blob: 6c0ef66dea7bfeeb3f750c07f98c5b41d22f67e2 [file] [log] [blame]
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SystemZTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
Ulrich Weigand5f613df2013-05-06 16:15:19 +000014#include "SystemZISelLowering.h"
15#include "SystemZCallingConv.h"
16#include "SystemZConstantPoolValue.h"
17#include "SystemZMachineFunctionInfo.h"
18#include "SystemZTargetMachine.h"
19#include "llvm/CodeGen/CallingConvLower.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
Jonas Paulsson7a794222016-08-17 13:24:19 +000023#include "llvm/Support/CommandLine.h"
Ulrich Weigand57c85f52015-04-01 12:51:43 +000024#include "llvm/IR/Intrinsics.h"
Will Dietz981af002013-10-12 00:55:57 +000025#include <cctype>
26
Ulrich Weigand5f613df2013-05-06 16:15:19 +000027using namespace llvm;
28
Chandler Carruth84e68b22014-04-22 02:41:26 +000029#define DEBUG_TYPE "systemz-lower"
30
Richard Sandifordf722a8e302013-10-16 11:10:55 +000031namespace {
32// Represents a sequence for extracting a 0/1 value from an IPM result:
33// (((X ^ XORValue) + AddValue) >> Bit)
34struct IPMConversion {
35 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
36 : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
37
38 int64_t XORValue;
39 int64_t AddValue;
40 unsigned Bit;
41};
Richard Sandifordd420f732013-12-13 15:28:45 +000042
43// Represents information about a comparison.
44struct Comparison {
45 Comparison(SDValue Op0In, SDValue Op1In)
46 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
47
48 // The operands to the comparison.
49 SDValue Op0, Op1;
50
51 // The opcode that should be used to compare Op0 and Op1.
52 unsigned Opcode;
53
54 // A SystemZICMP value. Only used for integer comparisons.
55 unsigned ICmpType;
56
57 // The mask of CC values that Opcode can produce.
58 unsigned CCValid;
59
60 // The mask of CC values for which the original condition is true.
61 unsigned CCMask;
62};
Richard Sandifordc2312692014-03-06 10:38:30 +000063} // end anonymous namespace
Richard Sandifordf722a8e302013-10-16 11:10:55 +000064
Ulrich Weigand5f613df2013-05-06 16:15:19 +000065// Classify VT as either 32 or 64 bit.
66static bool is32Bit(EVT VT) {
67 switch (VT.getSimpleVT().SimpleTy) {
68 case MVT::i32:
69 return true;
70 case MVT::i64:
71 return false;
72 default:
73 llvm_unreachable("Unsupported type");
74 }
75}
76
77// Return a version of MachineOperand that can be safely used before the
78// final use.
79static MachineOperand earlyUseOperand(MachineOperand Op) {
80 if (Op.isReg())
81 Op.setIsKill(false);
82 return Op;
83}
84
Mehdi Amini44ede332015-07-09 02:09:04 +000085SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
Eric Christophera6734172015-01-31 00:06:45 +000086 const SystemZSubtarget &STI)
Mehdi Amini44ede332015-07-09 02:09:04 +000087 : TargetLowering(TM), Subtarget(STI) {
Mehdi Amini26d48132015-07-24 16:04:22 +000088 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize());
Ulrich Weigand5f613df2013-05-06 16:15:19 +000089
90 // Set up the register classes.
Richard Sandiford0755c932013-10-01 11:26:28 +000091 if (Subtarget.hasHighWord())
92 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
93 else
94 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
Ulrich Weigand49506d72015-05-05 19:28:34 +000095 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
96 if (Subtarget.hasVector()) {
97 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
98 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
99 } else {
100 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
101 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
102 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000103 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
104
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000105 if (Subtarget.hasVector()) {
106 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
107 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
108 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
109 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
Ulrich Weigand80b3af72015-05-05 19:27:45 +0000110 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
Ulrich Weigandcd808232015-05-05 19:26:48 +0000111 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000112 }
113
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000114 // Compute derived properties from the register classes
Eric Christopher23a3a7c2015-02-26 00:00:24 +0000115 computeRegisterProperties(Subtarget.getRegisterInfo());
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000116
117 // Set up special registers.
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000118 setStackPointerRegisterToSaveRestore(SystemZ::R15D);
119
120 // TODO: It may be better to default to latency-oriented scheduling, however
121 // LLVM's current latency-oriented scheduler can't handle physreg definitions
Richard Sandiford14a44492013-05-22 13:38:45 +0000122 // such as SystemZ has with CC, so set this to the register-pressure
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000123 // scheduler, because it can.
124 setSchedulingPreference(Sched::RegPressure);
125
126 setBooleanContents(ZeroOrOneBooleanContent);
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000127 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000128
129 // Instructions are strings of 2-byte aligned 2-byte values.
130 setMinFunctionAlignment(2);
131
132 // Handle operations that are handled in a similar way for all types.
133 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
134 I <= MVT::LAST_FP_VALUETYPE;
135 ++I) {
136 MVT VT = MVT::SimpleValueType(I);
137 if (isTypeLegal(VT)) {
Richard Sandifordf722a8e302013-10-16 11:10:55 +0000138 // Lower SET_CC into an IPM-based sequence.
139 setOperationAction(ISD::SETCC, VT, Custom);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000140
141 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
142 setOperationAction(ISD::SELECT, VT, Expand);
143
144 // Lower SELECT_CC and BR_CC into separate comparisons and branches.
145 setOperationAction(ISD::SELECT_CC, VT, Custom);
146 setOperationAction(ISD::BR_CC, VT, Custom);
147 }
148 }
149
150 // Expand jump table branches as address arithmetic followed by an
151 // indirect jump.
152 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
153
154 // Expand BRCOND into a BR_CC (see above).
155 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
156
157 // Handle integer types.
158 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
159 I <= MVT::LAST_INTEGER_VALUETYPE;
160 ++I) {
161 MVT VT = MVT::SimpleValueType(I);
162 if (isTypeLegal(VT)) {
163 // Expand individual DIV and REMs into DIVREMs.
164 setOperationAction(ISD::SDIV, VT, Expand);
165 setOperationAction(ISD::UDIV, VT, Expand);
166 setOperationAction(ISD::SREM, VT, Expand);
167 setOperationAction(ISD::UREM, VT, Expand);
168 setOperationAction(ISD::SDIVREM, VT, Custom);
169 setOperationAction(ISD::UDIVREM, VT, Custom);
170
Richard Sandifordbef3d7a2013-12-10 10:49:34 +0000171 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
172 // stores, putting a serialization instruction after the stores.
173 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom);
174 setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000175
Richard Sandiford41350a52013-12-24 15:18:04 +0000176 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
177 // available, or if the operand is constant.
178 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
179
Ulrich Weigandb4012182015-03-31 12:56:33 +0000180 // Use POPCNT on z196 and above.
181 if (Subtarget.hasPopulationCount())
182 setOperationAction(ISD::CTPOP, VT, Custom);
183 else
184 setOperationAction(ISD::CTPOP, VT, Expand);
185
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000186 // No special instructions for these.
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000187 setOperationAction(ISD::CTTZ, VT, Expand);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000188 setOperationAction(ISD::ROTR, VT, Expand);
189
Richard Sandiford7d86e472013-08-21 09:34:56 +0000190 // Use *MUL_LOHI where possible instead of MULH*.
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000191 setOperationAction(ISD::MULHS, VT, Expand);
192 setOperationAction(ISD::MULHU, VT, Expand);
Richard Sandiford7d86e472013-08-21 09:34:56 +0000193 setOperationAction(ISD::SMUL_LOHI, VT, Custom);
194 setOperationAction(ISD::UMUL_LOHI, VT, Custom);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000195
Richard Sandiforddc6c2c92014-03-21 10:56:30 +0000196 // Only z196 and above have native support for conversions to unsigned.
197 if (!Subtarget.hasFPExtension())
198 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000199 }
200 }
201
202 // Type legalization will convert 8- and 16-bit atomic operations into
203 // forms that operate on i32s (but still keeping the original memory VT).
204 // Lower them into full i32 operations.
205 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
206 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
207 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
208 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
209 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
210 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
211 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
212 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
213 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
214 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
215 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
216 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
217
Ulrich Weiganda9ac6d62016-04-04 12:45:44 +0000218 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
219
Zhan Jun Liauab42cbc2016-06-10 19:58:10 +0000220 // Traps are legal, as we will convert them to "j .+2".
221 setOperationAction(ISD::TRAP, MVT::Other, Legal);
222
Richard Sandiforddc6c2c92014-03-21 10:56:30 +0000223 // z10 has instructions for signed but not unsigned FP conversion.
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000224 // Handle unsigned 32-bit types as signed 64-bit types.
Richard Sandiforddc6c2c92014-03-21 10:56:30 +0000225 if (!Subtarget.hasFPExtension()) {
226 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
227 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
228 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000229
230 // We have native support for a 64-bit CTLZ, via FLOGR.
231 setOperationAction(ISD::CTLZ, MVT::i32, Promote);
232 setOperationAction(ISD::CTLZ, MVT::i64, Legal);
233
234 // Give LowerOperation the chance to replace 64-bit ORs with subregs.
235 setOperationAction(ISD::OR, MVT::i64, Custom);
236
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000237 // FIXME: Can we support these natively?
238 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
239 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
240 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
241
242 // We have native instructions for i8, i16 and i32 extensions, but not i1.
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000243 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000244 for (MVT VT : MVT::integer_valuetypes()) {
245 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
246 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
247 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
248 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000249
250 // Handle the various types of symbolic address.
251 setOperationAction(ISD::ConstantPool, PtrVT, Custom);
252 setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
253 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
254 setOperationAction(ISD::BlockAddress, PtrVT, Custom);
255 setOperationAction(ISD::JumpTable, PtrVT, Custom);
256
257 // We need to handle dynamic allocations specially because of the
258 // 160-byte area at the bottom of the stack.
259 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
Marcin Koscielnicki9de88d92016-05-04 23:31:26 +0000260 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000261
262 // Use custom expanders so that we can force the function to use
263 // a frame pointer.
264 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
265 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
266
Richard Sandiford03481332013-08-23 11:36:42 +0000267 // Handle prefetches with PFD or PFDRL.
268 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
269
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000270 for (MVT VT : MVT::vector_valuetypes()) {
271 // Assume by default that all vector operations need to be expanded.
272 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
273 if (getOperationAction(Opcode, VT) == Legal)
274 setOperationAction(Opcode, VT, Expand);
275
276 // Likewise all truncating stores and extending loads.
277 for (MVT InnerVT : MVT::vector_valuetypes()) {
278 setTruncStoreAction(VT, InnerVT, Expand);
279 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
280 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
281 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
282 }
283
284 if (isTypeLegal(VT)) {
285 // These operations are legal for anything that can be stored in a
286 // vector register, even if there is no native support for the format
Ulrich Weigand80b3af72015-05-05 19:27:45 +0000287 // as such. In particular, we can do these for v4f32 even though there
288 // are no specific instructions for that format.
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000289 setOperationAction(ISD::LOAD, VT, Legal);
290 setOperationAction(ISD::STORE, VT, Legal);
291 setOperationAction(ISD::VSELECT, VT, Legal);
292 setOperationAction(ISD::BITCAST, VT, Legal);
293 setOperationAction(ISD::UNDEF, VT, Legal);
294
295 // Likewise, except that we need to replace the nodes with something
296 // more specific.
297 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
298 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
299 }
300 }
301
302 // Handle integer vector types.
303 for (MVT VT : MVT::integer_vector_valuetypes()) {
304 if (isTypeLegal(VT)) {
305 // These operations have direct equivalents.
306 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
307 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
308 setOperationAction(ISD::ADD, VT, Legal);
309 setOperationAction(ISD::SUB, VT, Legal);
310 if (VT != MVT::v2i64)
311 setOperationAction(ISD::MUL, VT, Legal);
312 setOperationAction(ISD::AND, VT, Legal);
313 setOperationAction(ISD::OR, VT, Legal);
314 setOperationAction(ISD::XOR, VT, Legal);
315 setOperationAction(ISD::CTPOP, VT, Custom);
316 setOperationAction(ISD::CTTZ, VT, Legal);
317 setOperationAction(ISD::CTLZ, VT, Legal);
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000318
319 // Convert a GPR scalar to a vector by inserting it into element 0.
320 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
321
Ulrich Weigandcd2a1b52015-05-05 19:29:21 +0000322 // Use a series of unpacks for extensions.
323 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
324 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
325
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000326 // Detect shifts by a scalar amount and convert them into
327 // V*_BY_SCALAR.
328 setOperationAction(ISD::SHL, VT, Custom);
329 setOperationAction(ISD::SRA, VT, Custom);
330 setOperationAction(ISD::SRL, VT, Custom);
331
332 // At present ROTL isn't matched by DAGCombiner. ROTR should be
333 // converted into ROTL.
334 setOperationAction(ISD::ROTL, VT, Expand);
335 setOperationAction(ISD::ROTR, VT, Expand);
336
337 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
338 // and inverting the result as necessary.
339 setOperationAction(ISD::SETCC, VT, Custom);
340 }
341 }
342
Ulrich Weigandcd808232015-05-05 19:26:48 +0000343 if (Subtarget.hasVector()) {
344 // There should be no need to check for float types other than v2f64
345 // since <2 x f32> isn't a legal type.
346 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
347 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
348 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
349 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
350 }
351
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000352 // Handle floating-point types.
353 for (unsigned I = MVT::FIRST_FP_VALUETYPE;
354 I <= MVT::LAST_FP_VALUETYPE;
355 ++I) {
356 MVT VT = MVT::SimpleValueType(I);
357 if (isTypeLegal(VT)) {
358 // We can use FI for FRINT.
359 setOperationAction(ISD::FRINT, VT, Legal);
360
Richard Sandifordaf5f66a2013-08-21 09:04:20 +0000361 // We can use the extended form of FI for other rounding operations.
362 if (Subtarget.hasFPExtension()) {
363 setOperationAction(ISD::FNEARBYINT, VT, Legal);
364 setOperationAction(ISD::FFLOOR, VT, Legal);
365 setOperationAction(ISD::FCEIL, VT, Legal);
366 setOperationAction(ISD::FTRUNC, VT, Legal);
367 setOperationAction(ISD::FROUND, VT, Legal);
368 }
369
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000370 // No special instructions for these.
371 setOperationAction(ISD::FSIN, VT, Expand);
372 setOperationAction(ISD::FCOS, VT, Expand);
Ulrich Weigand126caeb2015-09-21 17:35:45 +0000373 setOperationAction(ISD::FSINCOS, VT, Expand);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000374 setOperationAction(ISD::FREM, VT, Expand);
Ulrich Weigand126caeb2015-09-21 17:35:45 +0000375 setOperationAction(ISD::FPOW, VT, Expand);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000376 }
377 }
378
Ulrich Weigandcd808232015-05-05 19:26:48 +0000379 // Handle floating-point vector types.
380 if (Subtarget.hasVector()) {
381 // Scalar-to-vector conversion is just a subreg.
Ulrich Weigand80b3af72015-05-05 19:27:45 +0000382 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
Ulrich Weigandcd808232015-05-05 19:26:48 +0000383 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
384
385 // Some insertions and extractions can be done directly but others
386 // need to go via integers.
Ulrich Weigand80b3af72015-05-05 19:27:45 +0000387 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
Ulrich Weigandcd808232015-05-05 19:26:48 +0000388 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
Ulrich Weigand80b3af72015-05-05 19:27:45 +0000389 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
Ulrich Weigandcd808232015-05-05 19:26:48 +0000390 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
391
392 // These operations have direct equivalents.
393 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
394 setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
395 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
396 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
397 setOperationAction(ISD::FMA, MVT::v2f64, Legal);
398 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
399 setOperationAction(ISD::FABS, MVT::v2f64, Legal);
400 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
401 setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
402 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
403 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
404 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
405 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
406 setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
407 }
408
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000409 // We have fused multiply-addition for f32 and f64 but not f128.
410 setOperationAction(ISD::FMA, MVT::f32, Legal);
411 setOperationAction(ISD::FMA, MVT::f64, Legal);
412 setOperationAction(ISD::FMA, MVT::f128, Expand);
413
414 // Needed so that we don't try to implement f128 constant loads using
415 // a load-and-extend of a f80 constant (in cases where the constant
416 // would fit in an f80).
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000417 for (MVT VT : MVT::fp_valuetypes())
418 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000419
420 // Floating-point truncation and stores need to be done separately.
421 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
422 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
423 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
424
425 // We have 64-bit FPR<->GPR moves, but need special handling for
426 // 32-bit forms.
Ulrich Weigand80b3af72015-05-05 19:27:45 +0000427 if (!Subtarget.hasVector()) {
428 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
429 setOperationAction(ISD::BITCAST, MVT::f32, Custom);
430 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000431
432 // VASTART and VACOPY need to deal with the SystemZ-specific varargs
433 // structure, but VAEND is a no-op.
434 setOperationAction(ISD::VASTART, MVT::Other, Custom);
435 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
436 setOperationAction(ISD::VAEND, MVT::Other, Expand);
Richard Sandifordd131ff82013-07-08 09:35:23 +0000437
Richard Sandiford95bc5f92014-03-07 11:34:35 +0000438 // Codes for which we want to perform some z-specific combinations.
439 setTargetDAGCombine(ISD::SIGN_EXTEND);
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000440 setTargetDAGCombine(ISD::STORE);
441 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
Ulrich Weigand80b3af72015-05-05 19:27:45 +0000442 setTargetDAGCombine(ISD::FP_ROUND);
Bryan Chan28b759c2016-05-16 20:32:22 +0000443 setTargetDAGCombine(ISD::BSWAP);
Elliot Colpbc2cfc22016-07-06 18:13:11 +0000444 setTargetDAGCombine(ISD::SHL);
445 setTargetDAGCombine(ISD::SRA);
446 setTargetDAGCombine(ISD::SRL);
447 setTargetDAGCombine(ISD::ROTL);
Richard Sandiford95bc5f92014-03-07 11:34:35 +0000448
Ulrich Weigand57c85f52015-04-01 12:51:43 +0000449 // Handle intrinsics.
450 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
Ulrich Weigandc1708b22015-05-05 19:31:09 +0000451 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
Ulrich Weigand57c85f52015-04-01 12:51:43 +0000452
Richard Sandifordd131ff82013-07-08 09:35:23 +0000453 // We want to use MVC in preference to even a single load/store pair.
454 MaxStoresPerMemcpy = 0;
455 MaxStoresPerMemcpyOptSize = 0;
Richard Sandiford47660c12013-07-09 09:32:42 +0000456
457 // The main memset sequence is a byte store followed by an MVC.
458 // Two STC or MV..I stores win over that, but the kind of fused stores
459 // generated by target-independent code don't when the byte value is
460 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better
461 // than "STC;MVC". Handle the choice in target-specific code instead.
462 MaxStoresPerMemset = 0;
463 MaxStoresPerMemsetOptSize = 0;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000464}
465
Mehdi Amini44ede332015-07-09 02:09:04 +0000466EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
467 LLVMContext &, EVT VT) const {
Richard Sandifordabc010b2013-11-06 12:16:02 +0000468 if (!VT.isVector())
469 return MVT::i32;
470 return VT.changeVectorElementTypeToInteger();
471}
472
473bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
Stephen Lin73de7bf2013-07-09 18:16:56 +0000474 VT = VT.getScalarType();
475
476 if (!VT.isSimple())
477 return false;
478
479 switch (VT.getSimpleVT().SimpleTy) {
480 case MVT::f32:
481 case MVT::f64:
482 return true;
483 case MVT::f128:
484 return false;
485 default:
486 break;
487 }
488
489 return false;
490}
491
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000492bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
493 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
494 return Imm.isZero() || Imm.isNegZero();
495}
496
Ulrich Weigand1f6666a2015-03-31 12:52:27 +0000497bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
498 // We can use CGFI or CLGFI.
499 return isInt<32>(Imm) || isUInt<32>(Imm);
500}
501
502bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
503 // We can use ALGFI or SLGFI.
504 return isUInt<32>(Imm) || isUInt<32>(-Imm);
505}
506
Matt Arsenault6f2a5262014-07-27 17:46:40 +0000507bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
508 unsigned,
509 unsigned,
510 bool *Fast) const {
Richard Sandiford46af5a22013-05-30 09:45:42 +0000511 // Unaligned accesses should never be slower than the expanded version.
512 // We check specifically for aligned accesses in the few cases where
513 // they are required.
514 if (Fast)
515 *Fast = true;
516 return true;
517}
Matt Arsenaultbd7d80a2015-06-01 05:31:59 +0000518
Mehdi Amini0cdec1e2015-07-09 02:09:40 +0000519bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
520 const AddrMode &AM, Type *Ty,
Matt Arsenaultbd7d80a2015-06-01 05:31:59 +0000521 unsigned AS) const {
Richard Sandiford791bea42013-07-31 12:58:26 +0000522 // Punt on globals for now, although they can be used in limited
523 // RELATIVE LONG cases.
524 if (AM.BaseGV)
525 return false;
526
527 // Require a 20-bit signed offset.
528 if (!isInt<20>(AM.BaseOffs))
529 return false;
530
531 // Indexing is OK but no scale factor can be applied.
532 return AM.Scale == 0 || AM.Scale == 1;
533}
534
Jonas Paulsson7a794222016-08-17 13:24:19 +0000535bool SystemZTargetLowering::isFoldableMemAccessOffset(Instruction *I,
536 int64_t Offset) const {
537 // This only applies to z13.
538 if (!Subtarget.hasVector())
539 return true;
540
541 // * Use LDE instead of LE/LEY to avoid partial register
542 // dependencies (LDE only supports small offsets).
543 // * Utilize the vector registers to hold floating point
544 // values (vector load / store instructions only support small
545 // offsets).
546
547 assert (isa<LoadInst>(I) || isa<StoreInst>(I));
548 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
549 I->getOperand(0)->getType());
550 if (!isUInt<12>(Offset) &&
551 (MemAccessTy->isFloatingPointTy() || MemAccessTy->isVectorTy()))
552 return false;
553
554 return true;
555}
556
Richard Sandiford709bda62013-08-19 12:42:31 +0000557bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
558 if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
559 return false;
560 unsigned FromBits = FromType->getPrimitiveSizeInBits();
561 unsigned ToBits = ToType->getPrimitiveSizeInBits();
562 return FromBits > ToBits;
563}
564
565bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
566 if (!FromVT.isInteger() || !ToVT.isInteger())
567 return false;
568 unsigned FromBits = FromVT.getSizeInBits();
569 unsigned ToBits = ToVT.getSizeInBits();
570 return FromBits > ToBits;
571}
572
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000573//===----------------------------------------------------------------------===//
574// Inline asm support
575//===----------------------------------------------------------------------===//
576
577TargetLowering::ConstraintType
Benjamin Kramer9bfb6272015-07-05 19:29:18 +0000578SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000579 if (Constraint.size() == 1) {
580 switch (Constraint[0]) {
581 case 'a': // Address register
582 case 'd': // Data register (equivalent to 'r')
583 case 'f': // Floating-point register
Richard Sandiford0755c932013-10-01 11:26:28 +0000584 case 'h': // High-part register
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000585 case 'r': // General-purpose register
586 return C_RegisterClass;
587
588 case 'Q': // Memory with base and unsigned 12-bit displacement
589 case 'R': // Likewise, plus an index
590 case 'S': // Memory with base and signed 20-bit displacement
591 case 'T': // Likewise, plus an index
592 case 'm': // Equivalent to 'T'.
593 return C_Memory;
594
595 case 'I': // Unsigned 8-bit constant
596 case 'J': // Unsigned 12-bit constant
597 case 'K': // Signed 16-bit constant
598 case 'L': // Signed 20-bit displacement (on all targets we support)
599 case 'M': // 0x7fffffff
600 return C_Other;
601
602 default:
603 break;
604 }
605 }
606 return TargetLowering::getConstraintType(Constraint);
607}
608
609TargetLowering::ConstraintWeight SystemZTargetLowering::
610getSingleConstraintMatchWeight(AsmOperandInfo &info,
611 const char *constraint) const {
612 ConstraintWeight weight = CW_Invalid;
613 Value *CallOperandVal = info.CallOperandVal;
614 // If we don't have a value, we can't do a match,
615 // but allow it at the lowest weight.
Craig Topper062a2ba2014-04-25 05:30:21 +0000616 if (!CallOperandVal)
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000617 return CW_Default;
618 Type *type = CallOperandVal->getType();
619 // Look at the constraint type.
620 switch (*constraint) {
621 default:
622 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
623 break;
624
625 case 'a': // Address register
626 case 'd': // Data register (equivalent to 'r')
Richard Sandiford0755c932013-10-01 11:26:28 +0000627 case 'h': // High-part register
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000628 case 'r': // General-purpose register
629 if (CallOperandVal->getType()->isIntegerTy())
630 weight = CW_Register;
631 break;
632
633 case 'f': // Floating-point register
634 if (type->isFloatingPointTy())
635 weight = CW_Register;
636 break;
637
638 case 'I': // Unsigned 8-bit constant
Richard Sandiford21f5d682014-03-06 11:22:58 +0000639 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000640 if (isUInt<8>(C->getZExtValue()))
641 weight = CW_Constant;
642 break;
643
644 case 'J': // Unsigned 12-bit constant
Richard Sandiford21f5d682014-03-06 11:22:58 +0000645 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000646 if (isUInt<12>(C->getZExtValue()))
647 weight = CW_Constant;
648 break;
649
650 case 'K': // Signed 16-bit constant
Richard Sandiford21f5d682014-03-06 11:22:58 +0000651 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000652 if (isInt<16>(C->getSExtValue()))
653 weight = CW_Constant;
654 break;
655
656 case 'L': // Signed 20-bit displacement (on all targets we support)
Richard Sandiford21f5d682014-03-06 11:22:58 +0000657 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000658 if (isInt<20>(C->getSExtValue()))
659 weight = CW_Constant;
660 break;
661
662 case 'M': // 0x7fffffff
Richard Sandiford21f5d682014-03-06 11:22:58 +0000663 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000664 if (C->getZExtValue() == 0x7fffffff)
665 weight = CW_Constant;
666 break;
667 }
668 return weight;
669}
670
Richard Sandifordb8204052013-07-12 09:08:12 +0000671// Parse a "{tNNN}" register constraint for which the register type "t"
672// has already been verified. MC is the class associated with "t" and
673// Map maps 0-based register numbers to LLVM register numbers.
674static std::pair<unsigned, const TargetRegisterClass *>
Benjamin Kramer9bfb6272015-07-05 19:29:18 +0000675parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
676 const unsigned *Map) {
Richard Sandifordb8204052013-07-12 09:08:12 +0000677 assert(*(Constraint.end()-1) == '}' && "Missing '}'");
678 if (isdigit(Constraint[2])) {
Benjamin Kramer9bfb6272015-07-05 19:29:18 +0000679 unsigned Index;
680 bool Failed =
681 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
682 if (!Failed && Index < 16 && Map[Index])
Richard Sandifordb8204052013-07-12 09:08:12 +0000683 return std::make_pair(Map[Index], RC);
684 }
Craig Topper062a2ba2014-04-25 05:30:21 +0000685 return std::make_pair(0U, nullptr);
Richard Sandifordb8204052013-07-12 09:08:12 +0000686}
687
Eric Christopher11e4df72015-02-26 22:38:43 +0000688std::pair<unsigned, const TargetRegisterClass *>
689SystemZTargetLowering::getRegForInlineAsmConstraint(
Benjamin Kramer9bfb6272015-07-05 19:29:18 +0000690 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000691 if (Constraint.size() == 1) {
692 // GCC Constraint Letters
693 switch (Constraint[0]) {
694 default: break;
695 case 'd': // Data register (equivalent to 'r')
696 case 'r': // General-purpose register
697 if (VT == MVT::i64)
698 return std::make_pair(0U, &SystemZ::GR64BitRegClass);
699 else if (VT == MVT::i128)
700 return std::make_pair(0U, &SystemZ::GR128BitRegClass);
701 return std::make_pair(0U, &SystemZ::GR32BitRegClass);
702
703 case 'a': // Address register
704 if (VT == MVT::i64)
705 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
706 else if (VT == MVT::i128)
707 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
708 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
709
Richard Sandiford0755c932013-10-01 11:26:28 +0000710 case 'h': // High-part register (an LLVM extension)
711 return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
712
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000713 case 'f': // Floating-point register
714 if (VT == MVT::f64)
715 return std::make_pair(0U, &SystemZ::FP64BitRegClass);
716 else if (VT == MVT::f128)
717 return std::make_pair(0U, &SystemZ::FP128BitRegClass);
718 return std::make_pair(0U, &SystemZ::FP32BitRegClass);
719 }
720 }
Benjamin Kramer9bfb6272015-07-05 19:29:18 +0000721 if (Constraint.size() > 0 && Constraint[0] == '{') {
Richard Sandifordb8204052013-07-12 09:08:12 +0000722 // We need to override the default register parsing for GPRs and FPRs
723 // because the interpretation depends on VT. The internal names of
724 // the registers are also different from the external names
725 // (F0D and F0S instead of F0, etc.).
726 if (Constraint[1] == 'r') {
727 if (VT == MVT::i32)
728 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
729 SystemZMC::GR32Regs);
730 if (VT == MVT::i128)
731 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
732 SystemZMC::GR128Regs);
733 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
734 SystemZMC::GR64Regs);
735 }
736 if (Constraint[1] == 'f') {
737 if (VT == MVT::f32)
738 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
739 SystemZMC::FP32Regs);
740 if (VT == MVT::f128)
741 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
742 SystemZMC::FP128Regs);
743 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
744 SystemZMC::FP64Regs);
745 }
746 }
Eric Christopher11e4df72015-02-26 22:38:43 +0000747 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000748}
749
750void SystemZTargetLowering::
751LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
752 std::vector<SDValue> &Ops,
753 SelectionDAG &DAG) const {
754 // Only support length 1 constraints for now.
755 if (Constraint.length() == 1) {
756 switch (Constraint[0]) {
757 case 'I': // Unsigned 8-bit constant
Richard Sandiford21f5d682014-03-06 11:22:58 +0000758 if (auto *C = dyn_cast<ConstantSDNode>(Op))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000759 if (isUInt<8>(C->getZExtValue()))
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +0000760 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000761 Op.getValueType()));
762 return;
763
764 case 'J': // Unsigned 12-bit constant
Richard Sandiford21f5d682014-03-06 11:22:58 +0000765 if (auto *C = dyn_cast<ConstantSDNode>(Op))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000766 if (isUInt<12>(C->getZExtValue()))
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +0000767 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000768 Op.getValueType()));
769 return;
770
771 case 'K': // Signed 16-bit constant
Richard Sandiford21f5d682014-03-06 11:22:58 +0000772 if (auto *C = dyn_cast<ConstantSDNode>(Op))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000773 if (isInt<16>(C->getSExtValue()))
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +0000774 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000775 Op.getValueType()));
776 return;
777
778 case 'L': // Signed 20-bit displacement (on all targets we support)
Richard Sandiford21f5d682014-03-06 11:22:58 +0000779 if (auto *C = dyn_cast<ConstantSDNode>(Op))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000780 if (isInt<20>(C->getSExtValue()))
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +0000781 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000782 Op.getValueType()));
783 return;
784
785 case 'M': // 0x7fffffff
Richard Sandiford21f5d682014-03-06 11:22:58 +0000786 if (auto *C = dyn_cast<ConstantSDNode>(Op))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000787 if (C->getZExtValue() == 0x7fffffff)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +0000788 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000789 Op.getValueType()));
790 return;
791 }
792 }
793 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
794}
795
796//===----------------------------------------------------------------------===//
797// Calling conventions
798//===----------------------------------------------------------------------===//
799
800#include "SystemZGenCallingConv.inc"
801
Richard Sandiford709bda62013-08-19 12:42:31 +0000802bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
803 Type *ToType) const {
804 return isTruncateFree(FromType, ToType);
805}
806
807bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
Ulrich Weigand19d24d22015-11-13 13:00:27 +0000808 return CI->isTailCall();
Richard Sandiford709bda62013-08-19 12:42:31 +0000809}
810
Ulrich Weigand5211f9f2015-05-05 19:30:05 +0000811// We do not yet support 128-bit single-element vector types. If the user
812// attempts to use such types as function argument or return type, prefer
813// to error out instead of emitting code violating the ABI.
814static void VerifyVectorType(MVT VT, EVT ArgVT) {
815 if (ArgVT.isVector() && !VT.isVector())
816 report_fatal_error("Unsupported vector argument or return type");
817}
818
819static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
820 for (unsigned i = 0; i < Ins.size(); ++i)
821 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
822}
823
824static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
825 for (unsigned i = 0; i < Outs.size(); ++i)
826 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
827}
828
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000829// Value is a value that has been passed to us in the location described by VA
830// (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
831// any loads onto Chain.
Benjamin Kramerbdc49562016-06-12 15:39:02 +0000832static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000833 CCValAssign &VA, SDValue Chain,
834 SDValue Value) {
835 // If the argument has been promoted from a smaller type, insert an
836 // assertion to capture this.
837 if (VA.getLocInfo() == CCValAssign::SExt)
838 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
839 DAG.getValueType(VA.getValVT()));
840 else if (VA.getLocInfo() == CCValAssign::ZExt)
841 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
842 DAG.getValueType(VA.getValVT()));
843
844 if (VA.isExtInLoc())
845 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
Ulrich Weigandcd2a1b52015-05-05 19:29:21 +0000846 else if (VA.getLocInfo() == CCValAssign::BCvt) {
847 // If this is a short vector argument loaded from the stack,
848 // extend from i64 to full vector size and then bitcast.
849 assert(VA.getLocVT() == MVT::i64);
850 assert(VA.getValVT().isVector());
Ahmed Bougacha128f8732016-04-26 21:15:30 +0000851 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
Ulrich Weigandcd2a1b52015-05-05 19:29:21 +0000852 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
853 } else
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000854 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
855 return Value;
856}
857
858// Value is a value of type VA.getValVT() that we need to copy into
859// the location described by VA. Return a copy of Value converted to
860// VA.getValVT(). The caller is responsible for handling indirect values.
Benjamin Kramerbdc49562016-06-12 15:39:02 +0000861static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000862 CCValAssign &VA, SDValue Value) {
863 switch (VA.getLocInfo()) {
864 case CCValAssign::SExt:
865 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
866 case CCValAssign::ZExt:
867 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
868 case CCValAssign::AExt:
869 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
Ulrich Weigandcd2a1b52015-05-05 19:29:21 +0000870 case CCValAssign::BCvt:
871 // If this is a short vector argument to be stored to the stack,
872 // bitcast to v2i64 and then extract first element.
873 assert(VA.getLocVT() == MVT::i64);
874 assert(VA.getValVT().isVector());
875 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
876 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
877 DAG.getConstant(0, DL, MVT::i32));
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000878 case CCValAssign::Full:
879 return Value;
880 default:
881 llvm_unreachable("Unhandled getLocInfo()");
882 }
883}
884
Benjamin Kramerbdc49562016-06-12 15:39:02 +0000885SDValue SystemZTargetLowering::LowerFormalArguments(
886 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
887 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
888 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000889 MachineFunction &MF = DAG.getMachineFunction();
Matthias Braun941a7052016-07-28 18:40:00 +0000890 MachineFrameInfo &MFI = MF.getFrameInfo();
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000891 MachineRegisterInfo &MRI = MF.getRegInfo();
892 SystemZMachineFunctionInfo *FuncInfo =
Eric Christophera6734172015-01-31 00:06:45 +0000893 MF.getInfo<SystemZMachineFunctionInfo>();
894 auto *TFL =
895 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
Ulrich Weigandcfa1d2b2016-02-19 14:10:21 +0000896 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000897
Ulrich Weigand5211f9f2015-05-05 19:30:05 +0000898 // Detect unsupported vector argument types.
899 if (Subtarget.hasVector())
900 VerifyVectorTypes(Ins);
901
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000902 // Assign locations to all of the incoming arguments.
903 SmallVector<CCValAssign, 16> ArgLocs;
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000904 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000905 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
906
907 unsigned NumFixedGPRs = 0;
908 unsigned NumFixedFPRs = 0;
909 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
910 SDValue ArgValue;
911 CCValAssign &VA = ArgLocs[I];
912 EVT LocVT = VA.getLocVT();
913 if (VA.isRegLoc()) {
914 // Arguments passed in registers
915 const TargetRegisterClass *RC;
916 switch (LocVT.getSimpleVT().SimpleTy) {
917 default:
918 // Integers smaller than i64 should be promoted to i64.
919 llvm_unreachable("Unexpected argument type");
920 case MVT::i32:
921 NumFixedGPRs += 1;
922 RC = &SystemZ::GR32BitRegClass;
923 break;
924 case MVT::i64:
925 NumFixedGPRs += 1;
926 RC = &SystemZ::GR64BitRegClass;
927 break;
928 case MVT::f32:
929 NumFixedFPRs += 1;
930 RC = &SystemZ::FP32BitRegClass;
931 break;
932 case MVT::f64:
933 NumFixedFPRs += 1;
934 RC = &SystemZ::FP64BitRegClass;
935 break;
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000936 case MVT::v16i8:
937 case MVT::v8i16:
938 case MVT::v4i32:
939 case MVT::v2i64:
Ulrich Weigand80b3af72015-05-05 19:27:45 +0000940 case MVT::v4f32:
Ulrich Weigandcd808232015-05-05 19:26:48 +0000941 case MVT::v2f64:
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000942 RC = &SystemZ::VR128BitRegClass;
943 break;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000944 }
945
946 unsigned VReg = MRI.createVirtualRegister(RC);
947 MRI.addLiveIn(VA.getLocReg(), VReg);
948 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
949 } else {
950 assert(VA.isMemLoc() && "Argument not register or memory");
951
952 // Create the frame index object for this incoming parameter.
Matthias Braun941a7052016-07-28 18:40:00 +0000953 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
954 VA.getLocMemOffset(), true);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000955
956 // Create the SelectionDAG nodes corresponding to a load
957 // from this parameter. Unpromoted ints and floats are
958 // passed as right-justified 8-byte values.
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000959 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
960 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +0000961 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
962 DAG.getIntPtrConstant(4, DL));
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000963 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
Justin Lebar9c375812016-07-15 18:27:10 +0000964 MachinePointerInfo::getFixedStack(MF, FI));
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000965 }
966
967 // Convert the value of the argument register into the value that's
968 // being passed.
Ulrich Weigandcfa1d2b2016-02-19 14:10:21 +0000969 if (VA.getLocInfo() == CCValAssign::Indirect) {
Justin Lebar9c375812016-07-15 18:27:10 +0000970 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
971 MachinePointerInfo()));
Ulrich Weigandcfa1d2b2016-02-19 14:10:21 +0000972 // If the original argument was split (e.g. i128), we need
973 // to load all parts of it here (using the same address).
974 unsigned ArgIndex = Ins[I].OrigArgIndex;
975 assert (Ins[I].PartOffset == 0);
976 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
977 CCValAssign &PartVA = ArgLocs[I + 1];
978 unsigned PartOffset = Ins[I + 1].PartOffset;
979 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
980 DAG.getIntPtrConstant(PartOffset, DL));
Justin Lebar9c375812016-07-15 18:27:10 +0000981 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
982 MachinePointerInfo()));
Ulrich Weigandcfa1d2b2016-02-19 14:10:21 +0000983 ++I;
984 }
985 } else
986 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000987 }
988
989 if (IsVarArg) {
990 // Save the number of non-varargs registers for later use by va_start, etc.
991 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
992 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
993
994 // Likewise the address (in the form of a frame index) of where the
995 // first stack vararg would be. The 1-byte size here is arbitrary.
996 int64_t StackSize = CCInfo.getNextStackOffset();
Matthias Braun941a7052016-07-28 18:40:00 +0000997 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000998
999 // ...and a similar frame index for the caller-allocated save area
1000 // that will be used to store the incoming registers.
1001 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
Matthias Braun941a7052016-07-28 18:40:00 +00001002 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001003 FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1004
1005 // Store the FPR varargs in the reserved frame slots. (We store the
1006 // GPRs as part of the prologue.)
1007 if (NumFixedFPRs < SystemZ::NumArgFPRs) {
1008 SDValue MemOps[SystemZ::NumArgFPRs];
1009 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1010 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
Matthias Braun941a7052016-07-28 18:40:00 +00001011 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
Mehdi Amini44ede332015-07-09 02:09:04 +00001012 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001013 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1014 &SystemZ::FP64BitRegClass);
1015 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1016 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
Justin Lebar9c375812016-07-15 18:27:10 +00001017 MachinePointerInfo::getFixedStack(MF, FI));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001018 }
1019 // Join the stores, which are independent of one another.
1020 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
Craig Topper2d2aa0c2014-04-30 07:17:30 +00001021 makeArrayRef(&MemOps[NumFixedFPRs],
1022 SystemZ::NumArgFPRs-NumFixedFPRs));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001023 }
1024 }
1025
1026 return Chain;
1027}
1028
Benjamin Kramerc6cc58e2014-10-04 16:55:56 +00001029static bool canUseSiblingCall(const CCState &ArgCCInfo,
Bryan Chan893110e2016-04-28 00:17:23 +00001030 SmallVectorImpl<CCValAssign> &ArgLocs,
1031 SmallVectorImpl<ISD::OutputArg> &Outs) {
Richard Sandiford709bda62013-08-19 12:42:31 +00001032 // Punt if there are any indirect or stack arguments, or if the call
Bryan Chan893110e2016-04-28 00:17:23 +00001033 // needs the callee-saved argument register R6, or if the call uses
1034 // the callee-saved register arguments SwiftSelf and SwiftError.
Richard Sandiford709bda62013-08-19 12:42:31 +00001035 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1036 CCValAssign &VA = ArgLocs[I];
1037 if (VA.getLocInfo() == CCValAssign::Indirect)
1038 return false;
1039 if (!VA.isRegLoc())
1040 return false;
1041 unsigned Reg = VA.getLocReg();
Richard Sandiford0755c932013-10-01 11:26:28 +00001042 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
Richard Sandiford709bda62013-08-19 12:42:31 +00001043 return false;
Bryan Chan893110e2016-04-28 00:17:23 +00001044 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1045 return false;
Richard Sandiford709bda62013-08-19 12:42:31 +00001046 }
1047 return true;
1048}
1049
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001050SDValue
1051SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1052 SmallVectorImpl<SDValue> &InVals) const {
1053 SelectionDAG &DAG = CLI.DAG;
Andrew Trickef9de2a2013-05-25 02:42:55 +00001054 SDLoc &DL = CLI.DL;
Craig Topperb94011f2013-07-14 04:42:23 +00001055 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1056 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1057 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001058 SDValue Chain = CLI.Chain;
1059 SDValue Callee = CLI.Callee;
Richard Sandiford709bda62013-08-19 12:42:31 +00001060 bool &IsTailCall = CLI.IsTailCall;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001061 CallingConv::ID CallConv = CLI.CallConv;
1062 bool IsVarArg = CLI.IsVarArg;
1063 MachineFunction &MF = DAG.getMachineFunction();
Mehdi Amini44ede332015-07-09 02:09:04 +00001064 EVT PtrVT = getPointerTy(MF.getDataLayout());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001065
Ulrich Weigand5211f9f2015-05-05 19:30:05 +00001066 // Detect unsupported vector argument and return types.
1067 if (Subtarget.hasVector()) {
1068 VerifyVectorTypes(Outs);
1069 VerifyVectorTypes(Ins);
1070 }
1071
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001072 // Analyze the operands of the call, assigning locations to each operand.
1073 SmallVector<CCValAssign, 16> ArgLocs;
Ulrich Weigandce4c1092015-05-05 19:25:42 +00001074 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001075 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1076
Richard Sandiford709bda62013-08-19 12:42:31 +00001077 // We don't support GuaranteedTailCallOpt, only automatically-detected
1078 // sibling calls.
Bryan Chan893110e2016-04-28 00:17:23 +00001079 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
Richard Sandiford709bda62013-08-19 12:42:31 +00001080 IsTailCall = false;
1081
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001082 // Get a count of how many bytes are to be pushed on the stack.
1083 unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1084
1085 // Mark the start of the call.
Richard Sandiford709bda62013-08-19 12:42:31 +00001086 if (!IsTailCall)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001087 Chain = DAG.getCALLSEQ_START(Chain,
1088 DAG.getConstant(NumBytes, DL, PtrVT, true),
Richard Sandiford709bda62013-08-19 12:42:31 +00001089 DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001090
1091 // Copy argument values to their designated locations.
1092 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1093 SmallVector<SDValue, 8> MemOpChains;
1094 SDValue StackPtr;
1095 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1096 CCValAssign &VA = ArgLocs[I];
1097 SDValue ArgValue = OutVals[I];
1098
1099 if (VA.getLocInfo() == CCValAssign::Indirect) {
1100 // Store the argument in a stack slot and pass its address.
Ulrich Weigandcfa1d2b2016-02-19 14:10:21 +00001101 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001102 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
Justin Lebar9c375812016-07-15 18:27:10 +00001103 MemOpChains.push_back(
1104 DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1105 MachinePointerInfo::getFixedStack(MF, FI)));
Ulrich Weigandcfa1d2b2016-02-19 14:10:21 +00001106 // If the original argument was split (e.g. i128), we need
1107 // to store all parts of it here (and pass just one address).
1108 unsigned ArgIndex = Outs[I].OrigArgIndex;
1109 assert (Outs[I].PartOffset == 0);
1110 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1111 SDValue PartValue = OutVals[I + 1];
1112 unsigned PartOffset = Outs[I + 1].PartOffset;
1113 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1114 DAG.getIntPtrConstant(PartOffset, DL));
Justin Lebar9c375812016-07-15 18:27:10 +00001115 MemOpChains.push_back(
1116 DAG.getStore(Chain, DL, PartValue, Address,
1117 MachinePointerInfo::getFixedStack(MF, FI)));
Ulrich Weigandcfa1d2b2016-02-19 14:10:21 +00001118 ++I;
1119 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001120 ArgValue = SpillSlot;
1121 } else
1122 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1123
1124 if (VA.isRegLoc())
1125 // Queue up the argument copies and emit them at the end.
1126 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1127 else {
1128 assert(VA.isMemLoc() && "Argument not register or memory");
1129
1130 // Work out the address of the stack slot. Unpromoted ints and
1131 // floats are passed as right-justified 8-byte values.
1132 if (!StackPtr.getNode())
1133 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1134 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1135 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1136 Offset += 4;
1137 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001138 DAG.getIntPtrConstant(Offset, DL));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001139
1140 // Emit the store.
Justin Lebar9c375812016-07-15 18:27:10 +00001141 MemOpChains.push_back(
1142 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001143 }
1144 }
1145
1146 // Join the stores, which are independent of one another.
1147 if (!MemOpChains.empty())
Craig Topper48d114b2014-04-26 18:35:24 +00001148 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001149
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001150 // Accept direct calls by converting symbolic call addresses to the
Richard Sandiford709bda62013-08-19 12:42:31 +00001151 // associated Target* opcodes. Force %r1 to be used for indirect
1152 // tail calls.
1153 SDValue Glue;
Richard Sandiford21f5d682014-03-06 11:22:58 +00001154 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001155 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1156 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
Richard Sandiford21f5d682014-03-06 11:22:58 +00001157 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001158 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1159 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
Richard Sandiford709bda62013-08-19 12:42:31 +00001160 } else if (IsTailCall) {
1161 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1162 Glue = Chain.getValue(1);
1163 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1164 }
1165
1166 // Build a sequence of copy-to-reg nodes, chained and glued together.
1167 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1168 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1169 RegsToPass[I].second, Glue);
1170 Glue = Chain.getValue(1);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001171 }
1172
1173 // The first call operand is the chain and the second is the target address.
1174 SmallVector<SDValue, 8> Ops;
1175 Ops.push_back(Chain);
1176 Ops.push_back(Callee);
1177
1178 // Add argument registers to the end of the list so that they are
1179 // known live into the call.
1180 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1181 Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1182 RegsToPass[I].second.getValueType()));
1183
Richard Sandiford02bb0ec2014-07-10 11:44:37 +00001184 // Add a register mask operand representing the call-preserved registers.
Eric Christophera6734172015-01-31 00:06:45 +00001185 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
Eric Christopher9deb75d2015-03-11 22:42:13 +00001186 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
Richard Sandiford02bb0ec2014-07-10 11:44:37 +00001187 assert(Mask && "Missing call preserved mask for calling convention");
1188 Ops.push_back(DAG.getRegisterMask(Mask));
1189
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001190 // Glue the call to the argument copies, if any.
1191 if (Glue.getNode())
1192 Ops.push_back(Glue);
1193
1194 // Emit the call.
1195 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Richard Sandiford709bda62013-08-19 12:42:31 +00001196 if (IsTailCall)
Craig Topper48d114b2014-04-26 18:35:24 +00001197 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1198 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001199 Glue = Chain.getValue(1);
1200
1201 // Mark the end of the call, which is glued to the call itself.
1202 Chain = DAG.getCALLSEQ_END(Chain,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001203 DAG.getConstant(NumBytes, DL, PtrVT, true),
1204 DAG.getConstant(0, DL, PtrVT, true),
Andrew Trickad6d08a2013-05-29 22:03:55 +00001205 Glue, DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001206 Glue = Chain.getValue(1);
1207
1208 // Assign locations to each value returned by this call.
1209 SmallVector<CCValAssign, 16> RetLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00001210 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001211 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1212
1213 // Copy all of the result registers out of their specified physreg.
1214 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1215 CCValAssign &VA = RetLocs[I];
1216
1217 // Copy the value out, gluing the copy to the end of the call sequence.
1218 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1219 VA.getLocVT(), Glue);
1220 Chain = RetValue.getValue(1);
1221 Glue = RetValue.getValue(2);
1222
1223 // Convert the value of the return register into the value that's
1224 // being returned.
1225 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1226 }
1227
1228 return Chain;
1229}
1230
Ulrich Weiganda887f062015-08-13 13:37:06 +00001231bool SystemZTargetLowering::
1232CanLowerReturn(CallingConv::ID CallConv,
1233 MachineFunction &MF, bool isVarArg,
1234 const SmallVectorImpl<ISD::OutputArg> &Outs,
1235 LLVMContext &Context) const {
1236 // Detect unsupported vector return types.
1237 if (Subtarget.hasVector())
1238 VerifyVectorTypes(Outs);
1239
Ulrich Weigandcfa1d2b2016-02-19 14:10:21 +00001240 // Special case that we cannot easily detect in RetCC_SystemZ since
1241 // i128 is not a legal type.
1242 for (auto &Out : Outs)
1243 if (Out.ArgVT == MVT::i128)
1244 return false;
1245
Ulrich Weiganda887f062015-08-13 13:37:06 +00001246 SmallVector<CCValAssign, 16> RetLocs;
1247 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1248 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1249}
1250
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001251SDValue
Benjamin Kramerbdc49562016-06-12 15:39:02 +00001252SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1253 bool IsVarArg,
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001254 const SmallVectorImpl<ISD::OutputArg> &Outs,
1255 const SmallVectorImpl<SDValue> &OutVals,
Benjamin Kramerbdc49562016-06-12 15:39:02 +00001256 const SDLoc &DL, SelectionDAG &DAG) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001257 MachineFunction &MF = DAG.getMachineFunction();
1258
Ulrich Weigand5211f9f2015-05-05 19:30:05 +00001259 // Detect unsupported vector return types.
1260 if (Subtarget.hasVector())
1261 VerifyVectorTypes(Outs);
1262
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001263 // Assign locations to each returned value.
1264 SmallVector<CCValAssign, 16> RetLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00001265 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001266 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1267
1268 // Quick exit for void returns
1269 if (RetLocs.empty())
1270 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1271
1272 // Copy the result values into the output registers.
1273 SDValue Glue;
1274 SmallVector<SDValue, 4> RetOps;
1275 RetOps.push_back(Chain);
1276 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1277 CCValAssign &VA = RetLocs[I];
1278 SDValue RetValue = OutVals[I];
1279
1280 // Make the return register live on exit.
1281 assert(VA.isRegLoc() && "Can only return in registers!");
1282
1283 // Promote the value as required.
1284 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1285
1286 // Chain and glue the copies together.
1287 unsigned Reg = VA.getLocReg();
1288 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1289 Glue = Chain.getValue(1);
1290 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1291 }
1292
1293 // Update chain and glue.
1294 RetOps[0] = Chain;
1295 if (Glue.getNode())
1296 RetOps.push_back(Glue);
1297
Craig Topper48d114b2014-04-26 18:35:24 +00001298 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001299}
1300
Benjamin Kramerbdc49562016-06-12 15:39:02 +00001301SDValue SystemZTargetLowering::prepareVolatileOrAtomicLoad(
1302 SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const {
Richard Sandiford9afe6132013-12-10 10:36:34 +00001303 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
1304}
1305
Ulrich Weigand57c85f52015-04-01 12:51:43 +00001306// Return true if Op is an intrinsic node with chain that returns the CC value
1307// as its only (other) argument. Provide the associated SystemZISD opcode and
1308// the mask of valid CC values if so.
1309static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1310 unsigned &CCValid) {
1311 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1312 switch (Id) {
1313 case Intrinsic::s390_tbegin:
1314 Opcode = SystemZISD::TBEGIN;
1315 CCValid = SystemZ::CCMASK_TBEGIN;
1316 return true;
1317
1318 case Intrinsic::s390_tbegin_nofloat:
1319 Opcode = SystemZISD::TBEGIN_NOFLOAT;
1320 CCValid = SystemZ::CCMASK_TBEGIN;
1321 return true;
1322
1323 case Intrinsic::s390_tend:
1324 Opcode = SystemZISD::TEND;
1325 CCValid = SystemZ::CCMASK_TEND;
1326 return true;
1327
1328 default:
1329 return false;
1330 }
1331}
1332
Ulrich Weigandc1708b22015-05-05 19:31:09 +00001333// Return true if Op is an intrinsic node without chain that returns the
1334// CC value as its final argument. Provide the associated SystemZISD
1335// opcode and the mask of valid CC values if so.
1336static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1337 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1338 switch (Id) {
1339 case Intrinsic::s390_vpkshs:
1340 case Intrinsic::s390_vpksfs:
1341 case Intrinsic::s390_vpksgs:
1342 Opcode = SystemZISD::PACKS_CC;
1343 CCValid = SystemZ::CCMASK_VCMP;
1344 return true;
1345
1346 case Intrinsic::s390_vpklshs:
1347 case Intrinsic::s390_vpklsfs:
1348 case Intrinsic::s390_vpklsgs:
1349 Opcode = SystemZISD::PACKLS_CC;
1350 CCValid = SystemZ::CCMASK_VCMP;
1351 return true;
1352
1353 case Intrinsic::s390_vceqbs:
1354 case Intrinsic::s390_vceqhs:
1355 case Intrinsic::s390_vceqfs:
1356 case Intrinsic::s390_vceqgs:
1357 Opcode = SystemZISD::VICMPES;
1358 CCValid = SystemZ::CCMASK_VCMP;
1359 return true;
1360
1361 case Intrinsic::s390_vchbs:
1362 case Intrinsic::s390_vchhs:
1363 case Intrinsic::s390_vchfs:
1364 case Intrinsic::s390_vchgs:
1365 Opcode = SystemZISD::VICMPHS;
1366 CCValid = SystemZ::CCMASK_VCMP;
1367 return true;
1368
1369 case Intrinsic::s390_vchlbs:
1370 case Intrinsic::s390_vchlhs:
1371 case Intrinsic::s390_vchlfs:
1372 case Intrinsic::s390_vchlgs:
1373 Opcode = SystemZISD::VICMPHLS;
1374 CCValid = SystemZ::CCMASK_VCMP;
1375 return true;
1376
1377 case Intrinsic::s390_vtm:
1378 Opcode = SystemZISD::VTM;
1379 CCValid = SystemZ::CCMASK_VCMP;
1380 return true;
1381
1382 case Intrinsic::s390_vfaebs:
1383 case Intrinsic::s390_vfaehs:
1384 case Intrinsic::s390_vfaefs:
1385 Opcode = SystemZISD::VFAE_CC;
1386 CCValid = SystemZ::CCMASK_ANY;
1387 return true;
1388
1389 case Intrinsic::s390_vfaezbs:
1390 case Intrinsic::s390_vfaezhs:
1391 case Intrinsic::s390_vfaezfs:
1392 Opcode = SystemZISD::VFAEZ_CC;
1393 CCValid = SystemZ::CCMASK_ANY;
1394 return true;
1395
1396 case Intrinsic::s390_vfeebs:
1397 case Intrinsic::s390_vfeehs:
1398 case Intrinsic::s390_vfeefs:
1399 Opcode = SystemZISD::VFEE_CC;
1400 CCValid = SystemZ::CCMASK_ANY;
1401 return true;
1402
1403 case Intrinsic::s390_vfeezbs:
1404 case Intrinsic::s390_vfeezhs:
1405 case Intrinsic::s390_vfeezfs:
1406 Opcode = SystemZISD::VFEEZ_CC;
1407 CCValid = SystemZ::CCMASK_ANY;
1408 return true;
1409
1410 case Intrinsic::s390_vfenebs:
1411 case Intrinsic::s390_vfenehs:
1412 case Intrinsic::s390_vfenefs:
1413 Opcode = SystemZISD::VFENE_CC;
1414 CCValid = SystemZ::CCMASK_ANY;
1415 return true;
1416
1417 case Intrinsic::s390_vfenezbs:
1418 case Intrinsic::s390_vfenezhs:
1419 case Intrinsic::s390_vfenezfs:
1420 Opcode = SystemZISD::VFENEZ_CC;
1421 CCValid = SystemZ::CCMASK_ANY;
1422 return true;
1423
1424 case Intrinsic::s390_vistrbs:
1425 case Intrinsic::s390_vistrhs:
1426 case Intrinsic::s390_vistrfs:
1427 Opcode = SystemZISD::VISTR_CC;
1428 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1429 return true;
1430
1431 case Intrinsic::s390_vstrcbs:
1432 case Intrinsic::s390_vstrchs:
1433 case Intrinsic::s390_vstrcfs:
1434 Opcode = SystemZISD::VSTRC_CC;
1435 CCValid = SystemZ::CCMASK_ANY;
1436 return true;
1437
1438 case Intrinsic::s390_vstrczbs:
1439 case Intrinsic::s390_vstrczhs:
1440 case Intrinsic::s390_vstrczfs:
1441 Opcode = SystemZISD::VSTRCZ_CC;
1442 CCValid = SystemZ::CCMASK_ANY;
1443 return true;
1444
1445 case Intrinsic::s390_vfcedbs:
1446 Opcode = SystemZISD::VFCMPES;
1447 CCValid = SystemZ::CCMASK_VCMP;
1448 return true;
1449
1450 case Intrinsic::s390_vfchdbs:
1451 Opcode = SystemZISD::VFCMPHS;
1452 CCValid = SystemZ::CCMASK_VCMP;
1453 return true;
1454
1455 case Intrinsic::s390_vfchedbs:
1456 Opcode = SystemZISD::VFCMPHES;
1457 CCValid = SystemZ::CCMASK_VCMP;
1458 return true;
1459
1460 case Intrinsic::s390_vftcidb:
1461 Opcode = SystemZISD::VFTCI;
1462 CCValid = SystemZ::CCMASK_VCMP;
1463 return true;
1464
Marcin Koscielnickicf7cc722016-07-10 14:41:22 +00001465 case Intrinsic::s390_tdc:
1466 Opcode = SystemZISD::TDC;
1467 CCValid = SystemZ::CCMASK_TDC;
1468 return true;
1469
Ulrich Weigandc1708b22015-05-05 19:31:09 +00001470 default:
1471 return false;
1472 }
1473}
1474
Ulrich Weigand57c85f52015-04-01 12:51:43 +00001475// Emit an intrinsic with chain with a glued value instead of its CC result.
1476static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op,
1477 unsigned Opcode) {
1478 // Copy all operands except the intrinsic ID.
1479 unsigned NumOps = Op.getNumOperands();
1480 SmallVector<SDValue, 6> Ops;
1481 Ops.reserve(NumOps - 1);
1482 Ops.push_back(Op.getOperand(0));
1483 for (unsigned I = 2; I < NumOps; ++I)
1484 Ops.push_back(Op.getOperand(I));
1485
1486 assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1487 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1488 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1489 SDValue OldChain = SDValue(Op.getNode(), 1);
1490 SDValue NewChain = SDValue(Intr.getNode(), 0);
1491 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1492 return Intr;
1493}
1494
Ulrich Weigandc1708b22015-05-05 19:31:09 +00001495// Emit an intrinsic with a glued value instead of its CC result.
1496static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op,
1497 unsigned Opcode) {
1498 // Copy all operands except the intrinsic ID.
1499 unsigned NumOps = Op.getNumOperands();
1500 SmallVector<SDValue, 6> Ops;
1501 Ops.reserve(NumOps - 1);
1502 for (unsigned I = 1; I < NumOps; ++I)
1503 Ops.push_back(Op.getOperand(I));
1504
1505 if (Op->getNumValues() == 1)
1506 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops);
1507 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result");
1508 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue);
1509 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1510}
1511
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001512// CC is a comparison that will be implemented using an integer or
1513// floating-point comparison. Return the condition code mask for
1514// a branch on true. In the integer case, CCMASK_CMP_UO is set for
1515// unsigned comparisons and clear for signed ones. In the floating-point
1516// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1517static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1518#define CONV(X) \
1519 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1520 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1521 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1522
1523 switch (CC) {
1524 default:
1525 llvm_unreachable("Invalid integer condition!");
1526
1527 CONV(EQ);
1528 CONV(NE);
1529 CONV(GT);
1530 CONV(GE);
1531 CONV(LT);
1532 CONV(LE);
1533
1534 case ISD::SETO: return SystemZ::CCMASK_CMP_O;
1535 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1536 }
1537#undef CONV
1538}
1539
Richard Sandifordf722a8e302013-10-16 11:10:55 +00001540// Return a sequence for getting a 1 from an IPM result when CC has a
1541// value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1542// The handling of CC values outside CCValid doesn't matter.
1543static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1544 // Deal with cases where the result can be taken directly from a bit
1545 // of the IPM result.
1546 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1547 return IPMConversion(0, 0, SystemZ::IPM_CC);
1548 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1549 return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1550
1551 // Deal with cases where we can add a value to force the sign bit
1552 // to contain the right value. Putting the bit in 31 means we can
1553 // use SRL rather than RISBG(L), and also makes it easier to get a
1554 // 0/-1 value, so it has priority over the other tests below.
1555 //
1556 // These sequences rely on the fact that the upper two bits of the
1557 // IPM result are zero.
1558 uint64_t TopBit = uint64_t(1) << 31;
1559 if (CCMask == (CCValid & SystemZ::CCMASK_0))
1560 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1561 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1562 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1563 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1564 | SystemZ::CCMASK_1
1565 | SystemZ::CCMASK_2)))
1566 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1567 if (CCMask == (CCValid & SystemZ::CCMASK_3))
1568 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1569 if (CCMask == (CCValid & (SystemZ::CCMASK_1
1570 | SystemZ::CCMASK_2
1571 | SystemZ::CCMASK_3)))
1572 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1573
1574 // Next try inverting the value and testing a bit. 0/1 could be
1575 // handled this way too, but we dealt with that case above.
1576 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1577 return IPMConversion(-1, 0, SystemZ::IPM_CC);
1578
1579 // Handle cases where adding a value forces a non-sign bit to contain
1580 // the right value.
1581 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1582 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1583 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1584 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1585
Alp Tokercb402912014-01-24 17:20:08 +00001586 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are
Richard Sandifordf722a8e302013-10-16 11:10:55 +00001587 // can be done by inverting the low CC bit and applying one of the
1588 // sign-based extractions above.
1589 if (CCMask == (CCValid & SystemZ::CCMASK_1))
1590 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1591 if (CCMask == (CCValid & SystemZ::CCMASK_2))
1592 return IPMConversion(1 << SystemZ::IPM_CC,
1593 TopBit - (3 << SystemZ::IPM_CC), 31);
1594 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1595 | SystemZ::CCMASK_1
1596 | SystemZ::CCMASK_3)))
1597 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1598 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1599 | SystemZ::CCMASK_2
1600 | SystemZ::CCMASK_3)))
1601 return IPMConversion(1 << SystemZ::IPM_CC,
1602 TopBit - (1 << SystemZ::IPM_CC), 31);
1603
1604 llvm_unreachable("Unexpected CC combination");
1605}
1606
Richard Sandifordd420f732013-12-13 15:28:45 +00001607// If C can be converted to a comparison against zero, adjust the operands
Richard Sandiforda0757082013-08-01 10:29:45 +00001608// as necessary.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00001609static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001610 if (C.ICmpType == SystemZICMP::UnsignedOnly)
Richard Sandiforda0757082013-08-01 10:29:45 +00001611 return;
1612
Richard Sandiford21f5d682014-03-06 11:22:58 +00001613 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
Richard Sandiforda0757082013-08-01 10:29:45 +00001614 if (!ConstOp1)
1615 return;
1616
1617 int64_t Value = ConstOp1->getSExtValue();
Richard Sandifordd420f732013-12-13 15:28:45 +00001618 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1619 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1620 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1621 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1622 C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001623 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
Richard Sandiforda0757082013-08-01 10:29:45 +00001624 }
1625}
1626
Richard Sandifordd420f732013-12-13 15:28:45 +00001627// If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1628// adjust the operands as necessary.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00001629static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
1630 Comparison &C) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001631 // For us to make any changes, it must a comparison between a single-use
1632 // load and a constant.
Richard Sandifordd420f732013-12-13 15:28:45 +00001633 if (!C.Op0.hasOneUse() ||
1634 C.Op0.getOpcode() != ISD::LOAD ||
1635 C.Op1.getOpcode() != ISD::Constant)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001636 return;
1637
1638 // We must have an 8- or 16-bit load.
Richard Sandiford21f5d682014-03-06 11:22:58 +00001639 auto *Load = cast<LoadSDNode>(C.Op0);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001640 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1641 if (NumBits != 8 && NumBits != 16)
1642 return;
1643
1644 // The load must be an extending one and the constant must be within the
1645 // range of the unextended value.
Richard Sandiford21f5d682014-03-06 11:22:58 +00001646 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
Richard Sandifordd420f732013-12-13 15:28:45 +00001647 uint64_t Value = ConstOp1->getZExtValue();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001648 uint64_t Mask = (1 << NumBits) - 1;
1649 if (Load->getExtensionType() == ISD::SEXTLOAD) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001650 // Make sure that ConstOp1 is in range of C.Op0.
1651 int64_t SignedValue = ConstOp1->getSExtValue();
1652 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001653 return;
Richard Sandifordd420f732013-12-13 15:28:45 +00001654 if (C.ICmpType != SystemZICMP::SignedOnly) {
1655 // Unsigned comparison between two sign-extended values is equivalent
1656 // to unsigned comparison between two zero-extended values.
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001657 Value &= Mask;
Richard Sandifordd420f732013-12-13 15:28:45 +00001658 } else if (NumBits == 8) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001659 // Try to treat the comparison as unsigned, so that we can use CLI.
1660 // Adjust CCMask and Value as necessary.
Richard Sandifordd420f732013-12-13 15:28:45 +00001661 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001662 // Test whether the high bit of the byte is set.
Richard Sandifordd420f732013-12-13 15:28:45 +00001663 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1664 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001665 // Test whether the high bit of the byte is clear.
Richard Sandifordd420f732013-12-13 15:28:45 +00001666 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001667 else
1668 // No instruction exists for this combination.
1669 return;
Richard Sandifordd420f732013-12-13 15:28:45 +00001670 C.ICmpType = SystemZICMP::UnsignedOnly;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001671 }
1672 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1673 if (Value > Mask)
1674 return;
Ulrich Weigand47f36492015-12-16 18:04:06 +00001675 // If the constant is in range, we can use any comparison.
1676 C.ICmpType = SystemZICMP::Any;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001677 } else
1678 return;
1679
1680 // Make sure that the first operand is an i32 of the right extension type.
Richard Sandifordd420f732013-12-13 15:28:45 +00001681 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1682 ISD::SEXTLOAD :
1683 ISD::ZEXTLOAD);
1684 if (C.Op0.getValueType() != MVT::i32 ||
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001685 Load->getExtensionType() != ExtType)
Justin Lebar9c375812016-07-15 18:27:10 +00001686 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
1687 Load->getBasePtr(), Load->getPointerInfo(),
1688 Load->getMemoryVT(), Load->getAlignment(),
1689 Load->getMemOperand()->getFlags());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001690
1691 // Make sure that the second operand is an i32 with the right value.
Richard Sandifordd420f732013-12-13 15:28:45 +00001692 if (C.Op1.getValueType() != MVT::i32 ||
1693 Value != ConstOp1->getZExtValue())
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001694 C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001695}
1696
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001697// Return true if Op is either an unextended load, or a load suitable
1698// for integer register-memory comparisons of type ICmpType.
1699static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
Richard Sandiford21f5d682014-03-06 11:22:58 +00001700 auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001701 if (Load) {
1702 // There are no instructions to compare a register with a memory byte.
1703 if (Load->getMemoryVT() == MVT::i8)
1704 return false;
1705 // Otherwise decide on extension type.
Richard Sandiford24e597b2013-08-23 11:27:19 +00001706 switch (Load->getExtensionType()) {
1707 case ISD::NON_EXTLOAD:
Richard Sandiford24e597b2013-08-23 11:27:19 +00001708 return true;
1709 case ISD::SEXTLOAD:
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001710 return ICmpType != SystemZICMP::UnsignedOnly;
Richard Sandiford24e597b2013-08-23 11:27:19 +00001711 case ISD::ZEXTLOAD:
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001712 return ICmpType != SystemZICMP::SignedOnly;
Richard Sandiford24e597b2013-08-23 11:27:19 +00001713 default:
1714 break;
1715 }
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001716 }
Richard Sandiford24e597b2013-08-23 11:27:19 +00001717 return false;
1718}
1719
Richard Sandifordd420f732013-12-13 15:28:45 +00001720// Return true if it is better to swap the operands of C.
1721static bool shouldSwapCmpOperands(const Comparison &C) {
Richard Sandiford24e597b2013-08-23 11:27:19 +00001722 // Leave f128 comparisons alone, since they have no memory forms.
Richard Sandifordd420f732013-12-13 15:28:45 +00001723 if (C.Op0.getValueType() == MVT::f128)
Richard Sandiford24e597b2013-08-23 11:27:19 +00001724 return false;
1725
1726 // Always keep a floating-point constant second, since comparisons with
1727 // zero can use LOAD TEST and comparisons with other constants make a
1728 // natural memory operand.
Richard Sandifordd420f732013-12-13 15:28:45 +00001729 if (isa<ConstantFPSDNode>(C.Op1))
Richard Sandiford24e597b2013-08-23 11:27:19 +00001730 return false;
1731
1732 // Never swap comparisons with zero since there are many ways to optimize
1733 // those later.
Richard Sandiford21f5d682014-03-06 11:22:58 +00001734 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
Richard Sandifordd420f732013-12-13 15:28:45 +00001735 if (ConstOp1 && ConstOp1->getZExtValue() == 0)
Richard Sandiford24e597b2013-08-23 11:27:19 +00001736 return false;
1737
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001738 // Also keep natural memory operands second if the loaded value is
1739 // only used here. Several comparisons have memory forms.
Richard Sandifordd420f732013-12-13 15:28:45 +00001740 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001741 return false;
1742
Richard Sandiford24e597b2013-08-23 11:27:19 +00001743 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1744 // In that case we generally prefer the memory to be second.
Richard Sandifordd420f732013-12-13 15:28:45 +00001745 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
Richard Sandiford24e597b2013-08-23 11:27:19 +00001746 // The only exceptions are when the second operand is a constant and
1747 // we can use things like CHHSI.
Richard Sandifordd420f732013-12-13 15:28:45 +00001748 if (!ConstOp1)
Richard Sandiford24e597b2013-08-23 11:27:19 +00001749 return true;
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001750 // The unsigned memory-immediate instructions can handle 16-bit
1751 // unsigned integers.
Richard Sandifordd420f732013-12-13 15:28:45 +00001752 if (C.ICmpType != SystemZICMP::SignedOnly &&
1753 isUInt<16>(ConstOp1->getZExtValue()))
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001754 return false;
1755 // The signed memory-immediate instructions can handle 16-bit
1756 // signed integers.
Richard Sandifordd420f732013-12-13 15:28:45 +00001757 if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1758 isInt<16>(ConstOp1->getSExtValue()))
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001759 return false;
Richard Sandiford24e597b2013-08-23 11:27:19 +00001760 return true;
1761 }
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001762
1763 // Try to promote the use of CGFR and CLGFR.
Richard Sandifordd420f732013-12-13 15:28:45 +00001764 unsigned Opcode0 = C.Op0.getOpcode();
1765 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001766 return true;
Richard Sandifordd420f732013-12-13 15:28:45 +00001767 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001768 return true;
Richard Sandifordd420f732013-12-13 15:28:45 +00001769 if (C.ICmpType != SystemZICMP::SignedOnly &&
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001770 Opcode0 == ISD::AND &&
Richard Sandifordd420f732013-12-13 15:28:45 +00001771 C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1772 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001773 return true;
1774
Richard Sandiford24e597b2013-08-23 11:27:19 +00001775 return false;
1776}
1777
Richard Sandiford73170f82013-12-11 11:45:08 +00001778// Return a version of comparison CC mask CCMask in which the LT and GT
1779// actions are swapped.
1780static unsigned reverseCCMask(unsigned CCMask) {
1781 return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1782 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1783 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1784 (CCMask & SystemZ::CCMASK_CMP_UO));
1785}
1786
Richard Sandiford0847c452013-12-13 15:50:30 +00001787// Check whether C tests for equality between X and Y and whether X - Y
1788// or Y - X is also computed. In that case it's better to compare the
1789// result of the subtraction against zero.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00001790static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
1791 Comparison &C) {
Richard Sandiford0847c452013-12-13 15:50:30 +00001792 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1793 C.CCMask == SystemZ::CCMASK_CMP_NE) {
Richard Sandiford28c111e2014-03-06 11:00:15 +00001794 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
Richard Sandiford0847c452013-12-13 15:50:30 +00001795 SDNode *N = *I;
1796 if (N->getOpcode() == ISD::SUB &&
1797 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1798 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1799 C.Op0 = SDValue(N, 0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001800 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
Richard Sandiford0847c452013-12-13 15:50:30 +00001801 return;
1802 }
1803 }
1804 }
1805}
1806
Richard Sandifordd420f732013-12-13 15:28:45 +00001807// Check whether C compares a floating-point value with zero and if that
1808// floating-point value is also negated. In this case we can use the
1809// negation to set CC, so avoiding separate LOAD AND TEST and
1810// LOAD (NEGATIVE/COMPLEMENT) instructions.
1811static void adjustForFNeg(Comparison &C) {
Richard Sandiford21f5d682014-03-06 11:22:58 +00001812 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
Richard Sandiford73170f82013-12-11 11:45:08 +00001813 if (C1 && C1->isZero()) {
Richard Sandiford28c111e2014-03-06 11:00:15 +00001814 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
Richard Sandiford73170f82013-12-11 11:45:08 +00001815 SDNode *N = *I;
1816 if (N->getOpcode() == ISD::FNEG) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001817 C.Op0 = SDValue(N, 0);
1818 C.CCMask = reverseCCMask(C.CCMask);
Richard Sandiford73170f82013-12-11 11:45:08 +00001819 return;
1820 }
1821 }
1822 }
1823}
1824
Richard Sandifordd420f732013-12-13 15:28:45 +00001825// Check whether C compares (shl X, 32) with 0 and whether X is
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001826// also sign-extended. In that case it is better to test the result
1827// of the sign extension using LTGFR.
1828//
1829// This case is important because InstCombine transforms a comparison
1830// with (sext (trunc X)) into a comparison with (shl X, 32).
Richard Sandifordd420f732013-12-13 15:28:45 +00001831static void adjustForLTGFR(Comparison &C) {
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001832 // Check for a comparison between (shl X, 32) and 0.
Richard Sandifordd420f732013-12-13 15:28:45 +00001833 if (C.Op0.getOpcode() == ISD::SHL &&
1834 C.Op0.getValueType() == MVT::i64 &&
1835 C.Op1.getOpcode() == ISD::Constant &&
1836 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
Richard Sandiford21f5d682014-03-06 11:22:58 +00001837 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001838 if (C1 && C1->getZExtValue() == 32) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001839 SDValue ShlOp0 = C.Op0.getOperand(0);
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001840 // See whether X has any SIGN_EXTEND_INREG uses.
Richard Sandiford28c111e2014-03-06 11:00:15 +00001841 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001842 SDNode *N = *I;
1843 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1844 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001845 C.Op0 = SDValue(N, 0);
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001846 return;
1847 }
1848 }
1849 }
1850 }
1851}
1852
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00001853// If C compares the truncation of an extending load, try to compare
1854// the untruncated value instead. This exposes more opportunities to
1855// reuse CC.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00001856static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
1857 Comparison &C) {
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00001858 if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1859 C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1860 C.Op1.getOpcode() == ISD::Constant &&
1861 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
Richard Sandiford21f5d682014-03-06 11:22:58 +00001862 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00001863 if (L->getMemoryVT().getStoreSizeInBits()
1864 <= C.Op0.getValueType().getSizeInBits()) {
1865 unsigned Type = L->getExtensionType();
1866 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
1867 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
1868 C.Op0 = C.Op0.getOperand(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001869 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00001870 }
1871 }
1872 }
1873}
1874
Richard Sandiford030c1652013-09-13 09:09:50 +00001875// Return true if shift operation N has an in-range constant shift value.
1876// Store it in ShiftVal if so.
1877static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
Richard Sandiford21f5d682014-03-06 11:22:58 +00001878 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
Richard Sandiford030c1652013-09-13 09:09:50 +00001879 if (!Shift)
1880 return false;
1881
1882 uint64_t Amount = Shift->getZExtValue();
1883 if (Amount >= N.getValueType().getSizeInBits())
1884 return false;
1885
1886 ShiftVal = Amount;
1887 return true;
1888}
1889
1890// Check whether an AND with Mask is suitable for a TEST UNDER MASK
1891// instruction and whether the CC value is descriptive enough to handle
1892// a comparison of type Opcode between the AND result and CmpVal.
1893// CCMask says which comparison result is being tested and BitSize is
1894// the number of bits in the operands. If TEST UNDER MASK can be used,
1895// return the corresponding CC mask, otherwise return 0.
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001896static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1897 uint64_t Mask, uint64_t CmpVal,
1898 unsigned ICmpType) {
Richard Sandiford113c8702013-09-03 15:38:35 +00001899 assert(Mask != 0 && "ANDs with zero should have been removed by now");
1900
Richard Sandiford030c1652013-09-13 09:09:50 +00001901 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1902 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1903 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1904 return 0;
1905
Richard Sandiford113c8702013-09-03 15:38:35 +00001906 // Work out the masks for the lowest and highest bits.
1907 unsigned HighShift = 63 - countLeadingZeros(Mask);
1908 uint64_t High = uint64_t(1) << HighShift;
1909 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1910
1911 // Signed ordered comparisons are effectively unsigned if the sign
1912 // bit is dropped.
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001913 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
Richard Sandiford113c8702013-09-03 15:38:35 +00001914
1915 // Check for equality comparisons with 0, or the equivalent.
1916 if (CmpVal == 0) {
1917 if (CCMask == SystemZ::CCMASK_CMP_EQ)
1918 return SystemZ::CCMASK_TM_ALL_0;
1919 if (CCMask == SystemZ::CCMASK_CMP_NE)
1920 return SystemZ::CCMASK_TM_SOME_1;
1921 }
Ulrich Weigand4a4d4ab2016-02-01 18:31:19 +00001922 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
Richard Sandiford113c8702013-09-03 15:38:35 +00001923 if (CCMask == SystemZ::CCMASK_CMP_LT)
1924 return SystemZ::CCMASK_TM_ALL_0;
1925 if (CCMask == SystemZ::CCMASK_CMP_GE)
1926 return SystemZ::CCMASK_TM_SOME_1;
1927 }
1928 if (EffectivelyUnsigned && CmpVal < Low) {
1929 if (CCMask == SystemZ::CCMASK_CMP_LE)
1930 return SystemZ::CCMASK_TM_ALL_0;
1931 if (CCMask == SystemZ::CCMASK_CMP_GT)
1932 return SystemZ::CCMASK_TM_SOME_1;
1933 }
1934
1935 // Check for equality comparisons with the mask, or the equivalent.
1936 if (CmpVal == Mask) {
1937 if (CCMask == SystemZ::CCMASK_CMP_EQ)
1938 return SystemZ::CCMASK_TM_ALL_1;
1939 if (CCMask == SystemZ::CCMASK_CMP_NE)
1940 return SystemZ::CCMASK_TM_SOME_0;
1941 }
1942 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
1943 if (CCMask == SystemZ::CCMASK_CMP_GT)
1944 return SystemZ::CCMASK_TM_ALL_1;
1945 if (CCMask == SystemZ::CCMASK_CMP_LE)
1946 return SystemZ::CCMASK_TM_SOME_0;
1947 }
1948 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
1949 if (CCMask == SystemZ::CCMASK_CMP_GE)
1950 return SystemZ::CCMASK_TM_ALL_1;
1951 if (CCMask == SystemZ::CCMASK_CMP_LT)
1952 return SystemZ::CCMASK_TM_SOME_0;
1953 }
1954
1955 // Check for ordered comparisons with the top bit.
1956 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
1957 if (CCMask == SystemZ::CCMASK_CMP_LE)
1958 return SystemZ::CCMASK_TM_MSB_0;
1959 if (CCMask == SystemZ::CCMASK_CMP_GT)
1960 return SystemZ::CCMASK_TM_MSB_1;
1961 }
1962 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
1963 if (CCMask == SystemZ::CCMASK_CMP_LT)
1964 return SystemZ::CCMASK_TM_MSB_0;
1965 if (CCMask == SystemZ::CCMASK_CMP_GE)
1966 return SystemZ::CCMASK_TM_MSB_1;
1967 }
1968
1969 // If there are just two bits, we can do equality checks for Low and High
1970 // as well.
1971 if (Mask == Low + High) {
1972 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
1973 return SystemZ::CCMASK_TM_MIXED_MSB_0;
1974 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
1975 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
1976 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
1977 return SystemZ::CCMASK_TM_MIXED_MSB_1;
1978 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
1979 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
1980 }
1981
1982 // Looks like we've exhausted our options.
1983 return 0;
1984}
1985
Richard Sandifordd420f732013-12-13 15:28:45 +00001986// See whether C can be implemented as a TEST UNDER MASK instruction.
1987// Update the arguments with the TM version if so.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00001988static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
1989 Comparison &C) {
Richard Sandiford113c8702013-09-03 15:38:35 +00001990 // Check that we have a comparison with a constant.
Richard Sandiford21f5d682014-03-06 11:22:58 +00001991 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
Richard Sandifordd420f732013-12-13 15:28:45 +00001992 if (!ConstOp1)
Richard Sandiford35b9be22013-08-28 10:31:43 +00001993 return;
Richard Sandifordd420f732013-12-13 15:28:45 +00001994 uint64_t CmpVal = ConstOp1->getZExtValue();
Richard Sandiford35b9be22013-08-28 10:31:43 +00001995
1996 // Check whether the nonconstant input is an AND with a constant mask.
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001997 Comparison NewC(C);
1998 uint64_t MaskVal;
Craig Topper062a2ba2014-04-25 05:30:21 +00001999 ConstantSDNode *Mask = nullptr;
Richard Sandifordc3dc4472013-12-13 15:46:55 +00002000 if (C.Op0.getOpcode() == ISD::AND) {
2001 NewC.Op0 = C.Op0.getOperand(0);
2002 NewC.Op1 = C.Op0.getOperand(1);
2003 Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2004 if (!Mask)
2005 return;
2006 MaskVal = Mask->getZExtValue();
2007 } else {
2008 // There is no instruction to compare with a 64-bit immediate
2009 // so use TMHH instead if possible. We need an unsigned ordered
2010 // comparison with an i64 immediate.
2011 if (NewC.Op0.getValueType() != MVT::i64 ||
2012 NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2013 NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2014 NewC.ICmpType == SystemZICMP::SignedOnly)
2015 return;
2016 // Convert LE and GT comparisons into LT and GE.
2017 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2018 NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2019 if (CmpVal == uint64_t(-1))
2020 return;
2021 CmpVal += 1;
2022 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2023 }
2024 // If the low N bits of Op1 are zero than the low N bits of Op0 can
2025 // be masked off without changing the result.
2026 MaskVal = -(CmpVal & -CmpVal);
2027 NewC.ICmpType = SystemZICMP::UnsignedOnly;
2028 }
Ulrich Weigandb8d76fb2015-03-30 13:46:59 +00002029 if (!MaskVal)
2030 return;
Richard Sandiford35b9be22013-08-28 10:31:43 +00002031
Richard Sandiford113c8702013-09-03 15:38:35 +00002032 // Check whether the combination of mask, comparison value and comparison
2033 // type are suitable.
Richard Sandifordc3dc4472013-12-13 15:46:55 +00002034 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits();
Richard Sandiford030c1652013-09-13 09:09:50 +00002035 unsigned NewCCMask, ShiftVal;
Richard Sandifordc3dc4472013-12-13 15:46:55 +00002036 if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2037 NewC.Op0.getOpcode() == ISD::SHL &&
2038 isSimpleShift(NewC.Op0, ShiftVal) &&
2039 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2040 MaskVal >> ShiftVal,
Richard Sandiford030c1652013-09-13 09:09:50 +00002041 CmpVal >> ShiftVal,
2042 SystemZICMP::Any))) {
Richard Sandifordc3dc4472013-12-13 15:46:55 +00002043 NewC.Op0 = NewC.Op0.getOperand(0);
2044 MaskVal >>= ShiftVal;
2045 } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2046 NewC.Op0.getOpcode() == ISD::SRL &&
2047 isSimpleShift(NewC.Op0, ShiftVal) &&
2048 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
Richard Sandiford030c1652013-09-13 09:09:50 +00002049 MaskVal << ShiftVal,
2050 CmpVal << ShiftVal,
2051 SystemZICMP::UnsignedOnly))) {
Richard Sandifordc3dc4472013-12-13 15:46:55 +00002052 NewC.Op0 = NewC.Op0.getOperand(0);
2053 MaskVal <<= ShiftVal;
Richard Sandiford030c1652013-09-13 09:09:50 +00002054 } else {
Richard Sandifordc3dc4472013-12-13 15:46:55 +00002055 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2056 NewC.ICmpType);
Richard Sandiford030c1652013-09-13 09:09:50 +00002057 if (!NewCCMask)
2058 return;
2059 }
Richard Sandiford113c8702013-09-03 15:38:35 +00002060
Richard Sandiford35b9be22013-08-28 10:31:43 +00002061 // Go ahead and make the change.
Richard Sandifordd420f732013-12-13 15:28:45 +00002062 C.Opcode = SystemZISD::TM;
Richard Sandifordc3dc4472013-12-13 15:46:55 +00002063 C.Op0 = NewC.Op0;
2064 if (Mask && Mask->getZExtValue() == MaskVal)
2065 C.Op1 = SDValue(Mask, 0);
2066 else
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002067 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
Richard Sandifordd420f732013-12-13 15:28:45 +00002068 C.CCValid = SystemZ::CCMASK_TM;
2069 C.CCMask = NewCCMask;
Richard Sandiford35b9be22013-08-28 10:31:43 +00002070}
2071
Ulrich Weigand57c85f52015-04-01 12:51:43 +00002072// Return a Comparison that tests the condition-code result of intrinsic
2073// node Call against constant integer CC using comparison code Cond.
2074// Opcode is the opcode of the SystemZISD operation for the intrinsic
2075// and CCValid is the set of possible condition-code results.
2076static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2077 SDValue Call, unsigned CCValid, uint64_t CC,
2078 ISD::CondCode Cond) {
2079 Comparison C(Call, SDValue());
2080 C.Opcode = Opcode;
2081 C.CCValid = CCValid;
2082 if (Cond == ISD::SETEQ)
2083 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2084 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2085 else if (Cond == ISD::SETNE)
2086 // ...and the inverse of that.
2087 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2088 else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2089 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2090 // always true for CC>3.
Justin Bognera6d38362015-06-23 15:38:24 +00002091 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
Ulrich Weigand57c85f52015-04-01 12:51:43 +00002092 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2093 // ...and the inverse of that.
Justin Bognera6d38362015-06-23 15:38:24 +00002094 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
Ulrich Weigand57c85f52015-04-01 12:51:43 +00002095 else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2096 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2097 // always true for CC>3.
Justin Bognera6d38362015-06-23 15:38:24 +00002098 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
Ulrich Weigand57c85f52015-04-01 12:51:43 +00002099 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2100 // ...and the inverse of that.
Justin Bognera6d38362015-06-23 15:38:24 +00002101 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
Ulrich Weigand57c85f52015-04-01 12:51:43 +00002102 else
2103 llvm_unreachable("Unexpected integer comparison type");
2104 C.CCMask &= CCValid;
2105 return C;
2106}
2107
Richard Sandifordd420f732013-12-13 15:28:45 +00002108// Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2109static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
Benjamin Kramerbdc49562016-06-12 15:39:02 +00002110 ISD::CondCode Cond, const SDLoc &DL) {
Ulrich Weigand57c85f52015-04-01 12:51:43 +00002111 if (CmpOp1.getOpcode() == ISD::Constant) {
2112 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2113 unsigned Opcode, CCValid;
2114 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2115 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2116 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2117 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
Ulrich Weigandc1708b22015-05-05 19:31:09 +00002118 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2119 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2120 isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2121 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
Ulrich Weigand57c85f52015-04-01 12:51:43 +00002122 }
Richard Sandifordd420f732013-12-13 15:28:45 +00002123 Comparison C(CmpOp0, CmpOp1);
2124 C.CCMask = CCMaskForCondCode(Cond);
2125 if (C.Op0.getValueType().isFloatingPoint()) {
2126 C.CCValid = SystemZ::CCMASK_FCMP;
2127 C.Opcode = SystemZISD::FCMP;
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00002128 adjustForFNeg(C);
Richard Sandiford5bc670b2013-09-06 11:51:39 +00002129 } else {
Richard Sandifordd420f732013-12-13 15:28:45 +00002130 C.CCValid = SystemZ::CCMASK_ICMP;
2131 C.Opcode = SystemZISD::ICMP;
Richard Sandiford5bc670b2013-09-06 11:51:39 +00002132 // Choose the type of comparison. Equality and inequality tests can
2133 // use either signed or unsigned comparisons. The choice also doesn't
2134 // matter if both sign bits are known to be clear. In those cases we
2135 // want to give the main isel code the freedom to choose whichever
2136 // form fits best.
Richard Sandifordd420f732013-12-13 15:28:45 +00002137 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2138 C.CCMask == SystemZ::CCMASK_CMP_NE ||
2139 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2140 C.ICmpType = SystemZICMP::Any;
2141 else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2142 C.ICmpType = SystemZICMP::UnsignedOnly;
Richard Sandiford5bc670b2013-09-06 11:51:39 +00002143 else
Richard Sandifordd420f732013-12-13 15:28:45 +00002144 C.ICmpType = SystemZICMP::SignedOnly;
2145 C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002146 adjustZeroCmp(DAG, DL, C);
2147 adjustSubwordCmp(DAG, DL, C);
2148 adjustForSubtraction(DAG, DL, C);
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00002149 adjustForLTGFR(C);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002150 adjustICmpTruncate(DAG, DL, C);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002151 }
2152
Richard Sandifordd420f732013-12-13 15:28:45 +00002153 if (shouldSwapCmpOperands(C)) {
2154 std::swap(C.Op0, C.Op1);
2155 C.CCMask = reverseCCMask(C.CCMask);
Richard Sandiford24e597b2013-08-23 11:27:19 +00002156 }
2157
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002158 adjustForTestUnderMask(DAG, DL, C);
Richard Sandifordd420f732013-12-13 15:28:45 +00002159 return C;
2160}
2161
2162// Emit the comparison instruction described by C.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00002163static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
Ulrich Weigand57c85f52015-04-01 12:51:43 +00002164 if (!C.Op1.getNode()) {
2165 SDValue Op;
2166 switch (C.Op0.getOpcode()) {
2167 case ISD::INTRINSIC_W_CHAIN:
2168 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode);
2169 break;
Ulrich Weigandc1708b22015-05-05 19:31:09 +00002170 case ISD::INTRINSIC_WO_CHAIN:
2171 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode);
2172 break;
Ulrich Weigand57c85f52015-04-01 12:51:43 +00002173 default:
2174 llvm_unreachable("Invalid comparison operands");
2175 }
2176 return SDValue(Op.getNode(), Op->getNumValues() - 1);
2177 }
Richard Sandifordd420f732013-12-13 15:28:45 +00002178 if (C.Opcode == SystemZISD::ICMP)
2179 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002180 DAG.getConstant(C.ICmpType, DL, MVT::i32));
Richard Sandifordd420f732013-12-13 15:28:45 +00002181 if (C.Opcode == SystemZISD::TM) {
2182 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2183 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2184 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002185 DAG.getConstant(RegisterOnly, DL, MVT::i32));
Richard Sandifordd420f732013-12-13 15:28:45 +00002186 }
2187 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002188}
2189
Richard Sandiford7d86e472013-08-21 09:34:56 +00002190// Implement a 32-bit *MUL_LOHI operation by extending both operands to
2191// 64 bits. Extend is the extension type to use. Store the high part
2192// in Hi and the low part in Lo.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00002193static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2194 SDValue Op0, SDValue Op1, SDValue &Hi,
2195 SDValue &Lo) {
Richard Sandiford7d86e472013-08-21 09:34:56 +00002196 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2197 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2198 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002199 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2200 DAG.getConstant(32, DL, MVT::i64));
Richard Sandiford7d86e472013-08-21 09:34:56 +00002201 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2202 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2203}
2204
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002205// Lower a binary operation that produces two VT results, one in each
2206// half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
2207// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
2208// on the extended Op0 and (unextended) Op1. Store the even register result
2209// in Even and the odd register result in Odd.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00002210static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2211 unsigned Extend, unsigned Opcode, SDValue Op0,
2212 SDValue Op1, SDValue &Even, SDValue &Odd) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002213 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
2214 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
2215 SDValue(In128, 0), Op1);
2216 bool Is32Bit = is32Bit(VT);
Richard Sandifordd8163202013-09-13 09:12:44 +00002217 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2218 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002219}
2220
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00002221// Return an i32 value that is 1 if the CC value produced by Glue is
2222// in the mask CCMask and 0 otherwise. CC is known to have a value
2223// in CCValid, so other values can be ignored.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00002224static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue Glue,
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00002225 unsigned CCValid, unsigned CCMask) {
Richard Sandifordf722a8e302013-10-16 11:10:55 +00002226 IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
2227 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
2228
2229 if (Conversion.XORValue)
2230 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002231 DAG.getConstant(Conversion.XORValue, DL, MVT::i32));
Richard Sandifordf722a8e302013-10-16 11:10:55 +00002232
2233 if (Conversion.AddValue)
2234 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002235 DAG.getConstant(Conversion.AddValue, DL, MVT::i32));
Richard Sandifordf722a8e302013-10-16 11:10:55 +00002236
2237 // The SHR/AND sequence should get optimized to an RISBG.
2238 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002239 DAG.getConstant(Conversion.Bit, DL, MVT::i32));
Richard Sandifordf722a8e302013-10-16 11:10:55 +00002240 if (Conversion.Bit != 31)
2241 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002242 DAG.getConstant(1, DL, MVT::i32));
Richard Sandifordf722a8e302013-10-16 11:10:55 +00002243 return Result;
2244}
2245
Ulrich Weigandcd808232015-05-05 19:26:48 +00002246// Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2247// be done directly. IsFP is true if CC is for a floating-point rather than
2248// integer comparison.
2249static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002250 switch (CC) {
Ulrich Weigandcd808232015-05-05 19:26:48 +00002251 case ISD::SETOEQ:
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002252 case ISD::SETEQ:
Ulrich Weigandcd808232015-05-05 19:26:48 +00002253 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002254
Ulrich Weigandcd808232015-05-05 19:26:48 +00002255 case ISD::SETOGE:
2256 case ISD::SETGE:
Saleem Abdulrasoolee33c492015-05-10 00:53:41 +00002257 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
Ulrich Weigandcd808232015-05-05 19:26:48 +00002258
2259 case ISD::SETOGT:
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002260 case ISD::SETGT:
Ulrich Weigandcd808232015-05-05 19:26:48 +00002261 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002262
2263 case ISD::SETUGT:
Saleem Abdulrasoolee33c492015-05-10 00:53:41 +00002264 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002265
2266 default:
2267 return 0;
2268 }
2269}
2270
2271// Return the SystemZISD vector comparison operation for CC or its inverse,
2272// or 0 if neither can be done directly. Indicate in Invert whether the
Ulrich Weigandcd808232015-05-05 19:26:48 +00002273// result is for the inverse of CC. IsFP is true if CC is for a
2274// floating-point rather than integer comparison.
2275static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2276 bool &Invert) {
2277 if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002278 Invert = false;
2279 return Opcode;
2280 }
2281
Ulrich Weigandcd808232015-05-05 19:26:48 +00002282 CC = ISD::getSetCCInverse(CC, !IsFP);
2283 if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002284 Invert = true;
2285 return Opcode;
2286 }
2287
2288 return 0;
2289}
2290
Ulrich Weigand80b3af72015-05-05 19:27:45 +00002291// Return a v2f64 that contains the extended form of elements Start and Start+1
2292// of v4f32 value Op.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00002293static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
Ulrich Weigand80b3af72015-05-05 19:27:45 +00002294 SDValue Op) {
2295 int Mask[] = { Start, -1, Start + 1, -1 };
2296 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2297 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2298}
2299
2300// Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2301// producing a result of type VT.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00002302static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &DL,
Ulrich Weigand80b3af72015-05-05 19:27:45 +00002303 EVT VT, SDValue CmpOp0, SDValue CmpOp1) {
2304 // There is no hardware support for v4f32, so extend the vector into
2305 // two v2f64s and compare those.
2306 if (CmpOp0.getValueType() == MVT::v4f32) {
2307 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2308 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2309 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2310 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2311 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2312 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2313 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2314 }
2315 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2316}
2317
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002318// Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2319// an integer mask of type VT.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00002320static SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002321 ISD::CondCode CC, SDValue CmpOp0,
2322 SDValue CmpOp1) {
Ulrich Weigandcd808232015-05-05 19:26:48 +00002323 bool IsFP = CmpOp0.getValueType().isFloatingPoint();
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002324 bool Invert = false;
2325 SDValue Cmp;
Ulrich Weigandcd808232015-05-05 19:26:48 +00002326 switch (CC) {
2327 // Handle tests for order using (or (ogt y x) (oge x y)).
2328 case ISD::SETUO:
2329 Invert = true;
2330 case ISD::SETO: {
2331 assert(IsFP && "Unexpected integer comparison");
Ulrich Weigand80b3af72015-05-05 19:27:45 +00002332 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2333 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
Ulrich Weigandcd808232015-05-05 19:26:48 +00002334 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2335 break;
2336 }
2337
2338 // Handle <> tests using (or (ogt y x) (ogt x y)).
2339 case ISD::SETUEQ:
2340 Invert = true;
2341 case ISD::SETONE: {
2342 assert(IsFP && "Unexpected integer comparison");
Ulrich Weigand80b3af72015-05-05 19:27:45 +00002343 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2344 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
Ulrich Weigandcd808232015-05-05 19:26:48 +00002345 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2346 break;
2347 }
2348
2349 // Otherwise a single comparison is enough. It doesn't really
2350 // matter whether we try the inversion or the swap first, since
2351 // there are no cases where both work.
2352 default:
2353 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
Ulrich Weigand80b3af72015-05-05 19:27:45 +00002354 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
Ulrich Weigandcd808232015-05-05 19:26:48 +00002355 else {
2356 CC = ISD::getSetCCSwappedOperands(CC);
2357 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
Ulrich Weigand80b3af72015-05-05 19:27:45 +00002358 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
Ulrich Weigandcd808232015-05-05 19:26:48 +00002359 else
2360 llvm_unreachable("Unhandled comparison");
2361 }
2362 break;
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002363 }
2364 if (Invert) {
2365 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
2366 DAG.getConstant(65535, DL, MVT::i32));
2367 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
2368 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2369 }
2370 return Cmp;
2371}
2372
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00002373SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2374 SelectionDAG &DAG) const {
2375 SDValue CmpOp0 = Op.getOperand(0);
2376 SDValue CmpOp1 = Op.getOperand(1);
2377 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2378 SDLoc DL(Op);
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002379 EVT VT = Op.getValueType();
2380 if (VT.isVector())
2381 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00002382
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002383 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
Richard Sandifordd420f732013-12-13 15:28:45 +00002384 SDValue Glue = emitCmp(DAG, DL, C);
2385 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00002386}
2387
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002388SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002389 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2390 SDValue CmpOp0 = Op.getOperand(2);
2391 SDValue CmpOp1 = Op.getOperand(3);
2392 SDValue Dest = Op.getOperand(4);
Andrew Trickef9de2a2013-05-25 02:42:55 +00002393 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002394
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002395 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
Richard Sandifordd420f732013-12-13 15:28:45 +00002396 SDValue Glue = emitCmp(DAG, DL, C);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002397 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002398 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
2399 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002400}
2401
Richard Sandiford57485472013-12-13 15:35:00 +00002402// Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2403// allowing Pos and Neg to be wider than CmpOp.
2404static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2405 return (Neg.getOpcode() == ISD::SUB &&
2406 Neg.getOperand(0).getOpcode() == ISD::Constant &&
2407 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2408 Neg.getOperand(1) == Pos &&
2409 (Pos == CmpOp ||
2410 (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2411 Pos.getOperand(0) == CmpOp)));
2412}
2413
2414// Return the absolute or negative absolute of Op; IsNegative decides which.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00002415static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
Richard Sandiford57485472013-12-13 15:35:00 +00002416 bool IsNegative) {
2417 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2418 if (IsNegative)
2419 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002420 DAG.getConstant(0, DL, Op.getValueType()), Op);
Richard Sandiford57485472013-12-13 15:35:00 +00002421 return Op;
2422}
2423
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002424SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2425 SelectionDAG &DAG) const {
2426 SDValue CmpOp0 = Op.getOperand(0);
2427 SDValue CmpOp1 = Op.getOperand(1);
2428 SDValue TrueOp = Op.getOperand(2);
2429 SDValue FalseOp = Op.getOperand(3);
2430 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002431 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002432
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002433 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
Richard Sandiford57485472013-12-13 15:35:00 +00002434
2435 // Check for absolute and negative-absolute selections, including those
2436 // where the comparison value is sign-extended (for LPGFR and LNGFR).
2437 // This check supplements the one in DAGCombiner.
2438 if (C.Opcode == SystemZISD::ICMP &&
2439 C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2440 C.CCMask != SystemZ::CCMASK_CMP_NE &&
2441 C.Op1.getOpcode() == ISD::Constant &&
2442 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2443 if (isAbsolute(C.Op0, TrueOp, FalseOp))
2444 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2445 if (isAbsolute(C.Op0, FalseOp, TrueOp))
2446 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2447 }
2448
Richard Sandifordd420f732013-12-13 15:28:45 +00002449 SDValue Glue = emitCmp(DAG, DL, C);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00002450
2451 // Special case for handling -1/0 results. The shifts we use here
2452 // should get optimized with the IPM conversion sequence.
Richard Sandiford21f5d682014-03-06 11:22:58 +00002453 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
2454 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00002455 if (TrueC && FalseC) {
2456 int64_t TrueVal = TrueC->getSExtValue();
2457 int64_t FalseVal = FalseC->getSExtValue();
2458 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
2459 // Invert the condition if we want -1 on false.
2460 if (TrueVal == 0)
Richard Sandifordd420f732013-12-13 15:28:45 +00002461 C.CCMask ^= C.CCValid;
2462 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00002463 EVT VT = Op.getValueType();
2464 // Extend the result to VT. Upper bits are ignored.
2465 if (!is32Bit(VT))
2466 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
2467 // Sign-extend from the low bit.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002468 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00002469 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
2470 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
2471 }
2472 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002473
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002474 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
2475 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue};
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002476
2477 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
Craig Topper48d114b2014-04-26 18:35:24 +00002478 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002479}
2480
2481SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2482 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00002483 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002484 const GlobalValue *GV = Node->getGlobal();
2485 int64_t Offset = Node->getOffset();
Mehdi Amini44ede332015-07-09 02:09:04 +00002486 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Eric Christopher93bf97c2014-06-27 07:38:01 +00002487 CodeModel::Model CM = DAG.getTarget().getCodeModel();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002488
2489 SDValue Result;
Rafael Espindola3beef8d2016-06-27 23:15:57 +00002490 if (Subtarget.isPC32DBLSymbol(GV, CM)) {
Richard Sandiford54b36912013-09-27 15:14:04 +00002491 // Assign anchors at 1<<12 byte boundaries.
2492 uint64_t Anchor = Offset & ~uint64_t(0xfff);
2493 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2494 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2495
2496 // The offset can be folded into the address if it is aligned to a halfword.
2497 Offset -= Anchor;
2498 if (Offset != 0 && (Offset & 1) == 0) {
2499 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2500 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002501 Offset = 0;
2502 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002503 } else {
2504 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2505 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2506 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
Justin Lebar9c375812016-07-15 18:27:10 +00002507 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002508 }
2509
2510 // If there was a non-zero offset that we didn't fold, create an explicit
2511 // addition for it.
2512 if (Offset != 0)
2513 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002514 DAG.getConstant(Offset, DL, PtrVT));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002515
2516 return Result;
2517}
2518
Ulrich Weigand7db69182015-02-18 09:13:27 +00002519SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2520 SelectionDAG &DAG,
2521 unsigned Opcode,
2522 SDValue GOTOffset) const {
2523 SDLoc DL(Node);
Mehdi Amini44ede332015-07-09 02:09:04 +00002524 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Ulrich Weigand7db69182015-02-18 09:13:27 +00002525 SDValue Chain = DAG.getEntryNode();
2526 SDValue Glue;
2527
2528 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2529 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2530 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2531 Glue = Chain.getValue(1);
2532 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2533 Glue = Chain.getValue(1);
2534
2535 // The first call operand is the chain and the second is the TLS symbol.
2536 SmallVector<SDValue, 8> Ops;
2537 Ops.push_back(Chain);
2538 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2539 Node->getValueType(0),
2540 0, 0));
2541
2542 // Add argument registers to the end of the list so that they are
2543 // known live into the call.
2544 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2545 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2546
2547 // Add a register mask operand representing the call-preserved registers.
2548 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
Eric Christopher9deb75d2015-03-11 22:42:13 +00002549 const uint32_t *Mask =
2550 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
Ulrich Weigand7db69182015-02-18 09:13:27 +00002551 assert(Mask && "Missing call preserved mask for calling convention");
2552 Ops.push_back(DAG.getRegisterMask(Mask));
2553
2554 // Glue the call to the argument copies.
2555 Ops.push_back(Glue);
2556
2557 // Emit the call.
2558 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2559 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2560 Glue = Chain.getValue(1);
2561
2562 // Copy the return value from %r2.
2563 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2564}
2565
Marcin Koscielnickif12609c2016-04-20 01:03:48 +00002566SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
2567 SelectionDAG &DAG) const {
Mehdi Amini44ede332015-07-09 02:09:04 +00002568 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002569
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002570 // The high part of the thread pointer is in access register 0.
2571 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002572 DAG.getConstant(0, DL, MVT::i32));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002573 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2574
2575 // The low part of the thread pointer is in access register 1.
2576 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002577 DAG.getConstant(1, DL, MVT::i32));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002578 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2579
2580 // Merge them into a single 64-bit address.
2581 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002582 DAG.getConstant(32, DL, PtrVT));
Marcin Koscielnickif12609c2016-04-20 01:03:48 +00002583 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2584}
2585
2586SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2587 SelectionDAG &DAG) const {
2588 if (DAG.getTarget().Options.EmulatedTLS)
2589 return LowerToTLSEmulatedModel(Node, DAG);
2590 SDLoc DL(Node);
2591 const GlobalValue *GV = Node->getGlobal();
2592 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2593 TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
2594
2595 SDValue TP = lowerThreadPointer(DL, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002596
Ulrich Weigand7db69182015-02-18 09:13:27 +00002597 // Get the offset of GA from the thread pointer, based on the TLS model.
2598 SDValue Offset;
2599 switch (model) {
2600 case TLSModel::GeneralDynamic: {
2601 // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2602 SystemZConstantPoolValue *CPV =
2603 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002604
Ulrich Weigand7db69182015-02-18 09:13:27 +00002605 Offset = DAG.getConstantPool(CPV, PtrVT, 8);
Alex Lorenze40c8a22015-08-11 23:09:45 +00002606 Offset = DAG.getLoad(
2607 PtrVT, DL, DAG.getEntryNode(), Offset,
Justin Lebar9c375812016-07-15 18:27:10 +00002608 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
Ulrich Weigand7db69182015-02-18 09:13:27 +00002609
2610 // Call __tls_get_offset to retrieve the offset.
2611 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2612 break;
2613 }
2614
2615 case TLSModel::LocalDynamic: {
2616 // Load the GOT offset of the module ID.
2617 SystemZConstantPoolValue *CPV =
2618 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2619
2620 Offset = DAG.getConstantPool(CPV, PtrVT, 8);
Alex Lorenze40c8a22015-08-11 23:09:45 +00002621 Offset = DAG.getLoad(
2622 PtrVT, DL, DAG.getEntryNode(), Offset,
Justin Lebar9c375812016-07-15 18:27:10 +00002623 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
Ulrich Weigand7db69182015-02-18 09:13:27 +00002624
2625 // Call __tls_get_offset to retrieve the module base offset.
2626 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2627
2628 // Note: The SystemZLDCleanupPass will remove redundant computations
2629 // of the module base offset. Count total number of local-dynamic
2630 // accesses to trigger execution of that pass.
2631 SystemZMachineFunctionInfo* MFI =
2632 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2633 MFI->incNumLocalDynamicTLSAccesses();
2634
2635 // Add the per-symbol offset.
2636 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2637
2638 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
Alex Lorenze40c8a22015-08-11 23:09:45 +00002639 DTPOffset = DAG.getLoad(
2640 PtrVT, DL, DAG.getEntryNode(), DTPOffset,
Justin Lebar9c375812016-07-15 18:27:10 +00002641 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
Ulrich Weigand7db69182015-02-18 09:13:27 +00002642
2643 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
2644 break;
2645 }
2646
2647 case TLSModel::InitialExec: {
2648 // Load the offset from the GOT.
2649 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2650 SystemZII::MO_INDNTPOFF);
2651 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
Justin Lebar9c375812016-07-15 18:27:10 +00002652 Offset =
2653 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
2654 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
Ulrich Weigand7db69182015-02-18 09:13:27 +00002655 break;
2656 }
2657
2658 case TLSModel::LocalExec: {
2659 // Force the offset into the constant pool and load it from there.
2660 SystemZConstantPoolValue *CPV =
2661 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
2662
2663 Offset = DAG.getConstantPool(CPV, PtrVT, 8);
Alex Lorenze40c8a22015-08-11 23:09:45 +00002664 Offset = DAG.getLoad(
2665 PtrVT, DL, DAG.getEntryNode(), Offset,
Justin Lebar9c375812016-07-15 18:27:10 +00002666 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
Ulrich Weigand7db69182015-02-18 09:13:27 +00002667 break;
Ulrich Weigandb7e59092015-02-18 09:42:23 +00002668 }
Ulrich Weigand7db69182015-02-18 09:13:27 +00002669 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002670
2671 // Add the base and offset together.
2672 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
2673}
2674
2675SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
2676 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00002677 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002678 const BlockAddress *BA = Node->getBlockAddress();
2679 int64_t Offset = Node->getOffset();
Mehdi Amini44ede332015-07-09 02:09:04 +00002680 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002681
2682 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
2683 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2684 return Result;
2685}
2686
2687SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
2688 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00002689 SDLoc DL(JT);
Mehdi Amini44ede332015-07-09 02:09:04 +00002690 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002691 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2692
2693 // Use LARL to load the address of the table.
2694 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2695}
2696
2697SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
2698 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00002699 SDLoc DL(CP);
Mehdi Amini44ede332015-07-09 02:09:04 +00002700 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002701
2702 SDValue Result;
2703 if (CP->isMachineConstantPoolEntry())
2704 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
NAKAMURA Takumi0a7d0ad2015-09-22 11:15:07 +00002705 CP->getAlignment());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002706 else
2707 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
NAKAMURA Takumi0a7d0ad2015-09-22 11:15:07 +00002708 CP->getAlignment(), CP->getOffset());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002709
2710 // Use LARL to load the address of the constant pool entry.
2711 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2712}
2713
Ulrich Weigandf557d082016-04-04 12:44:55 +00002714SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
2715 SelectionDAG &DAG) const {
2716 MachineFunction &MF = DAG.getMachineFunction();
Matthias Braun941a7052016-07-28 18:40:00 +00002717 MachineFrameInfo &MFI = MF.getFrameInfo();
2718 MFI.setFrameAddressIsTaken(true);
Ulrich Weigandf557d082016-04-04 12:44:55 +00002719
2720 SDLoc DL(Op);
2721 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2722 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2723
2724 // If the back chain frame index has not been allocated yet, do so.
2725 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
2726 int BackChainIdx = FI->getFramePointerSaveIndex();
2727 if (!BackChainIdx) {
2728 // By definition, the frame address is the address of the back chain.
Matthias Braun941a7052016-07-28 18:40:00 +00002729 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
Ulrich Weigandf557d082016-04-04 12:44:55 +00002730 FI->setFramePointerSaveIndex(BackChainIdx);
2731 }
2732 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
2733
2734 // FIXME The frontend should detect this case.
2735 if (Depth > 0) {
2736 report_fatal_error("Unsupported stack frame traversal count");
2737 }
2738
2739 return BackChain;
2740}
2741
2742SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
2743 SelectionDAG &DAG) const {
2744 MachineFunction &MF = DAG.getMachineFunction();
Matthias Braun941a7052016-07-28 18:40:00 +00002745 MachineFrameInfo &MFI = MF.getFrameInfo();
2746 MFI.setReturnAddressIsTaken(true);
Ulrich Weigandf557d082016-04-04 12:44:55 +00002747
2748 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2749 return SDValue();
2750
2751 SDLoc DL(Op);
2752 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2753 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2754
2755 // FIXME The frontend should detect this case.
2756 if (Depth > 0) {
2757 report_fatal_error("Unsupported stack frame traversal count");
2758 }
2759
2760 // Return R14D, which has the return address. Mark it an implicit live-in.
2761 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
2762 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
2763}
2764
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002765SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
2766 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00002767 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002768 SDValue In = Op.getOperand(0);
2769 EVT InVT = In.getValueType();
2770 EVT ResVT = Op.getValueType();
2771
Ulrich Weigandce4c1092015-05-05 19:25:42 +00002772 // Convert loads directly. This is normally done by DAGCombiner,
2773 // but we need this case for bitcasts that are created during lowering
2774 // and which are then lowered themselves.
2775 if (auto *LoadN = dyn_cast<LoadSDNode>(In))
2776 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(),
2777 LoadN->getMemOperand());
2778
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002779 if (InVT == MVT::i32 && ResVT == MVT::f32) {
Richard Sandifordf6377fb2013-10-01 14:31:11 +00002780 SDValue In64;
2781 if (Subtarget.hasHighWord()) {
2782 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
2783 MVT::i64);
2784 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
2785 MVT::i64, SDValue(U64, 0), In);
2786 } else {
2787 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
2788 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002789 DAG.getConstant(32, DL, MVT::i64));
Richard Sandifordf6377fb2013-10-01 14:31:11 +00002790 }
2791 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
Ulrich Weigand9ac2f9b2015-05-04 17:41:22 +00002792 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32,
Richard Sandifordd8163202013-09-13 09:12:44 +00002793 DL, MVT::f32, Out64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002794 }
2795 if (InVT == MVT::f32 && ResVT == MVT::i32) {
2796 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
Ulrich Weigand9ac2f9b2015-05-04 17:41:22 +00002797 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL,
Richard Sandifordd8163202013-09-13 09:12:44 +00002798 MVT::f64, SDValue(U64, 0), In);
2799 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
Richard Sandifordf6377fb2013-10-01 14:31:11 +00002800 if (Subtarget.hasHighWord())
2801 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
2802 MVT::i32, Out64);
2803 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002804 DAG.getConstant(32, DL, MVT::i64));
Richard Sandifordf6377fb2013-10-01 14:31:11 +00002805 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002806 }
2807 llvm_unreachable("Unexpected bitcast combination");
2808}
2809
2810SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
2811 SelectionDAG &DAG) const {
2812 MachineFunction &MF = DAG.getMachineFunction();
2813 SystemZMachineFunctionInfo *FuncInfo =
2814 MF.getInfo<SystemZMachineFunctionInfo>();
Mehdi Amini44ede332015-07-09 02:09:04 +00002815 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002816
2817 SDValue Chain = Op.getOperand(0);
2818 SDValue Addr = Op.getOperand(1);
2819 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002820 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002821
2822 // The initial values of each field.
2823 const unsigned NumFields = 4;
2824 SDValue Fields[NumFields] = {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002825 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
2826 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002827 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
2828 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
2829 };
2830
2831 // Store each field into its respective slot.
2832 SDValue MemOps[NumFields];
2833 unsigned Offset = 0;
2834 for (unsigned I = 0; I < NumFields; ++I) {
2835 SDValue FieldAddr = Addr;
2836 if (Offset != 0)
2837 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002838 DAG.getIntPtrConstant(Offset, DL));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002839 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
Justin Lebar9c375812016-07-15 18:27:10 +00002840 MachinePointerInfo(SV, Offset));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002841 Offset += 8;
2842 }
Craig Topper48d114b2014-04-26 18:35:24 +00002843 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002844}
2845
2846SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
2847 SelectionDAG &DAG) const {
2848 SDValue Chain = Op.getOperand(0);
2849 SDValue DstPtr = Op.getOperand(1);
2850 SDValue SrcPtr = Op.getOperand(2);
2851 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2852 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002853 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002854
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002855 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002856 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
Krzysztof Parzyszeka46c36b2015-04-13 17:16:45 +00002857 /*isTailCall*/false,
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002858 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
2859}
2860
2861SDValue SystemZTargetLowering::
2862lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
Jonas Paulssonf12b9252015-11-28 11:02:32 +00002863 const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
Marcin Koscielnickiad1482c2016-05-05 00:37:30 +00002864 MachineFunction &MF = DAG.getMachineFunction();
2865 bool RealignOpt = !MF.getFunction()-> hasFnAttribute("no-realign-stack");
2866 bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain");
Jonas Paulssonf12b9252015-11-28 11:02:32 +00002867
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002868 SDValue Chain = Op.getOperand(0);
2869 SDValue Size = Op.getOperand(1);
Jonas Paulssonf12b9252015-11-28 11:02:32 +00002870 SDValue Align = Op.getOperand(2);
Andrew Trickef9de2a2013-05-25 02:42:55 +00002871 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002872
Jonas Paulssonf12b9252015-11-28 11:02:32 +00002873 // If user has set the no alignment function attribute, ignore
2874 // alloca alignments.
2875 uint64_t AlignVal = (RealignOpt ?
2876 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
2877
2878 uint64_t StackAlign = TFI->getStackAlignment();
2879 uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
2880 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
2881
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002882 unsigned SPReg = getStackPointerRegisterToSaveRestore();
Jonas Paulssonf12b9252015-11-28 11:02:32 +00002883 SDValue NeededSpace = Size;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002884
2885 // Get a reference to the stack pointer.
2886 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
2887
Marcin Koscielnickiad1482c2016-05-05 00:37:30 +00002888 // If we need a backchain, save it now.
2889 SDValue Backchain;
2890 if (StoreBackchain)
Justin Lebar9c375812016-07-15 18:27:10 +00002891 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
Marcin Koscielnickiad1482c2016-05-05 00:37:30 +00002892
Jonas Paulssonf12b9252015-11-28 11:02:32 +00002893 // Add extra space for alignment if needed.
2894 if (ExtraAlignSpace)
2895 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
Elliot Colpbc2cfc22016-07-06 18:13:11 +00002896 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
Jonas Paulssonf12b9252015-11-28 11:02:32 +00002897
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002898 // Get the new stack pointer value.
Jonas Paulssonf12b9252015-11-28 11:02:32 +00002899 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002900
2901 // Copy the new stack pointer back.
2902 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
2903
2904 // The allocated data lives above the 160 bytes allocated for the standard
2905 // frame, plus any outgoing stack arguments. We don't know how much that
2906 // amounts to yet, so emit a special ADJDYNALLOC placeholder.
2907 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2908 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
2909
Jonas Paulssonf12b9252015-11-28 11:02:32 +00002910 // Dynamically realign if needed.
2911 if (RequiredAlign > StackAlign) {
2912 Result =
2913 DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
2914 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
2915 Result =
2916 DAG.getNode(ISD::AND, DL, MVT::i64, Result,
2917 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
2918 }
2919
Marcin Koscielnickiad1482c2016-05-05 00:37:30 +00002920 if (StoreBackchain)
Justin Lebar9c375812016-07-15 18:27:10 +00002921 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
Marcin Koscielnickiad1482c2016-05-05 00:37:30 +00002922
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002923 SDValue Ops[2] = { Result, Chain };
Craig Topper64941d92014-04-27 19:20:57 +00002924 return DAG.getMergeValues(Ops, DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002925}
2926
Marcin Koscielnicki9de88d92016-05-04 23:31:26 +00002927SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
2928 SDValue Op, SelectionDAG &DAG) const {
2929 SDLoc DL(Op);
2930
2931 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2932}
2933
Richard Sandiford7d86e472013-08-21 09:34:56 +00002934SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
2935 SelectionDAG &DAG) const {
2936 EVT VT = Op.getValueType();
2937 SDLoc DL(Op);
2938 SDValue Ops[2];
2939 if (is32Bit(VT))
2940 // Just do a normal 64-bit multiplication and extract the results.
2941 // We define this so that it can be used for constant division.
2942 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
2943 Op.getOperand(1), Ops[1], Ops[0]);
2944 else {
2945 // Do a full 128-bit multiplication based on UMUL_LOHI64:
2946 //
2947 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
2948 //
2949 // but using the fact that the upper halves are either all zeros
2950 // or all ones:
2951 //
2952 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
2953 //
2954 // and grouping the right terms together since they are quicker than the
2955 // multiplication:
2956 //
2957 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002958 SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
Richard Sandiford7d86e472013-08-21 09:34:56 +00002959 SDValue LL = Op.getOperand(0);
2960 SDValue RL = Op.getOperand(1);
2961 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
2962 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
2963 // UMUL_LOHI64 returns the low result in the odd register and the high
2964 // result in the even register. SMUL_LOHI is defined to return the
2965 // low half first, so the results are in reverse order.
2966 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2967 LL, RL, Ops[1], Ops[0]);
2968 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
2969 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
2970 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
2971 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
2972 }
Craig Topper64941d92014-04-27 19:20:57 +00002973 return DAG.getMergeValues(Ops, DL);
Richard Sandiford7d86e472013-08-21 09:34:56 +00002974}
2975
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002976SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
2977 SelectionDAG &DAG) const {
2978 EVT VT = Op.getValueType();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002979 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002980 SDValue Ops[2];
Richard Sandiford7d86e472013-08-21 09:34:56 +00002981 if (is32Bit(VT))
2982 // Just do a normal 64-bit multiplication and extract the results.
2983 // We define this so that it can be used for constant division.
2984 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
2985 Op.getOperand(1), Ops[1], Ops[0]);
2986 else
2987 // UMUL_LOHI64 returns the low result in the odd register and the high
2988 // result in the even register. UMUL_LOHI is defined to return the
2989 // low half first, so the results are in reverse order.
2990 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2991 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
Craig Topper64941d92014-04-27 19:20:57 +00002992 return DAG.getMergeValues(Ops, DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002993}
2994
2995SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
2996 SelectionDAG &DAG) const {
2997 SDValue Op0 = Op.getOperand(0);
2998 SDValue Op1 = Op.getOperand(1);
2999 EVT VT = Op.getValueType();
Andrew Trickef9de2a2013-05-25 02:42:55 +00003000 SDLoc DL(Op);
Richard Sandiforde6e78852013-07-02 15:40:22 +00003001 unsigned Opcode;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003002
3003 // We use DSGF for 32-bit division.
3004 if (is32Bit(VT)) {
3005 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
Richard Sandiforde6e78852013-07-02 15:40:22 +00003006 Opcode = SystemZISD::SDIVREM32;
3007 } else if (DAG.ComputeNumSignBits(Op1) > 32) {
3008 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3009 Opcode = SystemZISD::SDIVREM32;
NAKAMURA Takumi10c80e72015-09-22 11:19:03 +00003010 } else
Richard Sandiforde6e78852013-07-02 15:40:22 +00003011 Opcode = SystemZISD::SDIVREM64;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003012
3013 // DSG(F) takes a 64-bit dividend, so the even register in the GR128
3014 // input is "don't care". The instruction returns the remainder in
3015 // the even register and the quotient in the odd register.
3016 SDValue Ops[2];
Richard Sandiforde6e78852013-07-02 15:40:22 +00003017 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003018 Op0, Op1, Ops[1], Ops[0]);
Craig Topper64941d92014-04-27 19:20:57 +00003019 return DAG.getMergeValues(Ops, DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003020}
3021
3022SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3023 SelectionDAG &DAG) const {
3024 EVT VT = Op.getValueType();
Andrew Trickef9de2a2013-05-25 02:42:55 +00003025 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003026
3027 // DL(G) uses a double-width dividend, so we need to clear the even
3028 // register in the GR128 input. The instruction returns the remainder
3029 // in the even register and the quotient in the odd register.
3030 SDValue Ops[2];
3031 if (is32Bit(VT))
3032 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
3033 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3034 else
3035 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
3036 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
Craig Topper64941d92014-04-27 19:20:57 +00003037 return DAG.getMergeValues(Ops, DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003038}
3039
3040SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3041 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3042
3043 // Get the known-zero masks for each operand.
3044 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
3045 APInt KnownZero[2], KnownOne[2];
Jay Foada0653a32014-05-14 21:14:37 +00003046 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]);
3047 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003048
3049 // See if the upper 32 bits of one operand and the lower 32 bits of the
3050 // other are known zero. They are the low and high operands respectively.
3051 uint64_t Masks[] = { KnownZero[0].getZExtValue(),
3052 KnownZero[1].getZExtValue() };
3053 unsigned High, Low;
3054 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3055 High = 1, Low = 0;
3056 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3057 High = 0, Low = 1;
3058 else
3059 return Op;
3060
3061 SDValue LowOp = Ops[Low];
3062 SDValue HighOp = Ops[High];
3063
3064 // If the high part is a constant, we're better off using IILH.
3065 if (HighOp.getOpcode() == ISD::Constant)
3066 return Op;
3067
3068 // If the low part is a constant that is outside the range of LHI,
3069 // then we're better off using IILF.
3070 if (LowOp.getOpcode() == ISD::Constant) {
3071 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3072 if (!isInt<16>(Value))
3073 return Op;
3074 }
3075
3076 // Check whether the high part is an AND that doesn't change the
3077 // high 32 bits and just masks out low bits. We can skip it if so.
3078 if (HighOp.getOpcode() == ISD::AND &&
3079 HighOp.getOperand(1).getOpcode() == ISD::Constant) {
Richard Sandifordccc2a7c2013-12-03 11:01:54 +00003080 SDValue HighOp0 = HighOp.getOperand(0);
3081 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3082 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3083 HighOp = HighOp0;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003084 }
3085
3086 // Take advantage of the fact that all GR32 operations only change the
3087 // low 32 bits by truncating Low to an i32 and inserting it directly
3088 // using a subreg. The interesting cases are those where the truncation
3089 // can be folded.
Andrew Trickef9de2a2013-05-25 02:42:55 +00003090 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003091 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
Richard Sandiford87a44362013-09-30 10:28:35 +00003092 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
Richard Sandifordd8163202013-09-13 09:12:44 +00003093 MVT::i64, HighOp, Low32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003094}
3095
Ulrich Weigandb4012182015-03-31 12:56:33 +00003096SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3097 SelectionDAG &DAG) const {
3098 EVT VT = Op.getValueType();
Ulrich Weigandb4012182015-03-31 12:56:33 +00003099 SDLoc DL(Op);
Ulrich Weigandce4c1092015-05-05 19:25:42 +00003100 Op = Op.getOperand(0);
3101
3102 // Handle vector types via VPOPCT.
3103 if (VT.isVector()) {
3104 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3105 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3106 switch (VT.getVectorElementType().getSizeInBits()) {
3107 case 8:
3108 break;
3109 case 16: {
3110 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3111 SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3112 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3113 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3114 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3115 break;
3116 }
3117 case 32: {
3118 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3119 DAG.getConstant(0, DL, MVT::i32));
3120 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3121 break;
3122 }
3123 case 64: {
3124 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3125 DAG.getConstant(0, DL, MVT::i32));
3126 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3127 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3128 break;
3129 }
3130 default:
3131 llvm_unreachable("Unexpected type");
3132 }
3133 return Op;
3134 }
Ulrich Weigandb4012182015-03-31 12:56:33 +00003135
3136 // Get the known-zero mask for the operand.
Ulrich Weigandb4012182015-03-31 12:56:33 +00003137 APInt KnownZero, KnownOne;
3138 DAG.computeKnownBits(Op, KnownZero, KnownOne);
Ulrich Weigand050527b2015-03-31 19:28:50 +00003139 unsigned NumSignificantBits = (~KnownZero).getActiveBits();
3140 if (NumSignificantBits == 0)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003141 return DAG.getConstant(0, DL, VT);
Ulrich Weigandb4012182015-03-31 12:56:33 +00003142
3143 // Skip known-zero high parts of the operand.
Ulrich Weigandce4c1092015-05-05 19:25:42 +00003144 int64_t OrigBitSize = VT.getSizeInBits();
Ulrich Weigand050527b2015-03-31 19:28:50 +00003145 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3146 BitSize = std::min(BitSize, OrigBitSize);
Ulrich Weigandb4012182015-03-31 12:56:33 +00003147
3148 // The POPCNT instruction counts the number of bits in each byte.
3149 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3150 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3151 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3152
3153 // Add up per-byte counts in a binary tree. All bits of Op at
3154 // position larger than BitSize remain zero throughout.
3155 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003156 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
Ulrich Weigandb4012182015-03-31 12:56:33 +00003157 if (BitSize != OrigBitSize)
3158 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003159 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
Ulrich Weigandb4012182015-03-31 12:56:33 +00003160 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3161 }
3162
3163 // Extract overall result from high byte.
3164 if (BitSize > 8)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003165 Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3166 DAG.getConstant(BitSize - 8, DL, VT));
Ulrich Weigandb4012182015-03-31 12:56:33 +00003167
3168 return Op;
3169}
3170
Ulrich Weiganda9ac6d62016-04-04 12:45:44 +00003171SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3172 SelectionDAG &DAG) const {
3173 SDLoc DL(Op);
3174 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3175 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3176 SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
3177 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3178
3179 // The only fence that needs an instruction is a sequentially-consistent
3180 // cross-thread fence.
JF Bastien800f87a2016-04-06 21:19:33 +00003181 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3182 FenceScope == CrossThread) {
Ulrich Weiganda9ac6d62016-04-04 12:45:44 +00003183 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
JF Bastien800f87a2016-04-06 21:19:33 +00003184 Op.getOperand(0)),
3185 0);
Ulrich Weiganda9ac6d62016-04-04 12:45:44 +00003186 }
3187
3188 // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3189 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3190}
3191
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00003192// Op is an atomic load. Lower it into a normal volatile load.
3193SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3194 SelectionDAG &DAG) const {
Richard Sandiford21f5d682014-03-06 11:22:58 +00003195 auto *Node = cast<AtomicSDNode>(Op.getNode());
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00003196 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3197 Node->getChain(), Node->getBasePtr(),
3198 Node->getMemoryVT(), Node->getMemOperand());
3199}
3200
3201// Op is an atomic store. Lower it into a normal volatile store followed
3202// by a serialization.
3203SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3204 SelectionDAG &DAG) const {
Richard Sandiford21f5d682014-03-06 11:22:58 +00003205 auto *Node = cast<AtomicSDNode>(Op.getNode());
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00003206 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3207 Node->getBasePtr(), Node->getMemoryVT(),
3208 Node->getMemOperand());
3209 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
3210 Chain), 0);
3211}
3212
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003213// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
3214// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00003215SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3216 SelectionDAG &DAG,
3217 unsigned Opcode) const {
Richard Sandiford21f5d682014-03-06 11:22:58 +00003218 auto *Node = cast<AtomicSDNode>(Op.getNode());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003219
3220 // 32-bit operations need no code outside the main loop.
3221 EVT NarrowVT = Node->getMemoryVT();
3222 EVT WideVT = MVT::i32;
3223 if (NarrowVT == WideVT)
3224 return Op;
3225
3226 int64_t BitSize = NarrowVT.getSizeInBits();
3227 SDValue ChainIn = Node->getChain();
3228 SDValue Addr = Node->getBasePtr();
3229 SDValue Src2 = Node->getVal();
3230 MachineMemOperand *MMO = Node->getMemOperand();
Andrew Trickef9de2a2013-05-25 02:42:55 +00003231 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003232 EVT PtrVT = Addr.getValueType();
3233
3234 // Convert atomic subtracts of constants into additions.
3235 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
Richard Sandiford21f5d682014-03-06 11:22:58 +00003236 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003237 Opcode = SystemZISD::ATOMIC_LOADW_ADD;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003238 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003239 }
3240
3241 // Get the address of the containing word.
3242 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003243 DAG.getConstant(-4, DL, PtrVT));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003244
3245 // Get the number of bits that the word must be rotated left in order
3246 // to bring the field to the top bits of a GR32.
3247 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003248 DAG.getConstant(3, DL, PtrVT));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003249 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3250
3251 // Get the complementing shift amount, for rotating a field in the top
3252 // bits back to its proper position.
3253 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003254 DAG.getConstant(0, DL, WideVT), BitShift);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003255
3256 // Extend the source operand to 32 bits and prepare it for the inner loop.
3257 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3258 // operations require the source to be shifted in advance. (This shift
3259 // can be folded if the source is constant.) For AND and NAND, the lower
3260 // bits must be set, while for other opcodes they should be left clear.
3261 if (Opcode != SystemZISD::ATOMIC_SWAPW)
3262 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003263 DAG.getConstant(32 - BitSize, DL, WideVT));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003264 if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3265 Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3266 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003267 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003268
3269 // Construct the ATOMIC_LOADW_* node.
3270 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3271 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003272 DAG.getConstant(BitSize, DL, WideVT) };
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003273 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003274 NarrowVT, MMO);
3275
3276 // Rotate the result of the final CS so that the field is in the lower
3277 // bits of a GR32, then truncate it.
3278 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003279 DAG.getConstant(BitSize, DL, WideVT));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003280 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3281
3282 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
Craig Topper64941d92014-04-27 19:20:57 +00003283 return DAG.getMergeValues(RetOps, DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003284}
3285
Richard Sandiford41350a52013-12-24 15:18:04 +00003286// Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations
Richard Sandiford002019a2013-12-24 15:22:39 +00003287// into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
Richard Sandiford41350a52013-12-24 15:18:04 +00003288// operations into additions.
3289SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3290 SelectionDAG &DAG) const {
Richard Sandiford21f5d682014-03-06 11:22:58 +00003291 auto *Node = cast<AtomicSDNode>(Op.getNode());
Richard Sandiford41350a52013-12-24 15:18:04 +00003292 EVT MemVT = Node->getMemoryVT();
3293 if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3294 // A full-width operation.
3295 assert(Op.getValueType() == MemVT && "Mismatched VTs");
3296 SDValue Src2 = Node->getVal();
3297 SDValue NegSrc2;
3298 SDLoc DL(Src2);
3299
Richard Sandiford21f5d682014-03-06 11:22:58 +00003300 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
Richard Sandiford41350a52013-12-24 15:18:04 +00003301 // Use an addition if the operand is constant and either LAA(G) is
3302 // available or the negative value is in the range of A(G)FHI.
3303 int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
Eric Christopher93bf97c2014-06-27 07:38:01 +00003304 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003305 NegSrc2 = DAG.getConstant(Value, DL, MemVT);
Eric Christopher93bf97c2014-06-27 07:38:01 +00003306 } else if (Subtarget.hasInterlockedAccess1())
Richard Sandiford41350a52013-12-24 15:18:04 +00003307 // Use LAA(G) if available.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003308 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
Richard Sandiford41350a52013-12-24 15:18:04 +00003309 Src2);
3310
3311 if (NegSrc2.getNode())
3312 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3313 Node->getChain(), Node->getBasePtr(), NegSrc2,
3314 Node->getMemOperand(), Node->getOrdering(),
3315 Node->getSynchScope());
3316
3317 // Use the node as-is.
3318 return Op;
3319 }
3320
3321 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3322}
3323
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003324// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two
3325// into a fullword ATOMIC_CMP_SWAPW operation.
3326SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3327 SelectionDAG &DAG) const {
Richard Sandiford21f5d682014-03-06 11:22:58 +00003328 auto *Node = cast<AtomicSDNode>(Op.getNode());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003329
3330 // We have native support for 32-bit compare and swap.
3331 EVT NarrowVT = Node->getMemoryVT();
3332 EVT WideVT = MVT::i32;
3333 if (NarrowVT == WideVT)
3334 return Op;
3335
3336 int64_t BitSize = NarrowVT.getSizeInBits();
3337 SDValue ChainIn = Node->getOperand(0);
3338 SDValue Addr = Node->getOperand(1);
3339 SDValue CmpVal = Node->getOperand(2);
3340 SDValue SwapVal = Node->getOperand(3);
3341 MachineMemOperand *MMO = Node->getMemOperand();
Andrew Trickef9de2a2013-05-25 02:42:55 +00003342 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003343 EVT PtrVT = Addr.getValueType();
3344
3345 // Get the address of the containing word.
3346 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003347 DAG.getConstant(-4, DL, PtrVT));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003348
3349 // Get the number of bits that the word must be rotated left in order
3350 // to bring the field to the top bits of a GR32.
3351 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003352 DAG.getConstant(3, DL, PtrVT));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003353 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3354
3355 // Get the complementing shift amount, for rotating a field in the top
3356 // bits back to its proper position.
3357 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003358 DAG.getConstant(0, DL, WideVT), BitShift);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003359
3360 // Construct the ATOMIC_CMP_SWAPW node.
3361 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3362 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003363 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003364 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
Craig Topper206fcd42014-04-26 19:29:41 +00003365 VTList, Ops, NarrowVT, MMO);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003366 return AtomicOp;
3367}
3368
3369SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3370 SelectionDAG &DAG) const {
3371 MachineFunction &MF = DAG.getMachineFunction();
3372 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
Andrew Trickef9de2a2013-05-25 02:42:55 +00003373 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003374 SystemZ::R15D, Op.getValueType());
3375}
3376
3377SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3378 SelectionDAG &DAG) const {
3379 MachineFunction &MF = DAG.getMachineFunction();
3380 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
Marcin Koscielnickiad1482c2016-05-05 00:37:30 +00003381 bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain");
3382
3383 SDValue Chain = Op.getOperand(0);
3384 SDValue NewSP = Op.getOperand(1);
3385 SDValue Backchain;
3386 SDLoc DL(Op);
3387
3388 if (StoreBackchain) {
3389 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
Justin Lebar9c375812016-07-15 18:27:10 +00003390 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
Marcin Koscielnickiad1482c2016-05-05 00:37:30 +00003391 }
3392
3393 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
3394
3395 if (StoreBackchain)
Justin Lebar9c375812016-07-15 18:27:10 +00003396 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
Marcin Koscielnickiad1482c2016-05-05 00:37:30 +00003397
3398 return Chain;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003399}
3400
Richard Sandiford03481332013-08-23 11:36:42 +00003401SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3402 SelectionDAG &DAG) const {
3403 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3404 if (!IsData)
3405 // Just preserve the chain.
3406 return Op.getOperand(0);
3407
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003408 SDLoc DL(Op);
Richard Sandiford03481332013-08-23 11:36:42 +00003409 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3410 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
Richard Sandiford21f5d682014-03-06 11:22:58 +00003411 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
Richard Sandiford03481332013-08-23 11:36:42 +00003412 SDValue Ops[] = {
3413 Op.getOperand(0),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003414 DAG.getConstant(Code, DL, MVT::i32),
Richard Sandiford03481332013-08-23 11:36:42 +00003415 Op.getOperand(1)
3416 };
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003417 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
Craig Topper206fcd42014-04-26 19:29:41 +00003418 Node->getVTList(), Ops,
Richard Sandiford03481332013-08-23 11:36:42 +00003419 Node->getMemoryVT(), Node->getMemOperand());
3420}
3421
Ulrich Weigand57c85f52015-04-01 12:51:43 +00003422// Return an i32 that contains the value of CC immediately after After,
3423// whose final operand must be MVT::Glue.
3424static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003425 SDLoc DL(After);
Ulrich Weigand57c85f52015-04-01 12:51:43 +00003426 SDValue Glue = SDValue(After, After->getNumValues() - 1);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003427 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
3428 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3429 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
Ulrich Weigand57c85f52015-04-01 12:51:43 +00003430}
3431
3432SDValue
3433SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3434 SelectionDAG &DAG) const {
3435 unsigned Opcode, CCValid;
3436 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3437 assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
3438 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode);
3439 SDValue CC = getCCResult(DAG, Glued.getNode());
3440 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3441 return SDValue();
3442 }
3443
3444 return SDValue();
3445}
3446
Ulrich Weigandc1708b22015-05-05 19:31:09 +00003447SDValue
3448SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3449 SelectionDAG &DAG) const {
3450 unsigned Opcode, CCValid;
3451 if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3452 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode);
3453 SDValue CC = getCCResult(DAG, Glued.getNode());
3454 if (Op->getNumValues() == 1)
3455 return CC;
3456 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
NAKAMURA Takumi0a7d0ad2015-09-22 11:15:07 +00003457 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued,
3458 CC);
Ulrich Weigandc1708b22015-05-05 19:31:09 +00003459 }
3460
3461 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3462 switch (Id) {
Marcin Koscielnickif12609c2016-04-20 01:03:48 +00003463 case Intrinsic::thread_pointer:
3464 return lowerThreadPointer(SDLoc(Op), DAG);
3465
Ulrich Weigandc1708b22015-05-05 19:31:09 +00003466 case Intrinsic::s390_vpdi:
3467 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3468 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3469
3470 case Intrinsic::s390_vperm:
3471 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3472 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3473
3474 case Intrinsic::s390_vuphb:
3475 case Intrinsic::s390_vuphh:
3476 case Intrinsic::s390_vuphf:
3477 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3478 Op.getOperand(1));
3479
3480 case Intrinsic::s390_vuplhb:
3481 case Intrinsic::s390_vuplhh:
3482 case Intrinsic::s390_vuplhf:
3483 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3484 Op.getOperand(1));
3485
3486 case Intrinsic::s390_vuplb:
3487 case Intrinsic::s390_vuplhw:
3488 case Intrinsic::s390_vuplf:
3489 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
3490 Op.getOperand(1));
3491
3492 case Intrinsic::s390_vupllb:
3493 case Intrinsic::s390_vupllh:
3494 case Intrinsic::s390_vupllf:
3495 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
3496 Op.getOperand(1));
3497
3498 case Intrinsic::s390_vsumb:
3499 case Intrinsic::s390_vsumh:
3500 case Intrinsic::s390_vsumgh:
3501 case Intrinsic::s390_vsumgf:
3502 case Intrinsic::s390_vsumqf:
3503 case Intrinsic::s390_vsumqg:
3504 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
3505 Op.getOperand(1), Op.getOperand(2));
3506 }
3507
3508 return SDValue();
3509}
3510
Ulrich Weigandce4c1092015-05-05 19:25:42 +00003511namespace {
3512// Says that SystemZISD operation Opcode can be used to perform the equivalent
3513// of a VPERM with permute vector Bytes. If Opcode takes three operands,
3514// Operand is the constant third operand, otherwise it is the number of
3515// bytes in each element of the result.
3516struct Permute {
3517 unsigned Opcode;
3518 unsigned Operand;
3519 unsigned char Bytes[SystemZ::VectorBytes];
3520};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00003521}
Ulrich Weigandce4c1092015-05-05 19:25:42 +00003522
3523static const Permute PermuteForms[] = {
3524 // VMRHG
3525 { SystemZISD::MERGE_HIGH, 8,
3526 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
3527 // VMRHF
3528 { SystemZISD::MERGE_HIGH, 4,
3529 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
3530 // VMRHH
3531 { SystemZISD::MERGE_HIGH, 2,
3532 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
3533 // VMRHB
3534 { SystemZISD::MERGE_HIGH, 1,
3535 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
3536 // VMRLG
3537 { SystemZISD::MERGE_LOW, 8,
3538 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
3539 // VMRLF
3540 { SystemZISD::MERGE_LOW, 4,
3541 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
3542 // VMRLH
3543 { SystemZISD::MERGE_LOW, 2,
3544 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
3545 // VMRLB
3546 { SystemZISD::MERGE_LOW, 1,
3547 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
3548 // VPKG
3549 { SystemZISD::PACK, 4,
3550 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
3551 // VPKF
3552 { SystemZISD::PACK, 2,
3553 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
3554 // VPKH
3555 { SystemZISD::PACK, 1,
3556 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
3557 // VPDI V1, V2, 4 (low half of V1, high half of V2)
3558 { SystemZISD::PERMUTE_DWORDS, 4,
3559 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
3560 // VPDI V1, V2, 1 (high half of V1, low half of V2)
3561 { SystemZISD::PERMUTE_DWORDS, 1,
3562 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
3563};
3564
3565// Called after matching a vector shuffle against a particular pattern.
3566// Both the original shuffle and the pattern have two vector operands.
3567// OpNos[0] is the operand of the original shuffle that should be used for
3568// operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
3569// OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and
3570// set OpNo0 and OpNo1 to the shuffle operands that should actually be used
3571// for operands 0 and 1 of the pattern.
3572static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
3573 if (OpNos[0] < 0) {
3574 if (OpNos[1] < 0)
3575 return false;
3576 OpNo0 = OpNo1 = OpNos[1];
3577 } else if (OpNos[1] < 0) {
3578 OpNo0 = OpNo1 = OpNos[0];
3579 } else {
3580 OpNo0 = OpNos[0];
3581 OpNo1 = OpNos[1];
3582 }
3583 return true;
3584}
3585
3586// Bytes is a VPERM-like permute vector, except that -1 is used for
3587// undefined bytes. Return true if the VPERM can be implemented using P.
3588// When returning true set OpNo0 to the VPERM operand that should be
3589// used for operand 0 of P and likewise OpNo1 for operand 1 of P.
3590//
3591// For example, if swapping the VPERM operands allows P to match, OpNo0
3592// will be 1 and OpNo1 will be 0. If instead Bytes only refers to one
3593// operand, but rewriting it to use two duplicated operands allows it to
3594// match P, then OpNo0 and OpNo1 will be the same.
3595static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
3596 unsigned &OpNo0, unsigned &OpNo1) {
3597 int OpNos[] = { -1, -1 };
3598 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
3599 int Elt = Bytes[I];
3600 if (Elt >= 0) {
3601 // Make sure that the two permute vectors use the same suboperand
3602 // byte number. Only the operand numbers (the high bits) are
3603 // allowed to differ.
3604 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
3605 return false;
3606 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
3607 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
3608 // Make sure that the operand mappings are consistent with previous
3609 // elements.
3610 if (OpNos[ModelOpNo] == 1 - RealOpNo)
3611 return false;
3612 OpNos[ModelOpNo] = RealOpNo;
3613 }
3614 }
3615 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3616}
3617
3618// As above, but search for a matching permute.
3619static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
3620 unsigned &OpNo0, unsigned &OpNo1) {
3621 for (auto &P : PermuteForms)
3622 if (matchPermute(Bytes, P, OpNo0, OpNo1))
3623 return &P;
3624 return nullptr;
3625}
3626
3627// Bytes is a VPERM-like permute vector, except that -1 is used for
3628// undefined bytes. This permute is an operand of an outer permute.
3629// See whether redistributing the -1 bytes gives a shuffle that can be
3630// implemented using P. If so, set Transform to a VPERM-like permute vector
3631// that, when applied to the result of P, gives the original permute in Bytes.
3632static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3633 const Permute &P,
3634 SmallVectorImpl<int> &Transform) {
3635 unsigned To = 0;
3636 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
3637 int Elt = Bytes[From];
3638 if (Elt < 0)
3639 // Byte number From of the result is undefined.
3640 Transform[From] = -1;
3641 else {
3642 while (P.Bytes[To] != Elt) {
3643 To += 1;
3644 if (To == SystemZ::VectorBytes)
3645 return false;
3646 }
3647 Transform[From] = To;
3648 }
3649 }
3650 return true;
3651}
3652
3653// As above, but search for a matching permute.
3654static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3655 SmallVectorImpl<int> &Transform) {
3656 for (auto &P : PermuteForms)
3657 if (matchDoublePermute(Bytes, P, Transform))
3658 return &P;
3659 return nullptr;
3660}
3661
3662// Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask,
3663// as if it had type vNi8.
3664static void getVPermMask(ShuffleVectorSDNode *VSN,
3665 SmallVectorImpl<int> &Bytes) {
3666 EVT VT = VSN->getValueType(0);
3667 unsigned NumElements = VT.getVectorNumElements();
3668 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3669 Bytes.resize(NumElements * BytesPerElement, -1);
3670 for (unsigned I = 0; I < NumElements; ++I) {
3671 int Index = VSN->getMaskElt(I);
3672 if (Index >= 0)
3673 for (unsigned J = 0; J < BytesPerElement; ++J)
3674 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
3675 }
3676}
3677
3678// Bytes is a VPERM-like permute vector, except that -1 is used for
3679// undefined bytes. See whether bytes [Start, Start + BytesPerElement) of
3680// the result come from a contiguous sequence of bytes from one input.
3681// Set Base to the selector for the first byte if so.
3682static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
3683 unsigned BytesPerElement, int &Base) {
3684 Base = -1;
3685 for (unsigned I = 0; I < BytesPerElement; ++I) {
3686 if (Bytes[Start + I] >= 0) {
3687 unsigned Elem = Bytes[Start + I];
3688 if (Base < 0) {
3689 Base = Elem - I;
3690 // Make sure the bytes would come from one input operand.
3691 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
3692 return false;
3693 } else if (unsigned(Base) != Elem - I)
3694 return false;
3695 }
3696 }
3697 return true;
3698}
3699
3700// Bytes is a VPERM-like permute vector, except that -1 is used for
3701// undefined bytes. Return true if it can be performed using VSLDI.
3702// When returning true, set StartIndex to the shift amount and OpNo0
3703// and OpNo1 to the VPERM operands that should be used as the first
3704// and second shift operand respectively.
3705static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
3706 unsigned &StartIndex, unsigned &OpNo0,
3707 unsigned &OpNo1) {
3708 int OpNos[] = { -1, -1 };
3709 int Shift = -1;
3710 for (unsigned I = 0; I < 16; ++I) {
3711 int Index = Bytes[I];
3712 if (Index >= 0) {
3713 int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
3714 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
3715 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
3716 if (Shift < 0)
3717 Shift = ExpectedShift;
3718 else if (Shift != ExpectedShift)
3719 return false;
3720 // Make sure that the operand mappings are consistent with previous
3721 // elements.
3722 if (OpNos[ModelOpNo] == 1 - RealOpNo)
3723 return false;
3724 OpNos[ModelOpNo] = RealOpNo;
3725 }
3726 }
3727 StartIndex = Shift;
3728 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3729}
3730
3731// Create a node that performs P on operands Op0 and Op1, casting the
3732// operands to the appropriate type. The type of the result is determined by P.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00003733static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
Ulrich Weigandce4c1092015-05-05 19:25:42 +00003734 const Permute &P, SDValue Op0, SDValue Op1) {
3735 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input
3736 // elements of a PACK are twice as wide as the outputs.
3737 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
3738 P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
3739 P.Operand);
3740 // Cast both operands to the appropriate type.
3741 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
3742 SystemZ::VectorBytes / InBytes);
3743 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
3744 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
3745 SDValue Op;
3746 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
3747 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
3748 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
3749 } else if (P.Opcode == SystemZISD::PACK) {
3750 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
3751 SystemZ::VectorBytes / P.Operand);
3752 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
3753 } else {
3754 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
3755 }
3756 return Op;
3757}
3758
3759// Bytes is a VPERM-like permute vector, except that -1 is used for
3760// undefined bytes. Implement it on operands Ops[0] and Ops[1] using
3761// VSLDI or VPERM.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00003762static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3763 SDValue *Ops,
Ulrich Weigandce4c1092015-05-05 19:25:42 +00003764 const SmallVectorImpl<int> &Bytes) {
3765 for (unsigned I = 0; I < 2; ++I)
3766 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
3767
3768 // First see whether VSLDI can be used.
3769 unsigned StartIndex, OpNo0, OpNo1;
3770 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
3771 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
3772 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
3773
3774 // Fall back on VPERM. Construct an SDNode for the permute vector.
3775 SDValue IndexNodes[SystemZ::VectorBytes];
3776 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
3777 if (Bytes[I] >= 0)
3778 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
3779 else
3780 IndexNodes[I] = DAG.getUNDEF(MVT::i32);
Ahmed Bougacha128f8732016-04-26 21:15:30 +00003781 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
Ulrich Weigandce4c1092015-05-05 19:25:42 +00003782 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
3783}
3784
3785namespace {
3786// Describes a general N-operand vector shuffle.
3787struct GeneralShuffle {
3788 GeneralShuffle(EVT vt) : VT(vt) {}
3789 void addUndef();
3790 void add(SDValue, unsigned);
Benjamin Kramerbdc49562016-06-12 15:39:02 +00003791 SDValue getNode(SelectionDAG &, const SDLoc &);
Ulrich Weigandce4c1092015-05-05 19:25:42 +00003792
3793 // The operands of the shuffle.
3794 SmallVector<SDValue, SystemZ::VectorBytes> Ops;
3795
3796 // Index I is -1 if byte I of the result is undefined. Otherwise the
3797 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
3798 // Bytes[I] / SystemZ::VectorBytes.
3799 SmallVector<int, SystemZ::VectorBytes> Bytes;
3800
3801 // The type of the shuffle result.
3802 EVT VT;
3803};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00003804}
Ulrich Weigandce4c1092015-05-05 19:25:42 +00003805
3806// Add an extra undefined element to the shuffle.
3807void GeneralShuffle::addUndef() {
3808 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3809 for (unsigned I = 0; I < BytesPerElement; ++I)
3810 Bytes.push_back(-1);
3811}
3812
3813// Add an extra element to the shuffle, taking it from element Elem of Op.
3814// A null Op indicates a vector input whose value will be calculated later;
3815// there is at most one such input per shuffle and it always has the same
3816// type as the result.
3817void GeneralShuffle::add(SDValue Op, unsigned Elem) {
3818 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3819
3820 // The source vector can have wider elements than the result,
3821 // either through an explicit TRUNCATE or because of type legalization.
3822 // We want the least significant part.
3823 EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
3824 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
3825 assert(FromBytesPerElement >= BytesPerElement &&
3826 "Invalid EXTRACT_VECTOR_ELT");
3827 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
3828 (FromBytesPerElement - BytesPerElement));
3829
3830 // Look through things like shuffles and bitcasts.
3831 while (Op.getNode()) {
3832 if (Op.getOpcode() == ISD::BITCAST)
3833 Op = Op.getOperand(0);
3834 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
3835 // See whether the bytes we need come from a contiguous part of one
3836 // operand.
3837 SmallVector<int, SystemZ::VectorBytes> OpBytes;
3838 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes);
3839 int NewByte;
3840 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
3841 break;
3842 if (NewByte < 0) {
3843 addUndef();
3844 return;
3845 }
3846 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
3847 Byte = unsigned(NewByte) % SystemZ::VectorBytes;
Sanjay Patel57195842016-03-14 17:28:46 +00003848 } else if (Op.isUndef()) {
Ulrich Weigandce4c1092015-05-05 19:25:42 +00003849 addUndef();
3850 return;
3851 } else
3852 break;
3853 }
3854
3855 // Make sure that the source of the extraction is in Ops.
3856 unsigned OpNo = 0;
3857 for (; OpNo < Ops.size(); ++OpNo)
3858 if (Ops[OpNo] == Op)
3859 break;
3860 if (OpNo == Ops.size())
3861 Ops.push_back(Op);
3862
3863 // Add the element to Bytes.
3864 unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
3865 for (unsigned I = 0; I < BytesPerElement; ++I)
3866 Bytes.push_back(Base + I);
3867}
3868
3869// Return SDNodes for the completed shuffle.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00003870SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
Ulrich Weigandce4c1092015-05-05 19:25:42 +00003871 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
3872
3873 if (Ops.size() == 0)
3874 return DAG.getUNDEF(VT);
3875
3876 // Make sure that there are at least two shuffle operands.
3877 if (Ops.size() == 1)
3878 Ops.push_back(DAG.getUNDEF(MVT::v16i8));
3879
3880 // Create a tree of shuffles, deferring root node until after the loop.
3881 // Try to redistribute the undefined elements of non-root nodes so that
3882 // the non-root shuffles match something like a pack or merge, then adjust
3883 // the parent node's permute vector to compensate for the new order.
3884 // Among other things, this copes with vectors like <2 x i16> that were
3885 // padded with undefined elements during type legalization.
3886 //
3887 // In the best case this redistribution will lead to the whole tree
3888 // using packs and merges. It should rarely be a loss in other cases.
3889 unsigned Stride = 1;
3890 for (; Stride * 2 < Ops.size(); Stride *= 2) {
3891 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
3892 SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
3893
3894 // Create a mask for just these two operands.
3895 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
3896 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
3897 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
3898 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
3899 if (OpNo == I)
3900 NewBytes[J] = Byte;
3901 else if (OpNo == I + Stride)
3902 NewBytes[J] = SystemZ::VectorBytes + Byte;
3903 else
3904 NewBytes[J] = -1;
3905 }
3906 // See if it would be better to reorganize NewMask to avoid using VPERM.
3907 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
3908 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
3909 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
3910 // Applying NewBytesMap to Ops[I] gets back to NewBytes.
3911 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
3912 if (NewBytes[J] >= 0) {
3913 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
3914 "Invalid double permute");
3915 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
3916 } else
3917 assert(NewBytesMap[J] < 0 && "Invalid double permute");
3918 }
3919 } else {
3920 // Just use NewBytes on the operands.
3921 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
3922 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
3923 if (NewBytes[J] >= 0)
3924 Bytes[J] = I * SystemZ::VectorBytes + J;
3925 }
3926 }
3927 }
3928
3929 // Now we just have 2 inputs. Put the second operand in Ops[1].
3930 if (Stride > 1) {
3931 Ops[1] = Ops[Stride];
3932 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
3933 if (Bytes[I] >= int(SystemZ::VectorBytes))
3934 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
3935 }
3936
3937 // Look for an instruction that can do the permute without resorting
3938 // to VPERM.
3939 unsigned OpNo0, OpNo1;
3940 SDValue Op;
3941 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
3942 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
3943 else
3944 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
3945 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
3946}
3947
Ulrich Weigandcd808232015-05-05 19:26:48 +00003948// Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
3949static bool isScalarToVector(SDValue Op) {
3950 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
Sanjay Patel75068522016-03-14 18:09:43 +00003951 if (!Op.getOperand(I).isUndef())
Ulrich Weigandcd808232015-05-05 19:26:48 +00003952 return false;
3953 return true;
3954}
3955
3956// Return a vector of type VT that contains Value in the first element.
3957// The other elements don't matter.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00003958static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
Ulrich Weigandcd808232015-05-05 19:26:48 +00003959 SDValue Value) {
3960 // If we have a constant, replicate it to all elements and let the
3961 // BUILD_VECTOR lowering take care of it.
3962 if (Value.getOpcode() == ISD::Constant ||
3963 Value.getOpcode() == ISD::ConstantFP) {
3964 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
Ahmed Bougacha128f8732016-04-26 21:15:30 +00003965 return DAG.getBuildVector(VT, DL, Ops);
Ulrich Weigandcd808232015-05-05 19:26:48 +00003966 }
Sanjay Patel57195842016-03-14 17:28:46 +00003967 if (Value.isUndef())
Ulrich Weigandcd808232015-05-05 19:26:48 +00003968 return DAG.getUNDEF(VT);
3969 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
3970}
3971
3972// Return a vector of type VT in which Op0 is in element 0 and Op1 is in
3973// element 1. Used for cases in which replication is cheap.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00003974static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
Ulrich Weigandcd808232015-05-05 19:26:48 +00003975 SDValue Op0, SDValue Op1) {
Sanjay Patel57195842016-03-14 17:28:46 +00003976 if (Op0.isUndef()) {
3977 if (Op1.isUndef())
Ulrich Weigandcd808232015-05-05 19:26:48 +00003978 return DAG.getUNDEF(VT);
3979 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
3980 }
Sanjay Patel57195842016-03-14 17:28:46 +00003981 if (Op1.isUndef())
Ulrich Weigandcd808232015-05-05 19:26:48 +00003982 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
3983 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
3984 buildScalarToVector(DAG, DL, VT, Op0),
3985 buildScalarToVector(DAG, DL, VT, Op1));
3986}
3987
Ulrich Weigandce4c1092015-05-05 19:25:42 +00003988// Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
3989// vector for them.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00003990static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
Ulrich Weigandce4c1092015-05-05 19:25:42 +00003991 SDValue Op1) {
Sanjay Patel57195842016-03-14 17:28:46 +00003992 if (Op0.isUndef() && Op1.isUndef())
Ulrich Weigandce4c1092015-05-05 19:25:42 +00003993 return DAG.getUNDEF(MVT::v2i64);
3994 // If one of the two inputs is undefined then replicate the other one,
3995 // in order to avoid using another register unnecessarily.
Sanjay Patel57195842016-03-14 17:28:46 +00003996 if (Op0.isUndef())
Ulrich Weigandce4c1092015-05-05 19:25:42 +00003997 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
Sanjay Patel57195842016-03-14 17:28:46 +00003998 else if (Op1.isUndef())
Ulrich Weigandce4c1092015-05-05 19:25:42 +00003999 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4000 else {
4001 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4002 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4003 }
4004 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4005}
4006
4007// Try to represent constant BUILD_VECTOR node BVN using a
4008// SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask
4009// on success.
4010static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) {
4011 EVT ElemVT = BVN->getValueType(0).getVectorElementType();
4012 unsigned BytesPerElement = ElemVT.getStoreSize();
4013 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) {
4014 SDValue Op = BVN->getOperand(I);
Sanjay Patel75068522016-03-14 18:09:43 +00004015 if (!Op.isUndef()) {
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004016 uint64_t Value;
4017 if (Op.getOpcode() == ISD::Constant)
4018 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue();
4019 else if (Op.getOpcode() == ISD::ConstantFP)
4020 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()
4021 .getZExtValue());
4022 else
4023 return false;
4024 for (unsigned J = 0; J < BytesPerElement; ++J) {
4025 uint64_t Byte = (Value >> (J * 8)) & 0xff;
4026 if (Byte == 0xff)
Aaron Ballman2a3aa1f242015-05-11 12:45:53 +00004027 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J);
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004028 else if (Byte != 0)
4029 return false;
4030 }
4031 }
4032 }
4033 return true;
4034}
4035
4036// Try to load a vector constant in which BitsPerElement-bit value Value
4037// is replicated to fill the vector. VT is the type of the resulting
4038// constant, which may have elements of a different size from BitsPerElement.
4039// Return the SDValue of the constant on success, otherwise return
4040// an empty value.
4041static SDValue tryBuildVectorReplicate(SelectionDAG &DAG,
4042 const SystemZInstrInfo *TII,
Benjamin Kramerbdc49562016-06-12 15:39:02 +00004043 const SDLoc &DL, EVT VT, uint64_t Value,
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004044 unsigned BitsPerElement) {
4045 // Signed 16-bit values can be replicated using VREPI.
4046 int64_t SignedValue = SignExtend64(Value, BitsPerElement);
4047 if (isInt<16>(SignedValue)) {
4048 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4049 SystemZ::VectorBits / BitsPerElement);
4050 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT,
4051 DAG.getConstant(SignedValue, DL, MVT::i32));
4052 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4053 }
4054 // See whether rotating the constant left some N places gives a value that
4055 // is one less than a power of 2 (i.e. all zeros followed by all ones).
4056 // If so we can use VGM.
4057 unsigned Start, End;
4058 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) {
4059 // isRxSBGMask returns the bit numbers for a full 64-bit value,
4060 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to
4061 // bit numbers for an BitsPerElement value, so that 0 denotes
4062 // 1 << (BitsPerElement-1).
4063 Start -= 64 - BitsPerElement;
4064 End -= 64 - BitsPerElement;
4065 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4066 SystemZ::VectorBits / BitsPerElement);
4067 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT,
4068 DAG.getConstant(Start, DL, MVT::i32),
4069 DAG.getConstant(End, DL, MVT::i32));
4070 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4071 }
4072 return SDValue();
4073}
4074
4075// If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4076// better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4077// the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR
4078// would benefit from this representation and return it if so.
4079static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4080 BuildVectorSDNode *BVN) {
4081 EVT VT = BVN->getValueType(0);
4082 unsigned NumElements = VT.getVectorNumElements();
4083
4084 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4085 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still
4086 // need a BUILD_VECTOR, add an additional placeholder operand for that
4087 // BUILD_VECTOR and store its operands in ResidueOps.
4088 GeneralShuffle GS(VT);
4089 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4090 bool FoundOne = false;
4091 for (unsigned I = 0; I < NumElements; ++I) {
4092 SDValue Op = BVN->getOperand(I);
4093 if (Op.getOpcode() == ISD::TRUNCATE)
4094 Op = Op.getOperand(0);
4095 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4096 Op.getOperand(1).getOpcode() == ISD::Constant) {
4097 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4098 GS.add(Op.getOperand(0), Elem);
4099 FoundOne = true;
Sanjay Patel57195842016-03-14 17:28:46 +00004100 } else if (Op.isUndef()) {
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004101 GS.addUndef();
4102 } else {
4103 GS.add(SDValue(), ResidueOps.size());
Ulrich Weigande861e642015-09-15 14:27:46 +00004104 ResidueOps.push_back(BVN->getOperand(I));
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004105 }
4106 }
4107
4108 // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4109 if (!FoundOne)
4110 return SDValue();
4111
4112 // Create the BUILD_VECTOR for the remaining elements, if any.
4113 if (!ResidueOps.empty()) {
4114 while (ResidueOps.size() < NumElements)
Ulrich Weigandf4d14f72015-10-08 17:46:59 +00004115 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004116 for (auto &Op : GS.Ops) {
4117 if (!Op.getNode()) {
Ahmed Bougacha128f8732016-04-26 21:15:30 +00004118 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004119 break;
4120 }
4121 }
4122 }
4123 return GS.getNode(DAG, SDLoc(BVN));
4124}
4125
4126// Combine GPR scalar values Elems into a vector of type VT.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00004127static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004128 SmallVectorImpl<SDValue> &Elems) {
4129 // See whether there is a single replicated value.
4130 SDValue Single;
4131 unsigned int NumElements = Elems.size();
4132 unsigned int Count = 0;
4133 for (auto Elem : Elems) {
Sanjay Patel75068522016-03-14 18:09:43 +00004134 if (!Elem.isUndef()) {
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004135 if (!Single.getNode())
4136 Single = Elem;
4137 else if (Elem != Single) {
4138 Single = SDValue();
4139 break;
4140 }
4141 Count += 1;
4142 }
4143 }
4144 // There are three cases here:
4145 //
4146 // - if the only defined element is a loaded one, the best sequence
4147 // is a replicating load.
4148 //
4149 // - otherwise, if the only defined element is an i64 value, we will
4150 // end up with the same VLVGP sequence regardless of whether we short-cut
4151 // for replication or fall through to the later code.
4152 //
4153 // - otherwise, if the only defined element is an i32 or smaller value,
4154 // we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4155 // This is only a win if the single defined element is used more than once.
4156 // In other cases we're better off using a single VLVGx.
4157 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
4158 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4159
4160 // The best way of building a v2i64 from two i64s is to use VLVGP.
4161 if (VT == MVT::v2i64)
4162 return joinDwords(DAG, DL, Elems[0], Elems[1]);
4163
Ulrich Weigandcd808232015-05-05 19:26:48 +00004164 // Use a 64-bit merge high to combine two doubles.
4165 if (VT == MVT::v2f64)
4166 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4167
Ulrich Weigand80b3af72015-05-05 19:27:45 +00004168 // Build v4f32 values directly from the FPRs:
4169 //
4170 // <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4171 // V V VMRHF
4172 // <ABxx> <CDxx>
4173 // V VMRHG
4174 // <ABCD>
4175 if (VT == MVT::v4f32) {
4176 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4177 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4178 // Avoid unnecessary undefs by reusing the other operand.
Sanjay Patel57195842016-03-14 17:28:46 +00004179 if (Op01.isUndef())
Ulrich Weigand80b3af72015-05-05 19:27:45 +00004180 Op01 = Op23;
Sanjay Patel57195842016-03-14 17:28:46 +00004181 else if (Op23.isUndef())
Ulrich Weigand80b3af72015-05-05 19:27:45 +00004182 Op23 = Op01;
4183 // Merging identical replications is a no-op.
4184 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4185 return Op01;
4186 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4187 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4188 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4189 DL, MVT::v2i64, Op01, Op23);
4190 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4191 }
4192
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004193 // Collect the constant terms.
4194 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4195 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4196
4197 unsigned NumConstants = 0;
4198 for (unsigned I = 0; I < NumElements; ++I) {
4199 SDValue Elem = Elems[I];
4200 if (Elem.getOpcode() == ISD::Constant ||
4201 Elem.getOpcode() == ISD::ConstantFP) {
4202 NumConstants += 1;
4203 Constants[I] = Elem;
4204 Done[I] = true;
4205 }
4206 }
4207 // If there was at least one constant, fill in the other elements of
4208 // Constants with undefs to get a full vector constant and use that
4209 // as the starting point.
4210 SDValue Result;
4211 if (NumConstants > 0) {
4212 for (unsigned I = 0; I < NumElements; ++I)
4213 if (!Constants[I].getNode())
4214 Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
Ahmed Bougacha128f8732016-04-26 21:15:30 +00004215 Result = DAG.getBuildVector(VT, DL, Constants);
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004216 } else {
4217 // Otherwise try to use VLVGP to start the sequence in order to
4218 // avoid a false dependency on any previous contents of the vector
4219 // register. This only makes sense if one of the associated elements
4220 // is defined.
4221 unsigned I1 = NumElements / 2 - 1;
4222 unsigned I2 = NumElements - 1;
Sanjay Patel75068522016-03-14 18:09:43 +00004223 bool Def1 = !Elems[I1].isUndef();
4224 bool Def2 = !Elems[I2].isUndef();
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004225 if (Def1 || Def2) {
4226 SDValue Elem1 = Elems[Def1 ? I1 : I2];
4227 SDValue Elem2 = Elems[Def2 ? I2 : I1];
4228 Result = DAG.getNode(ISD::BITCAST, DL, VT,
4229 joinDwords(DAG, DL, Elem1, Elem2));
4230 Done[I1] = true;
4231 Done[I2] = true;
4232 } else
4233 Result = DAG.getUNDEF(VT);
4234 }
4235
4236 // Use VLVGx to insert the other elements.
4237 for (unsigned I = 0; I < NumElements; ++I)
Sanjay Patel75068522016-03-14 18:09:43 +00004238 if (!Done[I] && !Elems[I].isUndef())
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004239 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4240 DAG.getConstant(I, DL, MVT::i32));
4241 return Result;
4242}
4243
4244SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4245 SelectionDAG &DAG) const {
4246 const SystemZInstrInfo *TII =
4247 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
4248 auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4249 SDLoc DL(Op);
4250 EVT VT = Op.getValueType();
4251
4252 if (BVN->isConstant()) {
4253 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally-
4254 // preferred way of creating all-zero and all-one vectors so give it
4255 // priority over other methods below.
4256 uint64_t Mask = 0;
4257 if (tryBuildVectorByteMask(BVN, Mask)) {
4258 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
4259 DAG.getConstant(Mask, DL, MVT::i32));
4260 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4261 }
4262
4263 // Try using some form of replication.
4264 APInt SplatBits, SplatUndef;
4265 unsigned SplatBitSize;
4266 bool HasAnyUndefs;
4267 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4268 8, true) &&
4269 SplatBitSize <= 64) {
4270 // First try assuming that any undefined bits above the highest set bit
4271 // and below the lowest set bit are 1s. This increases the likelihood of
4272 // being able to use a sign-extended element value in VECTOR REPLICATE
4273 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
4274 uint64_t SplatBitsZ = SplatBits.getZExtValue();
4275 uint64_t SplatUndefZ = SplatUndef.getZExtValue();
4276 uint64_t Lower = (SplatUndefZ
4277 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
4278 uint64_t Upper = (SplatUndefZ
4279 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
4280 uint64_t Value = SplatBitsZ | Upper | Lower;
4281 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value,
4282 SplatBitSize);
4283 if (Op.getNode())
4284 return Op;
4285
4286 // Now try assuming that any undefined bits between the first and
4287 // last defined set bits are set. This increases the chances of
4288 // using a non-wraparound mask.
4289 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
4290 Value = SplatBitsZ | Middle;
4291 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize);
4292 if (Op.getNode())
4293 return Op;
4294 }
4295
4296 // Fall back to loading it from memory.
4297 return SDValue();
4298 }
4299
4300 // See if we should use shuffles to construct the vector from other vectors.
Ahmed Bougachaf8dfb472016-02-09 22:54:12 +00004301 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004302 return Res;
4303
Ulrich Weigandcd808232015-05-05 19:26:48 +00004304 // Detect SCALAR_TO_VECTOR conversions.
4305 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4306 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4307
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004308 // Otherwise use buildVector to build the vector up from GPRs.
4309 unsigned NumElements = Op.getNumOperands();
4310 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4311 for (unsigned I = 0; I < NumElements; ++I)
4312 Ops[I] = Op.getOperand(I);
4313 return buildVector(DAG, DL, VT, Ops);
4314}
4315
4316SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4317 SelectionDAG &DAG) const {
4318 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4319 SDLoc DL(Op);
4320 EVT VT = Op.getValueType();
4321 unsigned NumElements = VT.getVectorNumElements();
4322
4323 if (VSN->isSplat()) {
4324 SDValue Op0 = Op.getOperand(0);
4325 unsigned Index = VSN->getSplatIndex();
4326 assert(Index < VT.getVectorNumElements() &&
4327 "Splat index should be defined and in first operand");
4328 // See whether the value we're splatting is directly available as a scalar.
4329 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4330 Op0.getOpcode() == ISD::BUILD_VECTOR)
4331 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4332 // Otherwise keep it as a vector-to-vector operation.
4333 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4334 DAG.getConstant(Index, DL, MVT::i32));
4335 }
4336
4337 GeneralShuffle GS(VT);
4338 for (unsigned I = 0; I < NumElements; ++I) {
4339 int Elt = VSN->getMaskElt(I);
4340 if (Elt < 0)
4341 GS.addUndef();
4342 else
4343 GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4344 unsigned(Elt) % NumElements);
4345 }
4346 return GS.getNode(DAG, SDLoc(VSN));
4347}
4348
4349SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4350 SelectionDAG &DAG) const {
4351 SDLoc DL(Op);
4352 // Just insert the scalar into element 0 of an undefined vector.
4353 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4354 Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4355 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4356}
4357
Ulrich Weigandcd808232015-05-05 19:26:48 +00004358SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4359 SelectionDAG &DAG) const {
4360 // Handle insertions of floating-point values.
4361 SDLoc DL(Op);
4362 SDValue Op0 = Op.getOperand(0);
4363 SDValue Op1 = Op.getOperand(1);
4364 SDValue Op2 = Op.getOperand(2);
4365 EVT VT = Op.getValueType();
4366
Ulrich Weigand80b3af72015-05-05 19:27:45 +00004367 // Insertions into constant indices of a v2f64 can be done using VPDI.
4368 // However, if the inserted value is a bitcast or a constant then it's
4369 // better to use GPRs, as below.
4370 if (VT == MVT::v2f64 &&
4371 Op1.getOpcode() != ISD::BITCAST &&
Ulrich Weigandcd808232015-05-05 19:26:48 +00004372 Op1.getOpcode() != ISD::ConstantFP &&
4373 Op2.getOpcode() == ISD::Constant) {
4374 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue();
4375 unsigned Mask = VT.getVectorNumElements() - 1;
4376 if (Index <= Mask)
4377 return Op;
4378 }
4379
4380 // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4381 MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits());
4382 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4383 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4384 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4385 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4386 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4387}
4388
4389SDValue
4390SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4391 SelectionDAG &DAG) const {
4392 // Handle extractions of floating-point values.
4393 SDLoc DL(Op);
4394 SDValue Op0 = Op.getOperand(0);
4395 SDValue Op1 = Op.getOperand(1);
4396 EVT VT = Op.getValueType();
4397 EVT VecVT = Op0.getValueType();
4398
4399 // Extractions of constant indices can be done directly.
4400 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4401 uint64_t Index = CIndexN->getZExtValue();
4402 unsigned Mask = VecVT.getVectorNumElements() - 1;
4403 if (Index <= Mask)
4404 return Op;
4405 }
4406
4407 // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4408 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4409 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4410 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4411 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4412 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4413}
4414
Ulrich Weigandcd2a1b52015-05-05 19:29:21 +00004415SDValue
4416SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
NAKAMURA Takumi0a7d0ad2015-09-22 11:15:07 +00004417 unsigned UnpackHigh) const {
Ulrich Weigandcd2a1b52015-05-05 19:29:21 +00004418 SDValue PackedOp = Op.getOperand(0);
4419 EVT OutVT = Op.getValueType();
4420 EVT InVT = PackedOp.getValueType();
4421 unsigned ToBits = OutVT.getVectorElementType().getSizeInBits();
4422 unsigned FromBits = InVT.getVectorElementType().getSizeInBits();
4423 do {
4424 FromBits *= 2;
4425 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4426 SystemZ::VectorBits / FromBits);
4427 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4428 } while (FromBits != ToBits);
4429 return PackedOp;
4430}
4431
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004432SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4433 unsigned ByScalar) const {
4434 // Look for cases where a vector shift can use the *_BY_SCALAR form.
4435 SDValue Op0 = Op.getOperand(0);
4436 SDValue Op1 = Op.getOperand(1);
4437 SDLoc DL(Op);
4438 EVT VT = Op.getValueType();
4439 unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits();
4440
4441 // See whether the shift vector is a splat represented as BUILD_VECTOR.
4442 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4443 APInt SplatBits, SplatUndef;
4444 unsigned SplatBitSize;
4445 bool HasAnyUndefs;
4446 // Check for constant splats. Use ElemBitSize as the minimum element
4447 // width and reject splats that need wider elements.
4448 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4449 ElemBitSize, true) &&
4450 SplatBitSize == ElemBitSize) {
4451 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4452 DL, MVT::i32);
4453 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4454 }
4455 // Check for variable splats.
4456 BitVector UndefElements;
4457 SDValue Splat = BVN->getSplatValue(&UndefElements);
4458 if (Splat) {
4459 // Since i32 is the smallest legal type, we either need a no-op
4460 // or a truncation.
4461 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4462 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4463 }
4464 }
4465
4466 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4467 // and the shift amount is directly available in a GPR.
4468 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4469 if (VSN->isSplat()) {
4470 SDValue VSNOp0 = VSN->getOperand(0);
4471 unsigned Index = VSN->getSplatIndex();
4472 assert(Index < VT.getVectorNumElements() &&
4473 "Splat index should be defined and in first operand");
4474 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4475 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4476 // Since i32 is the smallest legal type, we either need a no-op
4477 // or a truncation.
4478 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4479 VSNOp0.getOperand(Index));
4480 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4481 }
4482 }
4483 }
4484
4485 // Otherwise just treat the current form as legal.
4486 return Op;
4487}
4488
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004489SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4490 SelectionDAG &DAG) const {
4491 switch (Op.getOpcode()) {
Ulrich Weigandf557d082016-04-04 12:44:55 +00004492 case ISD::FRAMEADDR:
4493 return lowerFRAMEADDR(Op, DAG);
4494 case ISD::RETURNADDR:
4495 return lowerRETURNADDR(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004496 case ISD::BR_CC:
4497 return lowerBR_CC(Op, DAG);
4498 case ISD::SELECT_CC:
4499 return lowerSELECT_CC(Op, DAG);
Richard Sandifordf722a8e302013-10-16 11:10:55 +00004500 case ISD::SETCC:
4501 return lowerSETCC(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004502 case ISD::GlobalAddress:
4503 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4504 case ISD::GlobalTLSAddress:
4505 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4506 case ISD::BlockAddress:
4507 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4508 case ISD::JumpTable:
4509 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4510 case ISD::ConstantPool:
4511 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4512 case ISD::BITCAST:
4513 return lowerBITCAST(Op, DAG);
4514 case ISD::VASTART:
4515 return lowerVASTART(Op, DAG);
4516 case ISD::VACOPY:
4517 return lowerVACOPY(Op, DAG);
4518 case ISD::DYNAMIC_STACKALLOC:
4519 return lowerDYNAMIC_STACKALLOC(Op, DAG);
Marcin Koscielnicki9de88d92016-05-04 23:31:26 +00004520 case ISD::GET_DYNAMIC_AREA_OFFSET:
4521 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
Richard Sandiford7d86e472013-08-21 09:34:56 +00004522 case ISD::SMUL_LOHI:
4523 return lowerSMUL_LOHI(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004524 case ISD::UMUL_LOHI:
4525 return lowerUMUL_LOHI(Op, DAG);
4526 case ISD::SDIVREM:
4527 return lowerSDIVREM(Op, DAG);
4528 case ISD::UDIVREM:
4529 return lowerUDIVREM(Op, DAG);
4530 case ISD::OR:
4531 return lowerOR(Op, DAG);
Ulrich Weigandb4012182015-03-31 12:56:33 +00004532 case ISD::CTPOP:
4533 return lowerCTPOP(Op, DAG);
Ulrich Weiganda9ac6d62016-04-04 12:45:44 +00004534 case ISD::ATOMIC_FENCE:
4535 return lowerATOMIC_FENCE(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004536 case ISD::ATOMIC_SWAP:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00004537 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
4538 case ISD::ATOMIC_STORE:
4539 return lowerATOMIC_STORE(Op, DAG);
4540 case ISD::ATOMIC_LOAD:
4541 return lowerATOMIC_LOAD(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004542 case ISD::ATOMIC_LOAD_ADD:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00004543 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004544 case ISD::ATOMIC_LOAD_SUB:
Richard Sandiford41350a52013-12-24 15:18:04 +00004545 return lowerATOMIC_LOAD_SUB(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004546 case ISD::ATOMIC_LOAD_AND:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00004547 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004548 case ISD::ATOMIC_LOAD_OR:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00004549 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004550 case ISD::ATOMIC_LOAD_XOR:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00004551 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004552 case ISD::ATOMIC_LOAD_NAND:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00004553 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004554 case ISD::ATOMIC_LOAD_MIN:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00004555 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004556 case ISD::ATOMIC_LOAD_MAX:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00004557 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004558 case ISD::ATOMIC_LOAD_UMIN:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00004559 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004560 case ISD::ATOMIC_LOAD_UMAX:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00004561 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004562 case ISD::ATOMIC_CMP_SWAP:
4563 return lowerATOMIC_CMP_SWAP(Op, DAG);
4564 case ISD::STACKSAVE:
4565 return lowerSTACKSAVE(Op, DAG);
4566 case ISD::STACKRESTORE:
4567 return lowerSTACKRESTORE(Op, DAG);
Richard Sandiford03481332013-08-23 11:36:42 +00004568 case ISD::PREFETCH:
4569 return lowerPREFETCH(Op, DAG);
Ulrich Weigand57c85f52015-04-01 12:51:43 +00004570 case ISD::INTRINSIC_W_CHAIN:
4571 return lowerINTRINSIC_W_CHAIN(Op, DAG);
Ulrich Weigandc1708b22015-05-05 19:31:09 +00004572 case ISD::INTRINSIC_WO_CHAIN:
4573 return lowerINTRINSIC_WO_CHAIN(Op, DAG);
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004574 case ISD::BUILD_VECTOR:
4575 return lowerBUILD_VECTOR(Op, DAG);
4576 case ISD::VECTOR_SHUFFLE:
4577 return lowerVECTOR_SHUFFLE(Op, DAG);
4578 case ISD::SCALAR_TO_VECTOR:
4579 return lowerSCALAR_TO_VECTOR(Op, DAG);
Ulrich Weigandcd808232015-05-05 19:26:48 +00004580 case ISD::INSERT_VECTOR_ELT:
4581 return lowerINSERT_VECTOR_ELT(Op, DAG);
4582 case ISD::EXTRACT_VECTOR_ELT:
4583 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
Ulrich Weigandcd2a1b52015-05-05 19:29:21 +00004584 case ISD::SIGN_EXTEND_VECTOR_INREG:
4585 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
4586 case ISD::ZERO_EXTEND_VECTOR_INREG:
4587 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004588 case ISD::SHL:
4589 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
4590 case ISD::SRL:
4591 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
4592 case ISD::SRA:
4593 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004594 default:
4595 llvm_unreachable("Unexpected node to lower");
4596 }
4597}
4598
4599const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
4600#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
Matthias Braund04893f2015-05-07 21:33:59 +00004601 switch ((SystemZISD::NodeType)Opcode) {
4602 case SystemZISD::FIRST_NUMBER: break;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004603 OPCODE(RET_FLAG);
4604 OPCODE(CALL);
Richard Sandiford709bda62013-08-19 12:42:31 +00004605 OPCODE(SIBCALL);
Ulrich Weigand1c6f07d2015-05-04 17:39:40 +00004606 OPCODE(TLS_GDCALL);
4607 OPCODE(TLS_LDCALL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004608 OPCODE(PCREL_WRAPPER);
Richard Sandiford54b36912013-09-27 15:14:04 +00004609 OPCODE(PCREL_OFFSET);
Richard Sandiford57485472013-12-13 15:35:00 +00004610 OPCODE(IABS);
Richard Sandiford5bc670b2013-09-06 11:51:39 +00004611 OPCODE(ICMP);
4612 OPCODE(FCMP);
Richard Sandiford35b9be22013-08-28 10:31:43 +00004613 OPCODE(TM);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004614 OPCODE(BR_CCMASK);
4615 OPCODE(SELECT_CCMASK);
4616 OPCODE(ADJDYNALLOC);
4617 OPCODE(EXTRACT_ACCESS);
Ulrich Weigand1c6f07d2015-05-04 17:39:40 +00004618 OPCODE(POPCNT);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004619 OPCODE(UMUL_LOHI64);
Ulrich Weigand1c6f07d2015-05-04 17:39:40 +00004620 OPCODE(SDIVREM32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004621 OPCODE(SDIVREM64);
4622 OPCODE(UDIVREM32);
4623 OPCODE(UDIVREM64);
Richard Sandifordd131ff82013-07-08 09:35:23 +00004624 OPCODE(MVC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00004625 OPCODE(MVC_LOOP);
Richard Sandiford178273a2013-09-05 10:36:45 +00004626 OPCODE(NC);
4627 OPCODE(NC_LOOP);
4628 OPCODE(OC);
4629 OPCODE(OC_LOOP);
4630 OPCODE(XC);
4631 OPCODE(XC_LOOP);
Richard Sandiford761703a2013-08-12 10:17:33 +00004632 OPCODE(CLC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00004633 OPCODE(CLC_LOOP);
Richard Sandifordbb83a502013-08-16 11:29:37 +00004634 OPCODE(STPCPY);
Ulrich Weigand1c6f07d2015-05-04 17:39:40 +00004635 OPCODE(STRCMP);
Richard Sandiford0dec06a2013-08-16 11:41:43 +00004636 OPCODE(SEARCH_STRING);
Richard Sandiford564681c2013-08-12 10:28:10 +00004637 OPCODE(IPM);
Richard Sandiford9afe6132013-12-10 10:36:34 +00004638 OPCODE(SERIALIZE);
Ulrich Weiganda9ac6d62016-04-04 12:45:44 +00004639 OPCODE(MEMBARRIER);
Ulrich Weigand57c85f52015-04-01 12:51:43 +00004640 OPCODE(TBEGIN);
4641 OPCODE(TBEGIN_NOFLOAT);
4642 OPCODE(TEND);
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004643 OPCODE(BYTE_MASK);
4644 OPCODE(ROTATE_MASK);
4645 OPCODE(REPLICATE);
4646 OPCODE(JOIN_DWORDS);
4647 OPCODE(SPLAT);
4648 OPCODE(MERGE_HIGH);
4649 OPCODE(MERGE_LOW);
4650 OPCODE(SHL_DOUBLE);
4651 OPCODE(PERMUTE_DWORDS);
4652 OPCODE(PERMUTE);
4653 OPCODE(PACK);
Ulrich Weigandc1708b22015-05-05 19:31:09 +00004654 OPCODE(PACKS_CC);
4655 OPCODE(PACKLS_CC);
Ulrich Weigandcd2a1b52015-05-05 19:29:21 +00004656 OPCODE(UNPACK_HIGH);
4657 OPCODE(UNPACKL_HIGH);
4658 OPCODE(UNPACK_LOW);
4659 OPCODE(UNPACKL_LOW);
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004660 OPCODE(VSHL_BY_SCALAR);
4661 OPCODE(VSRL_BY_SCALAR);
4662 OPCODE(VSRA_BY_SCALAR);
4663 OPCODE(VSUM);
4664 OPCODE(VICMPE);
4665 OPCODE(VICMPH);
4666 OPCODE(VICMPHL);
Ulrich Weigandc1708b22015-05-05 19:31:09 +00004667 OPCODE(VICMPES);
4668 OPCODE(VICMPHS);
4669 OPCODE(VICMPHLS);
Ulrich Weigandcd808232015-05-05 19:26:48 +00004670 OPCODE(VFCMPE);
4671 OPCODE(VFCMPH);
4672 OPCODE(VFCMPHE);
Ulrich Weigandc1708b22015-05-05 19:31:09 +00004673 OPCODE(VFCMPES);
4674 OPCODE(VFCMPHS);
4675 OPCODE(VFCMPHES);
4676 OPCODE(VFTCI);
Ulrich Weigand80b3af72015-05-05 19:27:45 +00004677 OPCODE(VEXTEND);
4678 OPCODE(VROUND);
Ulrich Weigandc1708b22015-05-05 19:31:09 +00004679 OPCODE(VTM);
4680 OPCODE(VFAE_CC);
4681 OPCODE(VFAEZ_CC);
4682 OPCODE(VFEE_CC);
4683 OPCODE(VFEEZ_CC);
4684 OPCODE(VFENE_CC);
4685 OPCODE(VFENEZ_CC);
4686 OPCODE(VISTR_CC);
4687 OPCODE(VSTRC_CC);
4688 OPCODE(VSTRCZ_CC);
Marcin Koscielnicki32e87342016-07-02 02:20:40 +00004689 OPCODE(TDC);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004690 OPCODE(ATOMIC_SWAPW);
4691 OPCODE(ATOMIC_LOADW_ADD);
4692 OPCODE(ATOMIC_LOADW_SUB);
4693 OPCODE(ATOMIC_LOADW_AND);
4694 OPCODE(ATOMIC_LOADW_OR);
4695 OPCODE(ATOMIC_LOADW_XOR);
4696 OPCODE(ATOMIC_LOADW_NAND);
4697 OPCODE(ATOMIC_LOADW_MIN);
4698 OPCODE(ATOMIC_LOADW_MAX);
4699 OPCODE(ATOMIC_LOADW_UMIN);
4700 OPCODE(ATOMIC_LOADW_UMAX);
4701 OPCODE(ATOMIC_CMP_SWAPW);
Bryan Chan28b759c2016-05-16 20:32:22 +00004702 OPCODE(LRV);
4703 OPCODE(STRV);
Richard Sandiford03481332013-08-23 11:36:42 +00004704 OPCODE(PREFETCH);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004705 }
Craig Topper062a2ba2014-04-25 05:30:21 +00004706 return nullptr;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00004707#undef OPCODE
4708}
4709
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004710// Return true if VT is a vector whose elements are a whole number of bytes
4711// in width.
4712static bool canTreatAsByteVector(EVT VT) {
4713 return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0;
4714}
4715
4716// Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
4717// producing a result of type ResVT. Op is a possibly bitcast version
4718// of the input vector and Index is the index (based on type VecVT) that
4719// should be extracted. Return the new extraction if a simplification
4720// was possible or if Force is true.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00004721SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
4722 EVT VecVT, SDValue Op,
4723 unsigned Index,
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004724 DAGCombinerInfo &DCI,
4725 bool Force) const {
4726 SelectionDAG &DAG = DCI.DAG;
4727
4728 // The number of bytes being extracted.
4729 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
4730
4731 for (;;) {
4732 unsigned Opcode = Op.getOpcode();
4733 if (Opcode == ISD::BITCAST)
4734 // Look through bitcasts.
4735 Op = Op.getOperand(0);
4736 else if (Opcode == ISD::VECTOR_SHUFFLE &&
4737 canTreatAsByteVector(Op.getValueType())) {
4738 // Get a VPERM-like permute mask and see whether the bytes covered
4739 // by the extracted element are a contiguous sequence from one
4740 // source operand.
4741 SmallVector<int, SystemZ::VectorBytes> Bytes;
4742 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes);
4743 int First;
4744 if (!getShuffleInput(Bytes, Index * BytesPerElement,
4745 BytesPerElement, First))
4746 break;
4747 if (First < 0)
4748 return DAG.getUNDEF(ResVT);
4749 // Make sure the contiguous sequence starts at a multiple of the
4750 // original element size.
4751 unsigned Byte = unsigned(First) % Bytes.size();
4752 if (Byte % BytesPerElement != 0)
4753 break;
4754 // We can get the extracted value directly from an input.
4755 Index = Byte / BytesPerElement;
4756 Op = Op.getOperand(unsigned(First) / Bytes.size());
4757 Force = true;
4758 } else if (Opcode == ISD::BUILD_VECTOR &&
4759 canTreatAsByteVector(Op.getValueType())) {
4760 // We can only optimize this case if the BUILD_VECTOR elements are
4761 // at least as wide as the extracted value.
4762 EVT OpVT = Op.getValueType();
4763 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
4764 if (OpBytesPerElement < BytesPerElement)
4765 break;
4766 // Make sure that the least-significant bit of the extracted value
4767 // is the least significant bit of an input.
4768 unsigned End = (Index + 1) * BytesPerElement;
4769 if (End % OpBytesPerElement != 0)
4770 break;
4771 // We're extracting the low part of one operand of the BUILD_VECTOR.
4772 Op = Op.getOperand(End / OpBytesPerElement - 1);
4773 if (!Op.getValueType().isInteger()) {
4774 EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits());
4775 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4776 DCI.AddToWorklist(Op.getNode());
4777 }
4778 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
4779 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
4780 if (VT != ResVT) {
4781 DCI.AddToWorklist(Op.getNode());
4782 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
4783 }
4784 return Op;
4785 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
NAKAMURA Takumi0a7d0ad2015-09-22 11:15:07 +00004786 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
4787 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
4788 canTreatAsByteVector(Op.getValueType()) &&
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004789 canTreatAsByteVector(Op.getOperand(0).getValueType())) {
4790 // Make sure that only the unextended bits are significant.
4791 EVT ExtVT = Op.getValueType();
4792 EVT OpVT = Op.getOperand(0).getValueType();
4793 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
4794 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
4795 unsigned Byte = Index * BytesPerElement;
4796 unsigned SubByte = Byte % ExtBytesPerElement;
4797 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
4798 if (SubByte < MinSubByte ||
NAKAMURA Takumi0a7d0ad2015-09-22 11:15:07 +00004799 SubByte + BytesPerElement > ExtBytesPerElement)
4800 break;
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004801 // Get the byte offset of the unextended element
4802 Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
4803 // ...then add the byte offset relative to that element.
4804 Byte += SubByte - MinSubByte;
4805 if (Byte % BytesPerElement != 0)
NAKAMURA Takumi0a7d0ad2015-09-22 11:15:07 +00004806 break;
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004807 Op = Op.getOperand(0);
4808 Index = Byte / BytesPerElement;
4809 Force = true;
4810 } else
4811 break;
4812 }
4813 if (Force) {
4814 if (Op.getValueType() != VecVT) {
4815 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
4816 DCI.AddToWorklist(Op.getNode());
4817 }
4818 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
4819 DAG.getConstant(Index, DL, MVT::i32));
4820 }
4821 return SDValue();
4822}
4823
4824// Optimize vector operations in scalar value Op on the basis that Op
4825// is truncated to TruncVT.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00004826SDValue SystemZTargetLowering::combineTruncateExtract(
4827 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004828 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
4829 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
4830 // of type TruncVT.
4831 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4832 TruncVT.getSizeInBits() % 8 == 0) {
4833 SDValue Vec = Op.getOperand(0);
4834 EVT VecVT = Vec.getValueType();
4835 if (canTreatAsByteVector(VecVT)) {
4836 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
4837 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
4838 unsigned TruncBytes = TruncVT.getStoreSize();
4839 if (BytesPerElement % TruncBytes == 0) {
4840 // Calculate the value of Y' in the above description. We are
4841 // splitting the original elements into Scale equal-sized pieces
4842 // and for truncation purposes want the last (least-significant)
4843 // of these pieces for IndexN. This is easiest to do by calculating
4844 // the start index of the following element and then subtracting 1.
4845 unsigned Scale = BytesPerElement / TruncBytes;
4846 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
4847
4848 // Defer the creation of the bitcast from X to combineExtract,
4849 // which might be able to optimize the extraction.
4850 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
4851 VecVT.getStoreSize() / TruncBytes);
4852 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
4853 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
4854 }
4855 }
4856 }
4857 }
4858 return SDValue();
4859}
4860
Marcin Koscielnicki68747ac2016-06-30 00:08:54 +00004861SDValue SystemZTargetLowering::combineSIGN_EXTEND(
4862 SDNode *N, DAGCombinerInfo &DCI) const {
4863 // Convert (sext (ashr (shl X, C1), C2)) to
4864 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
4865 // cheap as narrower ones.
4866 SelectionDAG &DAG = DCI.DAG;
4867 SDValue N0 = N->getOperand(0);
4868 EVT VT = N->getValueType(0);
4869 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
4870 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4871 SDValue Inner = N0.getOperand(0);
4872 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
4873 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
4874 unsigned Extra = (VT.getSizeInBits() -
4875 N0.getValueType().getSizeInBits());
4876 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
4877 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
4878 EVT ShiftVT = N0.getOperand(1).getValueType();
4879 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
4880 Inner.getOperand(0));
4881 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
4882 DAG.getConstant(NewShlAmt, SDLoc(Inner),
4883 ShiftVT));
4884 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
4885 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
4886 }
4887 }
4888 }
4889 return SDValue();
4890}
4891
4892SDValue SystemZTargetLowering::combineMERGE(
4893 SDNode *N, DAGCombinerInfo &DCI) const {
Richard Sandiford95bc5f92014-03-07 11:34:35 +00004894 SelectionDAG &DAG = DCI.DAG;
4895 unsigned Opcode = N->getOpcode();
Marcin Koscielnicki68747ac2016-06-30 00:08:54 +00004896 SDValue Op0 = N->getOperand(0);
4897 SDValue Op1 = N->getOperand(1);
4898 if (Op0.getOpcode() == ISD::BITCAST)
4899 Op0 = Op0.getOperand(0);
4900 if (Op0.getOpcode() == SystemZISD::BYTE_MASK &&
4901 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) {
4902 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF
4903 // for v4f32.
4904 if (Op1 == N->getOperand(0))
4905 return Op1;
4906 // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
4907 EVT VT = Op1.getValueType();
4908 unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
4909 if (ElemBytes <= 4) {
4910 Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
4911 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
4912 EVT InVT = VT.changeVectorElementTypeToInteger();
4913 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
4914 SystemZ::VectorBytes / ElemBytes / 2);
4915 if (VT != InVT) {
4916 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
4917 DCI.AddToWorklist(Op1.getNode());
Richard Sandiford95bc5f92014-03-07 11:34:35 +00004918 }
Marcin Koscielnicki68747ac2016-06-30 00:08:54 +00004919 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
4920 DCI.AddToWorklist(Op.getNode());
4921 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
Richard Sandiford95bc5f92014-03-07 11:34:35 +00004922 }
4923 }
Marcin Koscielnicki68747ac2016-06-30 00:08:54 +00004924 return SDValue();
4925}
4926
4927SDValue SystemZTargetLowering::combineSTORE(
4928 SDNode *N, DAGCombinerInfo &DCI) const {
4929 SelectionDAG &DAG = DCI.DAG;
4930 auto *SN = cast<StoreSDNode>(N);
4931 auto &Op1 = N->getOperand(1);
4932 EVT MemVT = SN->getMemoryVT();
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004933 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
4934 // for the extraction to be done on a vMiN value, so that we can use VSTE.
4935 // If X has wider elements then convert it to:
4936 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
Marcin Koscielnicki68747ac2016-06-30 00:08:54 +00004937 if (MemVT.isInteger()) {
4938 if (SDValue Value =
4939 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
4940 DCI.AddToWorklist(Value.getNode());
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004941
Marcin Koscielnicki68747ac2016-06-30 00:08:54 +00004942 // Rewrite the store with the new form of stored value.
4943 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
4944 SN->getBasePtr(), SN->getMemoryVT(),
4945 SN->getMemOperand());
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004946 }
4947 }
Marcin Koscielnicki68747ac2016-06-30 00:08:54 +00004948 // Combine STORE (BSWAP) into STRVH/STRV/STRVG
4949 // See comment in combineBSWAP about volatile accesses.
4950 if (!SN->isVolatile() &&
4951 Op1.getOpcode() == ISD::BSWAP &&
4952 Op1.getNode()->hasOneUse() &&
4953 (Op1.getValueType() == MVT::i16 ||
4954 Op1.getValueType() == MVT::i32 ||
4955 Op1.getValueType() == MVT::i64)) {
4956
4957 SDValue BSwapOp = Op1.getOperand(0);
4958
4959 if (BSwapOp.getValueType() == MVT::i16)
4960 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
4961
4962 SDValue Ops[] = {
4963 N->getOperand(0), BSwapOp, N->getOperand(2),
4964 DAG.getValueType(Op1.getValueType())
4965 };
4966
4967 return
4968 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
4969 Ops, MemVT, SN->getMemOperand());
4970 }
4971 return SDValue();
4972}
4973
4974SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
4975 SDNode *N, DAGCombinerInfo &DCI) const {
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004976 // Try to simplify a vector extraction.
Marcin Koscielnicki68747ac2016-06-30 00:08:54 +00004977 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
4978 SDValue Op0 = N->getOperand(0);
4979 EVT VecVT = Op0.getValueType();
4980 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
4981 IndexN->getZExtValue(), DCI, false);
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004982 }
Marcin Koscielnicki68747ac2016-06-30 00:08:54 +00004983 return SDValue();
4984}
4985
4986SDValue SystemZTargetLowering::combineJOIN_DWORDS(
4987 SDNode *N, DAGCombinerInfo &DCI) const {
4988 SelectionDAG &DAG = DCI.DAG;
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004989 // (join_dwords X, X) == (replicate X)
Marcin Koscielnicki68747ac2016-06-30 00:08:54 +00004990 if (N->getOperand(0) == N->getOperand(1))
Ulrich Weigandce4c1092015-05-05 19:25:42 +00004991 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
4992 N->getOperand(0));
Marcin Koscielnicki68747ac2016-06-30 00:08:54 +00004993 return SDValue();
4994}
4995
4996SDValue SystemZTargetLowering::combineFP_ROUND(
4997 SDNode *N, DAGCombinerInfo &DCI) const {
Ulrich Weigand80b3af72015-05-05 19:27:45 +00004998 // (fround (extract_vector_elt X 0))
4999 // (fround (extract_vector_elt X 1)) ->
5000 // (extract_vector_elt (VROUND X) 0)
5001 // (extract_vector_elt (VROUND X) 1)
5002 //
5003 // This is a special case since the target doesn't really support v2f32s.
Marcin Koscielnicki68747ac2016-06-30 00:08:54 +00005004 SelectionDAG &DAG = DCI.DAG;
5005 SDValue Op0 = N->getOperand(0);
5006 if (N->getValueType(0) == MVT::f32 &&
5007 Op0.hasOneUse() &&
5008 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5009 Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5010 Op0.getOperand(1).getOpcode() == ISD::Constant &&
5011 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5012 SDValue Vec = Op0.getOperand(0);
5013 for (auto *U : Vec->uses()) {
5014 if (U != Op0.getNode() &&
5015 U->hasOneUse() &&
5016 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5017 U->getOperand(0) == Vec &&
5018 U->getOperand(1).getOpcode() == ISD::Constant &&
5019 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5020 SDValue OtherRound = SDValue(*U->use_begin(), 0);
5021 if (OtherRound.getOpcode() == ISD::FP_ROUND &&
5022 OtherRound.getOperand(0) == SDValue(U, 0) &&
5023 OtherRound.getValueType() == MVT::f32) {
5024 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5025 MVT::v4f32, Vec);
5026 DCI.AddToWorklist(VRound.getNode());
5027 SDValue Extract1 =
5028 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5029 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5030 DCI.AddToWorklist(Extract1.getNode());
5031 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5032 SDValue Extract0 =
5033 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5034 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5035 return Extract0;
Ulrich Weigand80b3af72015-05-05 19:27:45 +00005036 }
5037 }
5038 }
5039 }
Marcin Koscielnicki68747ac2016-06-30 00:08:54 +00005040 return SDValue();
5041}
Bryan Chan28b759c2016-05-16 20:32:22 +00005042
Marcin Koscielnicki68747ac2016-06-30 00:08:54 +00005043SDValue SystemZTargetLowering::combineBSWAP(
5044 SDNode *N, DAGCombinerInfo &DCI) const {
5045 SelectionDAG &DAG = DCI.DAG;
Bryan Chan28b759c2016-05-16 20:32:22 +00005046 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG
5047 // These loads are allowed to access memory multiple times, and so we must check
5048 // that the loads are not volatile before performing the combine.
Marcin Koscielnicki68747ac2016-06-30 00:08:54 +00005049 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5050 N->getOperand(0).hasOneUse() &&
5051 (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 ||
5052 N->getValueType(0) == MVT::i64) &&
5053 !cast<LoadSDNode>(N->getOperand(0))->isVolatile()) {
Bryan Chan28b759c2016-05-16 20:32:22 +00005054 SDValue Load = N->getOperand(0);
5055 LoadSDNode *LD = cast<LoadSDNode>(Load);
5056
5057 // Create the byte-swapping load.
5058 SDValue Ops[] = {
5059 LD->getChain(), // Chain
5060 LD->getBasePtr(), // Ptr
5061 DAG.getValueType(N->getValueType(0)) // VT
5062 };
5063 SDValue BSLoad =
5064 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
5065 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
5066 MVT::i64 : MVT::i32, MVT::Other),
5067 Ops, LD->getMemoryVT(), LD->getMemOperand());
5068
5069 // If this is an i16 load, insert the truncate.
5070 SDValue ResVal = BSLoad;
5071 if (N->getValueType(0) == MVT::i16)
5072 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
5073
5074 // First, combine the bswap away. This makes the value produced by the
5075 // load dead.
5076 DCI.CombineTo(N, ResVal);
5077
5078 // Next, combine the load away, we give it a bogus result value but a real
5079 // chain result. The result value is dead because the bswap is dead.
5080 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5081
5082 // Return N so it doesn't get rechecked!
5083 return SDValue(N, 0);
5084 }
Marcin Koscielnicki68747ac2016-06-30 00:08:54 +00005085 return SDValue();
5086}
Bryan Chan28b759c2016-05-16 20:32:22 +00005087
Elliot Colpbc2cfc22016-07-06 18:13:11 +00005088SDValue SystemZTargetLowering::combineSHIFTROT(
5089 SDNode *N, DAGCombinerInfo &DCI) const {
5090
5091 SelectionDAG &DAG = DCI.DAG;
5092
5093 // Shift/rotate instructions only use the last 6 bits of the second operand
5094 // register. If the second operand is the result of an AND with an immediate
5095 // value that has its last 6 bits set, we can safely remove the AND operation.
5096 SDValue N1 = N->getOperand(1);
5097 if (N1.getOpcode() == ISD::AND) {
5098 auto *AndMask = dyn_cast<ConstantSDNode>(N1.getOperand(1));
5099
5100 // The AND mask is constant
5101 if (AndMask) {
5102 auto AmtVal = AndMask->getZExtValue();
5103
5104 // Bottom 6 bits are set
5105 if ((AmtVal & 0x3f) == 0x3f) {
5106 SDValue AndOp = N1->getOperand(0);
5107
5108 // This is the only use, so remove the node
5109 if (N1.hasOneUse()) {
5110 // Combine the AND away
5111 DCI.CombineTo(N1.getNode(), AndOp);
5112
5113 // Return N so it isn't rechecked
5114 return SDValue(N, 0);
5115
5116 // The node will be reused, so create a new node for this one use
5117 } else {
5118 SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
5119 N->getValueType(0), N->getOperand(0),
5120 AndOp);
5121 DCI.AddToWorklist(Replace.getNode());
5122
5123 return Replace;
5124 }
5125 }
5126 }
5127 }
5128
5129 return SDValue();
5130}
5131
Marcin Koscielnicki68747ac2016-06-30 00:08:54 +00005132SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
5133 DAGCombinerInfo &DCI) const {
5134 switch(N->getOpcode()) {
5135 default: break;
5136 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI);
5137 case SystemZISD::MERGE_HIGH:
5138 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI);
5139 case ISD::STORE: return combineSTORE(N, DCI);
5140 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
5141 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
5142 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI);
5143 case ISD::BSWAP: return combineBSWAP(N, DCI);
Elliot Colpbc2cfc22016-07-06 18:13:11 +00005144 case ISD::SHL:
5145 case ISD::SRA:
5146 case ISD::SRL:
5147 case ISD::ROTL: return combineSHIFTROT(N, DCI);
Marcin Koscielnicki68747ac2016-06-30 00:08:54 +00005148 }
Elliot Colpbc2cfc22016-07-06 18:13:11 +00005149
Richard Sandiford95bc5f92014-03-07 11:34:35 +00005150 return SDValue();
5151}
5152
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005153//===----------------------------------------------------------------------===//
5154// Custom insertion
5155//===----------------------------------------------------------------------===//
5156
5157// Create a new basic block after MBB.
5158static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
5159 MachineFunction &MF = *MBB->getParent();
5160 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00005161 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005162 return NewMBB;
5163}
5164
Richard Sandifordbe133a82013-08-28 09:01:51 +00005165// Split MBB after MI and return the new block (the one that contains
5166// instructions after MI).
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005167static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
Richard Sandifordbe133a82013-08-28 09:01:51 +00005168 MachineBasicBlock *MBB) {
5169 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
5170 NewMBB->splice(NewMBB->begin(), MBB,
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00005171 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
Richard Sandifordbe133a82013-08-28 09:01:51 +00005172 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5173 return NewMBB;
5174}
5175
Richard Sandiford5e318f02013-08-27 09:54:29 +00005176// Split MBB before MI and return the new block (the one that contains MI).
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005177static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
Richard Sandiford5e318f02013-08-27 09:54:29 +00005178 MachineBasicBlock *MBB) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005179 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
Richard Sandiford5e318f02013-08-27 09:54:29 +00005180 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005181 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5182 return NewMBB;
5183}
5184
Richard Sandiford5e318f02013-08-27 09:54:29 +00005185// Force base value Base into a register before MI. Return the register.
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005186static unsigned forceReg(MachineInstr &MI, MachineOperand &Base,
Richard Sandiford5e318f02013-08-27 09:54:29 +00005187 const SystemZInstrInfo *TII) {
5188 if (Base.isReg())
5189 return Base.getReg();
5190
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005191 MachineBasicBlock *MBB = MI.getParent();
Richard Sandiford5e318f02013-08-27 09:54:29 +00005192 MachineFunction &MF = *MBB->getParent();
5193 MachineRegisterInfo &MRI = MF.getRegInfo();
5194
5195 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005196 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
5197 .addOperand(Base)
5198 .addImm(0)
5199 .addReg(0);
Richard Sandiford5e318f02013-08-27 09:54:29 +00005200 return Reg;
5201}
5202
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005203// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
5204MachineBasicBlock *
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005205SystemZTargetLowering::emitSelect(MachineInstr &MI,
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005206 MachineBasicBlock *MBB) const {
Eric Christophera6734172015-01-31 00:06:45 +00005207 const SystemZInstrInfo *TII =
5208 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005209
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005210 unsigned DestReg = MI.getOperand(0).getReg();
5211 unsigned TrueReg = MI.getOperand(1).getReg();
5212 unsigned FalseReg = MI.getOperand(2).getReg();
5213 unsigned CCValid = MI.getOperand(3).getImm();
5214 unsigned CCMask = MI.getOperand(4).getImm();
5215 DebugLoc DL = MI.getDebugLoc();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005216
5217 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00005218 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005219 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
5220
5221 // StartMBB:
Richard Sandiford0fb90ab2013-05-28 10:41:11 +00005222 // BRC CCMask, JoinMBB
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005223 // # fallthrough to FalseMBB
5224 MBB = StartMBB;
Richard Sandiford3d768e32013-07-31 12:30:20 +00005225 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5226 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005227 MBB->addSuccessor(JoinMBB);
5228 MBB->addSuccessor(FalseMBB);
5229
5230 // FalseMBB:
5231 // # fallthrough to JoinMBB
5232 MBB = FalseMBB;
5233 MBB->addSuccessor(JoinMBB);
5234
5235 // JoinMBB:
5236 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
5237 // ...
5238 MBB = JoinMBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00005239 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005240 .addReg(TrueReg).addMBB(StartMBB)
5241 .addReg(FalseReg).addMBB(FalseMBB);
5242
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005243 MI.eraseFromParent();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005244 return JoinMBB;
5245}
5246
Richard Sandifordb86a8342013-06-27 09:27:40 +00005247// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
5248// StoreOpcode is the store to use and Invert says whether the store should
Richard Sandiforda68e6f52013-07-25 08:57:02 +00005249// happen when the condition is false rather than true. If a STORE ON
5250// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005251MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
5252 MachineBasicBlock *MBB,
5253 unsigned StoreOpcode,
5254 unsigned STOCOpcode,
5255 bool Invert) const {
Eric Christophera6734172015-01-31 00:06:45 +00005256 const SystemZInstrInfo *TII =
5257 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
Richard Sandifordb86a8342013-06-27 09:27:40 +00005258
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005259 unsigned SrcReg = MI.getOperand(0).getReg();
5260 MachineOperand Base = MI.getOperand(1);
5261 int64_t Disp = MI.getOperand(2).getImm();
5262 unsigned IndexReg = MI.getOperand(3).getReg();
5263 unsigned CCValid = MI.getOperand(4).getImm();
5264 unsigned CCMask = MI.getOperand(5).getImm();
5265 DebugLoc DL = MI.getDebugLoc();
Richard Sandifordb86a8342013-06-27 09:27:40 +00005266
5267 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
5268
Richard Sandiforda68e6f52013-07-25 08:57:02 +00005269 // Use STOCOpcode if possible. We could use different store patterns in
5270 // order to avoid matching the index register, but the performance trade-offs
5271 // might be more complicated in that case.
Eric Christopher93bf97c2014-06-27 07:38:01 +00005272 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
Richard Sandiforda68e6f52013-07-25 08:57:02 +00005273 if (Invert)
Richard Sandiford3d768e32013-07-31 12:30:20 +00005274 CCMask ^= CCValid;
Richard Sandiforda68e6f52013-07-25 08:57:02 +00005275 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +00005276 .addReg(SrcReg).addOperand(Base).addImm(Disp)
5277 .addImm(CCValid).addImm(CCMask);
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005278 MI.eraseFromParent();
Richard Sandiforda68e6f52013-07-25 08:57:02 +00005279 return MBB;
5280 }
5281
Richard Sandifordb86a8342013-06-27 09:27:40 +00005282 // Get the condition needed to branch around the store.
5283 if (!Invert)
Richard Sandiford3d768e32013-07-31 12:30:20 +00005284 CCMask ^= CCValid;
Richard Sandifordb86a8342013-06-27 09:27:40 +00005285
5286 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00005287 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
Richard Sandifordb86a8342013-06-27 09:27:40 +00005288 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
5289
5290 // StartMBB:
5291 // BRC CCMask, JoinMBB
5292 // # fallthrough to FalseMBB
Richard Sandifordb86a8342013-06-27 09:27:40 +00005293 MBB = StartMBB;
Richard Sandiford3d768e32013-07-31 12:30:20 +00005294 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5295 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
Richard Sandifordb86a8342013-06-27 09:27:40 +00005296 MBB->addSuccessor(JoinMBB);
5297 MBB->addSuccessor(FalseMBB);
5298
5299 // FalseMBB:
5300 // store %SrcReg, %Disp(%Index,%Base)
5301 // # fallthrough to JoinMBB
5302 MBB = FalseMBB;
5303 BuildMI(MBB, DL, TII->get(StoreOpcode))
5304 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
5305 MBB->addSuccessor(JoinMBB);
5306
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005307 MI.eraseFromParent();
Richard Sandifordb86a8342013-06-27 09:27:40 +00005308 return JoinMBB;
5309}
5310
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005311// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
5312// or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that
5313// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
5314// BitSize is the width of the field in bits, or 0 if this is a partword
5315// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
5316// is one of the operands. Invert says whether the field should be
5317// inverted after performing BinOpcode (e.g. for NAND).
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005318MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
5319 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
5320 unsigned BitSize, bool Invert) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005321 MachineFunction &MF = *MBB->getParent();
Eric Christopherfc6de422014-08-05 02:39:49 +00005322 const SystemZInstrInfo *TII =
Eric Christophera6734172015-01-31 00:06:45 +00005323 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005324 MachineRegisterInfo &MRI = MF.getRegInfo();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005325 bool IsSubWord = (BitSize < 32);
5326
5327 // Extract the operands. Base can be a register or a frame index.
5328 // Src2 can be a register or immediate.
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005329 unsigned Dest = MI.getOperand(0).getReg();
5330 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5331 int64_t Disp = MI.getOperand(2).getImm();
5332 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
5333 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
5334 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
5335 DebugLoc DL = MI.getDebugLoc();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005336 if (IsSubWord)
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005337 BitSize = MI.getOperand(6).getImm();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005338
5339 // Subword operations use 32-bit registers.
5340 const TargetRegisterClass *RC = (BitSize <= 32 ?
5341 &SystemZ::GR32BitRegClass :
5342 &SystemZ::GR64BitRegClass);
5343 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
5344 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
5345
5346 // Get the right opcodes for the displacement.
5347 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
5348 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
5349 assert(LOpcode && CSOpcode && "Displacement out of range");
5350
5351 // Create virtual registers for temporary results.
5352 unsigned OrigVal = MRI.createVirtualRegister(RC);
5353 unsigned OldVal = MRI.createVirtualRegister(RC);
5354 unsigned NewVal = (BinOpcode || IsSubWord ?
5355 MRI.createVirtualRegister(RC) : Src2.getReg());
5356 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
5357 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
5358
5359 // Insert a basic block for the main loop.
5360 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00005361 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005362 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
5363
5364 // StartMBB:
5365 // ...
5366 // %OrigVal = L Disp(%Base)
5367 // # fall through to LoopMMB
5368 MBB = StartMBB;
5369 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
5370 .addOperand(Base).addImm(Disp).addReg(0);
5371 MBB->addSuccessor(LoopMBB);
5372
5373 // LoopMBB:
5374 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
5375 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
5376 // %RotatedNewVal = OP %RotatedOldVal, %Src2
5377 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
5378 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
5379 // JNE LoopMBB
5380 // # fall through to DoneMMB
5381 MBB = LoopMBB;
5382 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5383 .addReg(OrigVal).addMBB(StartMBB)
5384 .addReg(Dest).addMBB(LoopMBB);
5385 if (IsSubWord)
5386 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5387 .addReg(OldVal).addReg(BitShift).addImm(0);
5388 if (Invert) {
5389 // Perform the operation normally and then invert every bit of the field.
5390 unsigned Tmp = MRI.createVirtualRegister(RC);
5391 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
5392 .addReg(RotatedOldVal).addOperand(Src2);
Alexey Samsonovfffd56ec2014-08-20 21:56:43 +00005393 if (BitSize <= 32)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005394 // XILF with the upper BitSize bits set.
Richard Sandiford652784e2013-09-25 11:11:53 +00005395 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
Alexey Samsonovfffd56ec2014-08-20 21:56:43 +00005396 .addReg(Tmp).addImm(-1U << (32 - BitSize));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005397 else {
5398 // Use LCGR and add -1 to the result, which is more compact than
5399 // an XILF, XILH pair.
5400 unsigned Tmp2 = MRI.createVirtualRegister(RC);
5401 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
5402 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
5403 .addReg(Tmp2).addImm(-1);
5404 }
5405 } else if (BinOpcode)
5406 // A simply binary operation.
5407 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
5408 .addReg(RotatedOldVal).addOperand(Src2);
5409 else if (IsSubWord)
5410 // Use RISBG to rotate Src2 into position and use it to replace the
5411 // field in RotatedOldVal.
5412 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
5413 .addReg(RotatedOldVal).addReg(Src2.getReg())
5414 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
5415 if (IsSubWord)
5416 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
5417 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
5418 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
5419 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
Richard Sandiford3d768e32013-07-31 12:30:20 +00005420 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5421 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005422 MBB->addSuccessor(LoopMBB);
5423 MBB->addSuccessor(DoneMBB);
5424
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005425 MI.eraseFromParent();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005426 return DoneMBB;
5427}
5428
5429// Implement EmitInstrWithCustomInserter for pseudo
5430// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
5431// instruction that should be used to compare the current field with the
5432// minimum or maximum value. KeepOldMask is the BRC condition-code mask
5433// for when the current field should be kept. BitSize is the width of
5434// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005435MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
5436 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
5437 unsigned KeepOldMask, unsigned BitSize) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005438 MachineFunction &MF = *MBB->getParent();
Eric Christopherfc6de422014-08-05 02:39:49 +00005439 const SystemZInstrInfo *TII =
Eric Christophera6734172015-01-31 00:06:45 +00005440 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005441 MachineRegisterInfo &MRI = MF.getRegInfo();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005442 bool IsSubWord = (BitSize < 32);
5443
5444 // Extract the operands. Base can be a register or a frame index.
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005445 unsigned Dest = MI.getOperand(0).getReg();
5446 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5447 int64_t Disp = MI.getOperand(2).getImm();
5448 unsigned Src2 = MI.getOperand(3).getReg();
5449 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
5450 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
5451 DebugLoc DL = MI.getDebugLoc();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005452 if (IsSubWord)
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005453 BitSize = MI.getOperand(6).getImm();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005454
5455 // Subword operations use 32-bit registers.
5456 const TargetRegisterClass *RC = (BitSize <= 32 ?
5457 &SystemZ::GR32BitRegClass :
5458 &SystemZ::GR64BitRegClass);
5459 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
5460 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
5461
5462 // Get the right opcodes for the displacement.
5463 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
5464 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
5465 assert(LOpcode && CSOpcode && "Displacement out of range");
5466
5467 // Create virtual registers for temporary results.
5468 unsigned OrigVal = MRI.createVirtualRegister(RC);
5469 unsigned OldVal = MRI.createVirtualRegister(RC);
5470 unsigned NewVal = MRI.createVirtualRegister(RC);
5471 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
5472 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
5473 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
5474
5475 // Insert 3 basic blocks for the loop.
5476 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00005477 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005478 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
5479 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
5480 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
5481
5482 // StartMBB:
5483 // ...
5484 // %OrigVal = L Disp(%Base)
5485 // # fall through to LoopMMB
5486 MBB = StartMBB;
5487 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
5488 .addOperand(Base).addImm(Disp).addReg(0);
5489 MBB->addSuccessor(LoopMBB);
5490
5491 // LoopMBB:
5492 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
5493 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
5494 // CompareOpcode %RotatedOldVal, %Src2
Richard Sandiford312425f2013-05-20 14:23:08 +00005495 // BRC KeepOldMask, UpdateMBB
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005496 MBB = LoopMBB;
5497 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5498 .addReg(OrigVal).addMBB(StartMBB)
5499 .addReg(Dest).addMBB(UpdateMBB);
5500 if (IsSubWord)
5501 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5502 .addReg(OldVal).addReg(BitShift).addImm(0);
Richard Sandiford8a757bb2013-07-31 12:11:07 +00005503 BuildMI(MBB, DL, TII->get(CompareOpcode))
5504 .addReg(RotatedOldVal).addReg(Src2);
5505 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
Richard Sandiford3d768e32013-07-31 12:30:20 +00005506 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005507 MBB->addSuccessor(UpdateMBB);
5508 MBB->addSuccessor(UseAltMBB);
5509
5510 // UseAltMBB:
5511 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
5512 // # fall through to UpdateMMB
5513 MBB = UseAltMBB;
5514 if (IsSubWord)
5515 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
5516 .addReg(RotatedOldVal).addReg(Src2)
5517 .addImm(32).addImm(31 + BitSize).addImm(0);
5518 MBB->addSuccessor(UpdateMBB);
5519
5520 // UpdateMBB:
5521 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
5522 // [ %RotatedAltVal, UseAltMBB ]
5523 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
5524 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
5525 // JNE LoopMBB
5526 // # fall through to DoneMMB
5527 MBB = UpdateMBB;
5528 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
5529 .addReg(RotatedOldVal).addMBB(LoopMBB)
5530 .addReg(RotatedAltVal).addMBB(UseAltMBB);
5531 if (IsSubWord)
5532 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
5533 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
5534 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
5535 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
Richard Sandiford3d768e32013-07-31 12:30:20 +00005536 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5537 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005538 MBB->addSuccessor(LoopMBB);
5539 MBB->addSuccessor(DoneMBB);
5540
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005541 MI.eraseFromParent();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005542 return DoneMBB;
5543}
5544
5545// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
5546// instruction MI.
5547MachineBasicBlock *
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005548SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005549 MachineBasicBlock *MBB) const {
Ulrich Weiganda9ac6d62016-04-04 12:45:44 +00005550
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005551 MachineFunction &MF = *MBB->getParent();
Eric Christopherfc6de422014-08-05 02:39:49 +00005552 const SystemZInstrInfo *TII =
Eric Christophera6734172015-01-31 00:06:45 +00005553 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005554 MachineRegisterInfo &MRI = MF.getRegInfo();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005555
5556 // Extract the operands. Base can be a register or a frame index.
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005557 unsigned Dest = MI.getOperand(0).getReg();
5558 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5559 int64_t Disp = MI.getOperand(2).getImm();
5560 unsigned OrigCmpVal = MI.getOperand(3).getReg();
5561 unsigned OrigSwapVal = MI.getOperand(4).getReg();
5562 unsigned BitShift = MI.getOperand(5).getReg();
5563 unsigned NegBitShift = MI.getOperand(6).getReg();
5564 int64_t BitSize = MI.getOperand(7).getImm();
5565 DebugLoc DL = MI.getDebugLoc();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005566
5567 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
5568
5569 // Get the right opcodes for the displacement.
5570 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
5571 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
5572 assert(LOpcode && CSOpcode && "Displacement out of range");
5573
5574 // Create virtual registers for temporary results.
5575 unsigned OrigOldVal = MRI.createVirtualRegister(RC);
5576 unsigned OldVal = MRI.createVirtualRegister(RC);
5577 unsigned CmpVal = MRI.createVirtualRegister(RC);
5578 unsigned SwapVal = MRI.createVirtualRegister(RC);
5579 unsigned StoreVal = MRI.createVirtualRegister(RC);
5580 unsigned RetryOldVal = MRI.createVirtualRegister(RC);
5581 unsigned RetryCmpVal = MRI.createVirtualRegister(RC);
5582 unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
5583
5584 // Insert 2 basic blocks for the loop.
5585 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00005586 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005587 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
5588 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB);
5589
5590 // StartMBB:
5591 // ...
5592 // %OrigOldVal = L Disp(%Base)
5593 // # fall through to LoopMMB
5594 MBB = StartMBB;
5595 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
5596 .addOperand(Base).addImm(Disp).addReg(0);
5597 MBB->addSuccessor(LoopMBB);
5598
5599 // LoopMBB:
5600 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
5601 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
5602 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
5603 // %Dest = RLL %OldVal, BitSize(%BitShift)
5604 // ^^ The low BitSize bits contain the field
5605 // of interest.
5606 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
5607 // ^^ Replace the upper 32-BitSize bits of the
5608 // comparison value with those that we loaded,
5609 // so that we can use a full word comparison.
Richard Sandiford8a757bb2013-07-31 12:11:07 +00005610 // CR %Dest, %RetryCmpVal
5611 // JNE DoneMBB
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005612 // # Fall through to SetMBB
5613 MBB = LoopMBB;
5614 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5615 .addReg(OrigOldVal).addMBB(StartMBB)
5616 .addReg(RetryOldVal).addMBB(SetMBB);
5617 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
5618 .addReg(OrigCmpVal).addMBB(StartMBB)
5619 .addReg(RetryCmpVal).addMBB(SetMBB);
5620 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
5621 .addReg(OrigSwapVal).addMBB(StartMBB)
5622 .addReg(RetrySwapVal).addMBB(SetMBB);
5623 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
5624 .addReg(OldVal).addReg(BitShift).addImm(BitSize);
5625 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
5626 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
Richard Sandiford8a757bb2013-07-31 12:11:07 +00005627 BuildMI(MBB, DL, TII->get(SystemZ::CR))
5628 .addReg(Dest).addReg(RetryCmpVal);
5629 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
Richard Sandiford3d768e32013-07-31 12:30:20 +00005630 .addImm(SystemZ::CCMASK_ICMP)
5631 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005632 MBB->addSuccessor(DoneMBB);
5633 MBB->addSuccessor(SetMBB);
5634
5635 // SetMBB:
5636 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
5637 // ^^ Replace the upper 32-BitSize bits of the new
5638 // value with those that we loaded.
5639 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
5640 // ^^ Rotate the new field to its proper position.
5641 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
5642 // JNE LoopMBB
5643 // # fall through to ExitMMB
5644 MBB = SetMBB;
5645 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
5646 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
5647 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
5648 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
5649 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
5650 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
Richard Sandiford3d768e32013-07-31 12:30:20 +00005651 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5652 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005653 MBB->addSuccessor(LoopMBB);
5654 MBB->addSuccessor(DoneMBB);
5655
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005656 MI.eraseFromParent();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005657 return DoneMBB;
5658}
5659
5660// Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true
5661// if the high register of the GR128 value must be cleared or false if
Richard Sandiford87a44362013-09-30 10:28:35 +00005662// it's "don't care". SubReg is subreg_l32 when extending a GR32
5663// and subreg_l64 when extending a GR64.
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005664MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
5665 MachineBasicBlock *MBB,
5666 bool ClearEven,
5667 unsigned SubReg) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005668 MachineFunction &MF = *MBB->getParent();
Eric Christopherfc6de422014-08-05 02:39:49 +00005669 const SystemZInstrInfo *TII =
Eric Christophera6734172015-01-31 00:06:45 +00005670 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005671 MachineRegisterInfo &MRI = MF.getRegInfo();
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005672 DebugLoc DL = MI.getDebugLoc();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005673
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005674 unsigned Dest = MI.getOperand(0).getReg();
5675 unsigned Src = MI.getOperand(1).getReg();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005676 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
5677
5678 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
5679 if (ClearEven) {
5680 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
5681 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
5682
5683 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
5684 .addImm(0);
5685 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
Richard Sandiford87a44362013-09-30 10:28:35 +00005686 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005687 In128 = NewIn128;
5688 }
5689 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
5690 .addReg(In128).addReg(Src).addImm(SubReg);
5691
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005692 MI.eraseFromParent();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00005693 return MBB;
5694}
5695
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005696MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
5697 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
Richard Sandiford5e318f02013-08-27 09:54:29 +00005698 MachineFunction &MF = *MBB->getParent();
Eric Christopherfc6de422014-08-05 02:39:49 +00005699 const SystemZInstrInfo *TII =
Eric Christophera6734172015-01-31 00:06:45 +00005700 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
Richard Sandiford5e318f02013-08-27 09:54:29 +00005701 MachineRegisterInfo &MRI = MF.getRegInfo();
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005702 DebugLoc DL = MI.getDebugLoc();
Richard Sandifordd131ff82013-07-08 09:35:23 +00005703
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005704 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
5705 uint64_t DestDisp = MI.getOperand(1).getImm();
5706 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
5707 uint64_t SrcDisp = MI.getOperand(3).getImm();
5708 uint64_t Length = MI.getOperand(4).getImm();
Richard Sandifordd131ff82013-07-08 09:35:23 +00005709
Richard Sandifordbe133a82013-08-28 09:01:51 +00005710 // When generating more than one CLC, all but the last will need to
5711 // branch to the end when a difference is found.
5712 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
Craig Topper062a2ba2014-04-25 05:30:21 +00005713 splitBlockAfter(MI, MBB) : nullptr);
Richard Sandifordbe133a82013-08-28 09:01:51 +00005714
Richard Sandiford5e318f02013-08-27 09:54:29 +00005715 // Check for the loop form, in which operand 5 is the trip count.
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005716 if (MI.getNumExplicitOperands() > 5) {
Richard Sandiford5e318f02013-08-27 09:54:29 +00005717 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
5718
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005719 uint64_t StartCountReg = MI.getOperand(5).getReg();
Richard Sandiford5e318f02013-08-27 09:54:29 +00005720 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII);
5721 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg :
5722 forceReg(MI, DestBase, TII));
5723
5724 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
5725 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC);
5726 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
5727 MRI.createVirtualRegister(RC));
5728 uint64_t NextSrcReg = MRI.createVirtualRegister(RC);
5729 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
5730 MRI.createVirtualRegister(RC));
5731
5732 RC = &SystemZ::GR64BitRegClass;
5733 uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
5734 uint64_t NextCountReg = MRI.createVirtualRegister(RC);
5735
5736 MachineBasicBlock *StartMBB = MBB;
5737 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
5738 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
Richard Sandifordbe133a82013-08-28 09:01:51 +00005739 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
Richard Sandiford5e318f02013-08-27 09:54:29 +00005740
5741 // StartMBB:
5742 // # fall through to LoopMMB
5743 MBB->addSuccessor(LoopMBB);
5744
5745 // LoopMBB:
5746 // %ThisDestReg = phi [ %StartDestReg, StartMBB ],
Richard Sandifordbe133a82013-08-28 09:01:51 +00005747 // [ %NextDestReg, NextMBB ]
Richard Sandiford5e318f02013-08-27 09:54:29 +00005748 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
Richard Sandifordbe133a82013-08-28 09:01:51 +00005749 // [ %NextSrcReg, NextMBB ]
Richard Sandiford5e318f02013-08-27 09:54:29 +00005750 // %ThisCountReg = phi [ %StartCountReg, StartMBB ],
Richard Sandifordbe133a82013-08-28 09:01:51 +00005751 // [ %NextCountReg, NextMBB ]
5752 // ( PFD 2, 768+DestDisp(%ThisDestReg) )
Richard Sandiford5e318f02013-08-27 09:54:29 +00005753 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
Richard Sandifordbe133a82013-08-28 09:01:51 +00005754 // ( JLH EndMBB )
5755 //
5756 // The prefetch is used only for MVC. The JLH is used only for CLC.
5757 MBB = LoopMBB;
5758
5759 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
5760 .addReg(StartDestReg).addMBB(StartMBB)
5761 .addReg(NextDestReg).addMBB(NextMBB);
5762 if (!HaveSingleBase)
5763 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
5764 .addReg(StartSrcReg).addMBB(StartMBB)
5765 .addReg(NextSrcReg).addMBB(NextMBB);
5766 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
5767 .addReg(StartCountReg).addMBB(StartMBB)
5768 .addReg(NextCountReg).addMBB(NextMBB);
5769 if (Opcode == SystemZ::MVC)
5770 BuildMI(MBB, DL, TII->get(SystemZ::PFD))
5771 .addImm(SystemZ::PFD_WRITE)
5772 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
5773 BuildMI(MBB, DL, TII->get(Opcode))
5774 .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
5775 .addReg(ThisSrcReg).addImm(SrcDisp);
5776 if (EndMBB) {
5777 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5778 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
5779 .addMBB(EndMBB);
5780 MBB->addSuccessor(EndMBB);
5781 MBB->addSuccessor(NextMBB);
5782 }
5783
5784 // NextMBB:
Richard Sandiford5e318f02013-08-27 09:54:29 +00005785 // %NextDestReg = LA 256(%ThisDestReg)
5786 // %NextSrcReg = LA 256(%ThisSrcReg)
5787 // %NextCountReg = AGHI %ThisCountReg, -1
5788 // CGHI %NextCountReg, 0
5789 // JLH LoopMBB
5790 // # fall through to DoneMMB
5791 //
5792 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
Richard Sandifordbe133a82013-08-28 09:01:51 +00005793 MBB = NextMBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00005794
Richard Sandiford5e318f02013-08-27 09:54:29 +00005795 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
5796 .addReg(ThisDestReg).addImm(256).addReg(0);
5797 if (!HaveSingleBase)
5798 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
5799 .addReg(ThisSrcReg).addImm(256).addReg(0);
5800 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
5801 .addReg(ThisCountReg).addImm(-1);
5802 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
5803 .addReg(NextCountReg).addImm(0);
5804 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5805 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
5806 .addMBB(LoopMBB);
5807 MBB->addSuccessor(LoopMBB);
5808 MBB->addSuccessor(DoneMBB);
5809
5810 DestBase = MachineOperand::CreateReg(NextDestReg, false);
5811 SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
5812 Length &= 255;
5813 MBB = DoneMBB;
5814 }
5815 // Handle any remaining bytes with straight-line code.
5816 while (Length > 0) {
5817 uint64_t ThisLength = std::min(Length, uint64_t(256));
5818 // The previous iteration might have created out-of-range displacements.
5819 // Apply them using LAY if so.
5820 if (!isUInt<12>(DestDisp)) {
5821 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005822 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
5823 .addOperand(DestBase)
5824 .addImm(DestDisp)
5825 .addReg(0);
Richard Sandiford5e318f02013-08-27 09:54:29 +00005826 DestBase = MachineOperand::CreateReg(Reg, false);
5827 DestDisp = 0;
5828 }
5829 if (!isUInt<12>(SrcDisp)) {
5830 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005831 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
5832 .addOperand(SrcBase)
5833 .addImm(SrcDisp)
5834 .addReg(0);
Richard Sandiford5e318f02013-08-27 09:54:29 +00005835 SrcBase = MachineOperand::CreateReg(Reg, false);
5836 SrcDisp = 0;
5837 }
5838 BuildMI(*MBB, MI, DL, TII->get(Opcode))
5839 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
5840 .addOperand(SrcBase).addImm(SrcDisp);
5841 DestDisp += ThisLength;
5842 SrcDisp += ThisLength;
5843 Length -= ThisLength;
Richard Sandifordbe133a82013-08-28 09:01:51 +00005844 // If there's another CLC to go, branch to the end if a difference
5845 // was found.
5846 if (EndMBB && Length > 0) {
5847 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
5848 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5849 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
5850 .addMBB(EndMBB);
5851 MBB->addSuccessor(EndMBB);
5852 MBB->addSuccessor(NextMBB);
5853 MBB = NextMBB;
5854 }
5855 }
5856 if (EndMBB) {
5857 MBB->addSuccessor(EndMBB);
5858 MBB = EndMBB;
5859 MBB->addLiveIn(SystemZ::CC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00005860 }
Richard Sandifordd131ff82013-07-08 09:35:23 +00005861
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005862 MI.eraseFromParent();
Richard Sandifordd131ff82013-07-08 09:35:23 +00005863 return MBB;
5864}
5865
Richard Sandifordca232712013-08-16 11:21:54 +00005866// Decompose string pseudo-instruction MI into a loop that continually performs
5867// Opcode until CC != 3.
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005868MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
5869 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
Richard Sandifordca232712013-08-16 11:21:54 +00005870 MachineFunction &MF = *MBB->getParent();
Eric Christopherfc6de422014-08-05 02:39:49 +00005871 const SystemZInstrInfo *TII =
Eric Christophera6734172015-01-31 00:06:45 +00005872 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
Richard Sandifordca232712013-08-16 11:21:54 +00005873 MachineRegisterInfo &MRI = MF.getRegInfo();
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005874 DebugLoc DL = MI.getDebugLoc();
Richard Sandifordca232712013-08-16 11:21:54 +00005875
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005876 uint64_t End1Reg = MI.getOperand(0).getReg();
5877 uint64_t Start1Reg = MI.getOperand(1).getReg();
5878 uint64_t Start2Reg = MI.getOperand(2).getReg();
5879 uint64_t CharReg = MI.getOperand(3).getReg();
Richard Sandifordca232712013-08-16 11:21:54 +00005880
5881 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
5882 uint64_t This1Reg = MRI.createVirtualRegister(RC);
5883 uint64_t This2Reg = MRI.createVirtualRegister(RC);
5884 uint64_t End2Reg = MRI.createVirtualRegister(RC);
5885
5886 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00005887 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Richard Sandifordca232712013-08-16 11:21:54 +00005888 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
5889
5890 // StartMBB:
Richard Sandifordca232712013-08-16 11:21:54 +00005891 // # fall through to LoopMMB
Richard Sandifordca232712013-08-16 11:21:54 +00005892 MBB->addSuccessor(LoopMBB);
5893
5894 // LoopMBB:
5895 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
5896 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
Richard Sandiford7789b082013-09-30 08:48:38 +00005897 // R0L = %CharReg
5898 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
Richard Sandifordca232712013-08-16 11:21:54 +00005899 // JO LoopMBB
5900 // # fall through to DoneMMB
Richard Sandiford6f6d5512013-08-20 09:38:48 +00005901 //
Richard Sandiford7789b082013-09-30 08:48:38 +00005902 // The load of R0L can be hoisted by post-RA LICM.
Richard Sandifordca232712013-08-16 11:21:54 +00005903 MBB = LoopMBB;
Richard Sandifordca232712013-08-16 11:21:54 +00005904
5905 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
5906 .addReg(Start1Reg).addMBB(StartMBB)
5907 .addReg(End1Reg).addMBB(LoopMBB);
5908 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
5909 .addReg(Start2Reg).addMBB(StartMBB)
5910 .addReg(End2Reg).addMBB(LoopMBB);
Richard Sandiford7789b082013-09-30 08:48:38 +00005911 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
Richard Sandifordca232712013-08-16 11:21:54 +00005912 BuildMI(MBB, DL, TII->get(Opcode))
5913 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
5914 .addReg(This1Reg).addReg(This2Reg);
5915 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5916 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
5917 MBB->addSuccessor(LoopMBB);
5918 MBB->addSuccessor(DoneMBB);
5919
5920 DoneMBB->addLiveIn(SystemZ::CC);
5921
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005922 MI.eraseFromParent();
Richard Sandifordca232712013-08-16 11:21:54 +00005923 return DoneMBB;
5924}
5925
Ulrich Weigand57c85f52015-04-01 12:51:43 +00005926// Update TBEGIN instruction with final opcode and register clobbers.
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005927MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
5928 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
5929 bool NoFloat) const {
Ulrich Weigand57c85f52015-04-01 12:51:43 +00005930 MachineFunction &MF = *MBB->getParent();
5931 const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
5932 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
5933
5934 // Update opcode.
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005935 MI.setDesc(TII->get(Opcode));
Ulrich Weigand57c85f52015-04-01 12:51:43 +00005936
5937 // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
5938 // Make sure to add the corresponding GRSM bits if they are missing.
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005939 uint64_t Control = MI.getOperand(2).getImm();
Ulrich Weigand57c85f52015-04-01 12:51:43 +00005940 static const unsigned GPRControlBit[16] = {
5941 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
5942 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
5943 };
5944 Control |= GPRControlBit[15];
5945 if (TFI->hasFP(MF))
5946 Control |= GPRControlBit[11];
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005947 MI.getOperand(2).setImm(Control);
Ulrich Weigand57c85f52015-04-01 12:51:43 +00005948
5949 // Add GPR clobbers.
5950 for (int I = 0; I < 16; I++) {
5951 if ((Control & GPRControlBit[I]) == 0) {
5952 unsigned Reg = SystemZMC::GR64Regs[I];
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005953 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
Ulrich Weigand57c85f52015-04-01 12:51:43 +00005954 }
5955 }
5956
Ulrich Weigandce4c1092015-05-05 19:25:42 +00005957 // Add FPR/VR clobbers.
Ulrich Weigand57c85f52015-04-01 12:51:43 +00005958 if (!NoFloat && (Control & 4) != 0) {
Ulrich Weigandce4c1092015-05-05 19:25:42 +00005959 if (Subtarget.hasVector()) {
5960 for (int I = 0; I < 32; I++) {
5961 unsigned Reg = SystemZMC::VR128Regs[I];
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005962 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
Ulrich Weigandce4c1092015-05-05 19:25:42 +00005963 }
5964 } else {
5965 for (int I = 0; I < 16; I++) {
5966 unsigned Reg = SystemZMC::FP64Regs[I];
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005967 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
Ulrich Weigandce4c1092015-05-05 19:25:42 +00005968 }
Ulrich Weigand57c85f52015-04-01 12:51:43 +00005969 }
5970 }
5971
5972 return MBB;
5973}
5974
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005975MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
5976 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
Jonas Paulsson7c5ce102015-10-08 07:40:16 +00005977 MachineFunction &MF = *MBB->getParent();
5978 MachineRegisterInfo *MRI = &MF.getRegInfo();
5979 const SystemZInstrInfo *TII =
5980 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005981 DebugLoc DL = MI.getDebugLoc();
Jonas Paulsson7c5ce102015-10-08 07:40:16 +00005982
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005983 unsigned SrcReg = MI.getOperand(0).getReg();
Jonas Paulsson7c5ce102015-10-08 07:40:16 +00005984
5985 // Create new virtual register of the same class as source.
5986 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
5987 unsigned DstReg = MRI->createVirtualRegister(RC);
5988
5989 // Replace pseudo with a normal load-and-test that models the def as
5990 // well.
5991 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
5992 .addReg(SrcReg);
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005993 MI.eraseFromParent();
Jonas Paulsson7c5ce102015-10-08 07:40:16 +00005994
5995 return MBB;
5996}
5997
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00005998MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
5999 MachineInstr &MI, MachineBasicBlock *MBB) const {
6000 switch (MI.getOpcode()) {
Richard Sandiford7c5c0ea2013-10-01 13:10:16 +00006001 case SystemZ::Select32Mux:
Ulrich Weigand5f613df2013-05-06 16:15:19 +00006002 case SystemZ::Select32:
6003 case SystemZ::SelectF32:
6004 case SystemZ::Select64:
6005 case SystemZ::SelectF64:
6006 case SystemZ::SelectF128:
6007 return emitSelect(MI, MBB);
6008
Richard Sandiford2896d042013-10-01 14:33:55 +00006009 case SystemZ::CondStore8Mux:
6010 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
6011 case SystemZ::CondStore8MuxInv:
6012 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
6013 case SystemZ::CondStore16Mux:
6014 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
6015 case SystemZ::CondStore16MuxInv:
6016 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00006017 case SystemZ::CondStore8:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00006018 return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00006019 case SystemZ::CondStore8Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00006020 return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00006021 case SystemZ::CondStore16:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00006022 return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00006023 case SystemZ::CondStore16Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00006024 return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00006025 case SystemZ::CondStore32:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00006026 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00006027 case SystemZ::CondStore32Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00006028 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00006029 case SystemZ::CondStore64:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00006030 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00006031 case SystemZ::CondStore64Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00006032 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00006033 case SystemZ::CondStoreF32:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00006034 return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00006035 case SystemZ::CondStoreF32Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00006036 return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00006037 case SystemZ::CondStoreF64:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00006038 return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00006039 case SystemZ::CondStoreF64Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00006040 return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00006041
Ulrich Weigand5f613df2013-05-06 16:15:19 +00006042 case SystemZ::AEXT128_64:
Richard Sandiford87a44362013-09-30 10:28:35 +00006043 return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00006044 case SystemZ::ZEXT128_32:
Richard Sandiford87a44362013-09-30 10:28:35 +00006045 return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00006046 case SystemZ::ZEXT128_64:
Richard Sandiford87a44362013-09-30 10:28:35 +00006047 return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00006048
6049 case SystemZ::ATOMIC_SWAPW:
6050 return emitAtomicLoadBinary(MI, MBB, 0, 0);
6051 case SystemZ::ATOMIC_SWAP_32:
6052 return emitAtomicLoadBinary(MI, MBB, 0, 32);
6053 case SystemZ::ATOMIC_SWAP_64:
6054 return emitAtomicLoadBinary(MI, MBB, 0, 64);
6055
6056 case SystemZ::ATOMIC_LOADW_AR:
6057 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
6058 case SystemZ::ATOMIC_LOADW_AFI:
6059 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
6060 case SystemZ::ATOMIC_LOAD_AR:
6061 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
6062 case SystemZ::ATOMIC_LOAD_AHI:
6063 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
6064 case SystemZ::ATOMIC_LOAD_AFI:
6065 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
6066 case SystemZ::ATOMIC_LOAD_AGR:
6067 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
6068 case SystemZ::ATOMIC_LOAD_AGHI:
6069 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
6070 case SystemZ::ATOMIC_LOAD_AGFI:
6071 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
6072
6073 case SystemZ::ATOMIC_LOADW_SR:
6074 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
6075 case SystemZ::ATOMIC_LOAD_SR:
6076 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
6077 case SystemZ::ATOMIC_LOAD_SGR:
6078 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
6079
6080 case SystemZ::ATOMIC_LOADW_NR:
6081 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
6082 case SystemZ::ATOMIC_LOADW_NILH:
Richard Sandiford652784e2013-09-25 11:11:53 +00006083 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00006084 case SystemZ::ATOMIC_LOAD_NR:
6085 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
Richard Sandiford652784e2013-09-25 11:11:53 +00006086 case SystemZ::ATOMIC_LOAD_NILL:
6087 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
6088 case SystemZ::ATOMIC_LOAD_NILH:
6089 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
6090 case SystemZ::ATOMIC_LOAD_NILF:
6091 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00006092 case SystemZ::ATOMIC_LOAD_NGR:
6093 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00006094 case SystemZ::ATOMIC_LOAD_NILL64:
6095 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
6096 case SystemZ::ATOMIC_LOAD_NILH64:
6097 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
Richard Sandiford70284282013-10-01 14:20:41 +00006098 case SystemZ::ATOMIC_LOAD_NIHL64:
6099 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
6100 case SystemZ::ATOMIC_LOAD_NIHH64:
6101 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00006102 case SystemZ::ATOMIC_LOAD_NILF64:
6103 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
Richard Sandiford70284282013-10-01 14:20:41 +00006104 case SystemZ::ATOMIC_LOAD_NIHF64:
6105 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00006106
6107 case SystemZ::ATOMIC_LOADW_OR:
6108 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
6109 case SystemZ::ATOMIC_LOADW_OILH:
Richard Sandiford652784e2013-09-25 11:11:53 +00006110 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00006111 case SystemZ::ATOMIC_LOAD_OR:
6112 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
Richard Sandiford652784e2013-09-25 11:11:53 +00006113 case SystemZ::ATOMIC_LOAD_OILL:
6114 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
6115 case SystemZ::ATOMIC_LOAD_OILH:
6116 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
6117 case SystemZ::ATOMIC_LOAD_OILF:
6118 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00006119 case SystemZ::ATOMIC_LOAD_OGR:
6120 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00006121 case SystemZ::ATOMIC_LOAD_OILL64:
6122 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
6123 case SystemZ::ATOMIC_LOAD_OILH64:
6124 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
Richard Sandiford6e96ac62013-10-01 13:22:41 +00006125 case SystemZ::ATOMIC_LOAD_OIHL64:
6126 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
6127 case SystemZ::ATOMIC_LOAD_OIHH64:
6128 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00006129 case SystemZ::ATOMIC_LOAD_OILF64:
6130 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
Richard Sandiford6e96ac62013-10-01 13:22:41 +00006131 case SystemZ::ATOMIC_LOAD_OIHF64:
6132 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00006133
6134 case SystemZ::ATOMIC_LOADW_XR:
6135 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
6136 case SystemZ::ATOMIC_LOADW_XILF:
Richard Sandiford652784e2013-09-25 11:11:53 +00006137 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00006138 case SystemZ::ATOMIC_LOAD_XR:
6139 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
Richard Sandiford652784e2013-09-25 11:11:53 +00006140 case SystemZ::ATOMIC_LOAD_XILF:
6141 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00006142 case SystemZ::ATOMIC_LOAD_XGR:
6143 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00006144 case SystemZ::ATOMIC_LOAD_XILF64:
6145 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
Richard Sandiford5718dac2013-10-01 14:08:44 +00006146 case SystemZ::ATOMIC_LOAD_XIHF64:
6147 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00006148
6149 case SystemZ::ATOMIC_LOADW_NRi:
6150 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
6151 case SystemZ::ATOMIC_LOADW_NILHi:
Richard Sandiford652784e2013-09-25 11:11:53 +00006152 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00006153 case SystemZ::ATOMIC_LOAD_NRi:
6154 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
Richard Sandiford652784e2013-09-25 11:11:53 +00006155 case SystemZ::ATOMIC_LOAD_NILLi:
6156 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
6157 case SystemZ::ATOMIC_LOAD_NILHi:
6158 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
6159 case SystemZ::ATOMIC_LOAD_NILFi:
6160 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00006161 case SystemZ::ATOMIC_LOAD_NGRi:
6162 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
Richard Sandiford652784e2013-09-25 11:11:53 +00006163 case SystemZ::ATOMIC_LOAD_NILL64i:
6164 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
6165 case SystemZ::ATOMIC_LOAD_NILH64i:
6166 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
Richard Sandiford70284282013-10-01 14:20:41 +00006167 case SystemZ::ATOMIC_LOAD_NIHL64i:
6168 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
6169 case SystemZ::ATOMIC_LOAD_NIHH64i:
6170 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
Richard Sandiford652784e2013-09-25 11:11:53 +00006171 case SystemZ::ATOMIC_LOAD_NILF64i:
6172 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
Richard Sandiford70284282013-10-01 14:20:41 +00006173 case SystemZ::ATOMIC_LOAD_NIHF64i:
6174 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00006175
6176 case SystemZ::ATOMIC_LOADW_MIN:
6177 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6178 SystemZ::CCMASK_CMP_LE, 0);
6179 case SystemZ::ATOMIC_LOAD_MIN_32:
6180 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6181 SystemZ::CCMASK_CMP_LE, 32);
6182 case SystemZ::ATOMIC_LOAD_MIN_64:
6183 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
6184 SystemZ::CCMASK_CMP_LE, 64);
6185
6186 case SystemZ::ATOMIC_LOADW_MAX:
6187 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6188 SystemZ::CCMASK_CMP_GE, 0);
6189 case SystemZ::ATOMIC_LOAD_MAX_32:
6190 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6191 SystemZ::CCMASK_CMP_GE, 32);
6192 case SystemZ::ATOMIC_LOAD_MAX_64:
6193 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
6194 SystemZ::CCMASK_CMP_GE, 64);
6195
6196 case SystemZ::ATOMIC_LOADW_UMIN:
6197 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6198 SystemZ::CCMASK_CMP_LE, 0);
6199 case SystemZ::ATOMIC_LOAD_UMIN_32:
6200 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6201 SystemZ::CCMASK_CMP_LE, 32);
6202 case SystemZ::ATOMIC_LOAD_UMIN_64:
6203 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
6204 SystemZ::CCMASK_CMP_LE, 64);
6205
6206 case SystemZ::ATOMIC_LOADW_UMAX:
6207 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6208 SystemZ::CCMASK_CMP_GE, 0);
6209 case SystemZ::ATOMIC_LOAD_UMAX_32:
6210 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6211 SystemZ::CCMASK_CMP_GE, 32);
6212 case SystemZ::ATOMIC_LOAD_UMAX_64:
6213 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
6214 SystemZ::CCMASK_CMP_GE, 64);
6215
6216 case SystemZ::ATOMIC_CMP_SWAPW:
6217 return emitAtomicCmpSwapW(MI, MBB);
Richard Sandiford5e318f02013-08-27 09:54:29 +00006218 case SystemZ::MVCSequence:
6219 case SystemZ::MVCLoop:
Richard Sandiford564681c2013-08-12 10:28:10 +00006220 return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
Richard Sandiford178273a2013-09-05 10:36:45 +00006221 case SystemZ::NCSequence:
6222 case SystemZ::NCLoop:
6223 return emitMemMemWrapper(MI, MBB, SystemZ::NC);
6224 case SystemZ::OCSequence:
6225 case SystemZ::OCLoop:
6226 return emitMemMemWrapper(MI, MBB, SystemZ::OC);
6227 case SystemZ::XCSequence:
6228 case SystemZ::XCLoop:
6229 return emitMemMemWrapper(MI, MBB, SystemZ::XC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00006230 case SystemZ::CLCSequence:
6231 case SystemZ::CLCLoop:
Richard Sandiford564681c2013-08-12 10:28:10 +00006232 return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
Richard Sandifordca232712013-08-16 11:21:54 +00006233 case SystemZ::CLSTLoop:
6234 return emitStringWrapper(MI, MBB, SystemZ::CLST);
Richard Sandifordbb83a502013-08-16 11:29:37 +00006235 case SystemZ::MVSTLoop:
6236 return emitStringWrapper(MI, MBB, SystemZ::MVST);
Richard Sandiford0dec06a2013-08-16 11:41:43 +00006237 case SystemZ::SRSTLoop:
6238 return emitStringWrapper(MI, MBB, SystemZ::SRST);
Ulrich Weigand57c85f52015-04-01 12:51:43 +00006239 case SystemZ::TBEGIN:
6240 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
6241 case SystemZ::TBEGIN_nofloat:
6242 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
6243 case SystemZ::TBEGINC:
6244 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
Jonas Paulsson7c5ce102015-10-08 07:40:16 +00006245 case SystemZ::LTEBRCompare_VecPseudo:
6246 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
6247 case SystemZ::LTDBRCompare_VecPseudo:
6248 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
6249 case SystemZ::LTXBRCompare_VecPseudo:
6250 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
6251
Ulrich Weigand5f613df2013-05-06 16:15:19 +00006252 default:
6253 llvm_unreachable("Unexpected instr type to insert");
6254 }
6255}