lshr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003739</pre>
3740
3741<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003742<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
3743 operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003744
3745<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003746<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003747 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3748 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003749
3750<h5>Semantics:</h5>
3751<p>This instruction always performs a logical shift right operation. The most
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003752 significant bits of the result will be filled with zero bits after the shift.
3753 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
3754 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3755 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3756 shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003757
Chris Lattnera676c0f2011-02-07 16:40:21 +00003758<p>If the <tt>exact</tt> keyword is present, the result value of the
3759 <tt>lshr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
3760 shifted out are non-zero.</p>
3761
3762
Reid Spencer04e259b2007-01-31 21:39:12 +00003763<h5>Example:</h5>
3764<pre>
3765 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
3766 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
3767 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
3768 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003769 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003770 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003771</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003772
Reid Spencer04e259b2007-01-31 21:39:12 +00003773</div>
3774
Reid Spencer2ab01932007-02-02 13:57:07 +00003775<!-- _______________________________________________________________________ -->
Reid Spencer04e259b2007-01-31 21:39:12 +00003776<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
3777Instruction</a> </div>
3778<div class="doc_text">
3779
3780<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003781<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00003782 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3783 &lt;result&gt; = ashr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003784</pre>
3785
3786<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003787<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
3788 operand shifted to the right a specified number of bits with sign
3789 extension.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003790
3791<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003792<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003793 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3794 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003795
3796<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003797<p>This instruction always performs an arithmetic shift right operation, The
3798 most significant bits of the result will be filled with the sign bit
3799 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
3800 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
3801 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
3802 the corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003803
Chris Lattnera676c0f2011-02-07 16:40:21 +00003804<p>If the <tt>exact</tt> keyword is present, the result value of the
3805 <tt>ashr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
3806 shifted out are non-zero.</p>
3807
Reid Spencer04e259b2007-01-31 21:39:12 +00003808<h5>Example:</h5>
3809<pre>
3810 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3811 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3812 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3813 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003814 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003815 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003816</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003817
Reid Spencer04e259b2007-01-31 21:39:12 +00003818</div>
3819
Chris Lattner2f7c9632001-06-06 20:29:01 +00003820<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003821<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3822Instruction</a> </div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003823
Misha Brukman76307852003-11-08 01:05:38 +00003824<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003825
Chris Lattner2f7c9632001-06-06 20:29:01 +00003826<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003827<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003828 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003829</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003830
Chris Lattner2f7c9632001-06-06 20:29:01 +00003831<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003832<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
3833 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003834
Chris Lattner2f7c9632001-06-06 20:29:01 +00003835<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003836<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003837 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3838 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003839
Chris Lattner2f7c9632001-06-06 20:29:01 +00003840<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003841<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003842
Misha Brukman76307852003-11-08 01:05:38 +00003843<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00003844 <tbody>
3845 <tr>
3846 <td>In0</td>
3847 <td>In1</td>
3848 <td>Out</td>
3849 </tr>
3850 <tr>
3851 <td>0</td>
3852 <td>0</td>
3853 <td>0</td>
3854 </tr>
3855 <tr>
3856 <td>0</td>
3857 <td>1</td>
3858 <td>0</td>
3859 </tr>
3860 <tr>
3861 <td>1</td>
3862 <td>0</td>
3863 <td>0</td>
3864 </tr>
3865 <tr>
3866 <td>1</td>
3867 <td>1</td>
3868 <td>1</td>
3869 </tr>
3870 </tbody>
3871</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003872
Chris Lattner2f7c9632001-06-06 20:29:01 +00003873<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003874<pre>
3875 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003876 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3877 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003878</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003879</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003880<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003881<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003882
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003883<div class="doc_text">
3884
3885<h5>Syntax:</h5>
3886<pre>
3887 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3888</pre>
3889
3890<h5>Overview:</h5>
3891<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
3892 two operands.</p>
3893
3894<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003895<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003896 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3897 values. Both arguments must have identical types.</p>
3898
Chris Lattner2f7c9632001-06-06 20:29:01 +00003899<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003900<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003901
Chris Lattner48b383b02003-11-25 01:02:51 +00003902<table border="1" cellspacing="0" cellpadding="4">
3903 <tbody>
3904 <tr>
3905 <td>In0</td>
3906 <td>In1</td>
3907 <td>Out</td>
3908 </tr>
3909 <tr>
3910 <td>0</td>
3911 <td>0</td>
3912 <td>0</td>
3913 </tr>
3914 <tr>
3915 <td>0</td>
3916 <td>1</td>
3917 <td>1</td>
3918 </tr>
3919 <tr>
3920 <td>1</td>
3921 <td>0</td>
3922 <td>1</td>
3923 </tr>
3924 <tr>
3925 <td>1</td>
3926 <td>1</td>
3927 <td>1</td>
3928 </tr>
3929 </tbody>
3930</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003931
Chris Lattner2f7c9632001-06-06 20:29:01 +00003932<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003933<pre>
3934 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003935 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3936 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003937</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003938
Misha Brukman76307852003-11-08 01:05:38 +00003939</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003940
Chris Lattner2f7c9632001-06-06 20:29:01 +00003941<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003942<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3943Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003944
Misha Brukman76307852003-11-08 01:05:38 +00003945<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003946
Chris Lattner2f7c9632001-06-06 20:29:01 +00003947<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003948<pre>
3949 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003950</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003951
Chris Lattner2f7c9632001-06-06 20:29:01 +00003952<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003953<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
3954 its two operands. The <tt>xor</tt> is used to implement the "one's
3955 complement" operation, which is the "~" operator in C.</p>
3956
Chris Lattner2f7c9632001-06-06 20:29:01 +00003957<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003958<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003959 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3960 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003961
Chris Lattner2f7c9632001-06-06 20:29:01 +00003962<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003963<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003964
Chris Lattner48b383b02003-11-25 01:02:51 +00003965<table border="1" cellspacing="0" cellpadding="4">
3966 <tbody>
3967 <tr>
3968 <td>In0</td>
3969 <td>In1</td>
3970 <td>Out</td>
3971 </tr>
3972 <tr>
3973 <td>0</td>
3974 <td>0</td>
3975 <td>0</td>
3976 </tr>
3977 <tr>
3978 <td>0</td>
3979 <td>1</td>
3980 <td>1</td>
3981 </tr>
3982 <tr>
3983 <td>1</td>
3984 <td>0</td>
3985 <td>1</td>
3986 </tr>
3987 <tr>
3988 <td>1</td>
3989 <td>1</td>
3990 <td>0</td>
3991 </tr>
3992 </tbody>
3993</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003994
Chris Lattner2f7c9632001-06-06 20:29:01 +00003995<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003996<pre>
3997 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003998 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3999 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
4000 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004001</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004002
Misha Brukman76307852003-11-08 01:05:38 +00004003</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004004
Chris Lattner2f7c9632001-06-06 20:29:01 +00004005<!-- ======================================================================= -->
Eric Christopher455c5772009-12-05 02:46:03 +00004006<div class="doc_subsection">
Chris Lattnerce83bff2006-04-08 23:07:04 +00004007 <a name="vectorops">Vector Operations</a>
4008</div>
4009
4010<div class="doc_text">
4011
4012<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004013 target-independent manner. These instructions cover the element-access and
4014 vector-specific operations needed to process vectors effectively. While LLVM
4015 does directly support these vector operations, many sophisticated algorithms
4016 will want to use target-specific intrinsics to take full advantage of a
4017 specific target.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004018
4019</div>
4020
4021<!-- _______________________________________________________________________ -->
4022<div class="doc_subsubsection">
4023 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
4024</div>
4025
4026<div class="doc_text">
4027
4028<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004029<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004030 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004031</pre>
4032
4033<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004034<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
4035 from a vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004036
4037
4038<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004039<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
4040 of <a href="#t_vector">vector</a> type. The second operand is an index
4041 indicating the position from which to extract the element. The index may be
4042 a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004043
4044<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004045<p>The result is a scalar of the same type as the element type of
4046 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
4047 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4048 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004049
4050<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004051<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004052 &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004053</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004054
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004055</div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004056
4057<!-- _______________________________________________________________________ -->
4058<div class="doc_subsubsection">
4059 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
4060</div>
4061
4062<div class="doc_text">
4063
4064<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004065<pre>
Dan Gohman43ba0672008-05-12 23:38:42 +00004066 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004067</pre>
4068
4069<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004070<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
4071 vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004072
4073<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004074<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
4075 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
4076 whose type must equal the element type of the first operand. The third
4077 operand is an index indicating the position at which to insert the value.
4078 The index may be a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004079
4080<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004081<p>The result is a vector of the same type as <tt>val</tt>. Its element values
4082 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
4083 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4084 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004085
4086<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004087<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004088 &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004089</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004090
Chris Lattnerce83bff2006-04-08 23:07:04 +00004091</div>
4092
4093<!-- _______________________________________________________________________ -->
4094<div class="doc_subsubsection">
4095 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
4096</div>
4097
4098<div class="doc_text">
4099
4100<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004101<pre>
Mon P Wang25f01062008-11-10 04:46:22 +00004102 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004103</pre>
4104
4105<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004106<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
4107 from two input vectors, returning a vector with the same element type as the
4108 input and length that is the same as the shuffle mask.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004109
4110<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004111<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
4112 with types that match each other. The third argument is a shuffle mask whose
4113 element type is always 'i32'. The result of the instruction is a vector
4114 whose length is the same as the shuffle mask and whose element type is the
4115 same as the element type of the first two operands.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004116
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004117<p>The shuffle mask operand is required to be a constant vector with either
4118 constant integer or undef values.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004119
4120<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004121<p>The elements of the two input vectors are numbered from left to right across
4122 both of the vectors. The shuffle mask operand specifies, for each element of
4123 the result vector, which element of the two input vectors the result element
4124 gets. The element selector may be undef (meaning "don't care") and the
4125 second operand may be undef if performing a shuffle from only one vector.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004126
4127<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004128<pre>
Eric Christopher455c5772009-12-05 02:46:03 +00004129 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen5819f182007-04-22 01:17:39 +00004130 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004131 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004132 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Eric Christopher455c5772009-12-05 02:46:03 +00004133 &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
Mon P Wang25f01062008-11-10 04:46:22 +00004134 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004135 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Mon P Wang25f01062008-11-10 04:46:22 +00004136 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004137</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004138
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004139</div>
Tanya Lattnerb138bbe2006-04-14 19:24:33 +00004140
Chris Lattnerce83bff2006-04-08 23:07:04 +00004141<!-- ======================================================================= -->
Eric Christopher455c5772009-12-05 02:46:03 +00004142<div class="doc_subsection">
Dan Gohmanb9d66602008-05-12 23:51:09 +00004143 <a name="aggregateops">Aggregate Operations</a>
4144</div>
4145
4146<div class="doc_text">
4147
Chris Lattner392be582010-02-12 20:49:41 +00004148<p>LLVM supports several instructions for working with
4149 <a href="#t_aggregate">aggregate</a> values.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004150
4151</div>
4152
4153<!-- _______________________________________________________________________ -->
4154<div class="doc_subsubsection">
4155 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
4156</div>
4157
4158<div class="doc_text">
4159
4160<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004161<pre>
4162 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
4163</pre>
4164
4165<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00004166<p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
4167 from an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004168
4169<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004170<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
Chris Lattner13ee7952010-08-28 04:09:24 +00004171 of <a href="#t_struct">struct</a> or
Chris Lattner392be582010-02-12 20:49:41 +00004172 <a href="#t_array">array</a> type. The operands are constant indices to
4173 specify which value to extract in a similar manner as indices in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004174 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Frits van Bommel7cf63ac2010-12-05 20:54:38 +00004175 <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
4176 <ul>
4177 <li>Since the value being indexed is not a pointer, the first index is
4178 omitted and assumed to be zero.</li>
4179 <li>At least one index must be specified.</li>
4180 <li>Not only struct indices but also array indices must be in
4181 bounds.</li>
4182 </ul>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004183
4184<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004185<p>The result is the value at the position in the aggregate specified by the
4186 index operands.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004187
4188<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004189<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004190 &lt;result&gt; = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004191</pre>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004192
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004193</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004194
4195<!-- _______________________________________________________________________ -->
4196<div class="doc_subsubsection">
4197 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
4198</div>
4199
4200<div class="doc_text">
4201
4202<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004203<pre>
Jeffrey Yasskinf991bbb2010-01-11 19:19:26 +00004204 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt; <i>; yields &lt;aggregate type&gt;</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004205</pre>
4206
4207<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00004208<p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
4209 in an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004210
4211<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004212<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
Chris Lattner13ee7952010-08-28 04:09:24 +00004213 of <a href="#t_struct">struct</a> or
Chris Lattner392be582010-02-12 20:49:41 +00004214 <a href="#t_array">array</a> type. The second operand is a first-class
4215 value to insert. The following operands are constant indices indicating
4216 the position at which to insert the value in a similar manner as indices in a
Frits van Bommel7cf63ac2010-12-05 20:54:38 +00004217 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction. The
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004218 value to insert must have the same type as the value identified by the
4219 indices.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004220
4221<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004222<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
4223 that of <tt>val</tt> except that the value at the position specified by the
4224 indices is that of <tt>elt</tt>.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004225
4226<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004227<pre>
Jeffrey Yasskinf991bbb2010-01-11 19:19:26 +00004228 %agg1 = insertvalue {i32, float} undef, i32 1, 0 <i>; yields {i32 1, float undef}</i>
4229 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 <i>; yields {i32 1, float %val}</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004230</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004231
Dan Gohmanb9d66602008-05-12 23:51:09 +00004232</div>
4233
4234
4235<!-- ======================================================================= -->
Eric Christopher455c5772009-12-05 02:46:03 +00004236<div class="doc_subsection">
Chris Lattner6ab66722006-08-15 00:45:58 +00004237 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner54611b42005-11-06 08:02:57 +00004238</div>
4239
Misha Brukman76307852003-11-08 01:05:38 +00004240<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00004241
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004242<p>A key design point of an SSA-based representation is how it represents
4243 memory. In LLVM, no memory locations are in SSA form, which makes things
Victor Hernandeza70c6df2009-10-26 23:44:29 +00004244 very simple. This section describes how to read, write, and allocate
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004245 memory in LLVM.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004246
Misha Brukman76307852003-11-08 01:05:38 +00004247</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004248
Chris Lattner2f7c9632001-06-06 20:29:01 +00004249<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00004250<div class="doc_subsubsection">
Chris Lattner54611b42005-11-06 08:02:57 +00004251 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
4252</div>
4253
Misha Brukman76307852003-11-08 01:05:38 +00004254<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00004255
Chris Lattner2f7c9632001-06-06 20:29:01 +00004256<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004257<pre>
Dan Gohman2140a742010-05-28 01:14:11 +00004258 &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004259</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00004260
Chris Lattner2f7c9632001-06-06 20:29:01 +00004261<h5>Overview:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00004262<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004263 currently executing function, to be automatically released when this function
4264 returns to its caller. The object is always allocated in the generic address
4265 space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004266
Chris Lattner2f7c9632001-06-06 20:29:01 +00004267<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004268<p>The '<tt>alloca</tt>' instruction
4269 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4270 runtime stack, returning a pointer of the appropriate type to the program.
4271 If "NumElements" is specified, it is the number of elements allocated,
4272 otherwise "NumElements" is defaulted to be one. If a constant alignment is
4273 specified, the value result of the allocation is guaranteed to be aligned to
4274 at least that boundary. If not specified, or if zero, the target can choose
4275 to align the allocation on any convenient boundary compatible with the
4276 type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004277
Misha Brukman76307852003-11-08 01:05:38 +00004278<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004279
Chris Lattner2f7c9632001-06-06 20:29:01 +00004280<h5>Semantics:</h5>
Bill Wendling9ee6a312009-05-08 20:49:29 +00004281<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004282 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
4283 memory is automatically released when the function returns. The
4284 '<tt>alloca</tt>' instruction is commonly used to represent automatic
4285 variables that must have an address available. When the function returns
4286 (either with the <tt><a href="#i_ret">ret</a></tt>
4287 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
4288 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004289
Chris Lattner2f7c9632001-06-06 20:29:01 +00004290<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004291<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00004292 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
4293 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
4294 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
4295 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004296</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004297
Misha Brukman76307852003-11-08 01:05:38 +00004298</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004299
Chris Lattner2f7c9632001-06-06 20:29:01 +00004300<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00004301<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
4302Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004303
Misha Brukman76307852003-11-08 01:05:38 +00004304<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004305
Chris Lattner095735d2002-05-06 03:03:22 +00004306<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004307<pre>
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004308 &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4309 &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4310 !&lt;index&gt; = !{ i32 1 }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004311</pre>
4312
Chris Lattner095735d2002-05-06 03:03:22 +00004313<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004314<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004315
Chris Lattner095735d2002-05-06 03:03:22 +00004316<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004317<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
4318 from which to load. The pointer must point to
4319 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
4320 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00004321 number or order of execution of this <tt>load</tt> with other <a
4322 href="#volatile">volatile operations</a>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004323
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004324<p>The optional constant <tt>align</tt> argument specifies the alignment of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004325 operation (that is, the alignment of the memory address). A value of 0 or an
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004326 omitted <tt>align</tt> argument means that the operation has the preferential
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004327 alignment for the target. It is the responsibility of the code emitter to
4328 ensure that the alignment information is correct. Overestimating the
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004329 alignment results in undefined behavior. Underestimating the alignment may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004330 produce less efficient code. An alignment of 1 is always safe.</p>
4331
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004332<p>The optional <tt>!nontemporal</tt> metadata must reference a single
4333 metatadata name &lt;index&gt; corresponding to a metadata node with
Dan Gohmana269a0a2010-03-01 17:41:39 +00004334 one <tt>i32</tt> entry of value 1. The existence of
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004335 the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
4336 and code generator that this load is not expected to be reused in the cache.
4337 The code generator may select special instructions to save cache bandwidth,
Dan Gohmana269a0a2010-03-01 17:41:39 +00004338 such as the <tt>MOVNT</tt> instruction on x86.</p>
David Greene9641d062010-02-16 20:50:18 +00004339
Chris Lattner095735d2002-05-06 03:03:22 +00004340<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004341<p>The location of memory pointed to is loaded. If the value being loaded is of
4342 scalar type then the number of bytes read does not exceed the minimum number
4343 of bytes needed to hold all bits of the type. For example, loading an
4344 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
4345 <tt>i20</tt> with a size that is not an integral number of bytes, the result
4346 is undefined if the value was not originally written using a store of the
4347 same type.</p>
4348
Chris Lattner095735d2002-05-06 03:03:22 +00004349<h5>Examples:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004350<pre>
4351 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4352 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004353 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004354</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004355
Misha Brukman76307852003-11-08 01:05:38 +00004356</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004357
Chris Lattner095735d2002-05-06 03:03:22 +00004358<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00004359<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
4360Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004361
Reid Spencera89fb182006-11-09 21:18:01 +00004362<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004363
Chris Lattner095735d2002-05-06 03:03:22 +00004364<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004365<pre>
Benjamin Kramer79698be2010-07-13 12:26:09 +00004366 store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
4367 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004368</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004369
Chris Lattner095735d2002-05-06 03:03:22 +00004370<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004371<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004372
Chris Lattner095735d2002-05-06 03:03:22 +00004373<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004374<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
4375 and an address at which to store it. The type of the
4376 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
4377 the <a href="#t_firstclass">first class</a> type of the
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00004378 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
4379 <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
4380 order of execution of this <tt>store</tt> with other <a
4381 href="#volatile">volatile operations</a>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004382
4383<p>The optional constant "align" argument specifies the alignment of the
4384 operation (that is, the alignment of the memory address). A value of 0 or an
4385 omitted "align" argument means that the operation has the preferential
4386 alignment for the target. It is the responsibility of the code emitter to
4387 ensure that the alignment information is correct. Overestimating the
4388 alignment results in an undefined behavior. Underestimating the alignment may
4389 produce less efficient code. An alignment of 1 is always safe.</p>
4390
David Greene9641d062010-02-16 20:50:18 +00004391<p>The optional !nontemporal metadata must reference a single metatadata
Benjamin Kramer79698be2010-07-13 12:26:09 +00004392 name &lt;index&gt; corresponding to a metadata node with one i32 entry of
Dan Gohmana269a0a2010-03-01 17:41:39 +00004393 value 1. The existence of the !nontemporal metatadata on the
David Greene9641d062010-02-16 20:50:18 +00004394 instruction tells the optimizer and code generator that this load is
4395 not expected to be reused in the cache. The code generator may
4396 select special instructions to save cache bandwidth, such as the
Dan Gohmana269a0a2010-03-01 17:41:39 +00004397 MOVNT instruction on x86.</p>
David Greene9641d062010-02-16 20:50:18 +00004398
4399
Chris Lattner48b383b02003-11-25 01:02:51 +00004400<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004401<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
4402 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
4403 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
4404 does not exceed the minimum number of bytes needed to hold all bits of the
4405 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
4406 writing a value of a type like <tt>i20</tt> with a size that is not an
4407 integral number of bytes, it is unspecified what happens to the extra bits
4408 that do not belong to the type, but they will typically be overwritten.</p>
4409
Chris Lattner095735d2002-05-06 03:03:22 +00004410<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004411<pre>
4412 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8830ffe2007-10-22 05:10:05 +00004413 store i32 3, i32* %ptr <i>; yields {void}</i>
4414 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004415</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004416
Reid Spencer443460a2006-11-09 21:15:49 +00004417</div>
4418
Chris Lattner095735d2002-05-06 03:03:22 +00004419<!-- _______________________________________________________________________ -->
Chris Lattner33fd7022004-04-05 01:30:49 +00004420<div class="doc_subsubsection">
4421 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
4422</div>
4423
Misha Brukman76307852003-11-08 01:05:38 +00004424<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004425
Chris Lattner590645f2002-04-14 06:13:44 +00004426<h5>Syntax:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00004427<pre>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004428 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohman1639c392009-07-27 21:53:46 +00004429 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattner33fd7022004-04-05 01:30:49 +00004430</pre>
4431
Chris Lattner590645f2002-04-14 06:13:44 +00004432<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004433<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
Chris Lattner392be582010-02-12 20:49:41 +00004434 subelement of an <a href="#t_aggregate">aggregate</a> data structure.
4435 It performs address calculation only and does not access memory.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004436
Chris Lattner590645f2002-04-14 06:13:44 +00004437<h5>Arguments:</h5>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004438<p>The first argument is always a pointer, and forms the basis of the
Chris Lattnera40b9122009-07-29 06:44:13 +00004439 calculation. The remaining arguments are indices that indicate which of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004440 elements of the aggregate object are indexed. The interpretation of each
4441 index is dependent on the type being indexed into. The first index always
4442 indexes the pointer value given as the first argument, the second index
4443 indexes a value of the type pointed to (not necessarily the value directly
4444 pointed to, since the first index can be non-zero), etc. The first type
Chris Lattner392be582010-02-12 20:49:41 +00004445 indexed into must be a pointer value, subsequent types can be arrays,
Chris Lattner13ee7952010-08-28 04:09:24 +00004446 vectors, and structs. Note that subsequent types being indexed into
Chris Lattner392be582010-02-12 20:49:41 +00004447 can never be pointers, since that would require loading the pointer before
4448 continuing calculation.</p>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004449
4450<p>The type of each index argument depends on the type it is indexing into.
Chris Lattner13ee7952010-08-28 04:09:24 +00004451 When indexing into a (optionally packed) structure, only <tt>i32</tt>
Chris Lattner392be582010-02-12 20:49:41 +00004452 integer <b>constants</b> are allowed. When indexing into an array, pointer
4453 or vector, integers of any width are allowed, and they are not required to be
Chris Lattnera40b9122009-07-29 06:44:13 +00004454 constant.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004455
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004456<p>For example, let's consider a C code fragment and how it gets compiled to
4457 LLVM:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004458
Benjamin Kramer79698be2010-07-13 12:26:09 +00004459<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00004460struct RT {
4461 char A;
Chris Lattnera446f1b2007-05-29 15:43:56 +00004462 int B[10][20];
Bill Wendling3716c5d2007-05-29 09:04:49 +00004463 char C;
4464};
4465struct ST {
Chris Lattnera446f1b2007-05-29 15:43:56 +00004466 int X;
Bill Wendling3716c5d2007-05-29 09:04:49 +00004467 double Y;
4468 struct RT Z;
4469};
Chris Lattner33fd7022004-04-05 01:30:49 +00004470
Chris Lattnera446f1b2007-05-29 15:43:56 +00004471int *foo(struct ST *s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00004472 return &amp;s[1].Z.B[5][13];
4473}
Chris Lattner33fd7022004-04-05 01:30:49 +00004474</pre>
4475
Misha Brukman76307852003-11-08 01:05:38 +00004476<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004477
Benjamin Kramer79698be2010-07-13 12:26:09 +00004478<pre class="doc_code">
Chris Lattnerbc088212009-01-11 20:53:49 +00004479%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
4480%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattner33fd7022004-04-05 01:30:49 +00004481
Dan Gohman6b867702009-07-25 02:23:48 +00004482define i32* @foo(%ST* %s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00004483entry:
4484 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
4485 ret i32* %reg
4486}
Chris Lattner33fd7022004-04-05 01:30:49 +00004487</pre>
4488
Chris Lattner590645f2002-04-14 06:13:44 +00004489<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004490<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004491 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
4492 }</tt>' type, a structure. The second index indexes into the third element
4493 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
4494 i8 }</tt>' type, another structure. The third index indexes into the second
4495 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
4496 array. The two dimensions of the array are subscripted into, yielding an
4497 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
4498 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004499
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004500<p>Note that it is perfectly legal to index partially through a structure,
4501 returning a pointer to an inner element. Because of this, the LLVM code for
4502 the given testcase is equivalent to:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004503
4504<pre>
Dan Gohman6b867702009-07-25 02:23:48 +00004505 define i32* @foo(%ST* %s) {
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004506 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen5819f182007-04-22 01:17:39 +00004507 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
4508 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004509 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
4510 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
4511 ret i32* %t5
Chris Lattner33fd7022004-04-05 01:30:49 +00004512 }
Chris Lattnera8292f32002-05-06 22:08:29 +00004513</pre>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00004514
Dan Gohman1639c392009-07-27 21:53:46 +00004515<p>If the <tt>inbounds</tt> keyword is present, the result value of the
Dan Gohman57255802010-04-23 15:23:32 +00004516 <tt>getelementptr</tt> is a <a href="#trapvalues">trap value</a> if the
4517 base pointer is not an <i>in bounds</i> address of an allocated object,
4518 or if any of the addresses that would be formed by successive addition of
4519 the offsets implied by the indices to the base address with infinitely
4520 precise arithmetic are not an <i>in bounds</i> address of that allocated
4521 object. The <i>in bounds</i> addresses for an allocated object are all
4522 the addresses that point into the object, plus the address one byte past
4523 the end.</p>
Dan Gohman1639c392009-07-27 21:53:46 +00004524
4525<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
4526 the base address with silently-wrapping two's complement arithmetic, and
4527 the result value of the <tt>getelementptr</tt> may be outside the object
4528 pointed to by the base pointer. The result value may not necessarily be
4529 used to access memory though, even if it happens to point into allocated
4530 storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
4531 section for more information.</p>
4532
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004533<p>The getelementptr instruction is often confusing. For some more insight into
4534 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Chris Lattner6ab66722006-08-15 00:45:58 +00004535
Chris Lattner590645f2002-04-14 06:13:44 +00004536<h5>Example:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00004537<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004538 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004539 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4540 <i>; yields i8*:vptr</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004541 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004542 <i>; yields i8*:eptr</i>
4543 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta0c155e62009-04-25 07:27:44 +00004544 <i>; yields i32*:iptr</i>
Sanjiv Gupta77abea02009-04-24 16:38:13 +00004545 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattner33fd7022004-04-05 01:30:49 +00004546</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004547
Chris Lattner33fd7022004-04-05 01:30:49 +00004548</div>
Reid Spencer443460a2006-11-09 21:15:49 +00004549
Chris Lattner2f7c9632001-06-06 20:29:01 +00004550<!-- ======================================================================= -->
Reid Spencer97c5fa42006-11-08 01:18:52 +00004551<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman76307852003-11-08 01:05:38 +00004552</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004553
Misha Brukman76307852003-11-08 01:05:38 +00004554<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004555
Reid Spencer97c5fa42006-11-08 01:18:52 +00004556<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004557 which all take a single operand and a type. They perform various bit
4558 conversions on the operand.</p>
4559
Misha Brukman76307852003-11-08 01:05:38 +00004560</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004561
Chris Lattnera8292f32002-05-06 22:08:29 +00004562<!-- _______________________________________________________________________ -->
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004563<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004564 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
4565</div>
4566<div class="doc_text">
4567
4568<h5>Syntax:</h5>
4569<pre>
4570 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4571</pre>
4572
4573<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004574<p>The '<tt>trunc</tt>' instruction truncates its operand to the
4575 type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004576
4577<h5>Arguments:</h5>
Nadav Rotem502f1b92011-02-24 21:01:34 +00004578<p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
4579 Both types must be of <a href="#t_integer">integer</a> types, or vectors
4580 of the same number of integers.
4581 The bit size of the <tt>value</tt> must be larger than
4582 the bit size of the destination type, <tt>ty2</tt>.
4583 Equal sized types are not allowed.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004584
4585<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004586<p>The '<tt>trunc</tt>' instruction truncates the high order bits
4587 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
4588 source size must be larger than the destination size, <tt>trunc</tt> cannot
4589 be a <i>no-op cast</i>. It will always truncate bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004590
4591<h5>Example:</h5>
4592<pre>
Nadav Rotem502f1b92011-02-24 21:01:34 +00004593 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
4594 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
4595 %Z = trunc i32 122 to i1 <i>; yields i1:false</i>
4596 %W = trunc &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i8&gt; <i>; yields &lt;i8 8, i8 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004597</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004598
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004599</div>
4600
4601<!-- _______________________________________________________________________ -->
4602<div class="doc_subsubsection">
4603 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
4604</div>
4605<div class="doc_text">
4606
4607<h5>Syntax:</h5>
4608<pre>
4609 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4610</pre>
4611
4612<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004613<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004614 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004615
4616
4617<h5>Arguments:</h5>
Nadav Rotem25f2ac92011-02-20 12:37:50 +00004618<p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
4619 Both types must be of <a href="#t_integer">integer</a> types, or vectors
4620 of the same number of integers.
4621 The bit size of the <tt>value</tt> must be smaller than
4622 the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004623 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004624
4625<h5>Semantics:</h5>
4626<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004627 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004628
Reid Spencer07c9c682007-01-12 15:46:11 +00004629<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004630
4631<h5>Example:</h5>
4632<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004633 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencer36a15422007-01-12 03:35:51 +00004634 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Nadav Rotem25f2ac92011-02-20 12:37:50 +00004635 %Z = zext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004636</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004637
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004638</div>
4639
4640<!-- _______________________________________________________________________ -->
4641<div class="doc_subsubsection">
4642 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
4643</div>
4644<div class="doc_text">
4645
4646<h5>Syntax:</h5>
4647<pre>
4648 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4649</pre>
4650
4651<h5>Overview:</h5>
4652<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
4653
4654<h5>Arguments:</h5>
Nadav Rotem502f1b92011-02-24 21:01:34 +00004655<p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
4656 Both types must be of <a href="#t_integer">integer</a> types, or vectors
4657 of the same number of integers.
4658 The bit size of the <tt>value</tt> must be smaller than
4659 the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004660 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004661
4662<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004663<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
4664 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
4665 of the type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004666
Reid Spencer36a15422007-01-12 03:35:51 +00004667<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004668
4669<h5>Example:</h5>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004670<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004671 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencer36a15422007-01-12 03:35:51 +00004672 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Nadav Rotem502f1b92011-02-24 21:01:34 +00004673 %Z = sext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004674</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004675
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004676</div>
4677
4678<!-- _______________________________________________________________________ -->
4679<div class="doc_subsubsection">
Reid Spencer2e2740d2006-11-09 21:48:10 +00004680 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
4681</div>
4682
4683<div class="doc_text">
4684
4685<h5>Syntax:</h5>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004686<pre>
4687 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4688</pre>
4689
4690<h5>Overview:</h5>
4691<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004692 <tt>ty2</tt>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004693
4694<h5>Arguments:</h5>
4695<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004696 point</a> value to cast and a <a href="#t_floating">floating point</a> type
4697 to cast it to. The size of <tt>value</tt> must be larger than the size of
Eric Christopher455c5772009-12-05 02:46:03 +00004698 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004699 <i>no-op cast</i>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004700
4701<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004702<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
Eric Christopher455c5772009-12-05 02:46:03 +00004703 <a href="#t_floating">floating point</a> type to a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004704 <a href="#t_floating">floating point</a> type. If the value cannot fit
4705 within the destination type, <tt>ty2</tt>, then the results are
4706 undefined.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004707
4708<h5>Example:</h5>
4709<pre>
4710 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4711 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4712</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004713
Reid Spencer2e2740d2006-11-09 21:48:10 +00004714</div>
4715
4716<!-- _______________________________________________________________________ -->
4717<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004718 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4719</div>
4720<div class="doc_text">
4721
4722<h5>Syntax:</h5>
4723<pre>
4724 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4725</pre>
4726
4727<h5>Overview:</h5>
4728<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004729 floating point value.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004730
4731<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004732<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004733 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
4734 a <a href="#t_floating">floating point</a> type to cast it to. The source
4735 type must be smaller than the destination type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004736
4737<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004738<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004739 <a href="#t_floating">floating point</a> type to a larger
4740 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
4741 used to make a <i>no-op cast</i> because it always changes bits. Use
4742 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004743
4744<h5>Example:</h5>
4745<pre>
4746 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4747 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4748</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004749
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004750</div>
4751
4752<!-- _______________________________________________________________________ -->
4753<div class="doc_subsubsection">
Reid Spencer2eadb532007-01-21 00:29:26 +00004754 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004755</div>
4756<div class="doc_text">
4757
4758<h5>Syntax:</h5>
4759<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00004760 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004761</pre>
4762
4763<h5>Overview:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00004764<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004765 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004766
4767<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004768<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
4769 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4770 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4771 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4772 vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004773
4774<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004775<p>The '<tt>fptoui</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004776 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4777 towards zero) unsigned integer value. If the value cannot fit
4778 in <tt>ty2</tt>, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004779
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004780<h5>Example:</h5>
4781<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00004782 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00004783 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00004784 %Z = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004785</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004786
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004787</div>
4788
4789<!-- _______________________________________________________________________ -->
4790<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004791 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004792</div>
4793<div class="doc_text">
4794
4795<h5>Syntax:</h5>
4796<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004797 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004798</pre>
4799
4800<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004801<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004802 <a href="#t_floating">floating point</a> <tt>value</tt> to
4803 type <tt>ty2</tt>.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004804
Chris Lattnera8292f32002-05-06 22:08:29 +00004805<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004806<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
4807 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4808 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4809 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4810 vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004811
Chris Lattnera8292f32002-05-06 22:08:29 +00004812<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004813<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004814 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4815 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4816 the results are undefined.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004817
Chris Lattner70de6632001-07-09 00:26:23 +00004818<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004819<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00004820 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00004821 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00004822 %Z = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004823</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004824
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004825</div>
4826
4827<!-- _______________________________________________________________________ -->
4828<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004829 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004830</div>
4831<div class="doc_text">
4832
4833<h5>Syntax:</h5>
4834<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004835 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004836</pre>
4837
4838<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004839<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004840 integer and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004841
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004842<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004843<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004844 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4845 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4846 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4847 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004848
4849<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004850<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004851 integer quantity and converts it to the corresponding floating point
4852 value. If the value cannot fit in the floating point value, the results are
4853 undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004854
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004855<h5>Example:</h5>
4856<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004857 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004858 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004859</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004860
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004861</div>
4862
4863<!-- _______________________________________________________________________ -->
4864<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004865 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004866</div>
4867<div class="doc_text">
4868
4869<h5>Syntax:</h5>
4870<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004871 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004872</pre>
4873
4874<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004875<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
4876 and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004877
4878<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004879<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004880 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4881 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4882 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4883 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004884
4885<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004886<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
4887 quantity and converts it to the corresponding floating point value. If the
4888 value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004889
4890<h5>Example:</h5>
4891<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004892 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004893 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004894</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004895
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004896</div>
4897
4898<!-- _______________________________________________________________________ -->
4899<div class="doc_subsubsection">
Reid Spencerb7344ff2006-11-11 21:00:47 +00004900 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4901</div>
4902<div class="doc_text">
4903
4904<h5>Syntax:</h5>
4905<pre>
4906 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4907</pre>
4908
4909<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004910<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4911 the integer type <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004912
4913<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004914<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
4915 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
4916 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004917
4918<h5>Semantics:</h5>
4919<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004920 <tt>ty2</tt> by interpreting the pointer value as an integer and either
4921 truncating or zero extending that value to the size of the integer type. If
4922 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4923 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
4924 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4925 change.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004926
4927<h5>Example:</h5>
4928<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004929 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4930 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004931</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004932
Reid Spencerb7344ff2006-11-11 21:00:47 +00004933</div>
4934
4935<!-- _______________________________________________________________________ -->
4936<div class="doc_subsubsection">
4937 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4938</div>
4939<div class="doc_text">
4940
4941<h5>Syntax:</h5>
4942<pre>
4943 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4944</pre>
4945
4946<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004947<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
4948 pointer type, <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004949
4950<h5>Arguments:</h5>
Duncan Sands16f122e2007-03-30 12:22:09 +00004951<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004952 value to cast, and a type to cast it to, which must be a
4953 <a href="#t_pointer">pointer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004954
4955<h5>Semantics:</h5>
4956<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004957 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
4958 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4959 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
4960 than the size of a pointer then a zero extension is done. If they are the
4961 same size, nothing is done (<i>no-op cast</i>).</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004962
4963<h5>Example:</h5>
4964<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004965 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00004966 %Y = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4967 %Z = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004968</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004969
Reid Spencerb7344ff2006-11-11 21:00:47 +00004970</div>
4971
4972<!-- _______________________________________________________________________ -->
4973<div class="doc_subsubsection">
Reid Spencer5b950642006-11-11 23:08:07 +00004974 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004975</div>
4976<div class="doc_text">
4977
4978<h5>Syntax:</h5>
4979<pre>
Reid Spencer5b950642006-11-11 23:08:07 +00004980 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004981</pre>
4982
4983<h5>Overview:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00004984<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004985 <tt>ty2</tt> without changing any bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004986
4987<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004988<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
4989 non-aggregate first class value, and a type to cast it to, which must also be
4990 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
4991 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
4992 identical. If the source type is a pointer, the destination type must also be
4993 a pointer. This instruction supports bitwise conversion of vectors to
4994 integers and to vectors of other types (as long as they have the same
4995 size).</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004996
4997<h5>Semantics:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00004998<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004999 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
5000 this conversion. The conversion is done as if the <tt>value</tt> had been
5001 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
5002 be converted to other pointer types with this instruction. To convert
5003 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
5004 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005005
5006<h5>Example:</h5>
5007<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005008 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005009 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Eric Christopher455c5772009-12-05 02:46:03 +00005010 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner70de6632001-07-09 00:26:23 +00005011</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005012
Misha Brukman76307852003-11-08 01:05:38 +00005013</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005014
Reid Spencer97c5fa42006-11-08 01:18:52 +00005015<!-- ======================================================================= -->
5016<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005017
Reid Spencer97c5fa42006-11-08 01:18:52 +00005018<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005019
5020<p>The instructions in this category are the "miscellaneous" instructions, which
5021 defy better classification.</p>
5022
Reid Spencer97c5fa42006-11-08 01:18:52 +00005023</div>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005024
5025<!-- _______________________________________________________________________ -->
5026<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
5027</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005028
Reid Spencerc828a0e2006-11-18 21:50:54 +00005029<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005030
Reid Spencerc828a0e2006-11-18 21:50:54 +00005031<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005032<pre>
5033 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005034</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005035
Reid Spencerc828a0e2006-11-18 21:50:54 +00005036<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005037<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
5038 boolean values based on comparison of its two integer, integer vector, or
5039 pointer operands.</p>
5040
Reid Spencerc828a0e2006-11-18 21:50:54 +00005041<h5>Arguments:</h5>
5042<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005043 the condition code indicating the kind of comparison to perform. It is not a
5044 value, just a keyword. The possible condition code are:</p>
5045
Reid Spencerc828a0e2006-11-18 21:50:54 +00005046<ol>
5047 <li><tt>eq</tt>: equal</li>
5048 <li><tt>ne</tt>: not equal </li>
5049 <li><tt>ugt</tt>: unsigned greater than</li>
5050 <li><tt>uge</tt>: unsigned greater or equal</li>
5051 <li><tt>ult</tt>: unsigned less than</li>
5052 <li><tt>ule</tt>: unsigned less or equal</li>
5053 <li><tt>sgt</tt>: signed greater than</li>
5054 <li><tt>sge</tt>: signed greater or equal</li>
5055 <li><tt>slt</tt>: signed less than</li>
5056 <li><tt>sle</tt>: signed less or equal</li>
5057</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005058
Chris Lattnerc0f423a2007-01-15 01:54:13 +00005059<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005060 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
5061 typed. They must also be identical types.</p>
5062
Reid Spencerc828a0e2006-11-18 21:50:54 +00005063<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005064<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
5065 condition code given as <tt>cond</tt>. The comparison performed always yields
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005066 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005067 result, as follows:</p>
5068
Reid Spencerc828a0e2006-11-18 21:50:54 +00005069<ol>
Eric Christopher455c5772009-12-05 02:46:03 +00005070 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005071 <tt>false</tt> otherwise. No sign interpretation is necessary or
5072 performed.</li>
5073
Eric Christopher455c5772009-12-05 02:46:03 +00005074 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005075 <tt>false</tt> otherwise. No sign interpretation is necessary or
5076 performed.</li>
5077
Reid Spencerc828a0e2006-11-18 21:50:54 +00005078 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005079 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5080
Reid Spencerc828a0e2006-11-18 21:50:54 +00005081 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005082 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5083 to <tt>op2</tt>.</li>
5084
Reid Spencerc828a0e2006-11-18 21:50:54 +00005085 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005086 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5087
Reid Spencerc828a0e2006-11-18 21:50:54 +00005088 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005089 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5090
Reid Spencerc828a0e2006-11-18 21:50:54 +00005091 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005092 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5093
Reid Spencerc828a0e2006-11-18 21:50:54 +00005094 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005095 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5096 to <tt>op2</tt>.</li>
5097
Reid Spencerc828a0e2006-11-18 21:50:54 +00005098 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005099 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5100
Reid Spencerc828a0e2006-11-18 21:50:54 +00005101 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005102 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005103</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005104
Reid Spencerc828a0e2006-11-18 21:50:54 +00005105<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005106 values are compared as if they were integers.</p>
5107
5108<p>If the operands are integer vectors, then they are compared element by
5109 element. The result is an <tt>i1</tt> vector with the same number of elements
5110 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005111
5112<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005113<pre>
5114 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005115 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
5116 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
5117 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
5118 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
5119 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005120</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005121
5122<p>Note that the code generator does not yet support vector types with
5123 the <tt>icmp</tt> instruction.</p>
5124
Reid Spencerc828a0e2006-11-18 21:50:54 +00005125</div>
5126
5127<!-- _______________________________________________________________________ -->
5128<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
5129</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005130
Reid Spencerc828a0e2006-11-18 21:50:54 +00005131<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005132
Reid Spencerc828a0e2006-11-18 21:50:54 +00005133<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005134<pre>
5135 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005136</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005137
Reid Spencerc828a0e2006-11-18 21:50:54 +00005138<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005139<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
5140 values based on comparison of its operands.</p>
5141
5142<p>If the operands are floating point scalars, then the result type is a boolean
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005143(<a href="#t_integer"><tt>i1</tt></a>).</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005144
5145<p>If the operands are floating point vectors, then the result type is a vector
5146 of boolean with the same number of elements as the operands being
5147 compared.</p>
5148
Reid Spencerc828a0e2006-11-18 21:50:54 +00005149<h5>Arguments:</h5>
5150<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005151 the condition code indicating the kind of comparison to perform. It is not a
5152 value, just a keyword. The possible condition code are:</p>
5153
Reid Spencerc828a0e2006-11-18 21:50:54 +00005154<ol>
Reid Spencerf69acf32006-11-19 03:00:14 +00005155 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005156 <li><tt>oeq</tt>: ordered and equal</li>
5157 <li><tt>ogt</tt>: ordered and greater than </li>
5158 <li><tt>oge</tt>: ordered and greater than or equal</li>
5159 <li><tt>olt</tt>: ordered and less than </li>
5160 <li><tt>ole</tt>: ordered and less than or equal</li>
5161 <li><tt>one</tt>: ordered and not equal</li>
5162 <li><tt>ord</tt>: ordered (no nans)</li>
5163 <li><tt>ueq</tt>: unordered or equal</li>
5164 <li><tt>ugt</tt>: unordered or greater than </li>
5165 <li><tt>uge</tt>: unordered or greater than or equal</li>
5166 <li><tt>ult</tt>: unordered or less than </li>
5167 <li><tt>ule</tt>: unordered or less than or equal</li>
5168 <li><tt>une</tt>: unordered or not equal</li>
5169 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00005170 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005171</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005172
Jeff Cohen222a8a42007-04-29 01:07:00 +00005173<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005174 <i>unordered</i> means that either operand may be a QNAN.</p>
5175
5176<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
5177 a <a href="#t_floating">floating point</a> type or
5178 a <a href="#t_vector">vector</a> of floating point type. They must have
5179 identical types.</p>
5180
Reid Spencerc828a0e2006-11-18 21:50:54 +00005181<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00005182<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005183 according to the condition code given as <tt>cond</tt>. If the operands are
5184 vectors, then the vectors are compared element by element. Each comparison
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005185 performed always yields an <a href="#t_integer">i1</a> result, as
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005186 follows:</p>
5187
Reid Spencerc828a0e2006-11-18 21:50:54 +00005188<ol>
5189 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005190
Eric Christopher455c5772009-12-05 02:46:03 +00005191 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005192 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5193
Reid Spencerf69acf32006-11-19 03:00:14 +00005194 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Dan Gohmana269a0a2010-03-01 17:41:39 +00005195 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005196
Eric Christopher455c5772009-12-05 02:46:03 +00005197 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005198 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5199
Eric Christopher455c5772009-12-05 02:46:03 +00005200 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005201 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5202
Eric Christopher455c5772009-12-05 02:46:03 +00005203 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005204 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5205
Eric Christopher455c5772009-12-05 02:46:03 +00005206 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005207 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5208
Reid Spencerf69acf32006-11-19 03:00:14 +00005209 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005210
Eric Christopher455c5772009-12-05 02:46:03 +00005211 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005212 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5213
Eric Christopher455c5772009-12-05 02:46:03 +00005214 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005215 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5216
Eric Christopher455c5772009-12-05 02:46:03 +00005217 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005218 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5219
Eric Christopher455c5772009-12-05 02:46:03 +00005220 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005221 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5222
Eric Christopher455c5772009-12-05 02:46:03 +00005223 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005224 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5225
Eric Christopher455c5772009-12-05 02:46:03 +00005226 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005227 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5228
Reid Spencerf69acf32006-11-19 03:00:14 +00005229 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005230
Reid Spencerc828a0e2006-11-18 21:50:54 +00005231 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
5232</ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005233
5234<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005235<pre>
5236 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanc579d972008-09-09 01:02:47 +00005237 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
5238 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
5239 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005240</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005241
5242<p>Note that the code generator does not yet support vector types with
5243 the <tt>fcmp</tt> instruction.</p>
5244
Reid Spencerc828a0e2006-11-18 21:50:54 +00005245</div>
5246
Reid Spencer97c5fa42006-11-08 01:18:52 +00005247<!-- _______________________________________________________________________ -->
Nate Begemand2195702008-05-12 19:01:56 +00005248<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005249 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
5250</div>
5251
Reid Spencer97c5fa42006-11-08 01:18:52 +00005252<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005253
Reid Spencer97c5fa42006-11-08 01:18:52 +00005254<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005255<pre>
5256 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
5257</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005258
Reid Spencer97c5fa42006-11-08 01:18:52 +00005259<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005260<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
5261 SSA graph representing the function.</p>
5262
Reid Spencer97c5fa42006-11-08 01:18:52 +00005263<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005264<p>The type of the incoming values is specified with the first type field. After
5265 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
5266 one pair for each predecessor basic block of the current block. Only values
5267 of <a href="#t_firstclass">first class</a> type may be used as the value
5268 arguments to the PHI node. Only labels may be used as the label
5269 arguments.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005270
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005271<p>There must be no non-phi instructions between the start of a basic block and
5272 the PHI instructions: i.e. PHI instructions must be first in a basic
5273 block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005274
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005275<p>For the purposes of the SSA form, the use of each incoming value is deemed to
5276 occur on the edge from the corresponding predecessor block to the current
5277 block (but after any definition of an '<tt>invoke</tt>' instruction's return
5278 value on the same edge).</p>
Jay Foad1a4eea52009-06-03 10:20:10 +00005279
Reid Spencer97c5fa42006-11-08 01:18:52 +00005280<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005281<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005282 specified by the pair corresponding to the predecessor basic block that
5283 executed just prior to the current block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005284
Reid Spencer97c5fa42006-11-08 01:18:52 +00005285<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005286<pre>
5287Loop: ; Infinite loop that counts from 0 on up...
5288 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5289 %nextindvar = add i32 %indvar, 1
5290 br label %Loop
5291</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005292
Reid Spencer97c5fa42006-11-08 01:18:52 +00005293</div>
5294
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005295<!-- _______________________________________________________________________ -->
5296<div class="doc_subsubsection">
5297 <a name="i_select">'<tt>select</tt>' Instruction</a>
5298</div>
5299
5300<div class="doc_text">
5301
5302<h5>Syntax:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005303<pre>
Dan Gohmanc579d972008-09-09 01:02:47 +00005304 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
5305
Dan Gohmanef9462f2008-10-14 16:51:45 +00005306 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005307</pre>
5308
5309<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005310<p>The '<tt>select</tt>' instruction is used to choose one value based on a
5311 condition, without branching.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005312
5313
5314<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005315<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
5316 values indicating the condition, and two values of the
5317 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
5318 vectors and the condition is a scalar, then entire vectors are selected, not
5319 individual elements.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005320
5321<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005322<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
5323 first value argument; otherwise, it returns the second value argument.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005324
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005325<p>If the condition is a vector of i1, then the value arguments must be vectors
5326 of the same size, and the selection is done element by element.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005327
5328<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005329<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00005330 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005331</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005332
5333<p>Note that the code generator does not yet support conditions
5334 with vector type.</p>
5335
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005336</div>
5337
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00005338<!-- _______________________________________________________________________ -->
5339<div class="doc_subsubsection">
Chris Lattnere23c1392005-05-06 05:47:36 +00005340 <a name="i_call">'<tt>call</tt>' Instruction</a>
5341</div>
5342
Misha Brukman76307852003-11-08 01:05:38 +00005343<div class="doc_text">
Chris Lattnere23c1392005-05-06 05:47:36 +00005344
Chris Lattner2f7c9632001-06-06 20:29:01 +00005345<h5>Syntax:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00005346<pre>
Devang Patel02256232008-10-07 17:48:33 +00005347 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattnere23c1392005-05-06 05:47:36 +00005348</pre>
5349
Chris Lattner2f7c9632001-06-06 20:29:01 +00005350<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005351<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005352
Chris Lattner2f7c9632001-06-06 20:29:01 +00005353<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005354<p>This instruction requires several arguments:</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005355
Chris Lattnera8292f32002-05-06 22:08:29 +00005356<ol>
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005357 <li>The optional "tail" marker indicates that the callee function does not
5358 access any allocas or varargs in the caller. Note that calls may be
5359 marked "tail" even if they do not occur before
5360 a <a href="#i_ret"><tt>ret</tt></a> instruction. If the "tail" marker is
5361 present, the function call is eligible for tail call optimization,
5362 but <a href="CodeGenerator.html#tailcallopt">might not in fact be
Evan Cheng59676492010-03-08 21:05:02 +00005363 optimized into a jump</a>. The code generator may optimize calls marked
5364 "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
5365 sibling call optimization</a> when the caller and callee have
5366 matching signatures, or 2) forced tail call optimization when the
5367 following extra requirements are met:
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005368 <ul>
5369 <li>Caller and callee both have the calling
5370 convention <tt>fastcc</tt>.</li>
5371 <li>The call is in tail position (ret immediately follows call and ret
5372 uses value of call or is void).</li>
5373 <li>Option <tt>-tailcallopt</tt> is enabled,
Dan Gohman6232f732010-03-02 01:08:11 +00005374 or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005375 <li><a href="CodeGenerator.html#tailcallopt">Platform specific
5376 constraints are met.</a></li>
5377 </ul>
5378 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00005379
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005380 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
5381 convention</a> the call should use. If none is specified, the call
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005382 defaults to using C calling conventions. The calling convention of the
5383 call must match the calling convention of the target function, or else the
5384 behavior is undefined.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00005385
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005386 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
5387 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
5388 '<tt>inreg</tt>' attributes are valid here.</li>
5389
5390 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
5391 type of the return value. Functions that return no value are marked
5392 <tt><a href="#t_void">void</a></tt>.</li>
5393
5394 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
5395 being invoked. The argument types must match the types implied by this
5396 signature. This type can be omitted if the function is not varargs and if
5397 the function type does not return a pointer to a function.</li>
5398
5399 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
5400 be invoked. In most cases, this is a direct function invocation, but
5401 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
5402 to function value.</li>
5403
5404 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner47f2a832010-03-02 06:36:51 +00005405 signature argument types and parameter attributes. All arguments must be
5406 of <a href="#t_firstclass">first class</a> type. If the function
5407 signature indicates the function accepts a variable number of arguments,
5408 the extra arguments can be specified.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005409
5410 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
5411 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
5412 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattnera8292f32002-05-06 22:08:29 +00005413</ol>
Chris Lattnere23c1392005-05-06 05:47:36 +00005414
Chris Lattner2f7c9632001-06-06 20:29:01 +00005415<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005416<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
5417 a specified function, with its incoming arguments bound to the specified
5418 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
5419 function, control flow continues with the instruction after the function
5420 call, and the return value of the function is bound to the result
5421 argument.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005422
Chris Lattner2f7c9632001-06-06 20:29:01 +00005423<h5>Example:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00005424<pre>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00005425 %retval = call i32 @test(i32 %argc)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00005426 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) <i>; yields i32</i>
Chris Lattnerfb7c88d2008-03-21 17:24:17 +00005427 %X = tail call i32 @foo() <i>; yields i32</i>
5428 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
5429 call void %foo(i8 97 signext)
Devang Pateld6cff512008-03-10 20:49:15 +00005430
5431 %struct.A = type { i32, i8 }
Devang Patel7e9b05e2008-10-06 18:50:38 +00005432 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00005433 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
5434 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner6cbe8e92008-10-08 06:26:11 +00005435 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmaneefa7df2008-10-07 10:03:45 +00005436 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattnere23c1392005-05-06 05:47:36 +00005437</pre>
5438
Dale Johannesen68f971b2009-09-24 18:38:21 +00005439<p>llvm treats calls to some functions with names and arguments that match the
Dale Johannesen722212d2009-09-25 17:04:42 +00005440standard C99 library as being the C99 library functions, and may perform
5441optimizations or generate code for them under that assumption. This is
5442something we'd like to change in the future to provide better support for
Dan Gohmana269a0a2010-03-01 17:41:39 +00005443freestanding environments and non-C-based languages.</p>
Dale Johannesen68f971b2009-09-24 18:38:21 +00005444
Misha Brukman76307852003-11-08 01:05:38 +00005445</div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005446
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005447<!-- _______________________________________________________________________ -->
Chris Lattner6a4a0492004-09-27 21:51:25 +00005448<div class="doc_subsubsection">
Chris Lattner33337472006-01-13 23:26:01 +00005449 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005450</div>
5451
Misha Brukman76307852003-11-08 01:05:38 +00005452<div class="doc_text">
Chris Lattner6a4a0492004-09-27 21:51:25 +00005453
Chris Lattner26ca62e2003-10-18 05:51:36 +00005454<h5>Syntax:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005455<pre>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005456 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattner6a4a0492004-09-27 21:51:25 +00005457</pre>
5458
Chris Lattner26ca62e2003-10-18 05:51:36 +00005459<h5>Overview:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005460<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005461 the "variable argument" area of a function call. It is used to implement the
5462 <tt>va_arg</tt> macro in C.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005463
Chris Lattner26ca62e2003-10-18 05:51:36 +00005464<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005465<p>This instruction takes a <tt>va_list*</tt> value and the type of the
5466 argument. It returns a value of the specified argument type and increments
5467 the <tt>va_list</tt> to point to the next argument. The actual type
5468 of <tt>va_list</tt> is target specific.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005469
Chris Lattner26ca62e2003-10-18 05:51:36 +00005470<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005471<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
5472 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
5473 to the next argument. For more information, see the variable argument
5474 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005475
5476<p>It is legal for this instruction to be called in a function which does not
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005477 take a variable number of arguments, for example, the <tt>vfprintf</tt>
5478 function.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005479
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005480<p><tt>va_arg</tt> is an LLVM instruction instead of
5481 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
5482 argument.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005483
Chris Lattner26ca62e2003-10-18 05:51:36 +00005484<h5>Example:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005485<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
5486
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005487<p>Note that the code generator does not yet fully support va_arg on many
5488 targets. Also, it does not currently support va_arg with aggregate types on
5489 any target.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00005490
Misha Brukman76307852003-11-08 01:05:38 +00005491</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005492
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005493<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00005494<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
5495<!-- *********************************************************************** -->
Chris Lattner941515c2004-01-06 05:31:32 +00005496
Misha Brukman76307852003-11-08 01:05:38 +00005497<div class="doc_text">
Chris Lattnerfee11462004-02-12 17:01:32 +00005498
5499<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005500 well known names and semantics and are required to follow certain
5501 restrictions. Overall, these intrinsics represent an extension mechanism for
5502 the LLVM language that does not require changing all of the transformations
5503 in LLVM when adding to the language (or the bitcode reader/writer, the
5504 parser, etc...).</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005505
John Criswell88190562005-05-16 16:17:45 +00005506<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005507 prefix is reserved in LLVM for intrinsic names; thus, function names may not
5508 begin with this prefix. Intrinsic functions must always be external
5509 functions: you cannot define the body of intrinsic functions. Intrinsic
5510 functions may only be used in call or invoke instructions: it is illegal to
5511 take the address of an intrinsic function. Additionally, because intrinsic
5512 functions are part of the LLVM language, it is required if any are added that
5513 they be documented here.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005514
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005515<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
5516 family of functions that perform the same operation but on different data
5517 types. Because LLVM can represent over 8 million different integer types,
5518 overloading is used commonly to allow an intrinsic function to operate on any
5519 integer type. One or more of the argument types or the result type can be
5520 overloaded to accept any integer type. Argument types may also be defined as
5521 exactly matching a previous argument's type or the result type. This allows
5522 an intrinsic function which accepts multiple arguments, but needs all of them
5523 to be of the same type, to only be overloaded with respect to a single
5524 argument or the result.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005525
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005526<p>Overloaded intrinsics will have the names of its overloaded argument types
5527 encoded into its function name, each preceded by a period. Only those types
5528 which are overloaded result in a name suffix. Arguments whose type is matched
5529 against another type do not. For example, the <tt>llvm.ctpop</tt> function
5530 can take an integer of any width and returns an integer of exactly the same
5531 integer width. This leads to a family of functions such as
5532 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
5533 %val)</tt>. Only one type, the return type, is overloaded, and only one type
5534 suffix is required. Because the argument's type is matched against the return
5535 type, it does not require its own name suffix.</p>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005536
Eric Christopher455c5772009-12-05 02:46:03 +00005537<p>To learn how to add an intrinsic function, please see the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005538 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005539
Misha Brukman76307852003-11-08 01:05:38 +00005540</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005541
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005542<!-- ======================================================================= -->
Chris Lattner941515c2004-01-06 05:31:32 +00005543<div class="doc_subsection">
5544 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
5545</div>
5546
Misha Brukman76307852003-11-08 01:05:38 +00005547<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00005548
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005549<p>Variable argument support is defined in LLVM with
5550 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
5551 intrinsic functions. These functions are related to the similarly named
5552 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005553
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005554<p>All of these functions operate on arguments that use a target-specific value
5555 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
5556 not define what this type is, so all transformations should be prepared to
5557 handle these functions regardless of the type used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005558
Chris Lattner30b868d2006-05-15 17:26:46 +00005559<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005560 instruction and the variable argument handling intrinsic functions are
5561 used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005562
Benjamin Kramer79698be2010-07-13 12:26:09 +00005563<pre class="doc_code">
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005564define i32 @test(i32 %X, ...) {
Chris Lattnerfee11462004-02-12 17:01:32 +00005565 ; Initialize variable argument processing
Jeff Cohen222a8a42007-04-29 01:07:00 +00005566 %ap = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005567 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005568 call void @llvm.va_start(i8* %ap2)
Chris Lattnerfee11462004-02-12 17:01:32 +00005569
5570 ; Read a single integer argument
Jeff Cohen222a8a42007-04-29 01:07:00 +00005571 %tmp = va_arg i8** %ap, i32
Chris Lattnerfee11462004-02-12 17:01:32 +00005572
5573 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohen222a8a42007-04-29 01:07:00 +00005574 %aq = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005575 %aq2 = bitcast i8** %aq to i8*
Jeff Cohen222a8a42007-04-29 01:07:00 +00005576 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005577 call void @llvm.va_end(i8* %aq2)
Chris Lattnerfee11462004-02-12 17:01:32 +00005578
5579 ; Stop processing of arguments.
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005580 call void @llvm.va_end(i8* %ap2)
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005581 ret i32 %tmp
Chris Lattnerfee11462004-02-12 17:01:32 +00005582}
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005583
5584declare void @llvm.va_start(i8*)
5585declare void @llvm.va_copy(i8*, i8*)
5586declare void @llvm.va_end(i8*)
Chris Lattnerfee11462004-02-12 17:01:32 +00005587</pre>
Chris Lattner941515c2004-01-06 05:31:32 +00005588
Bill Wendling3716c5d2007-05-29 09:04:49 +00005589</div>
5590
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005591<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00005592<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005593 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00005594</div>
5595
5596
Misha Brukman76307852003-11-08 01:05:38 +00005597<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005598
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005599<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005600<pre>
5601 declare void %llvm.va_start(i8* &lt;arglist&gt;)
5602</pre>
5603
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005604<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005605<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
5606 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005607
5608<h5>Arguments:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005609<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005610
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005611<h5>Semantics:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005612<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005613 macro available in C. In a target-dependent way, it initializes
5614 the <tt>va_list</tt> element to which the argument points, so that the next
5615 call to <tt>va_arg</tt> will produce the first variable argument passed to
5616 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
5617 need to know the last argument of the function as the compiler can figure
5618 that out.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005619
Misha Brukman76307852003-11-08 01:05:38 +00005620</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005621
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005622<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00005623<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005624 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00005625</div>
5626
Misha Brukman76307852003-11-08 01:05:38 +00005627<div class="doc_text">
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005628
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005629<h5>Syntax:</h5>
5630<pre>
5631 declare void @llvm.va_end(i8* &lt;arglist&gt;)
5632</pre>
5633
5634<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005635<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005636 which has been initialized previously
5637 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
5638 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005639
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005640<h5>Arguments:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005641<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005642
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005643<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005644<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005645 macro available in C. In a target-dependent way, it destroys
5646 the <tt>va_list</tt> element to which the argument points. Calls
5647 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
5648 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
5649 with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005650
Misha Brukman76307852003-11-08 01:05:38 +00005651</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005652
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005653<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00005654<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005655 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00005656</div>
5657
Misha Brukman76307852003-11-08 01:05:38 +00005658<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00005659
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005660<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005661<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005662 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005663</pre>
5664
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005665<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005666<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005667 from the source argument list to the destination argument list.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005668
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005669<h5>Arguments:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005670<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005671 The second argument is a pointer to a <tt>va_list</tt> element to copy
5672 from.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005673
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005674<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005675<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005676 macro available in C. In a target-dependent way, it copies the
5677 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
5678 element. This intrinsic is necessary because
5679 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
5680 arbitrarily complex and require, for example, memory allocation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005681
Misha Brukman76307852003-11-08 01:05:38 +00005682</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005683
Chris Lattnerfee11462004-02-12 17:01:32 +00005684<!-- ======================================================================= -->
5685<div class="doc_subsection">
Chris Lattner757528b0b2004-05-23 21:06:01 +00005686 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5687</div>
5688
5689<div class="doc_text">
5690
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005691<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner67c37d12008-08-05 18:29:16 +00005692Collection</a> (GC) requires the implementation and generation of these
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005693intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
5694roots on the stack</a>, as well as garbage collector implementations that
5695require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
5696barriers. Front-ends for type-safe garbage collected languages should generate
5697these intrinsics to make use of the LLVM garbage collectors. For more details,
5698see <a href="GarbageCollection.html">Accurate Garbage Collection with
5699LLVM</a>.</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00005700
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005701<p>The garbage collection intrinsics only operate on objects in the generic
5702 address space (address space zero).</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00005703
Chris Lattner757528b0b2004-05-23 21:06:01 +00005704</div>
5705
5706<!-- _______________________________________________________________________ -->
5707<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005708 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005709</div>
5710
5711<div class="doc_text">
5712
5713<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005714<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005715 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005716</pre>
5717
5718<h5>Overview:</h5>
John Criswelldfe6a862004-12-10 15:51:16 +00005719<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005720 the code generator, and allows some metadata to be associated with it.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005721
5722<h5>Arguments:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005723<p>The first argument specifies the address of a stack object that contains the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005724 root pointer. The second pointer (which must be either a constant or a
5725 global value address) contains the meta-data to be associated with the
5726 root.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005727
5728<h5>Semantics:</h5>
Chris Lattner851b7712008-04-24 05:59:56 +00005729<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005730 location. At compile-time, the code generator generates information to allow
5731 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5732 intrinsic may only be used in a function which <a href="#gc">specifies a GC
5733 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005734
5735</div>
5736
Chris Lattner757528b0b2004-05-23 21:06:01 +00005737<!-- _______________________________________________________________________ -->
5738<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005739 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005740</div>
5741
5742<div class="doc_text">
5743
5744<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005745<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005746 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005747</pre>
5748
5749<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005750<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005751 locations, allowing garbage collector implementations that require read
5752 barriers.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005753
5754<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00005755<p>The second argument is the address to read from, which should be an address
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005756 allocated from the garbage collector. The first object is a pointer to the
5757 start of the referenced object, if needed by the language runtime (otherwise
5758 null).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005759
5760<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005761<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005762 instruction, but may be replaced with substantially more complex code by the
5763 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5764 may only be used in a function which <a href="#gc">specifies a GC
5765 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005766
5767</div>
5768
Chris Lattner757528b0b2004-05-23 21:06:01 +00005769<!-- _______________________________________________________________________ -->
5770<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005771 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005772</div>
5773
5774<div class="doc_text">
5775
5776<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005777<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005778 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005779</pre>
5780
5781<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005782<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005783 locations, allowing garbage collector implementations that require write
5784 barriers (such as generational or reference counting collectors).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005785
5786<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00005787<p>The first argument is the reference to store, the second is the start of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005788 object to store it to, and the third is the address of the field of Obj to
5789 store to. If the runtime does not require a pointer to the object, Obj may
5790 be null.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005791
5792<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005793<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005794 instruction, but may be replaced with substantially more complex code by the
5795 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5796 may only be used in a function which <a href="#gc">specifies a GC
5797 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005798
5799</div>
5800
Chris Lattner757528b0b2004-05-23 21:06:01 +00005801<!-- ======================================================================= -->
5802<div class="doc_subsection">
Chris Lattner3649c3a2004-02-14 04:08:35 +00005803 <a name="int_codegen">Code Generator Intrinsics</a>
5804</div>
5805
5806<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005807
5808<p>These intrinsics are provided by LLVM to expose special features that may
5809 only be implemented with code generator support.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005810
5811</div>
5812
5813<!-- _______________________________________________________________________ -->
5814<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005815 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005816</div>
5817
5818<div class="doc_text">
5819
5820<h5>Syntax:</h5>
5821<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005822 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005823</pre>
5824
5825<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005826<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5827 target-specific value indicating the return address of the current function
5828 or one of its callers.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005829
5830<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005831<p>The argument to this intrinsic indicates which function to return the address
5832 for. Zero indicates the calling function, one indicates its caller, etc.
5833 The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005834
5835<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005836<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
5837 indicating the return address of the specified call frame, or zero if it
5838 cannot be identified. The value returned by this intrinsic is likely to be
5839 incorrect or 0 for arguments other than zero, so it should only be used for
5840 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005841
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005842<p>Note that calling this intrinsic does not prevent function inlining or other
5843 aggressive transformations, so the value returned may not be that of the
5844 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005845
Chris Lattner3649c3a2004-02-14 04:08:35 +00005846</div>
5847
Chris Lattner3649c3a2004-02-14 04:08:35 +00005848<!-- _______________________________________________________________________ -->
5849<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005850 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005851</div>
5852
5853<div class="doc_text">
5854
5855<h5>Syntax:</h5>
5856<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00005857 declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005858</pre>
5859
5860<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005861<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5862 target-specific frame pointer value for the specified stack frame.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005863
5864<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005865<p>The argument to this intrinsic indicates which function to return the frame
5866 pointer for. Zero indicates the calling function, one indicates its caller,
5867 etc. The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005868
5869<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005870<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
5871 indicating the frame address of the specified call frame, or zero if it
5872 cannot be identified. The value returned by this intrinsic is likely to be
5873 incorrect or 0 for arguments other than zero, so it should only be used for
5874 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005875
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005876<p>Note that calling this intrinsic does not prevent function inlining or other
5877 aggressive transformations, so the value returned may not be that of the
5878 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005879
Chris Lattner3649c3a2004-02-14 04:08:35 +00005880</div>
5881
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005882<!-- _______________________________________________________________________ -->
5883<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005884 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005885</div>
5886
5887<div class="doc_text">
5888
5889<h5>Syntax:</h5>
5890<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00005891 declare i8* @llvm.stacksave()
Chris Lattner2f0f0012006-01-13 02:03:13 +00005892</pre>
5893
5894<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005895<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
5896 of the function stack, for use
5897 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
5898 useful for implementing language features like scoped automatic variable
5899 sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005900
5901<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005902<p>This intrinsic returns a opaque pointer value that can be passed
5903 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
5904 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
5905 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
5906 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
5907 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
5908 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005909
5910</div>
5911
5912<!-- _______________________________________________________________________ -->
5913<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005914 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005915</div>
5916
5917<div class="doc_text">
5918
5919<h5>Syntax:</h5>
5920<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00005921 declare void @llvm.stackrestore(i8* %ptr)
Chris Lattner2f0f0012006-01-13 02:03:13 +00005922</pre>
5923
5924<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005925<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5926 the function stack to the state it was in when the
5927 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
5928 executed. This is useful for implementing language features like scoped
5929 automatic variable sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005930
5931<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005932<p>See the description
5933 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005934
5935</div>
5936
Chris Lattner2f0f0012006-01-13 02:03:13 +00005937<!-- _______________________________________________________________________ -->
5938<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005939 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005940</div>
5941
5942<div class="doc_text">
5943
5944<h5>Syntax:</h5>
5945<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005946 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005947</pre>
5948
5949<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005950<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
5951 insert a prefetch instruction if supported; otherwise, it is a noop.
5952 Prefetches have no effect on the behavior of the program but can change its
5953 performance characteristics.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005954
5955<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005956<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
5957 specifier determining if the fetch should be for a read (0) or write (1),
5958 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
5959 locality, to (3) - extremely local keep in cache. The <tt>rw</tt>
5960 and <tt>locality</tt> arguments must be constant integers.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005961
5962<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005963<p>This intrinsic does not modify the behavior of the program. In particular,
5964 prefetches cannot trap and do not produce a value. On targets that support
5965 this intrinsic, the prefetch can provide hints to the processor cache for
5966 better performance.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005967
5968</div>
5969
Andrew Lenharthb4427912005-03-28 20:05:49 +00005970<!-- _______________________________________________________________________ -->
5971<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005972 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005973</div>
5974
5975<div class="doc_text">
5976
5977<h5>Syntax:</h5>
5978<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005979 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharthb4427912005-03-28 20:05:49 +00005980</pre>
5981
5982<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005983<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
5984 Counter (PC) in a region of code to simulators and other tools. The method
5985 is target specific, but it is expected that the marker will use exported
5986 symbols to transmit the PC of the marker. The marker makes no guarantees
5987 that it will remain with any specific instruction after optimizations. It is
5988 possible that the presence of a marker will inhibit optimizations. The
5989 intended use is to be inserted after optimizations to allow correlations of
5990 simulation runs.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005991
5992<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005993<p><tt>id</tt> is a numerical id identifying the marker.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005994
5995<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005996<p>This intrinsic does not modify the behavior of the program. Backends that do
Dan Gohmana269a0a2010-03-01 17:41:39 +00005997 not support this intrinsic may ignore it.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005998
5999</div>
6000
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006001<!-- _______________________________________________________________________ -->
6002<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00006003 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006004</div>
6005
6006<div class="doc_text">
6007
6008<h5>Syntax:</h5>
6009<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00006010 declare i64 @llvm.readcyclecounter()
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006011</pre>
6012
6013<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006014<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
6015 counter register (or similar low latency, high accuracy clocks) on those
6016 targets that support it. On X86, it should map to RDTSC. On Alpha, it
6017 should map to RPCC. As the backing counters overflow quickly (on the order
6018 of 9 seconds on alpha), this should only be used for small timings.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006019
6020<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006021<p>When directly supported, reading the cycle counter should not modify any
6022 memory. Implementations are allowed to either return a application specific
6023 value or a system wide value. On backends without support, this is lowered
6024 to a constant 0.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006025
6026</div>
6027
Chris Lattner3649c3a2004-02-14 04:08:35 +00006028<!-- ======================================================================= -->
6029<div class="doc_subsection">
Chris Lattnerfee11462004-02-12 17:01:32 +00006030 <a name="int_libc">Standard C Library Intrinsics</a>
6031</div>
6032
6033<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006034
6035<p>LLVM provides intrinsics for a few important standard C library functions.
6036 These intrinsics allow source-language front-ends to pass information about
6037 the alignment of the pointer arguments to the code generator, providing
6038 opportunity for more efficient code generation.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006039
6040</div>
6041
6042<!-- _______________________________________________________________________ -->
6043<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00006044 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattnerfee11462004-02-12 17:01:32 +00006045</div>
6046
6047<div class="doc_text">
6048
6049<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006050<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
Mon P Wang508127b2010-04-07 06:35:53 +00006051 integer bit width and for different address spaces. Not all targets support
6052 all bit widths however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006053
Chris Lattnerfee11462004-02-12 17:01:32 +00006054<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006055 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006056 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006057 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006058 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattnerfee11462004-02-12 17:01:32 +00006059</pre>
6060
6061<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006062<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6063 source location to the destination location.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006064
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006065<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006066 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6067 and the pointers can be in specified address spaces.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006068
6069<h5>Arguments:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006070
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006071<p>The first argument is a pointer to the destination, the second is a pointer
6072 to the source. The third argument is an integer argument specifying the
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006073 number of bytes to copy, the fourth argument is the alignment of the
6074 source and destination locations, and the fifth is a boolean indicating a
6075 volatile access.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006076
Dan Gohmana269a0a2010-03-01 17:41:39 +00006077<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006078 then the caller guarantees that both the source and destination pointers are
6079 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00006080
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006081<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6082 <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
6083 The detailed access behavior is not very cleanly specified and it is unwise
6084 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006085
Chris Lattnerfee11462004-02-12 17:01:32 +00006086<h5>Semantics:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006087
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006088<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6089 source location to the destination location, which are not allowed to
6090 overlap. It copies "len" bytes of memory over. If the argument is known to
6091 be aligned to some boundary, this can be specified as the fourth argument,
6092 otherwise it should be set to 0 or 1.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006093
Chris Lattnerfee11462004-02-12 17:01:32 +00006094</div>
6095
Chris Lattnerf30152e2004-02-12 18:10:10 +00006096<!-- _______________________________________________________________________ -->
6097<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00006098 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006099</div>
6100
6101<div class="doc_text">
6102
6103<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00006104<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Mon P Wang508127b2010-04-07 06:35:53 +00006105 width and for different address space. Not all targets support all bit
6106 widths however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006107
Chris Lattnerf30152e2004-02-12 18:10:10 +00006108<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006109 declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006110 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006111 declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006112 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattnerf30152e2004-02-12 18:10:10 +00006113</pre>
6114
6115<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006116<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
6117 source location to the destination location. It is similar to the
6118 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
6119 overlap.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006120
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006121<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006122 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6123 and the pointers can be in specified address spaces.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006124
6125<h5>Arguments:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006126
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006127<p>The first argument is a pointer to the destination, the second is a pointer
6128 to the source. The third argument is an integer argument specifying the
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006129 number of bytes to copy, the fourth argument is the alignment of the
6130 source and destination locations, and the fifth is a boolean indicating a
6131 volatile access.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006132
Dan Gohmana269a0a2010-03-01 17:41:39 +00006133<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006134 then the caller guarantees that the source and destination pointers are
6135 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00006136
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006137<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6138 <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
6139 The detailed access behavior is not very cleanly specified and it is unwise
6140 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006141
Chris Lattnerf30152e2004-02-12 18:10:10 +00006142<h5>Semantics:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006143
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006144<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
6145 source location to the destination location, which may overlap. It copies
6146 "len" bytes of memory over. If the argument is known to be aligned to some
6147 boundary, this can be specified as the fourth argument, otherwise it should
6148 be set to 0 or 1.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006149
Chris Lattnerf30152e2004-02-12 18:10:10 +00006150</div>
6151
Chris Lattner3649c3a2004-02-14 04:08:35 +00006152<!-- _______________________________________________________________________ -->
6153<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00006154 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006155</div>
6156
6157<div class="doc_text">
6158
6159<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00006160<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
John Criswellad05ae42010-07-30 16:30:28 +00006161 width and for different address spaces. However, not all targets support all
6162 bit widths.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006163
Chris Lattner3649c3a2004-02-14 04:08:35 +00006164<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006165 declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattner685db9d2010-04-08 00:54:34 +00006166 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006167 declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattner685db9d2010-04-08 00:54:34 +00006168 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006169</pre>
6170
6171<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006172<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
6173 particular byte value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006174
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006175<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
John Criswellad05ae42010-07-30 16:30:28 +00006176 intrinsic does not return a value and takes extra alignment/volatile
6177 arguments. Also, the destination can be in an arbitrary address space.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006178
6179<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006180<p>The first argument is a pointer to the destination to fill, the second is the
John Criswellad05ae42010-07-30 16:30:28 +00006181 byte value with which to fill it, the third argument is an integer argument
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006182 specifying the number of bytes to fill, and the fourth argument is the known
John Criswellad05ae42010-07-30 16:30:28 +00006183 alignment of the destination location.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006184
Dan Gohmana269a0a2010-03-01 17:41:39 +00006185<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006186 then the caller guarantees that the destination pointer is aligned to that
6187 boundary.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006188
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006189<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6190 <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
6191 The detailed access behavior is not very cleanly specified and it is unwise
6192 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006193
Chris Lattner3649c3a2004-02-14 04:08:35 +00006194<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006195<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
6196 at the destination location. If the argument is known to be aligned to some
6197 boundary, this can be specified as the fourth argument, otherwise it should
6198 be set to 0 or 1.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006199
Chris Lattner3649c3a2004-02-14 04:08:35 +00006200</div>
6201
Chris Lattner3b4f4372004-06-11 02:28:03 +00006202<!-- _______________________________________________________________________ -->
6203<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00006204 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006205</div>
6206
6207<div class="doc_text">
6208
6209<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006210<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
6211 floating point or vector of floating point type. Not all targets support all
6212 types however.</p>
6213
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006214<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00006215 declare float @llvm.sqrt.f32(float %Val)
6216 declare double @llvm.sqrt.f64(double %Val)
6217 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6218 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6219 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006220</pre>
6221
6222<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006223<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
6224 returning the same value as the libm '<tt>sqrt</tt>' functions would.
6225 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
6226 behavior for negative numbers other than -0.0 (which allows for better
6227 optimization, because there is no need to worry about errno being
6228 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006229
6230<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006231<p>The argument and return value are floating point numbers of the same
6232 type.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006233
6234<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006235<p>This function returns the sqrt of the specified operand if it is a
6236 nonnegative floating point number.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006237
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006238</div>
6239
Chris Lattner33b73f92006-09-08 06:34:02 +00006240<!-- _______________________________________________________________________ -->
6241<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00006242 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattner33b73f92006-09-08 06:34:02 +00006243</div>
6244
6245<div class="doc_text">
6246
6247<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006248<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
6249 floating point or vector of floating point type. Not all targets support all
6250 types however.</p>
6251
Chris Lattner33b73f92006-09-08 06:34:02 +00006252<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00006253 declare float @llvm.powi.f32(float %Val, i32 %power)
6254 declare double @llvm.powi.f64(double %Val, i32 %power)
6255 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6256 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6257 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattner33b73f92006-09-08 06:34:02 +00006258</pre>
6259
6260<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006261<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
6262 specified (positive or negative) power. The order of evaluation of
6263 multiplications is not defined. When a vector of floating point type is
6264 used, the second argument remains a scalar integer value.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006265
6266<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006267<p>The second argument is an integer power, and the first is a value to raise to
6268 that power.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006269
6270<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006271<p>This function returns the first value raised to the second power with an
6272 unspecified sequence of rounding operations.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006273
Chris Lattner33b73f92006-09-08 06:34:02 +00006274</div>
6275
Dan Gohmanb6324c12007-10-15 20:30:11 +00006276<!-- _______________________________________________________________________ -->
6277<div class="doc_subsubsection">
6278 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
6279</div>
6280
6281<div class="doc_text">
6282
6283<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006284<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
6285 floating point or vector of floating point type. Not all targets support all
6286 types however.</p>
6287
Dan Gohmanb6324c12007-10-15 20:30:11 +00006288<pre>
6289 declare float @llvm.sin.f32(float %Val)
6290 declare double @llvm.sin.f64(double %Val)
6291 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6292 declare fp128 @llvm.sin.f128(fp128 %Val)
6293 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6294</pre>
6295
6296<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006297<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006298
6299<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006300<p>The argument and return value are floating point numbers of the same
6301 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006302
6303<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006304<p>This function returns the sine of the specified operand, returning the same
6305 values as the libm <tt>sin</tt> functions would, and handles error conditions
6306 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006307
Dan Gohmanb6324c12007-10-15 20:30:11 +00006308</div>
6309
6310<!-- _______________________________________________________________________ -->
6311<div class="doc_subsubsection">
6312 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
6313</div>
6314
6315<div class="doc_text">
6316
6317<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006318<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
6319 floating point or vector of floating point type. Not all targets support all
6320 types however.</p>
6321
Dan Gohmanb6324c12007-10-15 20:30:11 +00006322<pre>
6323 declare float @llvm.cos.f32(float %Val)
6324 declare double @llvm.cos.f64(double %Val)
6325 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6326 declare fp128 @llvm.cos.f128(fp128 %Val)
6327 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6328</pre>
6329
6330<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006331<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006332
6333<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006334<p>The argument and return value are floating point numbers of the same
6335 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006336
6337<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006338<p>This function returns the cosine of the specified operand, returning the same
6339 values as the libm <tt>cos</tt> functions would, and handles error conditions
6340 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006341
Dan Gohmanb6324c12007-10-15 20:30:11 +00006342</div>
6343
6344<!-- _______________________________________________________________________ -->
6345<div class="doc_subsubsection">
6346 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
6347</div>
6348
6349<div class="doc_text">
6350
6351<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006352<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
6353 floating point or vector of floating point type. Not all targets support all
6354 types however.</p>
6355
Dan Gohmanb6324c12007-10-15 20:30:11 +00006356<pre>
6357 declare float @llvm.pow.f32(float %Val, float %Power)
6358 declare double @llvm.pow.f64(double %Val, double %Power)
6359 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6360 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6361 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6362</pre>
6363
6364<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006365<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
6366 specified (positive or negative) power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006367
6368<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006369<p>The second argument is a floating point power, and the first is a value to
6370 raise to that power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006371
6372<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006373<p>This function returns the first value raised to the second power, returning
6374 the same values as the libm <tt>pow</tt> functions would, and handles error
6375 conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006376
Dan Gohmanb6324c12007-10-15 20:30:11 +00006377</div>
6378
Andrew Lenharth1d463522005-05-03 18:01:48 +00006379<!-- ======================================================================= -->
6380<div class="doc_subsection">
Nate Begeman0f223bb2006-01-13 23:26:38 +00006381 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006382</div>
6383
6384<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006385
6386<p>LLVM provides intrinsics for a few important bit manipulation operations.
6387 These allow efficient code generation for some algorithms.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006388
6389</div>
6390
6391<!-- _______________________________________________________________________ -->
6392<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00006393 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman0f223bb2006-01-13 23:26:38 +00006394</div>
6395
6396<div class="doc_text">
6397
6398<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00006399<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006400 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
6401
Nate Begeman0f223bb2006-01-13 23:26:38 +00006402<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00006403 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
6404 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
6405 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman0f223bb2006-01-13 23:26:38 +00006406</pre>
6407
6408<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006409<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
6410 values with an even number of bytes (positive multiple of 16 bits). These
6411 are useful for performing operations on data that is not in the target's
6412 native byte order.</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00006413
6414<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006415<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
6416 and low byte of the input i16 swapped. Similarly,
6417 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
6418 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
6419 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
6420 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
6421 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
6422 more, respectively).</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00006423
6424</div>
6425
6426<!-- _______________________________________________________________________ -->
6427<div class="doc_subsubsection">
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00006428 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006429</div>
6430
6431<div class="doc_text">
6432
6433<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00006434<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006435 width. Not all targets support all bit widths however.</p>
6436
Andrew Lenharth1d463522005-05-03 18:01:48 +00006437<pre>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006438 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006439 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006440 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006441 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
6442 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00006443</pre>
6444
6445<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006446<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
6447 in a value.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006448
6449<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006450<p>The only argument is the value to be counted. The argument may be of any
6451 integer type. The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006452
6453<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006454<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006455
Andrew Lenharth1d463522005-05-03 18:01:48 +00006456</div>
6457
6458<!-- _______________________________________________________________________ -->
6459<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00006460 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006461</div>
6462
6463<div class="doc_text">
6464
6465<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006466<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
6467 integer bit width. Not all targets support all bit widths however.</p>
6468
Andrew Lenharth1d463522005-05-03 18:01:48 +00006469<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00006470 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
6471 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006472 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006473 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
6474 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00006475</pre>
6476
6477<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006478<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
6479 leading zeros in a variable.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006480
6481<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006482<p>The only argument is the value to be counted. The argument may be of any
6483 integer type. The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006484
6485<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006486<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
6487 zeros in a variable. If the src == 0 then the result is the size in bits of
6488 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006489
Andrew Lenharth1d463522005-05-03 18:01:48 +00006490</div>
Chris Lattner3b4f4372004-06-11 02:28:03 +00006491
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006492<!-- _______________________________________________________________________ -->
6493<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00006494 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006495</div>
6496
6497<div class="doc_text">
6498
6499<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006500<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
6501 integer bit width. Not all targets support all bit widths however.</p>
6502
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006503<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00006504 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
6505 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006506 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006507 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
6508 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006509</pre>
6510
6511<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006512<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
6513 trailing zeros.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006514
6515<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006516<p>The only argument is the value to be counted. The argument may be of any
6517 integer type. The return type must match the argument type.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006518
6519<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006520<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
6521 zeros in a variable. If the src == 0 then the result is the size in bits of
6522 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006523
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006524</div>
6525
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006526<!-- ======================================================================= -->
6527<div class="doc_subsection">
6528 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
6529</div>
6530
6531<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006532
6533<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006534
6535</div>
6536
Bill Wendlingf4d70622009-02-08 01:40:31 +00006537<!-- _______________________________________________________________________ -->
6538<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006539 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006540</div>
6541
6542<div class="doc_text">
6543
6544<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006545<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006546 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006547
6548<pre>
6549 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6550 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6551 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6552</pre>
6553
6554<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006555<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006556 a signed addition of the two arguments, and indicate whether an overflow
6557 occurred during the signed summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006558
6559<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006560<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006561 be of integer types of any bit width, but they must have the same bit
6562 width. The second element of the result structure must be of
6563 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6564 undergo signed addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006565
6566<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006567<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006568 a signed addition of the two variables. They return a structure &mdash; the
6569 first element of which is the signed summation, and the second element of
6570 which is a bit specifying if the signed summation resulted in an
6571 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006572
6573<h5>Examples:</h5>
6574<pre>
6575 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6576 %sum = extractvalue {i32, i1} %res, 0
6577 %obit = extractvalue {i32, i1} %res, 1
6578 br i1 %obit, label %overflow, label %normal
6579</pre>
6580
6581</div>
6582
6583<!-- _______________________________________________________________________ -->
6584<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006585 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006586</div>
6587
6588<div class="doc_text">
6589
6590<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006591<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006592 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006593
6594<pre>
6595 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6596 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6597 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6598</pre>
6599
6600<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006601<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006602 an unsigned addition of the two arguments, and indicate whether a carry
6603 occurred during the unsigned summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006604
6605<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006606<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006607 be of integer types of any bit width, but they must have the same bit
6608 width. The second element of the result structure must be of
6609 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6610 undergo unsigned addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006611
6612<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006613<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006614 an unsigned addition of the two arguments. They return a structure &mdash;
6615 the first element of which is the sum, and the second element of which is a
6616 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006617
6618<h5>Examples:</h5>
6619<pre>
6620 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6621 %sum = extractvalue {i32, i1} %res, 0
6622 %obit = extractvalue {i32, i1} %res, 1
6623 br i1 %obit, label %carry, label %normal
6624</pre>
6625
6626</div>
6627
6628<!-- _______________________________________________________________________ -->
6629<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006630 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006631</div>
6632
6633<div class="doc_text">
6634
6635<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006636<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006637 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006638
6639<pre>
6640 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6641 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6642 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6643</pre>
6644
6645<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006646<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006647 a signed subtraction of the two arguments, and indicate whether an overflow
6648 occurred during the signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006649
6650<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006651<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006652 be of integer types of any bit width, but they must have the same bit
6653 width. The second element of the result structure must be of
6654 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6655 undergo signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006656
6657<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006658<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006659 a signed subtraction of the two arguments. They return a structure &mdash;
6660 the first element of which is the subtraction, and the second element of
6661 which is a bit specifying if the signed subtraction resulted in an
6662 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006663
6664<h5>Examples:</h5>
6665<pre>
6666 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6667 %sum = extractvalue {i32, i1} %res, 0
6668 %obit = extractvalue {i32, i1} %res, 1
6669 br i1 %obit, label %overflow, label %normal
6670</pre>
6671
6672</div>
6673
6674<!-- _______________________________________________________________________ -->
6675<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006676 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006677</div>
6678
6679<div class="doc_text">
6680
6681<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006682<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006683 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006684
6685<pre>
6686 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6687 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6688 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6689</pre>
6690
6691<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006692<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006693 an unsigned subtraction of the two arguments, and indicate whether an
6694 overflow occurred during the unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006695
6696<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006697<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006698 be of integer types of any bit width, but they must have the same bit
6699 width. The second element of the result structure must be of
6700 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6701 undergo unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006702
6703<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006704<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006705 an unsigned subtraction of the two arguments. They return a structure &mdash;
6706 the first element of which is the subtraction, and the second element of
6707 which is a bit specifying if the unsigned subtraction resulted in an
6708 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006709
6710<h5>Examples:</h5>
6711<pre>
6712 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6713 %sum = extractvalue {i32, i1} %res, 0
6714 %obit = extractvalue {i32, i1} %res, 1
6715 br i1 %obit, label %overflow, label %normal
6716</pre>
6717
6718</div>
6719
6720<!-- _______________________________________________________________________ -->
6721<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006722 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006723</div>
6724
6725<div class="doc_text">
6726
6727<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006728<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006729 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006730
6731<pre>
6732 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6733 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6734 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6735</pre>
6736
6737<h5>Overview:</h5>
6738
6739<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006740 a signed multiplication of the two arguments, and indicate whether an
6741 overflow occurred during the signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006742
6743<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006744<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006745 be of integer types of any bit width, but they must have the same bit
6746 width. The second element of the result structure must be of
6747 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6748 undergo signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006749
6750<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006751<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006752 a signed multiplication of the two arguments. They return a structure &mdash;
6753 the first element of which is the multiplication, and the second element of
6754 which is a bit specifying if the signed multiplication resulted in an
6755 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006756
6757<h5>Examples:</h5>
6758<pre>
6759 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6760 %sum = extractvalue {i32, i1} %res, 0
6761 %obit = extractvalue {i32, i1} %res, 1
6762 br i1 %obit, label %overflow, label %normal
6763</pre>
6764
Reid Spencer5bf54c82007-04-11 23:23:49 +00006765</div>
6766
Bill Wendlingb9a73272009-02-08 23:00:09 +00006767<!-- _______________________________________________________________________ -->
6768<div class="doc_subsubsection">
6769 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6770</div>
6771
6772<div class="doc_text">
6773
6774<h5>Syntax:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006775<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006776 on any integer bit width.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006777
6778<pre>
6779 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6780 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6781 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6782</pre>
6783
6784<h5>Overview:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006785<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006786 a unsigned multiplication of the two arguments, and indicate whether an
6787 overflow occurred during the unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006788
6789<h5>Arguments:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006790<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006791 be of integer types of any bit width, but they must have the same bit
6792 width. The second element of the result structure must be of
6793 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6794 undergo unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006795
6796<h5>Semantics:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006797<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006798 an unsigned multiplication of the two arguments. They return a structure
6799 &mdash; the first element of which is the multiplication, and the second
6800 element of which is a bit specifying if the unsigned multiplication resulted
6801 in an overflow.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006802
6803<h5>Examples:</h5>
6804<pre>
6805 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6806 %sum = extractvalue {i32, i1} %res, 0
6807 %obit = extractvalue {i32, i1} %res, 1
6808 br i1 %obit, label %overflow, label %normal
6809</pre>
6810
6811</div>
6812
Chris Lattner941515c2004-01-06 05:31:32 +00006813<!-- ======================================================================= -->
6814<div class="doc_subsection">
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00006815 <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
6816</div>
6817
6818<div class="doc_text">
6819
Chris Lattner022a9fb2010-03-15 04:12:21 +00006820<p>Half precision floating point is a storage-only format. This means that it is
6821 a dense encoding (in memory) but does not support computation in the
6822 format.</p>
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00006823
Chris Lattner022a9fb2010-03-15 04:12:21 +00006824<p>This means that code must first load the half-precision floating point
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00006825 value as an i16, then convert it to float with <a
6826 href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
6827 Computation can then be performed on the float value (including extending to
Chris Lattner022a9fb2010-03-15 04:12:21 +00006828 double etc). To store the value back to memory, it is first converted to
6829 float if needed, then converted to i16 with
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00006830 <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
6831 storing as an i16 value.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00006832</div>
6833
6834<!-- _______________________________________________________________________ -->
6835<div class="doc_subsubsection">
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00006836 <a name="int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00006837</div>
6838
6839<div class="doc_text">
6840
6841<h5>Syntax:</h5>
6842<pre>
6843 declare i16 @llvm.convert.to.fp16(f32 %a)
6844</pre>
6845
6846<h5>Overview:</h5>
6847<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
6848 a conversion from single precision floating point format to half precision
6849 floating point format.</p>
6850
6851<h5>Arguments:</h5>
6852<p>The intrinsic function contains single argument - the value to be
6853 converted.</p>
6854
6855<h5>Semantics:</h5>
6856<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
6857 a conversion from single precision floating point format to half precision
Chris Lattner022a9fb2010-03-15 04:12:21 +00006858 floating point format. The return value is an <tt>i16</tt> which
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00006859 contains the converted number.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00006860
6861<h5>Examples:</h5>
6862<pre>
6863 %res = call i16 @llvm.convert.to.fp16(f32 %a)
6864 store i16 %res, i16* @x, align 2
6865</pre>
6866
6867</div>
6868
6869<!-- _______________________________________________________________________ -->
6870<div class="doc_subsubsection">
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00006871 <a name="int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00006872</div>
6873
6874<div class="doc_text">
6875
6876<h5>Syntax:</h5>
6877<pre>
6878 declare f32 @llvm.convert.from.fp16(i16 %a)
6879</pre>
6880
6881<h5>Overview:</h5>
6882<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
6883 a conversion from half precision floating point format to single precision
6884 floating point format.</p>
6885
6886<h5>Arguments:</h5>
6887<p>The intrinsic function contains single argument - the value to be
6888 converted.</p>
6889
6890<h5>Semantics:</h5>
6891<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
Chris Lattner022a9fb2010-03-15 04:12:21 +00006892 conversion from half single precision floating point format to single
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00006893 precision floating point format. The input half-float value is represented by
6894 an <tt>i16</tt> value.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00006895
6896<h5>Examples:</h5>
6897<pre>
6898 %a = load i16* @x, align 2
6899 %res = call f32 @llvm.convert.from.fp16(i16 %a)
6900</pre>
6901
6902</div>
6903
6904<!-- ======================================================================= -->
6905<div class="doc_subsection">
Chris Lattner941515c2004-01-06 05:31:32 +00006906 <a name="int_debugger">Debugger Intrinsics</a>
6907</div>
6908
6909<div class="doc_text">
Chris Lattner941515c2004-01-06 05:31:32 +00006910
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006911<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
6912 prefix), are described in
6913 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
6914 Level Debugging</a> document.</p>
6915
6916</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006917
Jim Laskey2211f492007-03-14 19:31:19 +00006918<!-- ======================================================================= -->
6919<div class="doc_subsection">
6920 <a name="int_eh">Exception Handling Intrinsics</a>
6921</div>
6922
6923<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006924
6925<p>The LLVM exception handling intrinsics (which all start with
6926 <tt>llvm.eh.</tt> prefix), are described in
6927 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6928 Handling</a> document.</p>
6929
Jim Laskey2211f492007-03-14 19:31:19 +00006930</div>
6931
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006932<!-- ======================================================================= -->
6933<div class="doc_subsection">
Duncan Sands86e01192007-09-11 14:10:23 +00006934 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +00006935</div>
6936
6937<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006938
6939<p>This intrinsic makes it possible to excise one parameter, marked with
Dan Gohman3770af52010-07-02 23:18:08 +00006940 the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
6941 The result is a callable
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006942 function pointer lacking the nest parameter - the caller does not need to
6943 provide a value for it. Instead, the value to use is stored in advance in a
6944 "trampoline", a block of memory usually allocated on the stack, which also
6945 contains code to splice the nest value into the argument list. This is used
6946 to implement the GCC nested function address extension.</p>
6947
6948<p>For example, if the function is
6949 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
6950 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
6951 follows:</p>
6952
Benjamin Kramer79698be2010-07-13 12:26:09 +00006953<pre class="doc_code">
Duncan Sands86e01192007-09-11 14:10:23 +00006954 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6955 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
Dan Gohmand6a6f612010-05-28 17:07:41 +00006956 %p = call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval)
Duncan Sands86e01192007-09-11 14:10:23 +00006957 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands644f9172007-07-27 12:58:54 +00006958</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006959
Dan Gohmand6a6f612010-05-28 17:07:41 +00006960<p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
6961 to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006962
Duncan Sands644f9172007-07-27 12:58:54 +00006963</div>
6964
6965<!-- _______________________________________________________________________ -->
6966<div class="doc_subsubsection">
6967 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6968</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006969
Duncan Sands644f9172007-07-27 12:58:54 +00006970<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006971
Duncan Sands644f9172007-07-27 12:58:54 +00006972<h5>Syntax:</h5>
6973<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006974 declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands644f9172007-07-27 12:58:54 +00006975</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006976
Duncan Sands644f9172007-07-27 12:58:54 +00006977<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006978<p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
6979 function pointer suitable for executing it.</p>
6980
Duncan Sands644f9172007-07-27 12:58:54 +00006981<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006982<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6983 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
6984 sufficiently aligned block of memory; this memory is written to by the
6985 intrinsic. Note that the size and the alignment are target-specific - LLVM
6986 currently provides no portable way of determining them, so a front-end that
6987 generates this intrinsic needs to have some target-specific knowledge.
6988 The <tt>func</tt> argument must hold a function bitcast to
6989 an <tt>i8*</tt>.</p>
6990
Duncan Sands644f9172007-07-27 12:58:54 +00006991<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006992<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
6993 dependent code, turning it into a function. A pointer to this function is
6994 returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
6995 function pointer type</a> before being called. The new function's signature
6996 is the same as that of <tt>func</tt> with any arguments marked with
6997 the <tt>nest</tt> attribute removed. At most one such <tt>nest</tt> argument
6998 is allowed, and it must be of pointer type. Calling the new function is
6999 equivalent to calling <tt>func</tt> with the same argument list, but
7000 with <tt>nval</tt> used for the missing <tt>nest</tt> argument. If, after
7001 calling <tt>llvm.init.trampoline</tt>, the memory pointed to
7002 by <tt>tramp</tt> is modified, then the effect of any later call to the
7003 returned function pointer is undefined.</p>
7004
Duncan Sands644f9172007-07-27 12:58:54 +00007005</div>
7006
7007<!-- ======================================================================= -->
7008<div class="doc_subsection">
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007009 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
7010</div>
7011
7012<div class="doc_text">
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007013
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007014<p>These intrinsic functions expand the "universal IR" of LLVM to represent
7015 hardware constructs for atomic operations and memory synchronization. This
7016 provides an interface to the hardware, not an interface to the programmer. It
7017 is aimed at a low enough level to allow any programming models or APIs
7018 (Application Programming Interfaces) which need atomic behaviors to map
7019 cleanly onto it. It is also modeled primarily on hardware behavior. Just as
7020 hardware provides a "universal IR" for source languages, it also provides a
7021 starting point for developing a "universal" atomic operation and
7022 synchronization IR.</p>
7023
7024<p>These do <em>not</em> form an API such as high-level threading libraries,
7025 software transaction memory systems, atomic primitives, and intrinsic
7026 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
7027 application libraries. The hardware interface provided by LLVM should allow
7028 a clean implementation of all of these APIs and parallel programming models.
7029 No one model or paradigm should be selected above others unless the hardware
7030 itself ubiquitously does so.</p>
7031
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007032</div>
7033
7034<!-- _______________________________________________________________________ -->
7035<div class="doc_subsubsection">
7036 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
7037</div>
7038<div class="doc_text">
7039<h5>Syntax:</h5>
7040<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007041 declare void @llvm.memory.barrier(i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt;)
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007042</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007043
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007044<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007045<p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
7046 specific pairs of memory access types.</p>
7047
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007048<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007049<p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
7050 The first four arguments enables a specific barrier as listed below. The
Dan Gohmana269a0a2010-03-01 17:41:39 +00007051 fifth argument specifies that the barrier applies to io or device or uncached
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007052 memory.</p>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007053
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007054<ul>
7055 <li><tt>ll</tt>: load-load barrier</li>
7056 <li><tt>ls</tt>: load-store barrier</li>
7057 <li><tt>sl</tt>: store-load barrier</li>
7058 <li><tt>ss</tt>: store-store barrier</li>
7059 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
7060</ul>
7061
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007062<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007063<p>This intrinsic causes the system to enforce some ordering constraints upon
7064 the loads and stores of the program. This barrier does not
7065 indicate <em>when</em> any events will occur, it only enforces
7066 an <em>order</em> in which they occur. For any of the specified pairs of load
7067 and store operations (f.ex. load-load, or store-load), all of the first
7068 operations preceding the barrier will complete before any of the second
7069 operations succeeding the barrier begin. Specifically the semantics for each
7070 pairing is as follows:</p>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007071
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007072<ul>
7073 <li><tt>ll</tt>: All loads before the barrier must complete before any load
7074 after the barrier begins.</li>
Eric Christopher455c5772009-12-05 02:46:03 +00007075 <li><tt>ls</tt>: All loads before the barrier must complete before any
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007076 store after the barrier begins.</li>
Eric Christopher455c5772009-12-05 02:46:03 +00007077 <li><tt>ss</tt>: All stores before the barrier must complete before any
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007078 store after the barrier begins.</li>
Eric Christopher455c5772009-12-05 02:46:03 +00007079 <li><tt>sl</tt>: All stores before the barrier must complete before any
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007080 load after the barrier begins.</li>
7081</ul>
7082
7083<p>These semantics are applied with a logical "and" behavior when more than one
7084 is enabled in a single memory barrier intrinsic.</p>
7085
7086<p>Backends may implement stronger barriers than those requested when they do
7087 not support as fine grained a barrier as requested. Some architectures do
7088 not need all types of barriers and on such architectures, these become
7089 noops.</p>
7090
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007091<h5>Example:</h5>
7092<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007093%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7094%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007095 store i32 4, %ptr
7096
7097%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007098 call void @llvm.memory.barrier(i1 false, i1 true, i1 false, i1 false)
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007099 <i>; guarantee the above finishes</i>
7100 store i32 8, %ptr <i>; before this begins</i>
7101</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007102
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007103</div>
7104
Andrew Lenharth95528942008-02-21 06:45:13 +00007105<!-- _______________________________________________________________________ -->
7106<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00007107 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00007108</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007109
Andrew Lenharth95528942008-02-21 06:45:13 +00007110<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007111
Andrew Lenharth95528942008-02-21 06:45:13 +00007112<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007113<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
7114 any integer bit width and for different address spaces. Not all targets
7115 support all bit widths however.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00007116
7117<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007118 declare i8 @llvm.atomic.cmp.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt;)
7119 declare i16 @llvm.atomic.cmp.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt;)
7120 declare i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt;)
7121 declare i64 @llvm.atomic.cmp.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt;)
Andrew Lenharth95528942008-02-21 06:45:13 +00007122</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007123
Andrew Lenharth95528942008-02-21 06:45:13 +00007124<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007125<p>This loads a value in memory and compares it to a given value. If they are
7126 equal, it stores a new value into the memory.</p>
7127
Andrew Lenharth95528942008-02-21 06:45:13 +00007128<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007129<p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
7130 as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
7131 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
7132 this integer type. While any bit width integer may be used, targets may only
7133 lower representations they support in hardware.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00007134
Andrew Lenharth95528942008-02-21 06:45:13 +00007135<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007136<p>This entire intrinsic must be executed atomically. It first loads the value
7137 in memory pointed to by <tt>ptr</tt> and compares it with the
7138 value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
7139 memory. The loaded value is yielded in all cases. This provides the
7140 equivalent of an atomic compare-and-swap operation within the SSA
7141 framework.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00007142
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007143<h5>Examples:</h5>
Andrew Lenharth95528942008-02-21 06:45:13 +00007144<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007145%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7146%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharth95528942008-02-21 06:45:13 +00007147 store i32 4, %ptr
7148
7149%val1 = add i32 4, 4
Dan Gohmand6a6f612010-05-28 17:07:41 +00007150%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 4, %val1)
Andrew Lenharth95528942008-02-21 06:45:13 +00007151 <i>; yields {i32}:result1 = 4</i>
7152%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
7153%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
7154
7155%val2 = add i32 1, 1
Dan Gohmand6a6f612010-05-28 17:07:41 +00007156%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 5, %val2)
Andrew Lenharth95528942008-02-21 06:45:13 +00007157 <i>; yields {i32}:result2 = 8</i>
7158%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
7159
7160%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
7161</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007162
Andrew Lenharth95528942008-02-21 06:45:13 +00007163</div>
7164
7165<!-- _______________________________________________________________________ -->
7166<div class="doc_subsubsection">
7167 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
7168</div>
7169<div class="doc_text">
7170<h5>Syntax:</h5>
7171
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007172<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
7173 integer bit width. Not all targets support all bit widths however.</p>
7174
Andrew Lenharth95528942008-02-21 06:45:13 +00007175<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007176 declare i8 @llvm.atomic.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;val&gt;)
7177 declare i16 @llvm.atomic.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;val&gt;)
7178 declare i32 @llvm.atomic.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;val&gt;)
7179 declare i64 @llvm.atomic.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;val&gt;)
Andrew Lenharth95528942008-02-21 06:45:13 +00007180</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007181
Andrew Lenharth95528942008-02-21 06:45:13 +00007182<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007183<p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
7184 the value from memory. It then stores the value in <tt>val</tt> in the memory
7185 at <tt>ptr</tt>.</p>
7186
Andrew Lenharth95528942008-02-21 06:45:13 +00007187<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007188<p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
7189 the <tt>val</tt> argument and the result must be integers of the same bit
7190 width. The first argument, <tt>ptr</tt>, must be a pointer to a value of this
7191 integer type. The targets may only lower integer representations they
7192 support.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00007193
Andrew Lenharth95528942008-02-21 06:45:13 +00007194<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007195<p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
7196 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
7197 equivalent of an atomic swap operation within the SSA framework.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00007198
Andrew Lenharth95528942008-02-21 06:45:13 +00007199<h5>Examples:</h5>
7200<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007201%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7202%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharth95528942008-02-21 06:45:13 +00007203 store i32 4, %ptr
7204
7205%val1 = add i32 4, 4
Dan Gohmand6a6f612010-05-28 17:07:41 +00007206%result1 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val1)
Andrew Lenharth95528942008-02-21 06:45:13 +00007207 <i>; yields {i32}:result1 = 4</i>
7208%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
7209%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
7210
7211%val2 = add i32 1, 1
Dan Gohmand6a6f612010-05-28 17:07:41 +00007212%result2 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val2)
Andrew Lenharth95528942008-02-21 06:45:13 +00007213 <i>; yields {i32}:result2 = 8</i>
7214
7215%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
7216%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
7217</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007218
Andrew Lenharth95528942008-02-21 06:45:13 +00007219</div>
7220
7221<!-- _______________________________________________________________________ -->
7222<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00007223 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00007224
7225</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007226
Andrew Lenharth95528942008-02-21 06:45:13 +00007227<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007228
Andrew Lenharth95528942008-02-21 06:45:13 +00007229<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007230<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
7231 any integer bit width. Not all targets support all bit widths however.</p>
7232
Andrew Lenharth95528942008-02-21 06:45:13 +00007233<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007234 declare i8 @llvm.atomic.load.add.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7235 declare i16 @llvm.atomic.load.add.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7236 declare i32 @llvm.atomic.load.add.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7237 declare i64 @llvm.atomic.load.add.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Andrew Lenharth95528942008-02-21 06:45:13 +00007238</pre>
Andrew Lenharth95528942008-02-21 06:45:13 +00007239
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007240<h5>Overview:</h5>
7241<p>This intrinsic adds <tt>delta</tt> to the value stored in memory
7242 at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
7243
7244<h5>Arguments:</h5>
7245<p>The intrinsic takes two arguments, the first a pointer to an integer value
7246 and the second an integer value. The result is also an integer value. These
7247 integer types can have any bit width, but they must all have the same bit
7248 width. The targets may only lower integer representations they support.</p>
7249
Andrew Lenharth95528942008-02-21 06:45:13 +00007250<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007251<p>This intrinsic does a series of operations atomically. It first loads the
7252 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
7253 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00007254
7255<h5>Examples:</h5>
7256<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007257%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7258%ptr = bitcast i8* %mallocP to i32*
7259 store i32 4, %ptr
Dan Gohmand6a6f612010-05-28 17:07:41 +00007260%result1 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 4)
Andrew Lenharth95528942008-02-21 06:45:13 +00007261 <i>; yields {i32}:result1 = 4</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007262%result2 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 2)
Andrew Lenharth95528942008-02-21 06:45:13 +00007263 <i>; yields {i32}:result2 = 8</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007264%result3 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 5)
Andrew Lenharth95528942008-02-21 06:45:13 +00007265 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6a490372008-06-25 08:15:39 +00007266%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharth95528942008-02-21 06:45:13 +00007267</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007268
Andrew Lenharth95528942008-02-21 06:45:13 +00007269</div>
7270
Mon P Wang6a490372008-06-25 08:15:39 +00007271<!-- _______________________________________________________________________ -->
7272<div class="doc_subsubsection">
7273 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
7274
7275</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007276
Mon P Wang6a490372008-06-25 08:15:39 +00007277<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007278
Mon P Wang6a490372008-06-25 08:15:39 +00007279<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007280<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
7281 any integer bit width and for different address spaces. Not all targets
7282 support all bit widths however.</p>
7283
Mon P Wang6a490372008-06-25 08:15:39 +00007284<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007285 declare i8 @llvm.atomic.load.sub.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7286 declare i16 @llvm.atomic.load.sub.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7287 declare i32 @llvm.atomic.load.sub.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7288 declare i64 @llvm.atomic.load.sub.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007289</pre>
Mon P Wang6a490372008-06-25 08:15:39 +00007290
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007291<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00007292<p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007293 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
7294
7295<h5>Arguments:</h5>
7296<p>The intrinsic takes two arguments, the first a pointer to an integer value
7297 and the second an integer value. The result is also an integer value. These
7298 integer types can have any bit width, but they must all have the same bit
7299 width. The targets may only lower integer representations they support.</p>
7300
Mon P Wang6a490372008-06-25 08:15:39 +00007301<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007302<p>This intrinsic does a series of operations atomically. It first loads the
7303 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
7304 result to <tt>ptr</tt>. It yields the original value stored
7305 at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007306
7307<h5>Examples:</h5>
7308<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007309%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7310%ptr = bitcast i8* %mallocP to i32*
7311 store i32 8, %ptr
Dan Gohmand6a6f612010-05-28 17:07:41 +00007312%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 4)
Mon P Wang6a490372008-06-25 08:15:39 +00007313 <i>; yields {i32}:result1 = 8</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007314%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 2)
Mon P Wang6a490372008-06-25 08:15:39 +00007315 <i>; yields {i32}:result2 = 4</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007316%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 5)
Mon P Wang6a490372008-06-25 08:15:39 +00007317 <i>; yields {i32}:result3 = 2</i>
7318%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
7319</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007320
Mon P Wang6a490372008-06-25 08:15:39 +00007321</div>
7322
7323<!-- _______________________________________________________________________ -->
7324<div class="doc_subsubsection">
7325 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
7326 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
7327 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
7328 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
Mon P Wang6a490372008-06-25 08:15:39 +00007329</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007330
Mon P Wang6a490372008-06-25 08:15:39 +00007331<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007332
Mon P Wang6a490372008-06-25 08:15:39 +00007333<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007334<p>These are overloaded intrinsics. You can
7335 use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
7336 <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
7337 bit width and for different address spaces. Not all targets support all bit
7338 widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007339
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007340<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007341 declare i8 @llvm.atomic.load.and.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7342 declare i16 @llvm.atomic.load.and.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7343 declare i32 @llvm.atomic.load.and.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7344 declare i64 @llvm.atomic.load.and.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007345</pre>
7346
7347<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007348 declare i8 @llvm.atomic.load.or.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7349 declare i16 @llvm.atomic.load.or.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7350 declare i32 @llvm.atomic.load.or.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7351 declare i64 @llvm.atomic.load.or.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007352</pre>
7353
7354<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007355 declare i8 @llvm.atomic.load.nand.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7356 declare i16 @llvm.atomic.load.nand.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7357 declare i32 @llvm.atomic.load.nand.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7358 declare i64 @llvm.atomic.load.nand.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007359</pre>
7360
7361<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007362 declare i8 @llvm.atomic.load.xor.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7363 declare i16 @llvm.atomic.load.xor.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7364 declare i32 @llvm.atomic.load.xor.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7365 declare i64 @llvm.atomic.load.xor.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007366</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007367
Mon P Wang6a490372008-06-25 08:15:39 +00007368<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007369<p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
7370 the value stored in memory at <tt>ptr</tt>. It yields the original value
7371 at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007372
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007373<h5>Arguments:</h5>
7374<p>These intrinsics take two arguments, the first a pointer to an integer value
7375 and the second an integer value. The result is also an integer value. These
7376 integer types can have any bit width, but they must all have the same bit
7377 width. The targets may only lower integer representations they support.</p>
7378
Mon P Wang6a490372008-06-25 08:15:39 +00007379<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007380<p>These intrinsics does a series of operations atomically. They first load the
7381 value stored at <tt>ptr</tt>. They then do the bitwise
7382 operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
7383 original value stored at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007384
7385<h5>Examples:</h5>
7386<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007387%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7388%ptr = bitcast i8* %mallocP to i32*
7389 store i32 0x0F0F, %ptr
Dan Gohmand6a6f612010-05-28 17:07:41 +00007390%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32(i32* %ptr, i32 0xFF)
Mon P Wang6a490372008-06-25 08:15:39 +00007391 <i>; yields {i32}:result0 = 0x0F0F</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007392%result1 = call i32 @llvm.atomic.load.and.i32.p0i32(i32* %ptr, i32 0xFF)
Mon P Wang6a490372008-06-25 08:15:39 +00007393 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007394%result2 = call i32 @llvm.atomic.load.or.i32.p0i32(i32* %ptr, i32 0F)
Mon P Wang6a490372008-06-25 08:15:39 +00007395 <i>; yields {i32}:result2 = 0xF0</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007396%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32(i32* %ptr, i32 0F)
Mon P Wang6a490372008-06-25 08:15:39 +00007397 <i>; yields {i32}:result3 = FF</i>
7398%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
7399</pre>
Mon P Wang6a490372008-06-25 08:15:39 +00007400
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007401</div>
Mon P Wang6a490372008-06-25 08:15:39 +00007402
7403<!-- _______________________________________________________________________ -->
7404<div class="doc_subsubsection">
7405 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
7406 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
7407 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
7408 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
Mon P Wang6a490372008-06-25 08:15:39 +00007409</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007410
Mon P Wang6a490372008-06-25 08:15:39 +00007411<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007412
Mon P Wang6a490372008-06-25 08:15:39 +00007413<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007414<p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
7415 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
7416 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
7417 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007418
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007419<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007420 declare i8 @llvm.atomic.load.max.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7421 declare i16 @llvm.atomic.load.max.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7422 declare i32 @llvm.atomic.load.max.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7423 declare i64 @llvm.atomic.load.max.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007424</pre>
7425
7426<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007427 declare i8 @llvm.atomic.load.min.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7428 declare i16 @llvm.atomic.load.min.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7429 declare i32 @llvm.atomic.load.min.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7430 declare i64 @llvm.atomic.load.min.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007431</pre>
7432
7433<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007434 declare i8 @llvm.atomic.load.umax.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7435 declare i16 @llvm.atomic.load.umax.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7436 declare i32 @llvm.atomic.load.umax.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7437 declare i64 @llvm.atomic.load.umax.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007438</pre>
7439
7440<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007441 declare i8 @llvm.atomic.load.umin.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7442 declare i16 @llvm.atomic.load.umin.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7443 declare i32 @llvm.atomic.load.umin.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7444 declare i64 @llvm.atomic.load.umin.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007445</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007446
Mon P Wang6a490372008-06-25 08:15:39 +00007447<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00007448<p>These intrinsics takes the signed or unsigned minimum or maximum of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007449 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
7450 original value at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007451
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007452<h5>Arguments:</h5>
7453<p>These intrinsics take two arguments, the first a pointer to an integer value
7454 and the second an integer value. The result is also an integer value. These
7455 integer types can have any bit width, but they must all have the same bit
7456 width. The targets may only lower integer representations they support.</p>
7457
Mon P Wang6a490372008-06-25 08:15:39 +00007458<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007459<p>These intrinsics does a series of operations atomically. They first load the
7460 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
7461 max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
7462 yield the original value stored at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007463
7464<h5>Examples:</h5>
7465<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007466%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7467%ptr = bitcast i8* %mallocP to i32*
7468 store i32 7, %ptr
Dan Gohmand6a6f612010-05-28 17:07:41 +00007469%result0 = call i32 @llvm.atomic.load.min.i32.p0i32(i32* %ptr, i32 -2)
Mon P Wang6a490372008-06-25 08:15:39 +00007470 <i>; yields {i32}:result0 = 7</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007471%result1 = call i32 @llvm.atomic.load.max.i32.p0i32(i32* %ptr, i32 8)
Mon P Wang6a490372008-06-25 08:15:39 +00007472 <i>; yields {i32}:result1 = -2</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007473%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32(i32* %ptr, i32 10)
Mon P Wang6a490372008-06-25 08:15:39 +00007474 <i>; yields {i32}:result2 = 8</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007475%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32(i32* %ptr, i32 30)
Mon P Wang6a490372008-06-25 08:15:39 +00007476 <i>; yields {i32}:result3 = 8</i>
7477%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
7478</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007479
Mon P Wang6a490372008-06-25 08:15:39 +00007480</div>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007481
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007482
7483<!-- ======================================================================= -->
7484<div class="doc_subsection">
7485 <a name="int_memorymarkers">Memory Use Markers</a>
7486</div>
7487
7488<div class="doc_text">
7489
7490<p>This class of intrinsics exists to information about the lifetime of memory
7491 objects and ranges where variables are immutable.</p>
7492
7493</div>
7494
7495<!-- _______________________________________________________________________ -->
7496<div class="doc_subsubsection">
7497 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
7498</div>
7499
7500<div class="doc_text">
7501
7502<h5>Syntax:</h5>
7503<pre>
7504 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7505</pre>
7506
7507<h5>Overview:</h5>
7508<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
7509 object's lifetime.</p>
7510
7511<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007512<p>The first argument is a constant integer representing the size of the
7513 object, or -1 if it is variable sized. The second argument is a pointer to
7514 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007515
7516<h5>Semantics:</h5>
7517<p>This intrinsic indicates that before this point in the code, the value of the
7518 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
Nick Lewyckyd20fd592009-10-27 16:56:58 +00007519 never be used and has an undefined value. A load from the pointer that
7520 precedes this intrinsic can be replaced with
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007521 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
7522
7523</div>
7524
7525<!-- _______________________________________________________________________ -->
7526<div class="doc_subsubsection">
7527 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
7528</div>
7529
7530<div class="doc_text">
7531
7532<h5>Syntax:</h5>
7533<pre>
7534 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7535</pre>
7536
7537<h5>Overview:</h5>
7538<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
7539 object's lifetime.</p>
7540
7541<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007542<p>The first argument is a constant integer representing the size of the
7543 object, or -1 if it is variable sized. The second argument is a pointer to
7544 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007545
7546<h5>Semantics:</h5>
7547<p>This intrinsic indicates that after this point in the code, the value of the
7548 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7549 never be used and has an undefined value. Any stores into the memory object
7550 following this intrinsic may be removed as dead.
7551
7552</div>
7553
7554<!-- _______________________________________________________________________ -->
7555<div class="doc_subsubsection">
7556 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
7557</div>
7558
7559<div class="doc_text">
7560
7561<h5>Syntax:</h5>
7562<pre>
Nick Lewycky2965d3e2010-11-30 04:13:41 +00007563 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007564</pre>
7565
7566<h5>Overview:</h5>
7567<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
7568 a memory object will not change.</p>
7569
7570<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007571<p>The first argument is a constant integer representing the size of the
7572 object, or -1 if it is variable sized. The second argument is a pointer to
7573 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007574
7575<h5>Semantics:</h5>
7576<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
7577 the return value, the referenced memory location is constant and
7578 unchanging.</p>
7579
7580</div>
7581
7582<!-- _______________________________________________________________________ -->
7583<div class="doc_subsubsection">
7584 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
7585</div>
7586
7587<div class="doc_text">
7588
7589<h5>Syntax:</h5>
7590<pre>
7591 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7592</pre>
7593
7594<h5>Overview:</h5>
7595<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
7596 a memory object are mutable.</p>
7597
7598<h5>Arguments:</h5>
7599<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
Nick Lewycky9bc89042009-10-13 07:57:33 +00007600 The second argument is a constant integer representing the size of the
7601 object, or -1 if it is variable sized and the third argument is a pointer
7602 to the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007603
7604<h5>Semantics:</h5>
7605<p>This intrinsic indicates that the memory is mutable again.</p>
7606
7607</div>
7608
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007609<!-- ======================================================================= -->
7610<div class="doc_subsection">
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007611 <a name="int_general">General Intrinsics</a>
7612</div>
7613
7614<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007615
7616<p>This class of intrinsics is designed to be generic and has no specific
7617 purpose.</p>
7618
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007619</div>
7620
7621<!-- _______________________________________________________________________ -->
7622<div class="doc_subsubsection">
7623 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
7624</div>
7625
7626<div class="doc_text">
7627
7628<h5>Syntax:</h5>
7629<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007630 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007631</pre>
7632
7633<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007634<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007635
7636<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007637<p>The first argument is a pointer to a value, the second is a pointer to a
7638 global string, the third is a pointer to a global string which is the source
7639 file name, and the last argument is the line number.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007640
7641<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007642<p>This intrinsic allows annotation of local variables with arbitrary strings.
7643 This can be useful for special purpose optimizations that want to look for
7644 these annotations. These have no other defined use, they are ignored by code
7645 generation and optimization.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007646
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007647</div>
7648
Tanya Lattner293c0372007-09-21 22:59:12 +00007649<!-- _______________________________________________________________________ -->
7650<div class="doc_subsubsection">
Tanya Lattner0186a652007-09-21 23:57:59 +00007651 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattner293c0372007-09-21 22:59:12 +00007652</div>
7653
7654<div class="doc_text">
7655
7656<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007657<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
7658 any integer bit width.</p>
7659
Tanya Lattner293c0372007-09-21 22:59:12 +00007660<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007661 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7662 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7663 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7664 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7665 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattner293c0372007-09-21 22:59:12 +00007666</pre>
7667
7668<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007669<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00007670
7671<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007672<p>The first argument is an integer value (result of some expression), the
7673 second is a pointer to a global string, the third is a pointer to a global
7674 string which is the source file name, and the last argument is the line
7675 number. It returns the value of the first argument.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00007676
7677<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007678<p>This intrinsic allows annotations to be put on arbitrary expressions with
7679 arbitrary strings. This can be useful for special purpose optimizations that
7680 want to look for these annotations. These have no other defined use, they
7681 are ignored by code generation and optimization.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00007682
Tanya Lattner293c0372007-09-21 22:59:12 +00007683</div>
Jim Laskey2211f492007-03-14 19:31:19 +00007684
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007685<!-- _______________________________________________________________________ -->
7686<div class="doc_subsubsection">
7687 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
7688</div>
7689
7690<div class="doc_text">
7691
7692<h5>Syntax:</h5>
7693<pre>
7694 declare void @llvm.trap()
7695</pre>
7696
7697<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007698<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007699
7700<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007701<p>None.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007702
7703<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007704<p>This intrinsics is lowered to the target dependent trap instruction. If the
7705 target does not have a trap instruction, this intrinsic will be lowered to
7706 the call of the <tt>abort()</tt> function.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007707
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007708</div>
7709
Bill Wendling14313312008-11-19 05:56:17 +00007710<!-- _______________________________________________________________________ -->
7711<div class="doc_subsubsection">
Misha Brukman50de2b22008-11-22 23:55:29 +00007712 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling14313312008-11-19 05:56:17 +00007713</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007714
Bill Wendling14313312008-11-19 05:56:17 +00007715<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007716
Bill Wendling14313312008-11-19 05:56:17 +00007717<h5>Syntax:</h5>
7718<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007719 declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
Bill Wendling14313312008-11-19 05:56:17 +00007720</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007721
Bill Wendling14313312008-11-19 05:56:17 +00007722<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007723<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
7724 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
7725 ensure that it is placed on the stack before local variables.</p>
7726
Bill Wendling14313312008-11-19 05:56:17 +00007727<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007728<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
7729 arguments. The first argument is the value loaded from the stack
7730 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
7731 that has enough space to hold the value of the guard.</p>
7732
Bill Wendling14313312008-11-19 05:56:17 +00007733<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007734<p>This intrinsic causes the prologue/epilogue inserter to force the position of
7735 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7736 stack. This is to ensure that if a local variable on the stack is
7737 overwritten, it will destroy the value of the guard. When the function exits,
Bill Wendling6bbe0912010-10-27 01:07:41 +00007738 the guard on the stack is checked against the original guard. If they are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007739 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
7740 function.</p>
7741
Bill Wendling14313312008-11-19 05:56:17 +00007742</div>
7743
Eric Christopher73484322009-11-30 08:03:53 +00007744<!-- _______________________________________________________________________ -->
7745<div class="doc_subsubsection">
7746 <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
7747</div>
7748
7749<div class="doc_text">
7750
7751<h5>Syntax:</h5>
7752<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007753 declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;type&gt;)
7754 declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;type&gt;)
Eric Christopher73484322009-11-30 08:03:53 +00007755</pre>
7756
7757<h5>Overview:</h5>
Bill Wendling6bbe0912010-10-27 01:07:41 +00007758<p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
7759 the optimizers to determine at compile time whether a) an operation (like
7760 memcpy) will overflow a buffer that corresponds to an object, or b) that a
7761 runtime check for overflow isn't necessary. An object in this context means
7762 an allocation of a specific class, structure, array, or other object.</p>
Eric Christopher73484322009-11-30 08:03:53 +00007763
7764<h5>Arguments:</h5>
Bill Wendling6bbe0912010-10-27 01:07:41 +00007765<p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
Eric Christopher31e39bd2009-12-23 00:29:49 +00007766 argument is a pointer to or into the <tt>object</tt>. The second argument
Bill Wendling6bbe0912010-10-27 01:07:41 +00007767 is a boolean 0 or 1. This argument determines whether you want the
7768 maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
Eric Christopher31e39bd2009-12-23 00:29:49 +00007769 1, variables are not allowed.</p>
7770
Eric Christopher73484322009-11-30 08:03:53 +00007771<h5>Semantics:</h5>
7772<p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
Bill Wendling6bbe0912010-10-27 01:07:41 +00007773 representing the size of the object concerned, or <tt>i32/i64 -1 or 0</tt>,
7774 depending on the <tt>type</tt> argument, if the size cannot be determined at
7775 compile time.</p>
Eric Christopher73484322009-11-30 08:03:53 +00007776
7777</div>
7778
Chris Lattner2f7c9632001-06-06 20:29:01 +00007779<!-- *********************************************************************** -->
Chris Lattner2f7c9632001-06-06 20:29:01 +00007780<hr>
Misha Brukmanc501f552004-03-01 17:47:27 +00007781<address>
7782 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00007783 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00007784 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00007785 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00007786
7787 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencerca058542006-03-14 05:39:39 +00007788 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmanc501f552004-03-01 17:47:27 +00007789 Last modified: $Date$
7790</address>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00007791
Misha Brukman76307852003-11-08 01:05:38 +00007792</body>
7793</html>