blob: f392b307059279bbeeea34e122646b61ad58d431 [file] [log] [blame]
Eugene Zelenko32a40562017-09-11 23:00:48 +00001//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
Brendon Cahoon254f8892016-07-29 16:44:44 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11//
12// Software pipelining (SWP) is an instruction scheduling technique for loops
Roorda, Jan-Willem20a0e552018-03-06 16:26:01 +000013// that overlap loop iterations and exploits ILP via a compiler transformation.
Brendon Cahoon254f8892016-07-29 16:44:44 +000014//
15// Swing Modulo Scheduling is an implementation of software pipelining
16// that generates schedules that are near optimal in terms of initiation
17// interval, register requirements, and stage count. See the papers:
18//
19// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
20// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996
21// Conference on Parallel Architectures and Compilation Techiniques.
22//
23// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
24// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
25// Transactions on Computers, Vol. 50, No. 3, 2001.
26//
27// "An Implementation of Swing Modulo Scheduling With Extensions for
28// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
29// Urbana-Chambpain, 2005.
30//
31//
32// The SMS algorithm consists of three main steps after computing the minimal
33// initiation interval (MII).
34// 1) Analyze the dependence graph and compute information about each
35// instruction in the graph.
36// 2) Order the nodes (instructions) by priority based upon the heuristics
37// described in the algorithm.
38// 3) Attempt to schedule the nodes in the specified order using the MII.
39//
40// This SMS implementation is a target-independent back-end pass. When enabled,
41// the pass runs just prior to the register allocation pass, while the machine
42// IR is in SSA form. If software pipelining is successful, then the original
43// loop is replaced by the optimized loop. The optimized loop contains one or
44// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
45// the instructions cannot be scheduled in a given MII, we increase the MII by
46// one and try again.
47//
48// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
49// represent loop carried dependences in the DAG as order edges to the Phi
50// nodes. We also perform several passes over the DAG to eliminate unnecessary
51// edges that inhibit the ability to pipeline. The implementation uses the
52// DFAPacketizer class to compute the minimum initiation interval and the check
53// where an instruction may be inserted in the pipelined schedule.
54//
55// In order for the SMS pass to work, several target specific hooks need to be
56// implemented to get information about the loop structure and to rewrite
57// instructions.
58//
59//===----------------------------------------------------------------------===//
60
Eugene Zelenkocdc71612016-08-11 17:20:18 +000061#include "llvm/ADT/ArrayRef.h"
62#include "llvm/ADT/BitVector.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000063#include "llvm/ADT/DenseMap.h"
64#include "llvm/ADT/MapVector.h"
65#include "llvm/ADT/PriorityQueue.h"
66#include "llvm/ADT/SetVector.h"
67#include "llvm/ADT/SmallPtrSet.h"
68#include "llvm/ADT/SmallSet.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000069#include "llvm/ADT/SmallVector.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000070#include "llvm/ADT/Statistic.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000071#include "llvm/ADT/iterator_range.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000072#include "llvm/Analysis/AliasAnalysis.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000073#include "llvm/Analysis/MemoryLocation.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000074#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/CodeGen/DFAPacketizer.h"
Matthias Braunf8422972017-12-13 02:51:04 +000076#include "llvm/CodeGen/LiveIntervals.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000077#include "llvm/CodeGen/MachineBasicBlock.h"
78#include "llvm/CodeGen/MachineDominators.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000079#include "llvm/CodeGen/MachineFunction.h"
80#include "llvm/CodeGen/MachineFunctionPass.h"
81#include "llvm/CodeGen/MachineInstr.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000082#include "llvm/CodeGen/MachineInstrBuilder.h"
83#include "llvm/CodeGen/MachineLoopInfo.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000084#include "llvm/CodeGen/MachineMemOperand.h"
85#include "llvm/CodeGen/MachineOperand.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000086#include "llvm/CodeGen/MachineRegisterInfo.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000087#include "llvm/CodeGen/RegisterClassInfo.h"
88#include "llvm/CodeGen/RegisterPressure.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000089#include "llvm/CodeGen/ScheduleDAG.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000090#include "llvm/CodeGen/ScheduleDAGInstrs.h"
Krzysztof Parzyszek88391242016-12-22 19:21:20 +000091#include "llvm/CodeGen/ScheduleDAGMutation.h"
David Blaikie3f833ed2017-11-08 01:01:31 +000092#include "llvm/CodeGen/TargetInstrInfo.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +000093#include "llvm/CodeGen/TargetOpcodes.h"
94#include "llvm/CodeGen/TargetRegisterInfo.h"
95#include "llvm/CodeGen/TargetSubtargetInfo.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000096#include "llvm/IR/Attributes.h"
97#include "llvm/IR/DebugLoc.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +000098#include "llvm/IR/Function.h"
99#include "llvm/MC/LaneBitmask.h"
100#include "llvm/MC/MCInstrDesc.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000101#include "llvm/MC/MCInstrItineraries.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +0000102#include "llvm/MC/MCRegisterInfo.h"
103#include "llvm/Pass.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000104#include "llvm/Support/CommandLine.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +0000105#include "llvm/Support/Compiler.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000106#include "llvm/Support/Debug.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000107#include "llvm/Support/MathExtras.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000108#include "llvm/Support/raw_ostream.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000109#include <algorithm>
110#include <cassert>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000111#include <climits>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000112#include <cstdint>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000113#include <deque>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000114#include <functional>
115#include <iterator>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000116#include <map>
Eugene Zelenko32a40562017-09-11 23:00:48 +0000117#include <memory>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000118#include <tuple>
119#include <utility>
120#include <vector>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000121
122using namespace llvm;
123
124#define DEBUG_TYPE "pipeliner"
125
126STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
127STATISTIC(NumPipelined, "Number of loops software pipelined");
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000128STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
Brendon Cahoon254f8892016-07-29 16:44:44 +0000129
130/// A command line option to turn software pipelining on or off.
Benjamin Kramerb7d33112016-08-06 11:13:10 +0000131static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
132 cl::ZeroOrMore,
133 cl::desc("Enable Software Pipelining"));
Brendon Cahoon254f8892016-07-29 16:44:44 +0000134
135/// A command line option to enable SWP at -Os.
136static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
137 cl::desc("Enable SWP at Os."), cl::Hidden,
138 cl::init(false));
139
140/// A command line argument to limit minimum initial interval for pipelining.
141static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
Hiroshi Inoue8f976ba2018-01-17 12:29:38 +0000142 cl::desc("Size limit for the MII."),
Brendon Cahoon254f8892016-07-29 16:44:44 +0000143 cl::Hidden, cl::init(27));
144
145/// A command line argument to limit the number of stages in the pipeline.
146static cl::opt<int>
147 SwpMaxStages("pipeliner-max-stages",
148 cl::desc("Maximum stages allowed in the generated scheduled."),
149 cl::Hidden, cl::init(3));
150
151/// A command line option to disable the pruning of chain dependences due to
152/// an unrelated Phi.
153static cl::opt<bool>
154 SwpPruneDeps("pipeliner-prune-deps",
155 cl::desc("Prune dependences between unrelated Phi nodes."),
156 cl::Hidden, cl::init(true));
157
158/// A command line option to disable the pruning of loop carried order
159/// dependences.
160static cl::opt<bool>
161 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
162 cl::desc("Prune loop carried order dependences."),
163 cl::Hidden, cl::init(true));
164
165#ifndef NDEBUG
166static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
167#endif
168
169static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
170 cl::ReallyHidden, cl::init(false),
171 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
172
173namespace {
174
175class NodeSet;
176class SMSchedule;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000177
178/// The main class in the implementation of the target independent
179/// software pipeliner pass.
180class MachinePipeliner : public MachineFunctionPass {
181public:
182 MachineFunction *MF = nullptr;
183 const MachineLoopInfo *MLI = nullptr;
184 const MachineDominatorTree *MDT = nullptr;
185 const InstrItineraryData *InstrItins;
186 const TargetInstrInfo *TII = nullptr;
187 RegisterClassInfo RegClassInfo;
188
189#ifndef NDEBUG
190 static int NumTries;
191#endif
Eugene Zelenko32a40562017-09-11 23:00:48 +0000192
Brendon Cahoon254f8892016-07-29 16:44:44 +0000193 /// Cache the target analysis information about the loop.
194 struct LoopInfo {
195 MachineBasicBlock *TBB = nullptr;
196 MachineBasicBlock *FBB = nullptr;
197 SmallVector<MachineOperand, 4> BrCond;
198 MachineInstr *LoopInductionVar = nullptr;
199 MachineInstr *LoopCompare = nullptr;
200 };
201 LoopInfo LI;
202
203 static char ID;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000204
Brendon Cahoon254f8892016-07-29 16:44:44 +0000205 MachinePipeliner() : MachineFunctionPass(ID) {
206 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
207 }
208
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000209 bool runOnMachineFunction(MachineFunction &MF) override;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000210
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000211 void getAnalysisUsage(AnalysisUsage &AU) const override {
Brendon Cahoon254f8892016-07-29 16:44:44 +0000212 AU.addRequired<AAResultsWrapperPass>();
213 AU.addPreserved<AAResultsWrapperPass>();
214 AU.addRequired<MachineLoopInfo>();
215 AU.addRequired<MachineDominatorTree>();
216 AU.addRequired<LiveIntervals>();
217 MachineFunctionPass::getAnalysisUsage(AU);
218 }
219
220private:
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000221 void preprocessPhiNodes(MachineBasicBlock &B);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000222 bool canPipelineLoop(MachineLoop &L);
223 bool scheduleLoop(MachineLoop &L);
224 bool swingModuloScheduler(MachineLoop &L);
225};
226
227/// This class builds the dependence graph for the instructions in a loop,
228/// and attempts to schedule the instructions using the SMS algorithm.
229class SwingSchedulerDAG : public ScheduleDAGInstrs {
230 MachinePipeliner &Pass;
231 /// The minimum initiation interval between iterations for this schedule.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000232 unsigned MII = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000233 /// Set to true if a valid pipelined schedule is found for the loop.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000234 bool Scheduled = false;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000235 MachineLoop &Loop;
236 LiveIntervals &LIS;
237 const RegisterClassInfo &RegClassInfo;
238
239 /// A toplogical ordering of the SUnits, which is needed for changing
240 /// dependences and iterating over the SUnits.
241 ScheduleDAGTopologicalSort Topo;
242
243 struct NodeInfo {
Eugene Zelenko32a40562017-09-11 23:00:48 +0000244 int ASAP = 0;
245 int ALAP = 0;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000246 int ZeroLatencyDepth = 0;
247 int ZeroLatencyHeight = 0;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000248
249 NodeInfo() = default;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000250 };
251 /// Computed properties for each node in the graph.
252 std::vector<NodeInfo> ScheduleInfo;
253
254 enum OrderKind { BottomUp = 0, TopDown = 1 };
255 /// Computed node ordering for scheduling.
256 SetVector<SUnit *> NodeOrder;
257
Eugene Zelenko32a40562017-09-11 23:00:48 +0000258 using NodeSetType = SmallVector<NodeSet, 8>;
259 using ValueMapTy = DenseMap<unsigned, unsigned>;
260 using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
261 using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000262
263 /// Instructions to change when emitting the final schedule.
264 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
265
266 /// We may create a new instruction, so remember it because it
267 /// must be deleted when the pass is finished.
268 SmallPtrSet<MachineInstr *, 4> NewMIs;
269
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000270 /// Ordered list of DAG postprocessing steps.
271 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
272
Brendon Cahoon254f8892016-07-29 16:44:44 +0000273 /// Helper class to implement Johnson's circuit finding algorithm.
274 class Circuits {
275 std::vector<SUnit> &SUnits;
276 SetVector<SUnit *> Stack;
277 BitVector Blocked;
278 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
279 SmallVector<SmallVector<int, 4>, 16> AdjK;
280 unsigned NumPaths;
281 static unsigned MaxPaths;
282
283 public:
284 Circuits(std::vector<SUnit> &SUs)
Eugene Zelenko32a40562017-09-11 23:00:48 +0000285 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {}
286
Brendon Cahoon254f8892016-07-29 16:44:44 +0000287 /// Reset the data structures used in the circuit algorithm.
288 void reset() {
289 Stack.clear();
290 Blocked.reset();
291 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
292 NumPaths = 0;
293 }
Eugene Zelenko32a40562017-09-11 23:00:48 +0000294
Brendon Cahoon254f8892016-07-29 16:44:44 +0000295 void createAdjacencyStructure(SwingSchedulerDAG *DAG);
296 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
297 void unblock(int U);
298 };
299
300public:
301 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
302 const RegisterClassInfo &rci)
Eugene Zelenko32a40562017-09-11 23:00:48 +0000303 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis),
304 RegClassInfo(rci), Topo(SUnits, &ExitSU) {
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000305 P.MF->getSubtarget().getSMSMutations(Mutations);
306 }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000307
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000308 void schedule() override;
309 void finishBlock() override;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000310
311 /// Return true if the loop kernel has been scheduled.
312 bool hasNewSchedule() { return Scheduled; }
313
314 /// Return the earliest time an instruction may be scheduled.
315 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
316
317 /// Return the latest time an instruction my be scheduled.
318 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
319
Hiroshi Inoue8f976ba2018-01-17 12:29:38 +0000320 /// The mobility function, which the number of slots in which
Brendon Cahoon254f8892016-07-29 16:44:44 +0000321 /// an instruction may be scheduled.
322 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
323
324 /// The depth, in the dependence graph, for a node.
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +0000325 unsigned getDepth(SUnit *Node) { return Node->getDepth(); }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000326
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000327 /// The maximum unweighted length of a path from an arbitrary node to the
328 /// given node in which each edge has latency 0
329 int getZeroLatencyDepth(SUnit *Node) {
330 return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth;
331 }
332
Brendon Cahoon254f8892016-07-29 16:44:44 +0000333 /// The height, in the dependence graph, for a node.
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +0000334 unsigned getHeight(SUnit *Node) { return Node->getHeight(); }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000335
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000336 /// The maximum unweighted length of a path from the given node to an
337 /// arbitrary node in which each edge has latency 0
338 int getZeroLatencyHeight(SUnit *Node) {
339 return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight;
340 }
341
Brendon Cahoon254f8892016-07-29 16:44:44 +0000342 /// Return true if the dependence is a back-edge in the data dependence graph.
343 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
344 /// using an anti dependence from a Phi to an instruction.
345 bool isBackedge(SUnit *Source, const SDep &Dep) {
346 if (Dep.getKind() != SDep::Anti)
347 return false;
348 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
349 }
350
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +0000351 bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000352
Brendon Cahoon254f8892016-07-29 16:44:44 +0000353 /// The distance function, which indicates that operation V of iteration I
354 /// depends on operations U of iteration I-distance.
355 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
356 // Instructions that feed a Phi have a distance of 1. Computing larger
357 // values for arrays requires data dependence information.
358 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
359 return 1;
360 return 0;
361 }
362
363 /// Set the Minimum Initiation Interval for this schedule attempt.
364 void setMII(unsigned mii) { MII = mii; }
365
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +0000366 void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule);
367
368 void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000369
370 /// Return the new base register that was stored away for the changed
371 /// instruction.
372 unsigned getInstrBaseReg(SUnit *SU) {
373 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
374 InstrChanges.find(SU);
375 if (It != InstrChanges.end())
376 return It->second.first;
377 return 0;
378 }
379
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000380 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
381 Mutations.push_back(std::move(Mutation));
382 }
383
Brendon Cahoon254f8892016-07-29 16:44:44 +0000384private:
385 void addLoopCarriedDependences(AliasAnalysis *AA);
386 void updatePhiDependences();
387 void changeDependences();
388 unsigned calculateResMII();
389 unsigned calculateRecMII(NodeSetType &RecNodeSets);
390 void findCircuits(NodeSetType &NodeSets);
391 void fuseRecs(NodeSetType &NodeSets);
392 void removeDuplicateNodes(NodeSetType &NodeSets);
393 void computeNodeFunctions(NodeSetType &NodeSets);
394 void registerPressureFilter(NodeSetType &NodeSets);
395 void colocateNodeSets(NodeSetType &NodeSets);
396 void checkNodeSets(NodeSetType &NodeSets);
397 void groupRemainingNodes(NodeSetType &NodeSets);
398 void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
399 SetVector<SUnit *> &NodesAdded);
400 void computeNodeOrder(NodeSetType &NodeSets);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000401 void checkValidNodeOrder(const NodeSetType &Circuits) const;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000402 bool schedulePipeline(SMSchedule &Schedule);
403 void generatePipelinedLoop(SMSchedule &Schedule);
404 void generateProlog(SMSchedule &Schedule, unsigned LastStage,
405 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
406 MBBVectorTy &PrologBBs);
407 void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
408 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
409 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
410 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
411 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
412 SMSchedule &Schedule, ValueMapTy *VRMap,
413 InstrMapTy &InstrMap, unsigned LastStageNum,
414 unsigned CurStageNum, bool IsLast);
415 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
416 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
417 SMSchedule &Schedule, ValueMapTy *VRMap,
418 InstrMapTy &InstrMap, unsigned LastStageNum,
419 unsigned CurStageNum, bool IsLast);
420 void removeDeadInstructions(MachineBasicBlock *KernelBB,
421 MBBVectorTy &EpilogBBs);
422 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
423 SMSchedule &Schedule);
424 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
425 MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
426 ValueMapTy *VRMap);
427 bool computeDelta(MachineInstr &MI, unsigned &Delta);
428 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
429 unsigned Num);
430 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
431 unsigned InstStageNum);
432 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
433 unsigned InstStageNum,
434 SMSchedule &Schedule);
435 void updateInstruction(MachineInstr *NewMI, bool LastDef,
436 unsigned CurStageNum, unsigned InstStageNum,
437 SMSchedule &Schedule, ValueMapTy *VRMap);
438 MachineInstr *findDefInLoop(unsigned Reg);
439 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
440 unsigned LoopStage, ValueMapTy *VRMap,
441 MachineBasicBlock *BB);
442 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
443 SMSchedule &Schedule, ValueMapTy *VRMap,
444 InstrMapTy &InstrMap);
445 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
446 InstrMapTy &InstrMap, unsigned CurStageNum,
447 unsigned PhiNum, MachineInstr *Phi,
448 unsigned OldReg, unsigned NewReg,
449 unsigned PrevReg = 0);
450 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
451 unsigned &OffsetPos, unsigned &NewBase,
452 int64_t &NewOffset);
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000453 void postprocessDAG();
Brendon Cahoon254f8892016-07-29 16:44:44 +0000454};
455
456/// A NodeSet contains a set of SUnit DAG nodes with additional information
457/// that assigns a priority to the set.
458class NodeSet {
459 SetVector<SUnit *> Nodes;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000460 bool HasRecurrence = false;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000461 unsigned RecMII = 0;
462 int MaxMOV = 0;
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +0000463 unsigned MaxDepth = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000464 unsigned Colocate = 0;
465 SUnit *ExceedPressure = nullptr;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000466 unsigned Latency = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000467
468public:
Eugene Zelenko32a40562017-09-11 23:00:48 +0000469 using iterator = SetVector<SUnit *>::const_iterator;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000470
Eugene Zelenko32a40562017-09-11 23:00:48 +0000471 NodeSet() = default;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000472 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {
473 Latency = 0;
474 for (unsigned i = 0, e = Nodes.size(); i < e; ++i)
475 for (const SDep &Succ : Nodes[i]->Succs)
476 if (Nodes.count(Succ.getSUnit()))
477 Latency += Succ.getLatency();
478 }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000479
480 bool insert(SUnit *SU) { return Nodes.insert(SU); }
481
482 void insert(iterator S, iterator E) { Nodes.insert(S, E); }
483
484 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
485 return Nodes.remove_if(P);
486 }
487
488 unsigned count(SUnit *SU) const { return Nodes.count(SU); }
489
490 bool hasRecurrence() { return HasRecurrence; };
491
492 unsigned size() const { return Nodes.size(); }
493
494 bool empty() const { return Nodes.empty(); }
495
496 SUnit *getNode(unsigned i) const { return Nodes[i]; };
497
498 void setRecMII(unsigned mii) { RecMII = mii; };
499
500 void setColocate(unsigned c) { Colocate = c; };
501
502 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
503
504 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
505
506 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
507
508 int getRecMII() { return RecMII; }
509
510 /// Summarize node functions for the entire node set.
511 void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
512 for (SUnit *SU : *this) {
513 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
514 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
515 }
516 }
517
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +0000518 unsigned getLatency() { return Latency; }
519
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +0000520 unsigned getMaxDepth() { return MaxDepth; }
521
Brendon Cahoon254f8892016-07-29 16:44:44 +0000522 void clear() {
523 Nodes.clear();
524 RecMII = 0;
525 HasRecurrence = false;
526 MaxMOV = 0;
527 MaxDepth = 0;
528 Colocate = 0;
529 ExceedPressure = nullptr;
530 }
531
532 operator SetVector<SUnit *> &() { return Nodes; }
533
534 /// Sort the node sets by importance. First, rank them by recurrence MII,
535 /// then by mobility (least mobile done first), and finally by depth.
536 /// Each node set may contain a colocate value which is used as the first
537 /// tie breaker, if it's set.
538 bool operator>(const NodeSet &RHS) const {
539 if (RecMII == RHS.RecMII) {
540 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
541 return Colocate < RHS.Colocate;
542 if (MaxMOV == RHS.MaxMOV)
543 return MaxDepth > RHS.MaxDepth;
544 return MaxMOV < RHS.MaxMOV;
545 }
546 return RecMII > RHS.RecMII;
547 }
548
549 bool operator==(const NodeSet &RHS) const {
550 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
551 MaxDepth == RHS.MaxDepth;
552 }
553
554 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
555
556 iterator begin() { return Nodes.begin(); }
557 iterator end() { return Nodes.end(); }
558
559 void print(raw_ostream &os) const {
560 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
561 << " depth " << MaxDepth << " col " << Colocate << "\n";
562 for (const auto &I : Nodes)
563 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
564 os << "\n";
565 }
566
Aaron Ballman615eb472017-10-15 14:32:27 +0000567#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Matthias Braun8c209aa2017-01-28 02:02:38 +0000568 LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
569#endif
Brendon Cahoon254f8892016-07-29 16:44:44 +0000570};
571
572/// This class repesents the scheduled code. The main data structure is a
573/// map from scheduled cycle to instructions. During scheduling, the
574/// data structure explicitly represents all stages/iterations. When
575/// the algorithm finshes, the schedule is collapsed into a single stage,
576/// which represents instructions from different loop iterations.
577///
578/// The SMS algorithm allows negative values for cycles, so the first cycle
579/// in the schedule is the smallest cycle value.
580class SMSchedule {
581private:
582 /// Map from execution cycle to instructions.
583 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
584
585 /// Map from instruction to execution cycle.
586 std::map<SUnit *, int> InstrToCycle;
587
588 /// Map for each register and the max difference between its uses and def.
589 /// The first element in the pair is the max difference in stages. The
590 /// second is true if the register defines a Phi value and loop value is
591 /// scheduled before the Phi.
592 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
593
594 /// Keep track of the first cycle value in the schedule. It starts
595 /// as zero, but the algorithm allows negative values.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000596 int FirstCycle = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000597
598 /// Keep track of the last cycle value in the schedule.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000599 int LastCycle = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000600
601 /// The initiation interval (II) for the schedule.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000602 int InitiationInterval = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000603
604 /// Target machine information.
605 const TargetSubtargetInfo &ST;
606
607 /// Virtual register information.
608 MachineRegisterInfo &MRI;
609
Benjamin Kramer3f6260c2017-02-16 20:26:51 +0000610 std::unique_ptr<DFAPacketizer> Resources;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000611
612public:
613 SMSchedule(MachineFunction *mf)
614 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
Eugene Zelenko32a40562017-09-11 23:00:48 +0000615 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {}
Brendon Cahoon254f8892016-07-29 16:44:44 +0000616
Brendon Cahoon254f8892016-07-29 16:44:44 +0000617 void reset() {
618 ScheduledInstrs.clear();
619 InstrToCycle.clear();
620 RegToStageDiff.clear();
621 FirstCycle = 0;
622 LastCycle = 0;
623 InitiationInterval = 0;
624 }
625
626 /// Set the initiation interval for this schedule.
627 void setInitiationInterval(int ii) { InitiationInterval = ii; }
628
629 /// Return the first cycle in the completed schedule. This
630 /// can be a negative value.
631 int getFirstCycle() const { return FirstCycle; }
632
633 /// Return the last cycle in the finalized schedule.
634 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
635
636 /// Return the cycle of the earliest scheduled instruction in the dependence
637 /// chain.
638 int earliestCycleInChain(const SDep &Dep);
639
640 /// Return the cycle of the latest scheduled instruction in the dependence
641 /// chain.
642 int latestCycleInChain(const SDep &Dep);
643
644 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
645 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
646 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
647
648 /// Iterators for the cycle to instruction map.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000649 using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator;
650 using const_sched_iterator =
651 DenseMap<int, std::deque<SUnit *>>::const_iterator;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000652
653 /// Return true if the instruction is scheduled at the specified stage.
654 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
655 return (stageScheduled(SU) == (int)StageNum);
656 }
657
658 /// Return the stage for a scheduled instruction. Return -1 if
659 /// the instruction has not been scheduled.
660 int stageScheduled(SUnit *SU) const {
661 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
662 if (it == InstrToCycle.end())
663 return -1;
664 return (it->second - FirstCycle) / InitiationInterval;
665 }
666
667 /// Return the cycle for a scheduled instruction. This function normalizes
668 /// the first cycle to be 0.
669 unsigned cycleScheduled(SUnit *SU) const {
670 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
671 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
672 return (it->second - FirstCycle) % InitiationInterval;
673 }
674
675 /// Return the maximum stage count needed for this schedule.
676 unsigned getMaxStageCount() {
677 return (LastCycle - FirstCycle) / InitiationInterval;
678 }
679
680 /// Return the max. number of stages/iterations that can occur between a
681 /// register definition and its uses.
682 unsigned getStagesForReg(int Reg, unsigned CurStage) {
683 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
684 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
685 return 1;
686 return Stages.first;
687 }
688
689 /// The number of stages for a Phi is a little different than other
690 /// instructions. The minimum value computed in RegToStageDiff is 1
691 /// because we assume the Phi is needed for at least 1 iteration.
692 /// This is not the case if the loop value is scheduled prior to the
693 /// Phi in the same stage. This function returns the number of stages
694 /// or iterations needed between the Phi definition and any uses.
695 unsigned getStagesForPhi(int Reg) {
696 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
697 if (Stages.second)
698 return Stages.first;
699 return Stages.first - 1;
700 }
701
702 /// Return the instructions that are scheduled at the specified cycle.
703 std::deque<SUnit *> &getInstructions(int cycle) {
704 return ScheduledInstrs[cycle];
705 }
706
707 bool isValidSchedule(SwingSchedulerDAG *SSD);
708 void finalizeSchedule(SwingSchedulerDAG *SSD);
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +0000709 void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000710 std::deque<SUnit *> &Insts);
711 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
712 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst,
713 MachineOperand &MO);
714 void print(raw_ostream &os) const;
715 void dump() const;
716};
717
718} // end anonymous namespace
719
720unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
721char MachinePipeliner::ID = 0;
722#ifndef NDEBUG
723int MachinePipeliner::NumTries = 0;
724#endif
725char &llvm::MachinePipelinerID = MachinePipeliner::ID;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000726
Matthias Braun1527baa2017-05-25 21:26:32 +0000727INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000728 "Modulo Software Pipelining", false, false)
729INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
730INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
731INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
732INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
Matthias Braun1527baa2017-05-25 21:26:32 +0000733INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000734 "Modulo Software Pipelining", false, false)
735
736/// The "main" function for implementing Swing Modulo Scheduling.
737bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
Matthias Braunf1caa282017-12-15 22:22:58 +0000738 if (skipFunction(mf.getFunction()))
Brendon Cahoon254f8892016-07-29 16:44:44 +0000739 return false;
740
741 if (!EnableSWP)
742 return false;
743
Matthias Braunf1caa282017-12-15 22:22:58 +0000744 if (mf.getFunction().getAttributes().hasAttribute(
Reid Klecknerb5180542017-03-21 16:57:19 +0000745 AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
Brendon Cahoon254f8892016-07-29 16:44:44 +0000746 !EnableSWPOptSize.getPosition())
747 return false;
748
749 MF = &mf;
750 MLI = &getAnalysis<MachineLoopInfo>();
751 MDT = &getAnalysis<MachineDominatorTree>();
752 TII = MF->getSubtarget().getInstrInfo();
753 RegClassInfo.runOnMachineFunction(*MF);
754
755 for (auto &L : *MLI)
756 scheduleLoop(*L);
757
758 return false;
759}
760
761/// Attempt to perform the SMS algorithm on the specified loop. This function is
762/// the main entry point for the algorithm. The function identifies candidate
763/// loops, calculates the minimum initiation interval, and attempts to schedule
764/// the loop.
765bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
766 bool Changed = false;
767 for (auto &InnerLoop : L)
768 Changed |= scheduleLoop(*InnerLoop);
769
770#ifndef NDEBUG
771 // Stop trying after reaching the limit (if any).
772 int Limit = SwpLoopLimit;
773 if (Limit >= 0) {
774 if (NumTries >= SwpLoopLimit)
775 return Changed;
776 NumTries++;
777 }
778#endif
779
780 if (!canPipelineLoop(L))
781 return Changed;
782
783 ++NumTrytoPipeline;
784
785 Changed = swingModuloScheduler(L);
786
787 return Changed;
788}
789
790/// Return true if the loop can be software pipelined. The algorithm is
791/// restricted to loops with a single basic block. Make sure that the
792/// branch in the loop can be analyzed.
793bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
794 if (L.getNumBlocks() != 1)
795 return false;
796
797 // Check if the branch can't be understood because we can't do pipelining
798 // if that's the case.
799 LI.TBB = nullptr;
800 LI.FBB = nullptr;
801 LI.BrCond.clear();
802 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
803 return false;
804
805 LI.LoopInductionVar = nullptr;
806 LI.LoopCompare = nullptr;
807 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
808 return false;
809
810 if (!L.getLoopPreheader())
811 return false;
812
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000813 // Remove any subregisters from inputs to phi nodes.
814 preprocessPhiNodes(*L.getHeader());
Brendon Cahoon254f8892016-07-29 16:44:44 +0000815 return true;
816}
817
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000818void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
819 MachineRegisterInfo &MRI = MF->getRegInfo();
820 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
821
822 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
823 MachineOperand &DefOp = PI.getOperand(0);
824 assert(DefOp.getSubReg() == 0);
825 auto *RC = MRI.getRegClass(DefOp.getReg());
826
827 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
828 MachineOperand &RegOp = PI.getOperand(i);
829 if (RegOp.getSubReg() == 0)
830 continue;
831
832 // If the operand uses a subregister, replace it with a new register
833 // without subregisters, and generate a copy to the new register.
834 unsigned NewReg = MRI.createVirtualRegister(RC);
835 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
836 MachineBasicBlock::iterator At = PredB.getFirstTerminator();
837 const DebugLoc &DL = PredB.findDebugLoc(At);
838 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
839 .addReg(RegOp.getReg(), getRegState(RegOp),
840 RegOp.getSubReg());
841 Slots.insertMachineInstrInMaps(*Copy);
842 RegOp.setReg(NewReg);
843 RegOp.setSubReg(0);
844 }
845 }
846}
847
Brendon Cahoon254f8892016-07-29 16:44:44 +0000848/// The SMS algorithm consists of the following main steps:
849/// 1. Computation and analysis of the dependence graph.
850/// 2. Ordering of the nodes (instructions).
851/// 3. Attempt to Schedule the loop.
852bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
853 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
854
855 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo);
856
857 MachineBasicBlock *MBB = L.getHeader();
858 // The kernel should not include any terminator instructions. These
859 // will be added back later.
860 SMS.startBlock(MBB);
861
862 // Compute the number of 'real' instructions in the basic block by
863 // ignoring terminators.
864 unsigned size = MBB->size();
865 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
866 E = MBB->instr_end();
867 I != E; ++I, --size)
868 ;
869
870 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
871 SMS.schedule();
872 SMS.exitRegion();
873
874 SMS.finishBlock();
875 return SMS.hasNewSchedule();
876}
877
878/// We override the schedule function in ScheduleDAGInstrs to implement the
879/// scheduling part of the Swing Modulo Scheduling algorithm.
880void SwingSchedulerDAG::schedule() {
881 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
882 buildSchedGraph(AA);
883 addLoopCarriedDependences(AA);
884 updatePhiDependences();
885 Topo.InitDAGTopologicalSorting();
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000886 postprocessDAG();
Brendon Cahoon254f8892016-07-29 16:44:44 +0000887 changeDependences();
888 DEBUG({
889 for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
890 SUnits[su].dumpAll(this);
891 });
892
893 NodeSetType NodeSets;
894 findCircuits(NodeSets);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000895 NodeSetType Circuits = NodeSets;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000896
897 // Calculate the MII.
898 unsigned ResMII = calculateResMII();
899 unsigned RecMII = calculateRecMII(NodeSets);
900
901 fuseRecs(NodeSets);
902
903 // This flag is used for testing and can cause correctness problems.
904 if (SwpIgnoreRecMII)
905 RecMII = 0;
906
907 MII = std::max(ResMII, RecMII);
908 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII
909 << ")\n");
910
911 // Can't schedule a loop without a valid MII.
912 if (MII == 0)
913 return;
914
915 // Don't pipeline large loops.
916 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
917 return;
918
919 computeNodeFunctions(NodeSets);
920
921 registerPressureFilter(NodeSets);
922
923 colocateNodeSets(NodeSets);
924
925 checkNodeSets(NodeSets);
926
927 DEBUG({
928 for (auto &I : NodeSets) {
929 dbgs() << " Rec NodeSet ";
930 I.dump();
931 }
932 });
933
Krzysztof Parzyszek6c2f8682018-04-12 15:11:11 +0000934 std::stable_sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>());
Brendon Cahoon254f8892016-07-29 16:44:44 +0000935
936 groupRemainingNodes(NodeSets);
937
938 removeDuplicateNodes(NodeSets);
939
940 DEBUG({
941 for (auto &I : NodeSets) {
942 dbgs() << " NodeSet ";
943 I.dump();
944 }
945 });
946
947 computeNodeOrder(NodeSets);
948
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000949 // check for node order issues
950 checkValidNodeOrder(Circuits);
951
Brendon Cahoon254f8892016-07-29 16:44:44 +0000952 SMSchedule Schedule(Pass.MF);
953 Scheduled = schedulePipeline(Schedule);
954
955 if (!Scheduled)
956 return;
957
958 unsigned numStages = Schedule.getMaxStageCount();
959 // No need to generate pipeline if there are no overlapped iterations.
960 if (numStages == 0)
961 return;
962
963 // Check that the maximum stage count is less than user-defined limit.
964 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
965 return;
966
967 generatePipelinedLoop(Schedule);
968 ++NumPipelined;
969}
970
971/// Clean up after the software pipeliner runs.
972void SwingSchedulerDAG::finishBlock() {
973 for (MachineInstr *I : NewMIs)
974 MF.DeleteMachineInstr(I);
975 NewMIs.clear();
976
977 // Call the superclass.
978 ScheduleDAGInstrs::finishBlock();
979}
980
981/// Return the register values for the operands of a Phi instruction.
982/// This function assume the instruction is a Phi.
983static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
984 unsigned &InitVal, unsigned &LoopVal) {
985 assert(Phi.isPHI() && "Expecting a Phi.");
986
987 InitVal = 0;
988 LoopVal = 0;
989 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
990 if (Phi.getOperand(i + 1).getMBB() != Loop)
991 InitVal = Phi.getOperand(i).getReg();
Simon Pilgrimfbfb19b2017-03-16 19:52:00 +0000992 else
Brendon Cahoon254f8892016-07-29 16:44:44 +0000993 LoopVal = Phi.getOperand(i).getReg();
994
995 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
996}
997
998/// Return the Phi register value that comes from the incoming block.
999static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
1000 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
1001 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
1002 return Phi.getOperand(i).getReg();
1003 return 0;
1004}
1005
Hiroshi Inoue8f976ba2018-01-17 12:29:38 +00001006/// Return the Phi register value that comes the loop block.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001007static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
1008 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
1009 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
1010 return Phi.getOperand(i).getReg();
1011 return 0;
1012}
1013
1014/// Return true if SUb can be reached from SUa following the chain edges.
1015static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
1016 SmallPtrSet<SUnit *, 8> Visited;
1017 SmallVector<SUnit *, 8> Worklist;
1018 Worklist.push_back(SUa);
1019 while (!Worklist.empty()) {
1020 const SUnit *SU = Worklist.pop_back_val();
1021 for (auto &SI : SU->Succs) {
1022 SUnit *SuccSU = SI.getSUnit();
1023 if (SI.getKind() == SDep::Order) {
1024 if (Visited.count(SuccSU))
1025 continue;
1026 if (SuccSU == SUb)
1027 return true;
1028 Worklist.push_back(SuccSU);
1029 Visited.insert(SuccSU);
1030 }
1031 }
1032 }
1033 return false;
1034}
1035
1036/// Return true if the instruction causes a chain between memory
1037/// references before and after it.
1038static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
1039 return MI.isCall() || MI.hasUnmodeledSideEffects() ||
1040 (MI.hasOrderedMemoryRef() &&
Justin Lebard98cf002016-09-10 01:03:20 +00001041 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001042}
1043
1044/// Return the underlying objects for the memory references of an instruction.
1045/// This function calls the code in ValueTracking, but first checks that the
1046/// instruction has a memory operand.
1047static void getUnderlyingObjects(MachineInstr *MI,
1048 SmallVectorImpl<Value *> &Objs,
1049 const DataLayout &DL) {
1050 if (!MI->hasOneMemOperand())
1051 return;
1052 MachineMemOperand *MM = *MI->memoperands_begin();
1053 if (!MM->getValue())
1054 return;
1055 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL);
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +00001056 for (Value *V : Objs) {
1057 if (!isIdentifiedObject(V)) {
1058 Objs.clear();
1059 return;
1060 }
1061 Objs.push_back(V);
1062 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001063}
1064
1065/// Add a chain edge between a load and store if the store can be an
1066/// alias of the load on a subsequent iteration, i.e., a loop carried
1067/// dependence. This code is very similar to the code in ScheduleDAGInstrs
1068/// but that code doesn't create loop carried dependences.
1069void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
1070 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads;
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +00001071 Value *UnknownValue =
1072 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001073 for (auto &SU : SUnits) {
1074 MachineInstr &MI = *SU.getInstr();
1075 if (isDependenceBarrier(MI, AA))
1076 PendingLoads.clear();
1077 else if (MI.mayLoad()) {
1078 SmallVector<Value *, 4> Objs;
1079 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +00001080 if (Objs.empty())
1081 Objs.push_back(UnknownValue);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001082 for (auto V : Objs) {
1083 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
1084 SUs.push_back(&SU);
1085 }
1086 } else if (MI.mayStore()) {
1087 SmallVector<Value *, 4> Objs;
1088 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +00001089 if (Objs.empty())
1090 Objs.push_back(UnknownValue);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001091 for (auto V : Objs) {
1092 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I =
1093 PendingLoads.find(V);
1094 if (I == PendingLoads.end())
1095 continue;
1096 for (auto Load : I->second) {
1097 if (isSuccOrder(Load, &SU))
1098 continue;
1099 MachineInstr &LdMI = *Load->getInstr();
1100 // First, perform the cheaper check that compares the base register.
1101 // If they are the same and the load offset is less than the store
1102 // offset, then mark the dependence as loop carried potentially.
1103 unsigned BaseReg1, BaseReg2;
1104 int64_t Offset1, Offset2;
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +00001105 if (TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) &&
1106 TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) {
1107 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) {
1108 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
1109 "What happened to the chain edge?");
1110 SDep Dep(Load, SDep::Barrier);
1111 Dep.setLatency(1);
1112 SU.addPred(Dep);
1113 continue;
1114 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001115 }
1116 // Second, the more expensive check that uses alias analysis on the
1117 // base registers. If they alias, and the load offset is less than
1118 // the store offset, the mark the dependence as loop carried.
1119 if (!AA) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001120 SDep Dep(Load, SDep::Barrier);
1121 Dep.setLatency(1);
1122 SU.addPred(Dep);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001123 continue;
1124 }
1125 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
1126 MachineMemOperand *MMO2 = *MI.memoperands_begin();
1127 if (!MMO1->getValue() || !MMO2->getValue()) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001128 SDep Dep(Load, SDep::Barrier);
1129 Dep.setLatency(1);
1130 SU.addPred(Dep);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001131 continue;
1132 }
1133 if (MMO1->getValue() == MMO2->getValue() &&
1134 MMO1->getOffset() <= MMO2->getOffset()) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001135 SDep Dep(Load, SDep::Barrier);
1136 Dep.setLatency(1);
1137 SU.addPred(Dep);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001138 continue;
1139 }
1140 AliasResult AAResult = AA->alias(
1141 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
1142 MMO1->getAAInfo()),
1143 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
1144 MMO2->getAAInfo()));
1145
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001146 if (AAResult != NoAlias) {
1147 SDep Dep(Load, SDep::Barrier);
1148 Dep.setLatency(1);
1149 SU.addPred(Dep);
1150 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001151 }
1152 }
1153 }
1154 }
1155}
1156
1157/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
1158/// processes dependences for PHIs. This function adds true dependences
1159/// from a PHI to a use, and a loop carried dependence from the use to the
1160/// PHI. The loop carried dependence is represented as an anti dependence
1161/// edge. This function also removes chain dependences between unrelated
1162/// PHIs.
1163void SwingSchedulerDAG::updatePhiDependences() {
1164 SmallVector<SDep, 4> RemoveDeps;
1165 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
1166
1167 // Iterate over each DAG node.
1168 for (SUnit &I : SUnits) {
1169 RemoveDeps.clear();
1170 // Set to true if the instruction has an operand defined by a Phi.
1171 unsigned HasPhiUse = 0;
1172 unsigned HasPhiDef = 0;
1173 MachineInstr *MI = I.getInstr();
1174 // Iterate over each operand, and we process the definitions.
1175 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
1176 MOE = MI->operands_end();
1177 MOI != MOE; ++MOI) {
1178 if (!MOI->isReg())
1179 continue;
1180 unsigned Reg = MOI->getReg();
1181 if (MOI->isDef()) {
1182 // If the register is used by a Phi, then create an anti dependence.
1183 for (MachineRegisterInfo::use_instr_iterator
1184 UI = MRI.use_instr_begin(Reg),
1185 UE = MRI.use_instr_end();
1186 UI != UE; ++UI) {
1187 MachineInstr *UseMI = &*UI;
1188 SUnit *SU = getSUnit(UseMI);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001189 if (SU != nullptr && UseMI->isPHI()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001190 if (!MI->isPHI()) {
1191 SDep Dep(SU, SDep::Anti, Reg);
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001192 Dep.setLatency(1);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001193 I.addPred(Dep);
1194 } else {
1195 HasPhiDef = Reg;
1196 // Add a chain edge to a dependent Phi that isn't an existing
1197 // predecessor.
1198 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1199 I.addPred(SDep(SU, SDep::Barrier));
1200 }
1201 }
1202 }
1203 } else if (MOI->isUse()) {
1204 // If the register is defined by a Phi, then create a true dependence.
1205 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001206 if (DefMI == nullptr)
Brendon Cahoon254f8892016-07-29 16:44:44 +00001207 continue;
1208 SUnit *SU = getSUnit(DefMI);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001209 if (SU != nullptr && DefMI->isPHI()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001210 if (!MI->isPHI()) {
1211 SDep Dep(SU, SDep::Data, Reg);
1212 Dep.setLatency(0);
1213 ST.adjustSchedDependency(SU, &I, Dep);
1214 I.addPred(Dep);
1215 } else {
1216 HasPhiUse = Reg;
1217 // Add a chain edge to a dependent Phi that isn't an existing
1218 // predecessor.
1219 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1220 I.addPred(SDep(SU, SDep::Barrier));
1221 }
1222 }
1223 }
1224 }
1225 // Remove order dependences from an unrelated Phi.
1226 if (!SwpPruneDeps)
1227 continue;
1228 for (auto &PI : I.Preds) {
1229 MachineInstr *PMI = PI.getSUnit()->getInstr();
1230 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
1231 if (I.getInstr()->isPHI()) {
1232 if (PMI->getOperand(0).getReg() == HasPhiUse)
1233 continue;
1234 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
1235 continue;
1236 }
1237 RemoveDeps.push_back(PI);
1238 }
1239 }
1240 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
1241 I.removePred(RemoveDeps[i]);
1242 }
1243}
1244
1245/// Iterate over each DAG node and see if we can change any dependences
1246/// in order to reduce the recurrence MII.
1247void SwingSchedulerDAG::changeDependences() {
1248 // See if an instruction can use a value from the previous iteration.
1249 // If so, we update the base and offset of the instruction and change
1250 // the dependences.
1251 for (SUnit &I : SUnits) {
1252 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
1253 int64_t NewOffset = 0;
1254 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
1255 NewOffset))
1256 continue;
1257
1258 // Get the MI and SUnit for the instruction that defines the original base.
1259 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
1260 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
1261 if (!DefMI)
1262 continue;
1263 SUnit *DefSU = getSUnit(DefMI);
1264 if (!DefSU)
1265 continue;
1266 // Get the MI and SUnit for the instruction that defins the new base.
1267 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
1268 if (!LastMI)
1269 continue;
1270 SUnit *LastSU = getSUnit(LastMI);
1271 if (!LastSU)
1272 continue;
1273
1274 if (Topo.IsReachable(&I, LastSU))
1275 continue;
1276
1277 // Remove the dependence. The value now depends on a prior iteration.
1278 SmallVector<SDep, 4> Deps;
1279 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
1280 ++P)
1281 if (P->getSUnit() == DefSU)
1282 Deps.push_back(*P);
1283 for (int i = 0, e = Deps.size(); i != e; i++) {
1284 Topo.RemovePred(&I, Deps[i].getSUnit());
1285 I.removePred(Deps[i]);
1286 }
1287 // Remove the chain dependence between the instructions.
1288 Deps.clear();
1289 for (auto &P : LastSU->Preds)
1290 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
1291 Deps.push_back(P);
1292 for (int i = 0, e = Deps.size(); i != e; i++) {
1293 Topo.RemovePred(LastSU, Deps[i].getSUnit());
1294 LastSU->removePred(Deps[i]);
1295 }
1296
1297 // Add a dependence between the new instruction and the instruction
1298 // that defines the new base.
1299 SDep Dep(&I, SDep::Anti, NewBase);
1300 LastSU->addPred(Dep);
1301
1302 // Remember the base and offset information so that we can update the
1303 // instruction during code generation.
1304 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
1305 }
1306}
1307
1308namespace {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001309
Brendon Cahoon254f8892016-07-29 16:44:44 +00001310// FuncUnitSorter - Comparison operator used to sort instructions by
1311// the number of functional unit choices.
1312struct FuncUnitSorter {
1313 const InstrItineraryData *InstrItins;
1314 DenseMap<unsigned, unsigned> Resources;
1315
Eugene Zelenko32a40562017-09-11 23:00:48 +00001316 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}
1317
Brendon Cahoon254f8892016-07-29 16:44:44 +00001318 // Compute the number of functional unit alternatives needed
1319 // at each stage, and take the minimum value. We prioritize the
1320 // instructions by the least number of choices first.
1321 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
1322 unsigned schedClass = Inst->getDesc().getSchedClass();
1323 unsigned min = UINT_MAX;
1324 for (const InstrStage *IS = InstrItins->beginStage(schedClass),
1325 *IE = InstrItins->endStage(schedClass);
1326 IS != IE; ++IS) {
1327 unsigned funcUnits = IS->getUnits();
1328 unsigned numAlternatives = countPopulation(funcUnits);
1329 if (numAlternatives < min) {
1330 min = numAlternatives;
1331 F = funcUnits;
1332 }
1333 }
1334 return min;
1335 }
1336
1337 // Compute the critical resources needed by the instruction. This
1338 // function records the functional units needed by instructions that
1339 // must use only one functional unit. We use this as a tie breaker
1340 // for computing the resource MII. The instrutions that require
1341 // the same, highly used, functional unit have high priority.
1342 void calcCriticalResources(MachineInstr &MI) {
1343 unsigned SchedClass = MI.getDesc().getSchedClass();
1344 for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
1345 *IE = InstrItins->endStage(SchedClass);
1346 IS != IE; ++IS) {
1347 unsigned FuncUnits = IS->getUnits();
1348 if (countPopulation(FuncUnits) == 1)
1349 Resources[FuncUnits]++;
1350 }
1351 }
1352
Brendon Cahoon254f8892016-07-29 16:44:44 +00001353 /// Return true if IS1 has less priority than IS2.
1354 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1355 unsigned F1 = 0, F2 = 0;
1356 unsigned MFUs1 = minFuncUnits(IS1, F1);
1357 unsigned MFUs2 = minFuncUnits(IS2, F2);
1358 if (MFUs1 == 1 && MFUs2 == 1)
1359 return Resources.lookup(F1) < Resources.lookup(F2);
1360 return MFUs1 > MFUs2;
1361 }
1362};
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001363
1364} // end anonymous namespace
Brendon Cahoon254f8892016-07-29 16:44:44 +00001365
1366/// Calculate the resource constrained minimum initiation interval for the
1367/// specified loop. We use the DFA to model the resources needed for
1368/// each instruction, and we ignore dependences. A different DFA is created
1369/// for each cycle that is required. When adding a new instruction, we attempt
1370/// to add it to each existing DFA, until a legal space is found. If the
1371/// instruction cannot be reserved in an existing DFA, we create a new one.
1372unsigned SwingSchedulerDAG::calculateResMII() {
1373 SmallVector<DFAPacketizer *, 8> Resources;
1374 MachineBasicBlock *MBB = Loop.getHeader();
1375 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));
1376
1377 // Sort the instructions by the number of available choices for scheduling,
1378 // least to most. Use the number of critical resources as the tie breaker.
1379 FuncUnitSorter FUS =
1380 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
1381 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1382 E = MBB->getFirstTerminator();
1383 I != E; ++I)
1384 FUS.calcCriticalResources(*I);
1385 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1386 FuncUnitOrder(FUS);
1387
1388 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1389 E = MBB->getFirstTerminator();
1390 I != E; ++I)
1391 FuncUnitOrder.push(&*I);
1392
1393 while (!FuncUnitOrder.empty()) {
1394 MachineInstr *MI = FuncUnitOrder.top();
1395 FuncUnitOrder.pop();
1396 if (TII->isZeroCost(MI->getOpcode()))
1397 continue;
1398 // Attempt to reserve the instruction in an existing DFA. At least one
1399 // DFA is needed for each cycle.
1400 unsigned NumCycles = getSUnit(MI)->Latency;
1401 unsigned ReservedCycles = 0;
1402 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
1403 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
1404 for (unsigned C = 0; C < NumCycles; ++C)
1405 while (RI != RE) {
1406 if ((*RI++)->canReserveResources(*MI)) {
1407 ++ReservedCycles;
1408 break;
1409 }
1410 }
1411 // Start reserving resources using existing DFAs.
1412 for (unsigned C = 0; C < ReservedCycles; ++C) {
1413 --RI;
1414 (*RI)->reserveResources(*MI);
1415 }
1416 // Add new DFAs, if needed, to reserve resources.
1417 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1418 DFAPacketizer *NewResource =
1419 TII->CreateTargetScheduleState(MF.getSubtarget());
1420 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1421 NewResource->reserveResources(*MI);
1422 Resources.push_back(NewResource);
1423 }
1424 }
1425 int Resmii = Resources.size();
1426 // Delete the memory for each of the DFAs that were created earlier.
1427 for (DFAPacketizer *RI : Resources) {
1428 DFAPacketizer *D = RI;
1429 delete D;
1430 }
1431 Resources.clear();
1432 return Resmii;
1433}
1434
1435/// Calculate the recurrence-constrainted minimum initiation interval.
1436/// Iterate over each circuit. Compute the delay(c) and distance(c)
1437/// for each circuit. The II needs to satisfy the inequality
1438/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1439/// II that satistifies the inequality, and the RecMII is the maximum
1440/// of those values.
1441unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1442 unsigned RecMII = 0;
1443
1444 for (NodeSet &Nodes : NodeSets) {
Eugene Zelenko32a40562017-09-11 23:00:48 +00001445 if (Nodes.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001446 continue;
1447
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00001448 unsigned Delay = Nodes.getLatency();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001449 unsigned Distance = 1;
1450
1451 // ii = ceil(delay / distance)
1452 unsigned CurMII = (Delay + Distance - 1) / Distance;
1453 Nodes.setRecMII(CurMII);
1454 if (CurMII > RecMII)
1455 RecMII = CurMII;
1456 }
1457
1458 return RecMII;
1459}
1460
1461/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1462/// but we do this to find the circuits, and then change them back.
1463static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1464 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1465 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1466 SUnit *SU = &SUnits[i];
1467 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1468 IP != EP; ++IP) {
1469 if (IP->getKind() != SDep::Anti)
1470 continue;
1471 DepsAdded.push_back(std::make_pair(SU, *IP));
1472 }
1473 }
1474 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
1475 E = DepsAdded.end();
1476 I != E; ++I) {
1477 // Remove this anti dependency and add one in the reverse direction.
1478 SUnit *SU = I->first;
1479 SDep &D = I->second;
1480 SUnit *TargetSU = D.getSUnit();
1481 unsigned Reg = D.getReg();
1482 unsigned Lat = D.getLatency();
1483 SU->removePred(D);
1484 SDep Dep(SU, SDep::Anti, Reg);
1485 Dep.setLatency(Lat);
1486 TargetSU->addPred(Dep);
1487 }
1488}
1489
1490/// Create the adjacency structure of the nodes in the graph.
1491void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1492 SwingSchedulerDAG *DAG) {
1493 BitVector Added(SUnits.size());
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001494 DenseMap<int, int> OutputDeps;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001495 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1496 Added.reset();
1497 // Add any successor to the adjacency matrix and exclude duplicates.
1498 for (auto &SI : SUnits[i].Succs) {
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001499 // Only create a back-edge on the first and last nodes of a dependence
1500 // chain. This records any chains and adds them later.
1501 if (SI.getKind() == SDep::Output) {
1502 int N = SI.getSUnit()->NodeNum;
1503 int BackEdge = i;
1504 auto Dep = OutputDeps.find(BackEdge);
1505 if (Dep != OutputDeps.end()) {
1506 BackEdge = Dep->second;
1507 OutputDeps.erase(Dep);
1508 }
1509 OutputDeps[N] = BackEdge;
1510 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001511 // Do not process a boundary node and a back-edge is processed only
1512 // if it goes to a Phi.
1513 if (SI.getSUnit()->isBoundaryNode() ||
1514 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1515 continue;
1516 int N = SI.getSUnit()->NodeNum;
1517 if (!Added.test(N)) {
1518 AdjK[i].push_back(N);
1519 Added.set(N);
1520 }
1521 }
1522 // A chain edge between a store and a load is treated as a back-edge in the
1523 // adjacency matrix.
1524 for (auto &PI : SUnits[i].Preds) {
1525 if (!SUnits[i].getInstr()->mayStore() ||
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001526 !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
Brendon Cahoon254f8892016-07-29 16:44:44 +00001527 continue;
1528 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1529 int N = PI.getSUnit()->NodeNum;
1530 if (!Added.test(N)) {
1531 AdjK[i].push_back(N);
1532 Added.set(N);
1533 }
1534 }
1535 }
1536 }
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001537 // Add back-eges in the adjacency matrix for the output dependences.
1538 for (auto &OD : OutputDeps)
1539 if (!Added.test(OD.second)) {
1540 AdjK[OD.first].push_back(OD.second);
1541 Added.set(OD.second);
1542 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001543}
1544
1545/// Identify an elementary circuit in the dependence graph starting at the
1546/// specified node.
1547bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1548 bool HasBackedge) {
1549 SUnit *SV = &SUnits[V];
1550 bool F = false;
1551 Stack.insert(SV);
1552 Blocked.set(V);
1553
1554 for (auto W : AdjK[V]) {
1555 if (NumPaths > MaxPaths)
1556 break;
1557 if (W < S)
1558 continue;
1559 if (W == S) {
1560 if (!HasBackedge)
1561 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1562 F = true;
1563 ++NumPaths;
1564 break;
1565 } else if (!Blocked.test(W)) {
1566 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge))
1567 F = true;
1568 }
1569 }
1570
1571 if (F)
1572 unblock(V);
1573 else {
1574 for (auto W : AdjK[V]) {
1575 if (W < S)
1576 continue;
1577 if (B[W].count(SV) == 0)
1578 B[W].insert(SV);
1579 }
1580 }
1581 Stack.pop_back();
1582 return F;
1583}
1584
1585/// Unblock a node in the circuit finding algorithm.
1586void SwingSchedulerDAG::Circuits::unblock(int U) {
1587 Blocked.reset(U);
1588 SmallPtrSet<SUnit *, 4> &BU = B[U];
1589 while (!BU.empty()) {
1590 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1591 assert(SI != BU.end() && "Invalid B set.");
1592 SUnit *W = *SI;
1593 BU.erase(W);
1594 if (Blocked.test(W->NodeNum))
1595 unblock(W->NodeNum);
1596 }
1597}
1598
1599/// Identify all the elementary circuits in the dependence graph using
1600/// Johnson's circuit algorithm.
1601void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1602 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1603 // but we do this to find the circuits, and then change them back.
1604 swapAntiDependences(SUnits);
1605
1606 Circuits Cir(SUnits);
1607 // Create the adjacency structure.
1608 Cir.createAdjacencyStructure(this);
1609 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1610 Cir.reset();
1611 Cir.circuit(i, i, NodeSets);
1612 }
1613
1614 // Change the dependences back so that we've created a DAG again.
1615 swapAntiDependences(SUnits);
1616}
1617
1618/// Return true for DAG nodes that we ignore when computing the cost functions.
1619/// We ignore the back-edge recurrence in order to avoid unbounded recurison
1620/// in the calculation of the ASAP, ALAP, etc functions.
1621static bool ignoreDependence(const SDep &D, bool isPred) {
1622 if (D.isArtificial())
1623 return true;
1624 return D.getKind() == SDep::Anti && isPred;
1625}
1626
1627/// Compute several functions need to order the nodes for scheduling.
1628/// ASAP - Earliest time to schedule a node.
1629/// ALAP - Latest time to schedule a node.
1630/// MOV - Mobility function, difference between ALAP and ASAP.
1631/// D - Depth of each node.
1632/// H - Height of each node.
1633void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001634 ScheduleInfo.resize(SUnits.size());
1635
1636 DEBUG({
1637 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1638 E = Topo.end();
1639 I != E; ++I) {
1640 SUnit *SU = &SUnits[*I];
1641 SU->dump(this);
1642 }
1643 });
1644
1645 int maxASAP = 0;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001646 // Compute ASAP and ZeroLatencyDepth.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001647 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1648 E = Topo.end();
1649 I != E; ++I) {
1650 int asap = 0;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001651 int zeroLatencyDepth = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001652 SUnit *SU = &SUnits[*I];
1653 for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1654 EP = SU->Preds.end();
1655 IP != EP; ++IP) {
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001656 SUnit *pred = IP->getSUnit();
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001657 if (IP->getLatency() == 0)
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001658 zeroLatencyDepth =
1659 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001660 if (ignoreDependence(*IP, true))
1661 continue;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001662 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
Brendon Cahoon254f8892016-07-29 16:44:44 +00001663 getDistance(pred, SU, *IP) * MII));
1664 }
1665 maxASAP = std::max(maxASAP, asap);
1666 ScheduleInfo[*I].ASAP = asap;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001667 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001668 }
1669
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001670 // Compute ALAP, ZeroLatencyHeight, and MOV.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001671 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1672 E = Topo.rend();
1673 I != E; ++I) {
1674 int alap = maxASAP;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001675 int zeroLatencyHeight = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001676 SUnit *SU = &SUnits[*I];
1677 for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1678 ES = SU->Succs.end();
1679 IS != ES; ++IS) {
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001680 SUnit *succ = IS->getSUnit();
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001681 if (IS->getLatency() == 0)
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001682 zeroLatencyHeight =
1683 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001684 if (ignoreDependence(*IS, true))
1685 continue;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001686 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
Brendon Cahoon254f8892016-07-29 16:44:44 +00001687 getDistance(SU, succ, *IS) * MII));
1688 }
1689
1690 ScheduleInfo[*I].ALAP = alap;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001691 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001692 }
1693
1694 // After computing the node functions, compute the summary for each node set.
1695 for (NodeSet &I : NodeSets)
1696 I.computeNodeSetInfo(this);
1697
1698 DEBUG({
1699 for (unsigned i = 0; i < SUnits.size(); i++) {
1700 dbgs() << "\tNode " << i << ":\n";
1701 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1702 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1703 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1704 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1705 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001706 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1707 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
Brendon Cahoon254f8892016-07-29 16:44:44 +00001708 }
1709 });
1710}
1711
1712/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1713/// as the predecessors of the elements of NodeOrder that are not also in
1714/// NodeOrder.
1715static bool pred_L(SetVector<SUnit *> &NodeOrder,
1716 SmallSetVector<SUnit *, 8> &Preds,
1717 const NodeSet *S = nullptr) {
1718 Preds.clear();
1719 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1720 I != E; ++I) {
1721 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1722 PI != PE; ++PI) {
1723 if (S && S->count(PI->getSUnit()) == 0)
1724 continue;
1725 if (ignoreDependence(*PI, true))
1726 continue;
1727 if (NodeOrder.count(PI->getSUnit()) == 0)
1728 Preds.insert(PI->getSUnit());
1729 }
1730 // Back-edges are predecessors with an anti-dependence.
1731 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1732 ES = (*I)->Succs.end();
1733 IS != ES; ++IS) {
1734 if (IS->getKind() != SDep::Anti)
1735 continue;
1736 if (S && S->count(IS->getSUnit()) == 0)
1737 continue;
1738 if (NodeOrder.count(IS->getSUnit()) == 0)
1739 Preds.insert(IS->getSUnit());
1740 }
1741 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001742 return !Preds.empty();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001743}
1744
1745/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1746/// as the successors of the elements of NodeOrder that are not also in
1747/// NodeOrder.
1748static bool succ_L(SetVector<SUnit *> &NodeOrder,
1749 SmallSetVector<SUnit *, 8> &Succs,
1750 const NodeSet *S = nullptr) {
1751 Succs.clear();
1752 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1753 I != E; ++I) {
1754 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1755 SI != SE; ++SI) {
1756 if (S && S->count(SI->getSUnit()) == 0)
1757 continue;
1758 if (ignoreDependence(*SI, false))
1759 continue;
1760 if (NodeOrder.count(SI->getSUnit()) == 0)
1761 Succs.insert(SI->getSUnit());
1762 }
1763 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1764 PE = (*I)->Preds.end();
1765 PI != PE; ++PI) {
1766 if (PI->getKind() != SDep::Anti)
1767 continue;
1768 if (S && S->count(PI->getSUnit()) == 0)
1769 continue;
1770 if (NodeOrder.count(PI->getSUnit()) == 0)
1771 Succs.insert(PI->getSUnit());
1772 }
1773 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001774 return !Succs.empty();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001775}
1776
1777/// Return true if there is a path from the specified node to any of the nodes
1778/// in DestNodes. Keep track and return the nodes in any path.
1779static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1780 SetVector<SUnit *> &DestNodes,
1781 SetVector<SUnit *> &Exclude,
1782 SmallPtrSet<SUnit *, 8> &Visited) {
1783 if (Cur->isBoundaryNode())
1784 return false;
1785 if (Exclude.count(Cur) != 0)
1786 return false;
1787 if (DestNodes.count(Cur) != 0)
1788 return true;
1789 if (!Visited.insert(Cur).second)
1790 return Path.count(Cur) != 0;
1791 bool FoundPath = false;
1792 for (auto &SI : Cur->Succs)
1793 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1794 for (auto &PI : Cur->Preds)
1795 if (PI.getKind() == SDep::Anti)
1796 FoundPath |=
1797 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1798 if (FoundPath)
1799 Path.insert(Cur);
1800 return FoundPath;
1801}
1802
1803/// Return true if Set1 is a subset of Set2.
1804template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1805 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1806 if (Set2.count(*I) == 0)
1807 return false;
1808 return true;
1809}
1810
1811/// Compute the live-out registers for the instructions in a node-set.
1812/// The live-out registers are those that are defined in the node-set,
1813/// but not used. Except for use operands of Phis.
1814static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1815 NodeSet &NS) {
1816 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1817 MachineRegisterInfo &MRI = MF.getRegInfo();
1818 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1819 SmallSet<unsigned, 4> Uses;
1820 for (SUnit *SU : NS) {
1821 const MachineInstr *MI = SU->getInstr();
1822 if (MI->isPHI())
1823 continue;
Matthias Braunfc371552016-10-24 21:36:43 +00001824 for (const MachineOperand &MO : MI->operands())
1825 if (MO.isReg() && MO.isUse()) {
1826 unsigned Reg = MO.getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001827 if (TargetRegisterInfo::isVirtualRegister(Reg))
1828 Uses.insert(Reg);
1829 else if (MRI.isAllocatable(Reg))
1830 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1831 Uses.insert(*Units);
1832 }
1833 }
1834 for (SUnit *SU : NS)
Matthias Braunfc371552016-10-24 21:36:43 +00001835 for (const MachineOperand &MO : SU->getInstr()->operands())
1836 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1837 unsigned Reg = MO.getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001838 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1839 if (!Uses.count(Reg))
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +00001840 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1841 LaneBitmask::getNone()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001842 } else if (MRI.isAllocatable(Reg)) {
1843 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1844 if (!Uses.count(*Units))
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +00001845 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1846 LaneBitmask::getNone()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001847 }
1848 }
1849 RPTracker.addLiveRegs(LiveOutRegs);
1850}
1851
1852/// A heuristic to filter nodes in recurrent node-sets if the register
1853/// pressure of a set is too high.
1854void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1855 for (auto &NS : NodeSets) {
1856 // Skip small node-sets since they won't cause register pressure problems.
1857 if (NS.size() <= 2)
1858 continue;
1859 IntervalPressure RecRegPressure;
1860 RegPressureTracker RecRPTracker(RecRegPressure);
1861 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1862 computeLiveOuts(MF, RecRPTracker, NS);
1863 RecRPTracker.closeBottom();
1864
1865 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
Mandeep Singh Grange92f0cf2018-04-06 18:08:42 +00001866 llvm::sort(SUnits.begin(), SUnits.end(),
1867 [](const SUnit *A, const SUnit *B) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001868 return A->NodeNum > B->NodeNum;
1869 });
1870
1871 for (auto &SU : SUnits) {
1872 // Since we're computing the register pressure for a subset of the
1873 // instructions in a block, we need to set the tracker for each
1874 // instruction in the node-set. The tracker is set to the instruction
1875 // just after the one we're interested in.
1876 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1877 RecRPTracker.setPos(std::next(CurInstI));
1878
1879 RegPressureDelta RPDelta;
1880 ArrayRef<PressureChange> CriticalPSets;
1881 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1882 CriticalPSets,
1883 RecRegPressure.MaxSetPressure);
1884 if (RPDelta.Excess.isValid()) {
1885 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1886 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1887 << ":" << RPDelta.Excess.getUnitInc());
1888 NS.setExceedPressure(SU);
1889 break;
1890 }
1891 RecRPTracker.recede();
1892 }
1893 }
1894}
1895
1896/// A heuristic to colocate node sets that have the same set of
1897/// successors.
1898void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1899 unsigned Colocate = 0;
1900 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1901 NodeSet &N1 = NodeSets[i];
1902 SmallSetVector<SUnit *, 8> S1;
1903 if (N1.empty() || !succ_L(N1, S1))
1904 continue;
1905 for (int j = i + 1; j < e; ++j) {
1906 NodeSet &N2 = NodeSets[j];
1907 if (N1.compareRecMII(N2) != 0)
1908 continue;
1909 SmallSetVector<SUnit *, 8> S2;
1910 if (N2.empty() || !succ_L(N2, S2))
1911 continue;
1912 if (isSubset(S1, S2) && S1.size() == S2.size()) {
1913 N1.setColocate(++Colocate);
1914 N2.setColocate(Colocate);
1915 break;
1916 }
1917 }
1918 }
1919}
1920
1921/// Check if the existing node-sets are profitable. If not, then ignore the
1922/// recurrent node-sets, and attempt to schedule all nodes together. This is
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001923/// a heuristic. If the MII is large and all the recurrent node-sets are small,
1924/// then it's best to try to schedule all instructions together instead of
1925/// starting with the recurrent node-sets.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001926void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1927 // Look for loops with a large MII.
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001928 if (MII < 17)
Brendon Cahoon254f8892016-07-29 16:44:44 +00001929 return;
1930 // Check if the node-set contains only a simple add recurrence.
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001931 for (auto &NS : NodeSets) {
1932 if (NS.getRecMII() > 2)
Brendon Cahoon254f8892016-07-29 16:44:44 +00001933 return;
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001934 if (NS.getMaxDepth() > MII)
Brendon Cahoon254f8892016-07-29 16:44:44 +00001935 return;
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001936 }
1937 NodeSets.clear();
1938 DEBUG(dbgs() << "Clear recurrence node-sets\n");
1939 return;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001940}
1941
1942/// Add the nodes that do not belong to a recurrence set into groups
1943/// based upon connected componenets.
1944void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1945 SetVector<SUnit *> NodesAdded;
1946 SmallPtrSet<SUnit *, 8> Visited;
1947 // Add the nodes that are on a path between the previous node sets and
1948 // the current node set.
1949 for (NodeSet &I : NodeSets) {
1950 SmallSetVector<SUnit *, 8> N;
1951 // Add the nodes from the current node set to the previous node set.
1952 if (succ_L(I, N)) {
1953 SetVector<SUnit *> Path;
1954 for (SUnit *NI : N) {
1955 Visited.clear();
1956 computePath(NI, Path, NodesAdded, I, Visited);
1957 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001958 if (!Path.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001959 I.insert(Path.begin(), Path.end());
1960 }
1961 // Add the nodes from the previous node set to the current node set.
1962 N.clear();
1963 if (succ_L(NodesAdded, N)) {
1964 SetVector<SUnit *> Path;
1965 for (SUnit *NI : N) {
1966 Visited.clear();
1967 computePath(NI, Path, I, NodesAdded, Visited);
1968 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001969 if (!Path.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001970 I.insert(Path.begin(), Path.end());
1971 }
1972 NodesAdded.insert(I.begin(), I.end());
1973 }
1974
1975 // Create a new node set with the connected nodes of any successor of a node
1976 // in a recurrent set.
1977 NodeSet NewSet;
1978 SmallSetVector<SUnit *, 8> N;
1979 if (succ_L(NodesAdded, N))
1980 for (SUnit *I : N)
1981 addConnectedNodes(I, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00001982 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001983 NodeSets.push_back(NewSet);
1984
1985 // Create a new node set with the connected nodes of any predecessor of a node
1986 // in a recurrent set.
1987 NewSet.clear();
1988 if (pred_L(NodesAdded, N))
1989 for (SUnit *I : N)
1990 addConnectedNodes(I, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00001991 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001992 NodeSets.push_back(NewSet);
1993
Hiroshi Inoue372ffa12018-04-13 11:37:06 +00001994 // Create new nodes sets with the connected nodes any remaining node that
Brendon Cahoon254f8892016-07-29 16:44:44 +00001995 // has no predecessor.
1996 for (unsigned i = 0; i < SUnits.size(); ++i) {
1997 SUnit *SU = &SUnits[i];
1998 if (NodesAdded.count(SU) == 0) {
1999 NewSet.clear();
2000 addConnectedNodes(SU, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00002001 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00002002 NodeSets.push_back(NewSet);
2003 }
2004 }
2005}
2006
2007/// Add the node to the set, and add all is its connected nodes to the set.
2008void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
2009 SetVector<SUnit *> &NodesAdded) {
2010 NewSet.insert(SU);
2011 NodesAdded.insert(SU);
2012 for (auto &SI : SU->Succs) {
2013 SUnit *Successor = SI.getSUnit();
2014 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
2015 addConnectedNodes(Successor, NewSet, NodesAdded);
2016 }
2017 for (auto &PI : SU->Preds) {
2018 SUnit *Predecessor = PI.getSUnit();
2019 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
2020 addConnectedNodes(Predecessor, NewSet, NodesAdded);
2021 }
2022}
2023
2024/// Return true if Set1 contains elements in Set2. The elements in common
2025/// are returned in a different container.
2026static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
2027 SmallSetVector<SUnit *, 8> &Result) {
2028 Result.clear();
2029 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
2030 SUnit *SU = Set1[i];
2031 if (Set2.count(SU) != 0)
2032 Result.insert(SU);
2033 }
2034 return !Result.empty();
2035}
2036
2037/// Merge the recurrence node sets that have the same initial node.
2038void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
2039 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
2040 ++I) {
2041 NodeSet &NI = *I;
2042 for (NodeSetType::iterator J = I + 1; J != E;) {
2043 NodeSet &NJ = *J;
2044 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
2045 if (NJ.compareRecMII(NI) > 0)
2046 NI.setRecMII(NJ.getRecMII());
2047 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
2048 ++NII)
2049 I->insert(*NII);
2050 NodeSets.erase(J);
2051 E = NodeSets.end();
2052 } else {
2053 ++J;
2054 }
2055 }
2056 }
2057}
2058
2059/// Remove nodes that have been scheduled in previous NodeSets.
2060void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
2061 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
2062 ++I)
2063 for (NodeSetType::iterator J = I + 1; J != E;) {
2064 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
2065
Eugene Zelenko32a40562017-09-11 23:00:48 +00002066 if (J->empty()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00002067 NodeSets.erase(J);
2068 E = NodeSets.end();
2069 } else {
2070 ++J;
2071 }
2072 }
2073}
2074
Brendon Cahoon254f8892016-07-29 16:44:44 +00002075/// Compute an ordered list of the dependence graph nodes, which
2076/// indicates the order that the nodes will be scheduled. This is a
2077/// two-level algorithm. First, a partial order is created, which
2078/// consists of a list of sets ordered from highest to lowest priority.
2079void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
2080 SmallSetVector<SUnit *, 8> R;
2081 NodeOrder.clear();
2082
2083 for (auto &Nodes : NodeSets) {
2084 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
2085 OrderKind Order;
2086 SmallSetVector<SUnit *, 8> N;
2087 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
2088 R.insert(N.begin(), N.end());
2089 Order = BottomUp;
2090 DEBUG(dbgs() << " Bottom up (preds) ");
2091 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
2092 R.insert(N.begin(), N.end());
2093 Order = TopDown;
2094 DEBUG(dbgs() << " Top down (succs) ");
2095 } else if (isIntersect(N, Nodes, R)) {
2096 // If some of the successors are in the existing node-set, then use the
2097 // top-down ordering.
2098 Order = TopDown;
2099 DEBUG(dbgs() << " Top down (intersect) ");
2100 } else if (NodeSets.size() == 1) {
2101 for (auto &N : Nodes)
2102 if (N->Succs.size() == 0)
2103 R.insert(N);
2104 Order = BottomUp;
2105 DEBUG(dbgs() << " Bottom up (all) ");
2106 } else {
2107 // Find the node with the highest ASAP.
2108 SUnit *maxASAP = nullptr;
2109 for (SUnit *SU : Nodes) {
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00002110 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
2111 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002112 maxASAP = SU;
2113 }
2114 R.insert(maxASAP);
2115 Order = BottomUp;
2116 DEBUG(dbgs() << " Bottom up (default) ");
2117 }
2118
2119 while (!R.empty()) {
2120 if (Order == TopDown) {
2121 // Choose the node with the maximum height. If more than one, choose
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00002122 // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002123 // choose the node with the lowest MOV.
Brendon Cahoon254f8892016-07-29 16:44:44 +00002124 while (!R.empty()) {
2125 SUnit *maxHeight = nullptr;
2126 for (SUnit *I : R) {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00002127 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002128 maxHeight = I;
2129 else if (getHeight(I) == getHeight(maxHeight) &&
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002130 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002131 maxHeight = I;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002132 else if (getHeight(I) == getHeight(maxHeight) &&
2133 getZeroLatencyHeight(I) ==
2134 getZeroLatencyHeight(maxHeight) &&
2135 getMOV(I) < getMOV(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002136 maxHeight = I;
2137 }
2138 NodeOrder.insert(maxHeight);
2139 DEBUG(dbgs() << maxHeight->NodeNum << " ");
2140 R.remove(maxHeight);
2141 for (const auto &I : maxHeight->Succs) {
2142 if (Nodes.count(I.getSUnit()) == 0)
2143 continue;
2144 if (NodeOrder.count(I.getSUnit()) != 0)
2145 continue;
2146 if (ignoreDependence(I, false))
2147 continue;
2148 R.insert(I.getSUnit());
2149 }
2150 // Back-edges are predecessors with an anti-dependence.
2151 for (const auto &I : maxHeight->Preds) {
2152 if (I.getKind() != SDep::Anti)
2153 continue;
2154 if (Nodes.count(I.getSUnit()) == 0)
2155 continue;
2156 if (NodeOrder.count(I.getSUnit()) != 0)
2157 continue;
2158 R.insert(I.getSUnit());
2159 }
2160 }
2161 Order = BottomUp;
2162 DEBUG(dbgs() << "\n Switching order to bottom up ");
2163 SmallSetVector<SUnit *, 8> N;
2164 if (pred_L(NodeOrder, N, &Nodes))
2165 R.insert(N.begin(), N.end());
2166 } else {
2167 // Choose the node with the maximum depth. If more than one, choose
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002168 // the node with the maximum ZeroLatencyDepth. If still more than one,
2169 // choose the node with the lowest MOV.
Brendon Cahoon254f8892016-07-29 16:44:44 +00002170 while (!R.empty()) {
2171 SUnit *maxDepth = nullptr;
2172 for (SUnit *I : R) {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00002173 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002174 maxDepth = I;
2175 else if (getDepth(I) == getDepth(maxDepth) &&
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002176 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002177 maxDepth = I;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002178 else if (getDepth(I) == getDepth(maxDepth) &&
2179 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
2180 getMOV(I) < getMOV(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002181 maxDepth = I;
2182 }
2183 NodeOrder.insert(maxDepth);
2184 DEBUG(dbgs() << maxDepth->NodeNum << " ");
2185 R.remove(maxDepth);
2186 if (Nodes.isExceedSU(maxDepth)) {
2187 Order = TopDown;
2188 R.clear();
2189 R.insert(Nodes.getNode(0));
2190 break;
2191 }
2192 for (const auto &I : maxDepth->Preds) {
2193 if (Nodes.count(I.getSUnit()) == 0)
2194 continue;
2195 if (NodeOrder.count(I.getSUnit()) != 0)
2196 continue;
Brendon Cahoon254f8892016-07-29 16:44:44 +00002197 R.insert(I.getSUnit());
2198 }
2199 // Back-edges are predecessors with an anti-dependence.
2200 for (const auto &I : maxDepth->Succs) {
2201 if (I.getKind() != SDep::Anti)
2202 continue;
2203 if (Nodes.count(I.getSUnit()) == 0)
2204 continue;
2205 if (NodeOrder.count(I.getSUnit()) != 0)
2206 continue;
2207 R.insert(I.getSUnit());
2208 }
2209 }
2210 Order = TopDown;
2211 DEBUG(dbgs() << "\n Switching order to top down ");
2212 SmallSetVector<SUnit *, 8> N;
2213 if (succ_L(NodeOrder, N, &Nodes))
2214 R.insert(N.begin(), N.end());
2215 }
2216 }
2217 DEBUG(dbgs() << "\nDone with Nodeset\n");
2218 }
2219
2220 DEBUG({
2221 dbgs() << "Node order: ";
2222 for (SUnit *I : NodeOrder)
2223 dbgs() << " " << I->NodeNum << " ";
2224 dbgs() << "\n";
2225 });
2226}
2227
2228/// Process the nodes in the computed order and create the pipelined schedule
2229/// of the instructions, if possible. Return true if a schedule is found.
2230bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
Eugene Zelenko32a40562017-09-11 23:00:48 +00002231 if (NodeOrder.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00002232 return false;
2233
2234 bool scheduleFound = false;
2235 // Keep increasing II until a valid schedule is found.
2236 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) {
2237 Schedule.reset();
2238 Schedule.setInitiationInterval(II);
2239 DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2240
2241 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2242 SetVector<SUnit *>::iterator NE = NodeOrder.end();
2243 do {
2244 SUnit *SU = *NI;
2245
2246 // Compute the schedule time for the instruction, which is based
2247 // upon the scheduled time for any predecessors/successors.
2248 int EarlyStart = INT_MIN;
2249 int LateStart = INT_MAX;
2250 // These values are set when the size of the schedule window is limited
2251 // due to chain dependences.
2252 int SchedEnd = INT_MAX;
2253 int SchedStart = INT_MIN;
2254 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2255 II, this);
2256 DEBUG({
2257 dbgs() << "Inst (" << SU->NodeNum << ") ";
2258 SU->getInstr()->dump();
2259 dbgs() << "\n";
2260 });
2261 DEBUG({
2262 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
2263 << " me: " << SchedEnd << " ms: " << SchedStart << "\n";
2264 });
2265
2266 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2267 SchedStart > LateStart)
2268 scheduleFound = false;
2269 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2270 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2271 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2272 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2273 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2274 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2275 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2276 SchedEnd =
2277 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2278 // When scheduling a Phi it is better to start at the late cycle and go
2279 // backwards. The default order may insert the Phi too far away from
2280 // its first dependence.
2281 if (SU->getInstr()->isPHI())
2282 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2283 else
2284 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2285 } else {
2286 int FirstCycle = Schedule.getFirstCycle();
2287 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2288 FirstCycle + getASAP(SU) + II - 1, II);
2289 }
2290 // Even if we find a schedule, make sure the schedule doesn't exceed the
2291 // allowable number of stages. We keep trying if this happens.
2292 if (scheduleFound)
2293 if (SwpMaxStages > -1 &&
2294 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2295 scheduleFound = false;
2296
2297 DEBUG({
2298 if (!scheduleFound)
2299 dbgs() << "\tCan't schedule\n";
2300 });
2301 } while (++NI != NE && scheduleFound);
2302
2303 // If a schedule is found, check if it is a valid schedule too.
2304 if (scheduleFound)
2305 scheduleFound = Schedule.isValidSchedule(this);
2306 }
2307
2308 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n");
2309
2310 if (scheduleFound)
2311 Schedule.finalizeSchedule(this);
2312 else
2313 Schedule.reset();
2314
2315 return scheduleFound && Schedule.getMaxStageCount() > 0;
2316}
2317
2318/// Given a schedule for the loop, generate a new version of the loop,
2319/// and replace the old version. This function generates a prolog
2320/// that contains the initial iterations in the pipeline, and kernel
2321/// loop, and the epilogue that contains the code for the final
2322/// iterations.
2323void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
2324 // Create a new basic block for the kernel and add it to the CFG.
2325 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2326
2327 unsigned MaxStageCount = Schedule.getMaxStageCount();
2328
2329 // Remember the registers that are used in different stages. The index is
2330 // the iteration, or stage, that the instruction is scheduled in. This is
2331 // a map between register names in the orignal block and the names created
2332 // in each stage of the pipelined loop.
2333 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
2334 InstrMapTy InstrMap;
2335
2336 SmallVector<MachineBasicBlock *, 4> PrologBBs;
2337 // Generate the prolog instructions that set up the pipeline.
2338 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
2339 MF.insert(BB->getIterator(), KernelBB);
2340
2341 // Rearrange the instructions to generate the new, pipelined loop,
2342 // and update register names as needed.
2343 for (int Cycle = Schedule.getFirstCycle(),
2344 LastCycle = Schedule.getFinalCycle();
2345 Cycle <= LastCycle; ++Cycle) {
2346 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
2347 // This inner loop schedules each instruction in the cycle.
2348 for (SUnit *CI : CycleInstrs) {
2349 if (CI->getInstr()->isPHI())
2350 continue;
2351 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
2352 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
2353 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
2354 KernelBB->push_back(NewMI);
2355 InstrMap[NewMI] = CI->getInstr();
2356 }
2357 }
2358
2359 // Copy any terminator instructions to the new kernel, and update
2360 // names as needed.
2361 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
2362 E = BB->instr_end();
2363 I != E; ++I) {
2364 MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
2365 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
2366 KernelBB->push_back(NewMI);
2367 InstrMap[NewMI] = &*I;
2368 }
2369
2370 KernelBB->transferSuccessors(BB);
2371 KernelBB->replaceSuccessor(BB, KernelBB);
2372
2373 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
2374 VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
2375 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
2376 InstrMap, MaxStageCount, MaxStageCount, false);
2377
2378 DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
2379
2380 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
2381 // Generate the epilog instructions to complete the pipeline.
2382 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
2383 PrologBBs);
2384
2385 // We need this step because the register allocation doesn't handle some
2386 // situations well, so we insert copies to help out.
2387 splitLifetimes(KernelBB, EpilogBBs, Schedule);
2388
2389 // Remove dead instructions due to loop induction variables.
2390 removeDeadInstructions(KernelBB, EpilogBBs);
2391
2392 // Add branches between prolog and epilog blocks.
2393 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
2394
2395 // Remove the original loop since it's no longer referenced.
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00002396 for (auto &I : *BB)
2397 LIS.RemoveMachineInstrFromMaps(I);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002398 BB->clear();
2399 BB->eraseFromParent();
2400
2401 delete[] VRMap;
2402}
2403
2404/// Generate the pipeline prolog code.
2405void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
2406 MachineBasicBlock *KernelBB,
2407 ValueMapTy *VRMap,
2408 MBBVectorTy &PrologBBs) {
2409 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
Eugene Zelenko32a40562017-09-11 23:00:48 +00002410 assert(PreheaderBB != nullptr &&
Brendon Cahoon254f8892016-07-29 16:44:44 +00002411 "Need to add code to handle loops w/o preheader");
2412 MachineBasicBlock *PredBB = PreheaderBB;
2413 InstrMapTy InstrMap;
2414
2415 // Generate a basic block for each stage, not including the last stage,
2416 // which will be generated in the kernel. Each basic block may contain
2417 // instructions from multiple stages/iterations.
2418 for (unsigned i = 0; i < LastStage; ++i) {
2419 // Create and insert the prolog basic block prior to the original loop
2420 // basic block. The original loop is removed later.
2421 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2422 PrologBBs.push_back(NewBB);
2423 MF.insert(BB->getIterator(), NewBB);
2424 NewBB->transferSuccessors(PredBB);
2425 PredBB->addSuccessor(NewBB);
2426 PredBB = NewBB;
2427
2428 // Generate instructions for each appropriate stage. Process instructions
2429 // in original program order.
2430 for (int StageNum = i; StageNum >= 0; --StageNum) {
2431 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2432 BBE = BB->getFirstTerminator();
2433 BBI != BBE; ++BBI) {
2434 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
2435 if (BBI->isPHI())
2436 continue;
2437 MachineInstr *NewMI =
2438 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
2439 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
2440 VRMap);
2441 NewBB->push_back(NewMI);
2442 InstrMap[NewMI] = &*BBI;
2443 }
2444 }
2445 }
2446 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
2447 DEBUG({
2448 dbgs() << "prolog:\n";
2449 NewBB->dump();
2450 });
2451 }
2452
2453 PredBB->replaceSuccessor(BB, KernelBB);
2454
2455 // Check if we need to remove the branch from the preheader to the original
2456 // loop, and replace it with a branch to the new loop.
Matt Arsenault1b9fc8e2016-09-14 20:43:16 +00002457 unsigned numBranches = TII->removeBranch(*PreheaderBB);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002458 if (numBranches) {
2459 SmallVector<MachineOperand, 0> Cond;
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002460 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002461 }
2462}
2463
2464/// Generate the pipeline epilog code. The epilog code finishes the iterations
2465/// that were started in either the prolog or the kernel. We create a basic
2466/// block for each stage that needs to complete.
2467void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
2468 MachineBasicBlock *KernelBB,
2469 ValueMapTy *VRMap,
2470 MBBVectorTy &EpilogBBs,
2471 MBBVectorTy &PrologBBs) {
2472 // We need to change the branch from the kernel to the first epilog block, so
2473 // this call to analyze branch uses the kernel rather than the original BB.
2474 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2475 SmallVector<MachineOperand, 4> Cond;
2476 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
2477 assert(!checkBranch && "generateEpilog must be able to analyze the branch");
2478 if (checkBranch)
2479 return;
2480
2481 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
2482 if (*LoopExitI == KernelBB)
2483 ++LoopExitI;
2484 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
2485 MachineBasicBlock *LoopExitBB = *LoopExitI;
2486
2487 MachineBasicBlock *PredBB = KernelBB;
2488 MachineBasicBlock *EpilogStart = LoopExitBB;
2489 InstrMapTy InstrMap;
2490
2491 // Generate a basic block for each stage, not including the last stage,
2492 // which was generated for the kernel. Each basic block may contain
2493 // instructions from multiple stages/iterations.
2494 int EpilogStage = LastStage + 1;
2495 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
2496 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
2497 EpilogBBs.push_back(NewBB);
2498 MF.insert(BB->getIterator(), NewBB);
2499
2500 PredBB->replaceSuccessor(LoopExitBB, NewBB);
2501 NewBB->addSuccessor(LoopExitBB);
2502
2503 if (EpilogStart == LoopExitBB)
2504 EpilogStart = NewBB;
2505
2506 // Add instructions to the epilog depending on the current block.
2507 // Process instructions in original program order.
2508 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
2509 for (auto &BBI : *BB) {
2510 if (BBI.isPHI())
2511 continue;
2512 MachineInstr *In = &BBI;
2513 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
Krzysztof Parzyszek785b6ce2018-03-26 15:45:55 +00002514 // Instructions with memoperands in the epilog are updated with
2515 // conservative values.
2516 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002517 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
2518 NewBB->push_back(NewMI);
2519 InstrMap[NewMI] = In;
2520 }
2521 }
2522 }
2523 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
2524 VRMap, InstrMap, LastStage, EpilogStage, i == 1);
2525 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
2526 InstrMap, LastStage, EpilogStage, i == 1);
2527 PredBB = NewBB;
2528
2529 DEBUG({
2530 dbgs() << "epilog:\n";
2531 NewBB->dump();
2532 });
2533 }
2534
2535 // Fix any Phi nodes in the loop exit block.
2536 for (MachineInstr &MI : *LoopExitBB) {
2537 if (!MI.isPHI())
2538 break;
2539 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
2540 MachineOperand &MO = MI.getOperand(i);
2541 if (MO.getMBB() == BB)
2542 MO.setMBB(PredBB);
2543 }
2544 }
2545
2546 // Create a branch to the new epilog from the kernel.
2547 // Remove the original branch and add a new branch to the epilog.
Matt Arsenault1b9fc8e2016-09-14 20:43:16 +00002548 TII->removeBranch(*KernelBB);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002549 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002550 // Add a branch to the loop exit.
2551 if (EpilogBBs.size() > 0) {
2552 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
2553 SmallVector<MachineOperand, 4> Cond1;
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002554 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002555 }
2556}
2557
2558/// Replace all uses of FromReg that appear outside the specified
2559/// basic block with ToReg.
2560static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
2561 MachineBasicBlock *MBB,
2562 MachineRegisterInfo &MRI,
2563 LiveIntervals &LIS) {
2564 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
2565 E = MRI.use_end();
2566 I != E;) {
2567 MachineOperand &O = *I;
2568 ++I;
2569 if (O.getParent()->getParent() != MBB)
2570 O.setReg(ToReg);
2571 }
2572 if (!LIS.hasInterval(ToReg))
2573 LIS.createEmptyInterval(ToReg);
2574}
2575
2576/// Return true if the register has a use that occurs outside the
2577/// specified loop.
2578static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
2579 MachineRegisterInfo &MRI) {
2580 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
2581 E = MRI.use_end();
2582 I != E; ++I)
2583 if (I->getParent()->getParent() != BB)
2584 return true;
2585 return false;
2586}
2587
2588/// Generate Phis for the specific block in the generated pipelined code.
2589/// This function looks at the Phis from the original code to guide the
2590/// creation of new Phis.
2591void SwingSchedulerDAG::generateExistingPhis(
2592 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2593 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2594 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2595 bool IsLast) {
Simon Pilgrim6bdc7552017-03-31 10:59:37 +00002596 // Compute the stage number for the initial value of the Phi, which
Brendon Cahoon254f8892016-07-29 16:44:44 +00002597 // comes from the prolog. The prolog to use depends on to which kernel/
2598 // epilog that we're adding the Phi.
2599 unsigned PrologStage = 0;
2600 unsigned PrevStage = 0;
2601 bool InKernel = (LastStageNum == CurStageNum);
2602 if (InKernel) {
2603 PrologStage = LastStageNum - 1;
2604 PrevStage = CurStageNum;
2605 } else {
2606 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
2607 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
2608 }
2609
2610 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2611 BBE = BB->getFirstNonPHI();
2612 BBI != BBE; ++BBI) {
2613 unsigned Def = BBI->getOperand(0).getReg();
2614
2615 unsigned InitVal = 0;
2616 unsigned LoopVal = 0;
2617 getPhiRegs(*BBI, BB, InitVal, LoopVal);
2618
2619 unsigned PhiOp1 = 0;
2620 // The Phi value from the loop body typically is defined in the loop, but
2621 // not always. So, we need to check if the value is defined in the loop.
2622 unsigned PhiOp2 = LoopVal;
2623 if (VRMap[LastStageNum].count(LoopVal))
2624 PhiOp2 = VRMap[LastStageNum][LoopVal];
2625
2626 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2627 int LoopValStage =
2628 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2629 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
2630 if (NumStages == 0) {
2631 // We don't need to generate a Phi anymore, but we need to rename any uses
2632 // of the Phi value.
2633 unsigned NewReg = VRMap[PrevStage][LoopVal];
2634 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
Krzysztof Parzyszek16e66f52018-03-26 16:41:36 +00002635 Def, InitVal, NewReg);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002636 if (VRMap[CurStageNum].count(LoopVal))
2637 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
2638 }
2639 // Adjust the number of Phis needed depending on the number of prologs left,
Krzysztof Parzyszek3f72a6b2018-03-26 16:37:55 +00002640 // and the distance from where the Phi is first scheduled. The number of
2641 // Phis cannot exceed the number of prolog stages. Each stage can
2642 // potentially define two values.
2643 unsigned MaxPhis = PrologStage + 2;
2644 if (!InKernel && (int)PrologStage <= LoopValStage)
2645 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
2646 unsigned NumPhis = std::min(NumStages, MaxPhis);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002647
2648 unsigned NewReg = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +00002649 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
2650 // In the epilog, we may need to look back one stage to get the correct
2651 // Phi name because the epilog and prolog blocks execute the same stage.
2652 // The correct name is from the previous block only when the Phi has
2653 // been completely scheduled prior to the epilog, and Phi value is not
2654 // needed in multiple stages.
2655 int StageDiff = 0;
2656 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
2657 NumPhis == 1)
2658 StageDiff = 1;
2659 // Adjust the computations below when the phi and the loop definition
2660 // are scheduled in different stages.
2661 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
2662 StageDiff = StageScheduled - LoopValStage;
2663 for (unsigned np = 0; np < NumPhis; ++np) {
2664 // If the Phi hasn't been scheduled, then use the initial Phi operand
2665 // value. Otherwise, use the scheduled version of the instruction. This
2666 // is a little complicated when a Phi references another Phi.
2667 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
2668 PhiOp1 = InitVal;
2669 // Check if the Phi has already been scheduled in a prolog stage.
2670 else if (PrologStage >= AccessStage + StageDiff + np &&
2671 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
2672 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
2673 // Check if the Phi has already been scheduled, but the loop intruction
2674 // is either another Phi, or doesn't occur in the loop.
2675 else if (PrologStage >= AccessStage + StageDiff + np) {
2676 // If the Phi references another Phi, we need to examine the other
2677 // Phi to get the correct value.
2678 PhiOp1 = LoopVal;
2679 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
2680 int Indirects = 1;
2681 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
2682 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
2683 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
2684 PhiOp1 = getInitPhiReg(*InstOp1, BB);
2685 else
2686 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
2687 InstOp1 = MRI.getVRegDef(PhiOp1);
2688 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
2689 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
2690 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
2691 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
2692 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
2693 break;
2694 }
2695 ++Indirects;
2696 }
2697 } else
2698 PhiOp1 = InitVal;
2699 // If this references a generated Phi in the kernel, get the Phi operand
2700 // from the incoming block.
2701 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
2702 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2703 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2704
2705 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
2706 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
2707 // In the epilog, a map lookup is needed to get the value from the kernel,
2708 // or previous epilog block. How is does this depends on if the
2709 // instruction is scheduled in the previous block.
2710 if (!InKernel) {
2711 int StageDiffAdj = 0;
2712 if (LoopValStage != -1 && StageScheduled > LoopValStage)
2713 StageDiffAdj = StageScheduled - LoopValStage;
2714 // Use the loop value defined in the kernel, unless the kernel
2715 // contains the last definition of the Phi.
2716 if (np == 0 && PrevStage == LastStageNum &&
2717 (StageScheduled != 0 || LoopValStage != 0) &&
2718 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
2719 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
2720 // Use the value defined by the Phi. We add one because we switch
2721 // from looking at the loop value to the Phi definition.
2722 else if (np > 0 && PrevStage == LastStageNum &&
2723 VRMap[PrevStage - np + 1].count(Def))
2724 PhiOp2 = VRMap[PrevStage - np + 1][Def];
2725 // Use the loop value defined in the kernel.
2726 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 &&
2727 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
2728 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
2729 // Use the value defined by the Phi, unless we're generating the first
2730 // epilog and the Phi refers to a Phi in a different stage.
2731 else if (VRMap[PrevStage - np].count(Def) &&
2732 (!LoopDefIsPhi || PrevStage != LastStageNum))
2733 PhiOp2 = VRMap[PrevStage - np][Def];
2734 }
2735
2736 // Check if we can reuse an existing Phi. This occurs when a Phi
2737 // references another Phi, and the other Phi is scheduled in an
2738 // earlier stage. We can try to reuse an existing Phi up until the last
2739 // stage of the current Phi.
Krzysztof Parzyszek55cb49862018-03-26 16:10:48 +00002740 if (LoopDefIsPhi && (int)(PrologStage - np) >= StageScheduled) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00002741 int LVNumStages = Schedule.getStagesForPhi(LoopVal);
2742 int StageDiff = (StageScheduled - LoopValStage);
2743 LVNumStages -= StageDiff;
Krzysztof Parzyszek3a0a15a2018-03-26 15:58:16 +00002744 // Make sure the loop value Phi has been processed already.
2745 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00002746 NewReg = PhiOp2;
2747 unsigned ReuseStage = CurStageNum;
2748 if (Schedule.isLoopCarried(this, *PhiInst))
2749 ReuseStage -= LVNumStages;
2750 // Check if the Phi to reuse has been generated yet. If not, then
2751 // there is nothing to reuse.
Krzysztof Parzyszek55cb49862018-03-26 16:10:48 +00002752 if (VRMap[ReuseStage - np].count(LoopVal)) {
2753 NewReg = VRMap[ReuseStage - np][LoopVal];
Brendon Cahoon254f8892016-07-29 16:44:44 +00002754
2755 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2756 &*BBI, Def, NewReg);
2757 // Update the map with the new Phi name.
2758 VRMap[CurStageNum - np][Def] = NewReg;
2759 PhiOp2 = NewReg;
2760 if (VRMap[LastStageNum - np - 1].count(LoopVal))
2761 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
2762
2763 if (IsLast && np == NumPhis - 1)
2764 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2765 continue;
2766 }
Krzysztof Parzyszekdf24da22016-12-22 18:49:55 +00002767 } else if (InKernel && StageDiff > 0 &&
Brendon Cahoon254f8892016-07-29 16:44:44 +00002768 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
2769 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
2770 }
2771
2772 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2773 NewReg = MRI.createVirtualRegister(RC);
2774
2775 MachineInstrBuilder NewPhi =
2776 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2777 TII->get(TargetOpcode::PHI), NewReg);
2778 NewPhi.addReg(PhiOp1).addMBB(BB1);
2779 NewPhi.addReg(PhiOp2).addMBB(BB2);
2780 if (np == 0)
2781 InstrMap[NewPhi] = &*BBI;
2782
2783 // We define the Phis after creating the new pipelined code, so
2784 // we need to rename the Phi values in scheduled instructions.
2785
2786 unsigned PrevReg = 0;
2787 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
2788 PrevReg = VRMap[PrevStage - np][LoopVal];
2789 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2790 Def, NewReg, PrevReg);
2791 // If the Phi has been scheduled, use the new name for rewriting.
2792 if (VRMap[CurStageNum - np].count(Def)) {
2793 unsigned R = VRMap[CurStageNum - np][Def];
2794 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2795 R, NewReg);
2796 }
2797
2798 // Check if we need to rename any uses that occurs after the loop. The
2799 // register to replace depends on whether the Phi is scheduled in the
2800 // epilog.
2801 if (IsLast && np == NumPhis - 1)
2802 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2803
2804 // In the kernel, a dependent Phi uses the value from this Phi.
2805 if (InKernel)
2806 PhiOp2 = NewReg;
2807
2808 // Update the map with the new Phi name.
2809 VRMap[CurStageNum - np][Def] = NewReg;
2810 }
2811
2812 while (NumPhis++ < NumStages) {
2813 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
2814 &*BBI, Def, NewReg, 0);
2815 }
2816
2817 // Check if we need to rename a Phi that has been eliminated due to
2818 // scheduling.
2819 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
2820 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
2821 }
2822}
2823
2824/// Generate Phis for the specified block in the generated pipelined code.
2825/// These are new Phis needed because the definition is scheduled after the
2826/// use in the pipelened sequence.
2827void SwingSchedulerDAG::generatePhis(
2828 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2829 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2830 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2831 bool IsLast) {
2832 // Compute the stage number that contains the initial Phi value, and
2833 // the Phi from the previous stage.
2834 unsigned PrologStage = 0;
2835 unsigned PrevStage = 0;
2836 unsigned StageDiff = CurStageNum - LastStageNum;
2837 bool InKernel = (StageDiff == 0);
2838 if (InKernel) {
2839 PrologStage = LastStageNum - 1;
2840 PrevStage = CurStageNum;
2841 } else {
2842 PrologStage = LastStageNum - StageDiff;
2843 PrevStage = LastStageNum + StageDiff - 1;
2844 }
2845
2846 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
2847 BBE = BB->instr_end();
2848 BBI != BBE; ++BBI) {
2849 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
2850 MachineOperand &MO = BBI->getOperand(i);
2851 if (!MO.isReg() || !MO.isDef() ||
2852 !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2853 continue;
2854
2855 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2856 assert(StageScheduled != -1 && "Expecting scheduled instruction.");
2857 unsigned Def = MO.getReg();
2858 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
2859 // An instruction scheduled in stage 0 and is used after the loop
2860 // requires a phi in the epilog for the last definition from either
2861 // the kernel or prolog.
2862 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
2863 hasUseAfterLoop(Def, BB, MRI))
2864 NumPhis = 1;
2865 if (!InKernel && (unsigned)StageScheduled > PrologStage)
2866 continue;
2867
2868 unsigned PhiOp2 = VRMap[PrevStage][Def];
2869 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
2870 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
2871 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
2872 // The number of Phis can't exceed the number of prolog stages. The
2873 // prolog stage number is zero based.
2874 if (NumPhis > PrologStage + 1 - StageScheduled)
2875 NumPhis = PrologStage + 1 - StageScheduled;
2876 for (unsigned np = 0; np < NumPhis; ++np) {
2877 unsigned PhiOp1 = VRMap[PrologStage][Def];
2878 if (np <= PrologStage)
2879 PhiOp1 = VRMap[PrologStage - np][Def];
2880 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
2881 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2882 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2883 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
2884 PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
2885 }
2886 if (!InKernel)
2887 PhiOp2 = VRMap[PrevStage - np][Def];
2888
2889 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2890 unsigned NewReg = MRI.createVirtualRegister(RC);
2891
2892 MachineInstrBuilder NewPhi =
2893 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2894 TII->get(TargetOpcode::PHI), NewReg);
2895 NewPhi.addReg(PhiOp1).addMBB(BB1);
2896 NewPhi.addReg(PhiOp2).addMBB(BB2);
2897 if (np == 0)
2898 InstrMap[NewPhi] = &*BBI;
2899
2900 // Rewrite uses and update the map. The actions depend upon whether
2901 // we generating code for the kernel or epilog blocks.
2902 if (InKernel) {
2903 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2904 &*BBI, PhiOp1, NewReg);
2905 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2906 &*BBI, PhiOp2, NewReg);
2907
2908 PhiOp2 = NewReg;
2909 VRMap[PrevStage - np - 1][Def] = NewReg;
2910 } else {
2911 VRMap[CurStageNum - np][Def] = NewReg;
2912 if (np == NumPhis - 1)
2913 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2914 &*BBI, Def, NewReg);
2915 }
2916 if (IsLast && np == NumPhis - 1)
2917 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2918 }
2919 }
2920 }
2921}
2922
2923/// Remove instructions that generate values with no uses.
2924/// Typically, these are induction variable operations that generate values
2925/// used in the loop itself. A dead instruction has a definition with
2926/// no uses, or uses that occur in the original loop only.
2927void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
2928 MBBVectorTy &EpilogBBs) {
2929 // For each epilog block, check that the value defined by each instruction
2930 // is used. If not, delete it.
2931 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
2932 MBE = EpilogBBs.rend();
2933 MBB != MBE; ++MBB)
2934 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
2935 ME = (*MBB)->instr_rend();
2936 MI != ME;) {
2937 // From DeadMachineInstructionElem. Don't delete inline assembly.
2938 if (MI->isInlineAsm()) {
2939 ++MI;
2940 continue;
2941 }
2942 bool SawStore = false;
2943 // Check if it's safe to remove the instruction due to side effects.
2944 // We can, and want to, remove Phis here.
2945 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
2946 ++MI;
2947 continue;
2948 }
2949 bool used = true;
2950 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
2951 MOE = MI->operands_end();
2952 MOI != MOE; ++MOI) {
2953 if (!MOI->isReg() || !MOI->isDef())
2954 continue;
2955 unsigned reg = MOI->getReg();
Krzysztof Parzyszekb9b75b82018-03-26 15:53:23 +00002956 // Assume physical registers are used, unless they are marked dead.
2957 if (TargetRegisterInfo::isPhysicalRegister(reg)) {
2958 used = !MOI->isDead();
2959 if (used)
2960 break;
2961 continue;
2962 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00002963 unsigned realUses = 0;
2964 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
2965 EI = MRI.use_end();
2966 UI != EI; ++UI) {
2967 // Check if there are any uses that occur only in the original
2968 // loop. If so, that's not a real use.
2969 if (UI->getParent()->getParent() != BB) {
2970 realUses++;
2971 used = true;
2972 break;
2973 }
2974 }
2975 if (realUses > 0)
2976 break;
2977 used = false;
2978 }
2979 if (!used) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00002980 LIS.RemoveMachineInstrFromMaps(*MI);
Duncan P. N. Exon Smith5c001c32016-08-30 00:13:12 +00002981 MI++->eraseFromParent();
Brendon Cahoon254f8892016-07-29 16:44:44 +00002982 continue;
2983 }
2984 ++MI;
2985 }
2986 // In the kernel block, check if we can remove a Phi that generates a value
2987 // used in an instruction removed in the epilog block.
2988 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2989 BBE = KernelBB->getFirstNonPHI();
2990 BBI != BBE;) {
2991 MachineInstr *MI = &*BBI;
2992 ++BBI;
2993 unsigned reg = MI->getOperand(0).getReg();
2994 if (MRI.use_begin(reg) == MRI.use_end()) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00002995 LIS.RemoveMachineInstrFromMaps(*MI);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002996 MI->eraseFromParent();
2997 }
2998 }
2999}
3000
3001/// For loop carried definitions, we split the lifetime of a virtual register
3002/// that has uses past the definition in the next iteration. A copy with a new
3003/// virtual register is inserted before the definition, which helps with
3004/// generating a better register assignment.
3005///
3006/// v1 = phi(a, v2) v1 = phi(a, v2)
3007/// v2 = phi(b, v3) v2 = phi(b, v3)
3008/// v3 = .. v4 = copy v1
3009/// .. = V1 v3 = ..
3010/// .. = v4
3011void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
3012 MBBVectorTy &EpilogBBs,
3013 SMSchedule &Schedule) {
3014 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
Bob Wilson90ecac02018-01-04 02:58:15 +00003015 for (auto &PHI : KernelBB->phis()) {
3016 unsigned Def = PHI.getOperand(0).getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00003017 // Check for any Phi definition that used as an operand of another Phi
3018 // in the same block.
3019 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
3020 E = MRI.use_instr_end();
3021 I != E; ++I) {
3022 if (I->isPHI() && I->getParent() == KernelBB) {
3023 // Get the loop carried definition.
Bob Wilson90ecac02018-01-04 02:58:15 +00003024 unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003025 if (!LCDef)
3026 continue;
3027 MachineInstr *MI = MRI.getVRegDef(LCDef);
3028 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
3029 continue;
3030 // Search through the rest of the block looking for uses of the Phi
3031 // definition. If one occurs, then split the lifetime.
3032 unsigned SplitReg = 0;
3033 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
3034 KernelBB->instr_end()))
3035 if (BBJ.readsRegister(Def)) {
3036 // We split the lifetime when we find the first use.
3037 if (SplitReg == 0) {
3038 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
3039 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
3040 TII->get(TargetOpcode::COPY), SplitReg)
3041 .addReg(Def);
3042 }
3043 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
3044 }
3045 if (!SplitReg)
3046 continue;
3047 // Search through each of the epilog blocks for any uses to be renamed.
3048 for (auto &Epilog : EpilogBBs)
3049 for (auto &I : *Epilog)
3050 if (I.readsRegister(Def))
3051 I.substituteRegister(Def, SplitReg, 0, *TRI);
3052 break;
3053 }
3054 }
3055 }
3056}
3057
3058/// Remove the incoming block from the Phis in a basic block.
3059static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
3060 for (MachineInstr &MI : *BB) {
3061 if (!MI.isPHI())
3062 break;
3063 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
3064 if (MI.getOperand(i + 1).getMBB() == Incoming) {
3065 MI.RemoveOperand(i + 1);
3066 MI.RemoveOperand(i);
3067 break;
3068 }
3069 }
3070}
3071
3072/// Create branches from each prolog basic block to the appropriate epilog
3073/// block. These edges are needed if the loop ends before reaching the
3074/// kernel.
3075void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
3076 MachineBasicBlock *KernelBB,
3077 MBBVectorTy &EpilogBBs,
3078 SMSchedule &Schedule, ValueMapTy *VRMap) {
3079 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
3080 MachineInstr *IndVar = Pass.LI.LoopInductionVar;
3081 MachineInstr *Cmp = Pass.LI.LoopCompare;
3082 MachineBasicBlock *LastPro = KernelBB;
3083 MachineBasicBlock *LastEpi = KernelBB;
3084
3085 // Start from the blocks connected to the kernel and work "out"
3086 // to the first prolog and the last epilog blocks.
3087 SmallVector<MachineInstr *, 4> PrevInsts;
3088 unsigned MaxIter = PrologBBs.size() - 1;
3089 unsigned LC = UINT_MAX;
3090 unsigned LCMin = UINT_MAX;
3091 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
3092 // Add branches to the prolog that go to the corresponding
3093 // epilog, and the fall-thru prolog/kernel block.
3094 MachineBasicBlock *Prolog = PrologBBs[j];
3095 MachineBasicBlock *Epilog = EpilogBBs[i];
3096 // We've executed one iteration, so decrement the loop count and check for
3097 // the loop end.
3098 SmallVector<MachineOperand, 4> Cond;
3099 // Check if the LOOP0 has already been removed. If so, then there is no need
3100 // to reduce the trip count.
3101 if (LC != 0)
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003102 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j,
Brendon Cahoon254f8892016-07-29 16:44:44 +00003103 MaxIter);
3104
3105 // Record the value of the first trip count, which is used to determine if
3106 // branches and blocks can be removed for constant trip counts.
3107 if (LCMin == UINT_MAX)
3108 LCMin = LC;
3109
3110 unsigned numAdded = 0;
3111 if (TargetRegisterInfo::isVirtualRegister(LC)) {
3112 Prolog->addSuccessor(Epilog);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003113 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003114 } else if (j >= LCMin) {
3115 Prolog->addSuccessor(Epilog);
3116 Prolog->removeSuccessor(LastPro);
3117 LastEpi->removeSuccessor(Epilog);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003118 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003119 removePhis(Epilog, LastEpi);
3120 // Remove the blocks that are no longer referenced.
3121 if (LastPro != LastEpi) {
3122 LastEpi->clear();
3123 LastEpi->eraseFromParent();
3124 }
3125 LastPro->clear();
3126 LastPro->eraseFromParent();
3127 } else {
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003128 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003129 removePhis(Epilog, Prolog);
3130 }
3131 LastPro = Prolog;
3132 LastEpi = Epilog;
3133 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
3134 E = Prolog->instr_rend();
3135 I != E && numAdded > 0; ++I, --numAdded)
3136 updateInstruction(&*I, false, j, 0, Schedule, VRMap);
3137 }
3138}
3139
3140/// Return true if we can compute the amount the instruction changes
3141/// during each iteration. Set Delta to the amount of the change.
3142bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
3143 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3144 unsigned BaseReg;
3145 int64_t Offset;
3146 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
3147 return false;
3148
3149 MachineRegisterInfo &MRI = MF.getRegInfo();
3150 // Check if there is a Phi. If so, get the definition in the loop.
3151 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
3152 if (BaseDef && BaseDef->isPHI()) {
3153 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
3154 BaseDef = MRI.getVRegDef(BaseReg);
3155 }
3156 if (!BaseDef)
3157 return false;
3158
3159 int D = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003160 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003161 return false;
3162
3163 Delta = D;
3164 return true;
3165}
3166
3167/// Update the memory operand with a new offset when the pipeliner
Justin Lebarcf56e922016-08-12 23:58:19 +00003168/// generates a new copy of the instruction that refers to a
Brendon Cahoon254f8892016-07-29 16:44:44 +00003169/// different memory location.
3170void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
3171 MachineInstr &OldMI, unsigned Num) {
3172 if (Num == 0)
3173 return;
3174 // If the instruction has memory operands, then adjust the offset
3175 // when the instruction appears in different stages.
3176 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin();
3177 if (NumRefs == 0)
3178 return;
3179 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs);
3180 unsigned Refs = 0;
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003181 for (MachineMemOperand *MMO : NewMI.memoperands()) {
Justin Lebaradbf09e2016-09-11 01:38:58 +00003182 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) ||
3183 (!MMO->getValue())) {
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003184 NewMemRefs[Refs++] = MMO;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003185 continue;
3186 }
3187 unsigned Delta;
Krzysztof Parzyszek785b6ce2018-03-26 15:45:55 +00003188 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003189 int64_t AdjOffset = Delta * Num;
3190 NewMemRefs[Refs++] =
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003191 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize());
Krzysztof Parzyszek2d790172018-02-27 22:40:52 +00003192 } else {
3193 NewMI.dropMemRefs();
3194 return;
3195 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003196 }
3197 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs);
3198}
3199
3200/// Clone the instruction for the new pipelined loop and update the
3201/// memory operands, if needed.
3202MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
3203 unsigned CurStageNum,
3204 unsigned InstStageNum) {
3205 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3206 // Check for tied operands in inline asm instructions. This should be handled
3207 // elsewhere, but I'm not sure of the best solution.
3208 if (OldMI->isInlineAsm())
3209 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
3210 const auto &MO = OldMI->getOperand(i);
3211 if (MO.isReg() && MO.isUse())
3212 break;
3213 unsigned UseIdx;
3214 if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
3215 NewMI->tieOperands(i, UseIdx);
3216 }
3217 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3218 return NewMI;
3219}
3220
3221/// Clone the instruction for the new pipelined loop. If needed, this
3222/// function updates the instruction using the values saved in the
3223/// InstrChanges structure.
3224MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
3225 unsigned CurStageNum,
3226 unsigned InstStageNum,
3227 SMSchedule &Schedule) {
3228 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3229 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3230 InstrChanges.find(getSUnit(OldMI));
3231 if (It != InstrChanges.end()) {
3232 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3233 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003234 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003235 return nullptr;
3236 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
3237 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
3238 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
3239 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
3240 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3241 }
3242 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3243 return NewMI;
3244}
3245
3246/// Update the machine instruction with new virtual registers. This
3247/// function may change the defintions and/or uses.
3248void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
3249 unsigned CurStageNum,
3250 unsigned InstrStageNum,
3251 SMSchedule &Schedule,
3252 ValueMapTy *VRMap) {
3253 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
3254 MachineOperand &MO = NewMI->getOperand(i);
3255 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3256 continue;
3257 unsigned reg = MO.getReg();
3258 if (MO.isDef()) {
3259 // Create a new virtual register for the definition.
3260 const TargetRegisterClass *RC = MRI.getRegClass(reg);
3261 unsigned NewReg = MRI.createVirtualRegister(RC);
3262 MO.setReg(NewReg);
3263 VRMap[CurStageNum][reg] = NewReg;
3264 if (LastDef)
3265 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
3266 } else if (MO.isUse()) {
3267 MachineInstr *Def = MRI.getVRegDef(reg);
3268 // Compute the stage that contains the last definition for instruction.
3269 int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
3270 unsigned StageNum = CurStageNum;
3271 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
3272 // Compute the difference in stages between the defintion and the use.
3273 unsigned StageDiff = (InstrStageNum - DefStageNum);
3274 // Make an adjustment to get the last definition.
3275 StageNum -= StageDiff;
3276 }
3277 if (VRMap[StageNum].count(reg))
3278 MO.setReg(VRMap[StageNum][reg]);
3279 }
3280 }
3281}
3282
3283/// Return the instruction in the loop that defines the register.
3284/// If the definition is a Phi, then follow the Phi operand to
3285/// the instruction in the loop.
3286MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
3287 SmallPtrSet<MachineInstr *, 8> Visited;
3288 MachineInstr *Def = MRI.getVRegDef(Reg);
3289 while (Def->isPHI()) {
3290 if (!Visited.insert(Def).second)
3291 break;
3292 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
3293 if (Def->getOperand(i + 1).getMBB() == BB) {
3294 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
3295 break;
3296 }
3297 }
3298 return Def;
3299}
3300
3301/// Return the new name for the value from the previous stage.
3302unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
3303 unsigned LoopVal, unsigned LoopStage,
3304 ValueMapTy *VRMap,
3305 MachineBasicBlock *BB) {
3306 unsigned PrevVal = 0;
3307 if (StageNum > PhiStage) {
3308 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
3309 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
3310 // The name is defined in the previous stage.
3311 PrevVal = VRMap[StageNum - 1][LoopVal];
3312 else if (VRMap[StageNum].count(LoopVal))
3313 // The previous name is defined in the current stage when the instruction
3314 // order is swapped.
3315 PrevVal = VRMap[StageNum][LoopVal];
Krzysztof Parzyszekdf24da22016-12-22 18:49:55 +00003316 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003317 // The loop value hasn't yet been scheduled.
3318 PrevVal = LoopVal;
3319 else if (StageNum == PhiStage + 1)
3320 // The loop value is another phi, which has not been scheduled.
3321 PrevVal = getInitPhiReg(*LoopInst, BB);
3322 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
3323 // The loop value is another phi, which has been scheduled.
3324 PrevVal =
3325 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
3326 LoopStage, VRMap, BB);
3327 }
3328 return PrevVal;
3329}
3330
3331/// Rewrite the Phi values in the specified block to use the mappings
3332/// from the initial operand. Once the Phi is scheduled, we switch
3333/// to using the loop value instead of the Phi value, so those names
3334/// do not need to be rewritten.
3335void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
3336 unsigned StageNum,
3337 SMSchedule &Schedule,
3338 ValueMapTy *VRMap,
3339 InstrMapTy &InstrMap) {
Bob Wilson90ecac02018-01-04 02:58:15 +00003340 for (auto &PHI : BB->phis()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003341 unsigned InitVal = 0;
3342 unsigned LoopVal = 0;
Bob Wilson90ecac02018-01-04 02:58:15 +00003343 getPhiRegs(PHI, BB, InitVal, LoopVal);
3344 unsigned PhiDef = PHI.getOperand(0).getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00003345
3346 unsigned PhiStage =
3347 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
3348 unsigned LoopStage =
3349 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
3350 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
3351 if (NumPhis > StageNum)
3352 NumPhis = StageNum;
3353 for (unsigned np = 0; np <= NumPhis; ++np) {
3354 unsigned NewVal =
3355 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
3356 if (!NewVal)
3357 NewVal = InitVal;
Bob Wilson90ecac02018-01-04 02:58:15 +00003358 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI,
Brendon Cahoon254f8892016-07-29 16:44:44 +00003359 PhiDef, NewVal);
3360 }
3361 }
3362}
3363
3364/// Rewrite a previously scheduled instruction to use the register value
3365/// from the new instruction. Make sure the instruction occurs in the
3366/// basic block, and we don't change the uses in the new instruction.
3367void SwingSchedulerDAG::rewriteScheduledInstr(
3368 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
3369 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
3370 unsigned NewReg, unsigned PrevReg) {
3371 bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
3372 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
3373 // Rewrite uses that have been scheduled already to use the new
3374 // Phi register.
3375 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
3376 EI = MRI.use_end();
3377 UI != EI;) {
3378 MachineOperand &UseOp = *UI;
3379 MachineInstr *UseMI = UseOp.getParent();
3380 ++UI;
3381 if (UseMI->getParent() != BB)
3382 continue;
3383 if (UseMI->isPHI()) {
3384 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
3385 continue;
3386 if (getLoopPhiReg(*UseMI, BB) != OldReg)
3387 continue;
3388 }
3389 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
3390 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
3391 SUnit *OrigMISU = getSUnit(OrigInstr->second);
3392 int StageSched = Schedule.stageScheduled(OrigMISU);
3393 int CycleSched = Schedule.cycleScheduled(OrigMISU);
3394 unsigned ReplaceReg = 0;
3395 // This is the stage for the scheduled instruction.
3396 if (StagePhi == StageSched && Phi->isPHI()) {
3397 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
3398 if (PrevReg && InProlog)
3399 ReplaceReg = PrevReg;
3400 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
3401 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
3402 ReplaceReg = PrevReg;
3403 else
3404 ReplaceReg = NewReg;
3405 }
3406 // The scheduled instruction occurs before the scheduled Phi, and the
3407 // Phi is not loop carried.
3408 if (!InProlog && StagePhi + 1 == StageSched &&
3409 !Schedule.isLoopCarried(this, *Phi))
3410 ReplaceReg = NewReg;
3411 if (StagePhi > StageSched && Phi->isPHI())
3412 ReplaceReg = NewReg;
3413 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
3414 ReplaceReg = NewReg;
3415 if (ReplaceReg) {
3416 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
3417 UseOp.setReg(ReplaceReg);
3418 }
3419 }
3420}
3421
3422/// Check if we can change the instruction to use an offset value from the
3423/// previous iteration. If so, return true and set the base and offset values
3424/// so that we can rewrite the load, if necessary.
3425/// v1 = Phi(v0, v3)
3426/// v2 = load v1, 0
3427/// v3 = post_store v1, 4, x
3428/// This function enables the load to be rewritten as v2 = load v3, 4.
3429bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
3430 unsigned &BasePos,
3431 unsigned &OffsetPos,
3432 unsigned &NewBase,
3433 int64_t &Offset) {
3434 // Get the load instruction.
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003435 if (TII->isPostIncrement(*MI))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003436 return false;
3437 unsigned BasePosLd, OffsetPosLd;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003438 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003439 return false;
3440 unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
3441
3442 // Look for the Phi instruction.
Justin Bognerfdf9bf42017-10-10 23:50:49 +00003443 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
Brendon Cahoon254f8892016-07-29 16:44:44 +00003444 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
3445 if (!Phi || !Phi->isPHI())
3446 return false;
3447 // Get the register defined in the loop block.
3448 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
3449 if (!PrevReg)
3450 return false;
3451
3452 // Check for the post-increment load/store instruction.
3453 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
3454 if (!PrevDef || PrevDef == MI)
3455 return false;
3456
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003457 if (!TII->isPostIncrement(*PrevDef))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003458 return false;
3459
3460 unsigned BasePos1 = 0, OffsetPos1 = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003461 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003462 return false;
3463
Krzysztof Parzyszek40df8a22018-03-26 16:17:06 +00003464 // Make sure that the instructions do not access the same memory location in
3465 // the next iteration.
Brendon Cahoon254f8892016-07-29 16:44:44 +00003466 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
3467 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
Krzysztof Parzyszek40df8a22018-03-26 16:17:06 +00003468 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3469 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
3470 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
3471 MF.DeleteMachineInstr(NewMI);
3472 if (!Disjoint)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003473 return false;
3474
3475 // Set the return value once we determine that we return true.
3476 BasePos = BasePosLd;
3477 OffsetPos = OffsetPosLd;
3478 NewBase = PrevReg;
3479 Offset = StoreOffset;
3480 return true;
3481}
3482
3483/// Apply changes to the instruction if needed. The changes are need
3484/// to improve the scheduling and depend up on the final schedule.
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003485void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
3486 SMSchedule &Schedule) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003487 SUnit *SU = getSUnit(MI);
3488 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3489 InstrChanges.find(SU);
3490 if (It != InstrChanges.end()) {
3491 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3492 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003493 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003494 return;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003495 unsigned BaseReg = MI->getOperand(BasePos).getReg();
3496 MachineInstr *LoopDef = findDefInLoop(BaseReg);
3497 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
3498 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
3499 int BaseStageNum = Schedule.stageScheduled(SU);
3500 int BaseCycleNum = Schedule.cycleScheduled(SU);
3501 if (BaseStageNum < DefStageNum) {
3502 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3503 int OffsetDiff = DefStageNum - BaseStageNum;
3504 if (DefCycleNum < BaseCycleNum) {
3505 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
3506 if (OffsetDiff > 0)
3507 --OffsetDiff;
3508 }
3509 int64_t NewOffset =
3510 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
3511 NewMI->getOperand(OffsetPos).setImm(NewOffset);
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003512 SU->setInstr(NewMI);
3513 MISUnitMap[NewMI] = SU;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003514 NewMIs.insert(NewMI);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003515 }
3516 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003517}
3518
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003519/// Return true for an order or output dependence that is loop carried
3520/// potentially. A dependence is loop carried if the destination defines a valu
3521/// that may be used or defined by the source in a subsequent iteration.
3522bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
3523 bool isSucc) {
3524 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
3525 Dep.isArtificial())
Brendon Cahoon254f8892016-07-29 16:44:44 +00003526 return false;
3527
3528 if (!SwpPruneLoopCarried)
3529 return true;
3530
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003531 if (Dep.getKind() == SDep::Output)
3532 return true;
3533
Brendon Cahoon254f8892016-07-29 16:44:44 +00003534 MachineInstr *SI = Source->getInstr();
3535 MachineInstr *DI = Dep.getSUnit()->getInstr();
3536 if (!isSucc)
3537 std::swap(SI, DI);
3538 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
3539
3540 // Assume ordered loads and stores may have a loop carried dependence.
3541 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
3542 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
3543 return true;
3544
3545 // Only chain dependences between a load and store can be loop carried.
3546 if (!DI->mayStore() || !SI->mayLoad())
3547 return false;
3548
3549 unsigned DeltaS, DeltaD;
3550 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
3551 return true;
3552
3553 unsigned BaseRegS, BaseRegD;
3554 int64_t OffsetS, OffsetD;
3555 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3556 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) ||
3557 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI))
3558 return true;
3559
3560 if (BaseRegS != BaseRegD)
3561 return true;
3562
Krzysztof Parzyszek8c07d0c2018-03-26 16:58:40 +00003563 // Check that the base register is incremented by a constant value for each
3564 // iteration.
3565 MachineInstr *Def = MRI.getVRegDef(BaseRegS);
3566 if (!Def || !Def->isPHI())
3567 return true;
3568 unsigned InitVal = 0;
3569 unsigned LoopVal = 0;
3570 getPhiRegs(*Def, BB, InitVal, LoopVal);
3571 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
3572 int D = 0;
3573 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
3574 return true;
3575
Brendon Cahoon254f8892016-07-29 16:44:44 +00003576 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
3577 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
3578
3579 // This is the main test, which checks the offset values and the loop
3580 // increment value to determine if the accesses may be loop carried.
3581 if (OffsetS >= OffsetD)
3582 return OffsetS + AccessSizeS > DeltaS;
Simon Pilgrimfbfb19b2017-03-16 19:52:00 +00003583 else
Brendon Cahoon254f8892016-07-29 16:44:44 +00003584 return OffsetD + AccessSizeD > DeltaD;
3585
3586 return true;
3587}
3588
Krzysztof Parzyszek88391242016-12-22 19:21:20 +00003589void SwingSchedulerDAG::postprocessDAG() {
3590 for (auto &M : Mutations)
3591 M->apply(this);
3592}
3593
Brendon Cahoon254f8892016-07-29 16:44:44 +00003594/// Try to schedule the node at the specified StartCycle and continue
3595/// until the node is schedule or the EndCycle is reached. This function
3596/// returns true if the node is scheduled. This routine may search either
3597/// forward or backward for a place to insert the instruction based upon
3598/// the relative values of StartCycle and EndCycle.
3599bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
3600 bool forward = true;
3601 if (StartCycle > EndCycle)
3602 forward = false;
3603
3604 // The terminating condition depends on the direction.
3605 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
3606 for (int curCycle = StartCycle; curCycle != termCycle;
3607 forward ? ++curCycle : --curCycle) {
3608
3609 // Add the already scheduled instructions at the specified cycle to the DFA.
3610 Resources->clearResources();
3611 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
3612 checkCycle <= LastCycle; checkCycle += II) {
3613 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
3614
3615 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
3616 E = cycleInstrs.end();
3617 I != E; ++I) {
3618 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
3619 continue;
3620 assert(Resources->canReserveResources(*(*I)->getInstr()) &&
3621 "These instructions have already been scheduled.");
3622 Resources->reserveResources(*(*I)->getInstr());
3623 }
3624 }
3625 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
3626 Resources->canReserveResources(*SU->getInstr())) {
3627 DEBUG({
3628 dbgs() << "\tinsert at cycle " << curCycle << " ";
3629 SU->getInstr()->dump();
3630 });
3631
3632 ScheduledInstrs[curCycle].push_back(SU);
3633 InstrToCycle.insert(std::make_pair(SU, curCycle));
3634 if (curCycle > LastCycle)
3635 LastCycle = curCycle;
3636 if (curCycle < FirstCycle)
3637 FirstCycle = curCycle;
3638 return true;
3639 }
3640 DEBUG({
3641 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
3642 SU->getInstr()->dump();
3643 });
3644 }
3645 return false;
3646}
3647
3648// Return the cycle of the earliest scheduled instruction in the chain.
3649int SMSchedule::earliestCycleInChain(const SDep &Dep) {
3650 SmallPtrSet<SUnit *, 8> Visited;
3651 SmallVector<SDep, 8> Worklist;
3652 Worklist.push_back(Dep);
3653 int EarlyCycle = INT_MAX;
3654 while (!Worklist.empty()) {
3655 const SDep &Cur = Worklist.pop_back_val();
3656 SUnit *PrevSU = Cur.getSUnit();
3657 if (Visited.count(PrevSU))
3658 continue;
3659 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
3660 if (it == InstrToCycle.end())
3661 continue;
3662 EarlyCycle = std::min(EarlyCycle, it->second);
3663 for (const auto &PI : PrevSU->Preds)
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003664 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003665 Worklist.push_back(PI);
3666 Visited.insert(PrevSU);
3667 }
3668 return EarlyCycle;
3669}
3670
3671// Return the cycle of the latest scheduled instruction in the chain.
3672int SMSchedule::latestCycleInChain(const SDep &Dep) {
3673 SmallPtrSet<SUnit *, 8> Visited;
3674 SmallVector<SDep, 8> Worklist;
3675 Worklist.push_back(Dep);
3676 int LateCycle = INT_MIN;
3677 while (!Worklist.empty()) {
3678 const SDep &Cur = Worklist.pop_back_val();
3679 SUnit *SuccSU = Cur.getSUnit();
3680 if (Visited.count(SuccSU))
3681 continue;
3682 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
3683 if (it == InstrToCycle.end())
3684 continue;
3685 LateCycle = std::max(LateCycle, it->second);
3686 for (const auto &SI : SuccSU->Succs)
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003687 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003688 Worklist.push_back(SI);
3689 Visited.insert(SuccSU);
3690 }
3691 return LateCycle;
3692}
3693
3694/// If an instruction has a use that spans multiple iterations, then
3695/// return true. These instructions are characterized by having a back-ege
3696/// to a Phi, which contains a reference to another Phi.
3697static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
3698 for (auto &P : SU->Preds)
3699 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
3700 for (auto &S : P.getSUnit()->Succs)
Krzysztof Parzyszekb9b75b82018-03-26 15:53:23 +00003701 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
Brendon Cahoon254f8892016-07-29 16:44:44 +00003702 return P.getSUnit();
3703 return nullptr;
3704}
3705
3706/// Compute the scheduling start slot for the instruction. The start slot
3707/// depends on any predecessor or successor nodes scheduled already.
3708void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
3709 int *MinEnd, int *MaxStart, int II,
3710 SwingSchedulerDAG *DAG) {
3711 // Iterate over each instruction that has been scheduled already. The start
3712 // slot computuation depends on whether the previously scheduled instruction
3713 // is a predecessor or successor of the specified instruction.
3714 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
3715
3716 // Iterate over each instruction in the current cycle.
3717 for (SUnit *I : getInstructions(cycle)) {
3718 // Because we're processing a DAG for the dependences, we recognize
3719 // the back-edge in recurrences by anti dependences.
3720 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
3721 const SDep &Dep = SU->Preds[i];
3722 if (Dep.getSUnit() == I) {
3723 if (!DAG->isBackedge(SU, Dep)) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003724 int EarlyStart = cycle + Dep.getLatency() -
Brendon Cahoon254f8892016-07-29 16:44:44 +00003725 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3726 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003727 if (DAG->isLoopCarriedDep(SU, Dep, false)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003728 int End = earliestCycleInChain(Dep) + (II - 1);
3729 *MinEnd = std::min(*MinEnd, End);
3730 }
3731 } else {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003732 int LateStart = cycle - Dep.getLatency() +
Brendon Cahoon254f8892016-07-29 16:44:44 +00003733 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3734 *MinLateStart = std::min(*MinLateStart, LateStart);
3735 }
3736 }
3737 // For instruction that requires multiple iterations, make sure that
3738 // the dependent instruction is not scheduled past the definition.
3739 SUnit *BE = multipleIterations(I, DAG);
3740 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
3741 !SU->isPred(I))
3742 *MinLateStart = std::min(*MinLateStart, cycle);
3743 }
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00003744 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003745 if (SU->Succs[i].getSUnit() == I) {
3746 const SDep &Dep = SU->Succs[i];
3747 if (!DAG->isBackedge(SU, Dep)) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003748 int LateStart = cycle - Dep.getLatency() +
Brendon Cahoon254f8892016-07-29 16:44:44 +00003749 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3750 *MinLateStart = std::min(*MinLateStart, LateStart);
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003751 if (DAG->isLoopCarriedDep(SU, Dep)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003752 int Start = latestCycleInChain(Dep) + 1 - II;
3753 *MaxStart = std::max(*MaxStart, Start);
3754 }
3755 } else {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003756 int EarlyStart = cycle + Dep.getLatency() -
Brendon Cahoon254f8892016-07-29 16:44:44 +00003757 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3758 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3759 }
3760 }
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00003761 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003762 }
3763 }
3764}
3765
3766/// Order the instructions within a cycle so that the definitions occur
3767/// before the uses. Returns true if the instruction is added to the start
3768/// of the list, or false if added to the end.
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003769void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
Brendon Cahoon254f8892016-07-29 16:44:44 +00003770 std::deque<SUnit *> &Insts) {
3771 MachineInstr *MI = SU->getInstr();
3772 bool OrderBeforeUse = false;
3773 bool OrderAfterDef = false;
3774 bool OrderBeforeDef = false;
3775 unsigned MoveDef = 0;
3776 unsigned MoveUse = 0;
3777 int StageInst1 = stageScheduled(SU);
3778
3779 unsigned Pos = 0;
3780 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
3781 ++I, ++Pos) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003782 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3783 MachineOperand &MO = MI->getOperand(i);
3784 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3785 continue;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003786
Brendon Cahoon254f8892016-07-29 16:44:44 +00003787 unsigned Reg = MO.getReg();
3788 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003789 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003790 if (MI->getOperand(BasePos).getReg() == Reg)
3791 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
3792 Reg = NewReg;
3793 bool Reads, Writes;
3794 std::tie(Reads, Writes) =
3795 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
3796 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
3797 OrderBeforeUse = true;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003798 if (MoveUse == 0)
3799 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003800 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
3801 // Add the instruction after the scheduled instruction.
3802 OrderAfterDef = true;
3803 MoveDef = Pos;
3804 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
3805 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
3806 OrderBeforeUse = true;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003807 if (MoveUse == 0)
3808 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003809 } else {
3810 OrderAfterDef = true;
3811 MoveDef = Pos;
3812 }
3813 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
3814 OrderBeforeUse = true;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003815 if (MoveUse == 0)
3816 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003817 if (MoveUse != 0) {
3818 OrderAfterDef = true;
3819 MoveDef = Pos - 1;
3820 }
3821 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
3822 // Add the instruction before the scheduled instruction.
3823 OrderBeforeUse = true;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003824 if (MoveUse == 0)
3825 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003826 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
3827 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003828 if (MoveUse == 0) {
3829 OrderBeforeDef = true;
3830 MoveUse = Pos;
3831 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003832 }
3833 }
3834 // Check for order dependences between instructions. Make sure the source
3835 // is ordered before the destination.
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003836 for (auto &S : SU->Succs) {
3837 if (S.getSUnit() != *I)
3838 continue;
3839 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3840 OrderBeforeUse = true;
3841 if (Pos < MoveUse)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003842 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003843 }
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003844 }
3845 for (auto &P : SU->Preds) {
3846 if (P.getSUnit() != *I)
3847 continue;
3848 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3849 OrderAfterDef = true;
3850 MoveDef = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003851 }
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003852 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003853 }
3854
3855 // A circular dependence.
3856 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3857 OrderBeforeUse = false;
3858
3859 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3860 // to a loop-carried dependence.
3861 if (OrderBeforeDef)
3862 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3863
3864 // The uncommon case when the instruction order needs to be updated because
3865 // there is both a use and def.
3866 if (OrderBeforeUse && OrderAfterDef) {
3867 SUnit *UseSU = Insts.at(MoveUse);
3868 SUnit *DefSU = Insts.at(MoveDef);
3869 if (MoveUse > MoveDef) {
3870 Insts.erase(Insts.begin() + MoveUse);
3871 Insts.erase(Insts.begin() + MoveDef);
3872 } else {
3873 Insts.erase(Insts.begin() + MoveDef);
3874 Insts.erase(Insts.begin() + MoveUse);
3875 }
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003876 orderDependence(SSD, UseSU, Insts);
3877 orderDependence(SSD, SU, Insts);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003878 orderDependence(SSD, DefSU, Insts);
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003879 return;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003880 }
3881 // Put the new instruction first if there is a use in the list. Otherwise,
3882 // put it at the end of the list.
3883 if (OrderBeforeUse)
3884 Insts.push_front(SU);
3885 else
3886 Insts.push_back(SU);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003887}
3888
3889/// Return true if the scheduled Phi has a loop carried operand.
3890bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
3891 if (!Phi.isPHI())
3892 return false;
3893 assert(Phi.isPHI() && "Expecing a Phi.");
3894 SUnit *DefSU = SSD->getSUnit(&Phi);
3895 unsigned DefCycle = cycleScheduled(DefSU);
3896 int DefStage = stageScheduled(DefSU);
3897
3898 unsigned InitVal = 0;
3899 unsigned LoopVal = 0;
3900 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
3901 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
3902 if (!UseSU)
3903 return true;
3904 if (UseSU->getInstr()->isPHI())
3905 return true;
3906 unsigned LoopCycle = cycleScheduled(UseSU);
3907 int LoopStage = stageScheduled(UseSU);
Simon Pilgrim3d8482a2016-11-14 10:40:23 +00003908 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003909}
3910
3911/// Return true if the instruction is a definition that is loop carried
3912/// and defines the use on the next iteration.
3913/// v1 = phi(v2, v3)
3914/// (Def) v3 = op v1
3915/// (MO) = v1
3916/// If MO appears before Def, then then v1 and v3 may get assigned to the same
3917/// register.
3918bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
3919 MachineInstr *Def, MachineOperand &MO) {
3920 if (!MO.isReg())
3921 return false;
3922 if (Def->isPHI())
3923 return false;
3924 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
3925 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3926 return false;
3927 if (!isLoopCarried(SSD, *Phi))
3928 return false;
3929 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
3930 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
3931 MachineOperand &DMO = Def->getOperand(i);
3932 if (!DMO.isReg() || !DMO.isDef())
3933 continue;
3934 if (DMO.getReg() == LoopReg)
3935 return true;
3936 }
3937 return false;
3938}
3939
3940// Check if the generated schedule is valid. This function checks if
3941// an instruction that uses a physical register is scheduled in a
3942// different stage than the definition. The pipeliner does not handle
3943// physical register values that may cross a basic block boundary.
3944bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003945 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
3946 SUnit &SU = SSD->SUnits[i];
3947 if (!SU.hasPhysRegDefs)
3948 continue;
3949 int StageDef = stageScheduled(&SU);
3950 assert(StageDef != -1 && "Instruction should have been scheduled.");
3951 for (auto &SI : SU.Succs)
3952 if (SI.isAssignedRegDep())
Simon Pilgrimb39236b2016-07-29 18:57:32 +00003953 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003954 if (stageScheduled(SI.getSUnit()) != StageDef)
3955 return false;
3956 }
3957 return true;
3958}
3959
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003960/// A property of the node order in swing-modulo-scheduling is
3961/// that for nodes outside circuits the following holds:
3962/// none of them is scheduled after both a successor and a
3963/// predecessor.
3964/// The method below checks whether the property is met.
3965/// If not, debug information is printed and statistics information updated.
3966/// Note that we do not use an assert statement.
3967/// The reason is that although an invalid node oder may prevent
3968/// the pipeliner from finding a pipelined schedule for arbitrary II,
3969/// it does not lead to the generation of incorrect code.
3970void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
3971
3972 // a sorted vector that maps each SUnit to its index in the NodeOrder
3973 typedef std::pair<SUnit *, unsigned> UnitIndex;
3974 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
3975
3976 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
3977 Indices.push_back(std::make_pair(NodeOrder[i], i));
3978
3979 auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
3980 return std::get<0>(i1) < std::get<0>(i2);
3981 };
3982
3983 // sort, so that we can perform a binary search
Mandeep Singh Grange92f0cf2018-04-06 18:08:42 +00003984 llvm::sort(Indices.begin(), Indices.end(), CompareKey);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003985
3986 bool Valid = true;
David L Kreitzerfebf70a2018-03-16 21:21:23 +00003987 (void)Valid;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003988 // for each SUnit in the NodeOrder, check whether
3989 // it appears after both a successor and a predecessor
3990 // of the SUnit. If this is the case, and the SUnit
3991 // is not part of circuit, then the NodeOrder is not
3992 // valid.
3993 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
3994 SUnit *SU = NodeOrder[i];
3995 unsigned Index = i;
3996
3997 bool PredBefore = false;
3998 bool SuccBefore = false;
3999
4000 SUnit *Succ;
4001 SUnit *Pred;
David L Kreitzerfebf70a2018-03-16 21:21:23 +00004002 (void)Succ;
4003 (void)Pred;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00004004
4005 for (SDep &PredEdge : SU->Preds) {
4006 SUnit *PredSU = PredEdge.getSUnit();
4007 unsigned PredIndex =
4008 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
4009 std::make_pair(PredSU, 0), CompareKey));
4010 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
4011 PredBefore = true;
4012 Pred = PredSU;
4013 break;
4014 }
4015 }
4016
4017 for (SDep &SuccEdge : SU->Succs) {
4018 SUnit *SuccSU = SuccEdge.getSUnit();
4019 unsigned SuccIndex =
4020 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
4021 std::make_pair(SuccSU, 0), CompareKey));
4022 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
4023 SuccBefore = true;
4024 Succ = SuccSU;
4025 break;
4026 }
4027 }
4028
4029 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
4030 // instructions in circuits are allowed to be scheduled
4031 // after both a successor and predecessor.
4032 bool InCircuit = std::any_of(
4033 Circuits.begin(), Circuits.end(),
4034 [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
4035 if (InCircuit)
4036 DEBUG(dbgs() << "In a circuit, predecessor ";);
4037 else {
4038 Valid = false;
4039 NumNodeOrderIssues++;
4040 DEBUG(dbgs() << "Predecessor ";);
4041 }
4042 DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
4043 << " are scheduled before node " << SU->NodeNum << "\n";);
4044 }
4045 }
4046
4047 DEBUG({
4048 if (!Valid)
4049 dbgs() << "Invalid node order found!\n";
4050 });
4051}
4052
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004053/// Attempt to fix the degenerate cases when the instruction serialization
4054/// causes the register lifetimes to overlap. For example,
4055/// p' = store_pi(p, b)
4056/// = load p, offset
4057/// In this case p and p' overlap, which means that two registers are needed.
4058/// Instead, this function changes the load to use p' and updates the offset.
4059void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
4060 unsigned OverlapReg = 0;
4061 unsigned NewBaseReg = 0;
4062 for (SUnit *SU : Instrs) {
4063 MachineInstr *MI = SU->getInstr();
4064 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
4065 const MachineOperand &MO = MI->getOperand(i);
4066 // Look for an instruction that uses p. The instruction occurs in the
4067 // same cycle but occurs later in the serialized order.
4068 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
4069 // Check that the instruction appears in the InstrChanges structure,
4070 // which contains instructions that can have the offset updated.
4071 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
4072 InstrChanges.find(SU);
4073 if (It != InstrChanges.end()) {
4074 unsigned BasePos, OffsetPos;
4075 // Update the base register and adjust the offset.
4076 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
Krzysztof Parzyszek12bdcab2017-10-11 15:59:51 +00004077 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
4078 NewMI->getOperand(BasePos).setReg(NewBaseReg);
4079 int64_t NewOffset =
4080 MI->getOperand(OffsetPos).getImm() - It->second.second;
4081 NewMI->getOperand(OffsetPos).setImm(NewOffset);
4082 SU->setInstr(NewMI);
4083 MISUnitMap[NewMI] = SU;
4084 NewMIs.insert(NewMI);
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004085 }
4086 }
4087 OverlapReg = 0;
4088 NewBaseReg = 0;
4089 break;
4090 }
4091 // Look for an instruction of the form p' = op(p), which uses and defines
4092 // two virtual registers that get allocated to the same physical register.
4093 unsigned TiedUseIdx = 0;
4094 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
4095 // OverlapReg is p in the example above.
4096 OverlapReg = MI->getOperand(TiedUseIdx).getReg();
4097 // NewBaseReg is p' in the example above.
4098 NewBaseReg = MI->getOperand(i).getReg();
4099 break;
4100 }
4101 }
4102 }
4103}
4104
Brendon Cahoon254f8892016-07-29 16:44:44 +00004105/// After the schedule has been formed, call this function to combine
4106/// the instructions from the different stages/cycles. That is, this
4107/// function creates a schedule that represents a single iteration.
4108void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
4109 // Move all instructions to the first stage from later stages.
4110 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
4111 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
4112 ++stage) {
4113 std::deque<SUnit *> &cycleInstrs =
4114 ScheduledInstrs[cycle + (stage * InitiationInterval)];
4115 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
4116 E = cycleInstrs.rend();
4117 I != E; ++I)
4118 ScheduledInstrs[cycle].push_front(*I);
4119 }
4120 }
4121 // Iterate over the definitions in each instruction, and compute the
4122 // stage difference for each use. Keep the maximum value.
4123 for (auto &I : InstrToCycle) {
4124 int DefStage = stageScheduled(I.first);
4125 MachineInstr *MI = I.first->getInstr();
4126 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
4127 MachineOperand &Op = MI->getOperand(i);
4128 if (!Op.isReg() || !Op.isDef())
4129 continue;
4130
4131 unsigned Reg = Op.getReg();
4132 unsigned MaxDiff = 0;
4133 bool PhiIsSwapped = false;
4134 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
4135 EI = MRI.use_end();
4136 UI != EI; ++UI) {
4137 MachineOperand &UseOp = *UI;
4138 MachineInstr *UseMI = UseOp.getParent();
4139 SUnit *SUnitUse = SSD->getSUnit(UseMI);
4140 int UseStage = stageScheduled(SUnitUse);
4141 unsigned Diff = 0;
4142 if (UseStage != -1 && UseStage >= DefStage)
4143 Diff = UseStage - DefStage;
4144 if (MI->isPHI()) {
4145 if (isLoopCarried(SSD, *MI))
4146 ++Diff;
4147 else
4148 PhiIsSwapped = true;
4149 }
4150 MaxDiff = std::max(Diff, MaxDiff);
4151 }
4152 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
4153 }
4154 }
4155
4156 // Erase all the elements in the later stages. Only one iteration should
4157 // remain in the scheduled list, and it contains all the instructions.
4158 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
4159 ScheduledInstrs.erase(cycle);
4160
4161 // Change the registers in instruction as specified in the InstrChanges
4162 // map. We need to use the new registers to create the correct order.
4163 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
4164 SUnit *SU = &SSD->SUnits[i];
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004165 SSD->applyInstrChange(SU->getInstr(), *this);
Brendon Cahoon254f8892016-07-29 16:44:44 +00004166 }
4167
4168 // Reorder the instructions in each cycle to fix and improve the
4169 // generated code.
4170 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
4171 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00004172 std::deque<SUnit *> newOrderPhi;
Brendon Cahoon254f8892016-07-29 16:44:44 +00004173 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
4174 SUnit *SU = cycleInstrs[i];
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00004175 if (SU->getInstr()->isPHI())
4176 newOrderPhi.push_back(SU);
Brendon Cahoon254f8892016-07-29 16:44:44 +00004177 }
4178 std::deque<SUnit *> newOrderI;
Brendon Cahoon254f8892016-07-29 16:44:44 +00004179 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
4180 SUnit *SU = cycleInstrs[i];
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00004181 if (!SU->getInstr()->isPHI())
Brendon Cahoon254f8892016-07-29 16:44:44 +00004182 orderDependence(SSD, SU, newOrderI);
4183 }
4184 // Replace the old order with the new order.
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00004185 cycleInstrs.swap(newOrderPhi);
Brendon Cahoon254f8892016-07-29 16:44:44 +00004186 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004187 SSD->fixupRegisterOverlaps(cycleInstrs);
Brendon Cahoon254f8892016-07-29 16:44:44 +00004188 }
4189
4190 DEBUG(dump(););
4191}
4192
Aaron Ballman615eb472017-10-15 14:32:27 +00004193#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Brendon Cahoon254f8892016-07-29 16:44:44 +00004194/// Print the schedule information to the given output.
4195void SMSchedule::print(raw_ostream &os) const {
4196 // Iterate over each cycle.
4197 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
4198 // Iterate over each instruction in the cycle.
4199 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
4200 for (SUnit *CI : cycleInstrs->second) {
4201 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
4202 os << "(" << CI->NodeNum << ") ";
4203 CI->getInstr()->print(os);
4204 os << "\n";
4205 }
4206 }
4207}
4208
4209/// Utility function used for debugging to print the schedule.
Matthias Braun8c209aa2017-01-28 02:02:38 +00004210LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
4211#endif