blob: 74176b8eb635a6f48bff241dc6921ae2070c1b29 [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000066#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000071#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000073#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000074#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000077#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000078#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000081#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000082#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000084#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000085#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000086#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000087#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000088#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000089#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000090#include "llvm/Support/raw_ostream.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000091#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000092using namespace llvm;
93
Chandler Carruthf1221bd2014-04-22 02:48:03 +000094#define DEBUG_TYPE "scalar-evolution"
95
Chris Lattner57ef9422006-12-19 22:30:33 +000096STATISTIC(NumArrayLenItCounts,
97 "Number of trip counts computed with array length");
98STATISTIC(NumTripCountsComputed,
99 "Number of loops with predictable loop counts");
100STATISTIC(NumTripCountsNotComputed,
101 "Number of loops without predictable loop counts");
102STATISTIC(NumBruteForceTripCountsComputed,
103 "Number of loops with trip counts computed by force");
104
Dan Gohmand78c4002008-05-13 00:00:25 +0000105static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000106MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
107 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000108 "symbolically execute a constant "
109 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000110 cl::init(100));
111
Benjamin Kramer214935e2012-10-26 17:31:32 +0000112// FIXME: Enable this with XDEBUG when the test suite is clean.
113static cl::opt<bool>
114VerifySCEV("verify-scev",
115 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
116
Owen Anderson8ac477f2010-10-12 19:48:12 +0000117INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
118 "Scalar Evolution Analysis", false, true)
Chandler Carruth66b31302015-01-04 12:03:27 +0000119INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000120INITIALIZE_PASS_DEPENDENCY(LoopInfo)
Chandler Carruth73523022014-01-13 13:07:17 +0000121INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chad Rosierc24b86f2011-12-01 03:08:23 +0000122INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000123INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000124 "Scalar Evolution Analysis", false, true)
Devang Patel8c78a0b2007-05-03 01:11:54 +0000125char ScalarEvolution::ID = 0;
Chris Lattnerd934c702004-04-02 20:23:17 +0000126
127//===----------------------------------------------------------------------===//
128// SCEV class definitions
129//===----------------------------------------------------------------------===//
130
131//===----------------------------------------------------------------------===//
132// Implementation of the SCEV class.
133//
Dan Gohman3423e722009-06-30 20:13:32 +0000134
Manman Ren49d684e2012-09-12 05:06:18 +0000135#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000136void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000137 print(dbgs());
138 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000139}
Manman Renc3366cc2012-09-06 19:55:56 +0000140#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000141
Dan Gohman534749b2010-11-17 22:27:42 +0000142void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000143 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000144 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000145 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000146 return;
147 case scTruncate: {
148 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
149 const SCEV *Op = Trunc->getOperand();
150 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
151 << *Trunc->getType() << ")";
152 return;
153 }
154 case scZeroExtend: {
155 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
156 const SCEV *Op = ZExt->getOperand();
157 OS << "(zext " << *Op->getType() << " " << *Op << " to "
158 << *ZExt->getType() << ")";
159 return;
160 }
161 case scSignExtend: {
162 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
163 const SCEV *Op = SExt->getOperand();
164 OS << "(sext " << *Op->getType() << " " << *Op << " to "
165 << *SExt->getType() << ")";
166 return;
167 }
168 case scAddRecExpr: {
169 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
170 OS << "{" << *AR->getOperand(0);
171 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
172 OS << ",+," << *AR->getOperand(i);
173 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000174 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000175 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000176 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000177 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000178 if (AR->getNoWrapFlags(FlagNW) &&
179 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
180 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000181 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000182 OS << ">";
183 return;
184 }
185 case scAddExpr:
186 case scMulExpr:
187 case scUMaxExpr:
188 case scSMaxExpr: {
189 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000190 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000191 switch (NAry->getSCEVType()) {
192 case scAddExpr: OpStr = " + "; break;
193 case scMulExpr: OpStr = " * "; break;
194 case scUMaxExpr: OpStr = " umax "; break;
195 case scSMaxExpr: OpStr = " smax "; break;
196 }
197 OS << "(";
198 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
199 I != E; ++I) {
200 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000201 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000202 OS << OpStr;
203 }
204 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000205 switch (NAry->getSCEVType()) {
206 case scAddExpr:
207 case scMulExpr:
208 if (NAry->getNoWrapFlags(FlagNUW))
209 OS << "<nuw>";
210 if (NAry->getNoWrapFlags(FlagNSW))
211 OS << "<nsw>";
212 }
Dan Gohman534749b2010-11-17 22:27:42 +0000213 return;
214 }
215 case scUDivExpr: {
216 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
217 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
218 return;
219 }
220 case scUnknown: {
221 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000222 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000223 if (U->isSizeOf(AllocTy)) {
224 OS << "sizeof(" << *AllocTy << ")";
225 return;
226 }
227 if (U->isAlignOf(AllocTy)) {
228 OS << "alignof(" << *AllocTy << ")";
229 return;
230 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000231
Chris Lattner229907c2011-07-18 04:54:35 +0000232 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000233 Constant *FieldNo;
234 if (U->isOffsetOf(CTy, FieldNo)) {
235 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000236 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000237 OS << ")";
238 return;
239 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000240
Dan Gohman534749b2010-11-17 22:27:42 +0000241 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000242 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000243 return;
244 }
245 case scCouldNotCompute:
246 OS << "***COULDNOTCOMPUTE***";
247 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000248 }
249 llvm_unreachable("Unknown SCEV kind!");
250}
251
Chris Lattner229907c2011-07-18 04:54:35 +0000252Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000253 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000254 case scConstant:
255 return cast<SCEVConstant>(this)->getType();
256 case scTruncate:
257 case scZeroExtend:
258 case scSignExtend:
259 return cast<SCEVCastExpr>(this)->getType();
260 case scAddRecExpr:
261 case scMulExpr:
262 case scUMaxExpr:
263 case scSMaxExpr:
264 return cast<SCEVNAryExpr>(this)->getType();
265 case scAddExpr:
266 return cast<SCEVAddExpr>(this)->getType();
267 case scUDivExpr:
268 return cast<SCEVUDivExpr>(this)->getType();
269 case scUnknown:
270 return cast<SCEVUnknown>(this)->getType();
271 case scCouldNotCompute:
272 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000273 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000274 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000275}
276
Dan Gohmanbe928e32008-06-18 16:23:07 +0000277bool SCEV::isZero() const {
278 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
279 return SC->getValue()->isZero();
280 return false;
281}
282
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000283bool SCEV::isOne() const {
284 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
285 return SC->getValue()->isOne();
286 return false;
287}
Chris Lattnerd934c702004-04-02 20:23:17 +0000288
Dan Gohman18a96bb2009-06-24 00:30:26 +0000289bool SCEV::isAllOnesValue() const {
290 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
291 return SC->getValue()->isAllOnesValue();
292 return false;
293}
294
Andrew Trick881a7762012-01-07 00:27:31 +0000295/// isNonConstantNegative - Return true if the specified scev is negated, but
296/// not a constant.
297bool SCEV::isNonConstantNegative() const {
298 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
299 if (!Mul) return false;
300
301 // If there is a constant factor, it will be first.
302 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
303 if (!SC) return false;
304
305 // Return true if the value is negative, this matches things like (-42 * V).
306 return SC->getValue()->getValue().isNegative();
307}
308
Owen Anderson04052ec2009-06-22 21:57:23 +0000309SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000310 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000311
Chris Lattnerd934c702004-04-02 20:23:17 +0000312bool SCEVCouldNotCompute::classof(const SCEV *S) {
313 return S->getSCEVType() == scCouldNotCompute;
314}
315
Dan Gohmanaf752342009-07-07 17:06:11 +0000316const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000317 FoldingSetNodeID ID;
318 ID.AddInteger(scConstant);
319 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000320 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000321 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000322 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000323 UniqueSCEVs.InsertNode(S, IP);
324 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000325}
Chris Lattnerd934c702004-04-02 20:23:17 +0000326
Nick Lewycky31eaca52014-01-27 10:04:03 +0000327const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000328 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000329}
330
Dan Gohmanaf752342009-07-07 17:06:11 +0000331const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000332ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
333 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000334 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000335}
336
Dan Gohman24ceda82010-06-18 19:54:20 +0000337SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000338 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000339 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000340
Dan Gohman24ceda82010-06-18 19:54:20 +0000341SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000342 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000343 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000344 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000346 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000347}
Chris Lattnerd934c702004-04-02 20:23:17 +0000348
Dan Gohman24ceda82010-06-18 19:54:20 +0000349SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000350 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000351 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000352 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000354 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000355}
356
Dan Gohman24ceda82010-06-18 19:54:20 +0000357SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000358 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000359 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000360 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
361 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000362 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000363}
364
Dan Gohman7cac9572010-08-02 23:49:30 +0000365void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000366 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000367 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000368
369 // Remove this SCEVUnknown from the uniquing map.
370 SE->UniqueSCEVs.RemoveNode(this);
371
372 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000373 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000374}
375
376void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000377 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000378 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000379
380 // Remove this SCEVUnknown from the uniquing map.
381 SE->UniqueSCEVs.RemoveNode(this);
382
383 // Update this SCEVUnknown to point to the new value. This is needed
384 // because there may still be outstanding SCEVs which still point to
385 // this SCEVUnknown.
386 setValPtr(New);
387}
388
Chris Lattner229907c2011-07-18 04:54:35 +0000389bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000390 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000391 if (VCE->getOpcode() == Instruction::PtrToInt)
392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000393 if (CE->getOpcode() == Instruction::GetElementPtr &&
394 CE->getOperand(0)->isNullValue() &&
395 CE->getNumOperands() == 2)
396 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
397 if (CI->isOne()) {
398 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
399 ->getElementType();
400 return true;
401 }
Dan Gohmancf913832010-01-28 02:15:55 +0000402
403 return false;
404}
405
Chris Lattner229907c2011-07-18 04:54:35 +0000406bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000407 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000408 if (VCE->getOpcode() == Instruction::PtrToInt)
409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000410 if (CE->getOpcode() == Instruction::GetElementPtr &&
411 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000412 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000413 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000414 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000415 if (!STy->isPacked() &&
416 CE->getNumOperands() == 3 &&
417 CE->getOperand(1)->isNullValue()) {
418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
419 if (CI->isOne() &&
420 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000421 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000422 AllocTy = STy->getElementType(1);
423 return true;
424 }
425 }
426 }
Dan Gohmancf913832010-01-28 02:15:55 +0000427
428 return false;
429}
430
Chris Lattner229907c2011-07-18 04:54:35 +0000431bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000432 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000433 if (VCE->getOpcode() == Instruction::PtrToInt)
434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
435 if (CE->getOpcode() == Instruction::GetElementPtr &&
436 CE->getNumOperands() == 3 &&
437 CE->getOperand(0)->isNullValue() &&
438 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000439 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000440 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
441 // Ignore vector types here so that ScalarEvolutionExpander doesn't
442 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000443 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000444 CTy = Ty;
445 FieldNo = CE->getOperand(2);
446 return true;
447 }
448 }
449
450 return false;
451}
452
Chris Lattnereb3e8402004-06-20 06:23:15 +0000453//===----------------------------------------------------------------------===//
454// SCEV Utilities
455//===----------------------------------------------------------------------===//
456
457namespace {
458 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
459 /// than the complexity of the RHS. This comparator is used to canonicalize
460 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000461 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000462 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000463 public:
Dan Gohman992db002010-07-23 21:18:55 +0000464 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000465
Dan Gohman27065672010-08-27 15:26:01 +0000466 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000467 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000468 return compare(LHS, RHS) < 0;
469 }
470
471 // Return negative, zero, or positive, if LHS is less than, equal to, or
472 // greater than RHS, respectively. A three-way result allows recursive
473 // comparisons to be more efficient.
474 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000475 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
476 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000477 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000478
Dan Gohman9ba542c2009-05-07 14:39:04 +0000479 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000480 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
481 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000482 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000483
Dan Gohman24ceda82010-06-18 19:54:20 +0000484 // Aside from the getSCEVType() ordering, the particular ordering
485 // isn't very important except that it's beneficial to be consistent,
486 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000487 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000488 case scUnknown: {
489 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000490 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000491
492 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
493 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000494 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000495
496 // Order pointer values after integer values. This helps SCEVExpander
497 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000498 bool LIsPointer = LV->getType()->isPointerTy(),
499 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000500 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000501 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000502
503 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000504 unsigned LID = LV->getValueID(),
505 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000506 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000507 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000508
509 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000510 if (const Argument *LA = dyn_cast<Argument>(LV)) {
511 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000512 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
513 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000514 }
515
Dan Gohman27065672010-08-27 15:26:01 +0000516 // For instructions, compare their loop depth, and their operand
517 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000518 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
519 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000520
521 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000522 const BasicBlock *LParent = LInst->getParent(),
523 *RParent = RInst->getParent();
524 if (LParent != RParent) {
525 unsigned LDepth = LI->getLoopDepth(LParent),
526 RDepth = LI->getLoopDepth(RParent);
527 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000528 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000529 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000530
531 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000532 unsigned LNumOps = LInst->getNumOperands(),
533 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000534 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000535 }
536
Dan Gohman27065672010-08-27 15:26:01 +0000537 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000538 }
539
Dan Gohman27065672010-08-27 15:26:01 +0000540 case scConstant: {
541 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000542 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000543
544 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000545 const APInt &LA = LC->getValue()->getValue();
546 const APInt &RA = RC->getValue()->getValue();
547 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000548 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000549 return (int)LBitWidth - (int)RBitWidth;
550 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000551 }
552
Dan Gohman27065672010-08-27 15:26:01 +0000553 case scAddRecExpr: {
554 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000555 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000556
557 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000558 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
559 if (LLoop != RLoop) {
560 unsigned LDepth = LLoop->getLoopDepth(),
561 RDepth = RLoop->getLoopDepth();
562 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000563 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000564 }
Dan Gohman27065672010-08-27 15:26:01 +0000565
566 // Addrec complexity grows with operand count.
567 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
568 if (LNumOps != RNumOps)
569 return (int)LNumOps - (int)RNumOps;
570
571 // Lexicographically compare.
572 for (unsigned i = 0; i != LNumOps; ++i) {
573 long X = compare(LA->getOperand(i), RA->getOperand(i));
574 if (X != 0)
575 return X;
576 }
577
578 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000579 }
580
Dan Gohman27065672010-08-27 15:26:01 +0000581 case scAddExpr:
582 case scMulExpr:
583 case scSMaxExpr:
584 case scUMaxExpr: {
585 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000586 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000587
588 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000589 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000590 if (LNumOps != RNumOps)
591 return (int)LNumOps - (int)RNumOps;
592
Dan Gohman5ae31022010-07-23 21:20:52 +0000593 for (unsigned i = 0; i != LNumOps; ++i) {
594 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000595 return 1;
596 long X = compare(LC->getOperand(i), RC->getOperand(i));
597 if (X != 0)
598 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000599 }
Dan Gohman27065672010-08-27 15:26:01 +0000600 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000601 }
602
Dan Gohman27065672010-08-27 15:26:01 +0000603 case scUDivExpr: {
604 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000605 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000606
607 // Lexicographically compare udiv expressions.
608 long X = compare(LC->getLHS(), RC->getLHS());
609 if (X != 0)
610 return X;
611 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000612 }
613
Dan Gohman27065672010-08-27 15:26:01 +0000614 case scTruncate:
615 case scZeroExtend:
616 case scSignExtend: {
617 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000618 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000619
620 // Compare cast expressions by operand.
621 return compare(LC->getOperand(), RC->getOperand());
622 }
623
Benjamin Kramer987b8502014-02-11 19:02:55 +0000624 case scCouldNotCompute:
625 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000626 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000627 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000628 }
629 };
630}
631
632/// GroupByComplexity - Given a list of SCEV objects, order them by their
633/// complexity, and group objects of the same complexity together by value.
634/// When this routine is finished, we know that any duplicates in the vector are
635/// consecutive and that complexity is monotonically increasing.
636///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000637/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000638/// results from this routine. In other words, we don't want the results of
639/// this to depend on where the addresses of various SCEV objects happened to
640/// land in memory.
641///
Dan Gohmanaf752342009-07-07 17:06:11 +0000642static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000643 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000644 if (Ops.size() < 2) return; // Noop
645 if (Ops.size() == 2) {
646 // This is the common case, which also happens to be trivially simple.
647 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000648 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
649 if (SCEVComplexityCompare(LI)(RHS, LHS))
650 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000651 return;
652 }
653
Dan Gohman24ceda82010-06-18 19:54:20 +0000654 // Do the rough sort by complexity.
655 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
656
657 // Now that we are sorted by complexity, group elements of the same
658 // complexity. Note that this is, at worst, N^2, but the vector is likely to
659 // be extremely short in practice. Note that we take this approach because we
660 // do not want to depend on the addresses of the objects we are grouping.
661 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
662 const SCEV *S = Ops[i];
663 unsigned Complexity = S->getSCEVType();
664
665 // If there are any objects of the same complexity and same value as this
666 // one, group them.
667 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
668 if (Ops[j] == S) { // Found a duplicate.
669 // Move it to immediately after i'th element.
670 std::swap(Ops[i+1], Ops[j]);
671 ++i; // no need to rescan it.
672 if (i == e-2) return; // Done!
673 }
674 }
675 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000676}
677
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000678namespace {
679struct FindSCEVSize {
680 int Size;
681 FindSCEVSize() : Size(0) {}
682
683 bool follow(const SCEV *S) {
684 ++Size;
685 // Keep looking at all operands of S.
686 return true;
687 }
688 bool isDone() const {
689 return false;
690 }
691};
692}
693
694// Returns the size of the SCEV S.
695static inline int sizeOfSCEV(const SCEV *S) {
696 FindSCEVSize F;
697 SCEVTraversal<FindSCEVSize> ST(F);
698 ST.visitAll(S);
699 return F.Size;
700}
701
702namespace {
703
David Majnemer4e879362014-12-14 09:12:33 +0000704struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000705public:
706 // Computes the Quotient and Remainder of the division of Numerator by
707 // Denominator.
708 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
709 const SCEV *Denominator, const SCEV **Quotient,
710 const SCEV **Remainder) {
711 assert(Numerator && Denominator && "Uninitialized SCEV");
712
David Majnemer4e879362014-12-14 09:12:33 +0000713 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000714
715 // Check for the trivial case here to avoid having to check for it in the
716 // rest of the code.
717 if (Numerator == Denominator) {
718 *Quotient = D.One;
719 *Remainder = D.Zero;
720 return;
721 }
722
723 if (Numerator->isZero()) {
724 *Quotient = D.Zero;
725 *Remainder = D.Zero;
726 return;
727 }
728
729 // Split the Denominator when it is a product.
730 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
731 const SCEV *Q, *R;
732 *Quotient = Numerator;
733 for (const SCEV *Op : T->operands()) {
734 divide(SE, *Quotient, Op, &Q, &R);
735 *Quotient = Q;
736
737 // Bail out when the Numerator is not divisible by one of the terms of
738 // the Denominator.
739 if (!R->isZero()) {
740 *Quotient = D.Zero;
741 *Remainder = Numerator;
742 return;
743 }
744 }
745 *Remainder = D.Zero;
746 return;
747 }
748
749 D.visit(Numerator);
750 *Quotient = D.Quotient;
751 *Remainder = D.Remainder;
752 }
753
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000754 // Except in the trivial case described above, we do not know how to divide
755 // Expr by Denominator for the following functions with empty implementation.
756 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
757 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
758 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
759 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
760 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
761 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
762 void visitUnknown(const SCEVUnknown *Numerator) {}
763 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
764
David Majnemer4e879362014-12-14 09:12:33 +0000765 void visitConstant(const SCEVConstant *Numerator) {
766 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
767 APInt NumeratorVal = Numerator->getValue()->getValue();
768 APInt DenominatorVal = D->getValue()->getValue();
769 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
770 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
771
772 if (NumeratorBW > DenominatorBW)
773 DenominatorVal = DenominatorVal.sext(NumeratorBW);
774 else if (NumeratorBW < DenominatorBW)
775 NumeratorVal = NumeratorVal.sext(DenominatorBW);
776
777 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
778 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
779 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
780 Quotient = SE.getConstant(QuotientVal);
781 Remainder = SE.getConstant(RemainderVal);
782 return;
783 }
784 }
785
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000786 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
787 const SCEV *StartQ, *StartR, *StepQ, *StepR;
788 assert(Numerator->isAffine() && "Numerator should be affine");
789 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
790 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
791 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
792 Numerator->getNoWrapFlags());
793 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
794 Numerator->getNoWrapFlags());
795 }
796
797 void visitAddExpr(const SCEVAddExpr *Numerator) {
798 SmallVector<const SCEV *, 2> Qs, Rs;
799 Type *Ty = Denominator->getType();
800
801 for (const SCEV *Op : Numerator->operands()) {
802 const SCEV *Q, *R;
803 divide(SE, Op, Denominator, &Q, &R);
804
805 // Bail out if types do not match.
806 if (Ty != Q->getType() || Ty != R->getType()) {
807 Quotient = Zero;
808 Remainder = Numerator;
809 return;
810 }
811
812 Qs.push_back(Q);
813 Rs.push_back(R);
814 }
815
816 if (Qs.size() == 1) {
817 Quotient = Qs[0];
818 Remainder = Rs[0];
819 return;
820 }
821
822 Quotient = SE.getAddExpr(Qs);
823 Remainder = SE.getAddExpr(Rs);
824 }
825
826 void visitMulExpr(const SCEVMulExpr *Numerator) {
827 SmallVector<const SCEV *, 2> Qs;
828 Type *Ty = Denominator->getType();
829
830 bool FoundDenominatorTerm = false;
831 for (const SCEV *Op : Numerator->operands()) {
832 // Bail out if types do not match.
833 if (Ty != Op->getType()) {
834 Quotient = Zero;
835 Remainder = Numerator;
836 return;
837 }
838
839 if (FoundDenominatorTerm) {
840 Qs.push_back(Op);
841 continue;
842 }
843
844 // Check whether Denominator divides one of the product operands.
845 const SCEV *Q, *R;
846 divide(SE, Op, Denominator, &Q, &R);
847 if (!R->isZero()) {
848 Qs.push_back(Op);
849 continue;
850 }
851
852 // Bail out if types do not match.
853 if (Ty != Q->getType()) {
854 Quotient = Zero;
855 Remainder = Numerator;
856 return;
857 }
858
859 FoundDenominatorTerm = true;
860 Qs.push_back(Q);
861 }
862
863 if (FoundDenominatorTerm) {
864 Remainder = Zero;
865 if (Qs.size() == 1)
866 Quotient = Qs[0];
867 else
868 Quotient = SE.getMulExpr(Qs);
869 return;
870 }
871
872 if (!isa<SCEVUnknown>(Denominator)) {
873 Quotient = Zero;
874 Remainder = Numerator;
875 return;
876 }
877
878 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
879 ValueToValueMap RewriteMap;
880 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
881 cast<SCEVConstant>(Zero)->getValue();
882 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
883
884 if (Remainder->isZero()) {
885 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
886 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
887 cast<SCEVConstant>(One)->getValue();
888 Quotient =
889 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
890 return;
891 }
892
893 // Quotient is (Numerator - Remainder) divided by Denominator.
894 const SCEV *Q, *R;
895 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
896 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
897 // This SCEV does not seem to simplify: fail the division here.
898 Quotient = Zero;
899 Remainder = Numerator;
900 return;
901 }
902 divide(SE, Diff, Denominator, &Q, &R);
903 assert(R == Zero &&
904 "(Numerator - Remainder) should evenly divide Denominator");
905 Quotient = Q;
906 }
907
908private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000909 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
910 const SCEV *Denominator)
911 : SE(S), Denominator(Denominator) {
912 Zero = SE.getConstant(Denominator->getType(), 0);
913 One = SE.getConstant(Denominator->getType(), 1);
914
915 // By default, we don't know how to divide Expr by Denominator.
916 // Providing the default here simplifies the rest of the code.
917 Quotient = Zero;
918 Remainder = Numerator;
919 }
920
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000921 ScalarEvolution &SE;
922 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000923};
924
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000925}
926
Chris Lattnerd934c702004-04-02 20:23:17 +0000927//===----------------------------------------------------------------------===//
928// Simple SCEV method implementations
929//===----------------------------------------------------------------------===//
930
Eli Friedman61f67622008-08-04 23:49:06 +0000931/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000932/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000933static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000934 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000935 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000936 // Handle the simplest case efficiently.
937 if (K == 1)
938 return SE.getTruncateOrZeroExtend(It, ResultTy);
939
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000940 // We are using the following formula for BC(It, K):
941 //
942 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
943 //
Eli Friedman61f67622008-08-04 23:49:06 +0000944 // Suppose, W is the bitwidth of the return value. We must be prepared for
945 // overflow. Hence, we must assure that the result of our computation is
946 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
947 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000948 //
Eli Friedman61f67622008-08-04 23:49:06 +0000949 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000950 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000951 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
952 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000953 //
Eli Friedman61f67622008-08-04 23:49:06 +0000954 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000955 //
Eli Friedman61f67622008-08-04 23:49:06 +0000956 // This formula is trivially equivalent to the previous formula. However,
957 // this formula can be implemented much more efficiently. The trick is that
958 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
959 // arithmetic. To do exact division in modular arithmetic, all we have
960 // to do is multiply by the inverse. Therefore, this step can be done at
961 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000962 //
Eli Friedman61f67622008-08-04 23:49:06 +0000963 // The next issue is how to safely do the division by 2^T. The way this
964 // is done is by doing the multiplication step at a width of at least W + T
965 // bits. This way, the bottom W+T bits of the product are accurate. Then,
966 // when we perform the division by 2^T (which is equivalent to a right shift
967 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
968 // truncated out after the division by 2^T.
969 //
970 // In comparison to just directly using the first formula, this technique
971 // is much more efficient; using the first formula requires W * K bits,
972 // but this formula less than W + K bits. Also, the first formula requires
973 // a division step, whereas this formula only requires multiplies and shifts.
974 //
975 // It doesn't matter whether the subtraction step is done in the calculation
976 // width or the input iteration count's width; if the subtraction overflows,
977 // the result must be zero anyway. We prefer here to do it in the width of
978 // the induction variable because it helps a lot for certain cases; CodeGen
979 // isn't smart enough to ignore the overflow, which leads to much less
980 // efficient code if the width of the subtraction is wider than the native
981 // register width.
982 //
983 // (It's possible to not widen at all by pulling out factors of 2 before
984 // the multiplication; for example, K=2 can be calculated as
985 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
986 // extra arithmetic, so it's not an obvious win, and it gets
987 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000988
Eli Friedman61f67622008-08-04 23:49:06 +0000989 // Protection from insane SCEVs; this bound is conservative,
990 // but it probably doesn't matter.
991 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000992 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000993
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000994 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000995
Eli Friedman61f67622008-08-04 23:49:06 +0000996 // Calculate K! / 2^T and T; we divide out the factors of two before
997 // multiplying for calculating K! / 2^T to avoid overflow.
998 // Other overflow doesn't matter because we only care about the bottom
999 // W bits of the result.
1000 APInt OddFactorial(W, 1);
1001 unsigned T = 1;
1002 for (unsigned i = 3; i <= K; ++i) {
1003 APInt Mult(W, i);
1004 unsigned TwoFactors = Mult.countTrailingZeros();
1005 T += TwoFactors;
1006 Mult = Mult.lshr(TwoFactors);
1007 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001008 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001009
Eli Friedman61f67622008-08-04 23:49:06 +00001010 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001011 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001012
Dan Gohman8b0a4192010-03-01 17:49:51 +00001013 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001014 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001015
1016 // Calculate the multiplicative inverse of K! / 2^T;
1017 // this multiplication factor will perform the exact division by
1018 // K! / 2^T.
1019 APInt Mod = APInt::getSignedMinValue(W+1);
1020 APInt MultiplyFactor = OddFactorial.zext(W+1);
1021 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1022 MultiplyFactor = MultiplyFactor.trunc(W);
1023
1024 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001025 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001026 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001027 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001028 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001029 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001030 Dividend = SE.getMulExpr(Dividend,
1031 SE.getTruncateOrZeroExtend(S, CalculationTy));
1032 }
1033
1034 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001035 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001036
1037 // Truncate the result, and divide by K! / 2^T.
1038
1039 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1040 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001041}
1042
Chris Lattnerd934c702004-04-02 20:23:17 +00001043/// evaluateAtIteration - Return the value of this chain of recurrences at
1044/// the specified iteration number. We can evaluate this recurrence by
1045/// multiplying each element in the chain by the binomial coefficient
1046/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1047///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001048/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001049///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001050/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001051///
Dan Gohmanaf752342009-07-07 17:06:11 +00001052const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001053 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001054 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001055 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001056 // The computation is correct in the face of overflow provided that the
1057 // multiplication is performed _after_ the evaluation of the binomial
1058 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001059 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001060 if (isa<SCEVCouldNotCompute>(Coeff))
1061 return Coeff;
1062
1063 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001064 }
1065 return Result;
1066}
1067
Chris Lattnerd934c702004-04-02 20:23:17 +00001068//===----------------------------------------------------------------------===//
1069// SCEV Expression folder implementations
1070//===----------------------------------------------------------------------===//
1071
Dan Gohmanaf752342009-07-07 17:06:11 +00001072const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001073 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001074 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001075 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001076 assert(isSCEVable(Ty) &&
1077 "This is not a conversion to a SCEVable type!");
1078 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001079
Dan Gohman3a302cb2009-07-13 20:50:19 +00001080 FoldingSetNodeID ID;
1081 ID.AddInteger(scTruncate);
1082 ID.AddPointer(Op);
1083 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001084 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001085 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1086
Dan Gohman3423e722009-06-30 20:13:32 +00001087 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001088 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001089 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001090 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001091
Dan Gohman79af8542009-04-22 16:20:48 +00001092 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001093 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001094 return getTruncateExpr(ST->getOperand(), Ty);
1095
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001096 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001097 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001098 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1099
1100 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001101 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001102 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1103
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001104 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1105 // eliminate all the truncates.
1106 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1107 SmallVector<const SCEV *, 4> Operands;
1108 bool hasTrunc = false;
1109 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1110 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1111 hasTrunc = isa<SCEVTruncateExpr>(S);
1112 Operands.push_back(S);
1113 }
1114 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001115 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001116 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001117 }
1118
Nick Lewycky5c901f32011-01-19 18:56:00 +00001119 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1120 // eliminate all the truncates.
1121 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1122 SmallVector<const SCEV *, 4> Operands;
1123 bool hasTrunc = false;
1124 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1125 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1126 hasTrunc = isa<SCEVTruncateExpr>(S);
1127 Operands.push_back(S);
1128 }
1129 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001130 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001131 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001132 }
1133
Dan Gohman5a728c92009-06-18 16:24:47 +00001134 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001135 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001136 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00001137 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman2e55cc52009-05-08 21:03:19 +00001138 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001139 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001140 }
1141
Dan Gohman89dd42a2010-06-25 18:47:08 +00001142 // The cast wasn't folded; create an explicit cast node. We can reuse
1143 // the existing insert position since if we get here, we won't have
1144 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001145 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1146 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001147 UniqueSCEVs.InsertNode(S, IP);
1148 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001149}
1150
Dan Gohmanaf752342009-07-07 17:06:11 +00001151const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001152 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001153 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001154 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001155 assert(isSCEVable(Ty) &&
1156 "This is not a conversion to a SCEVable type!");
1157 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001158
Dan Gohman3423e722009-06-30 20:13:32 +00001159 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001160 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1161 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001162 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001163
Dan Gohman79af8542009-04-22 16:20:48 +00001164 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001165 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001166 return getZeroExtendExpr(SZ->getOperand(), Ty);
1167
Dan Gohman74a0ba12009-07-13 20:55:53 +00001168 // Before doing any expensive analysis, check to see if we've already
1169 // computed a SCEV for this Op and Ty.
1170 FoldingSetNodeID ID;
1171 ID.AddInteger(scZeroExtend);
1172 ID.AddPointer(Op);
1173 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001174 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001175 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1176
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001177 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1178 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1179 // It's possible the bits taken off by the truncate were all zero bits. If
1180 // so, we should be able to simplify this further.
1181 const SCEV *X = ST->getOperand();
1182 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001183 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1184 unsigned NewBits = getTypeSizeInBits(Ty);
1185 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001186 CR.zextOrTrunc(NewBits)))
1187 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001188 }
1189
Dan Gohman76466372009-04-27 20:16:15 +00001190 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001191 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001192 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001193 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001194 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001195 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001196 const SCEV *Start = AR->getStart();
1197 const SCEV *Step = AR->getStepRecurrence(*this);
1198 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1199 const Loop *L = AR->getLoop();
1200
Dan Gohman62ef6a72009-07-25 01:22:26 +00001201 // If we have special knowledge that this addrec won't overflow,
1202 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001203 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman62ef6a72009-07-25 01:22:26 +00001204 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1205 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001206 L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001207
Dan Gohman76466372009-04-27 20:16:15 +00001208 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1209 // Note that this serves two purposes: It filters out loops that are
1210 // simply not analyzable, and it covers the case where this code is
1211 // being called from within backedge-taken count analysis, such that
1212 // attempting to ask for the backedge-taken count would likely result
1213 // in infinite recursion. In the later case, the analysis code will
1214 // cope with a conservative value, and it will take care to purge
1215 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001216 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001217 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001218 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001219 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001220
1221 // Check whether the backedge-taken count can be losslessly casted to
1222 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001223 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001224 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001225 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001226 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1227 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001228 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001229 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001230 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001231 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1232 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1233 const SCEV *WideMaxBECount =
1234 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001235 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001236 getAddExpr(WideStart,
1237 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001238 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001239 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001240 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1241 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001242 // Return the expression with the addrec on the outside.
1243 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1244 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001245 L, AR->getNoWrapFlags());
1246 }
Dan Gohman76466372009-04-27 20:16:15 +00001247 // Similar to above, only this time treat the step value as signed.
1248 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001249 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001250 getAddExpr(WideStart,
1251 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001252 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001253 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001254 // Cache knowledge of AR NW, which is propagated to this AddRec.
1255 // Negative step causes unsigned wrap, but it still can't self-wrap.
1256 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001257 // Return the expression with the addrec on the outside.
1258 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1259 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001260 L, AR->getNoWrapFlags());
1261 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001262 }
1263
1264 // If the backedge is guarded by a comparison with the pre-inc value
1265 // the addrec is safe. Also, if the entry is guarded by a comparison
1266 // with the start value and the backedge is guarded by a comparison
1267 // with the post-inc value, the addrec is safe.
1268 if (isKnownPositive(Step)) {
1269 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1270 getUnsignedRange(Step).getUnsignedMax());
1271 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001272 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001273 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001274 AR->getPostIncExpr(*this), N))) {
1275 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1276 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001277 // Return the expression with the addrec on the outside.
1278 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1279 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001280 L, AR->getNoWrapFlags());
1281 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001282 } else if (isKnownNegative(Step)) {
1283 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1284 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001285 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1286 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001287 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001288 AR->getPostIncExpr(*this), N))) {
1289 // Cache knowledge of AR NW, which is propagated to this AddRec.
1290 // Negative step causes unsigned wrap, but it still can't self-wrap.
1291 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1292 // Return the expression with the addrec on the outside.
Dan Gohmane65c9172009-07-13 21:35:55 +00001293 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1294 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001295 L, AR->getNoWrapFlags());
1296 }
Dan Gohman76466372009-04-27 20:16:15 +00001297 }
1298 }
1299 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001300
Dan Gohman74a0ba12009-07-13 20:55:53 +00001301 // The cast wasn't folded; create an explicit cast node.
1302 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001303 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001304 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1305 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001306 UniqueSCEVs.InsertNode(S, IP);
1307 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001308}
1309
Andrew Trick812276e2011-05-31 21:17:47 +00001310// Get the limit of a recurrence such that incrementing by Step cannot cause
1311// signed overflow as long as the value of the recurrence within the loop does
1312// not exceed this limit before incrementing.
1313static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1314 ICmpInst::Predicate *Pred,
1315 ScalarEvolution *SE) {
1316 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1317 if (SE->isKnownPositive(Step)) {
1318 *Pred = ICmpInst::ICMP_SLT;
1319 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1320 SE->getSignedRange(Step).getSignedMax());
1321 }
1322 if (SE->isKnownNegative(Step)) {
1323 *Pred = ICmpInst::ICMP_SGT;
1324 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1325 SE->getSignedRange(Step).getSignedMin());
1326 }
Craig Topper9f008862014-04-15 04:59:12 +00001327 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001328}
1329
1330// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1331// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1332// or postincrement sibling. This allows normalizing a sign extended AddRec as
1333// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1334// result, the expression "Step + sext(PreIncAR)" is congruent with
1335// "sext(PostIncAR)"
1336static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001337 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001338 ScalarEvolution *SE) {
1339 const Loop *L = AR->getLoop();
1340 const SCEV *Start = AR->getStart();
1341 const SCEV *Step = AR->getStepRecurrence(*SE);
1342
1343 // Check for a simple looking step prior to loop entry.
1344 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001345 if (!SA)
Craig Topper9f008862014-04-15 04:59:12 +00001346 return nullptr;
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001347
1348 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1349 // subtraction is expensive. For this purpose, perform a quick and dirty
1350 // difference, by checking for Step in the operand list.
1351 SmallVector<const SCEV *, 4> DiffOps;
Tobias Grosser924221c2014-05-07 06:07:47 +00001352 for (const SCEV *Op : SA->operands())
1353 if (Op != Step)
1354 DiffOps.push_back(Op);
1355
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001356 if (DiffOps.size() == SA->getNumOperands())
Craig Topper9f008862014-04-15 04:59:12 +00001357 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001358
1359 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1360 // same three conditions that getSignExtendedExpr checks.
1361
1362 // 1. NSW flags on the step increment.
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001363 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trick812276e2011-05-31 21:17:47 +00001364 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1365 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1366
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001367 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001368 return PreStart;
Andrew Trick812276e2011-05-31 21:17:47 +00001369
1370 // 2. Direct overflow check on the step operation's expression.
1371 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattner229907c2011-07-18 04:54:35 +00001372 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trick812276e2011-05-31 21:17:47 +00001373 const SCEV *OperandExtendedStart =
1374 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1375 SE->getSignExtendExpr(Step, WideTy));
1376 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1377 // Cache knowledge of PreAR NSW.
1378 if (PreAR)
1379 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1380 // FIXME: this optimization needs a unit test
1381 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1382 return PreStart;
1383 }
1384
1385 // 3. Loop precondition.
1386 ICmpInst::Predicate Pred;
1387 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1388
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001389 if (OverflowLimit &&
1390 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trick812276e2011-05-31 21:17:47 +00001391 return PreStart;
1392 }
Craig Topper9f008862014-04-15 04:59:12 +00001393 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001394}
1395
1396// Get the normalized sign-extended expression for this AddRec's Start.
1397static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001398 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001399 ScalarEvolution *SE) {
1400 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1401 if (!PreStart)
1402 return SE->getSignExtendExpr(AR->getStart(), Ty);
1403
1404 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1405 SE->getSignExtendExpr(PreStart, Ty));
1406}
1407
Dan Gohmanaf752342009-07-07 17:06:11 +00001408const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001409 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001410 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001411 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001412 assert(isSCEVable(Ty) &&
1413 "This is not a conversion to a SCEVable type!");
1414 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001415
Dan Gohman3423e722009-06-30 20:13:32 +00001416 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001417 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1418 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001419 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001420
Dan Gohman79af8542009-04-22 16:20:48 +00001421 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001422 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001423 return getSignExtendExpr(SS->getOperand(), Ty);
1424
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001425 // sext(zext(x)) --> zext(x)
1426 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1427 return getZeroExtendExpr(SZ->getOperand(), Ty);
1428
Dan Gohman74a0ba12009-07-13 20:55:53 +00001429 // Before doing any expensive analysis, check to see if we've already
1430 // computed a SCEV for this Op and Ty.
1431 FoldingSetNodeID ID;
1432 ID.AddInteger(scSignExtend);
1433 ID.AddPointer(Op);
1434 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001435 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001436 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1437
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001438 // If the input value is provably positive, build a zext instead.
1439 if (isKnownNonNegative(Op))
1440 return getZeroExtendExpr(Op, Ty);
1441
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001442 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1443 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1444 // It's possible the bits taken off by the truncate were all sign bits. If
1445 // so, we should be able to simplify this further.
1446 const SCEV *X = ST->getOperand();
1447 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001448 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1449 unsigned NewBits = getTypeSizeInBits(Ty);
1450 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001451 CR.sextOrTrunc(NewBits)))
1452 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001453 }
1454
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001455 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1456 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1457 if (SA->getNumOperands() == 2) {
1458 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1459 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1460 if (SMul && SC1) {
1461 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001462 const APInt &C1 = SC1->getValue()->getValue();
1463 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001464 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001465 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001466 return getAddExpr(getSignExtendExpr(SC1, Ty),
1467 getSignExtendExpr(SMul, Ty));
1468 }
1469 }
1470 }
1471 }
Dan Gohman76466372009-04-27 20:16:15 +00001472 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001473 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001474 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001475 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001476 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001477 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001478 const SCEV *Start = AR->getStart();
1479 const SCEV *Step = AR->getStepRecurrence(*this);
1480 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1481 const Loop *L = AR->getLoop();
1482
Dan Gohman62ef6a72009-07-25 01:22:26 +00001483 // If we have special knowledge that this addrec won't overflow,
1484 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001485 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001486 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman62ef6a72009-07-25 01:22:26 +00001487 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001488 L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001489
Dan Gohman76466372009-04-27 20:16:15 +00001490 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1491 // Note that this serves two purposes: It filters out loops that are
1492 // simply not analyzable, and it covers the case where this code is
1493 // being called from within backedge-taken count analysis, such that
1494 // attempting to ask for the backedge-taken count would likely result
1495 // in infinite recursion. In the later case, the analysis code will
1496 // cope with a conservative value, and it will take care to purge
1497 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001498 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001499 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001500 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001501 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001502
1503 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001504 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001505 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001506 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001507 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001508 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1509 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001510 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001511 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001512 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001513 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1514 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1515 const SCEV *WideMaxBECount =
1516 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001517 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001518 getAddExpr(WideStart,
1519 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001520 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001521 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001522 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1523 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001524 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001525 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman494dac32009-04-29 22:28:28 +00001526 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001527 L, AR->getNoWrapFlags());
1528 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001529 // Similar to above, only this time treat the step value as unsigned.
1530 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001531 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001532 getAddExpr(WideStart,
1533 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001534 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001535 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001536 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1537 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman8c129d72009-07-16 17:34:36 +00001538 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001539 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman8c129d72009-07-16 17:34:36 +00001540 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001541 L, AR->getNoWrapFlags());
1542 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001543 }
1544
1545 // If the backedge is guarded by a comparison with the pre-inc value
1546 // the addrec is safe. Also, if the entry is guarded by a comparison
1547 // with the start value and the backedge is guarded by a comparison
1548 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001549 ICmpInst::Predicate Pred;
1550 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1551 if (OverflowLimit &&
1552 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1553 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1554 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1555 OverflowLimit)))) {
1556 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1557 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1558 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1559 getSignExtendExpr(Step, Ty),
1560 L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001561 }
1562 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001563 // If Start and Step are constants, check if we can apply this
1564 // transformation:
1565 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1566 auto SC1 = dyn_cast<SCEVConstant>(Start);
1567 auto SC2 = dyn_cast<SCEVConstant>(Step);
1568 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001569 const APInt &C1 = SC1->getValue()->getValue();
1570 const APInt &C2 = SC2->getValue()->getValue();
1571 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1572 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001573 Start = getSignExtendExpr(Start, Ty);
1574 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1575 L, AR->getNoWrapFlags());
1576 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1577 }
1578 }
Dan Gohman76466372009-04-27 20:16:15 +00001579 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001580
Dan Gohman74a0ba12009-07-13 20:55:53 +00001581 // The cast wasn't folded; create an explicit cast node.
1582 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001583 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001584 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1585 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001586 UniqueSCEVs.InsertNode(S, IP);
1587 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001588}
1589
Dan Gohman8db2edc2009-06-13 15:56:47 +00001590/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1591/// unspecified bits out to the given type.
1592///
Dan Gohmanaf752342009-07-07 17:06:11 +00001593const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001594 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001595 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1596 "This is not an extending conversion!");
1597 assert(isSCEVable(Ty) &&
1598 "This is not a conversion to a SCEVable type!");
1599 Ty = getEffectiveSCEVType(Ty);
1600
1601 // Sign-extend negative constants.
1602 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1603 if (SC->getValue()->getValue().isNegative())
1604 return getSignExtendExpr(Op, Ty);
1605
1606 // Peel off a truncate cast.
1607 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001608 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001609 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1610 return getAnyExtendExpr(NewOp, Ty);
1611 return getTruncateOrNoop(NewOp, Ty);
1612 }
1613
1614 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001615 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001616 if (!isa<SCEVZeroExtendExpr>(ZExt))
1617 return ZExt;
1618
1619 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001620 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001621 if (!isa<SCEVSignExtendExpr>(SExt))
1622 return SExt;
1623
Dan Gohman51ad99d2010-01-21 02:09:26 +00001624 // Force the cast to be folded into the operands of an addrec.
1625 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1626 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001627 for (const SCEV *Op : AR->operands())
1628 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001629 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001630 }
1631
Dan Gohman8db2edc2009-06-13 15:56:47 +00001632 // If the expression is obviously signed, use the sext cast value.
1633 if (isa<SCEVSMaxExpr>(Op))
1634 return SExt;
1635
1636 // Absent any other information, use the zext cast value.
1637 return ZExt;
1638}
1639
Dan Gohman038d02e2009-06-14 22:58:51 +00001640/// CollectAddOperandsWithScales - Process the given Ops list, which is
1641/// a list of operands to be added under the given scale, update the given
1642/// map. This is a helper function for getAddRecExpr. As an example of
1643/// what it does, given a sequence of operands that would form an add
1644/// expression like this:
1645///
Tobias Grosserba49e422014-03-05 10:37:17 +00001646/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001647///
1648/// where A and B are constants, update the map with these values:
1649///
1650/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1651///
1652/// and add 13 + A*B*29 to AccumulatedConstant.
1653/// This will allow getAddRecExpr to produce this:
1654///
1655/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1656///
1657/// This form often exposes folding opportunities that are hidden in
1658/// the original operand list.
1659///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001660/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001661/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1662/// the common case where no interesting opportunities are present, and
1663/// is also used as a check to avoid infinite recursion.
1664///
1665static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001666CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001667 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001668 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001669 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001670 const APInt &Scale,
1671 ScalarEvolution &SE) {
1672 bool Interesting = false;
1673
Dan Gohman45073042010-06-18 19:12:32 +00001674 // Iterate over the add operands. They are sorted, with constants first.
1675 unsigned i = 0;
1676 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1677 ++i;
1678 // Pull a buried constant out to the outside.
1679 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1680 Interesting = true;
1681 AccumulatedConstant += Scale * C->getValue()->getValue();
1682 }
1683
1684 // Next comes everything else. We're especially interested in multiplies
1685 // here, but they're in the middle, so just visit the rest with one loop.
1686 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001687 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1688 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1689 APInt NewScale =
1690 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1691 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1692 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001693 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001694 Interesting |=
1695 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001696 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001697 NewScale, SE);
1698 } else {
1699 // A multiplication of a constant with some other value. Update
1700 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001701 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1702 const SCEV *Key = SE.getMulExpr(MulOps);
1703 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001704 M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001705 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001706 NewOps.push_back(Pair.first->first);
1707 } else {
1708 Pair.first->second += NewScale;
1709 // The map already had an entry for this value, which may indicate
1710 // a folding opportunity.
1711 Interesting = true;
1712 }
1713 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001714 } else {
1715 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001716 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001717 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001718 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001719 NewOps.push_back(Pair.first->first);
1720 } else {
1721 Pair.first->second += Scale;
1722 // The map already had an entry for this value, which may indicate
1723 // a folding opportunity.
1724 Interesting = true;
1725 }
1726 }
1727 }
1728
1729 return Interesting;
1730}
1731
1732namespace {
1733 struct APIntCompare {
1734 bool operator()(const APInt &LHS, const APInt &RHS) const {
1735 return LHS.ult(RHS);
1736 }
1737 };
1738}
1739
Sanjoy Das81401d42015-01-10 23:41:24 +00001740// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1741// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1742// can't-overflow flags for the operation if possible.
1743static SCEV::NoWrapFlags
1744StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1745 const SmallVectorImpl<const SCEV *> &Ops,
1746 SCEV::NoWrapFlags OldFlags) {
1747 using namespace std::placeholders;
1748
1749 bool CanAnalyze =
1750 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1751 (void)CanAnalyze;
1752 assert(CanAnalyze && "don't call from other places!");
1753
1754 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1755 SCEV::NoWrapFlags SignOrUnsignWrap =
1756 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask);
1757
1758 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1759 auto IsKnownNonNegative =
1760 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
1761
1762 if (SignOrUnsignWrap == SCEV::FlagNSW &&
1763 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
1764 return ScalarEvolution::setFlags(OldFlags,
1765 (SCEV::NoWrapFlags)SignOrUnsignMask);
1766
1767 return OldFlags;
1768}
1769
Dan Gohman4d5435d2009-05-24 23:45:28 +00001770/// getAddExpr - Get a canonical add expression, or something simpler if
1771/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001772const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001773 SCEV::NoWrapFlags Flags) {
1774 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1775 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001776 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001777 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001778#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001779 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001780 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001781 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001782 "SCEVAddExpr operand types don't match!");
1783#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001784
Sanjoy Das81401d42015-01-10 23:41:24 +00001785 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001786
Chris Lattnerd934c702004-04-02 20:23:17 +00001787 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001788 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001789
1790 // If there are any constants, fold them together.
1791 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001792 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001793 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00001794 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00001795 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001796 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00001797 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1798 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00001799 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001800 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001801 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001802 }
1803
1804 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001805 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001806 Ops.erase(Ops.begin());
1807 --Idx;
1808 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001809
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001810 if (Ops.size() == 1) return Ops[0];
1811 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001812
Dan Gohman15871f22010-08-27 21:39:59 +00001813 // Okay, check to see if the same value occurs in the operand list more than
1814 // once. If so, merge them together into an multiply expression. Since we
1815 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00001816 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00001817 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00001818 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00001819 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00001820 // Scan ahead to count how many equal operands there are.
1821 unsigned Count = 2;
1822 while (i+Count != e && Ops[i+Count] == Ops[i])
1823 ++Count;
1824 // Merge the values into a multiply.
1825 const SCEV *Scale = getConstant(Ty, Count);
1826 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1827 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00001828 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00001829 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00001830 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00001831 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00001832 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00001833 }
Dan Gohmane67b2872010-08-12 14:46:54 +00001834 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00001835 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00001836
Dan Gohman2e55cc52009-05-08 21:03:19 +00001837 // Check for truncates. If all the operands are truncated from the same
1838 // type, see if factoring out the truncate would permit the result to be
1839 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1840 // if the contents of the resulting outer trunc fold to something simple.
1841 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1842 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00001843 Type *DstType = Trunc->getType();
1844 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00001845 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001846 bool Ok = true;
1847 // Check all the operands to see if they can be represented in the
1848 // source type of the truncate.
1849 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1850 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1851 if (T->getOperand()->getType() != SrcType) {
1852 Ok = false;
1853 break;
1854 }
1855 LargeOps.push_back(T->getOperand());
1856 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001857 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001858 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001859 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001860 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1861 if (const SCEVTruncateExpr *T =
1862 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1863 if (T->getOperand()->getType() != SrcType) {
1864 Ok = false;
1865 break;
1866 }
1867 LargeMulOps.push_back(T->getOperand());
1868 } else if (const SCEVConstant *C =
1869 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001870 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001871 } else {
1872 Ok = false;
1873 break;
1874 }
1875 }
1876 if (Ok)
1877 LargeOps.push_back(getMulExpr(LargeMulOps));
1878 } else {
1879 Ok = false;
1880 break;
1881 }
1882 }
1883 if (Ok) {
1884 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00001885 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00001886 // If it folds to something simple, use it. Otherwise, don't.
1887 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1888 return getTruncateExpr(Fold, DstType);
1889 }
1890 }
1891
1892 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00001893 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1894 ++Idx;
1895
1896 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00001897 if (Idx < Ops.size()) {
1898 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00001899 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001900 // If we have an add, expand the add operands onto the end of the operands
1901 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00001902 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00001903 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00001904 DeletedAdd = true;
1905 }
1906
1907 // If we deleted at least one add, we added operands to the end of the list,
1908 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00001909 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00001910 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00001911 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001912 }
1913
1914 // Skip over the add expression until we get to a multiply.
1915 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1916 ++Idx;
1917
Dan Gohman038d02e2009-06-14 22:58:51 +00001918 // Check to see if there are any folding opportunities present with
1919 // operands multiplied by constant values.
1920 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1921 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00001922 DenseMap<const SCEV *, APInt> M;
1923 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00001924 APInt AccumulatedConstant(BitWidth, 0);
1925 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001926 Ops.data(), Ops.size(),
1927 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001928 // Some interesting folding opportunity is present, so its worthwhile to
1929 // re-generate the operands list. Group the operands by constant scale,
1930 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00001931 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00001932 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001933 E = NewOps.end(); I != E; ++I)
1934 MulOpLists[M.find(*I)->second].push_back(*I);
1935 // Re-generate the operands list.
1936 Ops.clear();
1937 if (AccumulatedConstant != 0)
1938 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00001939 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1940 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00001941 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00001942 Ops.push_back(getMulExpr(getConstant(I->first),
1943 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00001944 if (Ops.empty())
Dan Gohman1d2ded72010-05-03 22:09:21 +00001945 return getConstant(Ty, 0);
Dan Gohman038d02e2009-06-14 22:58:51 +00001946 if (Ops.size() == 1)
1947 return Ops[0];
1948 return getAddExpr(Ops);
1949 }
1950 }
1951
Chris Lattnerd934c702004-04-02 20:23:17 +00001952 // If we are adding something to a multiply expression, make sure the
1953 // something is not already an operand of the multiply. If so, merge it into
1954 // the multiply.
1955 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00001956 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001957 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00001958 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00001959 if (isa<SCEVConstant>(MulOpSCEV))
1960 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00001961 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00001962 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001963 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00001964 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001965 if (Mul->getNumOperands() != 2) {
1966 // If the multiply has more than two operands, we must get the
1967 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00001968 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1969 Mul->op_begin()+MulOp);
1970 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001971 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001972 }
Dan Gohman1d2ded72010-05-03 22:09:21 +00001973 const SCEV *One = getConstant(Ty, 1);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00001974 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00001975 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00001976 if (Ops.size() == 2) return OuterMul;
1977 if (AddOp < Idx) {
1978 Ops.erase(Ops.begin()+AddOp);
1979 Ops.erase(Ops.begin()+Idx-1);
1980 } else {
1981 Ops.erase(Ops.begin()+Idx);
1982 Ops.erase(Ops.begin()+AddOp-1);
1983 }
1984 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00001985 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001986 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001987
Chris Lattnerd934c702004-04-02 20:23:17 +00001988 // Check this multiply against other multiplies being added together.
1989 for (unsigned OtherMulIdx = Idx+1;
1990 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1991 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00001992 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001993 // If MulOp occurs in OtherMul, we can fold the two multiplies
1994 // together.
1995 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1996 OMulOp != e; ++OMulOp)
1997 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1998 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00001999 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002000 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002001 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002002 Mul->op_begin()+MulOp);
2003 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002004 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002005 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002006 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002007 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002008 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002009 OtherMul->op_begin()+OMulOp);
2010 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002011 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002012 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002013 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2014 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002015 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002016 Ops.erase(Ops.begin()+Idx);
2017 Ops.erase(Ops.begin()+OtherMulIdx-1);
2018 Ops.push_back(OuterMul);
2019 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002020 }
2021 }
2022 }
2023 }
2024
2025 // If there are any add recurrences in the operands list, see if any other
2026 // added values are loop invariant. If so, we can fold them into the
2027 // recurrence.
2028 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2029 ++Idx;
2030
2031 // Scan over all recurrences, trying to fold loop invariants into them.
2032 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2033 // Scan all of the other operands to this add and add them to the vector if
2034 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002035 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002036 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002037 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002038 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002039 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002040 LIOps.push_back(Ops[i]);
2041 Ops.erase(Ops.begin()+i);
2042 --i; --e;
2043 }
2044
2045 // If we found some loop invariants, fold them into the recurrence.
2046 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002047 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002048 LIOps.push_back(AddRec->getStart());
2049
Dan Gohmanaf752342009-07-07 17:06:11 +00002050 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002051 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002052 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002053
Dan Gohman16206132010-06-30 07:16:37 +00002054 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002055 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002056 // Always propagate NW.
2057 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002058 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002059
Chris Lattnerd934c702004-04-02 20:23:17 +00002060 // If all of the other operands were loop invariant, we are done.
2061 if (Ops.size() == 1) return NewRec;
2062
Nick Lewyckydb66b822011-09-06 05:08:09 +00002063 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002064 for (unsigned i = 0;; ++i)
2065 if (Ops[i] == AddRec) {
2066 Ops[i] = NewRec;
2067 break;
2068 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002069 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002070 }
2071
2072 // Okay, if there weren't any loop invariants to be folded, check to see if
2073 // there are multiple AddRec's with the same loop induction variable being
2074 // added together. If so, we can fold them.
2075 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002076 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2077 ++OtherIdx)
2078 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2079 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2080 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2081 AddRec->op_end());
2082 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2083 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00002084 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00002085 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002086 if (OtherAddRec->getLoop() == AddRecLoop) {
2087 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2088 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002089 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002090 AddRecOps.append(OtherAddRec->op_begin()+i,
2091 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002092 break;
2093 }
Dan Gohman028c1812010-08-29 14:53:34 +00002094 AddRecOps[i] = getAddExpr(AddRecOps[i],
2095 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002096 }
2097 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002098 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002099 // Step size has changed, so we cannot guarantee no self-wraparound.
2100 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002101 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002102 }
2103
2104 // Otherwise couldn't fold anything into this recurrence. Move onto the
2105 // next one.
2106 }
2107
2108 // Okay, it looks like we really DO need an add expr. Check to see if we
2109 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002110 FoldingSetNodeID ID;
2111 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002112 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2113 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002114 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002115 SCEVAddExpr *S =
2116 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2117 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002118 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2119 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002120 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2121 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002122 UniqueSCEVs.InsertNode(S, IP);
2123 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002124 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002125 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002126}
2127
Nick Lewycky287682e2011-10-04 06:51:26 +00002128static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2129 uint64_t k = i*j;
2130 if (j > 1 && k / j != i) Overflow = true;
2131 return k;
2132}
2133
2134/// Compute the result of "n choose k", the binomial coefficient. If an
2135/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002136/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002137static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2138 // We use the multiplicative formula:
2139 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2140 // At each iteration, we take the n-th term of the numeral and divide by the
2141 // (k-n)th term of the denominator. This division will always produce an
2142 // integral result, and helps reduce the chance of overflow in the
2143 // intermediate computations. However, we can still overflow even when the
2144 // final result would fit.
2145
2146 if (n == 0 || n == k) return 1;
2147 if (k > n) return 0;
2148
2149 if (k > n/2)
2150 k = n-k;
2151
2152 uint64_t r = 1;
2153 for (uint64_t i = 1; i <= k; ++i) {
2154 r = umul_ov(r, n-(i-1), Overflow);
2155 r /= i;
2156 }
2157 return r;
2158}
2159
Nick Lewycky05044c22014-12-06 00:45:50 +00002160/// Determine if any of the operands in this SCEV are a constant or if
2161/// any of the add or multiply expressions in this SCEV contain a constant.
2162static bool containsConstantSomewhere(const SCEV *StartExpr) {
2163 SmallVector<const SCEV *, 4> Ops;
2164 Ops.push_back(StartExpr);
2165 while (!Ops.empty()) {
2166 const SCEV *CurrentExpr = Ops.pop_back_val();
2167 if (isa<SCEVConstant>(*CurrentExpr))
2168 return true;
2169
2170 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2171 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2172 for (const SCEV *Operand : CurrentNAry->operands())
2173 Ops.push_back(Operand);
2174 }
2175 }
2176 return false;
2177}
2178
Dan Gohman4d5435d2009-05-24 23:45:28 +00002179/// getMulExpr - Get a canonical multiply expression, or something simpler if
2180/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002181const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002182 SCEV::NoWrapFlags Flags) {
2183 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2184 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002185 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002186 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002187#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002188 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002189 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002190 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002191 "SCEVMulExpr operand types don't match!");
2192#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002193
Sanjoy Das81401d42015-01-10 23:41:24 +00002194 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002195
Chris Lattnerd934c702004-04-02 20:23:17 +00002196 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002197 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002198
2199 // If there are any constants, fold them together.
2200 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002201 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002202
2203 // C1*(C2+V) -> C1*C2 + C1*V
2204 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002205 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2206 // If any of Add's ops are Adds or Muls with a constant,
2207 // apply this transformation as well.
2208 if (Add->getNumOperands() == 2)
2209 if (containsConstantSomewhere(Add))
2210 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2211 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002212
Chris Lattnerd934c702004-04-02 20:23:17 +00002213 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002214 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002215 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002216 ConstantInt *Fold = ConstantInt::get(getContext(),
2217 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002218 RHSC->getValue()->getValue());
2219 Ops[0] = getConstant(Fold);
2220 Ops.erase(Ops.begin()+1); // Erase the folded element
2221 if (Ops.size() == 1) return Ops[0];
2222 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002223 }
2224
2225 // If we are left with a constant one being multiplied, strip it off.
2226 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2227 Ops.erase(Ops.begin());
2228 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002229 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002230 // If we have a multiply of zero, it will always be zero.
2231 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002232 } else if (Ops[0]->isAllOnesValue()) {
2233 // If we have a mul by -1 of an add, try distributing the -1 among the
2234 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002235 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002236 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2237 SmallVector<const SCEV *, 4> NewOps;
2238 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00002239 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2240 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002241 const SCEV *Mul = getMulExpr(Ops[0], *I);
2242 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2243 NewOps.push_back(Mul);
2244 }
2245 if (AnyFolded)
2246 return getAddExpr(NewOps);
2247 }
Andrew Tricke92dcce2011-03-14 17:38:54 +00002248 else if (const SCEVAddRecExpr *
2249 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2250 // Negation preserves a recurrence's no self-wrap property.
2251 SmallVector<const SCEV *, 4> Operands;
2252 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2253 E = AddRec->op_end(); I != E; ++I) {
2254 Operands.push_back(getMulExpr(Ops[0], *I));
2255 }
2256 return getAddRecExpr(Operands, AddRec->getLoop(),
2257 AddRec->getNoWrapFlags(SCEV::FlagNW));
2258 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002259 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002260 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002261
2262 if (Ops.size() == 1)
2263 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002264 }
2265
2266 // Skip over the add expression until we get to a multiply.
2267 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2268 ++Idx;
2269
Chris Lattnerd934c702004-04-02 20:23:17 +00002270 // If there are mul operands inline them all into this expression.
2271 if (Idx < Ops.size()) {
2272 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002273 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002274 // If we have an mul, expand the mul operands onto the end of the operands
2275 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002276 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002277 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002278 DeletedMul = true;
2279 }
2280
2281 // If we deleted at least one mul, we added operands to the end of the list,
2282 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002283 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002284 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002285 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002286 }
2287
2288 // If there are any add recurrences in the operands list, see if any other
2289 // added values are loop invariant. If so, we can fold them into the
2290 // recurrence.
2291 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2292 ++Idx;
2293
2294 // Scan over all recurrences, trying to fold loop invariants into them.
2295 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2296 // Scan all of the other operands to this mul and add them to the vector if
2297 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002298 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002299 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002300 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002301 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002302 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002303 LIOps.push_back(Ops[i]);
2304 Ops.erase(Ops.begin()+i);
2305 --i; --e;
2306 }
2307
2308 // If we found some loop invariants, fold them into the recurrence.
2309 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002310 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002311 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002312 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002313 const SCEV *Scale = getMulExpr(LIOps);
2314 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2315 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002316
Dan Gohman16206132010-06-30 07:16:37 +00002317 // Build the new addrec. Propagate the NUW and NSW flags if both the
2318 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002319 //
2320 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002321 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002322 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2323 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002324
2325 // If all of the other operands were loop invariant, we are done.
2326 if (Ops.size() == 1) return NewRec;
2327
Nick Lewyckydb66b822011-09-06 05:08:09 +00002328 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002329 for (unsigned i = 0;; ++i)
2330 if (Ops[i] == AddRec) {
2331 Ops[i] = NewRec;
2332 break;
2333 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002334 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002335 }
2336
2337 // Okay, if there weren't any loop invariants to be folded, check to see if
2338 // there are multiple AddRec's with the same loop induction variable being
2339 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002340
2341 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2342 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2343 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2344 // ]]],+,...up to x=2n}.
2345 // Note that the arguments to choose() are always integers with values
2346 // known at compile time, never SCEV objects.
2347 //
2348 // The implementation avoids pointless extra computations when the two
2349 // addrec's are of different length (mathematically, it's equivalent to
2350 // an infinite stream of zeros on the right).
2351 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002352 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002353 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002354 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002355 const SCEVAddRecExpr *OtherAddRec =
2356 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2357 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002358 continue;
2359
Nick Lewycky97756402014-09-01 05:17:15 +00002360 bool Overflow = false;
2361 Type *Ty = AddRec->getType();
2362 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2363 SmallVector<const SCEV*, 7> AddRecOps;
2364 for (int x = 0, xe = AddRec->getNumOperands() +
2365 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2366 const SCEV *Term = getConstant(Ty, 0);
2367 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2368 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2369 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2370 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2371 z < ze && !Overflow; ++z) {
2372 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2373 uint64_t Coeff;
2374 if (LargerThan64Bits)
2375 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2376 else
2377 Coeff = Coeff1*Coeff2;
2378 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2379 const SCEV *Term1 = AddRec->getOperand(y-z);
2380 const SCEV *Term2 = OtherAddRec->getOperand(z);
2381 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002382 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002383 }
Nick Lewycky97756402014-09-01 05:17:15 +00002384 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002385 }
Nick Lewycky97756402014-09-01 05:17:15 +00002386 if (!Overflow) {
2387 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2388 SCEV::FlagAnyWrap);
2389 if (Ops.size() == 2) return NewAddRec;
2390 Ops[Idx] = NewAddRec;
2391 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2392 OpsModified = true;
2393 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2394 if (!AddRec)
2395 break;
2396 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002397 }
Nick Lewycky97756402014-09-01 05:17:15 +00002398 if (OpsModified)
2399 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002400
2401 // Otherwise couldn't fold anything into this recurrence. Move onto the
2402 // next one.
2403 }
2404
2405 // Okay, it looks like we really DO need an mul expr. Check to see if we
2406 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002407 FoldingSetNodeID ID;
2408 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002409 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2410 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002411 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002412 SCEVMulExpr *S =
2413 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2414 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002415 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2416 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002417 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2418 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002419 UniqueSCEVs.InsertNode(S, IP);
2420 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002421 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002422 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002423}
2424
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002425/// getUDivExpr - Get a canonical unsigned division expression, or something
2426/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002427const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2428 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002429 assert(getEffectiveSCEVType(LHS->getType()) ==
2430 getEffectiveSCEVType(RHS->getType()) &&
2431 "SCEVUDivExpr operand types don't match!");
2432
Dan Gohmana30370b2009-05-04 22:02:23 +00002433 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002434 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002435 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002436 // If the denominator is zero, the result of the udiv is undefined. Don't
2437 // try to analyze it, because the resolution chosen here may differ from
2438 // the resolution chosen in other parts of the compiler.
2439 if (!RHSC->getValue()->isZero()) {
2440 // Determine if the division can be folded into the operands of
2441 // its operands.
2442 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002443 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002444 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002445 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002446 // For non-power-of-two values, effectively round the value up to the
2447 // nearest power of two.
2448 if (!RHSC->getValue()->getValue().isPowerOf2())
2449 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002450 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002451 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002452 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2453 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002454 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2455 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2456 const APInt &StepInt = Step->getValue()->getValue();
2457 const APInt &DivInt = RHSC->getValue()->getValue();
2458 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002459 getZeroExtendExpr(AR, ExtTy) ==
2460 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2461 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002462 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002463 SmallVector<const SCEV *, 4> Operands;
2464 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2465 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick8b55b732011-03-14 16:50:06 +00002466 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002467 SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002468 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002469 /// Get a canonical UDivExpr for a recurrence.
2470 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2471 // We can currently only fold X%N if X is constant.
2472 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2473 if (StartC && !DivInt.urem(StepInt) &&
2474 getZeroExtendExpr(AR, ExtTy) ==
2475 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2476 getZeroExtendExpr(Step, ExtTy),
2477 AR->getLoop(), SCEV::FlagAnyWrap)) {
2478 const APInt &StartInt = StartC->getValue()->getValue();
2479 const APInt &StartRem = StartInt.urem(StepInt);
2480 if (StartRem != 0)
2481 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2482 AR->getLoop(), SCEV::FlagNW);
2483 }
2484 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002485 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2486 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2487 SmallVector<const SCEV *, 4> Operands;
2488 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2489 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2490 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2491 // Find an operand that's safely divisible.
2492 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2493 const SCEV *Op = M->getOperand(i);
2494 const SCEV *Div = getUDivExpr(Op, RHSC);
2495 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2496 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2497 M->op_end());
2498 Operands[i] = Div;
2499 return getMulExpr(Operands);
2500 }
2501 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002502 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002503 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002504 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002505 SmallVector<const SCEV *, 4> Operands;
2506 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2507 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2508 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2509 Operands.clear();
2510 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2511 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2512 if (isa<SCEVUDivExpr>(Op) ||
2513 getMulExpr(Op, RHS) != A->getOperand(i))
2514 break;
2515 Operands.push_back(Op);
2516 }
2517 if (Operands.size() == A->getNumOperands())
2518 return getAddExpr(Operands);
2519 }
2520 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002521
Dan Gohmanacd700a2010-04-22 01:35:11 +00002522 // Fold if both operands are constant.
2523 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2524 Constant *LHSCV = LHSC->getValue();
2525 Constant *RHSCV = RHSC->getValue();
2526 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2527 RHSCV)));
2528 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002529 }
2530 }
2531
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002532 FoldingSetNodeID ID;
2533 ID.AddInteger(scUDivExpr);
2534 ID.AddPointer(LHS);
2535 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002536 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002537 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002538 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2539 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002540 UniqueSCEVs.InsertNode(S, IP);
2541 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002542}
2543
Nick Lewycky31eaca52014-01-27 10:04:03 +00002544static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2545 APInt A = C1->getValue()->getValue().abs();
2546 APInt B = C2->getValue()->getValue().abs();
2547 uint32_t ABW = A.getBitWidth();
2548 uint32_t BBW = B.getBitWidth();
2549
2550 if (ABW > BBW)
2551 B = B.zext(ABW);
2552 else if (ABW < BBW)
2553 A = A.zext(BBW);
2554
2555 return APIntOps::GreatestCommonDivisor(A, B);
2556}
2557
2558/// getUDivExactExpr - Get a canonical unsigned division expression, or
2559/// something simpler if possible. There is no representation for an exact udiv
2560/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2561/// We can't do this when it's not exact because the udiv may be clearing bits.
2562const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2563 const SCEV *RHS) {
2564 // TODO: we could try to find factors in all sorts of things, but for now we
2565 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2566 // end of this file for inspiration.
2567
2568 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2569 if (!Mul)
2570 return getUDivExpr(LHS, RHS);
2571
2572 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2573 // If the mulexpr multiplies by a constant, then that constant must be the
2574 // first element of the mulexpr.
2575 if (const SCEVConstant *LHSCst =
2576 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2577 if (LHSCst == RHSCst) {
2578 SmallVector<const SCEV *, 2> Operands;
2579 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2580 return getMulExpr(Operands);
2581 }
2582
2583 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2584 // that there's a factor provided by one of the other terms. We need to
2585 // check.
2586 APInt Factor = gcd(LHSCst, RHSCst);
2587 if (!Factor.isIntN(1)) {
2588 LHSCst = cast<SCEVConstant>(
2589 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2590 RHSCst = cast<SCEVConstant>(
2591 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2592 SmallVector<const SCEV *, 2> Operands;
2593 Operands.push_back(LHSCst);
2594 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2595 LHS = getMulExpr(Operands);
2596 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002597 Mul = dyn_cast<SCEVMulExpr>(LHS);
2598 if (!Mul)
2599 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002600 }
2601 }
2602 }
2603
2604 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2605 if (Mul->getOperand(i) == RHS) {
2606 SmallVector<const SCEV *, 2> Operands;
2607 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2608 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2609 return getMulExpr(Operands);
2610 }
2611 }
2612
2613 return getUDivExpr(LHS, RHS);
2614}
Chris Lattnerd934c702004-04-02 20:23:17 +00002615
Dan Gohman4d5435d2009-05-24 23:45:28 +00002616/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2617/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002618const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2619 const Loop *L,
2620 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002621 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002622 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002623 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002624 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002625 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002626 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002627 }
2628
2629 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002630 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002631}
2632
Dan Gohman4d5435d2009-05-24 23:45:28 +00002633/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2634/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002635const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002636ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002637 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002638 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002639#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002640 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002641 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002642 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002643 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002644 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002645 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002646 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002647#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002648
Dan Gohmanbe928e32008-06-18 16:23:07 +00002649 if (Operands.back()->isZero()) {
2650 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002651 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002652 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002653
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002654 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2655 // use that information to infer NUW and NSW flags. However, computing a
2656 // BE count requires calling getAddRecExpr, so we may not yet have a
2657 // meaningful BE count at this point (and if we don't, we'd be stuck
2658 // with a SCEVCouldNotCompute as the cached BE count).
2659
Sanjoy Das81401d42015-01-10 23:41:24 +00002660 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002661
Dan Gohman223a5d22008-08-08 18:33:12 +00002662 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002663 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002664 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman63c020a2010-08-13 20:23:25 +00002665 if (L->contains(NestedLoop) ?
Dan Gohman51ad99d2010-01-21 02:09:26 +00002666 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman63c020a2010-08-13 20:23:25 +00002667 (!NestedLoop->contains(L) &&
Dan Gohman51ad99d2010-01-21 02:09:26 +00002668 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002669 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002670 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002671 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002672 // AddRecs require their operands be loop-invariant with respect to their
2673 // loops. Don't perform this transformation if it would break this
2674 // requirement.
2675 bool AllInvariant = true;
2676 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002677 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002678 AllInvariant = false;
2679 break;
2680 }
2681 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002682 // Create a recurrence for the outer loop with the same step size.
2683 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002684 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2685 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002686 SCEV::NoWrapFlags OuterFlags =
2687 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002688
2689 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohmancc030b72009-06-26 22:36:20 +00002690 AllInvariant = true;
2691 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002692 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002693 AllInvariant = false;
2694 break;
2695 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002696 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002697 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002698 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002699 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2700 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002701 SCEV::NoWrapFlags InnerFlags =
2702 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002703 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2704 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002705 }
2706 // Reset Operands to its original state.
2707 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002708 }
2709 }
2710
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002711 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2712 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002713 FoldingSetNodeID ID;
2714 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002715 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2716 ID.AddPointer(Operands[i]);
2717 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002718 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002719 SCEVAddRecExpr *S =
2720 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2721 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002722 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2723 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002724 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2725 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002726 UniqueSCEVs.InsertNode(S, IP);
2727 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002728 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002729 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002730}
2731
Dan Gohmanabd17092009-06-24 14:49:00 +00002732const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2733 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002734 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002735 Ops.push_back(LHS);
2736 Ops.push_back(RHS);
2737 return getSMaxExpr(Ops);
2738}
2739
Dan Gohmanaf752342009-07-07 17:06:11 +00002740const SCEV *
2741ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002742 assert(!Ops.empty() && "Cannot get empty smax!");
2743 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002744#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002745 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002746 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002747 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002748 "SCEVSMaxExpr operand types don't match!");
2749#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002750
2751 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002752 GroupByComplexity(Ops, LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002753
2754 // If there are any constants, fold them together.
2755 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002756 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002757 ++Idx;
2758 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002759 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002760 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002761 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002762 APIntOps::smax(LHSC->getValue()->getValue(),
2763 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002764 Ops[0] = getConstant(Fold);
2765 Ops.erase(Ops.begin()+1); // Erase the folded element
2766 if (Ops.size() == 1) return Ops[0];
2767 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002768 }
2769
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002770 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002771 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2772 Ops.erase(Ops.begin());
2773 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002774 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2775 // If we have an smax with a constant maximum-int, it will always be
2776 // maximum-int.
2777 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002778 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002779
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002780 if (Ops.size() == 1) return Ops[0];
2781 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002782
2783 // Find the first SMax
2784 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2785 ++Idx;
2786
2787 // Check to see if one of the operands is an SMax. If so, expand its operands
2788 // onto our operand list, and recurse to simplify.
2789 if (Idx < Ops.size()) {
2790 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002791 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002792 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002793 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002794 DeletedSMax = true;
2795 }
2796
2797 if (DeletedSMax)
2798 return getSMaxExpr(Ops);
2799 }
2800
2801 // Okay, check to see if the same value occurs in the operand list twice. If
2802 // so, delete one. Since we sorted the list, these values are required to
2803 // be adjacent.
2804 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002805 // X smax Y smax Y --> X smax Y
2806 // X smax Y --> X, if X is always greater than Y
2807 if (Ops[i] == Ops[i+1] ||
2808 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2809 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2810 --i; --e;
2811 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002812 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2813 --i; --e;
2814 }
2815
2816 if (Ops.size() == 1) return Ops[0];
2817
2818 assert(!Ops.empty() && "Reduced smax down to nothing!");
2819
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002820 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002821 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002822 FoldingSetNodeID ID;
2823 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002824 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2825 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002826 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002827 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002828 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2829 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002830 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2831 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002832 UniqueSCEVs.InsertNode(S, IP);
2833 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002834}
2835
Dan Gohmanabd17092009-06-24 14:49:00 +00002836const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2837 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002838 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002839 Ops.push_back(LHS);
2840 Ops.push_back(RHS);
2841 return getUMaxExpr(Ops);
2842}
2843
Dan Gohmanaf752342009-07-07 17:06:11 +00002844const SCEV *
2845ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002846 assert(!Ops.empty() && "Cannot get empty umax!");
2847 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002848#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002849 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002850 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002851 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002852 "SCEVUMaxExpr operand types don't match!");
2853#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002854
2855 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002856 GroupByComplexity(Ops, LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002857
2858 // If there are any constants, fold them together.
2859 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002860 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002861 ++Idx;
2862 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002863 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002864 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002865 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002866 APIntOps::umax(LHSC->getValue()->getValue(),
2867 RHSC->getValue()->getValue()));
2868 Ops[0] = getConstant(Fold);
2869 Ops.erase(Ops.begin()+1); // Erase the folded element
2870 if (Ops.size() == 1) return Ops[0];
2871 LHSC = cast<SCEVConstant>(Ops[0]);
2872 }
2873
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002874 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002875 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2876 Ops.erase(Ops.begin());
2877 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002878 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2879 // If we have an umax with a constant maximum-int, it will always be
2880 // maximum-int.
2881 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002882 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002883
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002884 if (Ops.size() == 1) return Ops[0];
2885 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002886
2887 // Find the first UMax
2888 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2889 ++Idx;
2890
2891 // Check to see if one of the operands is a UMax. If so, expand its operands
2892 // onto our operand list, and recurse to simplify.
2893 if (Idx < Ops.size()) {
2894 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002895 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002896 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002897 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002898 DeletedUMax = true;
2899 }
2900
2901 if (DeletedUMax)
2902 return getUMaxExpr(Ops);
2903 }
2904
2905 // Okay, check to see if the same value occurs in the operand list twice. If
2906 // so, delete one. Since we sorted the list, these values are required to
2907 // be adjacent.
2908 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002909 // X umax Y umax Y --> X umax Y
2910 // X umax Y --> X, if X is always greater than Y
2911 if (Ops[i] == Ops[i+1] ||
2912 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2913 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2914 --i; --e;
2915 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002916 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2917 --i; --e;
2918 }
2919
2920 if (Ops.size() == 1) return Ops[0];
2921
2922 assert(!Ops.empty() && "Reduced umax down to nothing!");
2923
2924 // Okay, it looks like we really DO need a umax expr. Check to see if we
2925 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002926 FoldingSetNodeID ID;
2927 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002928 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2929 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002930 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002931 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002932 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2933 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002934 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2935 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002936 UniqueSCEVs.InsertNode(S, IP);
2937 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002938}
2939
Dan Gohmanabd17092009-06-24 14:49:00 +00002940const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2941 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002942 // ~smax(~x, ~y) == smin(x, y).
2943 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2944}
2945
Dan Gohmanabd17092009-06-24 14:49:00 +00002946const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2947 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002948 // ~umax(~x, ~y) == umin(x, y)
2949 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2950}
2951
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002952const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002953 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002954 // constant expression and then folding it back into a ConstantInt.
2955 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002956 if (DL)
2957 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
Dan Gohman11862a62010-04-12 23:03:26 +00002958
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002959 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2960 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002961 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00002962 C = Folded;
Chris Lattner229907c2011-07-18 04:54:35 +00002963 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002964 assert(Ty == IntTy && "Effective SCEV type doesn't match");
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002965 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2966}
2967
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002968const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
2969 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002970 unsigned FieldNo) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002971 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002972 // constant expression and then folding it back into a ConstantInt.
2973 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002974 if (DL) {
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002975 return getConstant(IntTy,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002976 DL->getStructLayout(STy)->getElementOffset(FieldNo));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002977 }
Dan Gohman11862a62010-04-12 23:03:26 +00002978
Dan Gohmancf913832010-01-28 02:15:55 +00002979 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2980 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002981 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00002982 C = Folded;
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002983
Matt Arsenault4ed49b52013-10-21 18:08:09 +00002984 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohmancf913832010-01-28 02:15:55 +00002985 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002986}
2987
Dan Gohmanaf752342009-07-07 17:06:11 +00002988const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00002989 // Don't attempt to do anything other than create a SCEVUnknown object
2990 // here. createSCEV only calls getUnknown after checking for all other
2991 // interesting possibilities, and any other code that calls getUnknown
2992 // is doing so in order to hide a value from SCEV canonicalization.
2993
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002994 FoldingSetNodeID ID;
2995 ID.AddInteger(scUnknown);
2996 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00002997 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00002998 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2999 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3000 "Stale SCEVUnknown in uniquing map!");
3001 return S;
3002 }
3003 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3004 FirstUnknown);
3005 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003006 UniqueSCEVs.InsertNode(S, IP);
3007 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003008}
3009
Chris Lattnerd934c702004-04-02 20:23:17 +00003010//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003011// Basic SCEV Analysis and PHI Idiom Recognition Code
3012//
3013
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003014/// isSCEVable - Test if values of the given type are analyzable within
3015/// the SCEV framework. This primarily includes integer types, and it
3016/// can optionally include pointer types if the ScalarEvolution class
3017/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003018bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003019 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003020 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003021}
3022
3023/// getTypeSizeInBits - Return the size in bits of the specified type,
3024/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003025uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003026 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3027
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003028 // If we have a DataLayout, use it!
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003029 if (DL)
3030 return DL->getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003031
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003032 // Integer types have fixed sizes.
Duncan Sands9dff9be2010-02-15 16:12:20 +00003033 if (Ty->isIntegerTy())
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003034 return Ty->getPrimitiveSizeInBits();
3035
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003036 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003037 // assume pointers are 64-bit.
Duncan Sands19d0b472010-02-16 11:11:14 +00003038 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003039 return 64;
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003040}
3041
3042/// getEffectiveSCEVType - Return a type with the same bitwidth as
3043/// the given type and which represents how SCEV will treat the given
3044/// type, for which isSCEVable must return true. For pointer types,
3045/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003046Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003047 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3048
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003049 if (Ty->isIntegerTy()) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003050 return Ty;
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003051 }
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003052
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003053 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003054 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003055
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003056 if (DL)
3057 return DL->getIntPtrType(Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003058
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003059 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003060 return Type::getInt64Ty(getContext());
Dan Gohman0a40ad92009-04-16 03:18:22 +00003061}
Chris Lattnerd934c702004-04-02 20:23:17 +00003062
Dan Gohmanaf752342009-07-07 17:06:11 +00003063const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003064 return &CouldNotCompute;
Dan Gohman31efa302009-04-18 17:58:19 +00003065}
3066
Shuxin Yangefc4c012013-07-08 17:33:13 +00003067namespace {
3068 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3069 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3070 // is set iff if find such SCEVUnknown.
3071 //
3072 struct FindInvalidSCEVUnknown {
3073 bool FindOne;
3074 FindInvalidSCEVUnknown() { FindOne = false; }
3075 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003076 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003077 case scConstant:
3078 return false;
3079 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003080 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003081 FindOne = true;
3082 return false;
3083 default:
3084 return true;
3085 }
3086 }
3087 bool isDone() const { return FindOne; }
3088 };
3089}
3090
3091bool ScalarEvolution::checkValidity(const SCEV *S) const {
3092 FindInvalidSCEVUnknown F;
3093 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3094 ST.visitAll(S);
3095
3096 return !F.FindOne;
3097}
3098
Chris Lattnerd934c702004-04-02 20:23:17 +00003099/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3100/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003101const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003102 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003103
Shuxin Yangefc4c012013-07-08 17:33:13 +00003104 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3105 if (I != ValueExprMap.end()) {
3106 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003107 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003108 return S;
3109 else
3110 ValueExprMap.erase(I);
3111 }
Dan Gohmanaf752342009-07-07 17:06:11 +00003112 const SCEV *S = createSCEV(V);
Dan Gohmanc29eeae2010-08-16 16:31:39 +00003113
3114 // The process of creating a SCEV for V may have caused other SCEVs
3115 // to have been created, so it's necessary to insert the new entry
3116 // from scratch, rather than trying to remember the insert position
3117 // above.
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003118 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattnerd934c702004-04-02 20:23:17 +00003119 return S;
3120}
3121
Dan Gohman0a40ad92009-04-16 03:18:22 +00003122/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3123///
Dan Gohmanaf752342009-07-07 17:06:11 +00003124const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003125 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003126 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003127 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003128
Chris Lattner229907c2011-07-18 04:54:35 +00003129 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003130 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003131 return getMulExpr(V,
Owen Anderson5a1acd92009-07-31 20:28:14 +00003132 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003133}
3134
3135/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003136const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003137 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003138 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003139 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003140
Chris Lattner229907c2011-07-18 04:54:35 +00003141 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003142 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003143 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003144 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003145 return getMinusSCEV(AllOnes, V);
3146}
3147
Andrew Trick8b55b732011-03-14 16:50:06 +00003148/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003149const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003150 SCEV::NoWrapFlags Flags) {
Andrew Tricka34f1b12011-03-15 01:16:14 +00003151 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
3152
Dan Gohman46f00a22010-07-20 16:53:00 +00003153 // Fast path: X - X --> 0.
3154 if (LHS == RHS)
3155 return getConstant(LHS->getType(), 0);
3156
Dan Gohman0a40ad92009-04-16 03:18:22 +00003157 // X - Y --> X + -Y
Andrew Trick8b55b732011-03-14 16:50:06 +00003158 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003159}
3160
3161/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3162/// input value to the specified type. If the type must be extended, it is zero
3163/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003164const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003165ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3166 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003167 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3168 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003169 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003170 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003171 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003172 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003173 return getTruncateExpr(V, Ty);
3174 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003175}
3176
3177/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3178/// input value to the specified type. If the type must be extended, it is sign
3179/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003180const SCEV *
3181ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003182 Type *Ty) {
3183 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003184 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3185 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003186 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003187 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003188 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003189 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003190 return getTruncateExpr(V, Ty);
3191 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003192}
3193
Dan Gohmane712a2f2009-05-13 03:46:30 +00003194/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3195/// input value to the specified type. If the type must be extended, it is zero
3196/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003197const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003198ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3199 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003200 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3201 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003202 "Cannot noop or zero extend with non-integer arguments!");
3203 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3204 "getNoopOrZeroExtend cannot truncate!");
3205 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3206 return V; // No conversion
3207 return getZeroExtendExpr(V, Ty);
3208}
3209
3210/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3211/// input value to the specified type. If the type must be extended, it is sign
3212/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003213const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003214ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3215 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003216 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3217 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003218 "Cannot noop or sign extend with non-integer arguments!");
3219 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3220 "getNoopOrSignExtend cannot truncate!");
3221 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3222 return V; // No conversion
3223 return getSignExtendExpr(V, Ty);
3224}
3225
Dan Gohman8db2edc2009-06-13 15:56:47 +00003226/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3227/// the input value to the specified type. If the type must be extended,
3228/// it is extended with unspecified bits. The conversion must not be
3229/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003230const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003231ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3232 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003233 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3234 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003235 "Cannot noop or any extend with non-integer arguments!");
3236 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3237 "getNoopOrAnyExtend cannot truncate!");
3238 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3239 return V; // No conversion
3240 return getAnyExtendExpr(V, Ty);
3241}
3242
Dan Gohmane712a2f2009-05-13 03:46:30 +00003243/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3244/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003245const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003246ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3247 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003248 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3249 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003250 "Cannot truncate or noop with non-integer arguments!");
3251 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3252 "getTruncateOrNoop cannot extend!");
3253 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3254 return V; // No conversion
3255 return getTruncateExpr(V, Ty);
3256}
3257
Dan Gohman96212b62009-06-22 00:31:57 +00003258/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3259/// the types using zero-extension, and then perform a umax operation
3260/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003261const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3262 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003263 const SCEV *PromotedLHS = LHS;
3264 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003265
3266 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3267 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3268 else
3269 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3270
3271 return getUMaxExpr(PromotedLHS, PromotedRHS);
3272}
3273
Dan Gohman2bc22302009-06-22 15:03:27 +00003274/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3275/// the types using zero-extension, and then perform a umin operation
3276/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003277const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3278 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003279 const SCEV *PromotedLHS = LHS;
3280 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003281
3282 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3283 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3284 else
3285 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3286
3287 return getUMinExpr(PromotedLHS, PromotedRHS);
3288}
3289
Andrew Trick87716c92011-03-17 23:51:11 +00003290/// getPointerBase - Transitively follow the chain of pointer-type operands
3291/// until reaching a SCEV that does not have a single pointer operand. This
3292/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3293/// but corner cases do exist.
3294const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3295 // A pointer operand may evaluate to a nonpointer expression, such as null.
3296 if (!V->getType()->isPointerTy())
3297 return V;
3298
3299 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3300 return getPointerBase(Cast->getOperand());
3301 }
3302 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003303 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003304 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3305 I != E; ++I) {
3306 if ((*I)->getType()->isPointerTy()) {
3307 // Cannot find the base of an expression with multiple pointer operands.
3308 if (PtrOp)
3309 return V;
3310 PtrOp = *I;
3311 }
3312 }
3313 if (!PtrOp)
3314 return V;
3315 return getPointerBase(PtrOp);
3316 }
3317 return V;
3318}
3319
Dan Gohman0b89dff2009-07-25 01:13:03 +00003320/// PushDefUseChildren - Push users of the given Instruction
3321/// onto the given Worklist.
3322static void
3323PushDefUseChildren(Instruction *I,
3324 SmallVectorImpl<Instruction *> &Worklist) {
3325 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003326 for (User *U : I->users())
3327 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003328}
3329
3330/// ForgetSymbolicValue - This looks up computed SCEV values for all
3331/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003332/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003333/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003334void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003335ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003336 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003337 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003338
Dan Gohman0b89dff2009-07-25 01:13:03 +00003339 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003340 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003341 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003342 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003343 if (!Visited.insert(I).second)
3344 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003345
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003346 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003347 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003348 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003349 const SCEV *Old = It->second;
3350
Dan Gohman0b89dff2009-07-25 01:13:03 +00003351 // Short-circuit the def-use traversal if the symbolic name
3352 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003353 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003354 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003355
Dan Gohman0b89dff2009-07-25 01:13:03 +00003356 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003357 // structure, it's a PHI that's in the progress of being computed
3358 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3359 // additional loop trip count information isn't going to change anything.
3360 // In the second case, createNodeForPHI will perform the necessary
3361 // updates on its own when it gets to that point. In the third, we do
3362 // want to forget the SCEVUnknown.
3363 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003364 !isa<SCEVUnknown>(Old) ||
3365 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003366 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003367 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003368 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003369 }
3370
3371 PushDefUseChildren(I, Worklist);
3372 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003373}
Chris Lattnerd934c702004-04-02 20:23:17 +00003374
3375/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3376/// a loop header, making it a potential recurrence, or it doesn't.
3377///
Dan Gohmanaf752342009-07-07 17:06:11 +00003378const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003379 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3380 if (L->getHeader() == PN->getParent()) {
3381 // The loop may have multiple entrances or multiple exits; we can analyze
3382 // this phi as an addrec if it has a unique entry value and a unique
3383 // backedge value.
Craig Topper9f008862014-04-15 04:59:12 +00003384 Value *BEValueV = nullptr, *StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003385 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3386 Value *V = PN->getIncomingValue(i);
3387 if (L->contains(PN->getIncomingBlock(i))) {
3388 if (!BEValueV) {
3389 BEValueV = V;
3390 } else if (BEValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003391 BEValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003392 break;
3393 }
3394 } else if (!StartValueV) {
3395 StartValueV = V;
3396 } else if (StartValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003397 StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003398 break;
3399 }
3400 }
3401 if (BEValueV && StartValueV) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003402 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanaf752342009-07-07 17:06:11 +00003403 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003404 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattnerd934c702004-04-02 20:23:17 +00003405 "PHI node already processed?");
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003406 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattnerd934c702004-04-02 20:23:17 +00003407
3408 // Using this symbolic name for the PHI, analyze the value coming around
3409 // the back-edge.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003410 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003411
3412 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3413 // has a special value for the first iteration of the loop.
3414
3415 // If the value coming around the backedge is an add with the symbolic
3416 // value we just inserted, then we found a simple induction variable!
Dan Gohmana30370b2009-05-04 22:02:23 +00003417 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003418 // If there is a single occurrence of the symbolic value, replace it
3419 // with a recurrence.
3420 unsigned FoundIndex = Add->getNumOperands();
3421 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3422 if (Add->getOperand(i) == SymbolicName)
3423 if (FoundIndex == e) {
3424 FoundIndex = i;
3425 break;
3426 }
3427
3428 if (FoundIndex != Add->getNumOperands()) {
3429 // Create an add with everything but the specified operand.
Dan Gohmanaf752342009-07-07 17:06:11 +00003430 SmallVector<const SCEV *, 8> Ops;
Chris Lattnerd934c702004-04-02 20:23:17 +00003431 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3432 if (i != FoundIndex)
3433 Ops.push_back(Add->getOperand(i));
Dan Gohmanaf752342009-07-07 17:06:11 +00003434 const SCEV *Accum = getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00003435
3436 // This is not a valid addrec if the step amount is varying each
3437 // loop iteration, but is not itself an addrec in this loop.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003438 if (isLoopInvariant(Accum, L) ||
Chris Lattnerd934c702004-04-02 20:23:17 +00003439 (isa<SCEVAddRecExpr>(Accum) &&
3440 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003441 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohman51ad99d2010-01-21 02:09:26 +00003442
3443 // If the increment doesn't overflow, then neither the addrec nor
3444 // the post-increment will overflow.
3445 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3446 if (OBO->hasNoUnsignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003447 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003448 if (OBO->hasNoSignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003449 Flags = setFlags(Flags, SCEV::FlagNSW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003450 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003451 // If the increment is an inbounds GEP, then we know the address
3452 // space cannot be wrapped around. We cannot make any guarantee
3453 // about signed or unsigned overflow because pointers are
3454 // unsigned but we may have a negative index from the base
Benjamin Kramer6094f302013-10-28 07:30:06 +00003455 // pointer. We can guarantee that no unsigned wrap occurs if the
3456 // indices form a positive value.
3457 if (GEP->isInBounds()) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003458 Flags = setFlags(Flags, SCEV::FlagNW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003459
3460 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3461 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3462 Flags = setFlags(Flags, SCEV::FlagNUW);
3463 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00003464 } else if (const SubOperator *OBO =
3465 dyn_cast<SubOperator>(BEValueV)) {
3466 if (OBO->hasNoUnsignedWrap())
3467 Flags = setFlags(Flags, SCEV::FlagNUW);
3468 if (OBO->hasNoSignedWrap())
3469 Flags = setFlags(Flags, SCEV::FlagNSW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003470 }
3471
Dan Gohman6635bb22010-04-12 07:49:36 +00003472 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick8b55b732011-03-14 16:50:06 +00003473 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohman62ef6a72009-07-25 01:22:26 +00003474
Dan Gohman51ad99d2010-01-21 02:09:26 +00003475 // Since the no-wrap flags are on the increment, they apply to the
3476 // post-incremented value as well.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003477 if (isLoopInvariant(Accum, L))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003478 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick8b55b732011-03-14 16:50:06 +00003479 Accum, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00003480
3481 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003482 // to be symbolic. We now need to go back and purge all of the
3483 // entries for the scalars that use the symbolic expression.
3484 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003485 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003486 return PHISCEV;
3487 }
3488 }
Dan Gohmana30370b2009-05-04 22:02:23 +00003489 } else if (const SCEVAddRecExpr *AddRec =
3490 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003491 // Otherwise, this could be a loop like this:
3492 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3493 // In this case, j = {1,+,1} and BEValue is j.
3494 // Because the other in-value of i (0) fits the evolution of BEValue
3495 // i really is an addrec evolution.
3496 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003497 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003498
3499 // If StartVal = j.start - j.stride, we can use StartVal as the
3500 // initial step of the addrec evolution.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003501 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman068b7932010-04-11 23:44:58 +00003502 AddRec->getOperand(1))) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003503 // FIXME: For constant StartVal, we should be able to infer
3504 // no-wrap flags.
Dan Gohmanaf752342009-07-07 17:06:11 +00003505 const SCEV *PHISCEV =
Andrew Trick8b55b732011-03-14 16:50:06 +00003506 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3507 SCEV::FlagAnyWrap);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003508
3509 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003510 // to be symbolic. We now need to go back and purge all of the
3511 // entries for the scalars that use the symbolic expression.
3512 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003513 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003514 return PHISCEV;
3515 }
3516 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003517 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003518 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003519 }
Misha Brukman01808ca2005-04-21 21:13:18 +00003520
Dan Gohmana9c205c2010-02-25 06:57:05 +00003521 // If the PHI has a single incoming value, follow that value, unless the
3522 // PHI's incoming blocks are in a different loop, in which case doing so
3523 // risks breaking LCSSA form. Instcombine would normally zap these, but
3524 // it doesn't have DominatorTree information, so it may miss cases.
Chandler Carruth66b31302015-01-04 12:03:27 +00003525 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT, AC))
Duncan Sandsaef146b2010-11-18 19:59:41 +00003526 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003527 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003528
Chris Lattnerd934c702004-04-02 20:23:17 +00003529 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003530 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003531}
3532
Dan Gohmanee750d12009-05-08 20:26:55 +00003533/// createNodeForGEP - Expand GEP instructions into add and multiply
3534/// operations. This allows them to be analyzed by regular SCEV code.
3535///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003536const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Chris Lattner229907c2011-07-18 04:54:35 +00003537 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohman2173bd32009-05-08 20:36:47 +00003538 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00003539 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00003540 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00003541 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00003542
3543 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3544 // Add expression, because the Instruction may be guarded by control flow
3545 // and the no-overflow bits may not be valid for the expression in any
3546 // context.
3547 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3548
Dan Gohman1d2ded72010-05-03 22:09:21 +00003549 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohman2173bd32009-05-08 20:36:47 +00003550 gep_type_iterator GTI = gep_type_begin(GEP);
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00003551 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
Dan Gohman2173bd32009-05-08 20:36:47 +00003552 E = GEP->op_end();
Dan Gohmanee750d12009-05-08 20:26:55 +00003553 I != E; ++I) {
3554 Value *Index = *I;
3555 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattner229907c2011-07-18 04:54:35 +00003556 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohmanee750d12009-05-08 20:26:55 +00003557 // For a struct, add the member offset.
Dan Gohmanee750d12009-05-08 20:26:55 +00003558 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003559 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
Dan Gohman16206132010-06-30 07:16:37 +00003560
Dan Gohman16206132010-06-30 07:16:37 +00003561 // Add the field offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003562 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003563 } else {
3564 // For an array, add the element offset, explicitly scaled.
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003565 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
Dan Gohman16206132010-06-30 07:16:37 +00003566 const SCEV *IndexS = getSCEV(Index);
Dan Gohman8b0a4192010-03-01 17:49:51 +00003567 // Getelementptr indices are signed.
Dan Gohman16206132010-06-30 07:16:37 +00003568 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3569
Dan Gohman16206132010-06-30 07:16:37 +00003570 // Multiply the index by the element size to compute the element offset.
Matt Arsenault4c265902013-09-27 22:38:23 +00003571 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
Dan Gohman16206132010-06-30 07:16:37 +00003572
3573 // Add the element offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003574 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003575 }
3576 }
Dan Gohman16206132010-06-30 07:16:37 +00003577
3578 // Get the SCEV for the GEP base.
3579 const SCEV *BaseS = getSCEV(Base);
3580
Dan Gohman16206132010-06-30 07:16:37 +00003581 // Add the total offset from all the GEP indices to the base.
Matt Arsenault4c265902013-09-27 22:38:23 +00003582 return getAddExpr(BaseS, TotalOffset, Wrap);
Dan Gohmanee750d12009-05-08 20:26:55 +00003583}
3584
Nick Lewycky3783b462007-11-22 07:59:40 +00003585/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3586/// guaranteed to end in (at every loop iteration). It is, at the same time,
3587/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3588/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003589uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00003590ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003591 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00003592 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00003593
Dan Gohmana30370b2009-05-04 22:02:23 +00003594 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00003595 return std::min(GetMinTrailingZeros(T->getOperand()),
3596 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00003597
Dan Gohmana30370b2009-05-04 22:02:23 +00003598 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003599 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3600 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3601 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003602 }
3603
Dan Gohmana30370b2009-05-04 22:02:23 +00003604 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003605 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3606 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3607 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003608 }
3609
Dan Gohmana30370b2009-05-04 22:02:23 +00003610 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003611 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003612 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003613 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003614 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003615 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003616 }
3617
Dan Gohmana30370b2009-05-04 22:02:23 +00003618 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003619 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003620 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3621 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00003622 for (unsigned i = 1, e = M->getNumOperands();
3623 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003624 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00003625 BitWidth);
3626 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003627 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003628
Dan Gohmana30370b2009-05-04 22:02:23 +00003629 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003630 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003631 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003632 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003633 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003634 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003635 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003636
Dan Gohmana30370b2009-05-04 22:02:23 +00003637 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003638 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003639 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003640 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003641 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003642 return MinOpRes;
3643 }
3644
Dan Gohmana30370b2009-05-04 22:02:23 +00003645 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003646 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003647 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003648 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003649 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003650 return MinOpRes;
3651 }
3652
Dan Gohmanc702fc02009-06-19 23:29:04 +00003653 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3654 // For a SCEVUnknown, ask ValueTracking.
3655 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00003656 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003657 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003658 return Zeros.countTrailingOnes();
3659 }
3660
3661 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00003662 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00003663}
Chris Lattnerd934c702004-04-02 20:23:17 +00003664
Sanjoy Das1f05c512014-10-10 21:22:34 +00003665/// GetRangeFromMetadata - Helper method to assign a range to V from
3666/// metadata present in the IR.
3667static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
3668 if (Instruction *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00003669 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003670 ConstantRange TotalRange(
3671 cast<IntegerType>(I->getType())->getBitWidth(), false);
3672
3673 unsigned NumRanges = MD->getNumOperands() / 2;
3674 assert(NumRanges >= 1);
3675
3676 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00003677 ConstantInt *Lower =
3678 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0));
3679 ConstantInt *Upper =
3680 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1));
Sanjoy Das1f05c512014-10-10 21:22:34 +00003681 ConstantRange Range(Lower->getValue(), Upper->getValue());
3682 TotalRange = TotalRange.unionWith(Range);
3683 }
3684
3685 return TotalRange;
3686 }
3687 }
3688
3689 return None;
3690}
3691
Dan Gohmane65c9172009-07-13 21:35:55 +00003692/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3693///
3694ConstantRange
3695ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman761065e2010-11-17 02:44:44 +00003696 // See if we've computed this range already.
3697 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3698 if (I != UnsignedRanges.end())
3699 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003700
3701 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003702 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003703
Dan Gohman85be4332010-01-26 19:19:05 +00003704 unsigned BitWidth = getTypeSizeInBits(S->getType());
3705 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3706
3707 // If the value has known zeros, the maximum unsigned value will have those
3708 // known zeros as well.
3709 uint32_t TZ = GetMinTrailingZeros(S);
3710 if (TZ != 0)
3711 ConservativeResult =
3712 ConstantRange(APInt::getMinValue(BitWidth),
3713 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3714
Dan Gohmane65c9172009-07-13 21:35:55 +00003715 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3716 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3717 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3718 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003719 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003720 }
3721
3722 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3723 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3724 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3725 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003726 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003727 }
3728
3729 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3730 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3731 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3732 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003733 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003734 }
3735
3736 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3737 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3738 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3739 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003740 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003741 }
3742
3743 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3744 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3745 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003746 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003747 }
3748
3749 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3750 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003751 return setUnsignedRange(ZExt,
3752 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003753 }
3754
3755 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3756 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003757 return setUnsignedRange(SExt,
3758 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003759 }
3760
3761 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3762 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003763 return setUnsignedRange(Trunc,
3764 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003765 }
3766
Dan Gohmane65c9172009-07-13 21:35:55 +00003767 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003768 // If there's no unsigned wrap, the value will never be less than its
3769 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00003770 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003771 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00003772 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00003773 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00003774 ConservativeResult.intersectWith(
3775 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003776
3777 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003778 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003779 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003780 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003781 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3782 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003783 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3784
3785 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003786 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003787
3788 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003789 ConstantRange StepRange = getSignedRange(Step);
3790 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3791 ConstantRange EndRange =
3792 StartRange.add(MaxBECountRange.multiply(StepRange));
3793
3794 // Check for overflow. This must be done with ConstantRange arithmetic
3795 // because we could be called from within the ScalarEvolution overflow
3796 // checking code.
3797 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3798 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3799 ConstantRange ExtMaxBECountRange =
3800 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3801 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3802 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3803 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003804 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003805
Dan Gohmane65c9172009-07-13 21:35:55 +00003806 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3807 EndRange.getUnsignedMin());
3808 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3809 EndRange.getUnsignedMax());
3810 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003811 return setUnsignedRange(AddRec, ConservativeResult);
3812 return setUnsignedRange(AddRec,
3813 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003814 }
3815 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003816
Dan Gohmaned756312010-11-17 20:23:08 +00003817 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003818 }
3819
3820 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003821 // Check if the IR explicitly contains !range metadata.
3822 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
3823 if (MDRange.hasValue())
3824 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
3825
Dan Gohmanc702fc02009-06-19 23:29:04 +00003826 // For a SCEVUnknown, ask ValueTracking.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003827 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003828 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
Dan Gohman1a7ab942009-07-20 22:34:18 +00003829 if (Ones == ~Zeros + 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003830 return setUnsignedRange(U, ConservativeResult);
3831 return setUnsignedRange(U,
3832 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003833 }
3834
Dan Gohmaned756312010-11-17 20:23:08 +00003835 return setUnsignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003836}
3837
Dan Gohmane65c9172009-07-13 21:35:55 +00003838/// getSignedRange - Determine the signed range for a particular SCEV.
3839///
3840ConstantRange
3841ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman3ac8cd62011-01-24 17:54:18 +00003842 // See if we've computed this range already.
Dan Gohman761065e2010-11-17 02:44:44 +00003843 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3844 if (I != SignedRanges.end())
3845 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003846
Dan Gohmane65c9172009-07-13 21:35:55 +00003847 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003848 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmane65c9172009-07-13 21:35:55 +00003849
Dan Gohman51aaf022010-01-26 04:40:18 +00003850 unsigned BitWidth = getTypeSizeInBits(S->getType());
3851 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3852
3853 // If the value has known zeros, the maximum signed value will have those
3854 // known zeros as well.
3855 uint32_t TZ = GetMinTrailingZeros(S);
3856 if (TZ != 0)
3857 ConservativeResult =
3858 ConstantRange(APInt::getSignedMinValue(BitWidth),
3859 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3860
Dan Gohmane65c9172009-07-13 21:35:55 +00003861 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3862 ConstantRange X = getSignedRange(Add->getOperand(0));
3863 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3864 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003865 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003866 }
3867
Dan Gohmane65c9172009-07-13 21:35:55 +00003868 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3869 ConstantRange X = getSignedRange(Mul->getOperand(0));
3870 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3871 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003872 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003873 }
3874
Dan Gohmane65c9172009-07-13 21:35:55 +00003875 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3876 ConstantRange X = getSignedRange(SMax->getOperand(0));
3877 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3878 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003879 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003880 }
Dan Gohmand261d272009-06-24 01:05:09 +00003881
Dan Gohmane65c9172009-07-13 21:35:55 +00003882 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3883 ConstantRange X = getSignedRange(UMax->getOperand(0));
3884 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3885 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003886 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003887 }
Dan Gohmand261d272009-06-24 01:05:09 +00003888
Dan Gohmane65c9172009-07-13 21:35:55 +00003889 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3890 ConstantRange X = getSignedRange(UDiv->getLHS());
3891 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003892 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003893 }
Dan Gohmand261d272009-06-24 01:05:09 +00003894
Dan Gohmane65c9172009-07-13 21:35:55 +00003895 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3896 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003897 return setSignedRange(ZExt,
3898 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003899 }
3900
3901 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3902 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003903 return setSignedRange(SExt,
3904 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003905 }
3906
3907 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3908 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003909 return setSignedRange(Trunc,
3910 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003911 }
3912
Dan Gohmane65c9172009-07-13 21:35:55 +00003913 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003914 // If there's no signed wrap, and all the operands have the same sign or
3915 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00003916 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003917 bool AllNonNeg = true;
3918 bool AllNonPos = true;
3919 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3920 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3921 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3922 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003923 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00003924 ConservativeResult = ConservativeResult.intersectWith(
3925 ConstantRange(APInt(BitWidth, 0),
3926 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003927 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00003928 ConservativeResult = ConservativeResult.intersectWith(
3929 ConstantRange(APInt::getSignedMinValue(BitWidth),
3930 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003931 }
Dan Gohmane65c9172009-07-13 21:35:55 +00003932
3933 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003934 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003935 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003936 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003937 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3938 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003939 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3940
3941 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003942 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003943
3944 ConstantRange StartRange = getSignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003945 ConstantRange StepRange = getSignedRange(Step);
3946 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3947 ConstantRange EndRange =
3948 StartRange.add(MaxBECountRange.multiply(StepRange));
3949
3950 // Check for overflow. This must be done with ConstantRange arithmetic
3951 // because we could be called from within the ScalarEvolution overflow
3952 // checking code.
3953 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3954 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3955 ConstantRange ExtMaxBECountRange =
3956 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3957 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3958 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3959 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003960 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003961
Dan Gohmane65c9172009-07-13 21:35:55 +00003962 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3963 EndRange.getSignedMin());
3964 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3965 EndRange.getSignedMax());
3966 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003967 return setSignedRange(AddRec, ConservativeResult);
3968 return setSignedRange(AddRec,
3969 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmand261d272009-06-24 01:05:09 +00003970 }
Dan Gohmand261d272009-06-24 01:05:09 +00003971 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003972
Dan Gohmaned756312010-11-17 20:23:08 +00003973 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00003974 }
3975
Dan Gohmanc702fc02009-06-19 23:29:04 +00003976 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003977 // Check if the IR explicitly contains !range metadata.
3978 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
3979 if (MDRange.hasValue())
3980 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
3981
Dan Gohmanc702fc02009-06-19 23:29:04 +00003982 // For a SCEVUnknown, ask ValueTracking.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003983 if (!U->getValue()->getType()->isIntegerTy() && !DL)
Dan Gohmaned756312010-11-17 20:23:08 +00003984 return setSignedRange(U, ConservativeResult);
Chandler Carruth66b31302015-01-04 12:03:27 +00003985 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AC, nullptr, DT);
Hal Finkelff666bd2013-07-09 18:16:16 +00003986 if (NS <= 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003987 return setSignedRange(U, ConservativeResult);
3988 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohmane65c9172009-07-13 21:35:55 +00003989 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohmaned756312010-11-17 20:23:08 +00003990 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003991 }
3992
Dan Gohmaned756312010-11-17 20:23:08 +00003993 return setSignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003994}
3995
Chris Lattnerd934c702004-04-02 20:23:17 +00003996/// createSCEV - We know that there is no SCEV for the specified value.
3997/// Analyze the expression.
3998///
Dan Gohmanaf752342009-07-07 17:06:11 +00003999const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004000 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004001 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004002
Dan Gohman05e89732008-06-22 19:56:46 +00004003 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004004 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004005 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004006
4007 // Don't attempt to analyze instructions in blocks that aren't
4008 // reachable. Such instructions don't matter, and they aren't required
4009 // to obey basic rules for definitions dominating uses which this
4010 // analysis depends on.
4011 if (!DT->isReachableFromEntry(I->getParent()))
4012 return getUnknown(V);
4013 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004014 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004015 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4016 return getConstant(CI);
4017 else if (isa<ConstantPointerNull>(V))
Dan Gohman1d2ded72010-05-03 22:09:21 +00004018 return getConstant(V->getType(), 0);
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004019 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4020 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004021 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004022 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004023
Dan Gohman80ca01c2009-07-17 20:47:02 +00004024 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004025 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004026 case Instruction::Add: {
4027 // The simple thing to do would be to just call getSCEV on both operands
4028 // and call getAddExpr with the result. However if we're looking at a
4029 // bunch of things all added together, this can be quite inefficient,
4030 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4031 // Instead, gather up all the operands and make a single getAddExpr call.
4032 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickd25089f2011-11-29 02:16:38 +00004033 //
4034 // Don't apply this instruction's NSW or NUW flags to the new
4035 // expression. The instruction may be guarded by control flow that the
4036 // no-wrap behavior depends on. Non-control-equivalent instructions can be
4037 // mapped to the same SCEV expression, and it would be incorrect to transfer
4038 // NSW/NUW semantics to those operations.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004039 SmallVector<const SCEV *, 4> AddOps;
4040 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman47308d52010-08-31 22:53:17 +00004041 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
4042 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
4043 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
4044 break;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004045 U = cast<Operator>(Op);
Dan Gohman47308d52010-08-31 22:53:17 +00004046 const SCEV *Op1 = getSCEV(U->getOperand(1));
4047 if (Opcode == Instruction::Sub)
4048 AddOps.push_back(getNegativeSCEV(Op1));
4049 else
4050 AddOps.push_back(Op1);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004051 }
4052 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickd25089f2011-11-29 02:16:38 +00004053 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004054 }
4055 case Instruction::Mul: {
Andrew Trickd25089f2011-11-29 02:16:38 +00004056 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004057 SmallVector<const SCEV *, 4> MulOps;
4058 MulOps.push_back(getSCEV(U->getOperand(1)));
4059 for (Value *Op = U->getOperand(0);
Andrew Trick2a3b7162011-03-09 17:23:39 +00004060 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004061 Op = U->getOperand(0)) {
4062 U = cast<Operator>(Op);
4063 MulOps.push_back(getSCEV(U->getOperand(1)));
4064 }
4065 MulOps.push_back(getSCEV(U->getOperand(0)));
4066 return getMulExpr(MulOps);
4067 }
Dan Gohman05e89732008-06-22 19:56:46 +00004068 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004069 return getUDivExpr(getSCEV(U->getOperand(0)),
4070 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004071 case Instruction::Sub:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004072 return getMinusSCEV(getSCEV(U->getOperand(0)),
4073 getSCEV(U->getOperand(1)));
Dan Gohman0ec05372009-04-21 02:26:00 +00004074 case Instruction::And:
4075 // For an expression like x&255 that merely masks off the high bits,
4076 // use zext(trunc(x)) as the SCEV expression.
4077 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004078 if (CI->isNullValue())
4079 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004080 if (CI->isAllOnesValue())
4081 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004082 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004083
4084 // Instcombine's ShrinkDemandedConstant may strip bits out of
4085 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004086 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004087 // knew about to reconstruct a low-bits mask value.
4088 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004089 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004090 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004091 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00004092 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, 0, AC,
4093 nullptr, DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004094
Nick Lewycky31eaca52014-01-27 10:04:03 +00004095 APInt EffectiveMask =
4096 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4097 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4098 const SCEV *MulCount = getConstant(
4099 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4100 return getMulExpr(
4101 getZeroExtendExpr(
4102 getTruncateExpr(
4103 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4104 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4105 U->getType()),
4106 MulCount);
4107 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004108 }
4109 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004110
Dan Gohman05e89732008-06-22 19:56:46 +00004111 case Instruction::Or:
4112 // If the RHS of the Or is a constant, we may have something like:
4113 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4114 // optimizations will transparently handle this case.
4115 //
4116 // In order for this transformation to be safe, the LHS must be of the
4117 // form X*(2^n) and the Or constant must be less than 2^n.
4118 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004119 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004120 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004121 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004122 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4123 // Build a plain add SCEV.
4124 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4125 // If the LHS of the add was an addrec and it has no-wrap flags,
4126 // transfer the no-wrap flags, since an or won't introduce a wrap.
4127 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4128 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004129 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4130 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004131 }
4132 return S;
4133 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004134 }
Dan Gohman05e89732008-06-22 19:56:46 +00004135 break;
4136 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004137 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004138 // If the RHS of the xor is a signbit, then this is just an add.
4139 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004140 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004141 return getAddExpr(getSCEV(U->getOperand(0)),
4142 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004143
4144 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004145 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004146 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004147
4148 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4149 // This is a variant of the check for xor with -1, and it handles
4150 // the case where instcombine has trimmed non-demanded bits out
4151 // of an xor with -1.
4152 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4153 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4154 if (BO->getOpcode() == Instruction::And &&
4155 LCI->getValue() == CI->getValue())
4156 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004157 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004158 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004159 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004160 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004161 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4162
Dan Gohman8b0a4192010-03-01 17:49:51 +00004163 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004164 // mask off the high bits. Complement the operand and
4165 // re-apply the zext.
4166 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4167 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4168
4169 // If C is a single bit, it may be in the sign-bit position
4170 // before the zero-extend. In this case, represent the xor
4171 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004172 APInt Trunc = CI->getValue().trunc(Z0TySize);
4173 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004174 Trunc.isSignBit())
4175 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4176 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004177 }
Dan Gohman05e89732008-06-22 19:56:46 +00004178 }
4179 break;
4180
4181 case Instruction::Shl:
4182 // Turn shift left of a constant amount into a multiply.
4183 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004184 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004185
4186 // If the shift count is not less than the bitwidth, the result of
4187 // the shift is undefined. Don't try to analyze it, because the
4188 // resolution chosen here may differ from the resolution chosen in
4189 // other parts of the compiler.
4190 if (SA->getValue().uge(BitWidth))
4191 break;
4192
Owen Andersonedb4a702009-07-24 23:12:02 +00004193 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004194 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004195 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman05e89732008-06-22 19:56:46 +00004196 }
4197 break;
4198
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004199 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004200 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004201 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004202 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004203
4204 // If the shift count is not less than the bitwidth, the result of
4205 // the shift is undefined. Don't try to analyze it, because the
4206 // resolution chosen here may differ from the resolution chosen in
4207 // other parts of the compiler.
4208 if (SA->getValue().uge(BitWidth))
4209 break;
4210
Owen Andersonedb4a702009-07-24 23:12:02 +00004211 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004212 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004213 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004214 }
4215 break;
4216
Dan Gohman0ec05372009-04-21 02:26:00 +00004217 case Instruction::AShr:
4218 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4219 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004220 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004221 if (L->getOpcode() == Instruction::Shl &&
4222 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004223 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4224
4225 // If the shift count is not less than the bitwidth, the result of
4226 // the shift is undefined. Don't try to analyze it, because the
4227 // resolution chosen here may differ from the resolution chosen in
4228 // other parts of the compiler.
4229 if (CI->getValue().uge(BitWidth))
4230 break;
4231
Dan Gohmandf199482009-04-25 17:05:40 +00004232 uint64_t Amt = BitWidth - CI->getZExtValue();
4233 if (Amt == BitWidth)
4234 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004235 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004236 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004237 IntegerType::get(getContext(),
4238 Amt)),
4239 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004240 }
4241 break;
4242
Dan Gohman05e89732008-06-22 19:56:46 +00004243 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004244 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004245
4246 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004247 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004248
4249 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004250 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004251
4252 case Instruction::BitCast:
4253 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004254 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004255 return getSCEV(U->getOperand(0));
4256 break;
4257
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004258 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4259 // lead to pointer expressions which cannot safely be expanded to GEPs,
4260 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4261 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004262
Dan Gohmanee750d12009-05-08 20:26:55 +00004263 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004264 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004265
Dan Gohman05e89732008-06-22 19:56:46 +00004266 case Instruction::PHI:
4267 return createNodeForPHI(cast<PHINode>(U));
4268
4269 case Instruction::Select:
4270 // This could be a smax or umax that was lowered earlier.
4271 // Try to recover it.
4272 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
4273 Value *LHS = ICI->getOperand(0);
4274 Value *RHS = ICI->getOperand(1);
4275 switch (ICI->getPredicate()) {
4276 case ICmpInst::ICMP_SLT:
4277 case ICmpInst::ICMP_SLE:
4278 std::swap(LHS, RHS);
4279 // fall through
4280 case ICmpInst::ICMP_SGT:
4281 case ICmpInst::ICMP_SGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004282 // a >s b ? a+x : b+x -> smax(a, b)+x
4283 // a >s b ? b+x : a+x -> smin(a, b)+x
4284 if (LHS->getType() == U->getType()) {
4285 const SCEV *LS = getSCEV(LHS);
4286 const SCEV *RS = getSCEV(RHS);
4287 const SCEV *LA = getSCEV(U->getOperand(1));
4288 const SCEV *RA = getSCEV(U->getOperand(2));
4289 const SCEV *LDiff = getMinusSCEV(LA, LS);
4290 const SCEV *RDiff = getMinusSCEV(RA, RS);
4291 if (LDiff == RDiff)
4292 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4293 LDiff = getMinusSCEV(LA, RS);
4294 RDiff = getMinusSCEV(RA, LS);
4295 if (LDiff == RDiff)
4296 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4297 }
Dan Gohman05e89732008-06-22 19:56:46 +00004298 break;
4299 case ICmpInst::ICMP_ULT:
4300 case ICmpInst::ICMP_ULE:
4301 std::swap(LHS, RHS);
4302 // fall through
4303 case ICmpInst::ICMP_UGT:
4304 case ICmpInst::ICMP_UGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004305 // a >u b ? a+x : b+x -> umax(a, b)+x
4306 // a >u b ? b+x : a+x -> umin(a, b)+x
4307 if (LHS->getType() == U->getType()) {
4308 const SCEV *LS = getSCEV(LHS);
4309 const SCEV *RS = getSCEV(RHS);
4310 const SCEV *LA = getSCEV(U->getOperand(1));
4311 const SCEV *RA = getSCEV(U->getOperand(2));
4312 const SCEV *LDiff = getMinusSCEV(LA, LS);
4313 const SCEV *RDiff = getMinusSCEV(RA, RS);
4314 if (LDiff == RDiff)
4315 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4316 LDiff = getMinusSCEV(LA, RS);
4317 RDiff = getMinusSCEV(RA, LS);
4318 if (LDiff == RDiff)
4319 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4320 }
Dan Gohman05e89732008-06-22 19:56:46 +00004321 break;
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004322 case ICmpInst::ICMP_NE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004323 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4324 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004325 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00004326 cast<ConstantInt>(RHS)->isZero()) {
4327 const SCEV *One = getConstant(LHS->getType(), 1);
4328 const SCEV *LS = getSCEV(LHS);
4329 const SCEV *LA = getSCEV(U->getOperand(1));
4330 const SCEV *RA = getSCEV(U->getOperand(2));
4331 const SCEV *LDiff = getMinusSCEV(LA, LS);
4332 const SCEV *RDiff = getMinusSCEV(RA, One);
4333 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004334 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004335 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004336 break;
4337 case ICmpInst::ICMP_EQ:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004338 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4339 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004340 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00004341 cast<ConstantInt>(RHS)->isZero()) {
4342 const SCEV *One = getConstant(LHS->getType(), 1);
4343 const SCEV *LS = getSCEV(LHS);
4344 const SCEV *LA = getSCEV(U->getOperand(1));
4345 const SCEV *RA = getSCEV(U->getOperand(2));
4346 const SCEV *LDiff = getMinusSCEV(LA, One);
4347 const SCEV *RDiff = getMinusSCEV(RA, LS);
4348 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004349 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004350 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004351 break;
Dan Gohman05e89732008-06-22 19:56:46 +00004352 default:
4353 break;
4354 }
4355 }
4356
4357 default: // We cannot analyze this expression.
4358 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004359 }
4360
Dan Gohmanc8e23622009-04-21 23:15:49 +00004361 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004362}
4363
4364
4365
4366//===----------------------------------------------------------------------===//
4367// Iteration Count Computation Code
4368//
4369
Chandler Carruth6666c272014-10-11 00:12:11 +00004370unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4371 if (BasicBlock *ExitingBB = L->getExitingBlock())
4372 return getSmallConstantTripCount(L, ExitingBB);
4373
4374 // No trip count information for multiple exits.
4375 return 0;
4376}
4377
Andrew Trick2b6860f2011-08-11 23:36:16 +00004378/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004379/// normal unsigned value. Returns 0 if the trip count is unknown or not
4380/// constant. Will also return 0 if the maximum trip count is very large (>=
4381/// 2^32).
4382///
4383/// This "trip count" assumes that control exits via ExitingBlock. More
4384/// precisely, it is the number of times that control may reach ExitingBlock
4385/// before taking the branch. For loops with multiple exits, it may not be the
4386/// number times that the loop header executes because the loop may exit
4387/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004388unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4389 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004390 assert(ExitingBlock && "Must pass a non-null exiting block!");
4391 assert(L->isLoopExiting(ExitingBlock) &&
4392 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004393 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004394 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004395 if (!ExitCount)
4396 return 0;
4397
4398 ConstantInt *ExitConst = ExitCount->getValue();
4399
4400 // Guard against huge trip counts.
4401 if (ExitConst->getValue().getActiveBits() > 32)
4402 return 0;
4403
4404 // In case of integer overflow, this returns 0, which is correct.
4405 return ((unsigned)ExitConst->getZExtValue()) + 1;
4406}
4407
Chandler Carruth6666c272014-10-11 00:12:11 +00004408unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4409 if (BasicBlock *ExitingBB = L->getExitingBlock())
4410 return getSmallConstantTripMultiple(L, ExitingBB);
4411
4412 // No trip multiple information for multiple exits.
4413 return 0;
4414}
4415
Andrew Trick2b6860f2011-08-11 23:36:16 +00004416/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4417/// trip count of this loop as a normal unsigned value, if possible. This
4418/// means that the actual trip count is always a multiple of the returned
4419/// value (don't forget the trip count could very well be zero as well!).
4420///
4421/// Returns 1 if the trip count is unknown or not guaranteed to be the
4422/// multiple of a constant (which is also the case if the trip count is simply
4423/// constant, use getSmallConstantTripCount for that case), Will also return 1
4424/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004425///
4426/// As explained in the comments for getSmallConstantTripCount, this assumes
4427/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004428unsigned
4429ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4430 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004431 assert(ExitingBlock && "Must pass a non-null exiting block!");
4432 assert(L->isLoopExiting(ExitingBlock) &&
4433 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004434 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004435 if (ExitCount == getCouldNotCompute())
4436 return 1;
4437
4438 // Get the trip count from the BE count by adding 1.
4439 const SCEV *TCMul = getAddExpr(ExitCount,
4440 getConstant(ExitCount->getType(), 1));
4441 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4442 // to factor simple cases.
4443 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4444 TCMul = Mul->getOperand(0);
4445
4446 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4447 if (!MulC)
4448 return 1;
4449
4450 ConstantInt *Result = MulC->getValue();
4451
Hal Finkel30bd9342012-10-24 19:46:44 +00004452 // Guard against huge trip counts (this requires checking
4453 // for zero to handle the case where the trip count == -1 and the
4454 // addition wraps).
4455 if (!Result || Result->getValue().getActiveBits() > 32 ||
4456 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004457 return 1;
4458
4459 return (unsigned)Result->getZExtValue();
4460}
4461
Andrew Trick3ca3f982011-07-26 17:19:55 +00004462// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004463// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004464// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004465const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4466 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004467}
4468
Dan Gohman0bddac12009-02-24 18:55:53 +00004469/// getBackedgeTakenCount - If the specified loop has a predictable
4470/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4471/// object. The backedge-taken count is the number of times the loop header
4472/// will be branched to from within the loop. This is one less than the
4473/// trip count of the loop, since it doesn't count the first iteration,
4474/// when the header is branched to from outside the loop.
4475///
4476/// Note that it is not valid to call this method on a loop without a
4477/// loop-invariant backedge-taken count (see
4478/// hasLoopInvariantBackedgeTakenCount).
4479///
Dan Gohmanaf752342009-07-07 17:06:11 +00004480const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004481 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004482}
4483
4484/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4485/// return the least SCEV value that is known never to be less than the
4486/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004487const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004488 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004489}
4490
Dan Gohmandc191042009-07-08 19:23:34 +00004491/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4492/// onto the given Worklist.
4493static void
4494PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4495 BasicBlock *Header = L->getHeader();
4496
4497 // Push all Loop-header PHIs onto the Worklist stack.
4498 for (BasicBlock::iterator I = Header->begin();
4499 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4500 Worklist.push_back(PN);
4501}
4502
Dan Gohman2b8da352009-04-30 20:47:05 +00004503const ScalarEvolution::BackedgeTakenInfo &
4504ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004505 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004506 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004507 // update the value. The temporary CouldNotCompute value tells SCEV
4508 // code elsewhere that it shouldn't attempt to request a new
4509 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004510 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004511 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004512 if (!Pair.second)
4513 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004514
Andrew Trick3ca3f982011-07-26 17:19:55 +00004515 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4516 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4517 // must be cleared in this scope.
4518 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4519
4520 if (Result.getExact(this) != getCouldNotCompute()) {
4521 assert(isLoopInvariant(Result.getExact(this), L) &&
4522 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004523 "Computed backedge-taken count isn't loop invariant for loop!");
4524 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004525 }
4526 else if (Result.getMax(this) == getCouldNotCompute() &&
4527 isa<PHINode>(L->getHeader()->begin())) {
4528 // Only count loops that have phi nodes as not being computable.
4529 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004530 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004531
Chris Lattnera337f5e2011-01-09 02:16:18 +00004532 // Now that we know more about the trip count for this loop, forget any
4533 // existing SCEV values for PHI nodes in this loop since they are only
4534 // conservative estimates made without the benefit of trip count
4535 // information. This is similar to the code in forgetLoop, except that
4536 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004537 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004538 SmallVector<Instruction *, 16> Worklist;
4539 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004540
Chris Lattnera337f5e2011-01-09 02:16:18 +00004541 SmallPtrSet<Instruction *, 8> Visited;
4542 while (!Worklist.empty()) {
4543 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004544 if (!Visited.insert(I).second)
4545 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004546
Chris Lattnera337f5e2011-01-09 02:16:18 +00004547 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004548 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004549 if (It != ValueExprMap.end()) {
4550 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004551
Chris Lattnera337f5e2011-01-09 02:16:18 +00004552 // SCEVUnknown for a PHI either means that it has an unrecognized
4553 // structure, or it's a PHI that's in the progress of being computed
4554 // by createNodeForPHI. In the former case, additional loop trip
4555 // count information isn't going to change anything. In the later
4556 // case, createNodeForPHI will perform the necessary updates on its
4557 // own when it gets to that point.
4558 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4559 forgetMemoizedResults(Old);
4560 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004561 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004562 if (PHINode *PN = dyn_cast<PHINode>(I))
4563 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004564 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004565
4566 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004567 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004568 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004569
4570 // Re-lookup the insert position, since the call to
4571 // ComputeBackedgeTakenCount above could result in a
4572 // recusive call to getBackedgeTakenInfo (on a different
4573 // loop), which would invalidate the iterator computed
4574 // earlier.
4575 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004576}
4577
Dan Gohman880c92a2009-10-31 15:04:55 +00004578/// forgetLoop - This method should be called by the client when it has
4579/// changed a loop in a way that may effect ScalarEvolution's ability to
4580/// compute a trip count, or if the loop is deleted.
4581void ScalarEvolution::forgetLoop(const Loop *L) {
4582 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004583 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4584 BackedgeTakenCounts.find(L);
4585 if (BTCPos != BackedgeTakenCounts.end()) {
4586 BTCPos->second.clear();
4587 BackedgeTakenCounts.erase(BTCPos);
4588 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004589
Dan Gohman880c92a2009-10-31 15:04:55 +00004590 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004591 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004592 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004593
Dan Gohmandc191042009-07-08 19:23:34 +00004594 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004595 while (!Worklist.empty()) {
4596 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004597 if (!Visited.insert(I).second)
4598 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004599
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004600 ValueExprMapType::iterator It =
4601 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004602 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004603 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004604 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004605 if (PHINode *PN = dyn_cast<PHINode>(I))
4606 ConstantEvolutionLoopExitValue.erase(PN);
4607 }
4608
4609 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004610 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004611
4612 // Forget all contained loops too, to avoid dangling entries in the
4613 // ValuesAtScopes map.
4614 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4615 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004616}
4617
Eric Christopheref6d5932010-07-29 01:25:38 +00004618/// forgetValue - This method should be called by the client when it has
4619/// changed a value in a way that may effect its value, or which may
4620/// disconnect it from a def-use chain linking it to a loop.
4621void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004622 Instruction *I = dyn_cast<Instruction>(V);
4623 if (!I) return;
4624
4625 // Drop information about expressions based on loop-header PHIs.
4626 SmallVector<Instruction *, 16> Worklist;
4627 Worklist.push_back(I);
4628
4629 SmallPtrSet<Instruction *, 8> Visited;
4630 while (!Worklist.empty()) {
4631 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004632 if (!Visited.insert(I).second)
4633 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004634
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004635 ValueExprMapType::iterator It =
4636 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004637 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004638 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004639 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004640 if (PHINode *PN = dyn_cast<PHINode>(I))
4641 ConstantEvolutionLoopExitValue.erase(PN);
4642 }
4643
4644 PushDefUseChildren(I, Worklist);
4645 }
4646}
4647
Andrew Trick3ca3f982011-07-26 17:19:55 +00004648/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick90c7a102011-11-16 00:52:40 +00004649/// exits. A computable result can only be return for loops with a single exit.
4650/// Returning the minimum taken count among all exits is incorrect because one
4651/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4652/// the limit of each loop test is never skipped. This is a valid assumption as
4653/// long as the loop exits via that test. For precise results, it is the
4654/// caller's responsibility to specify the relevant loop exit using
4655/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00004656const SCEV *
4657ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4658 // If any exits were not computable, the loop is not computable.
4659 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4660
Andrew Trick90c7a102011-11-16 00:52:40 +00004661 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00004662 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004663 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4664
Craig Topper9f008862014-04-15 04:59:12 +00004665 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004666 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004667 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004668
4669 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4670
4671 if (!BECount)
4672 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00004673 else if (BECount != ENT->ExactNotTaken)
4674 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004675 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00004676 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004677 return BECount;
4678}
4679
4680/// getExact - Get the exact not taken count for this loop exit.
4681const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00004682ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00004683 ScalarEvolution *SE) const {
4684 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004685 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004686
Andrew Trick77c55422011-08-02 04:23:35 +00004687 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004688 return ENT->ExactNotTaken;
4689 }
4690 return SE->getCouldNotCompute();
4691}
4692
4693/// getMax - Get the max backedge taken count for the loop.
4694const SCEV *
4695ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4696 return Max ? Max : SE->getCouldNotCompute();
4697}
4698
Andrew Trick9093e152013-03-26 03:14:53 +00004699bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4700 ScalarEvolution *SE) const {
4701 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4702 return true;
4703
4704 if (!ExitNotTaken.ExitingBlock)
4705 return false;
4706
4707 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004708 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00004709
4710 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4711 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4712 return true;
4713 }
4714 }
4715 return false;
4716}
4717
Andrew Trick3ca3f982011-07-26 17:19:55 +00004718/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4719/// computable exit into a persistent ExitNotTakenInfo array.
4720ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4721 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4722 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4723
4724 if (!Complete)
4725 ExitNotTaken.setIncomplete();
4726
4727 unsigned NumExits = ExitCounts.size();
4728 if (NumExits == 0) return;
4729
Andrew Trick77c55422011-08-02 04:23:35 +00004730 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004731 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4732 if (NumExits == 1) return;
4733
4734 // Handle the rare case of multiple computable exits.
4735 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4736
4737 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4738 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4739 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00004740 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004741 ENT->ExactNotTaken = ExitCounts[i].second;
4742 }
4743}
4744
4745/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4746void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00004747 ExitNotTaken.ExitingBlock = nullptr;
4748 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004749 delete[] ExitNotTaken.getNextExit();
4750}
4751
Dan Gohman0bddac12009-02-24 18:55:53 +00004752/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4753/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00004754ScalarEvolution::BackedgeTakenInfo
4755ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00004756 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00004757 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00004758
Andrew Trick839e30b2014-05-23 19:47:13 +00004759 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004760 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004761 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00004762 const SCEV *MustExitMaxBECount = nullptr;
4763 const SCEV *MayExitMaxBECount = nullptr;
4764
4765 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4766 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00004767 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00004768 BasicBlock *ExitBB = ExitingBlocks[i];
4769 ExitLimit EL = ComputeExitLimit(L, ExitBB);
4770
4771 // 1. For each exit that can be computed, add an entry to ExitCounts.
4772 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004773 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00004774 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00004775 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004776 CouldComputeBECount = false;
4777 else
Andrew Trick839e30b2014-05-23 19:47:13 +00004778 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00004779
Andrew Trick839e30b2014-05-23 19:47:13 +00004780 // 2. Derive the loop's MaxBECount from each exit's max number of
4781 // non-exiting iterations. Partition the loop exits into two kinds:
4782 // LoopMustExits and LoopMayExits.
4783 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004784 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
4785 // is a LoopMayExit. If any computable LoopMustExit is found, then
4786 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
4787 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
4788 // considered greater than any computable EL.Max.
4789 if (EL.Max != getCouldNotCompute() && Latch &&
Andrew Trick839e30b2014-05-23 19:47:13 +00004790 DT->dominates(ExitBB, Latch)) {
4791 if (!MustExitMaxBECount)
4792 MustExitMaxBECount = EL.Max;
4793 else {
4794 MustExitMaxBECount =
4795 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00004796 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004797 } else if (MayExitMaxBECount != getCouldNotCompute()) {
4798 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4799 MayExitMaxBECount = EL.Max;
4800 else {
4801 MayExitMaxBECount =
4802 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4803 }
Andrew Trick90c7a102011-11-16 00:52:40 +00004804 }
Dan Gohman96212b62009-06-22 00:31:57 +00004805 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004806 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4807 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00004808 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004809}
4810
Andrew Trick3ca3f982011-07-26 17:19:55 +00004811/// ComputeExitLimit - Compute the number of times the backedge of the specified
4812/// loop will execute if it exits via the specified block.
4813ScalarEvolution::ExitLimit
4814ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00004815
4816 // Okay, we've chosen an exiting block. See what condition causes us to
Benjamin Kramer5a188542014-02-11 15:44:32 +00004817 // exit at this block and remember the exit block and whether all other targets
4818 // lead to the loop header.
4819 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00004820 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004821 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4822 SI != SE; ++SI)
4823 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004824 if (Exit) // Multiple exit successors.
4825 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004826 Exit = *SI;
4827 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004828 MustExecuteLoopHeader = false;
4829 }
Dan Gohmance973df2009-06-24 04:48:43 +00004830
Chris Lattner18954852007-01-07 02:24:26 +00004831 // At this point, we know we have a conditional branch that determines whether
4832 // the loop is exited. However, we don't know if the branch is executed each
4833 // time through the loop. If not, then the execution count of the branch will
4834 // not be equal to the trip count of the loop.
4835 //
4836 // Currently we check for this by checking to see if the Exit branch goes to
4837 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00004838 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00004839 // loop header. This is common for un-rotated loops.
4840 //
4841 // If both of those tests fail, walk up the unique predecessor chain to the
4842 // header, stopping if there is an edge that doesn't exit the loop. If the
4843 // header is reached, the execution count of the branch will be equal to the
4844 // trip count of the loop.
4845 //
4846 // More extensive analysis could be done to handle more cases here.
4847 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00004848 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00004849 // The simple checks failed, try climbing the unique predecessor chain
4850 // up to the header.
4851 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00004852 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00004853 BasicBlock *Pred = BB->getUniquePredecessor();
4854 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004855 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004856 TerminatorInst *PredTerm = Pred->getTerminator();
4857 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4858 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4859 if (PredSucc == BB)
4860 continue;
4861 // If the predecessor has a successor that isn't BB and isn't
4862 // outside the loop, assume the worst.
4863 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004864 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004865 }
4866 if (Pred == L->getHeader()) {
4867 Ok = true;
4868 break;
4869 }
4870 BB = Pred;
4871 }
4872 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004873 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004874 }
4875
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004876 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004877 TerminatorInst *Term = ExitingBlock->getTerminator();
4878 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4879 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4880 // Proceed to the next level to examine the exit condition expression.
4881 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4882 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004883 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004884 }
4885
4886 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4887 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004888 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004889
4890 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004891}
4892
Andrew Trick3ca3f982011-07-26 17:19:55 +00004893/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004894/// backedge of the specified loop will execute if its exit condition
4895/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00004896///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004897/// @param ControlsExit is true if ExitCond directly controls the exit
4898/// branch. In this case, we can assume that the loop exits only if the
4899/// condition is true and can infer that failing to meet the condition prior to
4900/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004901ScalarEvolution::ExitLimit
4902ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4903 Value *ExitCond,
4904 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004905 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004906 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00004907 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00004908 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4909 if (BO->getOpcode() == Instruction::And) {
4910 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00004911 bool EitherMayExit = L->contains(TBB);
4912 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004913 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00004914 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004915 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004916 const SCEV *BECount = getCouldNotCompute();
4917 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00004918 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004919 // Both conditions must be true for the loop to continue executing.
4920 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004921 if (EL0.Exact == getCouldNotCompute() ||
4922 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004923 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004924 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004925 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4926 if (EL0.Max == getCouldNotCompute())
4927 MaxBECount = EL1.Max;
4928 else if (EL1.Max == getCouldNotCompute())
4929 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004930 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004931 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00004932 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004933 // Both conditions must be true at the same time for the loop to exit.
4934 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004935 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004936 if (EL0.Max == EL1.Max)
4937 MaxBECount = EL0.Max;
4938 if (EL0.Exact == EL1.Exact)
4939 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00004940 }
4941
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004942 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004943 }
4944 if (BO->getOpcode() == Instruction::Or) {
4945 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00004946 bool EitherMayExit = L->contains(FBB);
4947 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004948 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00004949 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004950 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004951 const SCEV *BECount = getCouldNotCompute();
4952 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00004953 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004954 // Both conditions must be false for the loop to continue executing.
4955 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004956 if (EL0.Exact == getCouldNotCompute() ||
4957 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004958 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004959 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004960 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4961 if (EL0.Max == getCouldNotCompute())
4962 MaxBECount = EL1.Max;
4963 else if (EL1.Max == getCouldNotCompute())
4964 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004965 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004966 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00004967 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004968 // Both conditions must be false at the same time for the loop to exit.
4969 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004970 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004971 if (EL0.Max == EL1.Max)
4972 MaxBECount = EL0.Max;
4973 if (EL0.Exact == EL1.Exact)
4974 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00004975 }
4976
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004977 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004978 }
4979 }
4980
4981 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00004982 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00004983 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004984 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00004985
Dan Gohman6b1e2a82010-02-19 18:12:07 +00004986 // Check for a constant condition. These are normally stripped out by
4987 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4988 // preserve the CFG and is temporarily leaving constant conditions
4989 // in place.
4990 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4991 if (L->contains(FBB) == !CI->getZExtValue())
4992 // The backedge is always taken.
4993 return getCouldNotCompute();
4994 else
4995 // The backedge is never taken.
Dan Gohman1d2ded72010-05-03 22:09:21 +00004996 return getConstant(CI->getType(), 0);
Dan Gohman6b1e2a82010-02-19 18:12:07 +00004997 }
4998
Eli Friedmanebf98b02009-05-09 12:32:42 +00004999 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005000 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005001}
5002
Andrew Trick3ca3f982011-07-26 17:19:55 +00005003/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005004/// backedge of the specified loop will execute if its exit condition
5005/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005006ScalarEvolution::ExitLimit
5007ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
5008 ICmpInst *ExitCond,
5009 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005010 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005011 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005012
Reid Spencer266e42b2006-12-23 06:05:41 +00005013 // If the condition was exit on true, convert the condition to exit on false
5014 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005015 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005016 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005017 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005018 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005019
5020 // Handle common loops like: for (X = "string"; *X; ++X)
5021 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5022 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005023 ExitLimit ItCnt =
5024 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005025 if (ItCnt.hasAnyInfo())
5026 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005027 }
5028
Dan Gohmanaf752342009-07-07 17:06:11 +00005029 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5030 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005031
5032 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005033 LHS = getSCEVAtScope(LHS, L);
5034 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005035
Dan Gohmance973df2009-06-24 04:48:43 +00005036 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005037 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005038 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005039 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005040 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005041 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005042 }
5043
Dan Gohman81585c12010-05-03 16:35:17 +00005044 // Simplify the operands before analyzing them.
5045 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5046
Chris Lattnerd934c702004-04-02 20:23:17 +00005047 // If we have a comparison of a chrec against a constant, try to use value
5048 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005049 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5050 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005051 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005052 // Form the constant range.
5053 ConstantRange CompRange(
5054 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005055
Dan Gohmanaf752342009-07-07 17:06:11 +00005056 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005057 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005058 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005059
Chris Lattnerd934c702004-04-02 20:23:17 +00005060 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005061 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005062 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005063 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005064 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005065 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005066 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005067 case ICmpInst::ICMP_EQ: { // while (X == Y)
5068 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005069 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5070 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005071 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005072 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005073 case ICmpInst::ICMP_SLT:
5074 case ICmpInst::ICMP_ULT: { // while (X < Y)
5075 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005076 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005077 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005078 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005079 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005080 case ICmpInst::ICMP_SGT:
5081 case ICmpInst::ICMP_UGT: { // while (X > Y)
5082 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005083 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005084 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005085 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005086 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005087 default:
Chris Lattner09169212004-04-02 20:26:46 +00005088#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005089 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00005090 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00005091 dbgs() << "[unsigned] ";
5092 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00005093 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00005094 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005095#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00005096 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005097 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00005098 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005099}
5100
Benjamin Kramer5a188542014-02-11 15:44:32 +00005101ScalarEvolution::ExitLimit
5102ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
5103 SwitchInst *Switch,
5104 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005105 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005106 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5107
5108 // Give up if the exit is the default dest of a switch.
5109 if (Switch->getDefaultDest() == ExitingBlock)
5110 return getCouldNotCompute();
5111
5112 assert(L->contains(Switch->getDefaultDest()) &&
5113 "Default case must not exit the loop!");
5114 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5115 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5116
5117 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005118 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005119 if (EL.hasAnyInfo())
5120 return EL;
5121
5122 return getCouldNotCompute();
5123}
5124
Chris Lattnerec901cc2004-10-12 01:49:27 +00005125static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005126EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5127 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005128 const SCEV *InVal = SE.getConstant(C);
5129 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005130 assert(isa<SCEVConstant>(Val) &&
5131 "Evaluation of SCEV at constant didn't fold correctly?");
5132 return cast<SCEVConstant>(Val)->getValue();
5133}
5134
Andrew Trick3ca3f982011-07-26 17:19:55 +00005135/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005136/// 'icmp op load X, cst', try to see if we can compute the backedge
5137/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005138ScalarEvolution::ExitLimit
5139ScalarEvolution::ComputeLoadConstantCompareExitLimit(
5140 LoadInst *LI,
5141 Constant *RHS,
5142 const Loop *L,
5143 ICmpInst::Predicate predicate) {
5144
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005145 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005146
5147 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005148 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005149 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005150 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005151
5152 // Make sure that it is really a constant global we are gepping, with an
5153 // initializer, and make sure the first IDX is really 0.
5154 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005155 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005156 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5157 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005158 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005159
5160 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005161 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005162 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005163 unsigned VarIdxNum = 0;
5164 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5165 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5166 Indexes.push_back(CI);
5167 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005168 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005169 VarIdx = GEP->getOperand(i);
5170 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005171 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005172 }
5173
Andrew Trick7004e4b2012-03-26 22:33:59 +00005174 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5175 if (!VarIdx)
5176 return getCouldNotCompute();
5177
Chris Lattnerec901cc2004-10-12 01:49:27 +00005178 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5179 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005180 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005181 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005182
5183 // We can only recognize very limited forms of loop index expressions, in
5184 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005185 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005186 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005187 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5188 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005189 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005190
5191 unsigned MaxSteps = MaxBruteForceIterations;
5192 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005193 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005194 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005195 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005196
5197 // Form the GEP offset.
5198 Indexes[VarIdxNum] = Val;
5199
Chris Lattnere166a852012-01-24 05:49:24 +00005200 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5201 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005202 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005203
5204 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005205 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005206 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005207 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005208#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005209 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00005210 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5211 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00005212#endif
5213 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005214 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005215 }
5216 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005217 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005218}
5219
5220
Chris Lattnerdd730472004-04-17 22:58:41 +00005221/// CanConstantFold - Return true if we can constant fold an instruction of the
5222/// specified type, assuming that all operands were constants.
5223static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005224 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005225 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5226 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005227 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005228
Chris Lattnerdd730472004-04-17 22:58:41 +00005229 if (const CallInst *CI = dyn_cast<CallInst>(I))
5230 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005231 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005232 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005233}
5234
Andrew Trick3a86ba72011-10-05 03:25:31 +00005235/// Determine whether this instruction can constant evolve within this loop
5236/// assuming its operands can all constant evolve.
5237static bool canConstantEvolve(Instruction *I, const Loop *L) {
5238 // An instruction outside of the loop can't be derived from a loop PHI.
5239 if (!L->contains(I)) return false;
5240
5241 if (isa<PHINode>(I)) {
5242 if (L->getHeader() == I->getParent())
5243 return true;
5244 else
5245 // We don't currently keep track of the control flow needed to evaluate
5246 // PHIs, so we cannot handle PHIs inside of loops.
5247 return false;
5248 }
5249
5250 // If we won't be able to constant fold this expression even if the operands
5251 // are constants, bail early.
5252 return CanConstantFold(I);
5253}
5254
5255/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5256/// recursing through each instruction operand until reaching a loop header phi.
5257static PHINode *
5258getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005259 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005260
5261 // Otherwise, we can evaluate this instruction if all of its operands are
5262 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005263 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005264 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5265 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5266
5267 if (isa<Constant>(*OpI)) continue;
5268
5269 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00005270 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005271
5272 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005273 if (!P)
5274 // If this operand is already visited, reuse the prior result.
5275 // We may have P != PHI if this is the deepest point at which the
5276 // inconsistent paths meet.
5277 P = PHIMap.lookup(OpInst);
5278 if (!P) {
5279 // Recurse and memoize the results, whether a phi is found or not.
5280 // This recursive call invalidates pointers into PHIMap.
5281 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5282 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005283 }
Craig Topper9f008862014-04-15 04:59:12 +00005284 if (!P)
5285 return nullptr; // Not evolving from PHI
5286 if (PHI && PHI != P)
5287 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005288 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005289 }
5290 // This is a expression evolving from a constant PHI!
5291 return PHI;
5292}
5293
Chris Lattnerdd730472004-04-17 22:58:41 +00005294/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5295/// in the loop that V is derived from. We allow arbitrary operations along the
5296/// way, but the operands of an operation must either be constants or a value
5297/// derived from a constant PHI. If this expression does not fit with these
5298/// constraints, return null.
5299static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005300 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005301 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005302
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005303 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005304 return PN;
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005305 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005306
Andrew Trick3a86ba72011-10-05 03:25:31 +00005307 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005308 DenseMap<Instruction *, PHINode *> PHIMap;
5309 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005310}
5311
5312/// EvaluateExpression - Given an expression that passes the
5313/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5314/// in the loop has the value PHIVal. If we can't fold this expression for some
5315/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005316static Constant *EvaluateExpression(Value *V, const Loop *L,
5317 DenseMap<Instruction *, Constant *> &Vals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005318 const DataLayout *DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005319 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005320 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005321 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005322 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005323 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005324
Andrew Trick3a86ba72011-10-05 03:25:31 +00005325 if (Constant *C = Vals.lookup(I)) return C;
5326
Nick Lewyckya6674c72011-10-22 19:58:20 +00005327 // An instruction inside the loop depends on a value outside the loop that we
5328 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005329 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005330
5331 // An unmapped PHI can be due to a branch or another loop inside this loop,
5332 // or due to this not being the initial iteration through a loop where we
5333 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005334 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005335
Dan Gohmanf820bd32010-06-22 13:15:46 +00005336 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005337
5338 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005339 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5340 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005341 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005342 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005343 continue;
5344 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005345 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005346 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005347 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005348 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005349 }
5350
Nick Lewyckya6674c72011-10-22 19:58:20 +00005351 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005352 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005353 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005354 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5355 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005356 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005357 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005358 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005359 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005360}
5361
5362/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5363/// in the header of its containing loop, we know the loop executes a
5364/// constant number of times, and the PHI node is just a recurrence
5365/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005366Constant *
5367ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005368 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005369 const Loop *L) {
Dan Gohman0daf6872011-05-09 18:44:09 +00005370 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattnerdd730472004-04-17 22:58:41 +00005371 ConstantEvolutionLoopExitValue.find(PN);
5372 if (I != ConstantEvolutionLoopExitValue.end())
5373 return I->second;
5374
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005375 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005376 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005377
5378 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5379
Andrew Trick3a86ba72011-10-05 03:25:31 +00005380 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005381 BasicBlock *Header = L->getHeader();
5382 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005383
Chris Lattnerdd730472004-04-17 22:58:41 +00005384 // Since the loop is canonicalized, the PHI node must have two entries. One
5385 // entry must be a constant (coming in from outside of the loop), and the
5386 // second must be derived from the same PHI.
5387 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005388 PHINode *PHI = nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005389 for (BasicBlock::iterator I = Header->begin();
5390 (PHI = dyn_cast<PHINode>(I)); ++I) {
5391 Constant *StartCST =
5392 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005393 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005394 CurrentIterVals[PHI] = StartCST;
5395 }
5396 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005397 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005398
5399 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattnerdd730472004-04-17 22:58:41 +00005400
5401 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005402 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005403 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005404
Dan Gohman0bddac12009-02-24 18:55:53 +00005405 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005406 unsigned IterationNum = 0;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005407 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005408 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005409 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005410
Nick Lewyckya6674c72011-10-22 19:58:20 +00005411 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005412 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005413 DenseMap<Instruction *, Constant *> NextIterVals;
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005414 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005415 TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005416 if (!NextPHI)
5417 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005418 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005419
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005420 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5421
Nick Lewyckya6674c72011-10-22 19:58:20 +00005422 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5423 // cease to be able to evaluate one of them or if they stop evolving,
5424 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005425 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005426 for (DenseMap<Instruction *, Constant *>::const_iterator
5427 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5428 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005429 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005430 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5431 }
5432 // We use two distinct loops because EvaluateExpression may invalidate any
5433 // iterators into CurrentIterVals.
5434 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5435 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5436 PHINode *PHI = I->first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005437 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005438 if (!NextPHI) { // Not already computed.
5439 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005440 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005441 }
5442 if (NextPHI != I->second)
5443 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005444 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005445
5446 // If all entries in CurrentIterVals == NextIterVals then we can stop
5447 // iterating, the loop can't continue to change.
5448 if (StoppedEvolving)
5449 return RetVal = CurrentIterVals[PN];
5450
Andrew Trick3a86ba72011-10-05 03:25:31 +00005451 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005452 }
5453}
5454
Andrew Trick3ca3f982011-07-26 17:19:55 +00005455/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner4021d1a2004-04-17 18:36:24 +00005456/// constant number of times (the condition evolves only from constants),
5457/// try to evaluate a few iterations of the loop until we get the exit
5458/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005459/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewyckya6674c72011-10-22 19:58:20 +00005460const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5461 Value *Cond,
5462 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005463 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005464 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005465
Dan Gohman866971e2010-06-19 14:17:24 +00005466 // If the loop is canonicalized, the PHI will have exactly two entries.
5467 // That's the only form we support here.
5468 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5469
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005470 DenseMap<Instruction *, Constant *> CurrentIterVals;
5471 BasicBlock *Header = L->getHeader();
5472 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5473
Dan Gohman866971e2010-06-19 14:17:24 +00005474 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner4021d1a2004-04-17 18:36:24 +00005475 // second must be derived from the same PHI.
5476 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005477 PHINode *PHI = nullptr;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005478 for (BasicBlock::iterator I = Header->begin();
5479 (PHI = dyn_cast<PHINode>(I)); ++I) {
5480 Constant *StartCST =
5481 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005482 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005483 CurrentIterVals[PHI] = StartCST;
5484 }
5485 if (!CurrentIterVals.count(PN))
5486 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005487
5488 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5489 // the loop symbolically to determine when the condition gets a value of
5490 // "ExitWhen".
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005491
Andrew Trick90c7a102011-11-16 00:52:40 +00005492 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005493 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng75b871f2007-01-11 12:24:14 +00005494 ConstantInt *CondVal =
Chad Rosiere6de63d2011-12-01 21:29:16 +00005495 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005496 DL, TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005497
Zhou Sheng75b871f2007-01-11 12:24:14 +00005498 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005499 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005500
Reid Spencer983e3b32007-03-01 07:25:48 +00005501 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005502 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005503 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005504 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005505
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005506 // Update all the PHI nodes for the next iteration.
5507 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005508
5509 // Create a list of which PHIs we need to compute. We want to do this before
5510 // calling EvaluateExpression on them because that may invalidate iterators
5511 // into CurrentIterVals.
5512 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005513 for (DenseMap<Instruction *, Constant *>::const_iterator
5514 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5515 PHINode *PHI = dyn_cast<PHINode>(I->first);
5516 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005517 PHIsToCompute.push_back(PHI);
5518 }
5519 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5520 E = PHIsToCompute.end(); I != E; ++I) {
5521 PHINode *PHI = *I;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005522 Constant *&NextPHI = NextIterVals[PHI];
5523 if (NextPHI) continue; // Already computed!
5524
5525 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005526 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005527 }
5528 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005529 }
5530
5531 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005532 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005533}
5534
Dan Gohman237d9e52009-09-03 15:00:26 +00005535/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005536/// at the specified scope in the program. The L value specifies a loop
5537/// nest to evaluate the expression at, where null is the top-level or a
5538/// specified loop is immediately inside of the loop.
5539///
5540/// This method can be used to compute the exit value for a variable defined
5541/// in a loop by querying what the value will hold in the parent loop.
5542///
Dan Gohman8ca08852009-05-24 23:25:42 +00005543/// In the case that a relevant loop exit value cannot be computed, the
5544/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005545const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005546 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005547 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5548 for (unsigned u = 0; u < Values.size(); u++) {
5549 if (Values[u].first == L)
5550 return Values[u].second ? Values[u].second : V;
5551 }
Craig Topper9f008862014-04-15 04:59:12 +00005552 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005553 // Otherwise compute it.
5554 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005555 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5556 for (unsigned u = Values2.size(); u > 0; u--) {
5557 if (Values2[u - 1].first == L) {
5558 Values2[u - 1].second = C;
5559 break;
5560 }
5561 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005562 return C;
5563}
5564
Nick Lewyckya6674c72011-10-22 19:58:20 +00005565/// This builds up a Constant using the ConstantExpr interface. That way, we
5566/// will return Constants for objects which aren't represented by a
5567/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5568/// Returns NULL if the SCEV isn't representable as a Constant.
5569static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005570 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005571 case scCouldNotCompute:
5572 case scAddRecExpr:
5573 break;
5574 case scConstant:
5575 return cast<SCEVConstant>(V)->getValue();
5576 case scUnknown:
5577 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5578 case scSignExtend: {
5579 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5580 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5581 return ConstantExpr::getSExt(CastOp, SS->getType());
5582 break;
5583 }
5584 case scZeroExtend: {
5585 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5586 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5587 return ConstantExpr::getZExt(CastOp, SZ->getType());
5588 break;
5589 }
5590 case scTruncate: {
5591 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5592 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5593 return ConstantExpr::getTrunc(CastOp, ST->getType());
5594 break;
5595 }
5596 case scAddExpr: {
5597 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5598 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005599 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5600 unsigned AS = PTy->getAddressSpace();
5601 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5602 C = ConstantExpr::getBitCast(C, DestPtrTy);
5603 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005604 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5605 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005606 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005607
5608 // First pointer!
5609 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005610 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005611 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005612 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005613 // The offsets have been converted to bytes. We can add bytes to an
5614 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005615 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005616 }
5617
5618 // Don't bother trying to sum two pointers. We probably can't
5619 // statically compute a load that results from it anyway.
5620 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00005621 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005622
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005623 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5624 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00005625 C2 = ConstantExpr::getIntegerCast(
5626 C2, Type::getInt32Ty(C->getContext()), true);
5627 C = ConstantExpr::getGetElementPtr(C, C2);
5628 } else
5629 C = ConstantExpr::getAdd(C, C2);
5630 }
5631 return C;
5632 }
5633 break;
5634 }
5635 case scMulExpr: {
5636 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5637 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5638 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00005639 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005640 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5641 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005642 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005643 C = ConstantExpr::getMul(C, C2);
5644 }
5645 return C;
5646 }
5647 break;
5648 }
5649 case scUDivExpr: {
5650 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5651 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5652 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5653 if (LHS->getType() == RHS->getType())
5654 return ConstantExpr::getUDiv(LHS, RHS);
5655 break;
5656 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00005657 case scSMaxExpr:
5658 case scUMaxExpr:
5659 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005660 }
Craig Topper9f008862014-04-15 04:59:12 +00005661 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005662}
5663
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005664const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005665 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00005666
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005667 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00005668 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00005669 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005670 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005671 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00005672 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5673 if (PHINode *PN = dyn_cast<PHINode>(I))
5674 if (PN->getParent() == LI->getHeader()) {
5675 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00005676 // to see if the loop that contains it has a known backedge-taken
5677 // count. If so, we may be able to force computation of the exit
5678 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00005679 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00005680 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00005681 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005682 // Okay, we know how many times the containing loop executes. If
5683 // this is a constant evolving PHI node, get the final value at
5684 // the specified iteration number.
5685 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00005686 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00005687 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00005688 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00005689 }
5690 }
5691
Reid Spencere6328ca2006-12-04 21:33:23 +00005692 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00005693 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00005694 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00005695 // result. This is particularly useful for computing loop exit values.
5696 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005697 SmallVector<Constant *, 4> Operands;
5698 bool MadeImprovement = false;
Chris Lattnerdd730472004-04-17 22:58:41 +00005699 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5700 Value *Op = I->getOperand(i);
5701 if (Constant *C = dyn_cast<Constant>(Op)) {
5702 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005703 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00005704 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005705
5706 // If any of the operands is non-constant and if they are
5707 // non-integer and non-pointer, don't even try to analyze them
5708 // with scev techniques.
5709 if (!isSCEVable(Op->getType()))
5710 return V;
5711
5712 const SCEV *OrigV = getSCEV(Op);
5713 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5714 MadeImprovement |= OrigV != OpV;
5715
Nick Lewyckya6674c72011-10-22 19:58:20 +00005716 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005717 if (!C) return V;
5718 if (C->getType() != Op->getType())
5719 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5720 Op->getType(),
5721 false),
5722 C, Op->getType());
5723 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00005724 }
Dan Gohmance973df2009-06-24 04:48:43 +00005725
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005726 // Check to see if getSCEVAtScope actually made an improvement.
5727 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00005728 Constant *C = nullptr;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005729 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5730 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005731 Operands[0], Operands[1], DL,
Chad Rosier43a33062011-12-02 01:26:24 +00005732 TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005733 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5734 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005735 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005736 } else
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005737 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005738 Operands, DL, TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005739 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00005740 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005741 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005742 }
5743 }
5744
5745 // This is some other type of SCEVUnknown, just return it.
5746 return V;
5747 }
5748
Dan Gohmana30370b2009-05-04 22:02:23 +00005749 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005750 // Avoid performing the look-up in the common case where the specified
5751 // expression has no loop-variant portions.
5752 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005753 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005754 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005755 // Okay, at least one of these operands is loop variant but might be
5756 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00005757 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5758 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00005759 NewOps.push_back(OpAtScope);
5760
5761 for (++i; i != e; ++i) {
5762 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005763 NewOps.push_back(OpAtScope);
5764 }
5765 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005766 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005767 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005768 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005769 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005770 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005771 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005772 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00005773 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005774 }
5775 }
5776 // If we got here, all operands are loop invariant.
5777 return Comm;
5778 }
5779
Dan Gohmana30370b2009-05-04 22:02:23 +00005780 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005781 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5782 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00005783 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5784 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00005785 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00005786 }
5787
5788 // If this is a loop recurrence for a loop that does not contain L, then we
5789 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00005790 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005791 // First, attempt to evaluate each operand.
5792 // Avoid performing the look-up in the common case where the specified
5793 // expression has no loop-variant portions.
5794 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5795 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5796 if (OpAtScope == AddRec->getOperand(i))
5797 continue;
5798
5799 // Okay, at least one of these operands is loop variant but might be
5800 // foldable. Build a new instance of the folded commutative expression.
5801 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5802 AddRec->op_begin()+i);
5803 NewOps.push_back(OpAtScope);
5804 for (++i; i != e; ++i)
5805 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5806
Andrew Trick759ba082011-04-27 01:21:25 +00005807 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00005808 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00005809 AddRec->getNoWrapFlags(SCEV::FlagNW));
5810 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00005811 // The addrec may be folded to a nonrecurrence, for example, if the
5812 // induction variable is multiplied by zero after constant folding. Go
5813 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00005814 if (!AddRec)
5815 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005816 break;
5817 }
5818
5819 // If the scope is outside the addrec's loop, evaluate it by using the
5820 // loop exit value of the addrec.
5821 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005822 // To evaluate this recurrence, we need to know how many times the AddRec
5823 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005824 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005825 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00005826
Eli Friedman61f67622008-08-04 23:49:06 +00005827 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005828 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00005829 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005830
Dan Gohman8ca08852009-05-24 23:25:42 +00005831 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00005832 }
5833
Dan Gohmana30370b2009-05-04 22:02:23 +00005834 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005835 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005836 if (Op == Cast->getOperand())
5837 return Cast; // must be loop invariant
5838 return getZeroExtendExpr(Op, Cast->getType());
5839 }
5840
Dan Gohmana30370b2009-05-04 22:02:23 +00005841 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005842 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005843 if (Op == Cast->getOperand())
5844 return Cast; // must be loop invariant
5845 return getSignExtendExpr(Op, Cast->getType());
5846 }
5847
Dan Gohmana30370b2009-05-04 22:02:23 +00005848 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005849 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005850 if (Op == Cast->getOperand())
5851 return Cast; // must be loop invariant
5852 return getTruncateExpr(Op, Cast->getType());
5853 }
5854
Torok Edwinfbcc6632009-07-14 16:55:14 +00005855 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005856}
5857
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005858/// getSCEVAtScope - This is a convenience function which does
5859/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00005860const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005861 return getSCEVAtScope(getSCEV(V), L);
5862}
5863
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005864/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5865/// following equation:
5866///
5867/// A * X = B (mod N)
5868///
5869/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5870/// A and B isn't important.
5871///
5872/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005873static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005874 ScalarEvolution &SE) {
5875 uint32_t BW = A.getBitWidth();
5876 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5877 assert(A != 0 && "A must be non-zero.");
5878
5879 // 1. D = gcd(A, N)
5880 //
5881 // The gcd of A and N may have only one prime factor: 2. The number of
5882 // trailing zeros in A is its multiplicity
5883 uint32_t Mult2 = A.countTrailingZeros();
5884 // D = 2^Mult2
5885
5886 // 2. Check if B is divisible by D.
5887 //
5888 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5889 // is not less than multiplicity of this prime factor for D.
5890 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00005891 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005892
5893 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5894 // modulo (N / D).
5895 //
5896 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5897 // bit width during computations.
5898 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5899 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00005900 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005901 APInt I = AD.multiplicativeInverse(Mod);
5902
5903 // 4. Compute the minimum unsigned root of the equation:
5904 // I * (B / D) mod (N / D)
5905 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5906
5907 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5908 // bits.
5909 return SE.getConstant(Result.trunc(BW));
5910}
Chris Lattnerd934c702004-04-02 20:23:17 +00005911
5912/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5913/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5914/// might be the same) or two SCEVCouldNotCompute objects.
5915///
Dan Gohmanaf752342009-07-07 17:06:11 +00005916static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00005917SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005918 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00005919 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5920 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5921 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00005922
Chris Lattnerd934c702004-04-02 20:23:17 +00005923 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00005924 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00005925 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005926 return std::make_pair(CNC, CNC);
5927 }
5928
Reid Spencer983e3b32007-03-01 07:25:48 +00005929 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00005930 const APInt &L = LC->getValue()->getValue();
5931 const APInt &M = MC->getValue()->getValue();
5932 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00005933 APInt Two(BitWidth, 2);
5934 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00005935
Dan Gohmance973df2009-06-24 04:48:43 +00005936 {
Reid Spencer983e3b32007-03-01 07:25:48 +00005937 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00005938 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00005939 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5940 // The B coefficient is M-N/2
5941 APInt B(M);
5942 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00005943
Reid Spencer983e3b32007-03-01 07:25:48 +00005944 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00005945 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00005946
Reid Spencer983e3b32007-03-01 07:25:48 +00005947 // Compute the B^2-4ac term.
5948 APInt SqrtTerm(B);
5949 SqrtTerm *= B;
5950 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00005951
Nick Lewyckyfb780832012-08-01 09:14:36 +00005952 if (SqrtTerm.isNegative()) {
5953 // The loop is provably infinite.
5954 const SCEV *CNC = SE.getCouldNotCompute();
5955 return std::make_pair(CNC, CNC);
5956 }
5957
Reid Spencer983e3b32007-03-01 07:25:48 +00005958 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5959 // integer value or else APInt::sqrt() will assert.
5960 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00005961
Dan Gohmance973df2009-06-24 04:48:43 +00005962 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00005963 // The divisions must be performed as signed divisions.
5964 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00005965 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00005966 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00005967 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00005968 return std::make_pair(CNC, CNC);
5969 }
5970
Owen Anderson47db9412009-07-22 00:24:57 +00005971 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00005972
5973 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00005974 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00005975 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00005976 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00005977
Dan Gohmance973df2009-06-24 04:48:43 +00005978 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00005979 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00005980 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00005981}
5982
5983/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00005984/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00005985///
5986/// This is only used for loops with a "x != y" exit test. The exit condition is
5987/// now expressed as a single expression, V = x-y. So the exit test is
5988/// effectively V != 0. We know and take advantage of the fact that this
5989/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005990ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005991ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005992 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00005993 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005994 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00005995 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005996 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00005997 }
5998
Dan Gohman48f82222009-05-04 22:30:44 +00005999 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006000 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006001 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006002
Chris Lattnerdff679f2011-01-09 22:39:48 +00006003 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6004 // the quadratic equation to solve it.
6005 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6006 std::pair<const SCEV *,const SCEV *> Roots =
6007 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006008 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6009 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006010 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00006011#if 0
David Greenedf1c4972009-12-23 22:18:14 +00006012 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00006013 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00006014#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00006015 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006016 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006017 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6018 R1->getValue(),
6019 R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00006020 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00006021 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006022
Chris Lattnerd934c702004-04-02 20:23:17 +00006023 // We can only use this value if the chrec ends up with an exact zero
6024 // value at this index. When solving for "X*X != 5", for example, we
6025 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006026 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006027 if (Val->isZero())
6028 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006029 }
6030 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006031 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006032 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006033
Chris Lattnerdff679f2011-01-09 22:39:48 +00006034 // Otherwise we can only handle this if it is affine.
6035 if (!AddRec->isAffine())
6036 return getCouldNotCompute();
6037
6038 // If this is an affine expression, the execution count of this branch is
6039 // the minimum unsigned root of the following equation:
6040 //
6041 // Start + Step*N = 0 (mod 2^BW)
6042 //
6043 // equivalent to:
6044 //
6045 // Step*N = -Start (mod 2^BW)
6046 //
6047 // where BW is the common bit width of Start and Step.
6048
6049 // Get the initial value for the loop.
6050 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6051 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6052
6053 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006054 //
6055 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6056 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6057 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6058 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006059 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006060 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006061 return getCouldNotCompute();
6062
Andrew Trick8b55b732011-03-14 16:50:06 +00006063 // For positive steps (counting up until unsigned overflow):
6064 // N = -Start/Step (as unsigned)
6065 // For negative steps (counting down to zero):
6066 // N = Start/-Step
6067 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00006068 bool CountDown = StepC->getValue()->getValue().isNegative();
6069 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006070
6071 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006072 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6073 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006074 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6075 ConstantRange CR = getUnsignedRange(Start);
6076 const SCEV *MaxBECount;
6077 if (!CountDown && CR.getUnsignedMin().isMinValue())
6078 // When counting up, the worst starting value is 1, not 0.
6079 MaxBECount = CR.getUnsignedMax().isMinValue()
6080 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6081 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6082 else
6083 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6084 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006085 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006086 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006087
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006088 // As a special case, handle the instance where Step is a positive power of
6089 // two. In this case, determining whether Step divides Distance evenly can be
6090 // done by counting and comparing the number of trailing zeros of Step and
6091 // Distance.
6092 if (!CountDown) {
6093 const APInt &StepV = StepC->getValue()->getValue();
6094 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
6095 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6096 // case is not handled as this code is guarded by !CountDown.
6097 if (StepV.isPowerOf2() &&
6098 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros())
6099 return getUDivExactExpr(Distance, Step);
6100 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006101
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006102 // If the condition controls loop exit (the loop exits only if the expression
6103 // is true) and the addition is no-wrap we can use unsigned divide to
6104 // compute the backedge count. In this case, the step may not divide the
6105 // distance, but we don't care because if the condition is "missed" the loop
6106 // will have undefined behavior due to wrapping.
6107 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6108 const SCEV *Exact =
6109 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6110 return ExitLimit(Exact, Exact);
6111 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006112
Chris Lattnerdff679f2011-01-09 22:39:48 +00006113 // Then, try to solve the above equation provided that Start is constant.
6114 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6115 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6116 -StartC->getValue()->getValue(),
6117 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006118 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006119}
6120
6121/// HowFarToNonZero - Return the number of times a backedge checking the
6122/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006123/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006124ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006125ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006126 // Loops that look like: while (X == 0) are very strange indeed. We don't
6127 // handle them yet except for the trivial case. This could be expanded in the
6128 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006129
Chris Lattnerd934c702004-04-02 20:23:17 +00006130 // If the value is a constant, check to see if it is known to be non-zero
6131 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006132 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006133 if (!C->getValue()->isNullValue())
Dan Gohman1d2ded72010-05-03 22:09:21 +00006134 return getConstant(C->getType(), 0);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006135 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006136 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006137
Chris Lattnerd934c702004-04-02 20:23:17 +00006138 // We could implement others, but I really doubt anyone writes loops like
6139 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006140 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006141}
6142
Dan Gohmanf9081a22008-09-15 22:18:04 +00006143/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6144/// (which may not be an immediate predecessor) which has exactly one
6145/// successor from which BB is reachable, or null if no such block is
6146/// found.
6147///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006148std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006149ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006150 // If the block has a unique predecessor, then there is no path from the
6151 // predecessor to the block that does not go through the direct edge
6152 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006153 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006154 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006155
6156 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006157 // If the header has a unique predecessor outside the loop, it must be
6158 // a block that has exactly one successor that can reach the loop.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006159 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006160 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006161
Dan Gohman4e3c1132010-04-15 16:19:08 +00006162 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006163}
6164
Dan Gohman450f4e02009-06-20 00:35:32 +00006165/// HasSameValue - SCEV structural equivalence is usually sufficient for
6166/// testing whether two expressions are equal, however for the purposes of
6167/// looking for a condition guarding a loop, it can be useful to be a little
6168/// more general, since a front-end may have replicated the controlling
6169/// expression.
6170///
Dan Gohmanaf752342009-07-07 17:06:11 +00006171static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006172 // Quick check to see if they are the same SCEV.
6173 if (A == B) return true;
6174
6175 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6176 // two different instructions with the same value. Check for this case.
6177 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6178 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6179 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6180 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman2d085562009-08-25 17:56:57 +00006181 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman450f4e02009-06-20 00:35:32 +00006182 return true;
6183
6184 // Otherwise assume they may have a different value.
6185 return false;
6186}
6187
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006188/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006189/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006190///
6191bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006192 const SCEV *&LHS, const SCEV *&RHS,
6193 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006194 bool Changed = false;
6195
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006196 // If we hit the max recursion limit bail out.
6197 if (Depth >= 3)
6198 return false;
6199
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006200 // Canonicalize a constant to the right side.
6201 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6202 // Check for both operands constant.
6203 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6204 if (ConstantExpr::getICmp(Pred,
6205 LHSC->getValue(),
6206 RHSC->getValue())->isNullValue())
6207 goto trivially_false;
6208 else
6209 goto trivially_true;
6210 }
6211 // Otherwise swap the operands to put the constant on the right.
6212 std::swap(LHS, RHS);
6213 Pred = ICmpInst::getSwappedPredicate(Pred);
6214 Changed = true;
6215 }
6216
6217 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006218 // addrec's loop, put the addrec on the left. Also make a dominance check,
6219 // as both operands could be addrecs loop-invariant in each other's loop.
6220 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6221 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006222 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006223 std::swap(LHS, RHS);
6224 Pred = ICmpInst::getSwappedPredicate(Pred);
6225 Changed = true;
6226 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006227 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006228
6229 // If there's a constant operand, canonicalize comparisons with boundary
6230 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6231 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6232 const APInt &RA = RC->getValue()->getValue();
6233 switch (Pred) {
6234 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6235 case ICmpInst::ICMP_EQ:
6236 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006237 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6238 if (!RA)
6239 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6240 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006241 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6242 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006243 RHS = AE->getOperand(1);
6244 LHS = ME->getOperand(1);
6245 Changed = true;
6246 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006247 break;
6248 case ICmpInst::ICMP_UGE:
6249 if ((RA - 1).isMinValue()) {
6250 Pred = ICmpInst::ICMP_NE;
6251 RHS = getConstant(RA - 1);
6252 Changed = true;
6253 break;
6254 }
6255 if (RA.isMaxValue()) {
6256 Pred = ICmpInst::ICMP_EQ;
6257 Changed = true;
6258 break;
6259 }
6260 if (RA.isMinValue()) goto trivially_true;
6261
6262 Pred = ICmpInst::ICMP_UGT;
6263 RHS = getConstant(RA - 1);
6264 Changed = true;
6265 break;
6266 case ICmpInst::ICMP_ULE:
6267 if ((RA + 1).isMaxValue()) {
6268 Pred = ICmpInst::ICMP_NE;
6269 RHS = getConstant(RA + 1);
6270 Changed = true;
6271 break;
6272 }
6273 if (RA.isMinValue()) {
6274 Pred = ICmpInst::ICMP_EQ;
6275 Changed = true;
6276 break;
6277 }
6278 if (RA.isMaxValue()) goto trivially_true;
6279
6280 Pred = ICmpInst::ICMP_ULT;
6281 RHS = getConstant(RA + 1);
6282 Changed = true;
6283 break;
6284 case ICmpInst::ICMP_SGE:
6285 if ((RA - 1).isMinSignedValue()) {
6286 Pred = ICmpInst::ICMP_NE;
6287 RHS = getConstant(RA - 1);
6288 Changed = true;
6289 break;
6290 }
6291 if (RA.isMaxSignedValue()) {
6292 Pred = ICmpInst::ICMP_EQ;
6293 Changed = true;
6294 break;
6295 }
6296 if (RA.isMinSignedValue()) goto trivially_true;
6297
6298 Pred = ICmpInst::ICMP_SGT;
6299 RHS = getConstant(RA - 1);
6300 Changed = true;
6301 break;
6302 case ICmpInst::ICMP_SLE:
6303 if ((RA + 1).isMaxSignedValue()) {
6304 Pred = ICmpInst::ICMP_NE;
6305 RHS = getConstant(RA + 1);
6306 Changed = true;
6307 break;
6308 }
6309 if (RA.isMinSignedValue()) {
6310 Pred = ICmpInst::ICMP_EQ;
6311 Changed = true;
6312 break;
6313 }
6314 if (RA.isMaxSignedValue()) goto trivially_true;
6315
6316 Pred = ICmpInst::ICMP_SLT;
6317 RHS = getConstant(RA + 1);
6318 Changed = true;
6319 break;
6320 case ICmpInst::ICMP_UGT:
6321 if (RA.isMinValue()) {
6322 Pred = ICmpInst::ICMP_NE;
6323 Changed = true;
6324 break;
6325 }
6326 if ((RA + 1).isMaxValue()) {
6327 Pred = ICmpInst::ICMP_EQ;
6328 RHS = getConstant(RA + 1);
6329 Changed = true;
6330 break;
6331 }
6332 if (RA.isMaxValue()) goto trivially_false;
6333 break;
6334 case ICmpInst::ICMP_ULT:
6335 if (RA.isMaxValue()) {
6336 Pred = ICmpInst::ICMP_NE;
6337 Changed = true;
6338 break;
6339 }
6340 if ((RA - 1).isMinValue()) {
6341 Pred = ICmpInst::ICMP_EQ;
6342 RHS = getConstant(RA - 1);
6343 Changed = true;
6344 break;
6345 }
6346 if (RA.isMinValue()) goto trivially_false;
6347 break;
6348 case ICmpInst::ICMP_SGT:
6349 if (RA.isMinSignedValue()) {
6350 Pred = ICmpInst::ICMP_NE;
6351 Changed = true;
6352 break;
6353 }
6354 if ((RA + 1).isMaxSignedValue()) {
6355 Pred = ICmpInst::ICMP_EQ;
6356 RHS = getConstant(RA + 1);
6357 Changed = true;
6358 break;
6359 }
6360 if (RA.isMaxSignedValue()) goto trivially_false;
6361 break;
6362 case ICmpInst::ICMP_SLT:
6363 if (RA.isMaxSignedValue()) {
6364 Pred = ICmpInst::ICMP_NE;
6365 Changed = true;
6366 break;
6367 }
6368 if ((RA - 1).isMinSignedValue()) {
6369 Pred = ICmpInst::ICMP_EQ;
6370 RHS = getConstant(RA - 1);
6371 Changed = true;
6372 break;
6373 }
6374 if (RA.isMinSignedValue()) goto trivially_false;
6375 break;
6376 }
6377 }
6378
6379 // Check for obvious equality.
6380 if (HasSameValue(LHS, RHS)) {
6381 if (ICmpInst::isTrueWhenEqual(Pred))
6382 goto trivially_true;
6383 if (ICmpInst::isFalseWhenEqual(Pred))
6384 goto trivially_false;
6385 }
6386
Dan Gohman81585c12010-05-03 16:35:17 +00006387 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6388 // adding or subtracting 1 from one of the operands.
6389 switch (Pred) {
6390 case ICmpInst::ICMP_SLE:
6391 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6392 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006393 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006394 Pred = ICmpInst::ICMP_SLT;
6395 Changed = true;
6396 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006397 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006398 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006399 Pred = ICmpInst::ICMP_SLT;
6400 Changed = true;
6401 }
6402 break;
6403 case ICmpInst::ICMP_SGE:
6404 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006405 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006406 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006407 Pred = ICmpInst::ICMP_SGT;
6408 Changed = true;
6409 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6410 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006411 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006412 Pred = ICmpInst::ICMP_SGT;
6413 Changed = true;
6414 }
6415 break;
6416 case ICmpInst::ICMP_ULE:
6417 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006418 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006419 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006420 Pred = ICmpInst::ICMP_ULT;
6421 Changed = true;
6422 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006423 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006424 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006425 Pred = ICmpInst::ICMP_ULT;
6426 Changed = true;
6427 }
6428 break;
6429 case ICmpInst::ICMP_UGE:
6430 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006431 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006432 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006433 Pred = ICmpInst::ICMP_UGT;
6434 Changed = true;
6435 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006436 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006437 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006438 Pred = ICmpInst::ICMP_UGT;
6439 Changed = true;
6440 }
6441 break;
6442 default:
6443 break;
6444 }
6445
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006446 // TODO: More simplifications are possible here.
6447
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006448 // Recursively simplify until we either hit a recursion limit or nothing
6449 // changes.
6450 if (Changed)
6451 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6452
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006453 return Changed;
6454
6455trivially_true:
6456 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006457 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006458 Pred = ICmpInst::ICMP_EQ;
6459 return true;
6460
6461trivially_false:
6462 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006463 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006464 Pred = ICmpInst::ICMP_NE;
6465 return true;
6466}
6467
Dan Gohmane65c9172009-07-13 21:35:55 +00006468bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6469 return getSignedRange(S).getSignedMax().isNegative();
6470}
6471
6472bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6473 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6474}
6475
6476bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6477 return !getSignedRange(S).getSignedMin().isNegative();
6478}
6479
6480bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6481 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6482}
6483
6484bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6485 return isKnownNegative(S) || isKnownPositive(S);
6486}
6487
6488bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6489 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006490 // Canonicalize the inputs first.
6491 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6492
Dan Gohman07591692010-04-11 22:16:48 +00006493 // If LHS or RHS is an addrec, check to see if the condition is true in
6494 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00006495 // If LHS and RHS are both addrec, both conditions must be true in
6496 // every iteration of the loop.
6497 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6498 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6499 bool LeftGuarded = false;
6500 bool RightGuarded = false;
6501 if (LAR) {
6502 const Loop *L = LAR->getLoop();
6503 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6504 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6505 if (!RAR) return true;
6506 LeftGuarded = true;
6507 }
6508 }
6509 if (RAR) {
6510 const Loop *L = RAR->getLoop();
6511 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6512 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6513 if (!LAR) return true;
6514 RightGuarded = true;
6515 }
6516 }
6517 if (LeftGuarded && RightGuarded)
6518 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006519
Dan Gohman07591692010-04-11 22:16:48 +00006520 // Otherwise see what can be done with known constant ranges.
6521 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6522}
6523
6524bool
6525ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6526 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006527 if (HasSameValue(LHS, RHS))
6528 return ICmpInst::isTrueWhenEqual(Pred);
6529
Dan Gohman07591692010-04-11 22:16:48 +00006530 // This code is split out from isKnownPredicate because it is called from
6531 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00006532 switch (Pred) {
6533 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00006534 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00006535 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006536 std::swap(LHS, RHS);
6537 case ICmpInst::ICMP_SLT: {
6538 ConstantRange LHSRange = getSignedRange(LHS);
6539 ConstantRange RHSRange = getSignedRange(RHS);
6540 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6541 return true;
6542 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6543 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006544 break;
6545 }
6546 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006547 std::swap(LHS, RHS);
6548 case ICmpInst::ICMP_SLE: {
6549 ConstantRange LHSRange = getSignedRange(LHS);
6550 ConstantRange RHSRange = getSignedRange(RHS);
6551 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6552 return true;
6553 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6554 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006555 break;
6556 }
6557 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006558 std::swap(LHS, RHS);
6559 case ICmpInst::ICMP_ULT: {
6560 ConstantRange LHSRange = getUnsignedRange(LHS);
6561 ConstantRange RHSRange = getUnsignedRange(RHS);
6562 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6563 return true;
6564 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6565 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006566 break;
6567 }
6568 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006569 std::swap(LHS, RHS);
6570 case ICmpInst::ICMP_ULE: {
6571 ConstantRange LHSRange = getUnsignedRange(LHS);
6572 ConstantRange RHSRange = getUnsignedRange(RHS);
6573 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6574 return true;
6575 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6576 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006577 break;
6578 }
6579 case ICmpInst::ICMP_NE: {
6580 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6581 return true;
6582 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6583 return true;
6584
6585 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6586 if (isKnownNonZero(Diff))
6587 return true;
6588 break;
6589 }
6590 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00006591 // The check at the top of the function catches the case where
6592 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00006593 break;
6594 }
6595 return false;
6596}
6597
6598/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6599/// protected by a conditional between LHS and RHS. This is used to
6600/// to eliminate casts.
6601bool
6602ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6603 ICmpInst::Predicate Pred,
6604 const SCEV *LHS, const SCEV *RHS) {
6605 // Interpret a null as meaning no loop, where there is obviously no guard
6606 // (interprocedural conditions notwithstanding).
6607 if (!L) return true;
6608
Sanjoy Das1f05c512014-10-10 21:22:34 +00006609 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6610
Dan Gohmane65c9172009-07-13 21:35:55 +00006611 BasicBlock *Latch = L->getLoopLatch();
6612 if (!Latch)
6613 return false;
6614
6615 BranchInst *LoopContinuePredicate =
6616 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006617 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
6618 isImpliedCond(Pred, LHS, RHS,
6619 LoopContinuePredicate->getCondition(),
6620 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
6621 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006622
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006623 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth66b31302015-01-04 12:03:27 +00006624 for (auto &AssumeVH : AC->assumptions()) {
6625 if (!AssumeVH)
6626 continue;
6627 auto *CI = cast<CallInst>(AssumeVH);
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006628 if (!DT->dominates(CI, Latch->getTerminator()))
6629 continue;
6630
6631 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6632 return true;
6633 }
6634
6635 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006636}
6637
Dan Gohmanb50349a2010-04-11 19:27:13 +00006638/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00006639/// by a conditional between LHS and RHS. This is used to help avoid max
6640/// expressions in loop trip counts, and to eliminate casts.
6641bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00006642ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6643 ICmpInst::Predicate Pred,
6644 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00006645 // Interpret a null as meaning no loop, where there is obviously no guard
6646 // (interprocedural conditions notwithstanding).
6647 if (!L) return false;
6648
Sanjoy Das1f05c512014-10-10 21:22:34 +00006649 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6650
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006651 // Starting at the loop predecessor, climb up the predecessor chain, as long
6652 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00006653 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00006654 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006655 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00006656 Pair.first;
6657 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00006658
6659 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00006660 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00006661 if (!LoopEntryPredicate ||
6662 LoopEntryPredicate->isUnconditional())
6663 continue;
6664
Dan Gohmane18c2d62010-08-10 23:46:30 +00006665 if (isImpliedCond(Pred, LHS, RHS,
6666 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00006667 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00006668 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006669 }
6670
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006671 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth66b31302015-01-04 12:03:27 +00006672 for (auto &AssumeVH : AC->assumptions()) {
6673 if (!AssumeVH)
6674 continue;
6675 auto *CI = cast<CallInst>(AssumeVH);
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006676 if (!DT->dominates(CI, L->getHeader()))
6677 continue;
6678
6679 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6680 return true;
6681 }
6682
Dan Gohman2a62fd92008-08-12 20:17:31 +00006683 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006684}
6685
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006686/// RAII wrapper to prevent recursive application of isImpliedCond.
6687/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6688/// currently evaluating isImpliedCond.
6689struct MarkPendingLoopPredicate {
6690 Value *Cond;
6691 DenseSet<Value*> &LoopPreds;
6692 bool Pending;
6693
6694 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6695 : Cond(C), LoopPreds(LP) {
6696 Pending = !LoopPreds.insert(Cond).second;
6697 }
6698 ~MarkPendingLoopPredicate() {
6699 if (!Pending)
6700 LoopPreds.erase(Cond);
6701 }
6702};
6703
Dan Gohman430f0cc2009-07-21 23:03:19 +00006704/// isImpliedCond - Test whether the condition described by Pred, LHS,
6705/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006706bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006707 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00006708 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006709 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006710 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6711 if (Mark.Pending)
6712 return false;
6713
Dan Gohman8b0a4192010-03-01 17:49:51 +00006714 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006715 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006716 if (BO->getOpcode() == Instruction::And) {
6717 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006718 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6719 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006720 } else if (BO->getOpcode() == Instruction::Or) {
6721 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006722 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6723 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006724 }
6725 }
6726
Dan Gohmane18c2d62010-08-10 23:46:30 +00006727 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006728 if (!ICI) return false;
6729
Dan Gohmane65c9172009-07-13 21:35:55 +00006730 // Bail if the ICmp's operands' types are wider than the needed type
6731 // before attempting to call getSCEV on them. This avoids infinite
6732 // recursion, since the analysis of widening casts can require loop
6733 // exit condition information for overflow checking, which would
6734 // lead back here.
6735 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman430f0cc2009-07-21 23:03:19 +00006736 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohmane65c9172009-07-13 21:35:55 +00006737 return false;
6738
Andrew Trickfa594032012-11-29 18:35:13 +00006739 // Now that we found a conditional branch that dominates the loop or controls
6740 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00006741 ICmpInst::Predicate FoundPred;
6742 if (Inverse)
6743 FoundPred = ICI->getInversePredicate();
6744 else
6745 FoundPred = ICI->getPredicate();
6746
6747 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6748 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00006749
6750 // Balance the types. The case where FoundLHS' type is wider than
6751 // LHS' type is checked for above.
6752 if (getTypeSizeInBits(LHS->getType()) >
6753 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00006754 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006755 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6756 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6757 } else {
6758 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6759 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6760 }
6761 }
6762
Dan Gohman430f0cc2009-07-21 23:03:19 +00006763 // Canonicalize the query to match the way instcombine will have
6764 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00006765 if (SimplifyICmpOperands(Pred, LHS, RHS))
6766 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00006767 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00006768 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6769 if (FoundLHS == FoundRHS)
6770 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00006771
6772 // Check to see if we can make the LHS or RHS match.
6773 if (LHS == FoundRHS || RHS == FoundLHS) {
6774 if (isa<SCEVConstant>(RHS)) {
6775 std::swap(FoundLHS, FoundRHS);
6776 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6777 } else {
6778 std::swap(LHS, RHS);
6779 Pred = ICmpInst::getSwappedPredicate(Pred);
6780 }
6781 }
6782
6783 // Check whether the found predicate is the same as the desired predicate.
6784 if (FoundPred == Pred)
6785 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6786
6787 // Check whether swapping the found predicate makes it the same as the
6788 // desired predicate.
6789 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6790 if (isa<SCEVConstant>(RHS))
6791 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6792 else
6793 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6794 RHS, LHS, FoundLHS, FoundRHS);
6795 }
6796
Sanjoy Dasc5676df2014-11-13 00:00:58 +00006797 // Check if we can make progress by sharpening ranges.
6798 if (FoundPred == ICmpInst::ICMP_NE &&
6799 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
6800
6801 const SCEVConstant *C = nullptr;
6802 const SCEV *V = nullptr;
6803
6804 if (isa<SCEVConstant>(FoundLHS)) {
6805 C = cast<SCEVConstant>(FoundLHS);
6806 V = FoundRHS;
6807 } else {
6808 C = cast<SCEVConstant>(FoundRHS);
6809 V = FoundLHS;
6810 }
6811
6812 // The guarding predicate tells us that C != V. If the known range
6813 // of V is [C, t), we can sharpen the range to [C + 1, t). The
6814 // range we consider has to correspond to same signedness as the
6815 // predicate we're interested in folding.
6816
6817 APInt Min = ICmpInst::isSigned(Pred) ?
6818 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
6819
6820 if (Min == C->getValue()->getValue()) {
6821 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
6822 // This is true even if (Min + 1) wraps around -- in case of
6823 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
6824
6825 APInt SharperMin = Min + 1;
6826
6827 switch (Pred) {
6828 case ICmpInst::ICMP_SGE:
6829 case ICmpInst::ICMP_UGE:
6830 // We know V `Pred` SharperMin. If this implies LHS `Pred`
6831 // RHS, we're done.
6832 if (isImpliedCondOperands(Pred, LHS, RHS, V,
6833 getConstant(SharperMin)))
6834 return true;
6835
6836 case ICmpInst::ICMP_SGT:
6837 case ICmpInst::ICMP_UGT:
6838 // We know from the range information that (V `Pred` Min ||
6839 // V == Min). We know from the guarding condition that !(V
6840 // == Min). This gives us
6841 //
6842 // V `Pred` Min || V == Min && !(V == Min)
6843 // => V `Pred` Min
6844 //
6845 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
6846
6847 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
6848 return true;
6849
6850 default:
6851 // No change
6852 break;
6853 }
6854 }
6855 }
6856
Dan Gohman430f0cc2009-07-21 23:03:19 +00006857 // Check whether the actual condition is beyond sufficient.
6858 if (FoundPred == ICmpInst::ICMP_EQ)
6859 if (ICmpInst::isTrueWhenEqual(Pred))
6860 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6861 return true;
6862 if (Pred == ICmpInst::ICMP_NE)
6863 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6864 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6865 return true;
6866
6867 // Otherwise assume the worst.
6868 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006869}
6870
Dan Gohman430f0cc2009-07-21 23:03:19 +00006871/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00006872/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006873/// and FoundRHS is true.
6874bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6875 const SCEV *LHS, const SCEV *RHS,
6876 const SCEV *FoundLHS,
6877 const SCEV *FoundRHS) {
6878 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6879 FoundLHS, FoundRHS) ||
6880 // ~x < ~y --> x > y
6881 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6882 getNotSCEV(FoundRHS),
6883 getNotSCEV(FoundLHS));
6884}
6885
Sanjoy Das4555b6d2014-12-15 22:50:15 +00006886
6887/// If Expr computes ~A, return A else return nullptr
6888static const SCEV *MatchNotExpr(const SCEV *Expr) {
6889 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
6890 if (!Add || Add->getNumOperands() != 2) return nullptr;
6891
6892 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0));
6893 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue()))
6894 return nullptr;
6895
6896 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
6897 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr;
6898
6899 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0));
6900 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue()))
6901 return nullptr;
6902
6903 return AddRHS->getOperand(1);
6904}
6905
6906
6907/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
6908template<typename MaxExprType>
6909static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
6910 const SCEV *Candidate) {
6911 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
6912 if (!MaxExpr) return false;
6913
6914 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
6915 return It != MaxExpr->op_end();
6916}
6917
6918
6919/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
6920template<typename MaxExprType>
6921static bool IsMinConsistingOf(ScalarEvolution &SE,
6922 const SCEV *MaybeMinExpr,
6923 const SCEV *Candidate) {
6924 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
6925 if (!MaybeMaxExpr)
6926 return false;
6927
6928 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
6929}
6930
6931
6932/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
6933/// expression?
6934static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
6935 ICmpInst::Predicate Pred,
6936 const SCEV *LHS, const SCEV *RHS) {
6937 switch (Pred) {
6938 default:
6939 return false;
6940
6941 case ICmpInst::ICMP_SGE:
6942 std::swap(LHS, RHS);
6943 // fall through
6944 case ICmpInst::ICMP_SLE:
6945 return
6946 // min(A, ...) <= A
6947 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
6948 // A <= max(A, ...)
6949 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
6950
6951 case ICmpInst::ICMP_UGE:
6952 std::swap(LHS, RHS);
6953 // fall through
6954 case ICmpInst::ICMP_ULE:
6955 return
6956 // min(A, ...) <= A
6957 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
6958 // A <= max(A, ...)
6959 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
6960 }
6961
6962 llvm_unreachable("covered switch fell through?!");
6963}
6964
Dan Gohman430f0cc2009-07-21 23:03:19 +00006965/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00006966/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006967/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00006968bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00006969ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6970 const SCEV *LHS, const SCEV *RHS,
6971 const SCEV *FoundLHS,
6972 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00006973 auto IsKnownPredicateFull =
6974 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
6975 return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
6976 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS);
6977 };
6978
Dan Gohmane65c9172009-07-13 21:35:55 +00006979 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00006980 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6981 case ICmpInst::ICMP_EQ:
6982 case ICmpInst::ICMP_NE:
6983 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6984 return true;
6985 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00006986 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006987 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00006988 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6989 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006990 return true;
6991 break;
6992 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006993 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00006994 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6995 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006996 return true;
6997 break;
6998 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006999 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007000 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
7001 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007002 return true;
7003 break;
7004 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007005 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007006 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
7007 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007008 return true;
7009 break;
7010 }
7011
7012 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007013}
7014
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007015// Verify if an linear IV with positive stride can overflow when in a
7016// less-than comparison, knowing the invariant term of the comparison, the
7017// stride and the knowledge of NSW/NUW flags on the recurrence.
7018bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
7019 bool IsSigned, bool NoWrap) {
7020 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00007021
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007022 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7023 const SCEV *One = getConstant(Stride->getType(), 1);
Andrew Trick2afa3252011-03-09 17:29:58 +00007024
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007025 if (IsSigned) {
7026 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
7027 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
7028 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7029 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00007030
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007031 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
7032 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00007033 }
Dan Gohman01048422009-06-21 23:46:38 +00007034
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007035 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
7036 APInt MaxValue = APInt::getMaxValue(BitWidth);
7037 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7038 .getUnsignedMax();
7039
7040 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
7041 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
7042}
7043
7044// Verify if an linear IV with negative stride can overflow when in a
7045// greater-than comparison, knowing the invariant term of the comparison,
7046// the stride and the knowledge of NSW/NUW flags on the recurrence.
7047bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
7048 bool IsSigned, bool NoWrap) {
7049 if (NoWrap) return false;
7050
7051 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7052 const SCEV *One = getConstant(Stride->getType(), 1);
7053
7054 if (IsSigned) {
7055 APInt MinRHS = getSignedRange(RHS).getSignedMin();
7056 APInt MinValue = APInt::getSignedMinValue(BitWidth);
7057 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7058 .getSignedMax();
7059
7060 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
7061 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
7062 }
7063
7064 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
7065 APInt MinValue = APInt::getMinValue(BitWidth);
7066 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7067 .getUnsignedMax();
7068
7069 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
7070 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
7071}
7072
7073// Compute the backedge taken count knowing the interval difference, the
7074// stride and presence of the equality in the comparison.
7075const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
7076 bool Equality) {
7077 const SCEV *One = getConstant(Step->getType(), 1);
7078 Delta = Equality ? getAddExpr(Delta, Step)
7079 : getAddExpr(Delta, getMinusSCEV(Step, One));
7080 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00007081}
7082
Chris Lattner587a75b2005-08-15 23:33:51 +00007083/// HowManyLessThans - Return the number of times a backedge containing the
7084/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00007085/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00007086///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007087/// @param ControlsExit is true when the LHS < RHS condition directly controls
7088/// the branch (loops exits only if condition is true). In this case, we can use
7089/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00007090ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00007091ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007092 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007093 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007094 // We handle only IV < Invariant
7095 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007096 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007097
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007098 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00007099
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007100 // Avoid weird loops
7101 if (!IV || IV->getLoop() != L || !IV->isAffine())
7102 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007103
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007104 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007105 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007106
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007107 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007108
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007109 // Avoid negative or zero stride values
7110 if (!isKnownPositive(Stride))
7111 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007112
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007113 // Avoid proven overflow cases: this will ensure that the backedge taken count
7114 // will not generate any unsigned overflow. Relaxed no-overflow conditions
7115 // exploit NoWrapFlags, allowing to optimize in presence of undefined
7116 // behaviors like the case of C language.
7117 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
7118 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007119
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007120 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
7121 : ICmpInst::ICMP_ULT;
7122 const SCEV *Start = IV->getStart();
7123 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007124 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
7125 const SCEV *Diff = getMinusSCEV(RHS, Start);
7126 // If we have NoWrap set, then we can assume that the increment won't
7127 // overflow, in which case if RHS - Start is a constant, we don't need to
7128 // do a max operation since we can just figure it out statically
7129 if (NoWrap && isa<SCEVConstant>(Diff)) {
7130 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7131 if (D.isNegative())
7132 End = Start;
7133 } else
7134 End = IsSigned ? getSMaxExpr(RHS, Start)
7135 : getUMaxExpr(RHS, Start);
7136 }
Dan Gohman51aaf022010-01-26 04:40:18 +00007137
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007138 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00007139
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007140 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
7141 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00007142
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007143 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7144 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00007145
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007146 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7147 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
7148 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00007149
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007150 // Although End can be a MAX expression we estimate MaxEnd considering only
7151 // the case End = RHS. This is safe because in the other case (End - Start)
7152 // is zero, leading to a zero maximum backedge taken count.
7153 APInt MaxEnd =
7154 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
7155 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
7156
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00007157 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007158 if (isa<SCEVConstant>(BECount))
7159 MaxBECount = BECount;
7160 else
7161 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
7162 getConstant(MinStride), false);
7163
7164 if (isa<SCEVCouldNotCompute>(MaxBECount))
7165 MaxBECount = BECount;
7166
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007167 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007168}
7169
7170ScalarEvolution::ExitLimit
7171ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
7172 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007173 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007174 // We handle only IV > Invariant
7175 if (!isLoopInvariant(RHS, L))
7176 return getCouldNotCompute();
7177
7178 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
7179
7180 // Avoid weird loops
7181 if (!IV || IV->getLoop() != L || !IV->isAffine())
7182 return getCouldNotCompute();
7183
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007184 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007185 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
7186
7187 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
7188
7189 // Avoid negative or zero stride values
7190 if (!isKnownPositive(Stride))
7191 return getCouldNotCompute();
7192
7193 // Avoid proven overflow cases: this will ensure that the backedge taken count
7194 // will not generate any unsigned overflow. Relaxed no-overflow conditions
7195 // exploit NoWrapFlags, allowing to optimize in presence of undefined
7196 // behaviors like the case of C language.
7197 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
7198 return getCouldNotCompute();
7199
7200 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
7201 : ICmpInst::ICMP_UGT;
7202
7203 const SCEV *Start = IV->getStart();
7204 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007205 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
7206 const SCEV *Diff = getMinusSCEV(RHS, Start);
7207 // If we have NoWrap set, then we can assume that the increment won't
7208 // overflow, in which case if RHS - Start is a constant, we don't need to
7209 // do a max operation since we can just figure it out statically
7210 if (NoWrap && isa<SCEVConstant>(Diff)) {
7211 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7212 if (!D.isNegative())
7213 End = Start;
7214 } else
7215 End = IsSigned ? getSMinExpr(RHS, Start)
7216 : getUMinExpr(RHS, Start);
7217 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007218
7219 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
7220
7221 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
7222 : getUnsignedRange(Start).getUnsignedMax();
7223
7224 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7225 : getUnsignedRange(Stride).getUnsignedMin();
7226
7227 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7228 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
7229 : APInt::getMinValue(BitWidth) + (MinStride - 1);
7230
7231 // Although End can be a MIN expression we estimate MinEnd considering only
7232 // the case End = RHS. This is safe because in the other case (Start - End)
7233 // is zero, leading to a zero maximum backedge taken count.
7234 APInt MinEnd =
7235 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
7236 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
7237
7238
7239 const SCEV *MaxBECount = getCouldNotCompute();
7240 if (isa<SCEVConstant>(BECount))
7241 MaxBECount = BECount;
7242 else
7243 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
7244 getConstant(MinStride), false);
7245
7246 if (isa<SCEVCouldNotCompute>(MaxBECount))
7247 MaxBECount = BECount;
7248
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007249 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00007250}
7251
Chris Lattnerd934c702004-04-02 20:23:17 +00007252/// getNumIterationsInRange - Return the number of iterations of this loop that
7253/// produce values in the specified constant range. Another way of looking at
7254/// this is that it returns the first iteration number where the value is not in
7255/// the condition, thus computing the exit count. If the iteration count can't
7256/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00007257const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00007258 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00007259 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00007260 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007261
7262 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00007263 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00007264 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00007265 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman1d2ded72010-05-03 22:09:21 +00007266 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick8b55b732011-03-14 16:50:06 +00007267 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00007268 getNoWrapFlags(FlagNW));
Dan Gohmana30370b2009-05-04 22:02:23 +00007269 if (const SCEVAddRecExpr *ShiftedAddRec =
7270 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00007271 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00007272 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00007273 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00007274 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007275 }
7276
7277 // The only time we can solve this is when we have all constant indices.
7278 // Otherwise, we cannot determine the overflow conditions.
7279 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7280 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman31efa302009-04-18 17:58:19 +00007281 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007282
7283
7284 // Okay at this point we know that all elements of the chrec are constants and
7285 // that the start element is zero.
7286
7287 // First check to see if the range contains zero. If not, the first
7288 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00007289 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00007290 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman1d2ded72010-05-03 22:09:21 +00007291 return SE.getConstant(getType(), 0);
Misha Brukman01808ca2005-04-21 21:13:18 +00007292
Chris Lattnerd934c702004-04-02 20:23:17 +00007293 if (isAffine()) {
7294 // If this is an affine expression then we have this situation:
7295 // Solve {0,+,A} in Range === Ax in Range
7296
Nick Lewycky52460262007-07-16 02:08:00 +00007297 // We know that zero is in the range. If A is positive then we know that
7298 // the upper value of the range must be the first possible exit value.
7299 // If A is negative then the lower of the range is the last possible loop
7300 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00007301 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00007302 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
7303 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00007304
Nick Lewycky52460262007-07-16 02:08:00 +00007305 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00007306 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00007307 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00007308
7309 // Evaluate at the exit value. If we really did fall out of the valid
7310 // range, then we computed our trip count, otherwise wrap around or other
7311 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00007312 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007313 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00007314 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007315
7316 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00007317 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00007318 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00007319 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00007320 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00007321 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00007322 } else if (isQuadratic()) {
7323 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
7324 // quadratic equation to solve it. To do this, we must frame our problem in
7325 // terms of figuring out when zero is crossed, instead of when
7326 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00007327 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00007328 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00007329 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
7330 // getNoWrapFlags(FlagNW)
7331 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00007332
7333 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00007334 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00007335 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00007336 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7337 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00007338 if (R1) {
7339 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00007340 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00007341 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00007342 R1->getValue(), R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00007343 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00007344 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00007345
Chris Lattnerd934c702004-04-02 20:23:17 +00007346 // Make sure the root is not off by one. The returned iteration should
7347 // not be in the range, but the previous one should be. When solving
7348 // for "X*X < 5", for example, we should not return a root of 2.
7349 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00007350 R1->getValue(),
7351 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007352 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007353 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00007354 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007355 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00007356
Dan Gohmana37eaf22007-10-22 18:31:58 +00007357 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007358 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00007359 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00007360 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007361 }
Misha Brukman01808ca2005-04-21 21:13:18 +00007362
Chris Lattnerd934c702004-04-02 20:23:17 +00007363 // If R1 was not in the range, then it is a good return value. Make
7364 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00007365 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007366 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00007367 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007368 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00007369 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00007370 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007371 }
7372 }
7373 }
7374
Dan Gohman31efa302009-04-18 17:58:19 +00007375 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007376}
7377
Sebastian Pop448712b2014-05-07 18:01:20 +00007378namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007379struct FindUndefs {
7380 bool Found;
7381 FindUndefs() : Found(false) {}
7382
7383 bool follow(const SCEV *S) {
7384 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
7385 if (isa<UndefValue>(C->getValue()))
7386 Found = true;
7387 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
7388 if (isa<UndefValue>(C->getValue()))
7389 Found = true;
7390 }
7391
7392 // Keep looking if we haven't found it yet.
7393 return !Found;
7394 }
7395 bool isDone() const {
7396 // Stop recursion if we have found an undef.
7397 return Found;
7398 }
7399};
7400}
7401
7402// Return true when S contains at least an undef value.
7403static inline bool
7404containsUndefs(const SCEV *S) {
7405 FindUndefs F;
7406 SCEVTraversal<FindUndefs> ST(F);
7407 ST.visitAll(S);
7408
7409 return F.Found;
7410}
7411
7412namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00007413// Collect all steps of SCEV expressions.
7414struct SCEVCollectStrides {
7415 ScalarEvolution &SE;
7416 SmallVectorImpl<const SCEV *> &Strides;
7417
7418 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
7419 : SE(SE), Strides(S) {}
7420
7421 bool follow(const SCEV *S) {
7422 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
7423 Strides.push_back(AR->getStepRecurrence(SE));
7424 return true;
7425 }
7426 bool isDone() const { return false; }
7427};
7428
7429// Collect all SCEVUnknown and SCEVMulExpr expressions.
7430struct SCEVCollectTerms {
7431 SmallVectorImpl<const SCEV *> &Terms;
7432
7433 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
7434 : Terms(T) {}
7435
7436 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007437 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007438 if (!containsUndefs(S))
7439 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00007440
7441 // Stop recursion: once we collected a term, do not walk its operands.
7442 return false;
7443 }
7444
7445 // Keep looking.
7446 return true;
7447 }
7448 bool isDone() const { return false; }
7449};
7450}
7451
7452/// Find parametric terms in this SCEVAddRecExpr.
7453void SCEVAddRecExpr::collectParametricTerms(
7454 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
7455 SmallVector<const SCEV *, 4> Strides;
7456 SCEVCollectStrides StrideCollector(SE, Strides);
7457 visitAll(this, StrideCollector);
7458
7459 DEBUG({
7460 dbgs() << "Strides:\n";
7461 for (const SCEV *S : Strides)
7462 dbgs() << *S << "\n";
7463 });
7464
7465 for (const SCEV *S : Strides) {
7466 SCEVCollectTerms TermCollector(Terms);
7467 visitAll(S, TermCollector);
7468 }
7469
7470 DEBUG({
7471 dbgs() << "Terms:\n";
7472 for (const SCEV *T : Terms)
7473 dbgs() << *T << "\n";
7474 });
7475}
7476
Sebastian Popb1a548f2014-05-12 19:01:53 +00007477static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00007478 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00007479 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00007480 int Last = Terms.size() - 1;
7481 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00007482
Sebastian Pop448712b2014-05-07 18:01:20 +00007483 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00007484 if (Last == 0) {
7485 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007486 SmallVector<const SCEV *, 2> Qs;
7487 for (const SCEV *Op : M->operands())
7488 if (!isa<SCEVConstant>(Op))
7489 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00007490
Sebastian Pope30bd352014-05-27 22:41:56 +00007491 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00007492 }
7493
Sebastian Pope30bd352014-05-27 22:41:56 +00007494 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007495 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007496 }
7497
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007498 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007499 // Normalize the terms before the next call to findArrayDimensionsRec.
7500 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007501 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007502
7503 // Bail out when GCD does not evenly divide one of the terms.
7504 if (!R->isZero())
7505 return false;
7506
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007507 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007508 }
7509
Tobias Grosser3080cf12014-05-08 07:55:34 +00007510 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00007511 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7512 return isa<SCEVConstant>(E);
7513 }),
7514 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00007515
Sebastian Pop448712b2014-05-07 18:01:20 +00007516 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00007517 if (!findArrayDimensionsRec(SE, Terms, Sizes))
7518 return false;
7519
Sebastian Pope30bd352014-05-27 22:41:56 +00007520 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007521 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00007522}
Sebastian Popc62c6792013-11-12 22:47:20 +00007523
Sebastian Pop448712b2014-05-07 18:01:20 +00007524namespace {
7525struct FindParameter {
7526 bool FoundParameter;
7527 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00007528
Sebastian Pop448712b2014-05-07 18:01:20 +00007529 bool follow(const SCEV *S) {
7530 if (isa<SCEVUnknown>(S)) {
7531 FoundParameter = true;
7532 // Stop recursion: we found a parameter.
7533 return false;
7534 }
7535 // Keep looking.
7536 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007537 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007538 bool isDone() const {
7539 // Stop recursion if we have found a parameter.
7540 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00007541 }
Sebastian Popc62c6792013-11-12 22:47:20 +00007542};
7543}
7544
Sebastian Pop448712b2014-05-07 18:01:20 +00007545// Returns true when S contains at least a SCEVUnknown parameter.
7546static inline bool
7547containsParameters(const SCEV *S) {
7548 FindParameter F;
7549 SCEVTraversal<FindParameter> ST(F);
7550 ST.visitAll(S);
7551
7552 return F.FoundParameter;
7553}
7554
7555// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7556static inline bool
7557containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7558 for (const SCEV *T : Terms)
7559 if (containsParameters(T))
7560 return true;
7561 return false;
7562}
7563
7564// Return the number of product terms in S.
7565static inline int numberOfTerms(const SCEV *S) {
7566 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7567 return Expr->getNumOperands();
7568 return 1;
7569}
7570
Sebastian Popa6e58602014-05-27 22:41:45 +00007571static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
7572 if (isa<SCEVConstant>(T))
7573 return nullptr;
7574
7575 if (isa<SCEVUnknown>(T))
7576 return T;
7577
7578 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
7579 SmallVector<const SCEV *, 2> Factors;
7580 for (const SCEV *Op : M->operands())
7581 if (!isa<SCEVConstant>(Op))
7582 Factors.push_back(Op);
7583
7584 return SE.getMulExpr(Factors);
7585 }
7586
7587 return T;
7588}
7589
7590/// Return the size of an element read or written by Inst.
7591const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
7592 Type *Ty;
7593 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
7594 Ty = Store->getValueOperand()->getType();
7595 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00007596 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00007597 else
7598 return nullptr;
7599
7600 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
7601 return getSizeOfExpr(ETy, Ty);
7602}
7603
Sebastian Pop448712b2014-05-07 18:01:20 +00007604/// Second step of delinearization: compute the array dimensions Sizes from the
7605/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00007606void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
7607 SmallVectorImpl<const SCEV *> &Sizes,
7608 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007609
Sebastian Pop53524082014-05-29 19:44:05 +00007610 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00007611 return;
7612
7613 // Early return when Terms do not contain parameters: we do not delinearize
7614 // non parametric SCEVs.
7615 if (!containsParameters(Terms))
7616 return;
7617
7618 DEBUG({
7619 dbgs() << "Terms:\n";
7620 for (const SCEV *T : Terms)
7621 dbgs() << *T << "\n";
7622 });
7623
7624 // Remove duplicates.
7625 std::sort(Terms.begin(), Terms.end());
7626 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7627
7628 // Put larger terms first.
7629 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7630 return numberOfTerms(LHS) > numberOfTerms(RHS);
7631 });
7632
Sebastian Popa6e58602014-05-27 22:41:45 +00007633 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7634
7635 // Divide all terms by the element size.
7636 for (const SCEV *&Term : Terms) {
7637 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007638 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Sebastian Popa6e58602014-05-27 22:41:45 +00007639 Term = Q;
7640 }
7641
7642 SmallVector<const SCEV *, 4> NewTerms;
7643
7644 // Remove constant factors.
7645 for (const SCEV *T : Terms)
7646 if (const SCEV *NewT = removeConstantFactors(SE, T))
7647 NewTerms.push_back(NewT);
7648
Sebastian Pop448712b2014-05-07 18:01:20 +00007649 DEBUG({
7650 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00007651 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00007652 dbgs() << *T << "\n";
7653 });
7654
Sebastian Popa6e58602014-05-27 22:41:45 +00007655 if (NewTerms.empty() ||
7656 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00007657 Sizes.clear();
7658 return;
7659 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007660
Sebastian Popa6e58602014-05-27 22:41:45 +00007661 // The last element to be pushed into Sizes is the size of an element.
7662 Sizes.push_back(ElementSize);
7663
Sebastian Pop448712b2014-05-07 18:01:20 +00007664 DEBUG({
7665 dbgs() << "Sizes:\n";
7666 for (const SCEV *S : Sizes)
7667 dbgs() << *S << "\n";
7668 });
7669}
7670
7671/// Third step of delinearization: compute the access functions for the
7672/// Subscripts based on the dimensions in Sizes.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007673void SCEVAddRecExpr::computeAccessFunctions(
Sebastian Pop448712b2014-05-07 18:01:20 +00007674 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7675 SmallVectorImpl<const SCEV *> &Sizes) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007676
Sebastian Popb1a548f2014-05-12 19:01:53 +00007677 // Early exit in case this SCEV is not an affine multivariate function.
7678 if (Sizes.empty() || !this->isAffine())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007679 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007680
Sebastian Pop28e6b972014-05-27 22:41:51 +00007681 const SCEV *Res = this;
Sebastian Pop448712b2014-05-07 18:01:20 +00007682 int Last = Sizes.size() - 1;
7683 for (int i = Last; i >= 0; i--) {
7684 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007685 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00007686
7687 DEBUG({
7688 dbgs() << "Res: " << *Res << "\n";
7689 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7690 dbgs() << "Res divided by Sizes[i]:\n";
7691 dbgs() << "Quotient: " << *Q << "\n";
7692 dbgs() << "Remainder: " << *R << "\n";
7693 });
7694
7695 Res = Q;
7696
Sebastian Popa6e58602014-05-27 22:41:45 +00007697 // Do not record the last subscript corresponding to the size of elements in
7698 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00007699 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007700
7701 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007702 if (isa<SCEVAddRecExpr>(R)) {
7703 Subscripts.clear();
7704 Sizes.clear();
7705 return;
7706 }
Sebastian Popa6e58602014-05-27 22:41:45 +00007707
Sebastian Pop448712b2014-05-07 18:01:20 +00007708 continue;
7709 }
7710
7711 // Record the access function for the current subscript.
7712 Subscripts.push_back(R);
7713 }
7714
7715 // Also push in last position the remainder of the last division: it will be
7716 // the access function of the innermost dimension.
7717 Subscripts.push_back(Res);
7718
7719 std::reverse(Subscripts.begin(), Subscripts.end());
7720
7721 DEBUG({
7722 dbgs() << "Subscripts:\n";
7723 for (const SCEV *S : Subscripts)
7724 dbgs() << *S << "\n";
7725 });
Sebastian Pop448712b2014-05-07 18:01:20 +00007726}
7727
Sebastian Popc62c6792013-11-12 22:47:20 +00007728/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7729/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00007730/// is the offset start of the array. The SCEV->delinearize algorithm computes
7731/// the multiples of SCEV coefficients: that is a pattern matching of sub
7732/// expressions in the stride and base of a SCEV corresponding to the
7733/// computation of a GCD (greatest common divisor) of base and stride. When
7734/// SCEV->delinearize fails, it returns the SCEV unchanged.
7735///
7736/// For example: when analyzing the memory access A[i][j][k] in this loop nest
7737///
7738/// void foo(long n, long m, long o, double A[n][m][o]) {
7739///
7740/// for (long i = 0; i < n; i++)
7741/// for (long j = 0; j < m; j++)
7742/// for (long k = 0; k < o; k++)
7743/// A[i][j][k] = 1.0;
7744/// }
7745///
7746/// the delinearization input is the following AddRec SCEV:
7747///
7748/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7749///
7750/// From this SCEV, we are able to say that the base offset of the access is %A
7751/// because it appears as an offset that does not divide any of the strides in
7752/// the loops:
7753///
7754/// CHECK: Base offset: %A
7755///
7756/// and then SCEV->delinearize determines the size of some of the dimensions of
7757/// the array as these are the multiples by which the strides are happening:
7758///
7759/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7760///
7761/// Note that the outermost dimension remains of UnknownSize because there are
7762/// no strides that would help identifying the size of the last dimension: when
7763/// the array has been statically allocated, one could compute the size of that
7764/// dimension by dividing the overall size of the array by the size of the known
7765/// dimensions: %m * %o * 8.
7766///
7767/// Finally delinearize provides the access functions for the array reference
7768/// that does correspond to A[i][j][k] of the above C testcase:
7769///
7770/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7771///
7772/// The testcases are checking the output of a function pass:
7773/// DelinearizationPass that walks through all loads and stores of a function
7774/// asking for the SCEV of the memory access with respect to all enclosing
7775/// loops, calling SCEV->delinearize on that and printing the results.
7776
Sebastian Pop28e6b972014-05-27 22:41:51 +00007777void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7778 SmallVectorImpl<const SCEV *> &Subscripts,
7779 SmallVectorImpl<const SCEV *> &Sizes,
7780 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007781 // First step: collect parametric terms.
7782 SmallVector<const SCEV *, 4> Terms;
7783 collectParametricTerms(SE, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00007784
Sebastian Popb1a548f2014-05-12 19:01:53 +00007785 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007786 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007787
Sebastian Pop448712b2014-05-07 18:01:20 +00007788 // Second step: find subscript sizes.
Sebastian Popa6e58602014-05-27 22:41:45 +00007789 SE.findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00007790
Sebastian Popb1a548f2014-05-12 19:01:53 +00007791 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007792 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007793
Sebastian Pop448712b2014-05-07 18:01:20 +00007794 // Third step: compute the access functions for each subscript.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007795 computeAccessFunctions(SE, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00007796
Sebastian Pop28e6b972014-05-27 22:41:51 +00007797 if (Subscripts.empty())
7798 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007799
Sebastian Pop448712b2014-05-07 18:01:20 +00007800 DEBUG({
7801 dbgs() << "succeeded to delinearize " << *this << "\n";
7802 dbgs() << "ArrayDecl[UnknownSize]";
7803 for (const SCEV *S : Sizes)
7804 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00007805
Sebastian Pop444621a2014-05-09 22:45:02 +00007806 dbgs() << "\nArrayRef";
7807 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00007808 dbgs() << "[" << *S << "]";
7809 dbgs() << "\n";
7810 });
Sebastian Popc62c6792013-11-12 22:47:20 +00007811}
Chris Lattnerd934c702004-04-02 20:23:17 +00007812
7813//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00007814// SCEVCallbackVH Class Implementation
7815//===----------------------------------------------------------------------===//
7816
Dan Gohmand33a0902009-05-19 19:22:47 +00007817void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00007818 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00007819 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7820 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007821 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00007822 // this now dangles!
7823}
7824
Dan Gohman7a066722010-07-28 01:09:07 +00007825void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00007826 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00007827
Dan Gohman48f82222009-05-04 22:30:44 +00007828 // Forget all the expressions associated with users of the old value,
7829 // so that future queries will recompute the expressions using the new
7830 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00007831 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00007832 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00007833 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00007834 while (!Worklist.empty()) {
7835 User *U = Worklist.pop_back_val();
7836 // Deleting the Old value will cause this to dangle. Postpone
7837 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007838 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00007839 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00007840 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00007841 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00007842 if (PHINode *PN = dyn_cast<PHINode>(U))
7843 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007844 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00007845 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00007846 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007847 // Delete the Old value.
7848 if (PHINode *PN = dyn_cast<PHINode>(Old))
7849 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007850 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007851 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00007852}
7853
Dan Gohmand33a0902009-05-19 19:22:47 +00007854ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00007855 : CallbackVH(V), SE(se) {}
7856
7857//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00007858// ScalarEvolution Class Implementation
7859//===----------------------------------------------------------------------===//
7860
Dan Gohmanc8e23622009-04-21 23:15:49 +00007861ScalarEvolution::ScalarEvolution()
Craig Topper9f008862014-04-15 04:59:12 +00007862 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
7863 BlockDispositions(64), FirstUnknown(nullptr) {
Owen Anderson6c18d1a2010-10-19 17:21:58 +00007864 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanc8e23622009-04-21 23:15:49 +00007865}
7866
Chris Lattnerd934c702004-04-02 20:23:17 +00007867bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00007868 this->F = &F;
Chandler Carruth66b31302015-01-04 12:03:27 +00007869 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
Dan Gohmanc8e23622009-04-21 23:15:49 +00007870 LI = &getAnalysis<LoopInfo>();
Rafael Espindola93512512014-02-25 17:30:31 +00007871 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
Craig Topper9f008862014-04-15 04:59:12 +00007872 DL = DLP ? &DLP->getDataLayout() : nullptr;
Chad Rosierc24b86f2011-12-01 03:08:23 +00007873 TLI = &getAnalysis<TargetLibraryInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007874 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chris Lattnerd934c702004-04-02 20:23:17 +00007875 return false;
7876}
7877
7878void ScalarEvolution::releaseMemory() {
Dan Gohman7cac9572010-08-02 23:49:30 +00007879 // Iterate through all the SCEVUnknown instances and call their
7880 // destructors, so that they release their references to their values.
7881 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7882 U->~SCEVUnknown();
Craig Topper9f008862014-04-15 04:59:12 +00007883 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00007884
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007885 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00007886
7887 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7888 // that a loop had multiple computable exits.
7889 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7890 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7891 I != E; ++I) {
7892 I->second.clear();
7893 }
7894
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007895 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7896
Dan Gohmanc8e23622009-04-21 23:15:49 +00007897 BackedgeTakenCounts.clear();
7898 ConstantEvolutionLoopExitValue.clear();
Dan Gohman5122d612009-05-08 20:47:27 +00007899 ValuesAtScopes.clear();
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007900 LoopDispositions.clear();
Dan Gohman8ea83d82010-11-18 00:34:22 +00007901 BlockDispositions.clear();
Dan Gohman761065e2010-11-17 02:44:44 +00007902 UnsignedRanges.clear();
7903 SignedRanges.clear();
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007904 UniqueSCEVs.clear();
7905 SCEVAllocator.Reset();
Chris Lattnerd934c702004-04-02 20:23:17 +00007906}
7907
7908void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
7909 AU.setPreservesAll();
Chandler Carruth66b31302015-01-04 12:03:27 +00007910 AU.addRequired<AssumptionCacheTracker>();
Chris Lattnerd934c702004-04-02 20:23:17 +00007911 AU.addRequiredTransitive<LoopInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007912 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
Chad Rosierc24b86f2011-12-01 03:08:23 +00007913 AU.addRequired<TargetLibraryInfo>();
Dan Gohman0a40ad92009-04-16 03:18:22 +00007914}
7915
Dan Gohmanc8e23622009-04-21 23:15:49 +00007916bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00007917 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00007918}
7919
Dan Gohmanc8e23622009-04-21 23:15:49 +00007920static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00007921 const Loop *L) {
7922 // Print all inner loops first
7923 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
7924 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00007925
Dan Gohmanbc694912010-01-09 18:17:45 +00007926 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007927 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007928 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007929
Dan Gohmancb0efec2009-12-18 01:14:11 +00007930 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007931 L->getExitBlocks(ExitBlocks);
7932 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00007933 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007934
Dan Gohman0bddac12009-02-24 18:55:53 +00007935 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
7936 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00007937 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00007938 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007939 }
7940
Dan Gohmanbc694912010-01-09 18:17:45 +00007941 OS << "\n"
7942 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007943 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007944 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00007945
7946 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
7947 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
7948 } else {
7949 OS << "Unpredictable max backedge-taken count. ";
7950 }
7951
7952 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007953}
7954
Dan Gohmancb0efec2009-12-18 01:14:11 +00007955void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00007956 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00007957 // out SCEV values of all instructions that are interesting. Doing
7958 // this potentially causes it to create new SCEV objects though,
7959 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00007960 // observable from outside the class though, so casting away the
7961 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00007962 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00007963
Dan Gohmanbc694912010-01-09 18:17:45 +00007964 OS << "Classifying expressions for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007965 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007966 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007967 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand18dc2c2010-05-03 17:03:23 +00007968 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanfda3c4a2009-07-13 23:03:05 +00007969 OS << *I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00007970 OS << " --> ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007971 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007972 SV->print(OS);
Misha Brukman01808ca2005-04-21 21:13:18 +00007973
Dan Gohmanb9063a82009-06-19 17:49:54 +00007974 const Loop *L = LI->getLoopFor((*I).getParent());
7975
Dan Gohmanaf752342009-07-07 17:06:11 +00007976 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00007977 if (AtUse != SV) {
7978 OS << " --> ";
7979 AtUse->print(OS);
7980 }
7981
7982 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00007983 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007984 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00007985 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007986 OS << "<<Unknown>>";
7987 } else {
7988 OS << *ExitValue;
7989 }
7990 }
7991
Chris Lattnerd934c702004-04-02 20:23:17 +00007992 OS << "\n";
7993 }
7994
Dan Gohmanbc694912010-01-09 18:17:45 +00007995 OS << "Determining loop execution counts for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007996 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007997 OS << "\n";
Dan Gohmanc8e23622009-04-21 23:15:49 +00007998 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
7999 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00008000}
Dan Gohmane20f8242009-04-21 00:47:46 +00008001
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008002ScalarEvolution::LoopDisposition
8003ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008004 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S];
8005 for (unsigned u = 0; u < Values.size(); u++) {
8006 if (Values[u].first == L)
8007 return Values[u].second;
8008 }
8009 Values.push_back(std::make_pair(L, LoopVariant));
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008010 LoopDisposition D = computeLoopDisposition(S, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008011 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S];
8012 for (unsigned u = Values2.size(); u > 0; u--) {
8013 if (Values2[u - 1].first == L) {
8014 Values2[u - 1].second = D;
8015 break;
8016 }
8017 }
8018 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008019}
8020
8021ScalarEvolution::LoopDisposition
8022ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008023 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00008024 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008025 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008026 case scTruncate:
8027 case scZeroExtend:
8028 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008029 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008030 case scAddRecExpr: {
8031 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8032
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008033 // If L is the addrec's loop, it's computable.
8034 if (AR->getLoop() == L)
8035 return LoopComputable;
8036
Dan Gohmanafd6db92010-11-17 21:23:15 +00008037 // Add recurrences are never invariant in the function-body (null loop).
8038 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008039 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008040
8041 // This recurrence is variant w.r.t. L if L contains AR's loop.
8042 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008043 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008044
8045 // This recurrence is invariant w.r.t. L if AR's loop contains L.
8046 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008047 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008048
8049 // This recurrence is variant w.r.t. L if any of its operands
8050 // are variant.
8051 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
8052 I != E; ++I)
8053 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008054 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008055
8056 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008057 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008058 }
8059 case scAddExpr:
8060 case scMulExpr:
8061 case scUMaxExpr:
8062 case scSMaxExpr: {
8063 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008064 bool HasVarying = false;
8065 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8066 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008067 LoopDisposition D = getLoopDisposition(*I, L);
8068 if (D == LoopVariant)
8069 return LoopVariant;
8070 if (D == LoopComputable)
8071 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008072 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008073 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008074 }
8075 case scUDivExpr: {
8076 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008077 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
8078 if (LD == LoopVariant)
8079 return LoopVariant;
8080 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
8081 if (RD == LoopVariant)
8082 return LoopVariant;
8083 return (LD == LoopInvariant && RD == LoopInvariant) ?
8084 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008085 }
8086 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008087 // All non-instruction values are loop invariant. All instructions are loop
8088 // invariant if they are not contained in the specified loop.
8089 // Instructions are never considered invariant in the function body
8090 // (null loop) because they are defined within the "loop".
8091 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
8092 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
8093 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008094 case scCouldNotCompute:
8095 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00008096 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008097 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008098}
8099
8100bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
8101 return getLoopDisposition(S, L) == LoopInvariant;
8102}
8103
8104bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
8105 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008106}
Dan Gohman20d9ce22010-11-17 21:41:58 +00008107
Dan Gohman8ea83d82010-11-18 00:34:22 +00008108ScalarEvolution::BlockDisposition
8109ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008110 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S];
8111 for (unsigned u = 0; u < Values.size(); u++) {
8112 if (Values[u].first == BB)
8113 return Values[u].second;
8114 }
8115 Values.push_back(std::make_pair(BB, DoesNotDominateBlock));
Dan Gohman8ea83d82010-11-18 00:34:22 +00008116 BlockDisposition D = computeBlockDisposition(S, BB);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008117 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S];
8118 for (unsigned u = Values2.size(); u > 0; u--) {
8119 if (Values2[u - 1].first == BB) {
8120 Values2[u - 1].second = D;
8121 break;
8122 }
8123 }
8124 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008125}
8126
Dan Gohman8ea83d82010-11-18 00:34:22 +00008127ScalarEvolution::BlockDisposition
8128ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008129 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00008130 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008131 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008132 case scTruncate:
8133 case scZeroExtend:
8134 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008135 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00008136 case scAddRecExpr: {
8137 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00008138 // to test for proper dominance too, because the instruction which
8139 // produces the addrec's value is a PHI, and a PHI effectively properly
8140 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00008141 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8142 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00008143 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008144 }
8145 // FALL THROUGH into SCEVNAryExpr handling.
8146 case scAddExpr:
8147 case scMulExpr:
8148 case scUMaxExpr:
8149 case scSMaxExpr: {
8150 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008151 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008152 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00008153 I != E; ++I) {
8154 BlockDisposition D = getBlockDisposition(*I, BB);
8155 if (D == DoesNotDominateBlock)
8156 return DoesNotDominateBlock;
8157 if (D == DominatesBlock)
8158 Proper = false;
8159 }
8160 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008161 }
8162 case scUDivExpr: {
8163 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008164 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
8165 BlockDisposition LD = getBlockDisposition(LHS, BB);
8166 if (LD == DoesNotDominateBlock)
8167 return DoesNotDominateBlock;
8168 BlockDisposition RD = getBlockDisposition(RHS, BB);
8169 if (RD == DoesNotDominateBlock)
8170 return DoesNotDominateBlock;
8171 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
8172 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008173 }
8174 case scUnknown:
8175 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00008176 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
8177 if (I->getParent() == BB)
8178 return DominatesBlock;
8179 if (DT->properlyDominates(I->getParent(), BB))
8180 return ProperlyDominatesBlock;
8181 return DoesNotDominateBlock;
8182 }
8183 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008184 case scCouldNotCompute:
8185 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00008186 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008187 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00008188}
8189
8190bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
8191 return getBlockDisposition(S, BB) >= DominatesBlock;
8192}
8193
8194bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
8195 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008196}
Dan Gohman534749b2010-11-17 22:27:42 +00008197
Andrew Trick365e31c2012-07-13 23:33:03 +00008198namespace {
8199// Search for a SCEV expression node within an expression tree.
8200// Implements SCEVTraversal::Visitor.
8201struct SCEVSearch {
8202 const SCEV *Node;
8203 bool IsFound;
8204
8205 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
8206
8207 bool follow(const SCEV *S) {
8208 IsFound |= (S == Node);
8209 return !IsFound;
8210 }
8211 bool isDone() const { return IsFound; }
8212};
8213}
8214
Dan Gohman534749b2010-11-17 22:27:42 +00008215bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00008216 SCEVSearch Search(Op);
8217 visitAll(S, Search);
8218 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00008219}
Dan Gohman7e6b3932010-11-17 23:28:48 +00008220
8221void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
8222 ValuesAtScopes.erase(S);
8223 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008224 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00008225 UnsignedRanges.erase(S);
8226 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00008227
8228 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8229 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
8230 BackedgeTakenInfo &BEInfo = I->second;
8231 if (BEInfo.hasOperand(S, this)) {
8232 BEInfo.clear();
8233 BackedgeTakenCounts.erase(I++);
8234 }
8235 else
8236 ++I;
8237 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00008238}
Benjamin Kramer214935e2012-10-26 17:31:32 +00008239
8240typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008241
Alp Tokercb402912014-01-24 17:20:08 +00008242/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008243static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8244 size_t Pos = 0;
8245 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8246 Str.replace(Pos, From.size(), To.data(), To.size());
8247 Pos += To.size();
8248 }
8249}
8250
Benjamin Kramer214935e2012-10-26 17:31:32 +00008251/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8252static void
8253getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8254 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8255 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8256
8257 std::string &S = Map[L];
8258 if (S.empty()) {
8259 raw_string_ostream OS(S);
8260 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008261
8262 // false and 0 are semantically equivalent. This can happen in dead loops.
8263 replaceSubString(OS.str(), "false", "0");
8264 // Remove wrap flags, their use in SCEV is highly fragile.
8265 // FIXME: Remove this when SCEV gets smarter about them.
8266 replaceSubString(OS.str(), "<nw>", "");
8267 replaceSubString(OS.str(), "<nsw>", "");
8268 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00008269 }
8270 }
8271}
8272
8273void ScalarEvolution::verifyAnalysis() const {
8274 if (!VerifySCEV)
8275 return;
8276
8277 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8278
8279 // Gather stringified backedge taken counts for all loops using SCEV's caches.
8280 // FIXME: It would be much better to store actual values instead of strings,
8281 // but SCEV pointers will change if we drop the caches.
8282 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8283 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8284 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8285
8286 // Gather stringified backedge taken counts for all loops without using
8287 // SCEV's caches.
8288 SE.releaseMemory();
8289 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8290 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8291
8292 // Now compare whether they're the same with and without caches. This allows
8293 // verifying that no pass changed the cache.
8294 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8295 "New loops suddenly appeared!");
8296
8297 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8298 OldE = BackedgeDumpsOld.end(),
8299 NewI = BackedgeDumpsNew.begin();
8300 OldI != OldE; ++OldI, ++NewI) {
8301 assert(OldI->first == NewI->first && "Loop order changed!");
8302
8303 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8304 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008305 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00008306 // means that a pass is buggy or SCEV has to learn a new pattern but is
8307 // usually not harmful.
8308 if (OldI->second != NewI->second &&
8309 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008310 NewI->second.find("undef") == std::string::npos &&
8311 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00008312 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008313 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00008314 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008315 << "' changed from '" << OldI->second
8316 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00008317 std::abort();
8318 }
8319 }
8320
8321 // TODO: Verify more things.
8322}