blob: 988861e3c90c946a3d04d134c3f91fe71a16d1a9 [file] [log] [blame]
Eugene Zelenko32a40562017-09-11 23:00:48 +00001//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
Brendon Cahoon254f8892016-07-29 16:44:44 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11//
12// Software pipelining (SWP) is an instruction scheduling technique for loops
Roorda, Jan-Willem20a0e552018-03-06 16:26:01 +000013// that overlap loop iterations and exploits ILP via a compiler transformation.
Brendon Cahoon254f8892016-07-29 16:44:44 +000014//
15// Swing Modulo Scheduling is an implementation of software pipelining
16// that generates schedules that are near optimal in terms of initiation
17// interval, register requirements, and stage count. See the papers:
18//
19// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
Hiroshi Inouec73b6d62018-06-20 05:29:26 +000020// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Proceedings of the 1996
Brendon Cahoon254f8892016-07-29 16:44:44 +000021// Conference on Parallel Architectures and Compilation Techiniques.
22//
23// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
24// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
25// Transactions on Computers, Vol. 50, No. 3, 2001.
26//
27// "An Implementation of Swing Modulo Scheduling With Extensions for
28// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
29// Urbana-Chambpain, 2005.
30//
31//
32// The SMS algorithm consists of three main steps after computing the minimal
33// initiation interval (MII).
34// 1) Analyze the dependence graph and compute information about each
35// instruction in the graph.
36// 2) Order the nodes (instructions) by priority based upon the heuristics
37// described in the algorithm.
38// 3) Attempt to schedule the nodes in the specified order using the MII.
39//
40// This SMS implementation is a target-independent back-end pass. When enabled,
41// the pass runs just prior to the register allocation pass, while the machine
42// IR is in SSA form. If software pipelining is successful, then the original
43// loop is replaced by the optimized loop. The optimized loop contains one or
44// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
45// the instructions cannot be scheduled in a given MII, we increase the MII by
46// one and try again.
47//
48// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
49// represent loop carried dependences in the DAG as order edges to the Phi
50// nodes. We also perform several passes over the DAG to eliminate unnecessary
51// edges that inhibit the ability to pipeline. The implementation uses the
52// DFAPacketizer class to compute the minimum initiation interval and the check
53// where an instruction may be inserted in the pipelined schedule.
54//
55// In order for the SMS pass to work, several target specific hooks need to be
56// implemented to get information about the loop structure and to rewrite
57// instructions.
58//
59//===----------------------------------------------------------------------===//
60
Eugene Zelenkocdc71612016-08-11 17:20:18 +000061#include "llvm/ADT/ArrayRef.h"
62#include "llvm/ADT/BitVector.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000063#include "llvm/ADT/DenseMap.h"
64#include "llvm/ADT/MapVector.h"
65#include "llvm/ADT/PriorityQueue.h"
66#include "llvm/ADT/SetVector.h"
67#include "llvm/ADT/SmallPtrSet.h"
68#include "llvm/ADT/SmallSet.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000069#include "llvm/ADT/SmallVector.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000070#include "llvm/ADT/Statistic.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000071#include "llvm/ADT/iterator_range.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000072#include "llvm/Analysis/AliasAnalysis.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000073#include "llvm/Analysis/MemoryLocation.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000074#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/CodeGen/DFAPacketizer.h"
Matthias Braunf8422972017-12-13 02:51:04 +000076#include "llvm/CodeGen/LiveIntervals.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000077#include "llvm/CodeGen/MachineBasicBlock.h"
78#include "llvm/CodeGen/MachineDominators.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000079#include "llvm/CodeGen/MachineFunction.h"
80#include "llvm/CodeGen/MachineFunctionPass.h"
81#include "llvm/CodeGen/MachineInstr.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000082#include "llvm/CodeGen/MachineInstrBuilder.h"
83#include "llvm/CodeGen/MachineLoopInfo.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000084#include "llvm/CodeGen/MachineMemOperand.h"
85#include "llvm/CodeGen/MachineOperand.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000086#include "llvm/CodeGen/MachineRegisterInfo.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000087#include "llvm/CodeGen/RegisterClassInfo.h"
88#include "llvm/CodeGen/RegisterPressure.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000089#include "llvm/CodeGen/ScheduleDAG.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000090#include "llvm/CodeGen/ScheduleDAGInstrs.h"
Krzysztof Parzyszek88391242016-12-22 19:21:20 +000091#include "llvm/CodeGen/ScheduleDAGMutation.h"
David Blaikie3f833ed2017-11-08 01:01:31 +000092#include "llvm/CodeGen/TargetInstrInfo.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +000093#include "llvm/CodeGen/TargetOpcodes.h"
94#include "llvm/CodeGen/TargetRegisterInfo.h"
95#include "llvm/CodeGen/TargetSubtargetInfo.h"
Nico Weber432a3882018-04-30 14:59:11 +000096#include "llvm/Config/llvm-config.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000097#include "llvm/IR/Attributes.h"
98#include "llvm/IR/DebugLoc.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +000099#include "llvm/IR/Function.h"
100#include "llvm/MC/LaneBitmask.h"
101#include "llvm/MC/MCInstrDesc.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000102#include "llvm/MC/MCInstrItineraries.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +0000103#include "llvm/MC/MCRegisterInfo.h"
104#include "llvm/Pass.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000105#include "llvm/Support/CommandLine.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +0000106#include "llvm/Support/Compiler.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000107#include "llvm/Support/Debug.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000108#include "llvm/Support/MathExtras.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000109#include "llvm/Support/raw_ostream.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000110#include <algorithm>
111#include <cassert>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000112#include <climits>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000113#include <cstdint>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000114#include <deque>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000115#include <functional>
116#include <iterator>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000117#include <map>
Eugene Zelenko32a40562017-09-11 23:00:48 +0000118#include <memory>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000119#include <tuple>
120#include <utility>
121#include <vector>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000122
123using namespace llvm;
124
125#define DEBUG_TYPE "pipeliner"
126
127STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
128STATISTIC(NumPipelined, "Number of loops software pipelined");
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000129STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
Brendon Cahoon254f8892016-07-29 16:44:44 +0000130
131/// A command line option to turn software pipelining on or off.
Benjamin Kramerb7d33112016-08-06 11:13:10 +0000132static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
133 cl::ZeroOrMore,
134 cl::desc("Enable Software Pipelining"));
Brendon Cahoon254f8892016-07-29 16:44:44 +0000135
136/// A command line option to enable SWP at -Os.
137static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
138 cl::desc("Enable SWP at Os."), cl::Hidden,
139 cl::init(false));
140
141/// A command line argument to limit minimum initial interval for pipelining.
142static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
Hiroshi Inoue8f976ba2018-01-17 12:29:38 +0000143 cl::desc("Size limit for the MII."),
Brendon Cahoon254f8892016-07-29 16:44:44 +0000144 cl::Hidden, cl::init(27));
145
146/// A command line argument to limit the number of stages in the pipeline.
147static cl::opt<int>
148 SwpMaxStages("pipeliner-max-stages",
149 cl::desc("Maximum stages allowed in the generated scheduled."),
150 cl::Hidden, cl::init(3));
151
152/// A command line option to disable the pruning of chain dependences due to
153/// an unrelated Phi.
154static cl::opt<bool>
155 SwpPruneDeps("pipeliner-prune-deps",
156 cl::desc("Prune dependences between unrelated Phi nodes."),
157 cl::Hidden, cl::init(true));
158
159/// A command line option to disable the pruning of loop carried order
160/// dependences.
161static cl::opt<bool>
162 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
163 cl::desc("Prune loop carried order dependences."),
164 cl::Hidden, cl::init(true));
165
166#ifndef NDEBUG
167static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
168#endif
169
170static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
171 cl::ReallyHidden, cl::init(false),
172 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
173
174namespace {
175
176class NodeSet;
177class SMSchedule;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000178
179/// The main class in the implementation of the target independent
180/// software pipeliner pass.
181class MachinePipeliner : public MachineFunctionPass {
182public:
183 MachineFunction *MF = nullptr;
184 const MachineLoopInfo *MLI = nullptr;
185 const MachineDominatorTree *MDT = nullptr;
186 const InstrItineraryData *InstrItins;
187 const TargetInstrInfo *TII = nullptr;
188 RegisterClassInfo RegClassInfo;
189
190#ifndef NDEBUG
191 static int NumTries;
192#endif
Eugene Zelenko32a40562017-09-11 23:00:48 +0000193
Brendon Cahoon254f8892016-07-29 16:44:44 +0000194 /// Cache the target analysis information about the loop.
195 struct LoopInfo {
196 MachineBasicBlock *TBB = nullptr;
197 MachineBasicBlock *FBB = nullptr;
198 SmallVector<MachineOperand, 4> BrCond;
199 MachineInstr *LoopInductionVar = nullptr;
200 MachineInstr *LoopCompare = nullptr;
201 };
202 LoopInfo LI;
203
204 static char ID;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000205
Brendon Cahoon254f8892016-07-29 16:44:44 +0000206 MachinePipeliner() : MachineFunctionPass(ID) {
207 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
208 }
209
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000210 bool runOnMachineFunction(MachineFunction &MF) override;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000211
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000212 void getAnalysisUsage(AnalysisUsage &AU) const override {
Brendon Cahoon254f8892016-07-29 16:44:44 +0000213 AU.addRequired<AAResultsWrapperPass>();
214 AU.addPreserved<AAResultsWrapperPass>();
215 AU.addRequired<MachineLoopInfo>();
216 AU.addRequired<MachineDominatorTree>();
217 AU.addRequired<LiveIntervals>();
218 MachineFunctionPass::getAnalysisUsage(AU);
219 }
220
221private:
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000222 void preprocessPhiNodes(MachineBasicBlock &B);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000223 bool canPipelineLoop(MachineLoop &L);
224 bool scheduleLoop(MachineLoop &L);
225 bool swingModuloScheduler(MachineLoop &L);
226};
227
228/// This class builds the dependence graph for the instructions in a loop,
229/// and attempts to schedule the instructions using the SMS algorithm.
230class SwingSchedulerDAG : public ScheduleDAGInstrs {
231 MachinePipeliner &Pass;
232 /// The minimum initiation interval between iterations for this schedule.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000233 unsigned MII = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000234 /// Set to true if a valid pipelined schedule is found for the loop.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000235 bool Scheduled = false;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000236 MachineLoop &Loop;
237 LiveIntervals &LIS;
238 const RegisterClassInfo &RegClassInfo;
239
240 /// A toplogical ordering of the SUnits, which is needed for changing
241 /// dependences and iterating over the SUnits.
242 ScheduleDAGTopologicalSort Topo;
243
244 struct NodeInfo {
Eugene Zelenko32a40562017-09-11 23:00:48 +0000245 int ASAP = 0;
246 int ALAP = 0;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000247 int ZeroLatencyDepth = 0;
248 int ZeroLatencyHeight = 0;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000249
250 NodeInfo() = default;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000251 };
252 /// Computed properties for each node in the graph.
253 std::vector<NodeInfo> ScheduleInfo;
254
255 enum OrderKind { BottomUp = 0, TopDown = 1 };
256 /// Computed node ordering for scheduling.
257 SetVector<SUnit *> NodeOrder;
258
Eugene Zelenko32a40562017-09-11 23:00:48 +0000259 using NodeSetType = SmallVector<NodeSet, 8>;
260 using ValueMapTy = DenseMap<unsigned, unsigned>;
261 using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
262 using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000263
264 /// Instructions to change when emitting the final schedule.
265 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
266
267 /// We may create a new instruction, so remember it because it
268 /// must be deleted when the pass is finished.
269 SmallPtrSet<MachineInstr *, 4> NewMIs;
270
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000271 /// Ordered list of DAG postprocessing steps.
272 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
273
Brendon Cahoon254f8892016-07-29 16:44:44 +0000274 /// Helper class to implement Johnson's circuit finding algorithm.
275 class Circuits {
276 std::vector<SUnit> &SUnits;
277 SetVector<SUnit *> Stack;
278 BitVector Blocked;
279 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
280 SmallVector<SmallVector<int, 4>, 16> AdjK;
281 unsigned NumPaths;
282 static unsigned MaxPaths;
283
284 public:
285 Circuits(std::vector<SUnit> &SUs)
Eugene Zelenko32a40562017-09-11 23:00:48 +0000286 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {}
287
Brendon Cahoon254f8892016-07-29 16:44:44 +0000288 /// Reset the data structures used in the circuit algorithm.
289 void reset() {
290 Stack.clear();
291 Blocked.reset();
292 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
293 NumPaths = 0;
294 }
Eugene Zelenko32a40562017-09-11 23:00:48 +0000295
Brendon Cahoon254f8892016-07-29 16:44:44 +0000296 void createAdjacencyStructure(SwingSchedulerDAG *DAG);
297 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
298 void unblock(int U);
299 };
300
301public:
302 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
303 const RegisterClassInfo &rci)
Eugene Zelenko32a40562017-09-11 23:00:48 +0000304 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis),
305 RegClassInfo(rci), Topo(SUnits, &ExitSU) {
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000306 P.MF->getSubtarget().getSMSMutations(Mutations);
307 }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000308
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000309 void schedule() override;
310 void finishBlock() override;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000311
312 /// Return true if the loop kernel has been scheduled.
313 bool hasNewSchedule() { return Scheduled; }
314
315 /// Return the earliest time an instruction may be scheduled.
316 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
317
318 /// Return the latest time an instruction my be scheduled.
319 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
320
Hiroshi Inoue8f976ba2018-01-17 12:29:38 +0000321 /// The mobility function, which the number of slots in which
Brendon Cahoon254f8892016-07-29 16:44:44 +0000322 /// an instruction may be scheduled.
323 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
324
325 /// The depth, in the dependence graph, for a node.
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +0000326 unsigned getDepth(SUnit *Node) { return Node->getDepth(); }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000327
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000328 /// The maximum unweighted length of a path from an arbitrary node to the
329 /// given node in which each edge has latency 0
330 int getZeroLatencyDepth(SUnit *Node) {
331 return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth;
332 }
333
Brendon Cahoon254f8892016-07-29 16:44:44 +0000334 /// The height, in the dependence graph, for a node.
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +0000335 unsigned getHeight(SUnit *Node) { return Node->getHeight(); }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000336
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000337 /// The maximum unweighted length of a path from the given node to an
338 /// arbitrary node in which each edge has latency 0
339 int getZeroLatencyHeight(SUnit *Node) {
340 return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight;
341 }
342
Brendon Cahoon254f8892016-07-29 16:44:44 +0000343 /// Return true if the dependence is a back-edge in the data dependence graph.
344 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
345 /// using an anti dependence from a Phi to an instruction.
346 bool isBackedge(SUnit *Source, const SDep &Dep) {
347 if (Dep.getKind() != SDep::Anti)
348 return false;
349 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
350 }
351
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +0000352 bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000353
Brendon Cahoon254f8892016-07-29 16:44:44 +0000354 /// The distance function, which indicates that operation V of iteration I
355 /// depends on operations U of iteration I-distance.
356 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
357 // Instructions that feed a Phi have a distance of 1. Computing larger
358 // values for arrays requires data dependence information.
359 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
360 return 1;
361 return 0;
362 }
363
364 /// Set the Minimum Initiation Interval for this schedule attempt.
365 void setMII(unsigned mii) { MII = mii; }
366
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +0000367 void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule);
368
369 void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000370
371 /// Return the new base register that was stored away for the changed
372 /// instruction.
373 unsigned getInstrBaseReg(SUnit *SU) {
374 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
375 InstrChanges.find(SU);
376 if (It != InstrChanges.end())
377 return It->second.first;
378 return 0;
379 }
380
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000381 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
382 Mutations.push_back(std::move(Mutation));
383 }
384
Brendon Cahoon254f8892016-07-29 16:44:44 +0000385private:
386 void addLoopCarriedDependences(AliasAnalysis *AA);
387 void updatePhiDependences();
388 void changeDependences();
389 unsigned calculateResMII();
390 unsigned calculateRecMII(NodeSetType &RecNodeSets);
391 void findCircuits(NodeSetType &NodeSets);
392 void fuseRecs(NodeSetType &NodeSets);
393 void removeDuplicateNodes(NodeSetType &NodeSets);
394 void computeNodeFunctions(NodeSetType &NodeSets);
395 void registerPressureFilter(NodeSetType &NodeSets);
396 void colocateNodeSets(NodeSetType &NodeSets);
397 void checkNodeSets(NodeSetType &NodeSets);
398 void groupRemainingNodes(NodeSetType &NodeSets);
399 void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
400 SetVector<SUnit *> &NodesAdded);
401 void computeNodeOrder(NodeSetType &NodeSets);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000402 void checkValidNodeOrder(const NodeSetType &Circuits) const;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000403 bool schedulePipeline(SMSchedule &Schedule);
404 void generatePipelinedLoop(SMSchedule &Schedule);
405 void generateProlog(SMSchedule &Schedule, unsigned LastStage,
406 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
407 MBBVectorTy &PrologBBs);
408 void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
409 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
410 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
411 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
412 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
413 SMSchedule &Schedule, ValueMapTy *VRMap,
414 InstrMapTy &InstrMap, unsigned LastStageNum,
415 unsigned CurStageNum, bool IsLast);
416 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
417 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
418 SMSchedule &Schedule, ValueMapTy *VRMap,
419 InstrMapTy &InstrMap, unsigned LastStageNum,
420 unsigned CurStageNum, bool IsLast);
421 void removeDeadInstructions(MachineBasicBlock *KernelBB,
422 MBBVectorTy &EpilogBBs);
423 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
424 SMSchedule &Schedule);
425 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
426 MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
427 ValueMapTy *VRMap);
428 bool computeDelta(MachineInstr &MI, unsigned &Delta);
429 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
430 unsigned Num);
431 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
432 unsigned InstStageNum);
433 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
434 unsigned InstStageNum,
435 SMSchedule &Schedule);
436 void updateInstruction(MachineInstr *NewMI, bool LastDef,
Fangrui Songcb0bab82018-07-16 18:51:40 +0000437 unsigned CurStageNum, unsigned InstrStageNum,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000438 SMSchedule &Schedule, ValueMapTy *VRMap);
439 MachineInstr *findDefInLoop(unsigned Reg);
440 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
441 unsigned LoopStage, ValueMapTy *VRMap,
442 MachineBasicBlock *BB);
443 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
444 SMSchedule &Schedule, ValueMapTy *VRMap,
445 InstrMapTy &InstrMap);
446 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
447 InstrMapTy &InstrMap, unsigned CurStageNum,
448 unsigned PhiNum, MachineInstr *Phi,
449 unsigned OldReg, unsigned NewReg,
450 unsigned PrevReg = 0);
451 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
452 unsigned &OffsetPos, unsigned &NewBase,
453 int64_t &NewOffset);
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000454 void postprocessDAG();
Brendon Cahoon254f8892016-07-29 16:44:44 +0000455};
456
457/// A NodeSet contains a set of SUnit DAG nodes with additional information
458/// that assigns a priority to the set.
459class NodeSet {
460 SetVector<SUnit *> Nodes;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000461 bool HasRecurrence = false;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000462 unsigned RecMII = 0;
463 int MaxMOV = 0;
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +0000464 unsigned MaxDepth = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000465 unsigned Colocate = 0;
466 SUnit *ExceedPressure = nullptr;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000467 unsigned Latency = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000468
469public:
Eugene Zelenko32a40562017-09-11 23:00:48 +0000470 using iterator = SetVector<SUnit *>::const_iterator;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000471
Eugene Zelenko32a40562017-09-11 23:00:48 +0000472 NodeSet() = default;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000473 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {
474 Latency = 0;
475 for (unsigned i = 0, e = Nodes.size(); i < e; ++i)
476 for (const SDep &Succ : Nodes[i]->Succs)
477 if (Nodes.count(Succ.getSUnit()))
478 Latency += Succ.getLatency();
479 }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000480
481 bool insert(SUnit *SU) { return Nodes.insert(SU); }
482
483 void insert(iterator S, iterator E) { Nodes.insert(S, E); }
484
485 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
486 return Nodes.remove_if(P);
487 }
488
489 unsigned count(SUnit *SU) const { return Nodes.count(SU); }
490
491 bool hasRecurrence() { return HasRecurrence; };
492
493 unsigned size() const { return Nodes.size(); }
494
495 bool empty() const { return Nodes.empty(); }
496
497 SUnit *getNode(unsigned i) const { return Nodes[i]; };
498
499 void setRecMII(unsigned mii) { RecMII = mii; };
500
501 void setColocate(unsigned c) { Colocate = c; };
502
503 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
504
505 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
506
507 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
508
509 int getRecMII() { return RecMII; }
510
511 /// Summarize node functions for the entire node set.
512 void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
513 for (SUnit *SU : *this) {
514 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
515 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
516 }
517 }
518
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +0000519 unsigned getLatency() { return Latency; }
520
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +0000521 unsigned getMaxDepth() { return MaxDepth; }
522
Brendon Cahoon254f8892016-07-29 16:44:44 +0000523 void clear() {
524 Nodes.clear();
525 RecMII = 0;
526 HasRecurrence = false;
527 MaxMOV = 0;
528 MaxDepth = 0;
529 Colocate = 0;
530 ExceedPressure = nullptr;
531 }
532
533 operator SetVector<SUnit *> &() { return Nodes; }
534
535 /// Sort the node sets by importance. First, rank them by recurrence MII,
536 /// then by mobility (least mobile done first), and finally by depth.
537 /// Each node set may contain a colocate value which is used as the first
538 /// tie breaker, if it's set.
539 bool operator>(const NodeSet &RHS) const {
540 if (RecMII == RHS.RecMII) {
541 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
542 return Colocate < RHS.Colocate;
543 if (MaxMOV == RHS.MaxMOV)
544 return MaxDepth > RHS.MaxDepth;
545 return MaxMOV < RHS.MaxMOV;
546 }
547 return RecMII > RHS.RecMII;
548 }
549
550 bool operator==(const NodeSet &RHS) const {
551 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
552 MaxDepth == RHS.MaxDepth;
553 }
554
555 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
556
557 iterator begin() { return Nodes.begin(); }
558 iterator end() { return Nodes.end(); }
559
560 void print(raw_ostream &os) const {
561 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
562 << " depth " << MaxDepth << " col " << Colocate << "\n";
563 for (const auto &I : Nodes)
564 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
565 os << "\n";
566 }
567
Aaron Ballman615eb472017-10-15 14:32:27 +0000568#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Matthias Braun8c209aa2017-01-28 02:02:38 +0000569 LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
570#endif
Brendon Cahoon254f8892016-07-29 16:44:44 +0000571};
572
Hiroshi Inouec73b6d62018-06-20 05:29:26 +0000573/// This class represents the scheduled code. The main data structure is a
Brendon Cahoon254f8892016-07-29 16:44:44 +0000574/// map from scheduled cycle to instructions. During scheduling, the
575/// data structure explicitly represents all stages/iterations. When
576/// the algorithm finshes, the schedule is collapsed into a single stage,
577/// which represents instructions from different loop iterations.
578///
579/// The SMS algorithm allows negative values for cycles, so the first cycle
580/// in the schedule is the smallest cycle value.
581class SMSchedule {
582private:
583 /// Map from execution cycle to instructions.
584 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
585
586 /// Map from instruction to execution cycle.
587 std::map<SUnit *, int> InstrToCycle;
588
589 /// Map for each register and the max difference between its uses and def.
590 /// The first element in the pair is the max difference in stages. The
591 /// second is true if the register defines a Phi value and loop value is
592 /// scheduled before the Phi.
593 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
594
595 /// Keep track of the first cycle value in the schedule. It starts
596 /// as zero, but the algorithm allows negative values.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000597 int FirstCycle = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000598
599 /// Keep track of the last cycle value in the schedule.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000600 int LastCycle = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000601
602 /// The initiation interval (II) for the schedule.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000603 int InitiationInterval = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000604
605 /// Target machine information.
606 const TargetSubtargetInfo &ST;
607
608 /// Virtual register information.
609 MachineRegisterInfo &MRI;
610
Benjamin Kramer3f6260c2017-02-16 20:26:51 +0000611 std::unique_ptr<DFAPacketizer> Resources;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000612
613public:
614 SMSchedule(MachineFunction *mf)
615 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
Eugene Zelenko32a40562017-09-11 23:00:48 +0000616 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {}
Brendon Cahoon254f8892016-07-29 16:44:44 +0000617
Brendon Cahoon254f8892016-07-29 16:44:44 +0000618 void reset() {
619 ScheduledInstrs.clear();
620 InstrToCycle.clear();
621 RegToStageDiff.clear();
622 FirstCycle = 0;
623 LastCycle = 0;
624 InitiationInterval = 0;
625 }
626
627 /// Set the initiation interval for this schedule.
628 void setInitiationInterval(int ii) { InitiationInterval = ii; }
629
630 /// Return the first cycle in the completed schedule. This
631 /// can be a negative value.
632 int getFirstCycle() const { return FirstCycle; }
633
634 /// Return the last cycle in the finalized schedule.
635 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
636
637 /// Return the cycle of the earliest scheduled instruction in the dependence
638 /// chain.
639 int earliestCycleInChain(const SDep &Dep);
640
641 /// Return the cycle of the latest scheduled instruction in the dependence
642 /// chain.
643 int latestCycleInChain(const SDep &Dep);
644
645 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
646 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
647 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
648
649 /// Iterators for the cycle to instruction map.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000650 using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator;
651 using const_sched_iterator =
652 DenseMap<int, std::deque<SUnit *>>::const_iterator;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000653
654 /// Return true if the instruction is scheduled at the specified stage.
655 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
656 return (stageScheduled(SU) == (int)StageNum);
657 }
658
659 /// Return the stage for a scheduled instruction. Return -1 if
660 /// the instruction has not been scheduled.
661 int stageScheduled(SUnit *SU) const {
662 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
663 if (it == InstrToCycle.end())
664 return -1;
665 return (it->second - FirstCycle) / InitiationInterval;
666 }
667
668 /// Return the cycle for a scheduled instruction. This function normalizes
669 /// the first cycle to be 0.
670 unsigned cycleScheduled(SUnit *SU) const {
671 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
672 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
673 return (it->second - FirstCycle) % InitiationInterval;
674 }
675
676 /// Return the maximum stage count needed for this schedule.
677 unsigned getMaxStageCount() {
678 return (LastCycle - FirstCycle) / InitiationInterval;
679 }
680
681 /// Return the max. number of stages/iterations that can occur between a
682 /// register definition and its uses.
683 unsigned getStagesForReg(int Reg, unsigned CurStage) {
684 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
685 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
686 return 1;
687 return Stages.first;
688 }
689
690 /// The number of stages for a Phi is a little different than other
691 /// instructions. The minimum value computed in RegToStageDiff is 1
692 /// because we assume the Phi is needed for at least 1 iteration.
693 /// This is not the case if the loop value is scheduled prior to the
694 /// Phi in the same stage. This function returns the number of stages
695 /// or iterations needed between the Phi definition and any uses.
696 unsigned getStagesForPhi(int Reg) {
697 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
698 if (Stages.second)
699 return Stages.first;
700 return Stages.first - 1;
701 }
702
703 /// Return the instructions that are scheduled at the specified cycle.
704 std::deque<SUnit *> &getInstructions(int cycle) {
705 return ScheduledInstrs[cycle];
706 }
707
708 bool isValidSchedule(SwingSchedulerDAG *SSD);
709 void finalizeSchedule(SwingSchedulerDAG *SSD);
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +0000710 void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000711 std::deque<SUnit *> &Insts);
712 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
Fangrui Songcb0bab82018-07-16 18:51:40 +0000713 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Def,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000714 MachineOperand &MO);
715 void print(raw_ostream &os) const;
716 void dump() const;
717};
718
719} // end anonymous namespace
720
721unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
722char MachinePipeliner::ID = 0;
723#ifndef NDEBUG
724int MachinePipeliner::NumTries = 0;
725#endif
726char &llvm::MachinePipelinerID = MachinePipeliner::ID;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000727
Matthias Braun1527baa2017-05-25 21:26:32 +0000728INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000729 "Modulo Software Pipelining", false, false)
730INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
731INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
732INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
733INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
Matthias Braun1527baa2017-05-25 21:26:32 +0000734INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000735 "Modulo Software Pipelining", false, false)
736
737/// The "main" function for implementing Swing Modulo Scheduling.
738bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
Matthias Braunf1caa282017-12-15 22:22:58 +0000739 if (skipFunction(mf.getFunction()))
Brendon Cahoon254f8892016-07-29 16:44:44 +0000740 return false;
741
742 if (!EnableSWP)
743 return false;
744
Matthias Braunf1caa282017-12-15 22:22:58 +0000745 if (mf.getFunction().getAttributes().hasAttribute(
Reid Klecknerb5180542017-03-21 16:57:19 +0000746 AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
Brendon Cahoon254f8892016-07-29 16:44:44 +0000747 !EnableSWPOptSize.getPosition())
748 return false;
749
750 MF = &mf;
751 MLI = &getAnalysis<MachineLoopInfo>();
752 MDT = &getAnalysis<MachineDominatorTree>();
753 TII = MF->getSubtarget().getInstrInfo();
754 RegClassInfo.runOnMachineFunction(*MF);
755
756 for (auto &L : *MLI)
757 scheduleLoop(*L);
758
759 return false;
760}
761
762/// Attempt to perform the SMS algorithm on the specified loop. This function is
763/// the main entry point for the algorithm. The function identifies candidate
764/// loops, calculates the minimum initiation interval, and attempts to schedule
765/// the loop.
766bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
767 bool Changed = false;
768 for (auto &InnerLoop : L)
769 Changed |= scheduleLoop(*InnerLoop);
770
771#ifndef NDEBUG
772 // Stop trying after reaching the limit (if any).
773 int Limit = SwpLoopLimit;
774 if (Limit >= 0) {
775 if (NumTries >= SwpLoopLimit)
776 return Changed;
777 NumTries++;
778 }
779#endif
780
781 if (!canPipelineLoop(L))
782 return Changed;
783
784 ++NumTrytoPipeline;
785
786 Changed = swingModuloScheduler(L);
787
788 return Changed;
789}
790
791/// Return true if the loop can be software pipelined. The algorithm is
792/// restricted to loops with a single basic block. Make sure that the
793/// branch in the loop can be analyzed.
794bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
795 if (L.getNumBlocks() != 1)
796 return false;
797
798 // Check if the branch can't be understood because we can't do pipelining
799 // if that's the case.
800 LI.TBB = nullptr;
801 LI.FBB = nullptr;
802 LI.BrCond.clear();
803 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
804 return false;
805
806 LI.LoopInductionVar = nullptr;
807 LI.LoopCompare = nullptr;
808 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
809 return false;
810
811 if (!L.getLoopPreheader())
812 return false;
813
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000814 // Remove any subregisters from inputs to phi nodes.
815 preprocessPhiNodes(*L.getHeader());
Brendon Cahoon254f8892016-07-29 16:44:44 +0000816 return true;
817}
818
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000819void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
820 MachineRegisterInfo &MRI = MF->getRegInfo();
821 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
822
823 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
824 MachineOperand &DefOp = PI.getOperand(0);
825 assert(DefOp.getSubReg() == 0);
826 auto *RC = MRI.getRegClass(DefOp.getReg());
827
828 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
829 MachineOperand &RegOp = PI.getOperand(i);
830 if (RegOp.getSubReg() == 0)
831 continue;
832
833 // If the operand uses a subregister, replace it with a new register
834 // without subregisters, and generate a copy to the new register.
835 unsigned NewReg = MRI.createVirtualRegister(RC);
836 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
837 MachineBasicBlock::iterator At = PredB.getFirstTerminator();
838 const DebugLoc &DL = PredB.findDebugLoc(At);
839 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
840 .addReg(RegOp.getReg(), getRegState(RegOp),
841 RegOp.getSubReg());
842 Slots.insertMachineInstrInMaps(*Copy);
843 RegOp.setReg(NewReg);
844 RegOp.setSubReg(0);
845 }
846 }
847}
848
Brendon Cahoon254f8892016-07-29 16:44:44 +0000849/// The SMS algorithm consists of the following main steps:
850/// 1. Computation and analysis of the dependence graph.
851/// 2. Ordering of the nodes (instructions).
852/// 3. Attempt to Schedule the loop.
853bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
854 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
855
856 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo);
857
858 MachineBasicBlock *MBB = L.getHeader();
859 // The kernel should not include any terminator instructions. These
860 // will be added back later.
861 SMS.startBlock(MBB);
862
863 // Compute the number of 'real' instructions in the basic block by
864 // ignoring terminators.
865 unsigned size = MBB->size();
866 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
867 E = MBB->instr_end();
868 I != E; ++I, --size)
869 ;
870
871 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
872 SMS.schedule();
873 SMS.exitRegion();
874
875 SMS.finishBlock();
876 return SMS.hasNewSchedule();
877}
878
879/// We override the schedule function in ScheduleDAGInstrs to implement the
880/// scheduling part of the Swing Modulo Scheduling algorithm.
881void SwingSchedulerDAG::schedule() {
882 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
883 buildSchedGraph(AA);
884 addLoopCarriedDependences(AA);
885 updatePhiDependences();
886 Topo.InitDAGTopologicalSorting();
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000887 postprocessDAG();
Brendon Cahoon254f8892016-07-29 16:44:44 +0000888 changeDependences();
Matthias Braun726e12c2018-09-19 00:23:35 +0000889 LLVM_DEBUG(dump());
Brendon Cahoon254f8892016-07-29 16:44:44 +0000890
891 NodeSetType NodeSets;
892 findCircuits(NodeSets);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000893 NodeSetType Circuits = NodeSets;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000894
895 // Calculate the MII.
896 unsigned ResMII = calculateResMII();
897 unsigned RecMII = calculateRecMII(NodeSets);
898
899 fuseRecs(NodeSets);
900
901 // This flag is used for testing and can cause correctness problems.
902 if (SwpIgnoreRecMII)
903 RecMII = 0;
904
905 MII = std::max(ResMII, RecMII);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000906 LLVM_DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII
907 << ", res=" << ResMII << ")\n");
Brendon Cahoon254f8892016-07-29 16:44:44 +0000908
909 // Can't schedule a loop without a valid MII.
910 if (MII == 0)
911 return;
912
913 // Don't pipeline large loops.
914 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
915 return;
916
917 computeNodeFunctions(NodeSets);
918
919 registerPressureFilter(NodeSets);
920
921 colocateNodeSets(NodeSets);
922
923 checkNodeSets(NodeSets);
924
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000925 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +0000926 for (auto &I : NodeSets) {
927 dbgs() << " Rec NodeSet ";
928 I.dump();
929 }
930 });
931
Krzysztof Parzyszek6c2f8682018-04-12 15:11:11 +0000932 std::stable_sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>());
Brendon Cahoon254f8892016-07-29 16:44:44 +0000933
934 groupRemainingNodes(NodeSets);
935
936 removeDuplicateNodes(NodeSets);
937
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000938 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +0000939 for (auto &I : NodeSets) {
940 dbgs() << " NodeSet ";
941 I.dump();
942 }
943 });
944
945 computeNodeOrder(NodeSets);
946
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000947 // check for node order issues
948 checkValidNodeOrder(Circuits);
949
Brendon Cahoon254f8892016-07-29 16:44:44 +0000950 SMSchedule Schedule(Pass.MF);
951 Scheduled = schedulePipeline(Schedule);
952
953 if (!Scheduled)
954 return;
955
956 unsigned numStages = Schedule.getMaxStageCount();
957 // No need to generate pipeline if there are no overlapped iterations.
958 if (numStages == 0)
959 return;
960
961 // Check that the maximum stage count is less than user-defined limit.
962 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
963 return;
964
965 generatePipelinedLoop(Schedule);
966 ++NumPipelined;
967}
968
969/// Clean up after the software pipeliner runs.
970void SwingSchedulerDAG::finishBlock() {
971 for (MachineInstr *I : NewMIs)
972 MF.DeleteMachineInstr(I);
973 NewMIs.clear();
974
975 // Call the superclass.
976 ScheduleDAGInstrs::finishBlock();
977}
978
979/// Return the register values for the operands of a Phi instruction.
980/// This function assume the instruction is a Phi.
981static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
982 unsigned &InitVal, unsigned &LoopVal) {
983 assert(Phi.isPHI() && "Expecting a Phi.");
984
985 InitVal = 0;
986 LoopVal = 0;
987 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
988 if (Phi.getOperand(i + 1).getMBB() != Loop)
989 InitVal = Phi.getOperand(i).getReg();
Simon Pilgrimfbfb19b2017-03-16 19:52:00 +0000990 else
Brendon Cahoon254f8892016-07-29 16:44:44 +0000991 LoopVal = Phi.getOperand(i).getReg();
992
993 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
994}
995
996/// Return the Phi register value that comes from the incoming block.
997static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
998 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
999 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
1000 return Phi.getOperand(i).getReg();
1001 return 0;
1002}
1003
Hiroshi Inoue8f976ba2018-01-17 12:29:38 +00001004/// Return the Phi register value that comes the loop block.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001005static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
1006 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
1007 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
1008 return Phi.getOperand(i).getReg();
1009 return 0;
1010}
1011
1012/// Return true if SUb can be reached from SUa following the chain edges.
1013static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
1014 SmallPtrSet<SUnit *, 8> Visited;
1015 SmallVector<SUnit *, 8> Worklist;
1016 Worklist.push_back(SUa);
1017 while (!Worklist.empty()) {
1018 const SUnit *SU = Worklist.pop_back_val();
1019 for (auto &SI : SU->Succs) {
1020 SUnit *SuccSU = SI.getSUnit();
1021 if (SI.getKind() == SDep::Order) {
1022 if (Visited.count(SuccSU))
1023 continue;
1024 if (SuccSU == SUb)
1025 return true;
1026 Worklist.push_back(SuccSU);
1027 Visited.insert(SuccSU);
1028 }
1029 }
1030 }
1031 return false;
1032}
1033
1034/// Return true if the instruction causes a chain between memory
1035/// references before and after it.
1036static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
1037 return MI.isCall() || MI.hasUnmodeledSideEffects() ||
1038 (MI.hasOrderedMemoryRef() &&
Justin Lebard98cf002016-09-10 01:03:20 +00001039 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001040}
1041
1042/// Return the underlying objects for the memory references of an instruction.
1043/// This function calls the code in ValueTracking, but first checks that the
1044/// instruction has a memory operand.
1045static void getUnderlyingObjects(MachineInstr *MI,
1046 SmallVectorImpl<Value *> &Objs,
1047 const DataLayout &DL) {
1048 if (!MI->hasOneMemOperand())
1049 return;
1050 MachineMemOperand *MM = *MI->memoperands_begin();
1051 if (!MM->getValue())
1052 return;
1053 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL);
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +00001054 for (Value *V : Objs) {
1055 if (!isIdentifiedObject(V)) {
1056 Objs.clear();
1057 return;
1058 }
1059 Objs.push_back(V);
1060 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001061}
1062
1063/// Add a chain edge between a load and store if the store can be an
1064/// alias of the load on a subsequent iteration, i.e., a loop carried
1065/// dependence. This code is very similar to the code in ScheduleDAGInstrs
1066/// but that code doesn't create loop carried dependences.
1067void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
1068 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads;
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +00001069 Value *UnknownValue =
1070 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001071 for (auto &SU : SUnits) {
1072 MachineInstr &MI = *SU.getInstr();
1073 if (isDependenceBarrier(MI, AA))
1074 PendingLoads.clear();
1075 else if (MI.mayLoad()) {
1076 SmallVector<Value *, 4> Objs;
1077 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +00001078 if (Objs.empty())
1079 Objs.push_back(UnknownValue);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001080 for (auto V : Objs) {
1081 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
1082 SUs.push_back(&SU);
1083 }
1084 } else if (MI.mayStore()) {
1085 SmallVector<Value *, 4> Objs;
1086 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +00001087 if (Objs.empty())
1088 Objs.push_back(UnknownValue);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001089 for (auto V : Objs) {
1090 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I =
1091 PendingLoads.find(V);
1092 if (I == PendingLoads.end())
1093 continue;
1094 for (auto Load : I->second) {
1095 if (isSuccOrder(Load, &SU))
1096 continue;
1097 MachineInstr &LdMI = *Load->getInstr();
1098 // First, perform the cheaper check that compares the base register.
1099 // If they are the same and the load offset is less than the store
1100 // offset, then mark the dependence as loop carried potentially.
1101 unsigned BaseReg1, BaseReg2;
1102 int64_t Offset1, Offset2;
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +00001103 if (TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) &&
1104 TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) {
1105 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) {
1106 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
1107 "What happened to the chain edge?");
1108 SDep Dep(Load, SDep::Barrier);
1109 Dep.setLatency(1);
1110 SU.addPred(Dep);
1111 continue;
1112 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001113 }
1114 // Second, the more expensive check that uses alias analysis on the
1115 // base registers. If they alias, and the load offset is less than
1116 // the store offset, the mark the dependence as loop carried.
1117 if (!AA) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001118 SDep Dep(Load, SDep::Barrier);
1119 Dep.setLatency(1);
1120 SU.addPred(Dep);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001121 continue;
1122 }
1123 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
1124 MachineMemOperand *MMO2 = *MI.memoperands_begin();
1125 if (!MMO1->getValue() || !MMO2->getValue()) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001126 SDep Dep(Load, SDep::Barrier);
1127 Dep.setLatency(1);
1128 SU.addPred(Dep);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001129 continue;
1130 }
1131 if (MMO1->getValue() == MMO2->getValue() &&
1132 MMO1->getOffset() <= MMO2->getOffset()) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001133 SDep Dep(Load, SDep::Barrier);
1134 Dep.setLatency(1);
1135 SU.addPred(Dep);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001136 continue;
1137 }
1138 AliasResult AAResult = AA->alias(
1139 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
1140 MMO1->getAAInfo()),
1141 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
1142 MMO2->getAAInfo()));
1143
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001144 if (AAResult != NoAlias) {
1145 SDep Dep(Load, SDep::Barrier);
1146 Dep.setLatency(1);
1147 SU.addPred(Dep);
1148 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001149 }
1150 }
1151 }
1152 }
1153}
1154
1155/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
1156/// processes dependences for PHIs. This function adds true dependences
1157/// from a PHI to a use, and a loop carried dependence from the use to the
1158/// PHI. The loop carried dependence is represented as an anti dependence
1159/// edge. This function also removes chain dependences between unrelated
1160/// PHIs.
1161void SwingSchedulerDAG::updatePhiDependences() {
1162 SmallVector<SDep, 4> RemoveDeps;
1163 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
1164
1165 // Iterate over each DAG node.
1166 for (SUnit &I : SUnits) {
1167 RemoveDeps.clear();
1168 // Set to true if the instruction has an operand defined by a Phi.
1169 unsigned HasPhiUse = 0;
1170 unsigned HasPhiDef = 0;
1171 MachineInstr *MI = I.getInstr();
1172 // Iterate over each operand, and we process the definitions.
1173 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
1174 MOE = MI->operands_end();
1175 MOI != MOE; ++MOI) {
1176 if (!MOI->isReg())
1177 continue;
1178 unsigned Reg = MOI->getReg();
1179 if (MOI->isDef()) {
1180 // If the register is used by a Phi, then create an anti dependence.
1181 for (MachineRegisterInfo::use_instr_iterator
1182 UI = MRI.use_instr_begin(Reg),
1183 UE = MRI.use_instr_end();
1184 UI != UE; ++UI) {
1185 MachineInstr *UseMI = &*UI;
1186 SUnit *SU = getSUnit(UseMI);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001187 if (SU != nullptr && UseMI->isPHI()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001188 if (!MI->isPHI()) {
1189 SDep Dep(SU, SDep::Anti, Reg);
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001190 Dep.setLatency(1);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001191 I.addPred(Dep);
1192 } else {
1193 HasPhiDef = Reg;
1194 // Add a chain edge to a dependent Phi that isn't an existing
1195 // predecessor.
1196 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1197 I.addPred(SDep(SU, SDep::Barrier));
1198 }
1199 }
1200 }
1201 } else if (MOI->isUse()) {
1202 // If the register is defined by a Phi, then create a true dependence.
1203 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001204 if (DefMI == nullptr)
Brendon Cahoon254f8892016-07-29 16:44:44 +00001205 continue;
1206 SUnit *SU = getSUnit(DefMI);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001207 if (SU != nullptr && DefMI->isPHI()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001208 if (!MI->isPHI()) {
1209 SDep Dep(SU, SDep::Data, Reg);
1210 Dep.setLatency(0);
1211 ST.adjustSchedDependency(SU, &I, Dep);
1212 I.addPred(Dep);
1213 } else {
1214 HasPhiUse = Reg;
1215 // Add a chain edge to a dependent Phi that isn't an existing
1216 // predecessor.
1217 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1218 I.addPred(SDep(SU, SDep::Barrier));
1219 }
1220 }
1221 }
1222 }
1223 // Remove order dependences from an unrelated Phi.
1224 if (!SwpPruneDeps)
1225 continue;
1226 for (auto &PI : I.Preds) {
1227 MachineInstr *PMI = PI.getSUnit()->getInstr();
1228 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
1229 if (I.getInstr()->isPHI()) {
1230 if (PMI->getOperand(0).getReg() == HasPhiUse)
1231 continue;
1232 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
1233 continue;
1234 }
1235 RemoveDeps.push_back(PI);
1236 }
1237 }
1238 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
1239 I.removePred(RemoveDeps[i]);
1240 }
1241}
1242
1243/// Iterate over each DAG node and see if we can change any dependences
1244/// in order to reduce the recurrence MII.
1245void SwingSchedulerDAG::changeDependences() {
1246 // See if an instruction can use a value from the previous iteration.
1247 // If so, we update the base and offset of the instruction and change
1248 // the dependences.
1249 for (SUnit &I : SUnits) {
1250 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
1251 int64_t NewOffset = 0;
1252 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
1253 NewOffset))
1254 continue;
1255
1256 // Get the MI and SUnit for the instruction that defines the original base.
1257 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
1258 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
1259 if (!DefMI)
1260 continue;
1261 SUnit *DefSU = getSUnit(DefMI);
1262 if (!DefSU)
1263 continue;
1264 // Get the MI and SUnit for the instruction that defins the new base.
1265 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
1266 if (!LastMI)
1267 continue;
1268 SUnit *LastSU = getSUnit(LastMI);
1269 if (!LastSU)
1270 continue;
1271
1272 if (Topo.IsReachable(&I, LastSU))
1273 continue;
1274
1275 // Remove the dependence. The value now depends on a prior iteration.
1276 SmallVector<SDep, 4> Deps;
1277 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
1278 ++P)
1279 if (P->getSUnit() == DefSU)
1280 Deps.push_back(*P);
1281 for (int i = 0, e = Deps.size(); i != e; i++) {
1282 Topo.RemovePred(&I, Deps[i].getSUnit());
1283 I.removePred(Deps[i]);
1284 }
1285 // Remove the chain dependence between the instructions.
1286 Deps.clear();
1287 for (auto &P : LastSU->Preds)
1288 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
1289 Deps.push_back(P);
1290 for (int i = 0, e = Deps.size(); i != e; i++) {
1291 Topo.RemovePred(LastSU, Deps[i].getSUnit());
1292 LastSU->removePred(Deps[i]);
1293 }
1294
1295 // Add a dependence between the new instruction and the instruction
1296 // that defines the new base.
1297 SDep Dep(&I, SDep::Anti, NewBase);
1298 LastSU->addPred(Dep);
1299
1300 // Remember the base and offset information so that we can update the
1301 // instruction during code generation.
1302 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
1303 }
1304}
1305
1306namespace {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001307
Brendon Cahoon254f8892016-07-29 16:44:44 +00001308// FuncUnitSorter - Comparison operator used to sort instructions by
1309// the number of functional unit choices.
1310struct FuncUnitSorter {
1311 const InstrItineraryData *InstrItins;
1312 DenseMap<unsigned, unsigned> Resources;
1313
Eugene Zelenko32a40562017-09-11 23:00:48 +00001314 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}
1315
Brendon Cahoon254f8892016-07-29 16:44:44 +00001316 // Compute the number of functional unit alternatives needed
1317 // at each stage, and take the minimum value. We prioritize the
1318 // instructions by the least number of choices first.
1319 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
1320 unsigned schedClass = Inst->getDesc().getSchedClass();
1321 unsigned min = UINT_MAX;
1322 for (const InstrStage *IS = InstrItins->beginStage(schedClass),
1323 *IE = InstrItins->endStage(schedClass);
1324 IS != IE; ++IS) {
1325 unsigned funcUnits = IS->getUnits();
1326 unsigned numAlternatives = countPopulation(funcUnits);
1327 if (numAlternatives < min) {
1328 min = numAlternatives;
1329 F = funcUnits;
1330 }
1331 }
1332 return min;
1333 }
1334
1335 // Compute the critical resources needed by the instruction. This
1336 // function records the functional units needed by instructions that
1337 // must use only one functional unit. We use this as a tie breaker
1338 // for computing the resource MII. The instrutions that require
1339 // the same, highly used, functional unit have high priority.
1340 void calcCriticalResources(MachineInstr &MI) {
1341 unsigned SchedClass = MI.getDesc().getSchedClass();
1342 for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
1343 *IE = InstrItins->endStage(SchedClass);
1344 IS != IE; ++IS) {
1345 unsigned FuncUnits = IS->getUnits();
1346 if (countPopulation(FuncUnits) == 1)
1347 Resources[FuncUnits]++;
1348 }
1349 }
1350
Brendon Cahoon254f8892016-07-29 16:44:44 +00001351 /// Return true if IS1 has less priority than IS2.
1352 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1353 unsigned F1 = 0, F2 = 0;
1354 unsigned MFUs1 = minFuncUnits(IS1, F1);
1355 unsigned MFUs2 = minFuncUnits(IS2, F2);
1356 if (MFUs1 == 1 && MFUs2 == 1)
1357 return Resources.lookup(F1) < Resources.lookup(F2);
1358 return MFUs1 > MFUs2;
1359 }
1360};
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001361
1362} // end anonymous namespace
Brendon Cahoon254f8892016-07-29 16:44:44 +00001363
1364/// Calculate the resource constrained minimum initiation interval for the
1365/// specified loop. We use the DFA to model the resources needed for
1366/// each instruction, and we ignore dependences. A different DFA is created
1367/// for each cycle that is required. When adding a new instruction, we attempt
1368/// to add it to each existing DFA, until a legal space is found. If the
1369/// instruction cannot be reserved in an existing DFA, we create a new one.
1370unsigned SwingSchedulerDAG::calculateResMII() {
1371 SmallVector<DFAPacketizer *, 8> Resources;
1372 MachineBasicBlock *MBB = Loop.getHeader();
1373 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));
1374
1375 // Sort the instructions by the number of available choices for scheduling,
1376 // least to most. Use the number of critical resources as the tie breaker.
1377 FuncUnitSorter FUS =
1378 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
1379 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1380 E = MBB->getFirstTerminator();
1381 I != E; ++I)
1382 FUS.calcCriticalResources(*I);
1383 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1384 FuncUnitOrder(FUS);
1385
1386 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1387 E = MBB->getFirstTerminator();
1388 I != E; ++I)
1389 FuncUnitOrder.push(&*I);
1390
1391 while (!FuncUnitOrder.empty()) {
1392 MachineInstr *MI = FuncUnitOrder.top();
1393 FuncUnitOrder.pop();
1394 if (TII->isZeroCost(MI->getOpcode()))
1395 continue;
1396 // Attempt to reserve the instruction in an existing DFA. At least one
1397 // DFA is needed for each cycle.
1398 unsigned NumCycles = getSUnit(MI)->Latency;
1399 unsigned ReservedCycles = 0;
1400 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
1401 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
1402 for (unsigned C = 0; C < NumCycles; ++C)
1403 while (RI != RE) {
1404 if ((*RI++)->canReserveResources(*MI)) {
1405 ++ReservedCycles;
1406 break;
1407 }
1408 }
1409 // Start reserving resources using existing DFAs.
1410 for (unsigned C = 0; C < ReservedCycles; ++C) {
1411 --RI;
1412 (*RI)->reserveResources(*MI);
1413 }
1414 // Add new DFAs, if needed, to reserve resources.
1415 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1416 DFAPacketizer *NewResource =
1417 TII->CreateTargetScheduleState(MF.getSubtarget());
1418 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1419 NewResource->reserveResources(*MI);
1420 Resources.push_back(NewResource);
1421 }
1422 }
1423 int Resmii = Resources.size();
1424 // Delete the memory for each of the DFAs that were created earlier.
1425 for (DFAPacketizer *RI : Resources) {
1426 DFAPacketizer *D = RI;
1427 delete D;
1428 }
1429 Resources.clear();
1430 return Resmii;
1431}
1432
1433/// Calculate the recurrence-constrainted minimum initiation interval.
1434/// Iterate over each circuit. Compute the delay(c) and distance(c)
1435/// for each circuit. The II needs to satisfy the inequality
1436/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
Hiroshi Inouec73b6d62018-06-20 05:29:26 +00001437/// II that satisfies the inequality, and the RecMII is the maximum
Brendon Cahoon254f8892016-07-29 16:44:44 +00001438/// of those values.
1439unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1440 unsigned RecMII = 0;
1441
1442 for (NodeSet &Nodes : NodeSets) {
Eugene Zelenko32a40562017-09-11 23:00:48 +00001443 if (Nodes.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001444 continue;
1445
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00001446 unsigned Delay = Nodes.getLatency();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001447 unsigned Distance = 1;
1448
1449 // ii = ceil(delay / distance)
1450 unsigned CurMII = (Delay + Distance - 1) / Distance;
1451 Nodes.setRecMII(CurMII);
1452 if (CurMII > RecMII)
1453 RecMII = CurMII;
1454 }
1455
1456 return RecMII;
1457}
1458
1459/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1460/// but we do this to find the circuits, and then change them back.
1461static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1462 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1463 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1464 SUnit *SU = &SUnits[i];
1465 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1466 IP != EP; ++IP) {
1467 if (IP->getKind() != SDep::Anti)
1468 continue;
1469 DepsAdded.push_back(std::make_pair(SU, *IP));
1470 }
1471 }
1472 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
1473 E = DepsAdded.end();
1474 I != E; ++I) {
1475 // Remove this anti dependency and add one in the reverse direction.
1476 SUnit *SU = I->first;
1477 SDep &D = I->second;
1478 SUnit *TargetSU = D.getSUnit();
1479 unsigned Reg = D.getReg();
1480 unsigned Lat = D.getLatency();
1481 SU->removePred(D);
1482 SDep Dep(SU, SDep::Anti, Reg);
1483 Dep.setLatency(Lat);
1484 TargetSU->addPred(Dep);
1485 }
1486}
1487
1488/// Create the adjacency structure of the nodes in the graph.
1489void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1490 SwingSchedulerDAG *DAG) {
1491 BitVector Added(SUnits.size());
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001492 DenseMap<int, int> OutputDeps;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001493 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1494 Added.reset();
1495 // Add any successor to the adjacency matrix and exclude duplicates.
1496 for (auto &SI : SUnits[i].Succs) {
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001497 // Only create a back-edge on the first and last nodes of a dependence
1498 // chain. This records any chains and adds them later.
1499 if (SI.getKind() == SDep::Output) {
1500 int N = SI.getSUnit()->NodeNum;
1501 int BackEdge = i;
1502 auto Dep = OutputDeps.find(BackEdge);
1503 if (Dep != OutputDeps.end()) {
1504 BackEdge = Dep->second;
1505 OutputDeps.erase(Dep);
1506 }
1507 OutputDeps[N] = BackEdge;
1508 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001509 // Do not process a boundary node and a back-edge is processed only
1510 // if it goes to a Phi.
1511 if (SI.getSUnit()->isBoundaryNode() ||
1512 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1513 continue;
1514 int N = SI.getSUnit()->NodeNum;
1515 if (!Added.test(N)) {
1516 AdjK[i].push_back(N);
1517 Added.set(N);
1518 }
1519 }
1520 // A chain edge between a store and a load is treated as a back-edge in the
1521 // adjacency matrix.
1522 for (auto &PI : SUnits[i].Preds) {
1523 if (!SUnits[i].getInstr()->mayStore() ||
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001524 !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
Brendon Cahoon254f8892016-07-29 16:44:44 +00001525 continue;
1526 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1527 int N = PI.getSUnit()->NodeNum;
1528 if (!Added.test(N)) {
1529 AdjK[i].push_back(N);
1530 Added.set(N);
1531 }
1532 }
1533 }
1534 }
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001535 // Add back-eges in the adjacency matrix for the output dependences.
1536 for (auto &OD : OutputDeps)
1537 if (!Added.test(OD.second)) {
1538 AdjK[OD.first].push_back(OD.second);
1539 Added.set(OD.second);
1540 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001541}
1542
1543/// Identify an elementary circuit in the dependence graph starting at the
1544/// specified node.
1545bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1546 bool HasBackedge) {
1547 SUnit *SV = &SUnits[V];
1548 bool F = false;
1549 Stack.insert(SV);
1550 Blocked.set(V);
1551
1552 for (auto W : AdjK[V]) {
1553 if (NumPaths > MaxPaths)
1554 break;
1555 if (W < S)
1556 continue;
1557 if (W == S) {
1558 if (!HasBackedge)
1559 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1560 F = true;
1561 ++NumPaths;
1562 break;
1563 } else if (!Blocked.test(W)) {
1564 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge))
1565 F = true;
1566 }
1567 }
1568
1569 if (F)
1570 unblock(V);
1571 else {
1572 for (auto W : AdjK[V]) {
1573 if (W < S)
1574 continue;
1575 if (B[W].count(SV) == 0)
1576 B[W].insert(SV);
1577 }
1578 }
1579 Stack.pop_back();
1580 return F;
1581}
1582
1583/// Unblock a node in the circuit finding algorithm.
1584void SwingSchedulerDAG::Circuits::unblock(int U) {
1585 Blocked.reset(U);
1586 SmallPtrSet<SUnit *, 4> &BU = B[U];
1587 while (!BU.empty()) {
1588 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1589 assert(SI != BU.end() && "Invalid B set.");
1590 SUnit *W = *SI;
1591 BU.erase(W);
1592 if (Blocked.test(W->NodeNum))
1593 unblock(W->NodeNum);
1594 }
1595}
1596
1597/// Identify all the elementary circuits in the dependence graph using
1598/// Johnson's circuit algorithm.
1599void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1600 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1601 // but we do this to find the circuits, and then change them back.
1602 swapAntiDependences(SUnits);
1603
1604 Circuits Cir(SUnits);
1605 // Create the adjacency structure.
1606 Cir.createAdjacencyStructure(this);
1607 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1608 Cir.reset();
1609 Cir.circuit(i, i, NodeSets);
1610 }
1611
1612 // Change the dependences back so that we've created a DAG again.
1613 swapAntiDependences(SUnits);
1614}
1615
1616/// Return true for DAG nodes that we ignore when computing the cost functions.
Hiroshi Inouec73b6d62018-06-20 05:29:26 +00001617/// We ignore the back-edge recurrence in order to avoid unbounded recursion
Brendon Cahoon254f8892016-07-29 16:44:44 +00001618/// in the calculation of the ASAP, ALAP, etc functions.
1619static bool ignoreDependence(const SDep &D, bool isPred) {
1620 if (D.isArtificial())
1621 return true;
1622 return D.getKind() == SDep::Anti && isPred;
1623}
1624
1625/// Compute several functions need to order the nodes for scheduling.
1626/// ASAP - Earliest time to schedule a node.
1627/// ALAP - Latest time to schedule a node.
1628/// MOV - Mobility function, difference between ALAP and ASAP.
1629/// D - Depth of each node.
1630/// H - Height of each node.
1631void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001632 ScheduleInfo.resize(SUnits.size());
1633
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001634 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +00001635 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1636 E = Topo.end();
1637 I != E; ++I) {
Matthias Braun726e12c2018-09-19 00:23:35 +00001638 const SUnit &SU = SUnits[*I];
1639 dumpNode(SU);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001640 }
1641 });
1642
1643 int maxASAP = 0;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001644 // Compute ASAP and ZeroLatencyDepth.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001645 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1646 E = Topo.end();
1647 I != E; ++I) {
1648 int asap = 0;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001649 int zeroLatencyDepth = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001650 SUnit *SU = &SUnits[*I];
1651 for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1652 EP = SU->Preds.end();
1653 IP != EP; ++IP) {
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001654 SUnit *pred = IP->getSUnit();
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001655 if (IP->getLatency() == 0)
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001656 zeroLatencyDepth =
1657 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001658 if (ignoreDependence(*IP, true))
1659 continue;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001660 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
Brendon Cahoon254f8892016-07-29 16:44:44 +00001661 getDistance(pred, SU, *IP) * MII));
1662 }
1663 maxASAP = std::max(maxASAP, asap);
1664 ScheduleInfo[*I].ASAP = asap;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001665 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001666 }
1667
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001668 // Compute ALAP, ZeroLatencyHeight, and MOV.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001669 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1670 E = Topo.rend();
1671 I != E; ++I) {
1672 int alap = maxASAP;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001673 int zeroLatencyHeight = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001674 SUnit *SU = &SUnits[*I];
1675 for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1676 ES = SU->Succs.end();
1677 IS != ES; ++IS) {
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001678 SUnit *succ = IS->getSUnit();
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001679 if (IS->getLatency() == 0)
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001680 zeroLatencyHeight =
1681 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001682 if (ignoreDependence(*IS, true))
1683 continue;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001684 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
Brendon Cahoon254f8892016-07-29 16:44:44 +00001685 getDistance(SU, succ, *IS) * MII));
1686 }
1687
1688 ScheduleInfo[*I].ALAP = alap;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001689 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001690 }
1691
1692 // After computing the node functions, compute the summary for each node set.
1693 for (NodeSet &I : NodeSets)
1694 I.computeNodeSetInfo(this);
1695
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001696 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +00001697 for (unsigned i = 0; i < SUnits.size(); i++) {
1698 dbgs() << "\tNode " << i << ":\n";
1699 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1700 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1701 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1702 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1703 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001704 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1705 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
Brendon Cahoon254f8892016-07-29 16:44:44 +00001706 }
1707 });
1708}
1709
1710/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1711/// as the predecessors of the elements of NodeOrder that are not also in
1712/// NodeOrder.
1713static bool pred_L(SetVector<SUnit *> &NodeOrder,
1714 SmallSetVector<SUnit *, 8> &Preds,
1715 const NodeSet *S = nullptr) {
1716 Preds.clear();
1717 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1718 I != E; ++I) {
1719 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1720 PI != PE; ++PI) {
1721 if (S && S->count(PI->getSUnit()) == 0)
1722 continue;
1723 if (ignoreDependence(*PI, true))
1724 continue;
1725 if (NodeOrder.count(PI->getSUnit()) == 0)
1726 Preds.insert(PI->getSUnit());
1727 }
1728 // Back-edges are predecessors with an anti-dependence.
1729 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1730 ES = (*I)->Succs.end();
1731 IS != ES; ++IS) {
1732 if (IS->getKind() != SDep::Anti)
1733 continue;
1734 if (S && S->count(IS->getSUnit()) == 0)
1735 continue;
1736 if (NodeOrder.count(IS->getSUnit()) == 0)
1737 Preds.insert(IS->getSUnit());
1738 }
1739 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001740 return !Preds.empty();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001741}
1742
1743/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1744/// as the successors of the elements of NodeOrder that are not also in
1745/// NodeOrder.
1746static bool succ_L(SetVector<SUnit *> &NodeOrder,
1747 SmallSetVector<SUnit *, 8> &Succs,
1748 const NodeSet *S = nullptr) {
1749 Succs.clear();
1750 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1751 I != E; ++I) {
1752 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1753 SI != SE; ++SI) {
1754 if (S && S->count(SI->getSUnit()) == 0)
1755 continue;
1756 if (ignoreDependence(*SI, false))
1757 continue;
1758 if (NodeOrder.count(SI->getSUnit()) == 0)
1759 Succs.insert(SI->getSUnit());
1760 }
1761 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1762 PE = (*I)->Preds.end();
1763 PI != PE; ++PI) {
1764 if (PI->getKind() != SDep::Anti)
1765 continue;
1766 if (S && S->count(PI->getSUnit()) == 0)
1767 continue;
1768 if (NodeOrder.count(PI->getSUnit()) == 0)
1769 Succs.insert(PI->getSUnit());
1770 }
1771 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001772 return !Succs.empty();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001773}
1774
1775/// Return true if there is a path from the specified node to any of the nodes
1776/// in DestNodes. Keep track and return the nodes in any path.
1777static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1778 SetVector<SUnit *> &DestNodes,
1779 SetVector<SUnit *> &Exclude,
1780 SmallPtrSet<SUnit *, 8> &Visited) {
1781 if (Cur->isBoundaryNode())
1782 return false;
1783 if (Exclude.count(Cur) != 0)
1784 return false;
1785 if (DestNodes.count(Cur) != 0)
1786 return true;
1787 if (!Visited.insert(Cur).second)
1788 return Path.count(Cur) != 0;
1789 bool FoundPath = false;
1790 for (auto &SI : Cur->Succs)
1791 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1792 for (auto &PI : Cur->Preds)
1793 if (PI.getKind() == SDep::Anti)
1794 FoundPath |=
1795 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1796 if (FoundPath)
1797 Path.insert(Cur);
1798 return FoundPath;
1799}
1800
1801/// Return true if Set1 is a subset of Set2.
1802template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1803 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1804 if (Set2.count(*I) == 0)
1805 return false;
1806 return true;
1807}
1808
1809/// Compute the live-out registers for the instructions in a node-set.
1810/// The live-out registers are those that are defined in the node-set,
1811/// but not used. Except for use operands of Phis.
1812static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1813 NodeSet &NS) {
1814 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1815 MachineRegisterInfo &MRI = MF.getRegInfo();
1816 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1817 SmallSet<unsigned, 4> Uses;
1818 for (SUnit *SU : NS) {
1819 const MachineInstr *MI = SU->getInstr();
1820 if (MI->isPHI())
1821 continue;
Matthias Braunfc371552016-10-24 21:36:43 +00001822 for (const MachineOperand &MO : MI->operands())
1823 if (MO.isReg() && MO.isUse()) {
1824 unsigned Reg = MO.getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001825 if (TargetRegisterInfo::isVirtualRegister(Reg))
1826 Uses.insert(Reg);
1827 else if (MRI.isAllocatable(Reg))
1828 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1829 Uses.insert(*Units);
1830 }
1831 }
1832 for (SUnit *SU : NS)
Matthias Braunfc371552016-10-24 21:36:43 +00001833 for (const MachineOperand &MO : SU->getInstr()->operands())
1834 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1835 unsigned Reg = MO.getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001836 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1837 if (!Uses.count(Reg))
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +00001838 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1839 LaneBitmask::getNone()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001840 } else if (MRI.isAllocatable(Reg)) {
1841 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1842 if (!Uses.count(*Units))
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +00001843 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1844 LaneBitmask::getNone()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001845 }
1846 }
1847 RPTracker.addLiveRegs(LiveOutRegs);
1848}
1849
1850/// A heuristic to filter nodes in recurrent node-sets if the register
1851/// pressure of a set is too high.
1852void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1853 for (auto &NS : NodeSets) {
1854 // Skip small node-sets since they won't cause register pressure problems.
1855 if (NS.size() <= 2)
1856 continue;
1857 IntervalPressure RecRegPressure;
1858 RegPressureTracker RecRPTracker(RecRegPressure);
1859 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1860 computeLiveOuts(MF, RecRPTracker, NS);
1861 RecRPTracker.closeBottom();
1862
1863 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
Mandeep Singh Grange92f0cf2018-04-06 18:08:42 +00001864 llvm::sort(SUnits.begin(), SUnits.end(),
1865 [](const SUnit *A, const SUnit *B) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001866 return A->NodeNum > B->NodeNum;
1867 });
1868
1869 for (auto &SU : SUnits) {
1870 // Since we're computing the register pressure for a subset of the
1871 // instructions in a block, we need to set the tracker for each
1872 // instruction in the node-set. The tracker is set to the instruction
1873 // just after the one we're interested in.
1874 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1875 RecRPTracker.setPos(std::next(CurInstI));
1876
1877 RegPressureDelta RPDelta;
1878 ArrayRef<PressureChange> CriticalPSets;
1879 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1880 CriticalPSets,
1881 RecRegPressure.MaxSetPressure);
1882 if (RPDelta.Excess.isValid()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001883 LLVM_DEBUG(
1884 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1885 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1886 << ":" << RPDelta.Excess.getUnitInc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00001887 NS.setExceedPressure(SU);
1888 break;
1889 }
1890 RecRPTracker.recede();
1891 }
1892 }
1893}
1894
1895/// A heuristic to colocate node sets that have the same set of
1896/// successors.
1897void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1898 unsigned Colocate = 0;
1899 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1900 NodeSet &N1 = NodeSets[i];
1901 SmallSetVector<SUnit *, 8> S1;
1902 if (N1.empty() || !succ_L(N1, S1))
1903 continue;
1904 for (int j = i + 1; j < e; ++j) {
1905 NodeSet &N2 = NodeSets[j];
1906 if (N1.compareRecMII(N2) != 0)
1907 continue;
1908 SmallSetVector<SUnit *, 8> S2;
1909 if (N2.empty() || !succ_L(N2, S2))
1910 continue;
1911 if (isSubset(S1, S2) && S1.size() == S2.size()) {
1912 N1.setColocate(++Colocate);
1913 N2.setColocate(Colocate);
1914 break;
1915 }
1916 }
1917 }
1918}
1919
1920/// Check if the existing node-sets are profitable. If not, then ignore the
1921/// recurrent node-sets, and attempt to schedule all nodes together. This is
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001922/// a heuristic. If the MII is large and all the recurrent node-sets are small,
1923/// then it's best to try to schedule all instructions together instead of
1924/// starting with the recurrent node-sets.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001925void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1926 // Look for loops with a large MII.
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001927 if (MII < 17)
Brendon Cahoon254f8892016-07-29 16:44:44 +00001928 return;
1929 // Check if the node-set contains only a simple add recurrence.
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001930 for (auto &NS : NodeSets) {
1931 if (NS.getRecMII() > 2)
Brendon Cahoon254f8892016-07-29 16:44:44 +00001932 return;
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001933 if (NS.getMaxDepth() > MII)
Brendon Cahoon254f8892016-07-29 16:44:44 +00001934 return;
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001935 }
1936 NodeSets.clear();
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001937 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001938 return;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001939}
1940
1941/// Add the nodes that do not belong to a recurrence set into groups
1942/// based upon connected componenets.
1943void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1944 SetVector<SUnit *> NodesAdded;
1945 SmallPtrSet<SUnit *, 8> Visited;
1946 // Add the nodes that are on a path between the previous node sets and
1947 // the current node set.
1948 for (NodeSet &I : NodeSets) {
1949 SmallSetVector<SUnit *, 8> N;
1950 // Add the nodes from the current node set to the previous node set.
1951 if (succ_L(I, N)) {
1952 SetVector<SUnit *> Path;
1953 for (SUnit *NI : N) {
1954 Visited.clear();
1955 computePath(NI, Path, NodesAdded, I, Visited);
1956 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001957 if (!Path.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001958 I.insert(Path.begin(), Path.end());
1959 }
1960 // Add the nodes from the previous node set to the current node set.
1961 N.clear();
1962 if (succ_L(NodesAdded, N)) {
1963 SetVector<SUnit *> Path;
1964 for (SUnit *NI : N) {
1965 Visited.clear();
1966 computePath(NI, Path, I, NodesAdded, Visited);
1967 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001968 if (!Path.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001969 I.insert(Path.begin(), Path.end());
1970 }
1971 NodesAdded.insert(I.begin(), I.end());
1972 }
1973
1974 // Create a new node set with the connected nodes of any successor of a node
1975 // in a recurrent set.
1976 NodeSet NewSet;
1977 SmallSetVector<SUnit *, 8> N;
1978 if (succ_L(NodesAdded, N))
1979 for (SUnit *I : N)
1980 addConnectedNodes(I, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00001981 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001982 NodeSets.push_back(NewSet);
1983
1984 // Create a new node set with the connected nodes of any predecessor of a node
1985 // in a recurrent set.
1986 NewSet.clear();
1987 if (pred_L(NodesAdded, N))
1988 for (SUnit *I : N)
1989 addConnectedNodes(I, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00001990 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001991 NodeSets.push_back(NewSet);
1992
Hiroshi Inoue372ffa12018-04-13 11:37:06 +00001993 // Create new nodes sets with the connected nodes any remaining node that
Brendon Cahoon254f8892016-07-29 16:44:44 +00001994 // has no predecessor.
1995 for (unsigned i = 0; i < SUnits.size(); ++i) {
1996 SUnit *SU = &SUnits[i];
1997 if (NodesAdded.count(SU) == 0) {
1998 NewSet.clear();
1999 addConnectedNodes(SU, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00002000 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00002001 NodeSets.push_back(NewSet);
2002 }
2003 }
2004}
2005
2006/// Add the node to the set, and add all is its connected nodes to the set.
2007void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
2008 SetVector<SUnit *> &NodesAdded) {
2009 NewSet.insert(SU);
2010 NodesAdded.insert(SU);
2011 for (auto &SI : SU->Succs) {
2012 SUnit *Successor = SI.getSUnit();
2013 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
2014 addConnectedNodes(Successor, NewSet, NodesAdded);
2015 }
2016 for (auto &PI : SU->Preds) {
2017 SUnit *Predecessor = PI.getSUnit();
2018 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
2019 addConnectedNodes(Predecessor, NewSet, NodesAdded);
2020 }
2021}
2022
2023/// Return true if Set1 contains elements in Set2. The elements in common
2024/// are returned in a different container.
2025static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
2026 SmallSetVector<SUnit *, 8> &Result) {
2027 Result.clear();
2028 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
2029 SUnit *SU = Set1[i];
2030 if (Set2.count(SU) != 0)
2031 Result.insert(SU);
2032 }
2033 return !Result.empty();
2034}
2035
2036/// Merge the recurrence node sets that have the same initial node.
2037void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
2038 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
2039 ++I) {
2040 NodeSet &NI = *I;
2041 for (NodeSetType::iterator J = I + 1; J != E;) {
2042 NodeSet &NJ = *J;
2043 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
2044 if (NJ.compareRecMII(NI) > 0)
2045 NI.setRecMII(NJ.getRecMII());
2046 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
2047 ++NII)
2048 I->insert(*NII);
2049 NodeSets.erase(J);
2050 E = NodeSets.end();
2051 } else {
2052 ++J;
2053 }
2054 }
2055 }
2056}
2057
2058/// Remove nodes that have been scheduled in previous NodeSets.
2059void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
2060 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
2061 ++I)
2062 for (NodeSetType::iterator J = I + 1; J != E;) {
2063 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
2064
Eugene Zelenko32a40562017-09-11 23:00:48 +00002065 if (J->empty()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00002066 NodeSets.erase(J);
2067 E = NodeSets.end();
2068 } else {
2069 ++J;
2070 }
2071 }
2072}
2073
Brendon Cahoon254f8892016-07-29 16:44:44 +00002074/// Compute an ordered list of the dependence graph nodes, which
2075/// indicates the order that the nodes will be scheduled. This is a
2076/// two-level algorithm. First, a partial order is created, which
2077/// consists of a list of sets ordered from highest to lowest priority.
2078void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
2079 SmallSetVector<SUnit *, 8> R;
2080 NodeOrder.clear();
2081
2082 for (auto &Nodes : NodeSets) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002083 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
Brendon Cahoon254f8892016-07-29 16:44:44 +00002084 OrderKind Order;
2085 SmallSetVector<SUnit *, 8> N;
2086 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
2087 R.insert(N.begin(), N.end());
2088 Order = BottomUp;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002089 LLVM_DEBUG(dbgs() << " Bottom up (preds) ");
Brendon Cahoon254f8892016-07-29 16:44:44 +00002090 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
2091 R.insert(N.begin(), N.end());
2092 Order = TopDown;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002093 LLVM_DEBUG(dbgs() << " Top down (succs) ");
Brendon Cahoon254f8892016-07-29 16:44:44 +00002094 } else if (isIntersect(N, Nodes, R)) {
2095 // If some of the successors are in the existing node-set, then use the
2096 // top-down ordering.
2097 Order = TopDown;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002098 LLVM_DEBUG(dbgs() << " Top down (intersect) ");
Brendon Cahoon254f8892016-07-29 16:44:44 +00002099 } else if (NodeSets.size() == 1) {
2100 for (auto &N : Nodes)
2101 if (N->Succs.size() == 0)
2102 R.insert(N);
2103 Order = BottomUp;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002104 LLVM_DEBUG(dbgs() << " Bottom up (all) ");
Brendon Cahoon254f8892016-07-29 16:44:44 +00002105 } else {
2106 // Find the node with the highest ASAP.
2107 SUnit *maxASAP = nullptr;
2108 for (SUnit *SU : Nodes) {
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00002109 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
2110 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002111 maxASAP = SU;
2112 }
2113 R.insert(maxASAP);
2114 Order = BottomUp;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002115 LLVM_DEBUG(dbgs() << " Bottom up (default) ");
Brendon Cahoon254f8892016-07-29 16:44:44 +00002116 }
2117
2118 while (!R.empty()) {
2119 if (Order == TopDown) {
2120 // Choose the node with the maximum height. If more than one, choose
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00002121 // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002122 // choose the node with the lowest MOV.
Brendon Cahoon254f8892016-07-29 16:44:44 +00002123 while (!R.empty()) {
2124 SUnit *maxHeight = nullptr;
2125 for (SUnit *I : R) {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00002126 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002127 maxHeight = I;
2128 else if (getHeight(I) == getHeight(maxHeight) &&
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002129 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002130 maxHeight = I;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002131 else if (getHeight(I) == getHeight(maxHeight) &&
2132 getZeroLatencyHeight(I) ==
2133 getZeroLatencyHeight(maxHeight) &&
2134 getMOV(I) < getMOV(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002135 maxHeight = I;
2136 }
2137 NodeOrder.insert(maxHeight);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002138 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
Brendon Cahoon254f8892016-07-29 16:44:44 +00002139 R.remove(maxHeight);
2140 for (const auto &I : maxHeight->Succs) {
2141 if (Nodes.count(I.getSUnit()) == 0)
2142 continue;
2143 if (NodeOrder.count(I.getSUnit()) != 0)
2144 continue;
2145 if (ignoreDependence(I, false))
2146 continue;
2147 R.insert(I.getSUnit());
2148 }
2149 // Back-edges are predecessors with an anti-dependence.
2150 for (const auto &I : maxHeight->Preds) {
2151 if (I.getKind() != SDep::Anti)
2152 continue;
2153 if (Nodes.count(I.getSUnit()) == 0)
2154 continue;
2155 if (NodeOrder.count(I.getSUnit()) != 0)
2156 continue;
2157 R.insert(I.getSUnit());
2158 }
2159 }
2160 Order = BottomUp;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002161 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ");
Brendon Cahoon254f8892016-07-29 16:44:44 +00002162 SmallSetVector<SUnit *, 8> N;
2163 if (pred_L(NodeOrder, N, &Nodes))
2164 R.insert(N.begin(), N.end());
2165 } else {
2166 // Choose the node with the maximum depth. If more than one, choose
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002167 // the node with the maximum ZeroLatencyDepth. If still more than one,
2168 // choose the node with the lowest MOV.
Brendon Cahoon254f8892016-07-29 16:44:44 +00002169 while (!R.empty()) {
2170 SUnit *maxDepth = nullptr;
2171 for (SUnit *I : R) {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00002172 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002173 maxDepth = I;
2174 else if (getDepth(I) == getDepth(maxDepth) &&
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002175 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002176 maxDepth = I;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002177 else if (getDepth(I) == getDepth(maxDepth) &&
2178 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
2179 getMOV(I) < getMOV(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002180 maxDepth = I;
2181 }
2182 NodeOrder.insert(maxDepth);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002183 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
Brendon Cahoon254f8892016-07-29 16:44:44 +00002184 R.remove(maxDepth);
2185 if (Nodes.isExceedSU(maxDepth)) {
2186 Order = TopDown;
2187 R.clear();
2188 R.insert(Nodes.getNode(0));
2189 break;
2190 }
2191 for (const auto &I : maxDepth->Preds) {
2192 if (Nodes.count(I.getSUnit()) == 0)
2193 continue;
2194 if (NodeOrder.count(I.getSUnit()) != 0)
2195 continue;
Brendon Cahoon254f8892016-07-29 16:44:44 +00002196 R.insert(I.getSUnit());
2197 }
2198 // Back-edges are predecessors with an anti-dependence.
2199 for (const auto &I : maxDepth->Succs) {
2200 if (I.getKind() != SDep::Anti)
2201 continue;
2202 if (Nodes.count(I.getSUnit()) == 0)
2203 continue;
2204 if (NodeOrder.count(I.getSUnit()) != 0)
2205 continue;
2206 R.insert(I.getSUnit());
2207 }
2208 }
2209 Order = TopDown;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002210 LLVM_DEBUG(dbgs() << "\n Switching order to top down ");
Brendon Cahoon254f8892016-07-29 16:44:44 +00002211 SmallSetVector<SUnit *, 8> N;
2212 if (succ_L(NodeOrder, N, &Nodes))
2213 R.insert(N.begin(), N.end());
2214 }
2215 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002216 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
Brendon Cahoon254f8892016-07-29 16:44:44 +00002217 }
2218
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002219 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +00002220 dbgs() << "Node order: ";
2221 for (SUnit *I : NodeOrder)
2222 dbgs() << " " << I->NodeNum << " ";
2223 dbgs() << "\n";
2224 });
2225}
2226
2227/// Process the nodes in the computed order and create the pipelined schedule
2228/// of the instructions, if possible. Return true if a schedule is found.
2229bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
Eugene Zelenko32a40562017-09-11 23:00:48 +00002230 if (NodeOrder.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00002231 return false;
2232
2233 bool scheduleFound = false;
2234 // Keep increasing II until a valid schedule is found.
2235 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) {
2236 Schedule.reset();
2237 Schedule.setInitiationInterval(II);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002238 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
Brendon Cahoon254f8892016-07-29 16:44:44 +00002239
2240 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2241 SetVector<SUnit *>::iterator NE = NodeOrder.end();
2242 do {
2243 SUnit *SU = *NI;
2244
2245 // Compute the schedule time for the instruction, which is based
2246 // upon the scheduled time for any predecessors/successors.
2247 int EarlyStart = INT_MIN;
2248 int LateStart = INT_MAX;
2249 // These values are set when the size of the schedule window is limited
2250 // due to chain dependences.
2251 int SchedEnd = INT_MAX;
2252 int SchedStart = INT_MIN;
2253 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2254 II, this);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002255 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +00002256 dbgs() << "Inst (" << SU->NodeNum << ") ";
2257 SU->getInstr()->dump();
2258 dbgs() << "\n";
2259 });
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002260 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +00002261 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
2262 << " me: " << SchedEnd << " ms: " << SchedStart << "\n";
2263 });
2264
2265 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2266 SchedStart > LateStart)
2267 scheduleFound = false;
2268 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2269 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2270 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2271 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2272 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2273 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2274 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2275 SchedEnd =
2276 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2277 // When scheduling a Phi it is better to start at the late cycle and go
2278 // backwards. The default order may insert the Phi too far away from
2279 // its first dependence.
2280 if (SU->getInstr()->isPHI())
2281 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2282 else
2283 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2284 } else {
2285 int FirstCycle = Schedule.getFirstCycle();
2286 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2287 FirstCycle + getASAP(SU) + II - 1, II);
2288 }
2289 // Even if we find a schedule, make sure the schedule doesn't exceed the
2290 // allowable number of stages. We keep trying if this happens.
2291 if (scheduleFound)
2292 if (SwpMaxStages > -1 &&
2293 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2294 scheduleFound = false;
2295
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002296 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +00002297 if (!scheduleFound)
2298 dbgs() << "\tCan't schedule\n";
2299 });
2300 } while (++NI != NE && scheduleFound);
2301
2302 // If a schedule is found, check if it is a valid schedule too.
2303 if (scheduleFound)
2304 scheduleFound = Schedule.isValidSchedule(this);
2305 }
2306
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002307 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n");
Brendon Cahoon254f8892016-07-29 16:44:44 +00002308
2309 if (scheduleFound)
2310 Schedule.finalizeSchedule(this);
2311 else
2312 Schedule.reset();
2313
2314 return scheduleFound && Schedule.getMaxStageCount() > 0;
2315}
2316
2317/// Given a schedule for the loop, generate a new version of the loop,
2318/// and replace the old version. This function generates a prolog
2319/// that contains the initial iterations in the pipeline, and kernel
2320/// loop, and the epilogue that contains the code for the final
2321/// iterations.
2322void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
2323 // Create a new basic block for the kernel and add it to the CFG.
2324 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2325
2326 unsigned MaxStageCount = Schedule.getMaxStageCount();
2327
2328 // Remember the registers that are used in different stages. The index is
2329 // the iteration, or stage, that the instruction is scheduled in. This is
Hiroshi Inouec73b6d62018-06-20 05:29:26 +00002330 // a map between register names in the original block and the names created
Brendon Cahoon254f8892016-07-29 16:44:44 +00002331 // in each stage of the pipelined loop.
2332 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
2333 InstrMapTy InstrMap;
2334
2335 SmallVector<MachineBasicBlock *, 4> PrologBBs;
2336 // Generate the prolog instructions that set up the pipeline.
2337 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
2338 MF.insert(BB->getIterator(), KernelBB);
2339
2340 // Rearrange the instructions to generate the new, pipelined loop,
2341 // and update register names as needed.
2342 for (int Cycle = Schedule.getFirstCycle(),
2343 LastCycle = Schedule.getFinalCycle();
2344 Cycle <= LastCycle; ++Cycle) {
2345 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
2346 // This inner loop schedules each instruction in the cycle.
2347 for (SUnit *CI : CycleInstrs) {
2348 if (CI->getInstr()->isPHI())
2349 continue;
2350 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
2351 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
2352 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
2353 KernelBB->push_back(NewMI);
2354 InstrMap[NewMI] = CI->getInstr();
2355 }
2356 }
2357
2358 // Copy any terminator instructions to the new kernel, and update
2359 // names as needed.
2360 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
2361 E = BB->instr_end();
2362 I != E; ++I) {
2363 MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
2364 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
2365 KernelBB->push_back(NewMI);
2366 InstrMap[NewMI] = &*I;
2367 }
2368
2369 KernelBB->transferSuccessors(BB);
2370 KernelBB->replaceSuccessor(BB, KernelBB);
2371
2372 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
2373 VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
2374 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
2375 InstrMap, MaxStageCount, MaxStageCount, false);
2376
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002377 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
Brendon Cahoon254f8892016-07-29 16:44:44 +00002378
2379 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
2380 // Generate the epilog instructions to complete the pipeline.
2381 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
2382 PrologBBs);
2383
2384 // We need this step because the register allocation doesn't handle some
2385 // situations well, so we insert copies to help out.
2386 splitLifetimes(KernelBB, EpilogBBs, Schedule);
2387
2388 // Remove dead instructions due to loop induction variables.
2389 removeDeadInstructions(KernelBB, EpilogBBs);
2390
2391 // Add branches between prolog and epilog blocks.
2392 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
2393
2394 // Remove the original loop since it's no longer referenced.
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00002395 for (auto &I : *BB)
2396 LIS.RemoveMachineInstrFromMaps(I);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002397 BB->clear();
2398 BB->eraseFromParent();
2399
2400 delete[] VRMap;
2401}
2402
2403/// Generate the pipeline prolog code.
2404void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
2405 MachineBasicBlock *KernelBB,
2406 ValueMapTy *VRMap,
2407 MBBVectorTy &PrologBBs) {
2408 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
Eugene Zelenko32a40562017-09-11 23:00:48 +00002409 assert(PreheaderBB != nullptr &&
Brendon Cahoon254f8892016-07-29 16:44:44 +00002410 "Need to add code to handle loops w/o preheader");
2411 MachineBasicBlock *PredBB = PreheaderBB;
2412 InstrMapTy InstrMap;
2413
2414 // Generate a basic block for each stage, not including the last stage,
2415 // which will be generated in the kernel. Each basic block may contain
2416 // instructions from multiple stages/iterations.
2417 for (unsigned i = 0; i < LastStage; ++i) {
2418 // Create and insert the prolog basic block prior to the original loop
2419 // basic block. The original loop is removed later.
2420 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2421 PrologBBs.push_back(NewBB);
2422 MF.insert(BB->getIterator(), NewBB);
2423 NewBB->transferSuccessors(PredBB);
2424 PredBB->addSuccessor(NewBB);
2425 PredBB = NewBB;
2426
2427 // Generate instructions for each appropriate stage. Process instructions
2428 // in original program order.
2429 for (int StageNum = i; StageNum >= 0; --StageNum) {
2430 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2431 BBE = BB->getFirstTerminator();
2432 BBI != BBE; ++BBI) {
2433 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
2434 if (BBI->isPHI())
2435 continue;
2436 MachineInstr *NewMI =
2437 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
2438 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
2439 VRMap);
2440 NewBB->push_back(NewMI);
2441 InstrMap[NewMI] = &*BBI;
2442 }
2443 }
2444 }
2445 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002446 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +00002447 dbgs() << "prolog:\n";
2448 NewBB->dump();
2449 });
2450 }
2451
2452 PredBB->replaceSuccessor(BB, KernelBB);
2453
2454 // Check if we need to remove the branch from the preheader to the original
2455 // loop, and replace it with a branch to the new loop.
Matt Arsenault1b9fc8e2016-09-14 20:43:16 +00002456 unsigned numBranches = TII->removeBranch(*PreheaderBB);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002457 if (numBranches) {
2458 SmallVector<MachineOperand, 0> Cond;
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002459 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002460 }
2461}
2462
2463/// Generate the pipeline epilog code. The epilog code finishes the iterations
2464/// that were started in either the prolog or the kernel. We create a basic
2465/// block for each stage that needs to complete.
2466void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
2467 MachineBasicBlock *KernelBB,
2468 ValueMapTy *VRMap,
2469 MBBVectorTy &EpilogBBs,
2470 MBBVectorTy &PrologBBs) {
2471 // We need to change the branch from the kernel to the first epilog block, so
2472 // this call to analyze branch uses the kernel rather than the original BB.
2473 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2474 SmallVector<MachineOperand, 4> Cond;
2475 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
2476 assert(!checkBranch && "generateEpilog must be able to analyze the branch");
2477 if (checkBranch)
2478 return;
2479
2480 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
2481 if (*LoopExitI == KernelBB)
2482 ++LoopExitI;
2483 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
2484 MachineBasicBlock *LoopExitBB = *LoopExitI;
2485
2486 MachineBasicBlock *PredBB = KernelBB;
2487 MachineBasicBlock *EpilogStart = LoopExitBB;
2488 InstrMapTy InstrMap;
2489
2490 // Generate a basic block for each stage, not including the last stage,
2491 // which was generated for the kernel. Each basic block may contain
2492 // instructions from multiple stages/iterations.
2493 int EpilogStage = LastStage + 1;
2494 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
2495 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
2496 EpilogBBs.push_back(NewBB);
2497 MF.insert(BB->getIterator(), NewBB);
2498
2499 PredBB->replaceSuccessor(LoopExitBB, NewBB);
2500 NewBB->addSuccessor(LoopExitBB);
2501
2502 if (EpilogStart == LoopExitBB)
2503 EpilogStart = NewBB;
2504
2505 // Add instructions to the epilog depending on the current block.
2506 // Process instructions in original program order.
2507 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
2508 for (auto &BBI : *BB) {
2509 if (BBI.isPHI())
2510 continue;
2511 MachineInstr *In = &BBI;
2512 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
Krzysztof Parzyszek785b6ce2018-03-26 15:45:55 +00002513 // Instructions with memoperands in the epilog are updated with
2514 // conservative values.
2515 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002516 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
2517 NewBB->push_back(NewMI);
2518 InstrMap[NewMI] = In;
2519 }
2520 }
2521 }
2522 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
2523 VRMap, InstrMap, LastStage, EpilogStage, i == 1);
2524 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
2525 InstrMap, LastStage, EpilogStage, i == 1);
2526 PredBB = NewBB;
2527
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002528 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +00002529 dbgs() << "epilog:\n";
2530 NewBB->dump();
2531 });
2532 }
2533
2534 // Fix any Phi nodes in the loop exit block.
2535 for (MachineInstr &MI : *LoopExitBB) {
2536 if (!MI.isPHI())
2537 break;
2538 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
2539 MachineOperand &MO = MI.getOperand(i);
2540 if (MO.getMBB() == BB)
2541 MO.setMBB(PredBB);
2542 }
2543 }
2544
2545 // Create a branch to the new epilog from the kernel.
2546 // Remove the original branch and add a new branch to the epilog.
Matt Arsenault1b9fc8e2016-09-14 20:43:16 +00002547 TII->removeBranch(*KernelBB);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002548 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002549 // Add a branch to the loop exit.
2550 if (EpilogBBs.size() > 0) {
2551 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
2552 SmallVector<MachineOperand, 4> Cond1;
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002553 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002554 }
2555}
2556
2557/// Replace all uses of FromReg that appear outside the specified
2558/// basic block with ToReg.
2559static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
2560 MachineBasicBlock *MBB,
2561 MachineRegisterInfo &MRI,
2562 LiveIntervals &LIS) {
2563 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
2564 E = MRI.use_end();
2565 I != E;) {
2566 MachineOperand &O = *I;
2567 ++I;
2568 if (O.getParent()->getParent() != MBB)
2569 O.setReg(ToReg);
2570 }
2571 if (!LIS.hasInterval(ToReg))
2572 LIS.createEmptyInterval(ToReg);
2573}
2574
2575/// Return true if the register has a use that occurs outside the
2576/// specified loop.
2577static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
2578 MachineRegisterInfo &MRI) {
2579 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
2580 E = MRI.use_end();
2581 I != E; ++I)
2582 if (I->getParent()->getParent() != BB)
2583 return true;
2584 return false;
2585}
2586
2587/// Generate Phis for the specific block in the generated pipelined code.
2588/// This function looks at the Phis from the original code to guide the
2589/// creation of new Phis.
2590void SwingSchedulerDAG::generateExistingPhis(
2591 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2592 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2593 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2594 bool IsLast) {
Simon Pilgrim6bdc7552017-03-31 10:59:37 +00002595 // Compute the stage number for the initial value of the Phi, which
Brendon Cahoon254f8892016-07-29 16:44:44 +00002596 // comes from the prolog. The prolog to use depends on to which kernel/
2597 // epilog that we're adding the Phi.
2598 unsigned PrologStage = 0;
2599 unsigned PrevStage = 0;
2600 bool InKernel = (LastStageNum == CurStageNum);
2601 if (InKernel) {
2602 PrologStage = LastStageNum - 1;
2603 PrevStage = CurStageNum;
2604 } else {
2605 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
2606 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
2607 }
2608
2609 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2610 BBE = BB->getFirstNonPHI();
2611 BBI != BBE; ++BBI) {
2612 unsigned Def = BBI->getOperand(0).getReg();
2613
2614 unsigned InitVal = 0;
2615 unsigned LoopVal = 0;
2616 getPhiRegs(*BBI, BB, InitVal, LoopVal);
2617
2618 unsigned PhiOp1 = 0;
2619 // The Phi value from the loop body typically is defined in the loop, but
2620 // not always. So, we need to check if the value is defined in the loop.
2621 unsigned PhiOp2 = LoopVal;
2622 if (VRMap[LastStageNum].count(LoopVal))
2623 PhiOp2 = VRMap[LastStageNum][LoopVal];
2624
2625 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2626 int LoopValStage =
2627 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2628 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
2629 if (NumStages == 0) {
2630 // We don't need to generate a Phi anymore, but we need to rename any uses
2631 // of the Phi value.
2632 unsigned NewReg = VRMap[PrevStage][LoopVal];
2633 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
Krzysztof Parzyszek16e66f52018-03-26 16:41:36 +00002634 Def, InitVal, NewReg);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002635 if (VRMap[CurStageNum].count(LoopVal))
2636 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
2637 }
2638 // Adjust the number of Phis needed depending on the number of prologs left,
Krzysztof Parzyszek3f72a6b2018-03-26 16:37:55 +00002639 // and the distance from where the Phi is first scheduled. The number of
2640 // Phis cannot exceed the number of prolog stages. Each stage can
2641 // potentially define two values.
2642 unsigned MaxPhis = PrologStage + 2;
2643 if (!InKernel && (int)PrologStage <= LoopValStage)
2644 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
2645 unsigned NumPhis = std::min(NumStages, MaxPhis);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002646
2647 unsigned NewReg = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +00002648 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
2649 // In the epilog, we may need to look back one stage to get the correct
2650 // Phi name because the epilog and prolog blocks execute the same stage.
2651 // The correct name is from the previous block only when the Phi has
2652 // been completely scheduled prior to the epilog, and Phi value is not
2653 // needed in multiple stages.
2654 int StageDiff = 0;
2655 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
2656 NumPhis == 1)
2657 StageDiff = 1;
2658 // Adjust the computations below when the phi and the loop definition
2659 // are scheduled in different stages.
2660 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
2661 StageDiff = StageScheduled - LoopValStage;
2662 for (unsigned np = 0; np < NumPhis; ++np) {
2663 // If the Phi hasn't been scheduled, then use the initial Phi operand
2664 // value. Otherwise, use the scheduled version of the instruction. This
2665 // is a little complicated when a Phi references another Phi.
2666 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
2667 PhiOp1 = InitVal;
2668 // Check if the Phi has already been scheduled in a prolog stage.
2669 else if (PrologStage >= AccessStage + StageDiff + np &&
2670 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
2671 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
2672 // Check if the Phi has already been scheduled, but the loop intruction
2673 // is either another Phi, or doesn't occur in the loop.
2674 else if (PrologStage >= AccessStage + StageDiff + np) {
2675 // If the Phi references another Phi, we need to examine the other
2676 // Phi to get the correct value.
2677 PhiOp1 = LoopVal;
2678 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
2679 int Indirects = 1;
2680 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
2681 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
2682 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
2683 PhiOp1 = getInitPhiReg(*InstOp1, BB);
2684 else
2685 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
2686 InstOp1 = MRI.getVRegDef(PhiOp1);
2687 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
2688 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
2689 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
2690 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
2691 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
2692 break;
2693 }
2694 ++Indirects;
2695 }
2696 } else
2697 PhiOp1 = InitVal;
2698 // If this references a generated Phi in the kernel, get the Phi operand
2699 // from the incoming block.
2700 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
2701 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2702 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2703
2704 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
2705 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
2706 // In the epilog, a map lookup is needed to get the value from the kernel,
2707 // or previous epilog block. How is does this depends on if the
2708 // instruction is scheduled in the previous block.
2709 if (!InKernel) {
2710 int StageDiffAdj = 0;
2711 if (LoopValStage != -1 && StageScheduled > LoopValStage)
2712 StageDiffAdj = StageScheduled - LoopValStage;
2713 // Use the loop value defined in the kernel, unless the kernel
2714 // contains the last definition of the Phi.
2715 if (np == 0 && PrevStage == LastStageNum &&
2716 (StageScheduled != 0 || LoopValStage != 0) &&
2717 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
2718 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
2719 // Use the value defined by the Phi. We add one because we switch
2720 // from looking at the loop value to the Phi definition.
2721 else if (np > 0 && PrevStage == LastStageNum &&
2722 VRMap[PrevStage - np + 1].count(Def))
2723 PhiOp2 = VRMap[PrevStage - np + 1][Def];
2724 // Use the loop value defined in the kernel.
Brendon Cahoone3841eea2018-08-27 22:04:50 +00002725 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
Brendon Cahoon254f8892016-07-29 16:44:44 +00002726 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
2727 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
2728 // Use the value defined by the Phi, unless we're generating the first
2729 // epilog and the Phi refers to a Phi in a different stage.
2730 else if (VRMap[PrevStage - np].count(Def) &&
2731 (!LoopDefIsPhi || PrevStage != LastStageNum))
2732 PhiOp2 = VRMap[PrevStage - np][Def];
2733 }
2734
2735 // Check if we can reuse an existing Phi. This occurs when a Phi
2736 // references another Phi, and the other Phi is scheduled in an
2737 // earlier stage. We can try to reuse an existing Phi up until the last
2738 // stage of the current Phi.
Brendon Cahoone3841eea2018-08-27 22:04:50 +00002739 if (LoopDefIsPhi) {
2740 if (static_cast<int>(PrologStage - np) >= StageScheduled) {
2741 int LVNumStages = Schedule.getStagesForPhi(LoopVal);
2742 int StageDiff = (StageScheduled - LoopValStage);
2743 LVNumStages -= StageDiff;
2744 // Make sure the loop value Phi has been processed already.
2745 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
2746 NewReg = PhiOp2;
2747 unsigned ReuseStage = CurStageNum;
2748 if (Schedule.isLoopCarried(this, *PhiInst))
2749 ReuseStage -= LVNumStages;
2750 // Check if the Phi to reuse has been generated yet. If not, then
2751 // there is nothing to reuse.
2752 if (VRMap[ReuseStage - np].count(LoopVal)) {
2753 NewReg = VRMap[ReuseStage - np][LoopVal];
Brendon Cahoon254f8892016-07-29 16:44:44 +00002754
Brendon Cahoone3841eea2018-08-27 22:04:50 +00002755 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2756 &*BBI, Def, NewReg);
2757 // Update the map with the new Phi name.
2758 VRMap[CurStageNum - np][Def] = NewReg;
2759 PhiOp2 = NewReg;
2760 if (VRMap[LastStageNum - np - 1].count(LoopVal))
2761 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
Brendon Cahoon254f8892016-07-29 16:44:44 +00002762
Brendon Cahoone3841eea2018-08-27 22:04:50 +00002763 if (IsLast && np == NumPhis - 1)
2764 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2765 continue;
2766 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00002767 }
Brendon Cahoone3841eea2018-08-27 22:04:50 +00002768 }
2769 if (InKernel && StageDiff > 0 &&
2770 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002771 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
2772 }
2773
2774 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2775 NewReg = MRI.createVirtualRegister(RC);
2776
2777 MachineInstrBuilder NewPhi =
2778 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2779 TII->get(TargetOpcode::PHI), NewReg);
2780 NewPhi.addReg(PhiOp1).addMBB(BB1);
2781 NewPhi.addReg(PhiOp2).addMBB(BB2);
2782 if (np == 0)
2783 InstrMap[NewPhi] = &*BBI;
2784
2785 // We define the Phis after creating the new pipelined code, so
2786 // we need to rename the Phi values in scheduled instructions.
2787
2788 unsigned PrevReg = 0;
2789 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
2790 PrevReg = VRMap[PrevStage - np][LoopVal];
2791 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2792 Def, NewReg, PrevReg);
2793 // If the Phi has been scheduled, use the new name for rewriting.
2794 if (VRMap[CurStageNum - np].count(Def)) {
2795 unsigned R = VRMap[CurStageNum - np][Def];
2796 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2797 R, NewReg);
2798 }
2799
2800 // Check if we need to rename any uses that occurs after the loop. The
2801 // register to replace depends on whether the Phi is scheduled in the
2802 // epilog.
2803 if (IsLast && np == NumPhis - 1)
2804 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2805
2806 // In the kernel, a dependent Phi uses the value from this Phi.
2807 if (InKernel)
2808 PhiOp2 = NewReg;
2809
2810 // Update the map with the new Phi name.
2811 VRMap[CurStageNum - np][Def] = NewReg;
2812 }
2813
2814 while (NumPhis++ < NumStages) {
2815 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
2816 &*BBI, Def, NewReg, 0);
2817 }
2818
2819 // Check if we need to rename a Phi that has been eliminated due to
2820 // scheduling.
2821 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
2822 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
2823 }
2824}
2825
2826/// Generate Phis for the specified block in the generated pipelined code.
2827/// These are new Phis needed because the definition is scheduled after the
Hiroshi Inouec73b6d62018-06-20 05:29:26 +00002828/// use in the pipelined sequence.
Brendon Cahoon254f8892016-07-29 16:44:44 +00002829void SwingSchedulerDAG::generatePhis(
2830 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2831 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2832 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2833 bool IsLast) {
2834 // Compute the stage number that contains the initial Phi value, and
2835 // the Phi from the previous stage.
2836 unsigned PrologStage = 0;
2837 unsigned PrevStage = 0;
2838 unsigned StageDiff = CurStageNum - LastStageNum;
2839 bool InKernel = (StageDiff == 0);
2840 if (InKernel) {
2841 PrologStage = LastStageNum - 1;
2842 PrevStage = CurStageNum;
2843 } else {
2844 PrologStage = LastStageNum - StageDiff;
2845 PrevStage = LastStageNum + StageDiff - 1;
2846 }
2847
2848 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
2849 BBE = BB->instr_end();
2850 BBI != BBE; ++BBI) {
2851 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
2852 MachineOperand &MO = BBI->getOperand(i);
2853 if (!MO.isReg() || !MO.isDef() ||
2854 !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2855 continue;
2856
2857 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2858 assert(StageScheduled != -1 && "Expecting scheduled instruction.");
2859 unsigned Def = MO.getReg();
2860 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
2861 // An instruction scheduled in stage 0 and is used after the loop
2862 // requires a phi in the epilog for the last definition from either
2863 // the kernel or prolog.
2864 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
2865 hasUseAfterLoop(Def, BB, MRI))
2866 NumPhis = 1;
2867 if (!InKernel && (unsigned)StageScheduled > PrologStage)
2868 continue;
2869
2870 unsigned PhiOp2 = VRMap[PrevStage][Def];
2871 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
2872 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
2873 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
2874 // The number of Phis can't exceed the number of prolog stages. The
2875 // prolog stage number is zero based.
2876 if (NumPhis > PrologStage + 1 - StageScheduled)
2877 NumPhis = PrologStage + 1 - StageScheduled;
2878 for (unsigned np = 0; np < NumPhis; ++np) {
2879 unsigned PhiOp1 = VRMap[PrologStage][Def];
2880 if (np <= PrologStage)
2881 PhiOp1 = VRMap[PrologStage - np][Def];
2882 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
2883 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2884 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2885 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
2886 PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
2887 }
2888 if (!InKernel)
2889 PhiOp2 = VRMap[PrevStage - np][Def];
2890
2891 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2892 unsigned NewReg = MRI.createVirtualRegister(RC);
2893
2894 MachineInstrBuilder NewPhi =
2895 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2896 TII->get(TargetOpcode::PHI), NewReg);
2897 NewPhi.addReg(PhiOp1).addMBB(BB1);
2898 NewPhi.addReg(PhiOp2).addMBB(BB2);
2899 if (np == 0)
2900 InstrMap[NewPhi] = &*BBI;
2901
2902 // Rewrite uses and update the map. The actions depend upon whether
2903 // we generating code for the kernel or epilog blocks.
2904 if (InKernel) {
2905 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2906 &*BBI, PhiOp1, NewReg);
2907 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2908 &*BBI, PhiOp2, NewReg);
2909
2910 PhiOp2 = NewReg;
2911 VRMap[PrevStage - np - 1][Def] = NewReg;
2912 } else {
2913 VRMap[CurStageNum - np][Def] = NewReg;
2914 if (np == NumPhis - 1)
2915 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2916 &*BBI, Def, NewReg);
2917 }
2918 if (IsLast && np == NumPhis - 1)
2919 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2920 }
2921 }
2922 }
2923}
2924
2925/// Remove instructions that generate values with no uses.
2926/// Typically, these are induction variable operations that generate values
2927/// used in the loop itself. A dead instruction has a definition with
2928/// no uses, or uses that occur in the original loop only.
2929void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
2930 MBBVectorTy &EpilogBBs) {
2931 // For each epilog block, check that the value defined by each instruction
2932 // is used. If not, delete it.
2933 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
2934 MBE = EpilogBBs.rend();
2935 MBB != MBE; ++MBB)
2936 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
2937 ME = (*MBB)->instr_rend();
2938 MI != ME;) {
2939 // From DeadMachineInstructionElem. Don't delete inline assembly.
2940 if (MI->isInlineAsm()) {
2941 ++MI;
2942 continue;
2943 }
2944 bool SawStore = false;
2945 // Check if it's safe to remove the instruction due to side effects.
2946 // We can, and want to, remove Phis here.
2947 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
2948 ++MI;
2949 continue;
2950 }
2951 bool used = true;
2952 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
2953 MOE = MI->operands_end();
2954 MOI != MOE; ++MOI) {
2955 if (!MOI->isReg() || !MOI->isDef())
2956 continue;
2957 unsigned reg = MOI->getReg();
Krzysztof Parzyszekb9b75b82018-03-26 15:53:23 +00002958 // Assume physical registers are used, unless they are marked dead.
2959 if (TargetRegisterInfo::isPhysicalRegister(reg)) {
2960 used = !MOI->isDead();
2961 if (used)
2962 break;
2963 continue;
2964 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00002965 unsigned realUses = 0;
2966 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
2967 EI = MRI.use_end();
2968 UI != EI; ++UI) {
2969 // Check if there are any uses that occur only in the original
2970 // loop. If so, that's not a real use.
2971 if (UI->getParent()->getParent() != BB) {
2972 realUses++;
2973 used = true;
2974 break;
2975 }
2976 }
2977 if (realUses > 0)
2978 break;
2979 used = false;
2980 }
2981 if (!used) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00002982 LIS.RemoveMachineInstrFromMaps(*MI);
Duncan P. N. Exon Smith5c001c32016-08-30 00:13:12 +00002983 MI++->eraseFromParent();
Brendon Cahoon254f8892016-07-29 16:44:44 +00002984 continue;
2985 }
2986 ++MI;
2987 }
2988 // In the kernel block, check if we can remove a Phi that generates a value
2989 // used in an instruction removed in the epilog block.
2990 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2991 BBE = KernelBB->getFirstNonPHI();
2992 BBI != BBE;) {
2993 MachineInstr *MI = &*BBI;
2994 ++BBI;
2995 unsigned reg = MI->getOperand(0).getReg();
2996 if (MRI.use_begin(reg) == MRI.use_end()) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00002997 LIS.RemoveMachineInstrFromMaps(*MI);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002998 MI->eraseFromParent();
2999 }
3000 }
3001}
3002
3003/// For loop carried definitions, we split the lifetime of a virtual register
3004/// that has uses past the definition in the next iteration. A copy with a new
3005/// virtual register is inserted before the definition, which helps with
3006/// generating a better register assignment.
3007///
3008/// v1 = phi(a, v2) v1 = phi(a, v2)
3009/// v2 = phi(b, v3) v2 = phi(b, v3)
3010/// v3 = .. v4 = copy v1
3011/// .. = V1 v3 = ..
3012/// .. = v4
3013void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
3014 MBBVectorTy &EpilogBBs,
3015 SMSchedule &Schedule) {
3016 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
Bob Wilson90ecac02018-01-04 02:58:15 +00003017 for (auto &PHI : KernelBB->phis()) {
3018 unsigned Def = PHI.getOperand(0).getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00003019 // Check for any Phi definition that used as an operand of another Phi
3020 // in the same block.
3021 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
3022 E = MRI.use_instr_end();
3023 I != E; ++I) {
3024 if (I->isPHI() && I->getParent() == KernelBB) {
3025 // Get the loop carried definition.
Bob Wilson90ecac02018-01-04 02:58:15 +00003026 unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003027 if (!LCDef)
3028 continue;
3029 MachineInstr *MI = MRI.getVRegDef(LCDef);
3030 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
3031 continue;
3032 // Search through the rest of the block looking for uses of the Phi
3033 // definition. If one occurs, then split the lifetime.
3034 unsigned SplitReg = 0;
3035 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
3036 KernelBB->instr_end()))
3037 if (BBJ.readsRegister(Def)) {
3038 // We split the lifetime when we find the first use.
3039 if (SplitReg == 0) {
3040 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
3041 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
3042 TII->get(TargetOpcode::COPY), SplitReg)
3043 .addReg(Def);
3044 }
3045 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
3046 }
3047 if (!SplitReg)
3048 continue;
3049 // Search through each of the epilog blocks for any uses to be renamed.
3050 for (auto &Epilog : EpilogBBs)
3051 for (auto &I : *Epilog)
3052 if (I.readsRegister(Def))
3053 I.substituteRegister(Def, SplitReg, 0, *TRI);
3054 break;
3055 }
3056 }
3057 }
3058}
3059
3060/// Remove the incoming block from the Phis in a basic block.
3061static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
3062 for (MachineInstr &MI : *BB) {
3063 if (!MI.isPHI())
3064 break;
3065 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
3066 if (MI.getOperand(i + 1).getMBB() == Incoming) {
3067 MI.RemoveOperand(i + 1);
3068 MI.RemoveOperand(i);
3069 break;
3070 }
3071 }
3072}
3073
3074/// Create branches from each prolog basic block to the appropriate epilog
3075/// block. These edges are needed if the loop ends before reaching the
3076/// kernel.
3077void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
3078 MachineBasicBlock *KernelBB,
3079 MBBVectorTy &EpilogBBs,
3080 SMSchedule &Schedule, ValueMapTy *VRMap) {
3081 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
3082 MachineInstr *IndVar = Pass.LI.LoopInductionVar;
3083 MachineInstr *Cmp = Pass.LI.LoopCompare;
3084 MachineBasicBlock *LastPro = KernelBB;
3085 MachineBasicBlock *LastEpi = KernelBB;
3086
3087 // Start from the blocks connected to the kernel and work "out"
3088 // to the first prolog and the last epilog blocks.
3089 SmallVector<MachineInstr *, 4> PrevInsts;
3090 unsigned MaxIter = PrologBBs.size() - 1;
3091 unsigned LC = UINT_MAX;
3092 unsigned LCMin = UINT_MAX;
3093 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
3094 // Add branches to the prolog that go to the corresponding
3095 // epilog, and the fall-thru prolog/kernel block.
3096 MachineBasicBlock *Prolog = PrologBBs[j];
3097 MachineBasicBlock *Epilog = EpilogBBs[i];
3098 // We've executed one iteration, so decrement the loop count and check for
3099 // the loop end.
3100 SmallVector<MachineOperand, 4> Cond;
3101 // Check if the LOOP0 has already been removed. If so, then there is no need
3102 // to reduce the trip count.
3103 if (LC != 0)
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003104 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j,
Brendon Cahoon254f8892016-07-29 16:44:44 +00003105 MaxIter);
3106
3107 // Record the value of the first trip count, which is used to determine if
3108 // branches and blocks can be removed for constant trip counts.
3109 if (LCMin == UINT_MAX)
3110 LCMin = LC;
3111
3112 unsigned numAdded = 0;
3113 if (TargetRegisterInfo::isVirtualRegister(LC)) {
3114 Prolog->addSuccessor(Epilog);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003115 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003116 } else if (j >= LCMin) {
3117 Prolog->addSuccessor(Epilog);
3118 Prolog->removeSuccessor(LastPro);
3119 LastEpi->removeSuccessor(Epilog);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003120 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003121 removePhis(Epilog, LastEpi);
3122 // Remove the blocks that are no longer referenced.
3123 if (LastPro != LastEpi) {
3124 LastEpi->clear();
3125 LastEpi->eraseFromParent();
3126 }
3127 LastPro->clear();
3128 LastPro->eraseFromParent();
3129 } else {
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003130 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003131 removePhis(Epilog, Prolog);
3132 }
3133 LastPro = Prolog;
3134 LastEpi = Epilog;
3135 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
3136 E = Prolog->instr_rend();
3137 I != E && numAdded > 0; ++I, --numAdded)
3138 updateInstruction(&*I, false, j, 0, Schedule, VRMap);
3139 }
3140}
3141
3142/// Return true if we can compute the amount the instruction changes
3143/// during each iteration. Set Delta to the amount of the change.
3144bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
3145 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3146 unsigned BaseReg;
3147 int64_t Offset;
3148 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
3149 return false;
3150
3151 MachineRegisterInfo &MRI = MF.getRegInfo();
3152 // Check if there is a Phi. If so, get the definition in the loop.
3153 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
3154 if (BaseDef && BaseDef->isPHI()) {
3155 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
3156 BaseDef = MRI.getVRegDef(BaseReg);
3157 }
3158 if (!BaseDef)
3159 return false;
3160
3161 int D = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003162 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003163 return false;
3164
3165 Delta = D;
3166 return true;
3167}
3168
3169/// Update the memory operand with a new offset when the pipeliner
Justin Lebarcf56e922016-08-12 23:58:19 +00003170/// generates a new copy of the instruction that refers to a
Brendon Cahoon254f8892016-07-29 16:44:44 +00003171/// different memory location.
3172void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
3173 MachineInstr &OldMI, unsigned Num) {
3174 if (Num == 0)
3175 return;
3176 // If the instruction has memory operands, then adjust the offset
3177 // when the instruction appears in different stages.
Chandler Carruthc73c0302018-08-16 21:30:05 +00003178 if (NewMI.memoperands_empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00003179 return;
Chandler Carruthc73c0302018-08-16 21:30:05 +00003180 SmallVector<MachineMemOperand *, 2> NewMMOs;
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003181 for (MachineMemOperand *MMO : NewMI.memoperands()) {
Justin Lebaradbf09e2016-09-11 01:38:58 +00003182 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) ||
3183 (!MMO->getValue())) {
Chandler Carruthc73c0302018-08-16 21:30:05 +00003184 NewMMOs.push_back(MMO);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003185 continue;
3186 }
3187 unsigned Delta;
Krzysztof Parzyszek785b6ce2018-03-26 15:45:55 +00003188 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003189 int64_t AdjOffset = Delta * Num;
Chandler Carruthc73c0302018-08-16 21:30:05 +00003190 NewMMOs.push_back(
3191 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
Krzysztof Parzyszek2d790172018-02-27 22:40:52 +00003192 } else {
Krzysztof Parzyszekcc3f6302018-08-20 20:37:57 +00003193 NewMMOs.push_back(
3194 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
Krzysztof Parzyszek2d790172018-02-27 22:40:52 +00003195 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003196 }
Chandler Carruthc73c0302018-08-16 21:30:05 +00003197 NewMI.setMemRefs(MF, NewMMOs);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003198}
3199
3200/// Clone the instruction for the new pipelined loop and update the
3201/// memory operands, if needed.
3202MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
3203 unsigned CurStageNum,
3204 unsigned InstStageNum) {
3205 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3206 // Check for tied operands in inline asm instructions. This should be handled
3207 // elsewhere, but I'm not sure of the best solution.
3208 if (OldMI->isInlineAsm())
3209 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
3210 const auto &MO = OldMI->getOperand(i);
3211 if (MO.isReg() && MO.isUse())
3212 break;
3213 unsigned UseIdx;
3214 if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
3215 NewMI->tieOperands(i, UseIdx);
3216 }
3217 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3218 return NewMI;
3219}
3220
3221/// Clone the instruction for the new pipelined loop. If needed, this
3222/// function updates the instruction using the values saved in the
3223/// InstrChanges structure.
3224MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
3225 unsigned CurStageNum,
3226 unsigned InstStageNum,
3227 SMSchedule &Schedule) {
3228 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3229 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3230 InstrChanges.find(getSUnit(OldMI));
3231 if (It != InstrChanges.end()) {
3232 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3233 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003234 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003235 return nullptr;
3236 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
3237 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
3238 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
3239 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
3240 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3241 }
3242 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3243 return NewMI;
3244}
3245
3246/// Update the machine instruction with new virtual registers. This
3247/// function may change the defintions and/or uses.
3248void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
3249 unsigned CurStageNum,
3250 unsigned InstrStageNum,
3251 SMSchedule &Schedule,
3252 ValueMapTy *VRMap) {
3253 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
3254 MachineOperand &MO = NewMI->getOperand(i);
3255 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3256 continue;
3257 unsigned reg = MO.getReg();
3258 if (MO.isDef()) {
3259 // Create a new virtual register for the definition.
3260 const TargetRegisterClass *RC = MRI.getRegClass(reg);
3261 unsigned NewReg = MRI.createVirtualRegister(RC);
3262 MO.setReg(NewReg);
3263 VRMap[CurStageNum][reg] = NewReg;
3264 if (LastDef)
3265 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
3266 } else if (MO.isUse()) {
3267 MachineInstr *Def = MRI.getVRegDef(reg);
3268 // Compute the stage that contains the last definition for instruction.
3269 int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
3270 unsigned StageNum = CurStageNum;
3271 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
3272 // Compute the difference in stages between the defintion and the use.
3273 unsigned StageDiff = (InstrStageNum - DefStageNum);
3274 // Make an adjustment to get the last definition.
3275 StageNum -= StageDiff;
3276 }
3277 if (VRMap[StageNum].count(reg))
3278 MO.setReg(VRMap[StageNum][reg]);
3279 }
3280 }
3281}
3282
3283/// Return the instruction in the loop that defines the register.
3284/// If the definition is a Phi, then follow the Phi operand to
3285/// the instruction in the loop.
3286MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
3287 SmallPtrSet<MachineInstr *, 8> Visited;
3288 MachineInstr *Def = MRI.getVRegDef(Reg);
3289 while (Def->isPHI()) {
3290 if (!Visited.insert(Def).second)
3291 break;
3292 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
3293 if (Def->getOperand(i + 1).getMBB() == BB) {
3294 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
3295 break;
3296 }
3297 }
3298 return Def;
3299}
3300
3301/// Return the new name for the value from the previous stage.
3302unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
3303 unsigned LoopVal, unsigned LoopStage,
3304 ValueMapTy *VRMap,
3305 MachineBasicBlock *BB) {
3306 unsigned PrevVal = 0;
3307 if (StageNum > PhiStage) {
3308 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
3309 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
3310 // The name is defined in the previous stage.
3311 PrevVal = VRMap[StageNum - 1][LoopVal];
3312 else if (VRMap[StageNum].count(LoopVal))
3313 // The previous name is defined in the current stage when the instruction
3314 // order is swapped.
3315 PrevVal = VRMap[StageNum][LoopVal];
Krzysztof Parzyszekdf24da22016-12-22 18:49:55 +00003316 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003317 // The loop value hasn't yet been scheduled.
3318 PrevVal = LoopVal;
3319 else if (StageNum == PhiStage + 1)
3320 // The loop value is another phi, which has not been scheduled.
3321 PrevVal = getInitPhiReg(*LoopInst, BB);
3322 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
3323 // The loop value is another phi, which has been scheduled.
3324 PrevVal =
3325 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
3326 LoopStage, VRMap, BB);
3327 }
3328 return PrevVal;
3329}
3330
3331/// Rewrite the Phi values in the specified block to use the mappings
3332/// from the initial operand. Once the Phi is scheduled, we switch
3333/// to using the loop value instead of the Phi value, so those names
3334/// do not need to be rewritten.
3335void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
3336 unsigned StageNum,
3337 SMSchedule &Schedule,
3338 ValueMapTy *VRMap,
3339 InstrMapTy &InstrMap) {
Bob Wilson90ecac02018-01-04 02:58:15 +00003340 for (auto &PHI : BB->phis()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003341 unsigned InitVal = 0;
3342 unsigned LoopVal = 0;
Bob Wilson90ecac02018-01-04 02:58:15 +00003343 getPhiRegs(PHI, BB, InitVal, LoopVal);
3344 unsigned PhiDef = PHI.getOperand(0).getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00003345
3346 unsigned PhiStage =
3347 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
3348 unsigned LoopStage =
3349 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
3350 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
3351 if (NumPhis > StageNum)
3352 NumPhis = StageNum;
3353 for (unsigned np = 0; np <= NumPhis; ++np) {
3354 unsigned NewVal =
3355 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
3356 if (!NewVal)
3357 NewVal = InitVal;
Bob Wilson90ecac02018-01-04 02:58:15 +00003358 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI,
Brendon Cahoon254f8892016-07-29 16:44:44 +00003359 PhiDef, NewVal);
3360 }
3361 }
3362}
3363
3364/// Rewrite a previously scheduled instruction to use the register value
3365/// from the new instruction. Make sure the instruction occurs in the
3366/// basic block, and we don't change the uses in the new instruction.
3367void SwingSchedulerDAG::rewriteScheduledInstr(
3368 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
3369 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
3370 unsigned NewReg, unsigned PrevReg) {
3371 bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
3372 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
3373 // Rewrite uses that have been scheduled already to use the new
3374 // Phi register.
3375 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
3376 EI = MRI.use_end();
3377 UI != EI;) {
3378 MachineOperand &UseOp = *UI;
3379 MachineInstr *UseMI = UseOp.getParent();
3380 ++UI;
3381 if (UseMI->getParent() != BB)
3382 continue;
3383 if (UseMI->isPHI()) {
3384 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
3385 continue;
3386 if (getLoopPhiReg(*UseMI, BB) != OldReg)
3387 continue;
3388 }
3389 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
3390 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
3391 SUnit *OrigMISU = getSUnit(OrigInstr->second);
3392 int StageSched = Schedule.stageScheduled(OrigMISU);
3393 int CycleSched = Schedule.cycleScheduled(OrigMISU);
3394 unsigned ReplaceReg = 0;
3395 // This is the stage for the scheduled instruction.
3396 if (StagePhi == StageSched && Phi->isPHI()) {
3397 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
3398 if (PrevReg && InProlog)
3399 ReplaceReg = PrevReg;
3400 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
3401 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
3402 ReplaceReg = PrevReg;
3403 else
3404 ReplaceReg = NewReg;
3405 }
3406 // The scheduled instruction occurs before the scheduled Phi, and the
3407 // Phi is not loop carried.
3408 if (!InProlog && StagePhi + 1 == StageSched &&
3409 !Schedule.isLoopCarried(this, *Phi))
3410 ReplaceReg = NewReg;
3411 if (StagePhi > StageSched && Phi->isPHI())
3412 ReplaceReg = NewReg;
3413 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
3414 ReplaceReg = NewReg;
3415 if (ReplaceReg) {
3416 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
3417 UseOp.setReg(ReplaceReg);
3418 }
3419 }
3420}
3421
3422/// Check if we can change the instruction to use an offset value from the
3423/// previous iteration. If so, return true and set the base and offset values
3424/// so that we can rewrite the load, if necessary.
3425/// v1 = Phi(v0, v3)
3426/// v2 = load v1, 0
3427/// v3 = post_store v1, 4, x
3428/// This function enables the load to be rewritten as v2 = load v3, 4.
3429bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
3430 unsigned &BasePos,
3431 unsigned &OffsetPos,
3432 unsigned &NewBase,
3433 int64_t &Offset) {
3434 // Get the load instruction.
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003435 if (TII->isPostIncrement(*MI))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003436 return false;
3437 unsigned BasePosLd, OffsetPosLd;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003438 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003439 return false;
3440 unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
3441
3442 // Look for the Phi instruction.
Justin Bognerfdf9bf42017-10-10 23:50:49 +00003443 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
Brendon Cahoon254f8892016-07-29 16:44:44 +00003444 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
3445 if (!Phi || !Phi->isPHI())
3446 return false;
3447 // Get the register defined in the loop block.
3448 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
3449 if (!PrevReg)
3450 return false;
3451
3452 // Check for the post-increment load/store instruction.
3453 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
3454 if (!PrevDef || PrevDef == MI)
3455 return false;
3456
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003457 if (!TII->isPostIncrement(*PrevDef))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003458 return false;
3459
3460 unsigned BasePos1 = 0, OffsetPos1 = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003461 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003462 return false;
3463
Krzysztof Parzyszek40df8a22018-03-26 16:17:06 +00003464 // Make sure that the instructions do not access the same memory location in
3465 // the next iteration.
Brendon Cahoon254f8892016-07-29 16:44:44 +00003466 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
3467 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
Krzysztof Parzyszek40df8a22018-03-26 16:17:06 +00003468 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3469 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
3470 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
3471 MF.DeleteMachineInstr(NewMI);
3472 if (!Disjoint)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003473 return false;
3474
3475 // Set the return value once we determine that we return true.
3476 BasePos = BasePosLd;
3477 OffsetPos = OffsetPosLd;
3478 NewBase = PrevReg;
3479 Offset = StoreOffset;
3480 return true;
3481}
3482
3483/// Apply changes to the instruction if needed. The changes are need
3484/// to improve the scheduling and depend up on the final schedule.
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003485void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
3486 SMSchedule &Schedule) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003487 SUnit *SU = getSUnit(MI);
3488 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3489 InstrChanges.find(SU);
3490 if (It != InstrChanges.end()) {
3491 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3492 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003493 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003494 return;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003495 unsigned BaseReg = MI->getOperand(BasePos).getReg();
3496 MachineInstr *LoopDef = findDefInLoop(BaseReg);
3497 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
3498 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
3499 int BaseStageNum = Schedule.stageScheduled(SU);
3500 int BaseCycleNum = Schedule.cycleScheduled(SU);
3501 if (BaseStageNum < DefStageNum) {
3502 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3503 int OffsetDiff = DefStageNum - BaseStageNum;
3504 if (DefCycleNum < BaseCycleNum) {
3505 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
3506 if (OffsetDiff > 0)
3507 --OffsetDiff;
3508 }
3509 int64_t NewOffset =
3510 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
3511 NewMI->getOperand(OffsetPos).setImm(NewOffset);
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003512 SU->setInstr(NewMI);
3513 MISUnitMap[NewMI] = SU;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003514 NewMIs.insert(NewMI);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003515 }
3516 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003517}
3518
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003519/// Return true for an order or output dependence that is loop carried
3520/// potentially. A dependence is loop carried if the destination defines a valu
3521/// that may be used or defined by the source in a subsequent iteration.
3522bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
3523 bool isSucc) {
3524 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
3525 Dep.isArtificial())
Brendon Cahoon254f8892016-07-29 16:44:44 +00003526 return false;
3527
3528 if (!SwpPruneLoopCarried)
3529 return true;
3530
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003531 if (Dep.getKind() == SDep::Output)
3532 return true;
3533
Brendon Cahoon254f8892016-07-29 16:44:44 +00003534 MachineInstr *SI = Source->getInstr();
3535 MachineInstr *DI = Dep.getSUnit()->getInstr();
3536 if (!isSucc)
3537 std::swap(SI, DI);
3538 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
3539
3540 // Assume ordered loads and stores may have a loop carried dependence.
3541 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
3542 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
3543 return true;
3544
3545 // Only chain dependences between a load and store can be loop carried.
3546 if (!DI->mayStore() || !SI->mayLoad())
3547 return false;
3548
3549 unsigned DeltaS, DeltaD;
3550 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
3551 return true;
3552
3553 unsigned BaseRegS, BaseRegD;
3554 int64_t OffsetS, OffsetD;
3555 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3556 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) ||
3557 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI))
3558 return true;
3559
3560 if (BaseRegS != BaseRegD)
3561 return true;
3562
Krzysztof Parzyszek8c07d0c2018-03-26 16:58:40 +00003563 // Check that the base register is incremented by a constant value for each
3564 // iteration.
3565 MachineInstr *Def = MRI.getVRegDef(BaseRegS);
3566 if (!Def || !Def->isPHI())
3567 return true;
3568 unsigned InitVal = 0;
3569 unsigned LoopVal = 0;
3570 getPhiRegs(*Def, BB, InitVal, LoopVal);
3571 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
3572 int D = 0;
3573 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
3574 return true;
3575
Brendon Cahoon254f8892016-07-29 16:44:44 +00003576 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
3577 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
3578
3579 // This is the main test, which checks the offset values and the loop
3580 // increment value to determine if the accesses may be loop carried.
3581 if (OffsetS >= OffsetD)
3582 return OffsetS + AccessSizeS > DeltaS;
Simon Pilgrimfbfb19b2017-03-16 19:52:00 +00003583 else
Brendon Cahoon254f8892016-07-29 16:44:44 +00003584 return OffsetD + AccessSizeD > DeltaD;
3585
3586 return true;
3587}
3588
Krzysztof Parzyszek88391242016-12-22 19:21:20 +00003589void SwingSchedulerDAG::postprocessDAG() {
3590 for (auto &M : Mutations)
3591 M->apply(this);
3592}
3593
Brendon Cahoon254f8892016-07-29 16:44:44 +00003594/// Try to schedule the node at the specified StartCycle and continue
3595/// until the node is schedule or the EndCycle is reached. This function
3596/// returns true if the node is scheduled. This routine may search either
3597/// forward or backward for a place to insert the instruction based upon
3598/// the relative values of StartCycle and EndCycle.
3599bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
3600 bool forward = true;
3601 if (StartCycle > EndCycle)
3602 forward = false;
3603
3604 // The terminating condition depends on the direction.
3605 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
3606 for (int curCycle = StartCycle; curCycle != termCycle;
3607 forward ? ++curCycle : --curCycle) {
3608
3609 // Add the already scheduled instructions at the specified cycle to the DFA.
3610 Resources->clearResources();
3611 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
3612 checkCycle <= LastCycle; checkCycle += II) {
3613 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
3614
3615 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
3616 E = cycleInstrs.end();
3617 I != E; ++I) {
3618 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
3619 continue;
3620 assert(Resources->canReserveResources(*(*I)->getInstr()) &&
3621 "These instructions have already been scheduled.");
3622 Resources->reserveResources(*(*I)->getInstr());
3623 }
3624 }
3625 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
3626 Resources->canReserveResources(*SU->getInstr())) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00003627 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +00003628 dbgs() << "\tinsert at cycle " << curCycle << " ";
3629 SU->getInstr()->dump();
3630 });
3631
3632 ScheduledInstrs[curCycle].push_back(SU);
3633 InstrToCycle.insert(std::make_pair(SU, curCycle));
3634 if (curCycle > LastCycle)
3635 LastCycle = curCycle;
3636 if (curCycle < FirstCycle)
3637 FirstCycle = curCycle;
3638 return true;
3639 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +00003640 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +00003641 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
3642 SU->getInstr()->dump();
3643 });
3644 }
3645 return false;
3646}
3647
3648// Return the cycle of the earliest scheduled instruction in the chain.
3649int SMSchedule::earliestCycleInChain(const SDep &Dep) {
3650 SmallPtrSet<SUnit *, 8> Visited;
3651 SmallVector<SDep, 8> Worklist;
3652 Worklist.push_back(Dep);
3653 int EarlyCycle = INT_MAX;
3654 while (!Worklist.empty()) {
3655 const SDep &Cur = Worklist.pop_back_val();
3656 SUnit *PrevSU = Cur.getSUnit();
3657 if (Visited.count(PrevSU))
3658 continue;
3659 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
3660 if (it == InstrToCycle.end())
3661 continue;
3662 EarlyCycle = std::min(EarlyCycle, it->second);
3663 for (const auto &PI : PrevSU->Preds)
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003664 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003665 Worklist.push_back(PI);
3666 Visited.insert(PrevSU);
3667 }
3668 return EarlyCycle;
3669}
3670
3671// Return the cycle of the latest scheduled instruction in the chain.
3672int SMSchedule::latestCycleInChain(const SDep &Dep) {
3673 SmallPtrSet<SUnit *, 8> Visited;
3674 SmallVector<SDep, 8> Worklist;
3675 Worklist.push_back(Dep);
3676 int LateCycle = INT_MIN;
3677 while (!Worklist.empty()) {
3678 const SDep &Cur = Worklist.pop_back_val();
3679 SUnit *SuccSU = Cur.getSUnit();
3680 if (Visited.count(SuccSU))
3681 continue;
3682 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
3683 if (it == InstrToCycle.end())
3684 continue;
3685 LateCycle = std::max(LateCycle, it->second);
3686 for (const auto &SI : SuccSU->Succs)
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003687 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003688 Worklist.push_back(SI);
3689 Visited.insert(SuccSU);
3690 }
3691 return LateCycle;
3692}
3693
3694/// If an instruction has a use that spans multiple iterations, then
3695/// return true. These instructions are characterized by having a back-ege
3696/// to a Phi, which contains a reference to another Phi.
3697static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
3698 for (auto &P : SU->Preds)
3699 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
3700 for (auto &S : P.getSUnit()->Succs)
Krzysztof Parzyszekb9b75b82018-03-26 15:53:23 +00003701 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
Brendon Cahoon254f8892016-07-29 16:44:44 +00003702 return P.getSUnit();
3703 return nullptr;
3704}
3705
3706/// Compute the scheduling start slot for the instruction. The start slot
3707/// depends on any predecessor or successor nodes scheduled already.
3708void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
3709 int *MinEnd, int *MaxStart, int II,
3710 SwingSchedulerDAG *DAG) {
3711 // Iterate over each instruction that has been scheduled already. The start
Hiroshi Inouec73b6d62018-06-20 05:29:26 +00003712 // slot computation depends on whether the previously scheduled instruction
Brendon Cahoon254f8892016-07-29 16:44:44 +00003713 // is a predecessor or successor of the specified instruction.
3714 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
3715
3716 // Iterate over each instruction in the current cycle.
3717 for (SUnit *I : getInstructions(cycle)) {
3718 // Because we're processing a DAG for the dependences, we recognize
3719 // the back-edge in recurrences by anti dependences.
3720 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
3721 const SDep &Dep = SU->Preds[i];
3722 if (Dep.getSUnit() == I) {
3723 if (!DAG->isBackedge(SU, Dep)) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003724 int EarlyStart = cycle + Dep.getLatency() -
Brendon Cahoon254f8892016-07-29 16:44:44 +00003725 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3726 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003727 if (DAG->isLoopCarriedDep(SU, Dep, false)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003728 int End = earliestCycleInChain(Dep) + (II - 1);
3729 *MinEnd = std::min(*MinEnd, End);
3730 }
3731 } else {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003732 int LateStart = cycle - Dep.getLatency() +
Brendon Cahoon254f8892016-07-29 16:44:44 +00003733 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3734 *MinLateStart = std::min(*MinLateStart, LateStart);
3735 }
3736 }
3737 // For instruction that requires multiple iterations, make sure that
3738 // the dependent instruction is not scheduled past the definition.
3739 SUnit *BE = multipleIterations(I, DAG);
3740 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
3741 !SU->isPred(I))
3742 *MinLateStart = std::min(*MinLateStart, cycle);
3743 }
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00003744 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003745 if (SU->Succs[i].getSUnit() == I) {
3746 const SDep &Dep = SU->Succs[i];
3747 if (!DAG->isBackedge(SU, Dep)) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003748 int LateStart = cycle - Dep.getLatency() +
Brendon Cahoon254f8892016-07-29 16:44:44 +00003749 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3750 *MinLateStart = std::min(*MinLateStart, LateStart);
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003751 if (DAG->isLoopCarriedDep(SU, Dep)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003752 int Start = latestCycleInChain(Dep) + 1 - II;
3753 *MaxStart = std::max(*MaxStart, Start);
3754 }
3755 } else {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003756 int EarlyStart = cycle + Dep.getLatency() -
Brendon Cahoon254f8892016-07-29 16:44:44 +00003757 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3758 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3759 }
3760 }
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00003761 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003762 }
3763 }
3764}
3765
3766/// Order the instructions within a cycle so that the definitions occur
3767/// before the uses. Returns true if the instruction is added to the start
3768/// of the list, or false if added to the end.
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003769void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
Brendon Cahoon254f8892016-07-29 16:44:44 +00003770 std::deque<SUnit *> &Insts) {
3771 MachineInstr *MI = SU->getInstr();
3772 bool OrderBeforeUse = false;
3773 bool OrderAfterDef = false;
3774 bool OrderBeforeDef = false;
3775 unsigned MoveDef = 0;
3776 unsigned MoveUse = 0;
3777 int StageInst1 = stageScheduled(SU);
3778
3779 unsigned Pos = 0;
3780 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
3781 ++I, ++Pos) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003782 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3783 MachineOperand &MO = MI->getOperand(i);
3784 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3785 continue;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003786
Brendon Cahoon254f8892016-07-29 16:44:44 +00003787 unsigned Reg = MO.getReg();
3788 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003789 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003790 if (MI->getOperand(BasePos).getReg() == Reg)
3791 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
3792 Reg = NewReg;
3793 bool Reads, Writes;
3794 std::tie(Reads, Writes) =
3795 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
3796 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
3797 OrderBeforeUse = true;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003798 if (MoveUse == 0)
3799 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003800 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
3801 // Add the instruction after the scheduled instruction.
3802 OrderAfterDef = true;
3803 MoveDef = Pos;
3804 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
3805 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
3806 OrderBeforeUse = true;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003807 if (MoveUse == 0)
3808 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003809 } else {
3810 OrderAfterDef = true;
3811 MoveDef = Pos;
3812 }
3813 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
3814 OrderBeforeUse = true;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003815 if (MoveUse == 0)
3816 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003817 if (MoveUse != 0) {
3818 OrderAfterDef = true;
3819 MoveDef = Pos - 1;
3820 }
3821 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
3822 // Add the instruction before the scheduled instruction.
3823 OrderBeforeUse = true;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003824 if (MoveUse == 0)
3825 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003826 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
3827 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003828 if (MoveUse == 0) {
3829 OrderBeforeDef = true;
3830 MoveUse = Pos;
3831 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003832 }
3833 }
3834 // Check for order dependences between instructions. Make sure the source
3835 // is ordered before the destination.
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003836 for (auto &S : SU->Succs) {
3837 if (S.getSUnit() != *I)
3838 continue;
3839 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3840 OrderBeforeUse = true;
3841 if (Pos < MoveUse)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003842 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003843 }
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003844 }
3845 for (auto &P : SU->Preds) {
3846 if (P.getSUnit() != *I)
3847 continue;
3848 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3849 OrderAfterDef = true;
3850 MoveDef = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003851 }
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003852 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003853 }
3854
3855 // A circular dependence.
3856 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3857 OrderBeforeUse = false;
3858
3859 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3860 // to a loop-carried dependence.
3861 if (OrderBeforeDef)
3862 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3863
3864 // The uncommon case when the instruction order needs to be updated because
3865 // there is both a use and def.
3866 if (OrderBeforeUse && OrderAfterDef) {
3867 SUnit *UseSU = Insts.at(MoveUse);
3868 SUnit *DefSU = Insts.at(MoveDef);
3869 if (MoveUse > MoveDef) {
3870 Insts.erase(Insts.begin() + MoveUse);
3871 Insts.erase(Insts.begin() + MoveDef);
3872 } else {
3873 Insts.erase(Insts.begin() + MoveDef);
3874 Insts.erase(Insts.begin() + MoveUse);
3875 }
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003876 orderDependence(SSD, UseSU, Insts);
3877 orderDependence(SSD, SU, Insts);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003878 orderDependence(SSD, DefSU, Insts);
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003879 return;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003880 }
3881 // Put the new instruction first if there is a use in the list. Otherwise,
3882 // put it at the end of the list.
3883 if (OrderBeforeUse)
3884 Insts.push_front(SU);
3885 else
3886 Insts.push_back(SU);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003887}
3888
3889/// Return true if the scheduled Phi has a loop carried operand.
3890bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
3891 if (!Phi.isPHI())
3892 return false;
Hiroshi Inouec73b6d62018-06-20 05:29:26 +00003893 assert(Phi.isPHI() && "Expecting a Phi.");
Brendon Cahoon254f8892016-07-29 16:44:44 +00003894 SUnit *DefSU = SSD->getSUnit(&Phi);
3895 unsigned DefCycle = cycleScheduled(DefSU);
3896 int DefStage = stageScheduled(DefSU);
3897
3898 unsigned InitVal = 0;
3899 unsigned LoopVal = 0;
3900 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
3901 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
3902 if (!UseSU)
3903 return true;
3904 if (UseSU->getInstr()->isPHI())
3905 return true;
3906 unsigned LoopCycle = cycleScheduled(UseSU);
3907 int LoopStage = stageScheduled(UseSU);
Simon Pilgrim3d8482a2016-11-14 10:40:23 +00003908 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003909}
3910
3911/// Return true if the instruction is a definition that is loop carried
3912/// and defines the use on the next iteration.
3913/// v1 = phi(v2, v3)
3914/// (Def) v3 = op v1
3915/// (MO) = v1
3916/// If MO appears before Def, then then v1 and v3 may get assigned to the same
3917/// register.
3918bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
3919 MachineInstr *Def, MachineOperand &MO) {
3920 if (!MO.isReg())
3921 return false;
3922 if (Def->isPHI())
3923 return false;
3924 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
3925 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3926 return false;
3927 if (!isLoopCarried(SSD, *Phi))
3928 return false;
3929 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
3930 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
3931 MachineOperand &DMO = Def->getOperand(i);
3932 if (!DMO.isReg() || !DMO.isDef())
3933 continue;
3934 if (DMO.getReg() == LoopReg)
3935 return true;
3936 }
3937 return false;
3938}
3939
3940// Check if the generated schedule is valid. This function checks if
3941// an instruction that uses a physical register is scheduled in a
3942// different stage than the definition. The pipeliner does not handle
3943// physical register values that may cross a basic block boundary.
3944bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003945 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
3946 SUnit &SU = SSD->SUnits[i];
3947 if (!SU.hasPhysRegDefs)
3948 continue;
3949 int StageDef = stageScheduled(&SU);
3950 assert(StageDef != -1 && "Instruction should have been scheduled.");
3951 for (auto &SI : SU.Succs)
3952 if (SI.isAssignedRegDep())
Simon Pilgrimb39236b2016-07-29 18:57:32 +00003953 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003954 if (stageScheduled(SI.getSUnit()) != StageDef)
3955 return false;
3956 }
3957 return true;
3958}
3959
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003960/// A property of the node order in swing-modulo-scheduling is
3961/// that for nodes outside circuits the following holds:
3962/// none of them is scheduled after both a successor and a
3963/// predecessor.
3964/// The method below checks whether the property is met.
3965/// If not, debug information is printed and statistics information updated.
3966/// Note that we do not use an assert statement.
3967/// The reason is that although an invalid node oder may prevent
3968/// the pipeliner from finding a pipelined schedule for arbitrary II,
3969/// it does not lead to the generation of incorrect code.
3970void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
3971
3972 // a sorted vector that maps each SUnit to its index in the NodeOrder
3973 typedef std::pair<SUnit *, unsigned> UnitIndex;
3974 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
3975
3976 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
3977 Indices.push_back(std::make_pair(NodeOrder[i], i));
3978
3979 auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
3980 return std::get<0>(i1) < std::get<0>(i2);
3981 };
3982
3983 // sort, so that we can perform a binary search
Mandeep Singh Grange92f0cf2018-04-06 18:08:42 +00003984 llvm::sort(Indices.begin(), Indices.end(), CompareKey);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003985
3986 bool Valid = true;
David L Kreitzerfebf70a2018-03-16 21:21:23 +00003987 (void)Valid;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003988 // for each SUnit in the NodeOrder, check whether
3989 // it appears after both a successor and a predecessor
3990 // of the SUnit. If this is the case, and the SUnit
3991 // is not part of circuit, then the NodeOrder is not
3992 // valid.
3993 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
3994 SUnit *SU = NodeOrder[i];
3995 unsigned Index = i;
3996
3997 bool PredBefore = false;
3998 bool SuccBefore = false;
3999
4000 SUnit *Succ;
4001 SUnit *Pred;
David L Kreitzerfebf70a2018-03-16 21:21:23 +00004002 (void)Succ;
4003 (void)Pred;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00004004
4005 for (SDep &PredEdge : SU->Preds) {
4006 SUnit *PredSU = PredEdge.getSUnit();
4007 unsigned PredIndex =
4008 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
4009 std::make_pair(PredSU, 0), CompareKey));
4010 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
4011 PredBefore = true;
4012 Pred = PredSU;
4013 break;
4014 }
4015 }
4016
4017 for (SDep &SuccEdge : SU->Succs) {
4018 SUnit *SuccSU = SuccEdge.getSUnit();
4019 unsigned SuccIndex =
4020 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
4021 std::make_pair(SuccSU, 0), CompareKey));
4022 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
4023 SuccBefore = true;
4024 Succ = SuccSU;
4025 break;
4026 }
4027 }
4028
4029 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
4030 // instructions in circuits are allowed to be scheduled
4031 // after both a successor and predecessor.
4032 bool InCircuit = std::any_of(
4033 Circuits.begin(), Circuits.end(),
4034 [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
4035 if (InCircuit)
Nicola Zaghend34e60c2018-05-14 12:53:11 +00004036 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00004037 else {
4038 Valid = false;
4039 NumNodeOrderIssues++;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00004040 LLVM_DEBUG(dbgs() << "Predecessor ";);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00004041 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +00004042 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
4043 << " are scheduled before node " << SU->NodeNum
4044 << "\n";);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00004045 }
4046 }
4047
Nicola Zaghend34e60c2018-05-14 12:53:11 +00004048 LLVM_DEBUG({
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00004049 if (!Valid)
4050 dbgs() << "Invalid node order found!\n";
4051 });
4052}
4053
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004054/// Attempt to fix the degenerate cases when the instruction serialization
4055/// causes the register lifetimes to overlap. For example,
4056/// p' = store_pi(p, b)
4057/// = load p, offset
4058/// In this case p and p' overlap, which means that two registers are needed.
4059/// Instead, this function changes the load to use p' and updates the offset.
4060void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
4061 unsigned OverlapReg = 0;
4062 unsigned NewBaseReg = 0;
4063 for (SUnit *SU : Instrs) {
4064 MachineInstr *MI = SU->getInstr();
4065 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
4066 const MachineOperand &MO = MI->getOperand(i);
4067 // Look for an instruction that uses p. The instruction occurs in the
4068 // same cycle but occurs later in the serialized order.
4069 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
4070 // Check that the instruction appears in the InstrChanges structure,
4071 // which contains instructions that can have the offset updated.
4072 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
4073 InstrChanges.find(SU);
4074 if (It != InstrChanges.end()) {
4075 unsigned BasePos, OffsetPos;
4076 // Update the base register and adjust the offset.
4077 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
Krzysztof Parzyszek12bdcab2017-10-11 15:59:51 +00004078 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
4079 NewMI->getOperand(BasePos).setReg(NewBaseReg);
4080 int64_t NewOffset =
4081 MI->getOperand(OffsetPos).getImm() - It->second.second;
4082 NewMI->getOperand(OffsetPos).setImm(NewOffset);
4083 SU->setInstr(NewMI);
4084 MISUnitMap[NewMI] = SU;
4085 NewMIs.insert(NewMI);
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004086 }
4087 }
4088 OverlapReg = 0;
4089 NewBaseReg = 0;
4090 break;
4091 }
4092 // Look for an instruction of the form p' = op(p), which uses and defines
4093 // two virtual registers that get allocated to the same physical register.
4094 unsigned TiedUseIdx = 0;
4095 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
4096 // OverlapReg is p in the example above.
4097 OverlapReg = MI->getOperand(TiedUseIdx).getReg();
4098 // NewBaseReg is p' in the example above.
4099 NewBaseReg = MI->getOperand(i).getReg();
4100 break;
4101 }
4102 }
4103 }
4104}
4105
Brendon Cahoon254f8892016-07-29 16:44:44 +00004106/// After the schedule has been formed, call this function to combine
4107/// the instructions from the different stages/cycles. That is, this
4108/// function creates a schedule that represents a single iteration.
4109void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
4110 // Move all instructions to the first stage from later stages.
4111 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
4112 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
4113 ++stage) {
4114 std::deque<SUnit *> &cycleInstrs =
4115 ScheduledInstrs[cycle + (stage * InitiationInterval)];
4116 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
4117 E = cycleInstrs.rend();
4118 I != E; ++I)
4119 ScheduledInstrs[cycle].push_front(*I);
4120 }
4121 }
4122 // Iterate over the definitions in each instruction, and compute the
4123 // stage difference for each use. Keep the maximum value.
4124 for (auto &I : InstrToCycle) {
4125 int DefStage = stageScheduled(I.first);
4126 MachineInstr *MI = I.first->getInstr();
4127 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
4128 MachineOperand &Op = MI->getOperand(i);
4129 if (!Op.isReg() || !Op.isDef())
4130 continue;
4131
4132 unsigned Reg = Op.getReg();
4133 unsigned MaxDiff = 0;
4134 bool PhiIsSwapped = false;
4135 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
4136 EI = MRI.use_end();
4137 UI != EI; ++UI) {
4138 MachineOperand &UseOp = *UI;
4139 MachineInstr *UseMI = UseOp.getParent();
4140 SUnit *SUnitUse = SSD->getSUnit(UseMI);
4141 int UseStage = stageScheduled(SUnitUse);
4142 unsigned Diff = 0;
4143 if (UseStage != -1 && UseStage >= DefStage)
4144 Diff = UseStage - DefStage;
4145 if (MI->isPHI()) {
4146 if (isLoopCarried(SSD, *MI))
4147 ++Diff;
4148 else
4149 PhiIsSwapped = true;
4150 }
4151 MaxDiff = std::max(Diff, MaxDiff);
4152 }
4153 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
4154 }
4155 }
4156
4157 // Erase all the elements in the later stages. Only one iteration should
4158 // remain in the scheduled list, and it contains all the instructions.
4159 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
4160 ScheduledInstrs.erase(cycle);
4161
4162 // Change the registers in instruction as specified in the InstrChanges
4163 // map. We need to use the new registers to create the correct order.
4164 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
4165 SUnit *SU = &SSD->SUnits[i];
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004166 SSD->applyInstrChange(SU->getInstr(), *this);
Brendon Cahoon254f8892016-07-29 16:44:44 +00004167 }
4168
4169 // Reorder the instructions in each cycle to fix and improve the
4170 // generated code.
4171 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
4172 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00004173 std::deque<SUnit *> newOrderPhi;
Brendon Cahoon254f8892016-07-29 16:44:44 +00004174 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
4175 SUnit *SU = cycleInstrs[i];
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00004176 if (SU->getInstr()->isPHI())
4177 newOrderPhi.push_back(SU);
Brendon Cahoon254f8892016-07-29 16:44:44 +00004178 }
4179 std::deque<SUnit *> newOrderI;
Brendon Cahoon254f8892016-07-29 16:44:44 +00004180 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
4181 SUnit *SU = cycleInstrs[i];
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00004182 if (!SU->getInstr()->isPHI())
Brendon Cahoon254f8892016-07-29 16:44:44 +00004183 orderDependence(SSD, SU, newOrderI);
4184 }
4185 // Replace the old order with the new order.
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00004186 cycleInstrs.swap(newOrderPhi);
Brendon Cahoon254f8892016-07-29 16:44:44 +00004187 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004188 SSD->fixupRegisterOverlaps(cycleInstrs);
Brendon Cahoon254f8892016-07-29 16:44:44 +00004189 }
4190
Nicola Zaghend34e60c2018-05-14 12:53:11 +00004191 LLVM_DEBUG(dump(););
Brendon Cahoon254f8892016-07-29 16:44:44 +00004192}
4193
Aaron Ballman615eb472017-10-15 14:32:27 +00004194#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Brendon Cahoon254f8892016-07-29 16:44:44 +00004195/// Print the schedule information to the given output.
4196void SMSchedule::print(raw_ostream &os) const {
4197 // Iterate over each cycle.
4198 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
4199 // Iterate over each instruction in the cycle.
4200 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
4201 for (SUnit *CI : cycleInstrs->second) {
4202 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
4203 os << "(" << CI->NodeNum << ") ";
4204 CI->getInstr()->print(os);
4205 os << "\n";
4206 }
4207 }
4208}
4209
4210/// Utility function used for debugging to print the schedule.
Matthias Braun8c209aa2017-01-28 02:02:38 +00004211LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
4212#endif